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Abstract 
 

Our LDRD research project sought to develop an analytical method for detection of chemicals 

used in nuclear materials processing.  Our approach is distinctly different than current research 

involving hardware based sensors.  By utilizing the response of indigenous species of plants 

and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 

„suspicious molecules‟[1] relevant to nuclear materials processing.  As proof of concept, we have 

examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction 

from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to 

determine the uniqueness of the metabonomic response.  We show that there is a unique 

metabonomic response within our animal model to TBP.  The TBP signature can further be 

delineated from that of TPP.  We have also developed unique methods of instrumental transfer 

for metabonomic data sets. 
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Executive Summary 
 

 

The use of metabolic signatures as a method to detect nuclear production was explored. 

By tracking of indigenous flora and fauna and their metabolic response (metabonomics) 

to environmental release of chemicals associated with nuclear materials processing, one 

may be able to address the counter/non proliferation puzzle of when and where nuclear 

production is occurring.  In this project nuclear magnetic resonance (NMR)-based 

metabonomic studies were directed towards identifying the response of animals to both 

acute and chronic chemical exposure.  Spague-Dawley Rats were used as the mammalian 

model in this study to determine the efficacy of biological systems as indigenous sensors.  

We have shown that the metabolic response of our mammalian model is indeed altered by 

exposure to both acute and chronic levels of TBP (tributyl phosphate), an extractant used 

in nuclear fuel rod reprocessing.  The signature found was to be distinct, not only from 

the background, but from a homolog chemical, TPP (triphenyl phosphate), used in 

industrial processing. Further, in anticipation of field application of our sensor, we 

explored and developed methods for NMR instrumental model transfer, needed for 

general application of the sensor.  These results demonstrate that metabonomic studies 

can indeed identify past exposure to specific nuclear processing chemicals. 
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Chapter 1 

 

Tracking Nuclear Production using 
Indigenous Species 

 

 

1.1. Introduction to Tracking Nuclear Production 

 Tracking and proving proliferation of nuclear materials production, in 

particular uranium enrichment and/or plutonium production can be a difficult task, as 

evidenced by the scrutiny of Iran‟s and North Korea‟s uranium enrichment programs.  

Through tracking of indigenous flora and fauna and their metabolic response 

(metabonomics) to environmental release of chemicals associated with nuclear materials 

processing, one may be able to address the counter/non proliferation puzzle of when and 

where production is occurring.  By determining the unique metabonomic signatures that 

are produced to specific chemicals by different plants and animals (birds, mammals, fish, 

trees, algae, etc) due to low level exposure it may be possible to provide evidence for 

nuclear materials processing.  This indigenous species sensing will identify facilities that 

should be targeted for other sensor deployment. A schematic representation of this 

concept is shown in Figure 1.1. In this LDRD project, we stepped toward the 

development of a metabonomic toolbox for the identification of nuclear processing sites.  

As a proof of principle we have demonstrated the response on rats (a mammalian model) 

to two different industrial chemicals, one being pervasive in its use as a nuclear 

processing chemical.  We have also developed chemometric tools needed for the analysis 

of these complex, multidimensional data sets.  One can envision extensions of this work 

to the metabolic response of other organisms, such as plants, reptiles and birds, to provide 

a highly multiplexed response not currently available.  

 Our work has focused on proof of principle experiments using TBP (tributyl 

phosphate) and TPP (triphenyl phosphate) within a murine model, specifically the 

Sprague-Dawley rat.  Our „sensor‟, in this instance, is the biochemical response of the 

animal to its environment.  This approach is an application within the relatively new field 
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of metabonomics, which focuses on a systems approach to studying metabolic responses 

to external stimuli.  Note that metabonomics is indeed distinct from the field of 

metabolomics which seeks to catalog and quantify low level metabolites produced by 

cells.[2-4] 

Biological cells, in order to maintain homeostasis, respond to external stimuli, 

such a toxins or drugs, by altering their physiology.  This results in the production of a 

unique signature of biochemical changes (i.e., metabolic response) that can be used as 

indicators for exposure.  Metabolites are typically monitored using NMR since hundreds 

of metabolites can be monitored simultaneously.  Rather than detecting and associating a 

particular metabolite with a disease or induced toxicity, a pattern of metabolites is 

developed, thus creating a unique signature associated with the biochemical response.  

Metabonomic response has been used to a large extent, for drug toxicity studies.  More 

studies have been appearing showing the potential of metabonomics for environmental 

toxicology.[5-8] 

For the purposes of this LDRD, our goal has been to determine if chemicals used 

in nuclear processing provide a unique and detectable metabolomic response.  We have 

chosen to compare the response of TBP to that of TPP using 
1
H nuclear magnetic 

resonance (NMR) spectroscopy.  TBP is an extractant used to separate the P
239

 and U
238

 

from the rest of the materials in spent nuclear fuel rods in a process known as PUREX or 

Plutonium and Uranium Recovery by Extraction.  Spent fuel is dissolved into nitric acid 

and filtered.  A solvent composed of 30% TBP and 70% kerosene extract uranium and 

plutonium into the organic phase.  At present, PUREX is the most common reprocessing 

method.  Other methods for extraction that could see more widespread use in the future 

are UREX (uranium extraction), TRUEX (TransUranic Extraction), SANEX (Selective 

ActinNide Extraction), UNEX (Universal Extraction) and DIAMEX (Diamide 

Extraction).[9, 10]  

Chapter 2 presents the initial investigations into using 
1
H NMR-base 

metabonomics to track TBP exposure, and identifies some of the metabolites that are 

impacted by the toxic response to acute TBP exposure. Given that the goal is to 

distinguish a signature of TBP from other environmental disturbances, we will also 

compare the metabonomic response of TBP to tri-phenyl phosphate (TPP), a high-volume 
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industrial-use chemical expected to have similar breakdown products to that of TBP. For 

these expanded studies simple inspection of the NMR spectra are not sufficient for 

classification purposes. Chemometric techniques must be employed for the 

discrimination of the different chemical exposures. Chapter 3 details our efforts to 

develop Chemometric techniques, particularly orthogonal partial least squares 

discriminate analysis (O-PLSDA) for the identification and separation of TBP and TPP 

exposure. Chapter 4 extends these studies to investigate the response to chronic (low 

dose) exposure to TBP and TPP over a 15 week period. 

 Concern over the ability to transfer these Chemometric models to multiple 

analysis sites, in particular between different NMR laboratories, also prompted the 

investigation of model transfer as a part of this LDRD project. Chapter 5 describes 

efforts towards the development of instrumental transfer methods designed for NMR 

spectroscopy. Chapter 6 details one of the issues with existing instrumental transfer 

methods and introduces a variance filtered-instrumental transfer method developed in this 

laboratory to address these issues. 
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Figure 1.1: Schematic showing the use of metabonomics on indigenous species to identify 
and track the use of unique chemicals used in nuclear materials processing. 
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Chapter 2 
 

 
1
H NMR-Based Metabonomic Investigation of 

Tributyl Phosphate Exposure in Rats 
 

 

2.1. Introduction to Acute TBP Studies 

Tributyl phosphate (TBP) is a toxic organophosphorous compound widely used in 

nuclear processing,[11-13]
 
chemical industries [14] and the formulation of fire-resistant 

aircraft hydraulic fluids.[14] As a consequence, environmental pollution and occupational 

exposure involving TBP is a major public health concern due to delayed cholinergic 

toxicity and neurotoxicity effects.[14, 15] Workers exposed to TBP concentrations of 15 

mg/m
3
 in air have complained of nausea and headache,[16] while direct administration of 

TBP to rats produce urinary bladder hyperplasia, papillomas and  transitional cell 

carcinomas at high doses.[17] TBP also presents an acute toxicity hazard to freshwater 

living organisms, even at low concentrations.[18-21] 

Metabonomics is a multi-parametric approach that allows detection of the 

metabolic response due to chemical exposure,[22, 23]
 
and has previously been used for 

environmental,[24] pharmaceutical,[25] biomarker discovery,[26] and toxicology 

investigations.[27] Metabonomics can combine multivariate pattern recognition 

techniques with the metabolic profiling capabilities of a wide range of technologies, 

including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-

mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) spectroscopy. 

NMR can be used as a universal survey technique for small molecule metabolites 

including the ability to monitor physiological changes induced by toxic insult of chemical 

(or mixture of chemicals). Under the ideal conditions, 
1
H-NMR

 
peaks intensities are 

directly proportional to metabolite concentration and thus are useful for a prediction and 

biomarker discovery.[28] NMR is relatively insensitive in comparison with MS-based 

techniques, but does not rely on prior separation of analytes and allows possible sample 

recovery for further analyses.  
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In this chapter we explore the use of high resolution 
1
H NMR-based metabonomics to 

identify the metabolic variations associated with TBP exposure, including the 

identification of direct TBP metabolites in urine samples.   

 

 

2.2. Methods for Acute TBP Studies 

2.2.1. Animal Experiments 

Male Sprague-Dawley rats weighing 200 - 220g (Harlan Sprague–Dawley Inc., 

Indianapolis, IN, USA) were acclimatized for two weeks at a controlled humidity and 

temperature in the animal care facility at the University of Texas Medical Branch 

(UTMB) Galveston, prior to the start of the experiment. All animal experiments were 

performed in the Animal Resource Center (ARC) at UTMB using a protocol approved by 

the Institutional Animal Care and Use (IACUC) program. Seven rats were randomly 

divided into a treated group (4 rats) and a control (3 rats) group. Tributyl phosphate 

(TBP- 98.0% purity, Sigma Aldrich, USA) was dissolved in 1 ml corn oil and was 

administered by gavage to the treated rats using a 15 mg/kg body weight dose (~3.3 

mg/rat), while the control rats received 1 ml of corn oil only. Suzuki et al. used a similar 

dosage for studying the metabolism in rats.[29] Following dosing, the rats were 

transferred into individual metabolic cages. Urine was collected over a 24 hr period, 

filtered, and subsequently stored at -80 °C until further analysis. The collected urine 

volumes ranged between 4.25 and 6.25 ml, with no group bias. TBP administration did 

not affect survival of rats during these chronic exposure experiments. The urine from one 

of the TBP-treated rats was discolored red, similar to previously reported observation 

involving TBP exposure by Auletta et al.. [30]  

 

2.2.2. NMR Sample Preparation.  

A 100 µl aliquot of rat urine was diluted with 650 µl of buffer, for a final buffer 

concentration of 250 mM phosphate, pH = 6.0, 10% D2O (99.9%), containing 500 µM of 

sodium 4,4-dimethyl-4-silapentane-1-suphonate (DSS) as an internal chemical shift 

reference. Proton (
1
H) NMR data of the urine samples were obtained on a Varian Unity 

Plus 600 MHz spectrometer. The one-dimensional (1D) spectra were collected at 25 ºC 

with a tnnoesy pulse sequence, using a 1 s pre-saturation delay, a 100 ms mixing time, 4 s 
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acquisition time, a signal averaging of 256 transients, 4 dummy scans, a 6 µs /2 pulse, a 

7.2 kHz sweep width, 25K complex points, zero filled to 64K. Similar acquisition 

conditions were used for collecting NMR spectra of urine samples spiked with dibutyl 

phosphate (DBP, Sigma Aldrich, USA), and for overlay experiments spectra individually 

collected for N-acetyl-(S-3- hydroxobutyl)-L-cysteine and N-acetyl-(S-3- oxobutyl)-L-

cysteine. The two cysteine compounds were synthesized at the Synthetic Organic 

Chemistry Core of the UTMB NIEHS Center for Environmental Toxicology (UTMB, 

Galveston, TX) following literature procedure. [29, 31]  

 

2.2.3. Metabolite Identification and Statistical Analysis   

The NMR data were Fourier-transformed, phased, referenced and baseline-

corrected in the Chenomx NMR Suite 5.1 (Edmonton, Canada). The methyl singlet of 

DSS (500 µM) served as an internal standard for both chemical shifts and quantification. 

Spectral identification and quantification of clearly identifiable metabolites was carried 

out using the database in the Chenomx NMR Suite. The spectral chemical shifts and 

quantification procedure used was previously demonstrated to provide absolute 

concentration accuracies in excess of 90%.[32]  Two NMR spectral regions, δ = 0.18 to 

4.6 and δ = 5.0 to 9.4 ppm (which excluded water) were binned into 0.01 ppm wide 

regions, providing 882 integrated regions for analysis. The z-score determination, 

hierarchical clustering, and principal component analysis (PCA) were performed using 

the Spotfire DecisionSite 9.0 software (TIBCO Spotfire, U.S Somerville, MA).  For the 

hierarchical clustering and principal component analysis, normalized z-scores were used. 

The z-score (or standard score) at each spectra frequency or bin region ( ) is defined by 

 

 ( ) ( ) / ( )z I I  (2.1)  

where ( )I  and ( )I  are the spectral intensity and mean intensity, respectively, for that 

spectral region, and ( ) is the standard deviation of measured spectral intensities for 

that spectral region. 

 The chemical shifts that were determined by clustering methods as being 

significantly different between dosed and control animals were used for the identification 
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and quantification of the metabolites using the Chenomx NMR Suite. Metabolite 

identifications were achieved by matching the spectral positions, intensities, and coupling 

patterns of each metabolite proton with those available in the metabolite library of the 

Chenomx NMR suite. 

 

2.3. Results and Discussion for TBP Acute Studies 

 Distinct spectral differences were readily observed (Figure 2.1) between the 
1
H 

NMR spectra of the urine samples collected from control rats versus TBP-treated rats. 

This separation based on metabolite NMR differences between the TBP-dosed and 

control groups is also seen in the PCA analysis (Figure 2.2) in which 158 binned spectral 

regions, previously determined by a t-test to be significantly different between the two 

groups with a probability of p < 0.05, were used. To identify the specific metabolites that 

are contributing to this group classification, hierarchical clustering of these 158 identified 

binned spectral regions was performed and the result is shown as a heat map (Figure 2.3). 

Two distinct clusters corresponding to TBP-dosed and control animals were identified. In 

this figure the red color indicates increased relative concentration of the metabolites 

within the treated animals, while green indicates a decreased relative concentration (or 

absence) of metabolites.  The elevation of metabolite concentrations in the TBP-treated 

rats was initially used to identify regions corresponding to catabolic products of TBP 

along with identification of endogenous metabolites impacted by TBP exposure, as 

described below.   

 

2.3.1. Identification of Metabolites and Intermediates of TBP  

The discriminating regions of the 
1
H NMR urine spectra are shown in Figures 

2.4a-c for the control and TBP-treated animals. Those chemical shifts that provide 

discrimination between the TBP-treated and control animals are noted in the figure and 

are also shown in Table 2.1. 

 We first focused on identifying the metabolized products of TBP via the pathways 

originally described by Suzuki et al.,[29, 31] where the dominant breakdown species 

include dibutyl phosphate (DBP) and the butyl dihydroxyphosphate. Suzuki and co-

workers demonstrated that these dealkylation products do not appear to result from 
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simple hydrolysis of the TBP phosphate atom, but instead involve metabolic 

intermediates with hydroxylation of the butyl moieties.[29, 31]  In a latter study they 

demonstrated that the butyl elimination is partly due to the action of glutathione-S-

transferase, which can result in the formation of the S-containing metabolites N-acetyl-

(S-3-oxobutyl)-L-cysteine and N-acetyl-(S-3- hydroxobutyl)-L-cysteine.[29, 31] To 

identify these metabolized products, DBP spiking experiments were monitored using 
1
H 

NMR  (Figure 2.5). Resonances that showed increased intensities following spiking were 

observed at  = 0.91-0.92 ppm, 1.37-1.38 ppm and 1.60-1.61 ppm and correspond closely 

with the spectral regions identified in Figure 2.4a that allowed for identification of TBP-

treated and control animals (see also Table 2.1), suggesting that DBP production is 

responsible for this separation.  Figure 2.6 shows the overlap of the 
1
H NMR spectra of 

the N-acetyl-(S-3- hydroxobutyl)-L-cysteine intermediate.  The N-acetyl-(S-3- oxobutyl)-

L-cysteine were not identified in our study (data not shown), due to overlapping peaks 

with other excreted metabolites. Other proposed metabolites of TBP might not be 

expected to be detectable by 
1
H NMR at this dose amount, since these compounds are 

predicted to exist in only trace amounts.[29, 31]  The minimum detectable limit for 

intermediates was estimated from the DBP-spiking experiments to be on the order of 25 

µM. Thus, at this TBP dose (15 mg/kg) it is possible to detect TBP degradation 

metabolites by NMR. DBP is a major excreting intermediate of TBP as previously 

reported.[29, 31]  Detection of other intermediates at low concentration may be possible 

by increasing the TBP dose or by use of NMR spectrometers or probes with a higher 

sensitivity.  

 

2.3.2. The Metabonomic Response to TBP Exposure  

The other endogenous metabolites corresponding to TBP exposure were also 

determined. The chemical shifts of metabolite species showing significant concentration 

differences between the TBP-treated and control groups are listed in Table 1, and were 

identified using the clustering method (heat map Figure 2.3).  The reported metabolite 

concentrations were normalized with creatinine concentration for all of the samples. The 

creatinine concentrations ranged between 1.07 – 3.57 mM with no apparent group bias 

and no observed significant differences in between groups. It was also validated by 
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comparing the raw intensities of the creatinine chemical shift bins, which were not 

selected as being significant (p < 0.05), thus indicating that creatinine was showing no 

dissimilarity in excretion among the groups. 

 The major endogenous metabolites responsible for dosed/control separation were 

identified using the Chenomx NMR suite metabolite library, and included: citrate, cis-

aconitate, 2-oxoglutarate, succinate, fumarate, benzoate, urea, and trigonelline. The 

concentration of these metabolites for the TBP-dosed and control animals is shown in 

Figure 2.7. Citrate, cis-aconitate, succinate, fumarate, and 2-oxoglutarate are the key 

intermediates of the Kreb‟s cycle.  

