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Abstract 
 
The effect of composition on the elastic responses of alumina particle-filled epoxy composites is 

examined using isotropic elastic response models relating the average stresses and strains in a 

discretely reinforced composite material consisting of perfectly bonded and uniformly distributed 

particles in a solid isotropic elastic matrix. Responses for small elastic deformations and large 

hydrostatic and plane-strain compressions are considered. The response model for small elastic 

deformations depends on known elastic properties of the matrix and particles, the volume 

fraction of the particles, and two additional material properties that reflect the composition and 

microstructure of the composite material. These two material properties, called strain 

concentration coefficients, are characterized for eleven alumina-filled epoxy composites. It is 

found that while the strain concentration coefficients depend strongly on the volume fraction of 

alumina particles, no significant dependence on particle morphology and size is observed for the 

compositions examined. Additionally, an analysis of the strain concentration coefficients reveals 

a remarkably simple dependency on the alumina volume fraction. Responses for large 

hydrostatic and plane-strain compressions are obtained by generalizing the equations developed 

for small deformation, and letting the alumina volume fraction in the composite increase with 

compression. The large compression plane-strain response model is shown to predict equilibrium 

Hugoniot states in alumina-filled epoxy compositions remarkably well.  
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1. Introduction 

    The composition of particle reinforced composite materials can be controlled to provide 

materials with specific functional attributes. For example, suspending alumina particles in an 

epoxy matrix produces composite materials exhibiting an increased elastic stiffness relative to 

the matrix material. A fundamental understanding of the effects of composition and 

microstructure on the elastic properties of these engineered materials is required for a 

quantitative analysis of their use in applications. Plate impact experiments1,2 have been used to 

examine the effect of composition, specified as the relative amount and type of alumina particles 

suspended in the epoxy, on the stress generated during shock-wave compression. It is of interest 

to be able to predict the stress produced in a specific composition for a given state of strain. For 

example, the ability to predict the stress intensity of a steady shock-wave as a function of 

composition would be of great utility in engineering applications involving impact. Currently, 

there are only two response models1,3 that use the basic properties of alumina and epoxy to 

predict the mechanical response of alumina-filled epoxy, and both models have only been 

characterized for specific compositions. The purpose of this report is to describe some progress 

in developing mechanical response models for alumina-filled epoxy that can be used across a 

range of compositions. 

     The effect of composition on the mechanical response of alumina-filled epoxy is examined 

for two situations: the response of the material to small deformations where a linear elastic 

response is expected and the response of the material to large hydrostatic and plane-strain 

compressions where nonlinear material response occurs.  Measured response data1,2,4,5 for 

compositions containing up to 48% by volume alumina will be used to develop and test the 

response models. An outline of this study is described next. 

     The effect of composition and alumina particle type on the linear elastic response is 

considered in Section 2. An elastic response model which gives the average stresses and strains 

in the composite in terms of the volume concentration of the particles and the average stresses 

and strains in the matrix and particle materials is developed. This model applies to composite 

materials consisting of perfectly bonded and uniformly distributed particles in a solid isotropic 

elastic matrix, and uses the elastic properties of the particles and matrix plus three additional 

parameters, which reflect effects of composition, to characterize a material.  Eleven specific 

compositions formed from three different types of alumina particle are characterized in Section 
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3.  It is shown that the volume fraction of alumina in the composition has the most significant 

effect on the elastic response. The effect of particle morphology and size on the elastic response 

is found to be small for the three particle types examined. Additionally, for a fixed particle type, 

it is shown that the linear elastic response model for alumina-filled epoxy depends on the bulk 

and shear moduli of the alumina and epoxy, the alumina volume fraction, and two compositional 

parameters that are independent of the alumina volume fraction. 

     The elastic response of alumina-filled epoxy at large compression is nonlinear.1,2,4 A simple 

model for response due to the large compression is developed in Section 4. In particular, a 

nonlinear representation for the epoxy response is introduced and the volume fraction of the 

alumina in the composition is allowed to increase with compression. The structure of the linear 

elastic response model is used to define a structural stress for the composition. Motivated by the 

observation that the stiffness of the alumina is much greater than that of the epoxy, an 

equilibrium relation between the volume fraction of alumina and invariants of the structural 

stress is postulated by extending some theoretical work on distended solids. The two parameters 

needed to calculate the structural stress are determined by matching the bulk and shear modulus 

of the linear elastic and large compression theories in the limit of small compression. It is found 

that while the response model for large compression depends explicitly on the alumina volume 

fraction the other parameters characterizing the model are independent of the alumina volume 

fraction giving a model that can be applied to a range of compositions. The large compression 

mechanical response model is applied to hydrostatic and plane-strain compression. Calculated 

equilibrium Hugoniot states for steady plane-strain shock-waves predicted for a number of 

compositions formed using a fixed particle type at various initial volume fractions are seen to 

match measurements remarkably well. 

     A short summary of the results of this study is given in Section 5. 
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2. A Model for the Elastic Response for a Discretely Reinforced Composite 

     An elastic response model for discretely reinforced solids, developed by Hill,6 is used in this 

study. The model is described below and developed in the context of a uniform isotropic 

distribution of elastic reinforcing particles suspended in a uniform elastic matrix, and is believed 

to be representative of the composite materials investigated in this report. Since the original 

description6 was set forth in a general context, the model and details needed for the present study 

are reviewed below. 

A. Model Development 

    The model expresses the average macroscopic elastic response of a discretely reinforced 

composite material in terms of the volume fraction of the reinforcement particles and the average 

elastic response of the reinforcement and matrix materials. Here it is assumed that the 

reinforcement and matrix materials can be regarded as isotropic elastic materials and that the 

reinforcement consists of isolated particles distributed uniformly throughout the matrix material. 

     The concept of a representative volume of material is fundamental to defining the 

macroscopic fields and properties appropriate to the composite.6 A representative volume 

contains enough of the matrix and reinforcement to be structurally typical of the composite.  