Decreased levels of Kreb‟s cycle intermediates in the urinary excretion indicate 

increased cellular energy metabolism,[23] although the changes in the intermediates did 

not indicate any specific mechanism of toxicity. A decrease of the Kreb‟s cycle 

intermediate in the urine has been observed in heavy metal or chemical- induced 

nephrotoxicity, and has been attributed to toxin-induced alternation in tubular acid-base 

status or the effects on the key enzymes in the Kreb‟s cycle.[33, 34] The observation of a 

similar decrease in Kreb‟s cycle intermediates in our studies suggests a similar effect for 

TBP or corresponding breakdown intermediates. Variations in the concentration of the 

other identified metabolites (benzoate, urea, and trigonelline) implies that TBP or its 

intermediate also impact different metabolic pathways. Further investigations are needed 

to fully identify these pathways. The low urea concentrations observed in the TBP-treated 

rats may reflect changes in the kidney urea transporters [35] or a reduction in the cellular 

protein break-down process, because urea excretion levels increase as a result of protein 

degradation.[36]  Benzoate is a urine metabolite used as a detoxification marker with 

high benzoate concentrations indicating poor detoxification.[37] The observation of 

decreased benzoate concentration in TBP-dosed rats versus control animals suggests an 

increased detoxification process. The remaining affected metabolite, trigonelline, is a 

product of the metabolism of niacin (vitamin B3) which is excreted in the urine. The 

decreased amount of endogenous trigonelline might be a defective mechanism in the 

niacin metabolism either caused directly or indirectly by TBP in the biofluids of 

physiological system.  
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2.4. Conclusions 

The 
1
H NMR-based metabonomic results provide a method for an early detection 

of a metabonomic response to acute exposure to TBP, even at low doses. These studies 

demonstrate the metabolic intermediates of TBP could be used as signatures for the 

exposure to TBP. In particular, the chemical shifts leading to classification between TBP-

dose and control animals were attributed to dibutylhydroxy phosphate (DBP) and N-

acetyl-(S-3- hydroxobutyl)-L-cysteine. It was also shown that metabolite intermediates 

involved in the Kreb‟s cycle were impacted by TBP-exposure, along with other 

endogenous metabolites (benzoate, urea and trigolline). These metabolite variations 

provide a powerful signature to TBP exposure in animals, and may provide a method to 

monitor exposure for diverse applications ranging from water surety, nuclear processing 

and environmental monitoring. Additional metabonomic studies involving chronic low-

dose exposure to TBP in animals are in progress. 

 

   

 



22 

 

 

 
Table 2.1: 1H NMR Chemical Shifts of TBP Intermediates and Other Metabolites 

 
Metabolite Chemical shifts

a 
2-Oxoglutarate 2.43, 2.99 
Benzoate 7.54, 7.62, 7.82 
Citrate 2.54, 2.68 
Creatinine 3.03, 4.05 
Fumarate 6.60 
Cis-aconitate 5.9, 3.1 
Urea 5.77 
Succinate 2.41 
Trigonelline 9.11, 8.88, 8.07, 4.43 

Dibutyl phosphate 
0.91, 1.12, 1.37-1.39, 1.60, 1.61, 3.43, 3.44, 
3.52-3.55, 3.84 - 3.89  

N-acetyl-(3-hydroxybutyl)-S-L-cysteine 1.12, 1.73, 2.05, 2.86, 3.04, 3.91,4.35, 8.03 
a 
Chemical shifts were identified and measured with recognized pattern using the 

Chenomx 5.1 database.  
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Figure 2.1: One-dimensional 1H NMR spectra (unbinned) showing the difference in observed 
metabolites for the excreted urine of TBP-treated (black) versus control (cyan) rats. The 

chemical shifts were referenced to internal DSS (500 µM),  = 0.0 ppm. 
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Figure 2.2: PCA analysis of the 1H NMR spectra of urine showing separation between the TBP-
treated and control groups based on the z-scores of the binned spectra using 158 spectral 
regions having confidence levels of p < 0.05. 
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Figure 2.3: Heat map generated by hierarchical clustering based on calculated z-scores from 
the 1H NMR spectral bins of rat urine showing the clustering of TBP-treated and control groups 
utilizing 158 binned regions (having confidence of p<0.05). Red blocks indicate increased z-
scores (scaled relative concentration) whereas green indicates decreased z-scores according to 
the scale shown.  
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Figure 2.4. Overlay of the 1D-1H NMR urine spectra of the TBP-treated (black, animal number 
2) and control (cyan, animal number 7) animals showing the spectral difference in the (a) 

aliphatic region (δ = 0 to +2 ppm), b) the  = 1.98 to 3 ppm region and for the c)  = 7.75 to 8.2 
ppm spectral region.   The chemical shifts showing significant difference between the dosed and 
untreated groups is shown in box (see also Table 1) and were identified using hierarchal 
clustering analysis. For the aliphatic region the discriminating chemical shifts correspond to the 
metabolic degradation products of TBP, such as DBP and N-acetyl-(S-3- hydroxobutyl)-L-
cysteine, while in the aromatic region the N-acetyl-(S-3- hydroxobutyl)-L-cysteine intermediate 

(  = 8.03 – 8.04 ppm) is realized. 

 



27 

 

 
Figure 2.4b 
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Figure 2.4c
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Figure 2.5. Overlay of 1D-1H NMR spectral region  (0.0 - 2.0ppm) of control (black) and DBP- 
spiked urine (cyan) at a 25µM concentration allowing for identification of the DBP chemical 

shifts at  δ = 0.91, 0.92, 1.37, 1.38, 1.60 and 1.61 ppm.   
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Figure 2.6. Overlay of 1D-1H NMR spectra of urine from TBP treated animals (blue) and the 
chemically synthesized TBP intermediates N-acetyl-(S-3- hydroxobutyl)-L-cysteine (cyan blue). 
The elevated peaks chemical shifts (δ = 1.18-1.22, 2.05, 2.87-2.89, 8.03 and 8.04) observed in 
the TBP-treated which pattern matches with the N-acetyl-(S-3- hydroxobutyl)-L-cysteine. The 
chemical shifts δ = 1.7, 2.6, 3.0 and 4.4 ppm were not resolvable in the urine sample, because 
of the overlapping peaks of other metabolites.  
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Figure 2.7. Average metabolite concentrations (± standard deviation) for TBP-treated (n 
= 4) control (n = 3)   animals (metabolites normalized with creatinine concentration). The 
internal DSS signal is utilized as the concentration reference (500 µM).  
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Chapter 3 
 

1
H NMR Metabonomic Study of Rat Response to 

Acute Tri-Phenyl Phosphate and Tri-Butyl 
Phosphate Exposure 

 
 

3.1. Introduction to Acute TBP and TPP Exposure Studies 

Tributyl phosphate (TBP) and triphenyl phosphate (TPP) have numerous industrial 

applications including use as a flame retardant in plastics and resins, a non-flammable plasticizer 

in acetate, polyester and polyurethane films, as well as being a component of hydraulic fluids 

and lubricant oils [38]. TBP is also used during solvent extraction of nuclear waste and 

reprocessing of nuclear material based on the PUREX (Plutonium-Uranium Reduction 

EXtraction) process [39, 40]. Environmental exposure to these phosphates results mainly from 

hydraulic oil leakage or from the leaching or combustion and volatilization of plastics. 

The acute oral toxicity of TBP is considered relatively low, with an LD50 (oral) in rats 

reported between  2000 and 3000 mg/kg, [41] or 1000 mg/kg following intraperitoneal 

injections. Short term toxicity studies include studies of variation in organ morphology,[42-46] 

serum activity,[47] the role in neurotoxicity, [48] oncogenicity [17, 30] and the production of 

teratogenic effects [49]. Similarly the acute oral LD50 of TPP is reported between 5000 and 

20,000 mg/kg with studies in rats addressing the immunotoxicity, and teratogenicity of TPP [50-

52]. 

Investigations into the metabolism of TBP and TPP have been more limited. Studies in 

rats using 
14

C-labeled TBP revealed up to 11 different phosphate containing metabolites 

originating from TBP, with the mono- and di-butyl phosphate being the dominant metabolite 

species observed [29]. It was argued that these metabolites were not the result of simple 

hydrolysis of the TBP, but were produced almost exclusively from the early formation of a 

dibutyl 3-hydrobutyl phosphate intermediate. This argument was also supported by the majority 

of the 
14

C-labeled metabolites observed being hydroxylated on the butyl C-3 position. Later 

studies also indentified several S-containing metabolites following TBP dose demonstrating that 

glutathione-S-transferase  is involved in the metabolism of TBP [31]. In a similar study, the 
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metabolism of tris(2-choloethyl) phosphate in rats was shown to produce the bis(2-chloroethyl) 

hydrogen phosphate and the bis(2-choloehtyl) carboxymethyl phosphate along with the 

glucuronide of the bis(2-cholorethyl) 2-hydroxyethyl phosphate [53]. To the best of our 

knowledge, only a initial report into the metabolic biomarkers of indicative of TBP or TPP 

exposure has been reported [54]. 

Nuclear magnetic resonance (NMR) metabolomics/metabonomics has proven to be an 

innovative and promising approach to study the response of organisms to chemical exposure [55-

60]. Metabonomics couples advanced spectroscopic techniques with multivariate or chemometric 

analysis to identify metabolic signatures correlated with some external stimulus (toxic exposure).  

In this paper we report the 
1
H NMR metabonomic urine studies of rats exposed to a single acute 

dose of TBP or TPP, and identify the spectral regions and metabolites responsible for exposure 

classification. 

 

3.2. Methods 

3.2.1. Animal Studies 
The studies were performed on male Sprague-Dawley rats weighing 200-220 g (Harlan 

Sprague–Dawley Inc., Indianapolis, IN, USA) which were acclimatized for two weeks prior to 

the first dose in the animal care facility at the University of Texas Medical Branch (UTMB) 

Galveston. All animal experiments were performed in the Animal Resource Center (ARC) at 

UTMB using a protocol approved by the Institutional Animal Care and Use (IACUC) program. For 

this study 23 rats were divided into a group (4 rats) treated with tributyl phosphate (TBP) rats), a 

group (6 rats) receiving a high dose triphenyl phosphate (TPP), a group (6 rats) receiving a low 

dose of TPP and a control group (3 rats for the TBP experiment and 5 rats for the TPP 

experiment). The TBP and TPP exposure experiments were performed at different periods 

several months apart, but the final NMR data of the collected urine was combined into a single 

data set for analysis. TBP (CAS # 126-73-8, 98.0% purity, Sigma Alridch, USA) was dissolved 

in 1 ml corn oil and was administered to the TBP-treated rats by gavage (force feeding) using a 

single 15 mg/kg body weight dose (~3.3 mg/rat), while the control rats received 1 ml of corn oil 

only. TPP (CAS # 115-86-6, > 99%, Sigma-Aldrich) was dissolved in 1 ml corn oil for either a 

single low dose of 2.025 mg/kg (0.405 mg/rat) or a single high dose high dose of 20.25 mg/kg 

(4.05 mg/rat) and then administered by gavage to the TPP-treated rats. Again the control rats 

received 1 ml of corn oil by gavage. In addition, one rat did not receiving any corn oil or gavage 
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and was designated as the normal in these studies. Suzuki et al., used a similar dosage for 

studying the metabolism in rats [29]. Following dosing, the rats were transferred into individual 

metabolic cages, with the urine being collected for a 24 hr period, filtered, and subsequently 

stored at -80 °C until further analysis. The urine volumes collected ranged between 4.25 and 6.25 

ml, with no group bias. Neither the acute TBP nor TPP administration affected the rat survival 

rate during these experiments.  

 

 

 

 

3.2.2. NMR Spectroscopy and Analysis 

The NMR samples were prepared by mixing 100 µl of urine with 650 µl of phosphate 

buffer giving a final concentration of 250 mM phosphate (pH = 6.0), 10% D2O, containing 500 

µM DSS (2,2-dimethyl-2-silapentane-5-sulfonic acid) as a chemical shift indicator. The 
1
H NMR 

spectra were obtained using a Varian Unity Plus 600 with a HCN 5mm probe at 25 
o
C. A 

standard 1D NOESY pulse sequence, with a 1s recycle delay, a 1s water pre-saturation, 4 

dummy scans, 256 scan averages, a 6 µs /2 pulse width and a 100 ms mixing time ( m) was 

employed. A spectral width of 20 ppm, with 28K complex points, zero-filled to 64K points prior 

to Fourier transformation using a 0.5 Hz line broadening was used for all data collection. The 

NMR spectra were transformed, phased, chemical shift referenced (DSS  = 0 ppm), baseline 

corrected using CHENOMX NMR 5.1 Suite (Edmonton, Canada). In addition, line shape 

deconvolution [61] and removal of the water region 4.6 to 4.9 ppm were performed in the 

CHENOMX Suite.  

The processed NMR spectra were transferred at full resolution (no binning) for analysis 

in MATLAB2007b (The Mathworks) using PLS Toolbox 4.1 (Eigenvector Research, Inc.). The 

data sets were normalized using the Probabilistic Quotient Normalization (PQN) method [62] 

followed by mean centering. The PQN normalized data gave a small improvement in the 

observed cross-validation errors in comparison to integral normalization or constant sum 

normalization,[63] and was used for all the analysis presented here. Three classes were chosen 

for principal least squares discriminate analysis (PLS-DA) and were designated as TBP-treated 

(class 1), TPP-treated (class 2) and control (class 3). A separation of the TPP-treated animals into 

a low and high dose (4 total classes) was also explored. Orthogonal signal correction (OSC) was 
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applied to remove non0correlating spectral variations (2 components) that were not contributing 

to classification. This O-PLSDA method has been previously described [64-67]. Cross validation 

was performed using a leave-one-out process, with the cross validation standard error being 

reported. The uniqueness of the O-PLS-DA model was addressed by a random permutation of 

the classification labels for all the samples in the data set, followed by cross-validation as 

previously described [68]. The variable importance in projection (VIP) scores [69] were obtained 

from the O-PLSDA analysis and mapped onto the original NMR spectra. VIP coefficients reflect 

the importance of each spectral frequency to each variable in the PLS model. The VIP coefficient 

for the kth parameter (frequency) is the sum over all PLS dimensions (a) of the contribution VIN 

(variable influence) 

 

 2VIP VINk ak

a

 (3.1) 

 

Where 2VINak is equal to the squared PLS weight of that parameters multiplied by the percent 

explained sum of squares for that PLS dimension. Identification of the metabolites responsible 

for the spectral features giving rise to the high VIP scores was obtained by manual comparison to 

the metabolite spectral library available in the CHEMONX NMR 5.1 Suite. 



37 

3.3. Results and Discussion 

3.3.1. NMR for TBP and TPP Exposure 

 The non-normalized 
1
H NMR spectra of urine samples from TBP-treated (4 animals), 

TPP-treated (11 animals) and control rats (8 animals) is shown in Figure 3.1. These spectra 

reveal numerous resonances for many different metabolites, along with subtle changes in the 

metabolite profiles between the three exposure classes. An initial 
1
H NMR study following TBP-

exposure [54] was able to identify several spectral regions and metabolites that differed between 

TBP-exposed and control animals. Unfortunately, the differences in the relative urine 

concentration, combined with inter-animal variations and a high complexity of the NMR spectra, 

makes such visual comparisons between TBP-treated and TPP-treated results increasingly 

difficult prompting the use of Chemometric analysis as described below. 

 

3.3.2. O-PLSDA of TBP and TPP Exposure 

 The O-PLSDA classification/prediction plots for the identification of TBP-treated, TPP-

treated and control animals based on the 
1
H NMR data are shown in Figure 3.2. The original 

model (Figure 3.2a) was developed using the full spectra (9100 frequencies) with 6 latent 

variables describing 86% of the variance. The separation between the three different exposure 

classes was very good, with all 23 samples being correctly classified (i.e. classification error was 

zero). Similar prediction models were developed for the simpler 2-class separation of TBP-

treated versus control animals or TPP-treated versus control animals (data not shown). Only 

results from the combined 3 class analysis of NMR data are discussed here. 

The predicted classification following a leave-one-out cross validation analysis is shown 

in Figure 3.2b. In this figure the class designation represents the average over all the cross-

validation trials. There is clearly an increased scatter in the class designation, with the cross 

validation error increasing to 0.19 for control, 0.00 for TBP and 0.04 for TPP predictions. Even 

under cross validation the prediction of the TBP-exposed animals is excellent with all samples 

being correctly identified. Figure 3.2b shows that the TPP-treated and control samples are 

occasionally misclassified with each other (samples 5 -23), with the error of misclassification 

being slightly higher for samples #8-13 which corresponds to the high dose of TPP. These cross 

validation results suggest that it is possible to develop a PLSDA model using the entire NMR 
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spectra to separate TBP-treated, TPP-treated and control samples, but that it will require a 

significant number of latent variable to maintain correct classification.  

To this point in the analysis no specific spectral regions have been specifically identified 

or removed during the development of the PLSDA model. In previous studies it is common to 

select and only include spectral regions that improve the separation between classes. For the 

investigation it was found that these cross validation results could be slightly improved by only 

including specific spectral regions known to high VIP coefficients (using Equation 3.1) during 

the model development. If the NMR data set if filtered to retain only those spectral frequencies 

that have a VIP coefficient > 3 for all three classes in the PLSDA then the number of spectral 

frequencies is reduced from 9100 points (full spectra) to 338 points. Subsequent PLSDA on this 

VIP-filtered data set again provides excellent classification (zero classification errors) in the 

original model with 6 latent variables capturing 90% of the variance. Cross validation on this 

VIP-filtered data set resulted in classification errors of 0.06 for control, 0.00 for TBB-treated and 

0.04 for TPP-treated animals. Surprisingly this filtering only provided a significant improvement 

in the classification of the control animals. For the remainder of the discussion we will utilize 

models developed with the entire spectral data set (9100 frequencies).  