When uniform surface tractions and displacements are applied to the surface of the 

representative volume it is expected that meaningful values for the apparent elastic properties of 

the composite, reflecting the averages of stresses and strains throughout the volume, can be 

determined independent of the values of the applied traction and displacement. Consequently, 

even though the local values of stress and strain may fluctuate rapidly within constituent 

materials of the composite, well defined average values of stress and strain exist for the 

composite and contributions from surface irregularities are negligible. 

     The matrix and reinforcement materials are assumed to be isotropic linear elastic solids with 

the bulk modulus and shear modulus  taken as the fundamental pair of elastic constants 

characterizing the material. The elastic constants for the matrix material will be designated using 

the subscript ‘1’ and those for the reinforcement material using the subscript ‘2’. Elastic 

constants without a subscript will refer to the macroscopic averages for the composite. Cartesian 

tensor notation is used with the subscripted quantities

K G

ij and ij used to represent the 

components of the stress and strain tensors, respectively, in the rectangular coordinate system. 
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The stress and strain of the matrix material will be designated using the superscript ‘(1)’ and for 

the reinforcement material by the superscript ‘(2)’. 

    The average value of a quantity describing the response of the composite material is defined as 

the integral of that quantity over a region corresponding to a representative volume of the 

composite divided by the volume of that region. The tilde symbol over a quantity is used to 

indicate that quantity is an average over the representative volume. It is clear that the average 

values of the stress and strain in a representative volume are 

       1 2 1
1 2 1 2andij ij ij ij ij ijc c c c 2                                            (2.1) 

where is the fraction of the representative volume containing the matrix material, is the 

fraction of the representative volume containing the reinforcement material. It is also assumed 

that and can be regarded as fixed for small elastic deformations. 

1c

1

2c

c 2c

     The assumption of perfect bonding between the reinforcement particles and matrix implies 

the sum of volume fractions of matrix and particles equals unity. Consequently, by 

setting 2c  it follows that 

1 1c   ,                                                             (2.2) 

allowing (2.1) to be written 

           1 2 1 1 2andij ij ij ij ij ij ij ij
1                         
 .                       (2.3)  

     The relations between stress and strain in the matrix and reinforcement materials are 

           1 1 1 2 2
1 1 1 2 2 2

2 2

3 3
2 and 2ij kk ij ij ij kk ij ijK G G K G G 2 .                  

   
      (2.4) 

Because the distribution of reinforcement particles in the representative volume of the composite 

is uniform and isotropic, the stress-strain relations given by (2.4) also hold for the averages of the 

stress and strain in each component of the composite giving 

           1 1 1 2 2
1 1 1 2 2 2

2 2

3 3
2 and 2ij kk ij ij ij kk ij ijK G G K G G 2 .                  

   
           (2.5) 

    Equations (2.3) and (2.5) provide relations between average field quantities in the composite 

and each of its component materials. However, additional information relating the average stress 

and strain describing the composite to corresponding quantities of the components is required 
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before the elastic response of the composite can be specified in terms of the reinforcement 

volume fraction and elastic properties of the matrix and reinforcement materials. Suppose that in 

equilibrium the average strains in the matrix and particles are uniquely related to the average 

strain for the representative volume according to the transformations 

       1 1 2 2and .A Aij ijkl kl ij ijkl kl                                                (2.6) 

a specific constraint between the components 

of and

The tensors  1
ijklA and  2

ijklA reflect characteristics of the composite and will also depend on the 

elastic properties of the component materials, volume concentration of the reinforcement phase, 

and microstructural arrangement of reinforcement particles in the matrix. Substituting (2.6) into 

the second of (2.3) provides 

 1
ijklA  2

ijklA through the relation 

     1 21 .ijkl ijkl ik jlA A                                                     (2.7) 

ymbol ijThe s   is known as the Kronecker delta and has the properties that it vanishes whenever  

i j  and equals unity otherw equirin  that the average stresses and strains of th osite 

remain isotropic requires tha and

ise. R g e comp

t  1
ijklA  2

ijklA be fourth-order isotropic tensors. Since ij ji   , the 

simplest rep esentations7 for andr  1
ijklA  2

ijklA  allowed that satisfy the isotropy requirement are 

   1 2
1 1 1 2 2 2ijkl kl ik jl ijkl ij kl ik jl   

   

The parameters 1, 2 , 1,

2 2

3 3
2 and 2ijA A                      .    (2.8) 

  and 2 are called strain concentration coefficients and reflect 

effects on the composite response due to differences in elastic properties of the constituent 

materials, volume concentration of the reinforcement, and microstructural arrangement of the 

reinforcement particles in the matrix. Substituting (2.8) into (2.6) gives 

   1 2
1 1

3
ij 1 2 2 2

2 2

3
2 and 2 .kk ij ij ij kk ij ij                      

 
                 (2.9) 

The constraint of (2.7) yields 

 
 

   1 2 1 2

1 1
1 and 1

3 2
            .                             (2.10) 
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     Equations (2.10) show that only one of the parameters sets ( 1 2,  ) and ( 1 2,  ) is 

independent. On selecting the parameter pair ( 1 1,  ) as independent, the other pair ( 2, 2  ) is 

given by 

   2 1 1 2 1 11 3 3 and 1 2 2             .                        (2.11) 

It is useful to note the limiting behavior of the strain concentration factors as the volume fraction 

of the reinforcement vanishes and the composite becomes entirely composed of the matrix 

material. The average strain in the matrix and composite material must then be equal since there 

is no reinforcement. Consequently, (2.10) gives 13 1  and 12 1  as 0.   At the other 

limit where 1  , the average strain in the reinforcement phase and composite must be identical 

since the matrix material is absent. Consequently, (2.10) implies that and 23 1 

22 1  as 1.    