 Attempts to separate the high and low dose TPP-treated samples from the control and 

TBP-treated samples using O-PLSDA are shown in Figure 3.S1 in the supplemental section. 

Even for models incorporating 8 latent variables (87% of the spectral variation captured by the 

model) there was a classification error of 0.029 for the high dose TPP-treated samples. The 

control, low dose TPP-treated and TBP treated samples were all correctly identified in the 

original model. Under cross-validation this classification error increased dramatically to 0.45 

(control), 0.71 (TPP-treated, high dose), 0.08 (TPP-treated, low dose) and 0.00 (TBP-treated). 

These cross validation errors are much higher than the errors observed for the 3-class model 

described above. Again, all of the TBP-treated samples were correctly identified for this model 

under cross-validation.  It is also possible to develop models looking at only the high and low 

dose TPP-treated versus the control animals. These results are shown in Figure 3.S2 

(supplemental section), and as expected the cross validation errors are smaller than either the 3-

class or 4-class models. These results show that models for the separation of high and low-dose 

TPP-treated animals from TBP-treated and control animals are not very robust, and were not 

pursued further. 
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3.3.3. Evaluation of Model Uniqueness 

Given the complexity of the developed PLSDA model there is a concern whether the data is 

simply being over fitted. To address this issue the distribution of the cross validation error of 

prediction for the O-PLSDA model (3 –class) assuming random permutation of the class labels is 

shown in Figure 3.3. This analysis was performed to assess the uniqueness of the discriminate 

analysis for the identification of TBP-treated, TPP-treated and control animals (same model as 

shown in Figure 3.2). The distributions were obtained by simulation of 1000 random 

permutations of the sample classification labels, followed by calculation of the resulting cross-

validation error for that new random model. For all three classes (TBP-treated, TPP-treated and 

control) the distributions show a maximum near a cross validation error of ~ 0.5. The distribution 

for the TBP-treated classification is skewed slightly to higher errors. The red line denotes the 

cross-validation error determined for the original data set prior to any label permutations, and 

allows the determination of a measure of probability ( . In the case of control classification 

with a cross validation error of 0.19,  < 0.018 meaning that ~18 out of 1000 random data sets 

would have similar control classification under this model. For the TBP-treated and TPP-treated 

classification this drops to  < 0.002 and 0.001, respectively, meaning that less than 1 or 2 

random sample sets out of 1000 would produce a similar or lower cross validation error. These 

results support the argument that the PLSDA model developed for the TBP-treated and TPP-

treated classification is unique. 

 

3.3.4. VIP Identification of Important Metabolites 

For this study, we have elected to maintain all the spectral regions in the development of 

the classification model and then use these results to identify the spectral regions and 

corresponding metabolites that are responsible for the TBP-treated, TPP-treated and control 

classification. The VIP coefficients were evaluated for each component in the PLS model using 

Equation 1, and then were mapped onto the 
1
H NMR spectra as shown in Figure 3.4. These 

spectra are color-coded based on their corresponding scaled VIP scores. In this example the 

mapped VIP scores have been scaled to the highest VIP score for that individual PLS component 

so that the results for the different classes can be directly compared. The VIP-mapped spectra 



40 

corresponding to the TBP-treated component of the PLSDA classification is shown in Figure 

3.4a and c, while mapping of the TPP-treated component is shown in Figure 3.4b and d. While 

there are many similarities in the VIP scores inspection of these figures clearly shows that 

different spectral regions are responsible for the classification of TBP-treated and TPP-treated 

animals. 

 The spectral regions for the top 10 VIP coefficients that were responsible for the 

prediction of each class are summarized in Table 3.1. Identification of the metabolites 

responsible for these spectral regions was accomplished by visual fitting to the metabolite 

spectral library in the CHEMONX NMR Suite. In many instances it was possible to confirm the 

metabolite identification by comparison of the VIP scores for different the spectral regions 

associated with a given metabolite. The argument was if a target metabolite is responsible for the 

high VIP coefficient during classification, then all the spectral lines associated with that 

metabolite should have similar VIP coefficients. As example, the resonance at  = 2.43 ppm was 

tentatively assigned to 2-oxoglutarate, requiring that the corresponding spectral signature of 2-

oxoglutarate at  = 3.0 ppm should have a similar VIP score as was observed experimentally. 

Similarly the 
1
H NMR resonances at  = 7.54, 7.67 and 7.82 ppm were assigned to either the 

metabolite benzoate or hippurate. The hippurate molecule has an additional methylene resonance 

at ~ 4 ppm which should have a similar VIP score to the aromatic resonances. Experimentally 

there were no corresponding VIP scores in this region arguing against hippurate and supporting 

the assignment of benzoate. There are also spectral regions with very high VIP coefficients that 

were not assigned to particular metabolites due to the inability to uniquely identify or resolve 

spectral features in this highly overlapped region. 

 For the classification of TPP-treated and control animals the top 2 spectral regions of 

interest based on VIP scores were  = 3.42 and 3.27 ppm. Presently these resonances were 

unassigned. The remaining top 5 spectral regions for classification of TPP-treatment correspond 

to the metabolite 2-oxoglutarate and citrate, while beatine was identified as an important 

metabolite for the classification of the control animals.  

The top 2 spectral regions for classification of TBP-treatment were at  = 2.54, 2.55, 2.68 

and 2.71 ppm which have been assigned to citrate, while the remaining top 5 spectral regions 

correspond to 2-oxoglutarate and creatine. Citrate and 2-oxoglutarate had previously been 

identified as an important metabolite for TBP-exposure [54]. In that study they also identified 
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succinate, benzoate, cis-aconitate, fumarate, urea and trigonelline as important classification 

metabolites. The VIP coefficients in Table 3.1 show that some of these metabolites are involved 

in the classification, but have a smaller contribution. For example succinate is involved in the 

classification of TBP-treated and TPP–treated animals with a VIP score about 20% of the 

dominant spectral region (unidentified metabolite), while benzoate has more importance in the 

TBP-treated classification than in the TPP, but has a VIP score that is < 10% of the spectral 

region with the highest VIP coefficient. Fumarate (  = 6.6 ppm) had a VIP coefficient that was < 

10% of the dominant spectral region. The VIP coefficient for cis-aconitate (  = 5.9, 3.1 ppm), 

and trigonelline were small and did not contribute to the classification. Citrtate, succinate, 

fumarate and 2-oxoglutarate are primarily involved in the citrate (TCA) cycle and are a indicator 

of changes in the cellular energy metabolism, but do not indicate any specific mechanism of 

toxicity. 

 

3.4. Concluding Remarks on Acute Studies 

In conclusion, this work demonstrates that acute exposure to tributyl phosphate and 

triphenyl phosphate in rats can be identified and separated based on variations in the urinary 

metabolites. It was possible to clearly identify TBP-treated versus TPP-treated animals in this 

study. Separation of high and low dose TPP-treatment did not provide a unique model. Exposure 

classification was obtained primarily through the variation of common metabolites and is not the 

result of direct observation metabolic breakdown species of the original phosphates. These 

results show that metabonomic studies may provide a method to identify environmental exposure 

to aryl and alkyl phosphates.   
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Table 3.1: Identification of important spectra regions and metabolites based on the VIP 
coefficients for O-PLSDA classification.  
 

 

Resonance (ppm) Metabolite Scaled VIP Coefficients 

Control TBP TPP 

0.91 Dibutyl 

phosphate 

<0.001 0.03 0.02 

2.05  0.05 0.13 0.09 

2.40 -- 0.19 0.17 0.22 

2.41 Succinate <0.10 0.18 0.25 

2.43 2-Oxoglutarate 0.37 (5) 0.73 (3) 0.52 (4) 

2.54, 2.56 Citrate 0.28 1.00 (1) 0.45 

2.68, 2.71 Citrate 0.23 0.80 (2) 0.51 (5) 

3.00 2-Oxoglutarate 0.40 (4) 0.63 (4) 0.60 (3) 

3.04 Creatine 0.19 0.28 (5) 0.25 

3.25 Beatine 0.42 (3) 0.17 0.50 

3.27 -- 0.82 (2) 0.14 0.84 (2) 

3.41 -- 0.33 <0.1 0.34 

3.42 -- 1.00 (1) <0.1 1.00 (1) 

3.43 -- 0.25 <0.1 0.25 

3.67 -- 0.13 0.16 0.17 

3.81 -- 0.13 0.19 0.17 

4.06 Creatine 0.20 0.12 0.22 

5.78 Urea 0.03 0.01 0.03 

6.60 Fumarate 0.06 0.03 0.07 

7.54 Benzoate 0.01 0.09 0.04 

7.67 Benzoate 0.01 0.09 0.03 

7.82, 7.83 Benzoate 0.01 0.10 0.04 
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Figure 3.1 600 MHz 1H NMR spectra of rat urine collected from TBP-exposed, TPP-
exposed and control animals. 
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Figure 3.2 Class designation results following O-PLSDA for the 23 urine sample 
based on classification into TBP-treated, TPP-treated and control animals. The results 
from the a) original model and b) the average results following leave-one-out cross 
validation. The predicted results for a TBP-treated (▼), a TPP-treated (■), or a control 
(●) animal are shown. 
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Figure 3.3 Plots of the O-PLSDA cross-validation classification error distributions 
following random permutations of the classification labels. The results are shown for the 
control, TBP-treated and TPP-treated classification. The red arrow denotes the cross 
validation error for the original O-PLSDA model. The probability measure (  ) was 

determined from the number of random models that had the same or lower cross 
validation error as the original model. 
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Figure 3.4 Representative 1H NMR spectra with color mapping of the corresponding 
relative O-PLSDA VIP coefficients for identification of important resonances contributing 
to the classification. Expansion of different spectral regions color coded using the TBP-
treatment VIP coefficients (a and c) and the TPP-treatment VIP coefficients (b and d). 
The color bar is for VIP coefficients scaled to the maximum VIP observed for that class. 
Representative metabolites are identified: A:Dibutyl phosphate, B:Succinate, C:2-
Oxoglutarate, D:Citrate, E:Creatine, F:Beatine, G:Urea, H:Fumarate, I:Benzoate 
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3.5. Supplemental for Chapter 3 
 

 

 
Figure 3S.1.  The O-PLSDA prediction from 1H NMR urine spectra based on 4 classes 
(TBP-treated, high dose TPP-treated, low dose TPP treated and control) of exposure in 
the rats. The prediction from: a) the original PLSDA model and b) the average prediction 
following cross validation. It is clear that the model performance for prediction involving 
4 classes is significantly poorer than the prediction observed for the 3 class model 
(Figure 3.2).  
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Figure 3.S2.  The O-PLSDA prediction from 1H NMR urine spectra for identification of 
high and low dose of TPP-exposure in rats. The prediction from: a) the original PLSDA 
model and b) the average prediction following cross validation. The high dose samples 
showed a slightly higher misclassification than the low-dose TPP-treated samples. 
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Chapter 4 
 

1
H NMR Metabonomic Studies of Chronic TBP and 

TPP Exposure 
 

 

4.1. Introduction to Chronic Exposure 

Chronic exposure differs from acute exposure not only in the time duration of exposure 

(months to years), but in typically in the amount of chemical to which the subject is exposed.  

Because of the smaller amounts and longer durations, the biological response can be distinctly 

different from that seen with acute exposure.  Chronic effects are perhaps more likely to be 

encountered when exploring environmental exposure to chemicals due to increased distances of 

the sample from the source, and the expected low concentration release of chemicals under 

study.  Chronic exposure of our murine model was explored to determine the specificity and 

sensitivity of our methods.  Good models were developed for TBP from data collected during 

chronic exposure that were not influenced by the presence of TPP. 

 

 

4.2. Experimental for Chronic Exposure 

Sixteen (16) rats were randomly divided into three groups for control (6 rats), TBP-

exposure (5 rats) and TPP-exposure (5 rats). Tributyl phosphate (TBP- 98.0% purity, Sigma 

Aldrich, USA) was dissolved in 1 ml corn oil and was administered by gavage to the rats using a 

1.5 mg/kg body weight dose, while the TPP (98.0% purity, Sigma Aldridh, USA) was 

administrated 2.025 mg/kg body weight dose, and the control rats receiving 1 ml of corn oil only. 

Repeated doses were administered to the animals for 15 weeks (daily dosing Monday through 

Friday). On each Friday the rats were transferred to metabolic cages for urine collection (~20-22 

hours), with the urine stored at -80°C until NMR analysis. Rats were returned to their normal 

cage every Saturday. Proton (
1
H) NMR data of the urine samples was obtained for samples of 

weeks 1, 2, 4, 8, 12, 14 and 15. The NMR sample preparation was detailed in Chapters 2 and 3. 

The manipulation of the NMR data and analysis using O-PLSDA is described in detail of 

Chapter 3 and will not be reproduced here. 
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4.3. Results and Discussion for Chronic Exposure 

The classification results for the 
1
H NMR metabonomic data for chronic exposure to TBP 

and TPP is shown in Figure 4.1. O-PLSDA is able to separate these results into 3 classes for each 

week over a period of 15 weeks using 8 latent variables. This high number of latent variables 

suggests a complex response to TBP and TPP involving multiple metabolites.  Similar to the 

discussion in Chapter 3 this separation is requires the use of OSC to remove spectral variation 

that is orthogonal to the classification. The prediction error is strongly dependent on the binning 

size utilized, with the full resolution NMR data showing the highest classification error. This 

observation suggests that there are subtle line shape variations due to pH and concentration 

changes over these extended time studies. Optimization of the binning size to reduce these 

classification errors could be explored during the model development. In addition, it may be 

possible to utilize a host of different alignment algorithms to reduce these changes. 

Unfortunately, while such efforts can reduce these overall classification errors, the robustness of 

the developed model can be compromised. It can also be seen in Figure 4.1 that the scatter in the 

classification increases in the 13 through 15th week. This is most noticeable in the TPP 

classification. Additional analysis of the data as a function of exposure time is warranted to 

identify time-dependent variations in the metabonomic response. 

 The performance of the O-PLSDA model under cross validation is shown in Figure 4.2. 

In this figure the classification values represent an average over all the leave-one-out cross 

validation analysis. The performance of this model is still very good all of the samples being 

classified correctly. 

 

4.4. Conclusions 

The results shown in this chapter demonstrate that 
1
H NMR metabonomics is able to 

identify and separate both chronic TBP and TPP exposure over a 15 week period. Through O-

PLSDA the classification is distinct, even though the cross validation performance begins to 

degrade during the later portions of this experiment. Unlike the acute studies (Chapter 3) the 

performance of O-PLSDA is strongly controlled by the binning size suggesting that this 

parameter will need to be optimized during subsequent model development.  
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 These are promising results suggesting that 
1
H NMR metabonomics may be able to 

identify environmental exposure to organophosphate at very low levels in animal species, if there 

is a continued chronic exposure. Additional work on the persistence and minimum exposure 

levels to these chemicals required for these metabonomic signatures is still required, and will be 

the focus of future work. 
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Figure 4.1: O-PLSDA analysis of the 1H NMR spectra for chronic TBP and TPP 
exposure over a 15 week exposure period. 
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Figure 4.2 O-PLSDA analysis of 1H NMR metabonomic urine data under leave-one out 
cross validation. 
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Chapter 5 
 

Investigation of Chemometric Instrumental 
Transfer Methods for High-Resolution NMR 

 

5.1. Introduction to Instrumental Transfer 

High-resolution nuclear magnetic resonance (NMR) spectroscopy is a powerful technique 

for the investigation of complex mixtures, and has found application in metabonomic, 

environmental and pharmaceutical research. The complexity and size of NMR data sets in these 

fields has resulted in multivariate or chemometric analysis becoming routine within the NMR 

community.[70-72] It is also becoming increasingly more common to combine NMR spectral 

data from different sources into large databases prior to chemometric analysis. These sources 

may include 1) NMR data from different laboratories, 2) data within the same laboratory but 

obtained on different NMR instruments (including different fields), 3) data from the same NMR 

instrument over extended time periods, or 4) data obtained using different pulse sequences and 

solvent suppression techniques. The impact and magnitude of spectral variations related to 

different instrumental sources within combined data sets is poorly understood. For example, 

changes in the high resolution 
1
H NMR spectra associated with the use of different NMR 

instruments have been explored by Potts and co-workers,[73] who found that instrumental 

variations can competed with the physiological spectral changes occurring during metabonomic 

studies. Non-reproducible baselines associated with water solvent suppression were found to 

introduce significant error. Chemical shift variations, including magnetic field dependent shifts 

in strongly J-coupled multiple systems were also shown to contribute to the instrument-to-

instrument spectral differences. These chemical shift variations were reduced by binning or 

integral averaging over the citrate region.[73] Similar NMR instrumental variations were also 

observed for principal component analysis (PCA) of 
1
H NMR rat plasma metabonomic 

studies.[74] Saude and co-workers[32] demonstrated that spectral variations in quantitative 
1
H 

NMR of synthetic urine samples were introduced by a variety of factors, including pulse 

sequence employed, water suppression method, differences in the spin-lattice T1 relaxation rates 

of the metabolites, along with NMR hardware issues including the type of low-pass filters 
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employed in the instrumental configuration. Spin-lattice relaxation effects and variation in signal 

amplitude due to J-coupling evolution during the CPMG (Carr-Purcell-Meiboom-Gill) pulse 

sequence used for protein background signal suppression have also been reported.[75] In 

contrast, Keun and company[76] demonstrated that the PCA analysis of 
1
H NMR spectral data of 

rat urine samples following hydrazine dosage at two different NMR frequencies were very 

reproducible, with observed instrument-correlated changes being smaller than the physiological 

spectral variations. Similarly, the analysis of samples produced from different collaborative 

centers have shown consistent classification when obtained on the same instrument under the 

same operating conditions.[77]  

Variation of the spectral response between different NMR instruments and/or probes 

makes comparison of combined data sets challenging. In addition, changes in a given NMR 

instrument’s response over extended time periods may also make classification and 

quantification of different chemical species difficult. The increased pooling of NMR spectral 

databases and collaboration of different laboratories with their own NMR instrumentation 

suggest that a standard operating procedure for NMR data acquisition, calibration and 

instrumental response corrections is needed. The transfer of calibration models between different 

NMR instruments or configurations is explored in this paper.  

There are several approaches to correct for different spectral responses between 

instruments commonly referred to as instrumental transfer or standardization. One of the most 

basic approaches is to use line shape deconvolution to correct for spectral distortions resulting 

from magnetic field inhomogeneities. These inhomogeneities can arise from imperfect 

shimming, static magnetic field instabilities, homogeneity variation across the sample detection 

volume, pulse phase and amplitude variations, magnetic susceptibility discontinuities due to 

sample configuration, probe design and condition, and field homogeneity modulation due to 

spinning. In general, these inhomogeneity distortions affect all NMR resonances equally and can 

be removed or reduced using reference deconvolution. This correction method deconvolutes the 

experimental spectra with the references signal’s line shape and then reconvolutes the spectra 

with the ideal reference signal line shape. Deconvolution can be considered a simplistic method 

of instrumental transfer, but it does not address frequency-dependent variations between different 

instruments. Details and examples of reference deconvolution for high resolution NMR spectra 

have been described extensively.[61, 78-87]   
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Another method of instrumental transfer is to add calibration spectra from a secondary 

instrument to the original calibration set and then recalculate the predictive model. This type of 

multi-instrument calibration model development is commonly referred to as hybrid calibration 

(HC).[88] The HC method can be extended to collecting spectra on multiple instrumental 

configurations and then attempting to build a calibration model that simultaneously performs 

well for each configuration. A variation of this is to use combined data sets from multiple 

instruments, then identify and remove spectral differences between the different configurations 

that do not contribute to either sample classification or the model calibration. Orthogonal signal 

correction (OSC) is an example of this, and has been used to improve the performance of near 

infrared (NIR) instrumental transfer.[89] OSC has been applied to 
1
H NMR metabonomic data to 

eliminate spectral components due to instrumental variations (on a single instrumental 

configuration) or physiological changes not associated with classification,[74] but has not been 

directly applied to NMR instrumental transfer. In the OSC studies of Beckwith-Hall the initial 

PCA model showed classification based on the NMR instrument identity. Removing two 

orthogonal components via OSC removed NMR instrument identity clustering in the PCA. This 

same study demonstrated that OSC can remove time-dependent experimental and physiological 

spectral changes. Instrumental transfer involving the mapping of one instrumental response onto 

other instrumental configurations using a finite impulse response (FIR) filtering of the spectra 

has also been described,[90] but has not been demonstrated for NMR 

A limitation of HC and OSC methods is that the addition of more instruments (or 

instrumental configurations) requires that multivariate models be recalculated. In the case of 

OSC, the orthogonal components that do not describe the classification or calibration are 

removed from all the configurations, and the resulting OSC-filtered data is used in the 

subsequent model development. If an additional instrument configuration is added at a later time, 

all the data is combined, followed by subsequent OSC analysis and filtering. Unfortunately, this 

filtering invalidates any previously developed calibration or identification models, and might 

prove costly or time consuming if new calibration models must be evaluated for each new 

instrumental configuration. Because of the multiple NMR instrument configurations analyzed in 

this manuscript, the use of OSC filtering is not presented but will be discussed in a later 

communication.  
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The most common instrumental transfer methods involve the direct transfer of 

experimental spectra from a new (secondary) instrumental configuration to the original master 

(primary or target) instrument using either direct standardization (DS) or piece-wise direct 

standardization (PDS) with additive background correction.[91-97] The DS and PDS 

instrumental transfer methods have been extended to include double-window piece-wise direct 

standardization (DWPDS).[98] The use of DS and PDS methods have been demonstrated for 

low-resolution (20 MHz) process NMR spectroscopic data sets.[99]  By using the 
1
H free 

induction decay (FID) to develop a PLS model for prediction of high load melt index values, the 

impact of probe ring-down, pulse widths and temperature offsets was addressed. For these time-

domain NMR studies, the PDS method was found to be the most successful instrumental transfer 

method.. These initial low-resolution results demonstrate that instrumental transfer techniques 

can be applied to NMR spectroscopy and provide the impetus to extend the techniques to high-

resolution NMR spectral data sets.  

In this chapter, the performance of DS, PDS and DWPDS methods for the transfer of a 

partial least squares (PLS) calibration model of metabolite concentrations in model mixtures is 

explored. The optimization of the instrumental transfer methods with respect to the number of 

transfer calibration standards and filter window size is addressed. In addition, the impacts of 

phasing, binning and spectral deconvolution on the observed prediction errors between different 

NMR instrument configurations are evaluated.  
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5.2. Methods for Instrumental Transfer 

5.2.1. NMR Data Sets 

A set of 15 standard samples composed of a simple mixture (0 – 50 mM) containing the 

metabolites citrate, glucose, and glycine in D2O (pH = 7.0, 10 mM phosphate buffer) with 5 mM 

3-trimethylsilylpropionate (TSP) were prepared, sealed in matched tubes and used for all 

experiments described. The mixture concentrations are provided in the supplemental material. 

No experimental design was used in preparing these samples. NMR data were collected on 2 

different NMR instruments, a Bruker Avance 600 and a Varian Unity Plus 600, using either a 5 

mm broadband (BB) X{
1
H} observe probe (Bruker), a 

1
H{X} inverse (INV) probe (Bruker), or 2 

vintages of a HCN probe (Varian). For each instrument and probe, NMR data using both a single 

pulse 1D direct and a 1D NOESY (100 ms) sequence was obtained to give data sets for 8 

different configurations. These instrumental, configurations will be designated as 1D BB Bruker, 

NOESY BB Bruker, 1D INV Bruker, NOESY INV Bruker, 1D HCN(a) Varian, NOESY 

HCN(a) Varian, 1D HCN(b) Varian, and NOESY HCN(b) Varian. A combined data set 

composed of 120 different 
1
H NMR spectra (15 samples x 8 configurations) was obtained. 

Experimental conditions between the different NMR instruments were matched as closely as 

possible using a spectral width of 7183 Hz, 32K spectral points, zero filling to 64K, 9 µs /2 

pulse, 1s recycle delay, 64 scan averages, with no water pre-saturation employed. To assure 

similar data treatment between the different instrument platforms, the NMR data sets were all 

transformed, phased, referenced and baseline corrected in the CHENOMX NMR Suite 5.0 

(Edmonton, Canada). The chemical shifts were referenced to internal TSP,  = -0.016 ppm. The 

shift of TSP is pH dependent as incorporated into CHENOMX NMR Suite 5.0.  In addition, 

spectral binning and line shape deconvolution[61] were performed in the CHENOMX Suite. To 

study the impact of phasing on the model transfer, a single instrumental configuration data set 

was phased using the automatic baseline routines ABS and ABSD in the Bruker TOPSPIN 

software, and manually by two different operators to give a total of four different data sets for 

analysis of phasing effects. The data sets were integral normalized to the total spectral intensity 

and then mean-centered. Of the 15 standard mixtures, three represent pure component spectra 

and were removed during model development to reduce extensive biasing and leveraging. This 

reduction means that 12 samples were used in the development of the calibration model 

development for a total of 96 different NMR spectra in the data set (12 samples x 8 
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configurations). A PLS calibration model (using the SIMPLS algorithm) was developed for the 

relative metabolite concentration on the target instrument (1D BB Bruker) using the 12 

calibration samples with three factors on mean-centered data. This model was then used to 

predict the metabolite concentrations on the remaining seven instrumental configurations for the 

same calibration samples both before and after instrumental transfer. In order to reduce possible 

variations between the calibration samples an independent calibration sample set was not utilized 

on the secondary instruments to evaluate the PLS model. 

 

5.2.2. Instrumental Transfer Computational Details 

The analysis of the data and development of the calibration models were performed in 

MATLAB 2007b (The Mathworks, Inc.), while the different instrumental transfer algorithms 

employed were implemented using the PLS Toolbox 4.1 (Eigenvector Research). The root-

mean-square errors of calibration (RMSEC1) on the primary instrument and the root-mean-

square errors of prediction (RMSEPj) of the jth secondary instrumental configuration are defined 

by 
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where n is the number of calibration samples, ˆ ( )py j  are the predicted concentration values for 

the pth standard sample on the jth instrumental configuration, and py  is the true concentration. 

The improvement in prediction for a given instrumental transfer method on the jth instrumental 

configuration summing over the m different components is given by 
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where Raw, ,RMSEP j m  is the error for the mth component, on the jth instrument using the raw 

unmodified data with no binning and prior to instrumental transfer.   
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5.2.3. Direct Standardization 

Throughout this chapter scalars are represented by italic lowercase letters, column vectors 

by boldface lowercase letters, and matrices by boldface capital letters. Mean-centered vectors 

and matrices are denoted by a bar over the letter. Instrumental transfer using the direct 

standardization (DS) method correlates the spectra (or FIDs) between different NMR instruments 

by modeling the responses as:[91-93, 96] 

 

 
j j

T

1 b sS S F 1b           (5.3) 

 

Where the matrix 
1S  is the response of the target NMR instrument on which the calibration 

model was developed, and jS  is the response matrix of instrumental configuration j, 
bF  is the 

transformation matrix and 
j

T

sb  is the background correction vector (1 x υ) for the jth 

configuration. The response matrix S  ( n ) is composed of n samples and  frequencies. In 

the present case, the jS  matrices represent the spectral response of different instrument 

configurations (different instruments, different probes, different pulse sequences or data over 

extended periods of time) that we want to transform into the target instrument. Once the data is 

transformed, the 
1S  model can be applied. For mean-centered spectral data ( jS ), equation (3) 

becomes 

 

j1 bS S F         (5.4) 

 

For the DS method the transfer matrix is calculated using 

 

j

+

b 1F = S S      (5.5) 

 

where j

+
S  is the pseudoinverse of jS . Calculation of the pseudoinverse employs singular value 

decomposition (SVD) where the response matrix is decomposed into three matrices U, Σ , and V 

using 
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j

T
S = UΣV           (5.6) 

 

The pseudoinverse is then given by 

 

1

j

+ T
S = VΣ U          (5.7) 

 

The additive background term is then estimated as 

 

j j

T

s 1m b mb = s - F s         (5.8) 

 

where jms  are the mean vectors of the response matrices jS . For NMR, the spectral baselines are 

commonly corrected during preprocessing such that the background jsb should be vanishingly 

small and will have no impact on analysis employing mean-centered data. If the baseline is 

highly structured (i.e. baseline roll) and not corrected during routine preprocessing prior to 

instrumental transfer, then the additive background term will need to be determined. 

 

5.2.4. Piece-Wise Direct Standardization 

For the DS method described above, the entire spectrum of the secondary instrument is 

used for the calculation of the transfer matrix
bF  at each frequency. For NMR data sets (as well 

as other type of spectroscopies), the spectral changes observed between instruments will only 

involve small frequency changes such that determination of 
bF can be restricted to nearby 

frequencies within the spectrum. Using piece-wise direct standardization (PDS),[91-93, 96] the 

spectral response on the primary instrument at the υth frequency ( 1,r ) can be related to the 

spectral response on the jth instrumental configuration at nearby wavelengths with a window 

width of 2 1k  ( , , 1 , 1 ,, , , ,j k j k j k j kr r r r  ). These measurements for the υth frequency can 

be placed into a matrix to form 
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, , 1 , 1 ,, , , ,j k j k j k j kX r r r r        (5.9) 

 

A regression vector at each frequency can then be calculated using 

 

1,b X s        (5.10) 

 

The transformation 
bF is then a banded diagonal matrix given by  

 

b 1 2 3diag , , , ,T T T T
F b b b b       (5.11) 

 

where most of the off-diagonal elements in the transformation matrix are zero. 

 

5.2.5. Double Window Piece-Wise Standardization 

The PDS method can be extended through the use of a double window (DW) PDS, where 

the first window length is defined by 2k+1 frequencies and a second window of width 2m+1 

samples are used in the calculation of 
bF . This method is detailed extensively in the PLS 4.1 

Toolbox software (Eigenvector Research Inc.) and will not be reproduced here. 

 

5.2.6. Selection of Standardization Subset 

The subset of standard samples used for the instrumental transfer must contain enough 

spectral information to fully describe the differences between the two instrumental 

configurations and span the model of interest. In this study, the transfer calibration samples were 

identified by calculation of the hat matrix H using[91]  

 

+

1 1H = S S                (5.12) 

 

The diagonal elements of this matrix contain the leverage of the samples with respect to their 

influence on the calibration model and were used to identify the ranking of the calibration 

standard samples.  The calculation of H  used the combined PLS model for all three metabolites 
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in the mixture (glucose, glycine, and citrate). Selection of the transfer calibration samples based 

on the H  leverage determined using only the glucose calibration gave similar ordering. 

 

5.3. Results and Discussion 

Figure 5.1 shows the high-resolution solution 
1
H NMR spectra for the 15 different 

mixtures obtained using the broadband probe on a Bruker Avance 600 instrument. Similar 

spectra were collected for the other instrument, probe and pulse sequence configurations. These 

NMR spectra are composed of signals from glycine, glucose and citrate. The data at 0.001 ppm 

resolution and following 0.04 ppm binning are also shown in Figure 5.1. Only the portion of the 

NMR spectra between ~ +4 ppm and +2.2 ppm was used in the model development described 

below. This spectral range does not contain the water region (~4.8 ppm), eliminating the 

interference of exchangeable protons and the large dominant residual water resonance. Previous 

studies have shown spectral variations result from the use of different water saturation sequences 

including the optimization of these sequences.[73] The ability of instrumental transfer methods 

to correct spectral differences resulting from water presaturation was not pursued in the current 

study and will be the focus of future analysis. The metabolites chosen did provide examples 

where the NMR spectral features were isolated and well resolved (i.e. the citrate multiplet at  ~ 

+2.55 ppm), while other signals contain significant overlap (i.e. the complex set of glucose 

multiplets and the glycine singlet at ~ +3.5 ppm).  

 To address the performance of the instrumental transfer methods the 
1
H NMR spectra 

obtained using the eight different instrumental configurations (see Methods section) were used 

for the prediction of the relative glucose, glycine and citrate concentration within the mixtures.. 

For our analyses, the data set obtained on the Bruker Avance 600 instrument using a 5 mm broad 

band probe with a simple single pulse 1D excitation (1D BB Bruker) was chosen as the master 

(target or primary) instrument to which the other instrumental data sets were transferred using 

different protocols.  

 

5.3.1. Predictions Without Instrumental Transfer 

On the master NMR instrument the root-mean squared error of calibration (RMSEC) 

values of 0.0099, 0.0058 and 0.0075 were obtained for the relative glucose, glycine, and citrate 

concentrations, respectively (see Table 5.1). Figure 5.2 shows the glucose predictions for the 
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remaining seven instrumental configurations, with the glycine and citrate predictions displayed 

in Figure 5.S1 and 5.S2 (supplemental material). Using the PLS model developed for the target 

instrument (1D BB Bruker), the corresponding root mean squared error of prediction (RMSEP) 

for the other instrumental configurations are given in Table 5.1 (row 1, analysis method). It is 

clear that the predictive performance of the relative concentration model does not transfer well to 

different instrumental configurations. The exception to this trend was the NOESY data set for the 

BB probe (NOESY BB Bruker) that are spectra obtained on the same instrument and probe used 

to develop the calibration model, but with a different pulse sequence. Closer inspection of Figure 

5.2 shows that the predictions from the single pulse experiments (1D) and the NOESY 

experiments always cluster together for a particular instrument and probe. This demonstrates that 

the impact of using a 1D Bloch decay experiment versus a 100 ms NOESY experiment is small 

and does not greatly influence the predictive model transfer between these configurations. PLS 

models were also developed for each instrument configuration individually and then use to 

predict the relative concentrations on the remaining instruments. These results are summarized in 

Table 5.S1.  

Inspection of Figure 5.2 reveals that glucose concentrations are over-predicted (~ 20%) 

for low relative concentrations on all of the secondary instrumental configurations, including the 

data sets obtained from the same instrument console (Bruker) but with an inverse probe. This 

suggests that the issues in the spectral response were not simply vendor console related. At high 

glucose concentrations the PLS predictions under-estimate the concentration (up to 10%) with 

the Varian data sets showing the largest deviation from the developed model. These observed 

RMSEP errors result from a combination of line width changes and reduced resolution of the 

glycine singlet from the glucose multiplets. Note that relative concentrations were used for the 

PLS model development, with an error in the measurement of any single component impacting 

the other calculated concentrations. This is also reflected in the largest error occurring at high 

glycine and citrate relative concentrations (Figure 5S.1 and 5S.2) mirroring the glucose results in 

Figure 5.2. The consistently larger citrate RMSEP (in comparison to glycine) may also reflect the 

limited number of samples containing citrate in the PLS calibration samples. There are several 

spectral variations that could impact these concentration predictions including changes in 

resolution (binning), line shape and line width changes between the different instrumental 

configurations, variations in spectral pre-processing including baseline and phase corrections, 
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along with differences in pulse excitation efficiency. In the next section the impacts of these 

different variations are addressed, followed by the assessment of methods for improving the 

performance of model transfer between different NMR instrument configurations. 