    Equations (2.3), (2.5), (2.9), and (2.11) provide an equilibrium model relating the average 

stress to the average strain in a discretely reinforced composite material. 

B. Parameter Characterization 

     In order to use the model described above, the volume fraction, elastic properties of the 

particle and matrix materials, and two strain concentration coefficients need to be known. It is 

supposed that the reinforcement and matrix materials are well characterized. Consequently, the 

densities and elastic properties of the particle and matrix materials are known. 

     Let 1 and 2 denote the densities of the matrix and reinforcement materials, respectively. If it 

is assumed that there is no significant residual stress in the composite, the average 

densities 1 and 2 of the matrix and reinforcement materials, respectively, can be taken as the 

actual densities of the corresponding constituent materials used to form the composite. The 

volume fraction of the particles can be determined from measurement of the average density, , 

of the composite material through the relation 

   1 2 1          .                                                (2.12) 

     Specification of the two strain concentration coefficients, 1 and 1 , then completes the 

parameter characterization for the composite material. As mentioned above, these two 
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coefficients are expected to reflect the effects on the composite response due to differences in 

elastic properties of the component materials, volume concentration of the reinforcement, and 

microstructural arrangement of the reinforcement particles in the matrix. These two coefficients 

may be determined from the effective elastic properties of the composite. It is possible that 

composite materials comprised of isotropic elastic constituents may not necessarily be also 

isotropic. For example, a composite material might be constructed with a regular cubic array of 

reinforcement particles so that the macroscopic response of a representative volume would be 

expected to have the symmetry of a cubic crystal. However, it is assumed here that the matrix 

contains a random uniform isotropic distribution of reinforcement particles so that the expected 

response of a representative volume of the composite is also isotropic. The relation between the 

apparent stress and strain of a representative volume will then be 

2

3
ij kk ij ij2 .K G G                                                   (2.13) 

he composite may be obtained by 

substituting (2.5), with (2.9), into the first of (2.1) yielding 

 
 

     Expressions for the effective elastic properties of t

     1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2
3

ij kk ij ij

4
3 4c K c K c G c G c G c G                 . (2.14) 

ve 

elastic properties of the composite and the parameters appearing in the elasti

 
 

Comparison of (2.13) and (2.14) yields the following correspondence between the effecti

c response model 

   1 1 1 2 2 2c G c G 1 1 1 2 2 23 , 2K c K c K G    .                        (2.15) 

Using the constraints of (2.2) and (2.10) in (2.15) gives 

       2 1 1 2 2 1 1 23 1 and 2 1K K K K G G G G           .           (2.16) 

The two independent strain concentration coefficients needed to complete characterization of the 

response model can therefore be written 

 
 
   

 
 

2 2

1 1

1 2 1 2

1 1
and

3 1 2 1

K K G G

K K G G
 

 
 

 
  

                     (2.17) 

nd determined from measured values for the elastic moduli of a particular composite. a
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C. Strain Concentration Coefficient Estimates     

    The elastic response model for composites in the form (2.13) is widely used since it usually 

convenient to measure the effective elastic properties used in (2.13) directly. However, many 

situations arise in which it is desired to fabricate a composite material with specific effective 

elastic properties and a reasonably accurate methodology for estimating the effective elastic 

properties is then desired. Most practical methods for providing these es ates for isotropic 

elastic materials are based on using (2.16) with various approximations for 1 and 1

tim

 .8  Several 

of the common approximations for the strain concentration factors that find use in providing 

estimates for the effective elastic properties of isotropic elastic composites will now be 

he average mac

dentical,

described. 

    One common method often used to predict the effective elastic properties of a composite is 

called the rule of mixtures. The method follows from the assumption that the average strains in 

the reinforcement and matrix materials are the same as t roscopic strain applied to 

the composite. When the average strains are i    1 2 ,ij ij ij       (2.9) is satisfied for all 

volume fractions of reinforcement material by 

1 1an
3 2

 1 1
d   .                                                 (2.18) 

The superscript ‘ ’ indicates that the values of 1 and 1 in (2.18) resu  the assum  

of identical average strains. It is clear that this assumption also implies

lt from ption

2 1 3   and 2 1 2.   

Using (2.18) in (2.16) yields the rule of mixtures for predicting the effective elastic properties of 

the composite 

   1 2 1 21 and 1K K K G G G          .                        (2.19) 

   An alternate method that is often used to predict the effective elastic properties of a composite 

is called the inverse rule of mixtures and follows from the assumption that the average stresses in 

the reinforcement and matrix m same as the average macroscopic stress applied to 

the composite. Ass ing 

aterials are the 

um that    1 2 ,ij ij ij       .9) can be combined to show, for al(2.5) and (2 l 

possible values of , that 1 1 2 2K K  and 1 1 2 2 .G G   Using (2.11) with this result gives 

       1 1

1 2 1 2

1 1
and

3 1 2 1K K G G
  

   
 

        
.             (2.20) 
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The superscript ‘ ’ indicates that the values of 1 and 1 in (2.20) result from the assumption 

of identical average stresses. Substituting (2.20) into (2.16) yields the inverse rule of mixtures for 

predicting the effective elastic properties of composites 

   
1 2 1

1 11 1
and

K K K G G 

 

2G

  
    .                             (2.21) 

     A useful approximation for the effective moduli of composites containing a dilute suspension 

of particles can be obtained as follows. If the volume fraction of the particles is small, then a 

linear transformation of the form (2.6) provides an approximate relation between the average 

strain field characterizing the configuration of a particles and the average strain field of the 

matrix phase according to 

 (2) (1) (1)1

3ij kk ij ija b b        .                                              (2.22) 

In the special case of a spherical isotropic elastic particle embedded in another isotropic elastic 

material with an applied uniform strain far from the particle of  1
ije , it has been shown that the 

strain in the particle is uniform and that9 

     
 