 

5.3.2. Impact of Phasing 

Differences in the quality of spectral phasing are one of the simplest variations that might 

be encountered when comparing NMR data between different instrumental configurations. The 

data may be processed by automated phasing routines or manually by different operators prior to 

data set combination. To address the magnitude of changes in RMSEP (in the current data set) as 

a function of phasing, a single NMR data set was manually phased by two different operators, 

and automatically using two different phasing routines available in the Bruker TOPSPIN 

package. It was observed that the largest differences in the spectral phasing for the different 

operators and automatic routines involved large dominant resonances (i.e. H2O) that in some 

situations may subtly impact the instrumental transfer performance. In the present study, the 

developed PLS models excluded the H2O resonance, eliminating any large phasing errors 

associated with this major resonance. The resulting RMSEP for the glucose, glycine, and citrate 

concentrations as a function of the phasing protocol are included in Table 5.S2 (supplemental 

material). This result shows that the impact of phasing in the present example is very small, and 

that phasing variations do not account for the large RMSEP differences between instrumental 

configurations observed in Figure 5.2 (and Figures 5S.1 and 5S.2). In some cases involving large 

solvent peaks, phasing may play a more significant role in the instrumental variations and will 

need to be considered. 

 

5.3.3. Impact of Binning 

 Binning is commonly utilized in the preprocessing of NMR spectral data prior to 

chemometric analysis to help reduce small spectral shifts and minor line shape variations. PLS 

models for concentration were developed as a function of binning size to address if the RMSEP 

between the different instrumental configurations might be improved by increasing the bin size. 

These results are summarized in Table 5.S3 and Figure 5.S3. For the PLS model predictions of 

glucose, glycine and citrate concentrations, no significant changes in RMSEC were observed 

with increased binning size. For the other instrumental configurations, there were modest 
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improvements in the RMSEP (Table 5.S3) ranging between ~5 and 30% as a function of binning 

size. There does not appear to be a unique binning size for optimal improvement in RMSEP 

between the different instrumental configurations making it difficult to select a binning size for 

predictive purposes. For these particular model mixtures use of 0.005 ppm binning would have 

produced between 6 and 28% improvement in RMSEP. The RMSEP of the different 

instrumental configurations still continue to be 3 to 10 times larger than that of the target 

instrument for which the PLS model was developed (1D BB Bruker). The exception to this is the 

NOESY BB Bruker configuration, again demonstrating that the pulse sequence (1D versus 

NOESY) has a minimal impact on the instrumental transfer.  

In metabonomic studies binning helps remove small chemical shift variation due to 

changes in pH, concentration, temperature and ionic strength. Peak alignment or spectral 

registration techniques have also been employed to eliminate these chemical shift 

variations.[100-103] In this paper such chemical shift perturbations were expected to be small 

since identical standard samples were used in the analysis. It should be noted that the 

instrumental transfer methods that are the focus of this paper attempt to remove instrumental 

variations through a transfer calibration samples, and that sample-to-sample variations such as 

pH dependent chemical shift changes are not directly addressed by the instrumental transfer 

methods. These results show that while a judicious use of binning could improve the RMSEP, 

the small chemical shift variations addressed by binning were not responsible for the poor 

instrumental transfer predictions shown in Figure 5.2 (and Figures 5S.1 and 5S.2).  

 

5.3.4. Impact of Deconvolution 

The impact of line shape deconvolution on the prediction of concentration was also 

investigated by re-processing the data sets with the CHENOMX deconvolution algorithm. Using 

the TSP resonance as the internal line shape reference, the asymmetric non-Lorentzian line 

shapes of the other resonances were corrected. A default assessment of the line broadening based 

on the TSP line width for each individual spectrum was used for deconvolution and ranged from 

1.0 to 5.0 Hz. By targeting the deconvolution to the observed TSP line width, the deconvolution 

procedure removed asymmetries present within the spectrum, but did not remove the large 

differences in line width observed between the different NMR instrument configurations. Figure 

5.3 shows the resulting PLS predictions for the relative concentration of glucose following line 
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shape deconvolution of the entire data set. Comparison of this prediction to the results in Figure 

5.2 shows only a minor improvement (in particular at the high glucose concentration range), but 

the change is still small compared to the larger deviations observed between different instrument 

configurations and the original PLS model. The RMSEP following spectral deconvolution are 

summarized in Table 5.1 (row 2, analysis method) and Table 5.S4 (supplemental material). 

Between 7 and 15% improvement in RMSEP was observed, but for some configurations (1D 

INV Bruker and NOESY INV Bruker) there was actually a decrease in RMSEP performance.  

Recall that for each individual sample the shimming was optimized and thereby may 

introduce a sample-to-sample variation within an instrumental configuration. If all of the samples 

in a given instrumental configuration are not shimmed exactly the same, then the relationship on 

which the instrumental transfer function was developed (Equation 3) no longer strictly holds. As 

noted above, the target line width was chosen to match the experimental TSP line width and this 

effectively removes the asymmetries and distortions of the line shapes due to poor shimming 

between different instrumental configurations, allowing the instrumental transfer method to be 

employed. To reduce the impact of small line shape asymmetries and distortions unbinned but 

line shape deconvoluted spectral data sets were used during the remainder of the instrumental 

transfer analysis discussed below.   

By not choosing the same target line width during deconvolution for all the spectra on all 

the different instrumental configurations, the impact of line width changes on the predicted 

performance has been maintained. In addition, it is always possible to add future additional 

instrumental configurations such that there is no way to know the most appropriate target line 

width a priori. Analysis using spectral data that was deconvoluted to match the smallest line 

width observed in all of the instrumental configurations resulted in dramatically increased 

RMSEP values. This was particularly true for configurations (i.e. 1D HCN(b) Varian) with large 

experimental line widths (~ 5 Hz) where the S/N of the deconvoluted spectra dropped 

dramatically when the smaller target line widths were imposed. This reduction in S/N 

performance as a function of the target reference deconvolution line width has been noted 

before.[87]   
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5.3.5. DS Method 

The use of the direct standardization (DS) method to transfer NMR spectra between 

different instrumental configurations was explored first. This method has been used for NIR and 

IR data, with only limited application to NMR data.[99] The calculation of the transfer function 

bF  (see details in the Methods) is based on using a subset of standards, and is therefore a 

function of the number of transfer calibration samples utilized. The DS method is considered to 

have converged when the RMSEP reaches a minimum with increasing number of transfer 

calibration samples. One of the goals of this study was to address how many transfer samples are 

needed to obtain convergence in high-resolution NMR data sets. The RMSEPs for metabolite 

concentrations based on the PLS model developed using the target configuration (1D BB Bruker) 

were evaluated for increasing number of calibration samples (on unbinned, but deconvoluted 

data sets). As an example, Figure 5.4 shows the variation in the RMSEP of the glucose, glycine, 

and citrate concentrations as a function of the number of calibration samples used for 

instrumental transfer of the secondary 1D INV Bruker configuration. The ranking (Eqn. 12) of 

the transfer calibration samples chosen was based on the highest leverage for the entire PLS 

calibration. There is an initial large increase in RMSEP for DS when only a single sample is used 

for the estimation of 
bF . The RMSEP then decreases quickly and reaches a plateau or 

intermediate minimum when more than 4 transfer calibration samples were used. Table 1 shows 

the RMSEP observed for the other NMR instrumental configurations following DS instrumental 

transfer. By using five transfer calibration samples there is a decrease in the RMSEP error, 

producing between 50% and 75% improvement (Table 5.1). This improvement in the prediction 

error is significantly larger than that observed for simple binning (Table S3) or simple line shape 

deconvolution (Table 1) discussed above. Following this intermediate minimum in RMSEP there 

is a continued gradual decrease with increasing number of transfer calibration samples.   

Similar results (Figure 5.S4, supplemental material) were observed for the RMSEP 

behavior in the other instrumental configurations following DS instrumental transfer. There are a 

few instrumental configurations where the initial intermediate minimum in RMSEP was not 

reached until more than 5 transfer calibration samples were utilized, specifically the 1D HCN(b) 

Varian and the NOESY BB Bruker instrumental configurations. This number of required transfer 

calibration samples (either 4 or 5) is significantly smaller than the 14 up to 56 transfer calibration 

samples required for instrumental transfer of the time-domain 
1
H process NMR previously 
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reported,[99] and reflects the high-resolution nature of the current data set. In summary, DS 

instrumental transfer provided a large reduction in RMSEP for the PLS concentration models 

across the different instrumental configuration, with an intermediate minimum being observed 

for 4 or 5 transfer calibration samples. Further improvements in the model transfer can be 

obtained by including additional transfer calibration samples, but the improvements are very 

small compared to the initial RMSEP reduction observed for either 4 or 5 transfer calibration 

samples. 

  

5.3.6. PDS Method 

 For the piece-wise direct standardization (PDS) instrumental transfer method, the 

RMSEP is a function of both the number of transfer calibration samples used and the number of 

adjacent instrumental frequencies employed in the estimation of 
bF . The variation of the RMSEP 

following instrumental transfer of the 1D INV Bruker instrumental configuration is shown in 

Figure 5.5. Similar results were obtained for the remaining NMR instrument configurations (An 

example for the Varian 1D HCN(b) configuration is shown in Figure 5S.5 in the supplemental 

material). Consistent with results obtained using the DS method, there is an initial increase in 

RMSEP for instrumental calibrations using only one transfer calibration sample, followed by a 

drop in RMSEP for additional transfer calibration samples. For PDS an intermediate minimum 

was observed for 2 or 3 transfer calibration samples, resulting in a 45% to 60% improvement in 

RMSEP (Table 1). Again this intermediate minimum was followed by a gradual decrease in 

RMSEP (5 to 10%) with increasing number of transfer calibration samples. Variation of RMSEP 

with the number of instrumental frequencies was also observed using the PDS method, but was 

small compared to the variation due to number of transfer calibration samples. In several of the 

configurations tested, there is an additional decrease in RMSEP with increasing number of 

instrumental frequencies (Figure 5.5). For example, the RMSEP for the prediction of glycine 

(Figure 5.5e) decreases noticeably for predictions increasing from 1 to 7 instrumental 

frequencies, but for glucose (Figure 5.5d) or for citrate (Figure 5.5f), the decrease is less 

pronounced. The improvement in RMSEP with increasing number of filter frequencies was more 

pronounced for the prediction of some metabolites, suggesting subtle chemical shift changes are 

occurring in these standard samples. When very large numbers of filter frequencies are employed 

with PDS, this method converges to the DS results (DS uses all frequencies to develop the 
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transfer function). The insensitivity of the RMSEP to the number of instrumental filter 

frequencies shows that the chemical shift variations are not the dominant source of error between 

these different instrumental configurations. Table 5.1 summarizes the RMSEP obtained using the 

PDS method for calibrations using three transfer calibration samples and one instrumental 

frequency, and for calibrations using four transfer calibration samples and seven instrumental 

frequencies. The percent improvements in RMSEP range from 45% to 75% using the PDS 

method, and are comparable to the results of the DS method. For example, one can compare the 

results for the PDS transfer results of the 1D INV Bruker configuration (Figure 5.5) to the results 

of the DS transfer (Figure 5.4), where the PDS method requires fewer number of transfer 

calibration samples (2 or 3  versus 4 or 5 in DS). This reduction in the calibration sample subset 

could prove beneficial for instances where a limited number of calibration samples are available 

for implementing the instrumental transfer.  

 

5.3.7. DWPDS 

For the double window piece-wise direct standardization (DWPDS) method, the 

instrumental transfer is now a function of three variables: the number of transfer calibration 

samples, the number of filter frequencies and the number of filter samples used in the calibration. 

Figure 5.6 shows an example of the RMSEP variation as a function of the number of transfer 

calibration samples, and the number of filter frequencies (5.6a) and the number of filter samples 

(5.6b). These responses are reminiscent to those observed for the PDS method (Figure 5.5). Even 

with the additional parameter used in the development of the transfer function the percent 

improvement is almost the same as in the PDS method (see Table 5.1). The calculation of the 

DWPDS transfer functions also took considerably longer than the PDS method. Based on these 

results, there is no clear reason to utilize the DWPDS method over the PDS method in the 

instrumental transfer of high-resolution NMR spectral data. 

 

5.3.8. Transfer Calibration Sample Subset 

 The power and capability of transferring data between different NMR instrument 

configurations is shown in Figure 5.7. The spectral data from the target or primary instrument 

(1D BB Bruker, Figure 5.7a) is composed of sharp, well-resolved spectral lines. In contrast, 

Figure 5.7b shows the spectral data for the exact same sample set on a secondary instrumental 
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configuration (1D HNC(b) Varian). For this configuration there is significant broadening of the 

resonances. Following instrumental transfer using the DS method, the spectral data set from his 

secondary configuration is now also composed of sharp well-resolved resonances (Figure 5.7c), 

and is almost identical to the spectral data set of the target instrument.  

The performance of these instrumental transfer methods (DS, PDS, DWPDS) ultimately 

depend on the number and information content of the transfer samples used for calibration. In 

particular, does the transfer calibration sample subset span the spectral space of the data set that 

instrumental transfer is being employed on? For the model mixtures investigated here with a 

limited number of components, it is simple for a limited number of transfer calibration samples 

to fully represent the spectral response of the entire data set. This assumption will not necessarily 

hold for more complex mixtures (biofluids or metabonomics) where hundreds of different 

compounds may be present. Two questions immediately arise: (1) Are the chosen transfer 

calibration samples sufficient to model all of the resonances of interest for the entire set of 

compounds present? (2) What happens if the transfer calibration sample subset does not contain 

a specific compound?” These questions are partly addressed in Figure 5.7d, where the transfer 

calibration samples selected were chosen such that the metabolite citrate was not present in this 

subset. It should be noted that this was a totally artificial selection process. The leverage matrix 

(Equation 5.12) used for transfer sample selection ranks the citrate containing samples very high, 

but in this case the ranking was ignored with the forced selection provided as an example. This 

“poor” selection of transfer calibration samples results in transformations in which no citrate 

resonances (at ~ 2.5 ppm) are present during the calculation of 
bF , such that the DS transfer 

method (or PDS/DWPDS) attempts to suppress signals in this spectral region in the remainder of 

the data set. This example shows the importance of the transfer calibration sample subset 

providing a complete spectral representation of the entire data set using the existing DS, PDS and 

DWPDS instrumental transfer methods, and shows a possible limitation of instrumental transfer 

methods as applied to complex mixtures. We are currently developing filtering techniques for 

these instrumental transfer methods to overcome this limitation (Alam, unpublished).. 

 

5.4. Conclusions 

 It has been demonstrated that the DS, PDS, and DWPDS instrumental transfer methods 

can be used on high-resolution NMR spectral data sets. All of these transfer methods provided 
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significant improvement for the PLS prediction of metabolite concentrations in model mixtures 

between different instrumental configurations. In addition, all of these instrumental transfer 

methods improved the RMSEP in comparison to simple binning or line shape deconvolution 

techniques. The DS instrumental transfer method gave the largest percent improvement in the 

concentration predictions, but also required a larger number of transfer calibration samples than 

the PDS method. The PDS and DWPDS methods gave similar improvement in the prediction of 

concentrations, but required fewer transfer calibration samples. For simple mixtures and other 

limited examples, the instrumental transfer methods perform well and allow the transfer of 

calibration models between different NMR instruments. It was demonstrated that there are 

limitations imposed on the selection and number of transfer calibration standards. This limitation 

is a major issue for complex mixtures and currently precludes the direct application of 

instrumental transfer methods to biofluid/metabonomic studies. 
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Figure 5.1. High-resolution 1H NMR spectra of the individual components used to 

prepare the transfer calibration standard samples: a) glycine. b) glucose and c) citrate. 

The overlapping NMR data set of the 15 different standard mixtures with d) a spectral 

resolution of ∆  = 0.001 ppm and e) following a ∆  = 0.04 ppm binning.   
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Figure 5.2.  The correlation between the 1H NMR PLS predicted relative concentration 

of glucose and the measured relative concentration of glucose, for the standard 

mixtures using eight different instrumental configurations. The PLS model was 

developed for the relative concentration of glucose, glycine and citrate simultaneously 

using the unbinned 1D 1H NMR spectra data set from the Bruker instrument with a 

broadband probe, 1D BB Bruker (●). This model was subsequently used for the 

prediction of metabolite concentrations on the remaining configurations prior to any 

instrumental transfer modification, NOESY BB Bruker (●), 1D INV Bruker (), NOESY 

INV Bruker (), 1D HCN(a) Varian (■), NOESY HCN(a) Varian (■), 1D HCN(b) Varian 

(♦) and NOESY HCN(b) Varian (♦). The results for a given NMR probe utilize the same 

symbols, with the NOESY results being colored.  
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Figure 5.3. The correlation between the 1H NMR PLS predicted relative concentration 

of glucose and the measured relative concentration of glucose, for the standard 

mixtures using eight different instrumental configurations following line shape 

deconvolution. The PLS model was developed for the relative concentration of glucose, 

glycine and citrate simultaneously using the unbinned 1D 1H NMR spectra data set from 

the Bruker instrument with a broadband probe, 1D BB Bruker (●). This model was 

subsequently used for the prediction of metabolite concentrations in the remaining data 

sets, NOESY BB Bruker (●), 1D INV Bruker (), NOESY INV Bruker (), 1D HCN(a) 

Varian (■), NOESY HCN(a) Varian (■), 1D HCN(b) Varian (♦) and NOESYHCN(b) 

Varian (♦). The inset shows an example of the slight asymmetric line shape observed in 

the TSP resonance (red) that has undergone line shape deconvolution (dark blue).  
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Figure 5.4. The variation of RMSEP for the relative concentration of glucose (● ), 

glycine (■) and citrate ( ) using direct standardization (DS) instrumental transfer on 

the 1D INV Bruker instrument configuration as a function of number of transfer 

calibration samples.  
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Figure 5.5. The variation of RMSEP as a function of the number of transfer calibration 

samples and number of instrumental frequencies used in the piece-wise direct 

standardization (PDS) instrumental transfer on the 1D INV Bruker configuration for the 

relative concentrations of a) glucose, b) glycine and c) citrate. In d)-f) the RMSEPs for 

different number of instrumental frequencies are shown for (▼) 1 , (■) 3, () 5 and (●) 7 

instrumental frequencies. These results can be compared to the RMSEP variation 

obtained using the DS method shown in Figure 5.4. 



79 

 

Figure 5.6. The variation of RMSEP for the prediction of glucose concentration for the 
1D INV Bruker configuration following double window piece-wise direct standardization 
(DWPDS) method as a function of  transfer calibration sample number  along with a) the 
number of filter frequencies and b) the number of model frequencies. 
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Figure 5.7. Representative 1H NMR spectral data sets for different instrumental 
configurations: a) 1D BB Bruker and b) 1D HCN(b) Varian prior to instrumental transfer. 
The c) corrected spectral data set for the Varian 1D HCN(b) configuration following 
direct standardization (DS) instrumental transfer using 4 transfer calibration samples 
and d) following DS using a subset of transfer calibration standard samples in which the 
citrate metabolite was not present. The Bruker data set (a) was used to develop the 
PLS model and was the target configuration. Note the improved spectral resolution of 
the corrected spectra in c) in comparison to the original in b) and the close similarity to 
the spectral data set in a). The loss of the citrate signal for instrumental transfers using 
a limited subset of standard samples is clearly seen in d).  
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Table 5.1: RMSEP values for prediction of glucose, glycine and citrate concentration, and 
percent improvement for the different NMR instrumental configurations as a function of transfer 
method employed.  
Analysis Method RMSEP Data Set Prediction

a 

 #1 

1D 

BB 

Bruker
b 

#2 

1D 

INV 

Bruker 

#3 

1D 

HCN(a) 

Varian 

#4 

1D 

HCN(b) 

Varian 

#5 

NOESY 

BB 

Bruker 

#6 

NOESY 

INV 

Bruker 

#7 

NOESY 

HCN(a) 

Varian 

#8 

NOESY 

HCN(b) 

Varian 

Full Data 

No Transfer 

0.0099 

0.0058 

0.0075 

0.0647 

0.0244 

0.0556 

0.0876 

0.0227 

0.0791 

0.0941 

0.0264 

0.0894 

0.0162 

0.0135 

0.0090 

0.0678 

0.0241 

0.0583 

0.0912 

0.0228 

0.0818 

0.0971 

0.0264 

0.0920 

         

Spectral 

Decovolution 

No Transfer 

0.0090 

0.0050 

0.0064 

0.0725 

0.0219 

0.0609 

0.0855 

0.0196 

0.0726 

0.0819 

0.0252 

0.0727 

0.0137 

0.0104 

0.0084 

0.0753 

0.0212 

0.0638 

0.0899 

0.0196 

0.0766 

0.0879 

0.0253 

0.0788 

         

% Improvement +12.5% -3.8% +8.1% +12.1% +15.0% -2.8% +7.3% +9.3% 

         

Spectral 

Deconvolution +   

(DS)
c 

N/A 0.0141 

0.0111 

0.0046 

0.0142 

0.0090 

0.0097 

0.0110 

0.0125 

0.0065 

0.0080 

0.0054 

0.0055 

0.0134 

0.0106 

0.0047 

0.0184 

0.0095 

0.0150 

0.0262 

0.0129 

0.0199 

         

% Improvement --
b 

+74.8% +77.3% +77.9% +49.8% +76.1% +73.3% 67.5% 

         

 

Spectral 

Deconvolution + 

PDS
d
 

N/A 0.0225 

(0.0175) 

0.0135 

(0.0094) 

0.0174 

(0.0103) 

0.0450 

(0.0333) 

0.0151 

(0.0120) 

0.0327 

(0.0249) 

0.0421 

(0.0400) 

0.0138 

(0.0130) 

0.0303 

(0.0289) 

0.0134 

(0.0080) 

0.0124 

(0.0067) 

0.0078 

(0.0058) 

0.0225 

(0.0190) 

0.0128 

(0.0098) 

0.0176 

(0.0112) 

0.0484 

(0.0354) 

0.0159 

(0.0121) 

0.0355 

(0.0275) 

0.0436 

(0.0394) 

0.0129 

(0.0122) 

0.0343 

(0.0303) 

         

% Improvement --
b
 59.5% 

(72.0%) 

46.9% 

(59.2%) 

56.4% 

(58.6%) 

12.9% 

(45.5%) 

61.2% 

(70.7%) 

44.6% 

(58.2%) 

56.3% 

(60.1%) 

         

Spectral 

Deconvolution + 

DWPDS
e
 

N/A 0.0180 

0.0090 

0.0104 

0.0403 

0.0132 

0.0317 

0.0402 

0.0136 

0.0317 

0.0073 

0.0073 

0.0059 

0.0190 

0.0092 

0.0115 

0.0448 

0.0140 

0.0348 

0.0436 

0.0137 

0.0330 

         

% Improvement --
b
 72.2% 52.0% 56.8% 45.1% 71.4% 49.0% 55.8% 

         
a RMSEP = root-mean-square error of prediction. The three vertically listed errors in a group correspond to the error for glucose, glycine and 

citrate, respectively.  

b RMSEC = root-mean-square error of calibration. The PLS model was developed for this target instrument (green) using 12 calibration samples. 

No % improvement is calculated for this sample using DS, PDS and DWPDS since this is the target instrumental configuration. The NOESY 

related configuration is denoted by the grey column.  

c DS = direct standardization. Instrumental calibration RMSEP calculated using 5 transfer calibration samples. 

d PDS = Piece-Wise Direct Standardization. Instrumental calibration RMSEP calculated using 4 transfer calibration samples and 1 calibration 

frequency or (7 calibration frequencies). 

e DWPDS = Double Window Piece-Wise Direct Standardization. Instrumental calibration RMSEP calculated using 4 transfer calibration samples 

and window sizes of 7 and 1.   
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5.5. Supplemental for Chapter 5  

 

Table 5.S0 Concentrations and Relative Concentrations of Model Mixtures  

Sample 

ID 

Concentration (mM) Relative Concentration 

 Glucose Glycine Citrate Glucose Glycine Citrate 

1 50 0.40 0 0.992 0.008 0.000000 

2 40 0.67 0 0.984 0.016 0.000000 

3 30 0.55 0 0.982 0.018 0.000000 

4 20 0.80 0 0.962 0.038 0.000000 

5 50 2.00 0 0.962 0.038 0.000000 

6 40 1.07 0 0.974 0.026 0.000000 

7 30 1.47 0 0.953 0.047 0.000000 

8 20 2.67 0 0.882 0.118 0.000000 

9 50 2.00 2.4 0.919 0.037 0.044 

10 40 1.07 4.0 0.888 0.024 0.088 

11 30 1.47 8.0 0.760 0.037 0.203 

12 20 2.67 12.0 0.577 0.077 0.346 

13 20 0 0 1 0 0 

14 0 0 8.00 0 0 1 

15 0 4.0 0 0 1 0 
 

* Samples #13, #14, and #15 were not used in the concentration development.
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Figure 5S.1. The correlation between the 1H NMR PLS predicted relative concentration 
of glycine and the measured relative concentration of glycine for the standard mixtures 
using eight different instrumental configurations. The PLS model was developed for the 
relative concentration of glucose, glycine and citrate simultaneously using the unbinned 
1D 1H NMR spectra data set from the Bruker instrument with a broadband probe, 1D BB 
Bruker (●). This model was subsequently used for the prediction of metabolite 
concentrations in the remaining instrumental configurations, NOESY BB Bruker (●), 1D 
INV Bruker (), NOESY INV Bruker (), 1D HCN(a) Varian (■), NOESY HCN(a) 
Varian (■), 1D HCN(b) Varian (♦) and NOESYHCN(b) Varian (♦). The results for a given 
probe utilize the same symbols, with the NOESY results being colored. Note that in 
general the 1D and NOESY predictions fall in pairs showing that the pulse sequence 
has minimal impact on the observed variations.  
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Figure 5S.2.  The correlation between the 1H NMR PLS predicted relative concentration 
of citrate and the measured relative concentration of citrate for the standard mixtures 
using eight different instrumental configurations. The PLS model was developed for the 
relative concentration of glucose, glycine and citrate simultaneously using the unbinned 
1D 1H NMR spectra data set from the Bruker instrument with a broadband probe, 1D BB 
Bruker (●). This model was subsequently used for the prediction of metabolite 
concentrations in the remaining instrumental configurations, NOESY BB Bruker (●), 1D 
INV Bruker (), NOESY INV Bruker (), 1D HCN(a) Varian (■), NOESY HCN(a) 
Varian (■), 1D HCN(b) Varian (♦) and NOESYHCN(b) Varian (♦).The results for a given 
NMR probe utilize the same symbols, with the NOESY results being colored. Note that 
in general the 1D and NOESY predictions fall in pairs showing that the pulse sequence 
has minimal impact on the observed variations.  
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Table 5S.1: The RMSEC and RMSEPa for the measurement of glucose, glycine and 
citrate relative concentrations in the twelve sample calibration set for eight different 
NMR configurations. The colored cells designate the RMSEC obtained for model 
calibration using all twelve samples from the data set for that particular instrument. The 
light gray cell note the RMSEP for the 1D/NOESY pair within an instrument 
configuration. 
 
  RMSEP Data Set Prediction 

D
a
ta

 S
et

 M
o
d

el
ed

 

 #1 

1D  

BB 

Bruker 

#2 

1D  

INV 

Bruker 

#3 

1D 

HCN(a) 

Varian 

#4 

1D 

HCN(b) 

Varian 

#5 

NOESY 

BB 

Bruker 

#6 

NOESY 

INV 

Bruker 

#7 

NOESY 

HCN(a) 

Varian 

#8 

NOESY 

HCN(b) 

Varian 

#1 0.0099 

0.0058 

0.0075 

0.0647 

0.0244 

0.0556 

0.0876 

0.0227 

0.0791 

0.0941 

0.0264 

0.0894 

0.0162 

0.0135 

0.0090 

0.0678 

0.0241 

0.0583 

0.0912 

0.0228 

0.0818 

0.0971 

0.0264 

0.0920 

#2 0.1198 

0.0225 

0.1020 

0.0089 

0.0070 

0.0059 

0.0709 

0.0136 

0.0637 

0.1108 

0.0215 

0.1044 

0.1110 

0.0217 

0.0940 

0.0115 

0.0073 

0.0100 

0.0737 

0.0144 

0.0650 

0.1082 

0.0212 

0.1018 

#3 0.2412 

0.0655 

0.1827 

0.0976 

0.0335 

0.0667 

0.0076 

0.0066 

0.0046 

0.0859 

0.0374 

0.0524 

0.2453 

0.0765 

0.1776 

0.1045 

0.0381 

0.0687 

0.0136 

0.0078 

0.0115 

0.1029 

0.0382 

0.0694 

#4 0.1452 

0.0425 

0.1371 

0.1302 

0.0411 

0.1117 

0.0501 

0.0283 

0.0498 

0.0145 

0.0076 

0.0079 

0.1183 

0.0511 

0.1183 

0.1300 

0.0437 

0.1142 

0.0499 

0.0297 

0.0530 

0.0348 

0.0089 

0.0298 

#5 0.0228 

0.0134 

0.0285 

0.0624 

0.0164 

0.0578 

0.0938 

0.0199 

0.0874 

0.1064 

0.0250 

0.1035 

0.0063 

0.0070 

0.0039 

0.0648 

0.0154 

0.0598 

0.0970 

0.0201 

0.0896 

0.1083 

0.0248 

0.1049 

#6 0.1335 

0.0223 

0.1164 

0.0121 

0.0074 

0.0097 

0.0798 

0.0144 

0.0728 

0.1273 

0.0222 

0.1198 

0.1227 

0.0202 

0.1059 

0.0088 

0.0072 

0.0057 

0.0806 

0.0151 

0.0722 

0.1232 

0.0218 

0.1158 

#7 0.2419 

0.0619 

0.1885 

0.1354 

0.0389 

0.0993 

0.0137 

0.0076 

0.0109 

0.0890 

0.0420 

0.0505 

0.2659 

0.0780 

0.1979 

0.1440 

0.0442 

0.1024 

0.0128 

0.0076 

0.0090 

0.0988 

0.0411 

0.0624 

#8 0.2722 

0.0407 

0.0140 

0.2961 

0.0643 

0.2400 

0.1440 

0.0333 

0.1209 

0.0311 

0.0091 

0.0258 

0.2832 

0.0462 

0.2531 

0.3015 

0.0642 

0.2473 

0.1661 

0.0369 

0.1395 

0.0173 

0.0070 

0.0140 
 
a
 RMSEC = root-mean-square error of calibration. RMSEP = root-mean-square error of prediction. 
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Where n is the number of calibration samples and ˆ
iy  are the predicted value for the ith sample in the calibration set, 

while for RMSEP ˆ
iy  corresponds to samples in a prediction set not used in the model development. The three 

vertically listed errors in a group correspond to the error for glucose, glycine and citrate, respectively.  
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Table 5S.2: The RMSECa and RMSEPa for the measurement of glucose, glycine and 
citrate relative concentrations in the twelve sample calibration set following phasing 
using 4 different methods (see experimental for additional details). Green shaded cell 
designates data set used for prediction. 
 
  RMSEP Data Set Prediction 

D
a

ta
 S

et
 

M
o

d
el

ed
 

 #1 

User_1 

Manual 

#2 

User_2 

Manual 

#3 

APK 

Automated 

#4 

APKS 

Automated 

#1 0.0099 

0.0058 

0.0075 

0.0099 

0.0058 

0.0075 

0.0099 

0.0058 

0.0075 

0.0101 

0.0059 

0.0073 
 
a
 See Table 5.S1 for definition of RMSEC and RMSEP.  The three vertically listed errors in a group correspond to 

the error for glucose, glycine and citrate, respectively.  
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Table 5S.3: The RMSECa and RMSEPa for the measurement of glucose, glycine and 
citrate relative concentrations in the twelve sample calibration set for eight different 
NMR configurations as a function of binning size with configuration #1 being used as 
the target instrumental configuration.  
  RMSEP Data Set Prediction 

B
in

 S
iz

e 
(p

p
m

) 

 #1 

1D  

BB 

Bruker 

#2 

1D  

INV 

Bruker 

#3 

1D 

HCN(a) 

Varian 

#4 

1D 

HCN(b) 

Varian 

#5 

NOESY 

BB 

Bruker 

#6 

NOESY 

INV 

Bruker 

#7 

NOESY 

HCN(a) 

Varian 

#8 

NOESY 

HCN(b) 

Varian 

0.001 0.0099 

0.0058 

0.0075 

0.0647 

0.0244 

0.0556 

0.0876 

0.0227 

0.0791 

0.0941 

0.0264 

0.0894 

0.0162 

0.0135 

0.0090 

0.0678 

0.0241 

0.0583 

0.0912 

0.0228 

0.0818 

0.0971 

0.0264 

0.0920 

0.005 0.0113 

0.0064 

0.0057 

0.0489 

0.0158 

0.0410 

0.0783 

0.0198 

0.0698 

0.0851 

0.0253 

0.0843 

0.0130 

0.0074 

0.0089 

0.0527 

0.0149 

0.0448 

0.0825 

0.0198 

0.0728 

0.0890 

0.0250 

0.0871 

PIb -0.2% +28.6% +11.7% +6.5% +22.0% +27.9% +11.2% +6.3% 

0.01 0.0086 

0.0047 

0.0069 

0.0629 

0.0138 

0.0534 

0.0758 

0.0153 

0.0652 

0.0762 

0.0195 

0.0704 

0.0121 

0.0058 

0.0114 

0.0662 

0.0131 

0.0572 

0.0816 

0.0159 

0.0703 

0.0819 

0.0190 

0.0753 

PIb +13.4% +16.7% +21.2% +22.1% +18.6% +16.6% +18.3% +20.6% 

0.02 0.0143 

0.0038 

0.0108 

0.0667 

0.0170 

0.0524 

0.0834 

0.0174 

0.0683 

0.0812 

0.0220 

0.0668 

0.0172 

0.0044 

0.0137 

0.0694 

0.0157 

0.0562 

0.0887 

0.0178 

0.0735 

0.0866 

0.0204 

0.0729 

PIb -18.0% +11.0 +13.9% +18.6% +3.0% +12.0% +11.6% +18.1% 

0.04 0.0145 

0.0040 

0.0108 

0.0628 

0.0164 

0.0497 

0.0790 

0.0167 

0.0648 

0.0832 

0.0254 

0.0656 

0.0169 

0.0046 

0.0134 

0.0654 

0.0149 

0.0533 

0.0852 

0.0170 

0.0709 

0.0902 

0.0239 

0.0734 

PIb -19.8% +15.4 +18.1% +14.0% +4.2% +16.8% +15.1% +12.3% 

0.06 0.0138 

0.0040 

0.0101 

0.0589 

0.0156 

0.0467 

0.0788 

0.0174 

0.0639 

0.0910 

0.0278 

0.0687 

0.0166 

0.0048 

0.0129 

0.0612 

0.0140 

0.0501 

0.0845 

0.0176 

0.0697 

0.0978 

0.0270 

0.0773 

PIb -14.3% +20.3% +17.5% +7.0% +6.2% +21.9% +15.0% +4.3% 

0.08 0.0106 

0.0034 

0.0076 

0.0525 

0.0155 

0.0408 

0.0687 

0.0180 

0.0537 

0.0867 

0.0235 

0.0677 

0.0147 

0.0048 

0.0115 

0.0548 

0.0130 

0.0452 

0.0790 

0.0219 

0.0608 

0.0694 

0.0183 

0.0573 

PIb +11.0% +27.3% +24.8% +14.4% +15.3% +29.2% +14.3% +32.3% 

 
a
 RMSEC = root-mean-square error of calibration. RMSEP = root-mean-square error of prediction. 
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Where n is the number of calibration samples and ˆ
iy  are the predicted value for the ith sample in the calibration set, 

while for RMSEP ˆ
iy  corresponds to samples in a prediction set not used in the model development. The three 

vertically listed errors in a group correspond to the error for glucose, glycine and citrate, respectively.  
b
 PI = percent improvement 
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Figure 5S.3.  The variation of RMSEP for the prediction of the relative concentration of 
a) glucose, b) glycine and c) citrate as a function of binning size. The PLS model was 
developed for the relative concentration of glucose, glycine and citrate simultaneously 
using the 1D 1H NMR spectra data set from the Bruker instrument with a broadband 
probe, 1D BB Bruker (●). This model was subsequently used for the prediction of 
metabolite concentrations in the remaining instrumental configurations, NOESY BB 
Bruker (■), 1D INV Bruker (●), NOESY INV Bruker (■), 1D HCN(a) Varian (●), NOESY 
HCN(a) Varian (■), 1D HCN(b) Varian (●) and NOESYHCN(b) Varian (■). Note that in 
general the 1D and NOESY predictions fall in associated pairs.  
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Table 5S.4: The RMSECa and RMSEPa for the measurement of glucose, glycine and 
citrate relative concentrations in the twelve sample calibration set for eight different 
NMR configurations following line shape deconvolution. The colored cells designate the 
RMSEC obtained for model calibration using all twelve samples from the data set for 
that particular instrument. The light gray cell note the RMSEP for the 1D/NOESY pair 
within an instrument configuration. 
 