   
1 1 11 1

2 1 1 1 1 2 1 1

5 3 43 4
and

3 4 9 8 6 2

G K GK G
a b

K G G K G G K


 

   G
.                    (2.23) 

     Using (2.7) and the second of (2.3) gives 

   (1) (1)1
1 1

3ij kk ij ija b b            
 

   .                               (2.24) 

The first of (2.9) and (2.24) are compatible provided that 

   1 1

1
3 and 2

1 1 1 1a b
  1

 
 

        
.                          (2.25) 

Substituting (2.25) into (2.16) gives the following estimates for the effective moduli 

 
 

 
 

1 2 11 1
and

1 1 1 1
D D 2K a K G b G

K G
a b

   
 

   
 

        
.                   (2.26) 

The superscript “D” indicates these estimates were obtained by assuming a dilute suspension of 

particles in the matrix. In the case of spherical particles, (2.23) and (2.26) provide the following 

estimates, accurate to first order in the volume fraction of the particles, for the effective bulk 
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modulus, compressibility ( 1 DK ), and shear modulus for the composite material containing a 

diffuse distribution of particles: 

   
   

 
 

     
   

1 1

1 2 1 1 2 1

2 1

1 1

1 2 11 2

1 1 2 1

1 2 1 1

2 1 1 1 1 1

3 4

3 4

3 41 1 1 1

3 4

5 3 4
1 .

6 2 9 8

D

D

D

K G
K K a K K K K K

K G

G K

K K K KG K

K G G G
G G b G G G

G K G G K G

 



 


     



  
      

              

       (2.27) 

The expressions for the effective compressibility and shear modulus given in (2.27) match the 

results for a dilute suspension of spherical particles obtained earlier using a different derivation.10 

     The rule of mixtures and inverse rule of mixtures find application in special situations such as 

layered composite structures. However, as pointed out by Hill,6 neither assumption is valid for 

the types of composites considered here. The predicted values for the elastic properties using the 

rule of mixtures will provide an upper bound on the actual values while values predicted using 

the inverse rule of mixtures will provide a lower bound. These bounds on the elastic properties of 

the composite, and corresponding values for 1 and 1 ,  might be of some use when the elastic 

properties of the particle and matrix materials are similar. But, when the elastic moduli of the 

particle and matrix materials differ greatly, as is the case for the materials investigated here, the 

upper and lower bounds on the elastic moduli are significantly different. 

     The elastic properties for a number of composite compositions containing one of three types 

of alumina powder reinforcement suspended in a Z-hardened Epon 828 matrix material have 

been measured.2 The model parameters described above will be determined for each of these 

compositions in the next section. It is seen that the model formulation above proves useful in 

identifying systematic dependencies of the strain concentration coefficients on alumina volume 

concentration and particle type for this family of composite materials. 
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3. Characterization of Several Alumina-Filled Epoxy Compositions 

     Table 1 lists the alumina-filled epoxy compositions examined in the present study. These 

materials were fabricated by suspending various amounts of one of three types of alumina 

particle in a common epoxy formulation consisting of Epon 828 resin11 and Epi-Cure Z curing 

agent12 mixed 5:1 by weight. The first column identifies the type of alumina particle used in the 

composition. Five compositions use T64 alumina13 which is made from irregular shaped particles 

ranging in size from approximately 2 to 30 m. There are four compositions using AA18 

alumina14 which consists of faceted but roughly spherical particles that have a nominal diameter 

distribution of 185 m. The final two compositions listed use AA5 alumina14 which is similar 

to AA18 in shape, but has a nominal diameter distribution of 52 m. 

Table 1. Alumina-filled epoxy compositions. 

  Alumina                                                                                                      G  Lc Sc K

     Type                  (kg/m3)                (m/s)                  (m/s)                (GPa)                (GPa) 
 

T64 a 1750 2738 1336 8.95 3.12 

   T64 2121 2987 1558 12.1 5.15 

   T64 2233 3033 1592 13.0 5.66 

   T64 2377 3197 1720 14.9 7.03 

   T64 2496 3314 1823 16.4 8.30 

 AA18 b 1760 2677 1308 8.60 3.01 

  AA18 2242 3009 1593 12.7 5.69 

 AA18 2389 3132 1701 14.2 6.91 

 AA18 2525 3295 1825 16.2 8.41 

AA5 c 1765 2635 1276 8.42 2.87 

  AA5 2391 3034 1585 14.0 6.01 
 

a T64 tabular alumina has irregularly shaped particles with dimensions ranging from 
approximately 2 to 30 m. 
b AA18  alumina has faceted roughly spherically shaped particles 185 m in diameter. 
c AA5  alumina has faceted roughly spherically shaped particles 52 m in diameter. 
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~ 25 m

~ 50 m

              T64 Alumina Particles                                     AA18 Alumina Particles 

~ 75 m 

~ 75 m 

            T64 Alumina in Epoxy                                     AA18 Alumina in Epoxy 
 

Figure 1.  Microscope images of T64 and AA18 alumina particles above the 
corresponding images of polished surfaces of compositions, containing roughly 
43% alumina by volume, fabricated from these two particle types. 

 

          Figure 1 shows microscope images of the T64 and AA18 alumina particles above images 

of polished surfaces of composites fabricated containing roughly 43% by volume of the 

corresponding alumina particle type.  

     Each composition listed in Table 1 was fabricated using the same mixing and curing steps.  

Constituents were mixed after being heated to 71C, then vacuum out-gassed before and after 

being poured into heated cylindrical molds. Curing of all compositions used a schedule of 6 h at 

54C followed by 16 h at 93C achieved using a 6 h ramp and final cooling over 5 h to room 

temperature. Cylindrical billets nominally 64 mm in diameter by 130 mm long were fabricated 

for each composition. A number of sample disks having diameter 50.8 mm and thickness ranging 

from 2.0-20.0 mm thick were cut from the billets for characterization. The second column in 

Table 1 gives the measured density obtained by measuring and weighing at least five samples of 

each composition. The third and fourth columns list average values for the longitudinal and shear 
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wave speeds for each composition. These wave speeds were determined from pulse-echo, time-

of-flight measurements using 5 MHz ultrasonic longitudinal and shear transducers coupled to 

sample surfaces perpendicular to an axis defined by gravity for the cast materials. The final two 

columns list the effective bulk and shear modulus calculated according to 

2 24 3 andL S
2
SK c c G c                                              (3.1) 

for each composition using the values in columns 2, 3, and 4. 

 

A. Average Elastic Properties of the Epoxy Matrix and Alumina Reinforcement 

     Sample disks were also cut from billets of epoxy fabricated using the Epon 828 resin and Epi-

Cure Z curing agent mixed 5:1 by weight. These billets of unfilled epoxy were nominally 64 mm 

in diameter and approximately 50 mm in length. The short length of these billets was needed to 

reduce excess heating of the billet due to the exothermic cure of this epoxy system. An average 

density of 1,203 kg/m3 was determined for the unfilled epoxy by calculation using the measured 

weight and dimensions of at least five samples. Longitudinal and shear wave speeds were 

measured using the ultrasonic method described above and yielded an average longitudinal wave 

speed of 2,645 m/s and average shear wave speed of 1,210 m/s based on measurements at five 

locations on three samples. These measurements result in calculated bulk and shear moduli, 

using (3.1), of 6.07 GPa and 1.76 GPa, respectively. 

     The characteristics of the different alumina powder used to fabricate the compositions 

examined in this study could not be measured directly. The T64 alumina powder is fabricated by 

crushing and sieving alumina ceramic sintered at high temperature while the AA18 and AA5 

powder is formed by high temperature vapor deposition with the nominal average diameter of the 

particle is controlled by the duration of deposition. Consequently, it was suspected that the 

average density of the T64 alumina powder might differ from the average densities of the AA18 

and AA5 powders. Because the masses of the constituents for each composition were measured, 

estimates of the density of each alumina type and volume fraction can be established. 

Let E and A be the average densities of the epoxy matrix and the alumina powder respectively. 

The mass fractions m  of alumina for each composition can be calculated using the measured 

weights of the constituents used in fabrication. If it is assumed that vacuum out-gassing 

eliminates all void space, the following relation between densities of the epoxy and alumina 

holds 
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1 1 1 1

E E

m
A   

  
    

       





,                                               (3.2) 

and can be used to calculate the average density of alumina powder in each composition. 

Equation (2.12) can then be used to calculate the volume fraction of alumina powder in each 

composition. 

     Equation (3.2) was used to provide estimates of the average density for the alumina powders 

used in this study. The first three columns of Table 2 list the type of alumina powder and the 

masses of the alumina powder and epoxy (Epon 828 resin plus Z-hardener) recorded during 

fabrication of the billets for compositions with an alumina volume fraction greater than 30%. 

The fourth column gives the mass fraction of alumina in the composition having the measured 

density reported in column five. 

 
Table 2. Mass fractions of alumina in compositions examined. 

                Alumina                                    Epoxy                                              m   
     Type                      MA (g)                    ME (g)                                               (kg/m3) 
 

T64 1600.5 960.5 0.6250 2120 

T64 1680.5 840.2 0.6667 2233 

T64 1800.6 719.9 0.7144 2377 

T64 1800.2 600.1 0.7500 2496 

AA18 1680.1 840.0 0.6667 2242 

AA18 1800.1 720.3 0.7142 2389 

AA18 1800.3 600.2 0.7500 2525 

AA5 1799.9 720.0 0.7143 2391 
 

 

     Using equation (3.2) to form a least squares fit to the values listed in Table 2 that is 

constrained to pass through the limiting value of density for the pure epoxy, gives the values 

3,899 and 3,960 kg/m3 for the average densities of the T64 and AA18 alumina powders, 

respectively. The calculated density of each T64 and AA18 sample varies less than1% from the 

corresponding average values determined from the least squares fit. An average powder density 
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of 3,957 kg/m3 was found for the two AA5 powder data points and, as expected, is close to the 

average density found for the AA18 powder.    

     The elastic properties of the alumina particles are estimated since was impractical to perform 

measurements due to the small size. The elastic properties for –alumina were taken as 

representative since it has a density1 of 3,969 kg/m3 that is reasonable close to the values 

determined here for the three types of alumina used in this study. Table 3 lists the average 

density and elastic properties used for the matrix and alumina reinforcement materials. 

Table 3. Epoxy and alumina properties. 

                                                                                                                         Lc Sc K G

  Material                 (kg/m3)                (m/s)                  (m/s)                (GPa)                (GPa) 
 

 Epoxy a 1203 2645 1210 6.07 1.76 

Alumina b 3969 - - 263 160 
 

a Average density and sound speeds measured on samples prepared for this study. 
b Density and elastic moduli from Munson, Boade, and Schuler.1 

 

B. Strain Concentration Coefficients for T64 Compositions 

     Table 4 lists density, elastic moduli, reinforcement volume fraction, and strain concentration 

coefficients for the T64 compositions. The reinforcement volume fraction was calculated using  

 

Table 4.  Strain concentration coefficients for T64 compositions. 

                                                                       G                       K 1                        1  

   (kg/m3)                (%)                  (GPa)                (GPa) 
 

  1750 20.3 8.95 3.12 0.414 0.622 

  2121 33.9 12.1 5.15 0.494 0.742 

  2233 38.1 13.0 5.66 0.525 0.789 

  2377 43.4 14.9 7.03 0.570 0.856 

  2496 47.8 16.4 8.30 0.615 0.921 
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(2.12) with the values of average density for the epoxy and alumina from Table 3 and where 

(2.17) was used to calculate the strain concentration coefficients. 