  RMSEP Data Set Prediction 

D
a
ta

 S
et

 M
o
d

el
ed

 

 #1 

1D  

BB 

Bruker 

#2 

1D  

INV 

Bruker 

#3 

1D 

HCN(a) 

Varian 

#4 

1D 

HCN(b) 

Varian 

#5 

NOESY 

BB 

Bruker 

#6 

NOESY 

INV 

Bruker 

#7 

NOESY 

HCN(a) 

Varian 

#8 

NOESY 

HCN(b) 

Varian 

#1 0.0090 

0.0050 

0.0064 

0.0725 

0.0219 

0.0609 

0.0855 

0.0196 

0.0726 

0.0819 

0.0252 

0.0727 

0.0137 

0.0104 

0.0084 

0.0753 

0.0212 

0.0638 

0.0899 

0.0196 

0.0766 

0.0879 

0.0253 

0.0788 

#2 0.1088 

0.0185 

0.0944 

0.0107 

0.0070 

0.0061 

0.4276 

0.0112 

0.0350 

0.0684 

0.0183 

0.0653 

0.0999 

0.0182 

0.0864 

0.0123 

0.0073 

0.0090 

0.0490 

0.0120 

0.0402 

0.0765 

0.0188 

0.0731 

#3 0.1766 

0.0376 

0.1436 

0.0361 

0.0119 

0.0267 

0.0150 

0.0087 

0.0097 

0.0263 

0.0256 

0.0184 

0.1646 

0.0394 

0.1311 

0.0332 

0.0131 

0.0222 

0.0189 

0.0090 

0.0147 

0.0331 

0.0273 

0.0245 

#4 0.1136 

0.0355 

0.0984 

0.0492 

0.0219 

0.0430 

0.0334 

0.0251 

0.0320 

0.0149 

0.0079 

0.0088 

0.1025 

0.0384 

0.0865 

0.0499 

0.0241 

0.0447 

0.0374 

0.0272 

0.0371 

0.0239 

0.0083 

0.0206 

#5 0.0177 

0.0111 

0.0219 

0.0660 

0.0151 

0.0596 

0.0820 

0.0173 

0.0723 

0.0833 

0.0237 

0.0793 

0.0054 

0.0072 

0.0039 

0.0688 

0.0143 

0.0624 

0.0862 

0.0174 

0.0758 

0.0893 

0.0240 

0.0849 

#6 0.1237 

0.0190 

0.1085 

0.0138 

0.0073 

0.0100 

0.0438 

0.0112 

0.0367 

0.0833 

0.0184 

0.0796 

0.1142 

0.1767 

0.1001 

0.0108 

0.0072 

0.0061 

0.0481 

0.0121 

0.0395 

0.0905 

0.0189 

0.0865 

#7 0.2122 

0.0432 

0.1731 

0.0624 

0.0151 

0.0492 

0.0204 

0.0091 

0.0156 

0.0372 

0.0311 

0.0184 

0.2006 

0.0452 

0.1605 

0.0605 

0.0165 

0.0456 

0.0130 

0.0090 

0.0067 

0.0434 

0.0338 

0.0195 

#8 0.1612 

0.0240 

0.1484 

0.1625 

0.0380 

0.1298 

0.1172 

0.0274 

0.1003 

0.0273 

0.0104 

0.0198 

0.1641 

0.0261 

0.1486 

0.1629 

0.0369 

0.1322 

0.1237 

0.0286 

0.1069 

0.0150 

0.0066 

0.0138 
 
a
 RMSEC = root-mean-square error of calibration. RMSEP = root-mean-square error of prediction. 
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Where n is the number of calibration samples and ˆ
iy  are the predicted value for the ith sample in the calibration set, 

while for RMSEP ˆ
iy  corresponds to samples in a prediction set not used in the model development. The three 

vertically listed errors in a group correspond to the error for glucose, glycine and citrate, respectively.  
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Figure 5.S4-A and S4-B. Variation of the RMSEP as a function of the number of 
transfer samples following direct standardization (DS) instrumental transfer. The PLS 
model was developed using the 1D BB Bruker configuration, with the predictive error for 
the different instrumental configurations shown in Figure S4-A and S4-B. 
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Figure 5S.4-A and S.4-B. Variation of the RMSEP as a function of the number of 
transfer samples following direct standardization (DS) instrumental transfer. The PLS 
model was developed using the 1D BB Bruker configuration, with the predictive error for 
the different instrumental configurations shown in Figure S4-A and S4-B. 
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Figure 5S.5. Variation of the RMSEP for the prediction of glucose concentration for the 
Varian 1D HCN(b) instrumental configuration. The error was evaluated as a function of 
number of transfer samples and number of frequencies used in calculating transfer 
function during Piece-Wise Direct Standardization (PDS) instrumental transfer. The PLS 
model was developed using the 1D BB Bruker configuration. The number of frequencies 
used showed very little impact on the RMSEP showing that instrumental drift and line 
broadening were the dominant factor controlling the performance of prediction between 
the different instrumental configurations.  
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Chapter 6 
 

Development of Variance-Filtered Instrumental 
Transfer Methods for High-Resolution NMR 

Spectroscopy 
 
 

6.1. Introduction to Variance Filtered Instrumental Transfer 

High-resolution NMR spectroscopy continues to be a powerful tool for the investigation 

of complex mixtures including quantitative analysis. In many fields and applications it is 

becoming common to utilize very large NMR data sets, and in particular, those resulting from 

the combination of numerous smaller spectral data sets. Analysis of combined data sets presents 

a unique challenge, as they often contain variances not related to the chemistry present in the 

samples. Instead, these combined data sets may present large variances resulting from using 

multiple NMR instruments in different laboratories, variance within a single NMR instrument 

over extended periods of time, and changes in NMR data related to the use of different pulse 

sequences and solvent saturation techniques. The influence of instrumental identity has been 

previously noted during the multivariate analysis of NMR data sets and was attributed to 

differences in the pulse sequences employed, spin-relaxation effects, hardware implementation 

and base line distortions related to different solvent suppression techniques [32, 73-77].  

 This group recently demonstrated the implementation of instrumental transfer methods 

for high-resolution 
1
H NMR that allowed spectral data from multiple instrumental configurations 

to be evaluated [104]. In that study it was demonstrated that for simple model mixtures, NMR 

instrument variations could be corrected using either the direct standardization (DS) or piece-

wise direct standardization (PDS) instrumental transfer methods [91-94, 96, 97] using a limited 

number of transfer calibration standard samples. A significant improvement in the prediction of 

relative metabolite concentrations following instrumental transfer was realized [104]. In the same 

study it was noted that if the transfer calibration samples did not contain signals for an 

“unrepresented” compound it was possible for spectral information about this compound to be 

removed or corrupted during the DS and PDS instrumental transfer process.  
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 In this chapter, we introduce a variance-filtered modified DS and PDS instrumental 

transfer method as applied to high-resolution NMR to address the issue of incomplete spectral 

representation by the limited number of transfer calibration standard samples. Examples and 

specific issues related to the use of the variance-filtered instrumental transfer methods are 

presented.  

 

6.2. NMR Experimental 

Details concerning the preparation and acquisition of the multiple NMR data sets for 

different instrumental configurations have been previously described [104]. In summary, a set of 

standard samples for a model mixture containing the metabolites citrate, glucose and glycine in 

D2O (pH = 7.0, 10 mM phosphate buffer) with 5 mM 3-trimethylsilylpropionate (TSP) as an 

internal chemical shift reference were analyzed on 8 different instrumental configurations. These 

configurations included two different NMR instruments, a Bruker Avance 600 and a Varian 

Unity Plus 600, the use of either a single pulse 1D or a 1D NOESY (100 ms) pulse sequence, 

acquired on a 5 mm broadband (BB) X(
1
H) probe (Bruker), a 

1
H(X) inverse (INV) probe 

(Bruker) or two different vintages of an HCN probe (Varian). In this paper these 8 instrumental 

configurations will designated as 1D BB Bruker, NOESY BB Bruker, 1D INV Bruker, NOESY 

INV Bruker, 1D HCN(a) Varian, NOESY HCN(a) Varian, 1D HCN(b) Varian and NOESY 

HCN(b) Varian. The multiple NMR data sets were all transformed, phased, referenced and 

baseline corrected in CHENOMX NMR Suite 5.0 (Edmonton, Canada) prior to analysis and 

instrumental transfer using the MATLAB 2007b software (The Mathworks, Inc.) and the PLS 

Toolbox 4.1 (Eigenvector Research, Inc). The spectral region between +4 and +2.2 ppm was 

used for the analysis as this region did not contain the dominant H2O signal. The data sets were 

integral normalized to the total signal intensity and mean-centered prior to instrumental transfer 

and analysis. 

 

6.3. Methods 

6.3.1. Direct Standardization (DS) Instrumental Transfer 

Using the DS instrumental transfer method the spectra (or FIDs) between different NMR 

instruments (or configurations) can be related to each other by modeling the responses using [91, 

92, 96] 
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                         DS DS

j j j j

T

1 b s b sS S F 1b S F B                                 (6.1) 

 

where 
1S  is the matrix containing the spectra of a target (primary or standard) NMR instrument 

to which data is being transferred. The matrix jS  contains the spectra obtained on the jth NMR 

instrumental configuration (e.g. different instruments, different probes, different pulse sequences 

or the same instrument at a later time), DS

bF  is the DS transformation matrix and 
j

T

sb  is the 

transpose of the additive background correction vector for the jth configuration. It is possible to 

replace the 
j

T

s1b  term with the background matrix jsB . For high-resolution NMR, baseline 

correction is a common processing step prior to multivariate analysis, and should result in a 

vanishingly small background jsB component. In addition, jsB  has no impact during transfer of 

mean-centered data (see Equation 2, below). Highly structured baselines resulting from 

receiver/probe distortions, filter edge effects, or presaturation issues that are not removed during 

preprocessing may be reflected in jsB , and in those cases should be evaluated during the 

instrumental transfer procedure.  

The data set matrices jS are composed of n samples and  frequencies ( n ), and for 

simplicity is assumed to have the same dimensions for all instrumental configurations. Mean-

centering the data matrices (
jS ) allows Equation (1) to be rewritten as 

 

DS

j1 bS S F                (6.2) 

 

The DS transfer function DS

bF  is a x  matrix and is defined using  

 

DS

j

+

b 1F = S S           (6.3) 

 

with 
j

+
S  being the pseudoinverse of 

jS  and was determined using singular value decomposition 

(SVD). It should be noted that during the calibration of the transfer function the DS method 
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correlates the entire spectrum of the secondary instrument to each individual spectral frequency 

such that DS

bF  is a dense ( x ) matrix.  

 

6.3.2.  The Piece-Wise Direct Standardization (PDS) Method 

For NMR spectroscopy, the spectral variations between different instrumental 

configurations typically involve only very small frequency shifts and intensity differences, 

allowing the instrumental transfer function to be evaluated over a limited range of nearby 

spectral frequencies. The spectral response on the primary instrument at the kth frequency (
1,ks ) 

can be related to the spectral response on the jth instrumental configuration at nearby freqencies 

with a window width of 2 1n  ( , , 1 , 1 ,, , , ,j k n j k n j k n j k ns s s s  ). These measurements for the kth 

frequency are placed into a matrix to form 

 

, , 1 , 1 ,, , , ,k j k n j k n j k n j k nX s s s s                     (6.4) 

 

A regression vector at each frequency is then calculated using 

 

1,k k kβ X s                      (6.5) 

 

Under the PDS method the transformation PDS

bF is a banded diagonal ( x ) matrix containing 

the regression vectors, with the majority of the off-diagonal elements being zero, as defined by 

 

PDS

1 2 3diag , , ,T T T T

bF β β β β                    (6.6) 

 

For both the DS and PDS methods, the spectra on secondary instrumental configurations are 

corrected to match the spectra obtained on the primary instrument, while the calibration model 

(developed on the primary instrument) remains unchanged. It should be emphasized that the type 

of calibration model is not important since the results of the calibration are not directly utilized 
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during the calculation of the transfer functions ( DS

bF  and PDS

bF ). For example, no concentrations 

or other measurables are utilized in evaluating Equations (3) and (6). 

 

6.3.3. Variance-Filter Transfer Function 

 In this paper, we introduce a filter into the DS and PDS instrumental transfer methods to 

select only those spectral regions in the NMR spectra that are adequately described by the 

limited 
TN  transfer calibration samples. This filter is based on comparison between the standard 

deviation present at each frequency, ( ) , for the N spectra of the combined primary and 

secondary datasets to the standard deviation within the transfer calibration samples subset, ( ) . 

The standard deviations are given by the square root of the intensity variance from the intensity 

mean ( )s  at each frequency and are defined by  

 

 

1
2 2

1

1

1
( ) ( ) ( )

1

1
( ) ( )

N

i

i

N

i

i

s s
N

s s
N

  (6.7) 

 

where in this equation N  represents the total number of spectra present in the combined data set 

( 1 jS S ). Similarly, ( ) is restricted to the 
TN  transfer calibration samples over the j 

different instrumental configurations and is defined by 

 

1

2
2

1

1
( ) ( ) ( )

1

Tj N

i

iT

s s
j N

       (6.8) 

 

  

Using these standard deviations, a variance-filtered instrumental transfer function can be defined 

             

            (6.9) 

Filter

(DS), if σ > σ ν

T T T Tdiag , , , , (PDS), if σ > σν1 2 3

(Filter), if σ  σν

s

s

c s

b

+S S
i 1

F β β β β

I




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For regions of the NMR spectra where there is significant spectral information or variance 

present in the limited 
TN  calibration transfer samples (as defined by the user controlled tolerance 

level s ), the transfer function Filter

bF is given by the original DS or PDS transfer function 

described in section 3.1 and 3.2. For those frequencies where there is not significant information 

in the transfer calibration samples, the transfer function Filter

bF is modified by inserting a scaled 

identity matrix ( c I ). In practice, the scale factor was necessary to maintain total intensity 

relationships of the transferred spectra used during subsequent analysis. 

 

6.3.4. Using of Transfer Calibration Samples to Estimate 
bF  

For the DS, PDS and variance-filtered instrumental transfer methods, Equations (6.1-6.9) 

are used to correct spectral data on secondary NMR instrumental configurations to match the 

spectra obtained on the primary NMR instrument. To calculate the transfer function 
bF , a limited 

number of transfer calibration samples (NT) which is less than the total number of samples in the 

data set (Ns) are selected and measured on both the primary (or target) instrument (
1T ) and on the 

secondary instrumental configurations ( jT ). The number of distinct transfer calibration samples 

should be at least equal to the rank of 
1S  in order to correctly estimate the transfer function 

bF . 

There are different methods employed for this subset selection and include using the sample 

leverage based on the Hat matrix [91], the Euclidean distance via the Kennard and Stone 

algorithm [105], or determination through the maximization of smallest inter-point distance 

(MSID) between samples [97]. In general, the transfer calibration samples are chosen from the 

data set of the primary instrument, but an equivalent argument can be made for selection of the 

transfer sample subset from any instrumental sample set. The 
1T  and jT data sets are then used to 

evaluate transfer matrices DS

bF  (DS), PDS

bF  (PDS), or Filter

bF  (variance-filtered) via Equation (6.3), 

(6.6) or (6.9), respectively.  

 

3.5 Combining Data Sets Using Instrumental Transfer 

As noted above, the calculation of the transfer functions does not require the use of a 

specific calibration model. It is true that the selection of the limited transfer samples may be 

determined with respect to the impact on a model (i.e. sample leverage in a PLS model), but this 
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is not a strict requirement. It is possible to utilize these instrumental transfer methods to modify 

spectral data sets obtained on different NMR instrumental configurations to match the spectral 

response of a target (primary) NMR instrument prior to data set combination and subsequent 

analysis. This transfer (or modification) of the secondary data sets can be accomplished, in 

analogy to Equation (6.2), using 

 

Tr

j j bS S F                    (6.10) 

 

where Tr

jS  is the transferred data set from the jth instrumental configuration.  