     Figure 2 shows the effect of alumina volume fraction on the strain concentration coefficients 

for the T64 compositions. Quadratic fits to the values of the strain concentration coefficients, 

constrained to pass through the appropriate limiting values at 0  , giving 

64 2
1

64 2
1

1
1 0.674 2.223

3
1

1 0.712 2.124
2

T

T

  

  

    

    

                                      (3.3) 

are shown in Figure 2, and provide reasonable approximations to the coefficients for the T64 

composition over the range of reinforcement volume fraction examined. 
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Figure 2.  Values of  1 and  1 versus alumina volume fraction calculated from 
measured acoustic speeds and density for T64 compositions.  The curves shown 
are second order polynomial fits constrained to pass through appropriate values 
for each coefficient at  = 0. 
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     An approximation to the two strain concentration coefficients for the T64 compositions 

involving a single parameter can be obtained by fitting the inverse of the strain concentration 

coefficients to the functional form 

  
1 1

1 1
3 1 and 2 1A B 

 
    ,                                        (3.4) 

suggested by (2.25), where the terms  1a  and  1b  in (2.25) are replaced with A and B, 

respectively. 

     Figure 3 is a plot showing the inverses of the strain concentration coefficients determined for 

the T64 compositions examined. A linear least squares fit, constrained to pass through the 

appropriate limiting values at 0 

A

, to the inverse values of the strain concentration coefficients 

as a function of the reinforcement volume fraction is also shown in Figure 3, and is seen to 

provide a good fit to the data with 64 0.9545T    and 64 0.9564TB   . 
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Figure 3.  Values of 1/ 1 and 1/ 1 versus alumina volume fraction calculated for 
T64 compositions.  The curves shown are linear fits constrained to pass through 
appropriate values for each coefficient at  = 0. 
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C. Strain Concentration Coefficients for AA18 Compositions 

     Table 5 provides a listing of the reinforcement volume fraction and strain concentration 

coefficients determined for the AA18 compositions examined. A plot of the inverses of these 

strain concentration coefficients as a function of alumina volume fraction is shown in Figure 4. A 

linear least squares fit, constrained to pass through the appropriate limiting values at 0  , as a 

function of the reinforcement volume fraction was again performed and is shown in Figure 4. 

The least square fits to these points gives 18 0.9579AAA    and 18 0.9574AAB   . 

Table 5.  Strain concentration coefficients for AA18 compositions. 

                                                                       G                       K 1                        1  

   (kg/m3)                (%)                  (GPa)                (GPa) 
 

  1760 20.2 8.60 3.01 0.413 0.620 

  2242 37.6 12.7 5.69 0.524 0.786 

  2389 42.9 14.2 5.91 0.566 0.849 

  2525 47.8 16.2 8.41 0.616 0.921 
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Figure 4.  Values of 1/ 1 and 1/ 1 versus alumina volume fraction calculated for 
AA18 compositions.  The curves shown are linear fits constrained to pass 
through appropriate values for each coefficient at  = 0. 
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D. Strain Concentration Factors for AA5 Compositions 

     Table 6 provides a listing of the reinforcement volume fraction and strain concentration 

coefficients determined for the AA5 compositions examined and a plot of the inverses of these 

strain concentration coefficients as a function of alumina volume fraction is shown in Figure 5. A 

linear least squares fit, constrained to pass through the appropriate limiting values at 0  , to 

the inverse values of the strain concentration coefficients as a function of the reinforcement 

volume fraction was again performed and is shown in Figure 5. The least square fits to these 

points for AA5 compositions gives 5 0.9527AAA    and 5 0.9589AAB   . 

Table 6.  Strain concentration coefficients for AA5 compositions. 

                                                                        G                      K 1                        1  

   (kg/m3)                (%)                  (GPa)                (GPa) 
 

  1765 20.4 8.42 2.87 0.413 0.621 

  2391 43.0 14.0 6.01 0.567 0.854 
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Figure 5.  Values of 1/ 1 and 1/ 1 versus alumina volume fraction calculated for 
AA5 compositions.  The curves shown are linear fits constrained to pass through 
appropriate values for each coefficient at  = 0. 
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E. Effect of Particle Type on Strain Concentration Coefficients              

     Table 7 lists the values of the parameters A and B determined using the least square fitting 

procedure described above for each type of alumina particle. Examination of the values listed in 

Table 7 indicate that A and B are nearly equal for the alumina particle types examined. 

Table 7. Composition parameters for the alumina-filled epoxies examined. 

                       Composition                                                Alumina Type                                    
                                                                                                              ___________________________________________________________________________  

         Parameters                      T64                             AA18                    AA5 
 

                A                           -0.9545                         -0.9579                -0.9527 
                B                           -0.9564                         -0.9574                -0.9589 

 
 
     Because of the near equality of values for A and B listed in Table 7 it is reasonable to 

conclude that the reinforcement volume fraction is the most significant factor controlling the 

effective elastic properties of the composite materials examined. Particle morphology and size do 

not appear have any significant effect on the effective elastic properties of the composite 

materials examined. 

F. An Examination of the Analytic Approximations              

     It is informative to investigate the effectiveness of the three approximation methods for the 

strain concentration coefficients of the composite described in the previous section. The rule of 

mixtures gives 1 1 3  and 1 1 2  . The results above indicate that these values for the strain 

concentration coefficients are only approached as the volume fraction of alumina particle 

reinforcement vanishes. Consequently, the rule of mixtures does not appear to be viable in 

estimating the effective elastic properties for epoxy reinforced with even small amounts of 

alumina particles. The inverse rule of mixtures appears to provide a better method for estimating 

the effective elastic properties. A comparison of the approximations for the strain concentration 

coefficients, given by (2.20), provided using the inverse rule of mixtures and (3.4) gives 

 1 1

2 2

1 0.9769 and 1 0.9890
K G

A B
K G

    
          
   

.                       (3.5) 

Here the superscript ‘ ’ on A and B indicates predictions of these parameters using the inverse 

rule of mixtures. These predictions for A and B are only slightly larger than the corresponding 
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values listed in Table 7. The approximation for the strain concentration coefficients obtained 

assuming a dilute suspension of particles in the epoxy matrix results in 

 
 

 
     

1 2

1 2

1 2

1 1 1 1 1 2

1
1 0.9683

1 4 3

1
1 0.9762.