 

6.4. Results and Discussion  

6.4.1. Combined NMR data sets  

It was recently shown that for high-resolution NMR both the DS and PDS instrumental 

transfer methods provided a significant improvement in the predictions of partial least squares 

(PLS) concentration models between different NMR instrument configurations [104]. These 

same instrumental transfer methods can also be used to modify or correct data sets using 

equation (10) from different NMR instruments prior to incorporating them into a large data set 

for subsequent analysis. As an example, the 
1
H NMR spectra for a set of model mixtures (12 

samples) containing the metabolites glucose, glycine and citrate were obtained on four different 

instrumental configurations. Figure (6.1a) and (6.1b) show the NMR spectra for two of these 

instrumental configurations prior to instrumental transfer, along with the identification of the 

different metabolite spectral contributions. The unbinned NMR data sets from the four different 

instrumental configurations were combined and then analyzed using principal component 

analysis (PCA). The scores for the first two PCs using the model developed on the target (or 

primary) NMR instrumental configuration (1D BB Bruker, ●) are shown in Figure (6.2a). Given 

ideal and identical response on the different NMR instruments the PC scores for the different 

configurations should be coincident. This is clearly not the case in Figure (6.2a), where subtle 

clustering based on the identity of the NMR instrumental configuration is observed. Of particular 

interest are the PC scores for the four samples in the model mixtures containing the citrate 
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metabolite (samples designated C1, C2, C3, and C4) and the one sample in the data set with a 

relative glycine concentration that was an order of magnitude higher than the other standard 

samples (G8) [104]. On the primary NMR instrument 1D BB Bruker (●), the positive PC1 scores 

may provide a classification signature for the presence of citrate metabolite, while the large PC2 

score provides a marker for high relative glycine concentrations. These results show that prior to 

NMR data set modification (using instrumental transfer), PCA on the combined data set from the 

different instrumental configurations does not allow clear identification of the unique C1-C4 and 

G8 samples.  

Combining the NMR data sets following DS instrumental transfer (NT = 4 transfer calibration 

samples), PCA reveals a marked improvement in the similarity of the PC scores between the 

different instrumental configurations as shown in Figure (6.2b). In particular, the scores for the 

C1-C4 and G8 samples are nearly identical to the PC scores observed on the primary NMR 

instrument, and the clustering based on instrumental identification has been removed. Similarly, 

Figure (6.2c) shows the PC scores of the combined data sets following PDS instrumental transfer 

(NT = 4 and 1 filter frequency) revealing overall improvement. For PDS-modified data the C1-C4 

and G8 samples on all the instrumental configurations can be clearly separated from the other 

samples in the data set based on their PC scores. The PCA results of the combined DS-modified 

data sets are slightly better than results of the PDS-modified data sets. This difference between 

DS and PDS transfer for this data set has been previously noted and discussed [104].  

 While the results of using instrumental transfer methods in combining NMR data sets are 

encouraging, there are several issues and pitfalls to implementation of these methods that need to 

be addressed. The most important issue is that the performance and applicability of transferring 

and combining different data sets strongly depends on the transfer calibration sample subset (
1T ) 

representing (or spanning) the complete instrumental response. As previously noted [91, 92, 96], 

for DS instrumental transfer method the number of transfer calibration samples (NT) needs to be 

at least equal to the rank of the data set being transformed ( jS ), or at least equal to the rank of 

the regression matrix 
kX  defined in Equation (4). More accurately, the rank of 

1T  needs to be 

equal or greater than the rank of jS . For simple systems this can be accomplished, but for 

complex mixtures (such as biofluids) this requirement may be difficult to fulfill. A second issue 

is that while the 
1T  samples are most commonly selected from the complete data set on the 
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primary instrument (
1S ), this calibration subset may not necessarily describe (or fully span) the 

response of the jth instrumental jS   

 

1 1 jT S S           (6.11) 

 

This situation could occur when a later data set jS  contains a new chemical species (new 

metabolite) not present in the data set of the original target instrument. This requirement of fully 

describing the data sets also will make it difficult to create a “universal” transfer calibration set 

without some prior knowledge of the systems being investigated. It should be noted that it is 

possible to select a new calibration transfer sample subset to span the combined data sets from all 

the different instrumental configurations (
1 jS S ), and then obtain spectra for this new 

1T  

sample set on each instrumental configuration, estimate the new transfer functions, and then 

perform the instrumental transfer prior to combining the data sets. Unfortunately, this would 

require revaluation of the 
1T  subset every time a new instrumental configuration was to be 

incorporated, and would prove prohibitively restrictive. Issues involving the inability to 

completely map the instrumental response will produce significant errors in the transferred data 

and are described in the next section. 

 

6.4.2. Issues with Transfer Calibration Sample Selection  

 Insight into the problems of using these instrumental transfer methods can be obtained by 

inspection of the transferred NMR data sets. The unmodified 
1
H NMR spectra of the glucose, 

citrate and glycine mixtures on the primary or target instrument (1D BB Bruker) are shown in 

Figure (6.1a, bottom), while Figure (6.1b) shows the NMR spectra for the same mixtures 

obtained on a different instrument configuration (NOESY BB Bruker). For this secondary data 

set the spectra were obtained using the same NMR instrument and probe as the primary 

instrument, but using a different pulse sequence. These two data sets were acquired sequentially 

to eliminate changes in sample conditions, probe tuning and variations in magnetic field 

homogeneity. The experimental residuals between the different instrumental configurations are 

given in Figure (6.3a), and reveal instrumental variations. The largest residual observed results 
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primarily from the differential relaxation of the glycine resonance (  = +3.55 ppm) occurring 

during the 1D NOESY and single pulse 1D sequence.  

Some of these spectral differences can be corrected using instrumental transfer. If the 
1T  subset 

contained all the metabolites of interest (glucose, glycine, and citrate) the DS and PDS transfer 

of the data set from the secondary instrument was successful, as shown in Figures (6.1c) and 

(6.1d), respectively. The experimental residuals following DS instrumental transfer are shown in 

Figure (6.3b), revealing an improvement of ~3 in the magnitude of the residual errors, primarily 

for the glycine resonance. For this model mixture the optimum number of  
1T  samples required 

ranged from between 3 and 5 samples depending if the DS or PDS protocol was employed (4 

were used for all the examples shown in this manuscript), with the performance of the 

instrumental transfer as a function of calibration sample number detailed previously [104].  

Now consider the example where the 
1T  subset is missing some of the compounds present within 

the secondary data set. The 
1
H NMR of the reduced subset is shown as the upper inset in Figure 

(6.1a) and does not contain any samples containing citrate. Figures (6.1e) and (6.1f) shows the 

errors introduced following DS and PDS instrumental transfer with this “incomplete” transfer 

calibration sample set. The transferred data sets have suppressed or corrupted citrate resonances 

(  ~ 2.59 ppm). This error occurs because the transfer matrix 
bF attempts to eliminate signal in 

this spectral region because there is no citrate signal (just noise) present in 
1T . In this example, 

the suppression of the citrate sample is almost complete using the DS method, because it 

correlates the entire spectra for each frequency in estimation of DS

bF . This signal suppression is 

typically considered beneficial during instrumental transfer in that spurious noise signals present 

on secondary instruments would be eliminated during transfer, but in this case 
1T  subset 

selection produces the error during transfer.  

The spectral residuals between the two data sets following DS and PDS instrumental transfer  are 

shown in Figures (6.3c) and (6.3e), respectively, and were obtained by subtracting the target 

instrument data set from the transferred instrumental data set ( Tr

2 1S S ). These residuals show 

another error introduced due to “unrepresented” compounds being present within the transferred 

data sets. The dominant negative residual is produced by the disappearance of the citrate signals 

(  ~ + 2.59 ppm) in the transferred data set. In the residuals involving the DS modified data in 
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Figure (6.3c), there is also an increase in the glucose and glycine intensities for any sample 

containing citrate. This intensity variation results from the normalization of the total spectral 

integral following the instrumental transfer (i.e. total spectral intensity is set to one). In the case 

of DS, the complete suppression of the citrate signal biases the unit normalization. For the PDS 

method the normalization impact is less pronounced since there is still some citrate intensity 

following the data set transfer. These intensity errors introduced during re-normalization can be 

partially eliminated by using Probabilistic Quotient Normalization (PQN) following the transfer 

of the secondary data set (results not shown) [62].  

Issues associated with a non-representative 
1T  subset are also reflected in the PCA analysis of 

the transferred data sets. Figure (6.4a) and (6.4b) show the scores of the combined data from four 

different instrumental configurations following DS and PDS instrumental transfer, respectively. 

These results show a reduction in the scattering due to instrumental identity (compared to Figure 

(6.2a)). For this combined data set the G8 sample has almost the same score for every 

instrumental configuration, and is a dramatic improvement over the PCA results of the original 

untransferred data sets (Figure (6.2a)). Unfortunately the PC scores for samples containing the 

citrate metabolite (C1-C4) vary greatly for the different NMR instrumental configurations.  

 These results clearly show that attempts to apply existing DS and PDS instrumental 

transfer methods to combine data sets involving complex mixtures will introduce errors if 
1T  

does not include all the compounds present in the combined data sets. For biofluid and 

metabolite studies this restriction would be extremely detrimental, as entire spectral regions 

might be eliminated or corrupted during the transfer and data set combination process.  

 

6.4.3. The Use of Variance-Filtering for Combined Data Sets 

It is possible to circumvent some of the issues of data loss and spectral corruption by 

introduction of the variance-filtered DS and PDS transfer function described by Equation (6.9). 

Figures (6.1g) and (6.1h) show the data sets of the secondary instrument (NOESY BB Varian) 

following variance-filtered DS and PDS instrumental transfer, respectively. The tolerance cut-off 

level was chosen at 10%, but this is a user controlled variable. Using this variance-filter the 

resonance for the “missing” compound (citrate) is retained (compare to Figures (6.1e) and 

(6.1f)), while correction of the instrumental variations for the other spectral regions are realized 
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under the DS and PDS transfer. The resulting spectral residuals following variance-filtered DS 

and PDS transfer are shown in Figure (6.3d) and (6.3f), and reveal a reduction in the residuals 

compared to the standard instrumental transfer method shown in Figures (6.3c) and (6.3e). This 

variance-filtering allows subsequent analysis of combined data sets, including data sets with 

“new” compounds, while matching the instrumental response for as many portions of the NMR 

spectra as possible. 

The improvement provided by variance-filtering can also be seen in the PCA analysis of the DS 

and PDS transferred data sets as shown in Figures (6.4c) and (6.4d), respectively. In this 

example, the 
1T  subset still does not contain any samples with the citrate metabolite. For this 

combined variance-filtered data, the similarity of the scores of the C1-C4 samples are improved 

in comparison to the unfiltered DS (Figure 6.4(a)) and PDS transferred data (Figure (6.4b)). The 

variance-filtered PDS transferred data sets show slightly less instrumental scatter than the DS 

transferred data, in particular for the C1-C4 citrate containing samples. The performance of the 

combined data following variance-filtered DS and PDS transfers with incomplete 
1T  sample sets 

will always be less optimal than combined data sets obtained using unfiltered transfers that 

incorporate representative 
1T  since there are spectral regions not matched between the different 

instrumental configurations when using the variance-filter.  

 A particular weakness of the variance-filtered DS and PDS instrumental transfer methods 

is highlighted in Figure 6.5. In this example, the NMR data set obtained on the secondary 

instrumental configuration 1D HCN(a) Varian is shown in Figure (6.5b). The spectra in this 

NMR data set have a line width that is ~ 3 times larger than on the primary instrument (Figure 

(6.5a)), and represents an extreme example of instrumental-to-instrument variation. The 

modified data sets following DS and PDS instrumental transfer (with an incomplete 
1T  sample 

set) are shown in Figure (6.5c) and (6.5d), respectively. Note the dramatic improvement in line 

width of the transferred data (compared to Figure 6.5b), approaching the line width on the target 

instrument (Figure 6.5a). These results again demonstrate the benefit of instrumental transfer 

methods during combination of spectral data sets. As in the previous section, the use of an 

incomplete 
1T  corrupts the citrate signal (  = 2.59 ppm) in the reconstructed data sets. The 

transferred data sets for this secondary instrumental configuration following variance-filtered DS 

and PDS are shown in Figure (6.5e) and (6.5f). While the citrate resonances are transferred for 
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this secondary instrument, they retain the large line width of the original data set. Unfortunately, 

subsequent multivariate analysis of combined data set will then contain a PC that can classify the 

NMR instrument based on the line width of the citrate signal. This currently remains an issue for 

combining data sets obtained using the variance-filtered transfer matrix. It may be possible to bin 

these spectral regions (smart binning) selected by the variance-filter to eliminate line width 

variations during subsequent multivariate analysis, or to apply selective reference line 

deconvolution to this spectral region. The ability to identify data obtained on different NMR 

instruments during classification due to line width differences reemphasizes the need to match 

line shapes and line widths for different instrumental configurations as closely as possible prior 

to combining data sets. While the instrumental transfer method can correct line width 

differences, it will remain an issue for combined data sets utilizing the variance-filter. It has been 

suggested that correction of the line width based on reference deconvolution would provide 

similar results. For closely matched line widths this is true, but it should be remembered that 

instrumental transfer methods also correct other instrumental variations (intensity variations, 

filter edge, relaxation effects, etc) in addition to the line width variations. For the secondary 

instrumental configuration shown in Figure (6.5b), reference deconvolution to the smaller line 

width of the primary NMR instrument was not a viable option, since the deconvolution 

introduces large, unacceptable amounts of noise.  
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6.5. Conclusions and Outlook 

 This chapter introduces the variance-filtered direct standardization (DS) and piece-wise 

direct standardization (PDS) instrumental transfer methods as applied to high-resolution 
1
H 

NMR spectra. Using these instrumental transfer methods, data sets from different instruments 

can be modified and then combined. It was shown that the selection of the transfer calibration 

samples is crucial in determining the performance of the instrumental transfer process. These 

results also demonstrated that many of the errors associated with “new” resonances in the 

transferred data set can be eliminated by utilizing the variance-filtered transfer function. This 

variance-filter maintains all the spectral signatures originally present in the secondary instrument 

data sets, while correcting for instrumental variations in spectral regions that are adequately 

described (spanned) by the transfer calibration samples. In limited situations, the introduction of 

the variance-filtered instrumental transfer does allow for matching and combining of spectral 

data sets from different NMR instruments, even without a complete transfer calibration sample 

set. For NMR studies involving mixtures with a limited number of compounds, it will be 

possible to correctly apply instrumental transfer methods prior to combining NMR data sets. The 

application of combining data sets following instrumental transfer for very complex mixtures 

(biofluids and metabonomics) appears to be difficult, but has yet to be fully experimentally 

explored and is an area of ongoing effort. The variance-filtered DS and PDS methods presented 

here represent the initial steps in an attempt to resolve these difficulties. 
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Figure 6.1. High-resolution 

1
H NMR spectra of model mixtures containing glucose, glycine, and citrate 

acquired on a) a Bruker Avance 600 instrument, using a single pulse 1D pulse sequence and a 5 mm 
broad band probe (target instrumental configuration, 1D BB Bruker), and b) using a NOESY 1D (100 ms) 
pulse sequence (secondary instrumental configuration, NOESY BB Bruker). The modified NMR spectra of 
the secondary configuration following c) direct standardization (DS) and d) piece-wise direct 
standardization (PDS) instrumental transfer method. In these examples the samples use for transfer 
calibrations contained all three metabolites. The modified NOESY BB Bruker data set obtained using 
transfer calibration samples not containing citrate (spectral subset shown as inset in 2a) using both the e) 
DS and f) PDS instrumental transfer method. Modified data sets obtained using the variance filter for the 
g) DS and h) PDS instrumental transfer method. Note that the citrate signal is retained for the variance-
filtered methods even though this metabolite is missing from the transfer calibration.
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Figure 6.2. PCA of the 

1
H NMR for a model mixtures of glucose, glycine, and citrate on four different 

instrumental configurations using the unbinned data sets (a) prior to instrumental transfer, (b) following 
DS instrument transfer, and (c) following PDS instrumental transfer, Results are shown for the primary 
instrumental configuration 1D BB Bruker (●), and the secondary instrumental configurations 1D INV 
Bruker (▼), 1D HCN(a) Varian (■), and 1D HCN(b) Varian (*). Samples designated as C1-C4 contain the 
metabolite citrate, while sample G8 has a glycine concentration significantly higher than the remaining 
samples. Note that in (b) the C1-C4 and G8 scores closely overlap and are not distinguishable in the 
figure.  
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Figure 6.3. Experimental residuals between the 1H NMR spectra for a set of model 
mixtures obtained using a 1D or a 1D NOESY (100 ms) pulse sequence on the same 
Bruker Avance 600 instrument. The residuals were calculated for a) original data sets 

(
2 1S S ), b) following DS instrumental transfer, c) DS with a limited calibration subset, d) 

variance-filtered DS instrumental transfer, e) PDS instrumental transfer with a limited 

calibration subset, and f) variance-filtered PDS instrumental transfer ( Tr

2 1S S ). See text 

for additional details. 
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Figure 6.4. PCA of the 1H NMR spectra for a set of model mixtures containing glucose, 
glycine and citrate obtained on four different NMR instrumental configurations using an 
incomplete transfer calibration sample set. The PCA results following (a) DS, (b) PDS, 
(c) variance-filtered DS, and (d) variance-filtered PDS instrumental transfer. Results are 
shown for the primary instrumental configuration 1D BB Bruker (●), and the secondary 
instrumental configurations 1D INV Bruker (▼), 1D HCN(a) Varian (■), and 1D HCN(b) 
Varian (*). 
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Figure 6.5. High-resolution 1H NMR spectra of model mixtures containing glucose, 
glycine and citrate acquired on a) the primary target NMR instrument, 1D BB Bruker and 
on b) the secondary instrumental configuration 1D HCN(a) Varian. The modified NMR 
spectra of the secondary configuration following instrumental transfer with a limited 
transfer calibration sample subset using the c) direct standardization (DS), d) piece-wise 
direct standardization (PDS), e) variance-filtered DS, and f) variance-filtered PDS 
method. Note that the citrate signal is maintained in the variance-filtered methods, but 
variations in the line width for these resonances are not corrected during the 
instrumental transfer step. See text for additional details. 
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