1 9 8 6 2

D

D

K K
A a

G K

G G
B b

K G K G G G


    




    

    

                 (3.6) 

Here the superscript ‘D’ on A and B indicates predictions of these parameters using the dilute 

suspension assumption rule. These predictions for A and B are somewhat lower than those 

obtained using the inverse rule of mixtures and again only slightly larger than the corresponding 

values listed in Table 7. It is interesting to note that the inverse rule of mixtures and dilute 

suspension approximation predict larger differences in the parameters A and B than found in the 

analysis of actual measurements. 

     Figure 6 illustrates the dependence of the strain concentration coefficient 1  on the 

reinforcement volume fraction of alumina calculated using (3.3) with values of B from the 

various estimates and the data fit, from Table 7, for the T64 compositions. Curves illustrating the  
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Figure 6.  Dependence of 1 on alumina reinforcement volume fraction using 

values of B determined by the estimation methods discussed and the data fit for 
compositions using T64 alumina. 
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dependence of  1  on reinforcement volume fraction for the values of B in Table 7 corresponding 

the AA18 and AA5 compositions are not shown since they lie within a line width of the curve, 

slightly below and above respectively, shown using the B value for T64 compositions. 

Corresponding plots of the dependence of 1  on reinforcement volume fraction are similar to 

those shown in Figure 5 but even more tightly grouped. 

     Equations (2.16) and (3.4) can be used to calculate the effective bulk and shear moduli for the 

composite material at a particular reinforcement volume fraction using the model parameters 

listed in Tables 3 and 7. Figures 7 and 8 show the calculated dependence of the effective bulk 

and shear moduli on reinforcement volume fraction using the model parameters obtained for the 

T64, AA18, and AA5 compositions as well using estimates for A and B provided by the rule of 

mixtures, inverse rule of mixtures, and dilute suspension model. Values of effective bulk and 

shear modulus obtained from density and sound speed measurements on the various composite 

samples listed in Table 1 are shown for comparison. 
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Figure 7.  Graphical illustrations of the predicted dependence of the effective 
bulk modulus on reinforcement volume fraction for alumina filled epoxy. 
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Figure 8.  Graphical illustrations of the predicted dependence of the effective 
shear modulus on reinforcement volume fraction for alumina filled epoxy. 

 

     Examination of the Figures 7 and 8 indicate that none of the predictive methods for estimating 

the parameters A and B provide reliable estimates for the effective elastic moduli over the range 

of reinforcement volume fraction examined. Even though the values of A and B for the predictive 

methods were only slightly larger than values deduced from experimental measurements, the 

large discrepancy in elastic moduli for the epoxy and alumina greatly magnifies the small 

differences in values of  and 1 1  when using (2.16). 

     The large values of elastic moduli for the alumina also magnify the uncertainty in calculating 

values for  and 1 1  when using (2.17). Since the effective elastic moduli are much smaller than 

the elastic moduli for the alumina reinforcement, the errors in the effective elastic moduli 

reflecting uncertainties in the measured values of density and sound speeds for the composite 

samples are significantly reduced. In particular, since the sample-to-sample variations in density, 

longitudinal sound speed, and shear sound speed were 5 kg/m3, 19 m/s, and 9 m/s, 

respectively, the uncertainty in the calculated values for the effective elastic moduli are on the 
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order of 1 GPa. Consequently, while evident discrepancy between the predicted and measured 

values for the effective elastic moduli of the compositions can be seen in Figures 7 and 8, the 

predicted values for the effective moduli obtained by fitting the strain concentration coefficients 

are much closer to the measurements than the predictions obtained using analytic approximations 

for the range of alumina volume fraction investigated.  
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4. The Response of Alumina-Filled Epoxy to Large Compression  

     It is of interest to examine connections between the linear elastic response model developed 

above and response models applicable to situations involving large compression, such as are 

produced by the passage of a shock-wave through the composite in plate impact experiments.1,2 

Hydrostatic and uniaxial plane-strain responses of alumina-filled epoxy to large compression are 

investigated in this section. The response model described below has a similar structure to the 

linear elastic response model characterized above, and results from the linear elastic response 

model are used to characterize the large compression response models. 

A. Preliminaries 

     The volume fraction of alumina in the composite was regarded as fixed in the linear elastic 

response model. Because of the very large stiffness of the alumina particles relative to the epoxy 

matrix, it is expected that large compression of the composite will result in a significant increase 

in the volume fraction of alumina from its initial value in the uncompressed stress-free state. 

Consequently, a response model valid for large compression will need to allow for changes in the 

volume fraction of the alumina particles as the composite is compressed. 

     Consider a representative volume of the composite of fixed mass M under a uniform 

compression and let 1M and 2M be the masses of the epoxy and alumina, respectively, in the 

mixture. The mass fractions of epoxy and alumina in the composite are then given by 

1 1m M M and 2m M 2 M , respectively. In the absence of voids and chemical reactions these 

two mass fractions remain constant for any deformation and sum to unity.  Recalling the 

definition of the volume fractions of epoxy and alumina gives 

   2
1 2

1 1 andm 2m
  
 

   


 


.                                       (4.1) 

Since remains constant, we can write 2m

 
 

01

10 0 20 0

1
and

1


2 0    

     





  

  





,                                      (4.2) 

where the added subscript ‘0’ indicates the value of a quantity in the stress-free reference state. 

Equation (4.2) provides relations between the average densities of the epoxy and alumina given 
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the average density of the composite and the volume fraction of alumina.  For small 

deformations we have 

   1 201 02 0

1 2

1 , 1 , and 1kk kk kke e e
  
  

     
  

 
  

 .                              (4.3) 

Consequently, (4.2) yields 

     
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1
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1
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         


 
 

 ,                    (4.4) 

which gives 

     1 2
0 01 kk kk kke e  e     .                                                  (4.5) 

Consequently, (4.2) is compatible with the linear elastic theory for small deformations. 

     It is convenient to use the alumina distention  , which is the inverse of the alumina volume 

fraction, in the following discussion. We have  

 
 

2 1

1

1
1

 


  


 


 

 


0

.

.                                                   (4.6) 

The alumina distention decreases as the volume fraction increases. Clearly, the alumina 

distension is an alternate representation of the alumina volume fraction for the composite. 

B. Hydrostatic Compression 

     In the special case of hydrostatic compression the diagonal terms of the stress and strain 

tensors are all equal and the off-diagonal terms vanish. The average stresses describing the 

composite then take the form 

             

             

11 22 33 12 23 13

1 1 1 1 1 1 1
11 22 33 12 23 13

2 2 2 2 2 2 2
11 22 33 12 23 13

, 0

,
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     

     

     

      

      

      

     

     

     

                              (4.7) 

Here ,P  1P , and are, respectively, the average pressures in the composite, epoxy, and 

alumina. It follows from (2.1), (4.6), and (4.7) that these pressures are related to each other by 

(2)P

     1 2P P P P     
    1 .                                                  (4.8) 

     It is convenient to use specific volumes ( 1  ) in the following derivations.  Equation 

(4.2) becomes 
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
  .                          (4.9) 

Since the pressures in the epoxy and alumina will depend on the change in the average densities 

from the pressure-free reference configuration, the following relations are used for the pressures 

in the epoxy and the alumina: 

       
  

1 1 101 1
1 2

1 10

1
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K
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 


 

   
   

 
  

 
                                    (4.10) 

       2 2
2 2 2 201P P K      

                                               (4.11) 

The pressure in the epoxy is allowed a nonlinear dependence on compression while the pressure 

in the alumina remains linear in compression due to its large stiffness in comparison to epoxy. 

     Equations (4.2), (4.8), (4.9), and (4.10) need to be augmented by one additional relation to 

form a response model for the hydrostatic compression of the composite.  It does not seem 

reasonable to expect the linear transformations between the volumetric strains in the composite 

and component materials to hold for large compression. A related approach is used here by 

defining an intermediate variable  1SP P P    , called the structural pressure, and assuming that 

the structural pressure is a function of the alumina distention, i.e.,    

   1whereS S SP P P P P      .                                      (4.12) 

This equation is presumed to reflect equilibrium between the pressure in the composite and the 

deformation as specified by the alumina distention. The strain concentration coefficients played a 

similar role in the linear elastic theory where it was assumed that stress equilibrium controlled 

the linear transformation between average strains in the composite and its components. 

     The specific instance in which (4.12) can be written as 

   01 SP k      ,                                               (4.13) 

where is a material constant having units of pressure, is examined. Use of (4.13) is motivated as 

follows. Presume that the aggregate of alumina particles in the composite supports a linked 

network that resists deformation with forces being transmitted between the particles through the 

epoxy. In a porous solid, the term occurring in (4.12) is just the mean stress in the matrix and 

(4.13) is a special form relating the average mean stress and distention of the solid matrix 

material obtained from the linear elastic response of a hollow sphere15 loaded by a hydrostatic 

k

SP
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pressure on its outer surface while its inner surface remains free of stress. It is clear that (4.13) 

would not be altered if a uniform pressure was added to the existing pressures at the inner and 

outer surfaces and the solid material regarded as incompressible. Since the alumina is much 

stiffer than the epoxy, it seems feasible to regard the suspension of alumina as an effective solid 

matrix with the epoxy forming an effective pore space. Equation (4.13) then gives a relation 

between the alumina distention and structural pressure , which plays the role of the effective 

mean stress for the network of forces between the particles. The parameter appearing in (4.13) 

plays a role similar to that of in reflecting the effect of microstructure on the equilibrium 

structural pressure as the distention changes from its initial value. 

SP

k

1

     It is useful to examine the average isothermal bulk modulus, , of the effective solid, defined 

by the expression 

d P

d
 


 


 


,                                                        (4.14) 

to help in characterizing the large compression response model. Using (4.14) with (4.12) and 

(4.9) gives 

 
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d d
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Combining (4.8) and (4.12) with the constraint of (4.9) yields 
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Substituting (4.16) into (4.15) then gives 
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.                        (4.17) 

     The reference state of the composite is characterized with 0  , , , , 

and 

0SP K  1 1K 

2 2K  , so that (4.17) yields 
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Solving for the initial rate of change in  with respect to the alumina distention gives SP

       
        

0

0 2 1 0 2 2 1 2

0 0 0 0 2 1 2

1 1

1 1
S

K K K K K K Kd P

d K K K K 

 
    

                       


.              (4.18) 

Equations (3.4) and (2.17) combine to yield 
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which can be substituted into (4.18) to provide 
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Consequently, the large compression model recovers the response predicted by the linear elastic 

theory when 

  21 A K K
k

A

 
 1 .                                                   (4.21) 

Equation (4.21) connects the large compression response model to the linear elastic response 

model by relating the parameters A  and k . 

     The calculation of the hydrostat predicted using the large compression response model is now 

considered. Let the volumetric compression V  be fixed. Assuming the volumetric compression 

is reckoned as positive, the corresponding specific volume of the composite is 

 0 1 V      .                                                        (4.21) 

If it is assumed that the alumina distention is known, then (4.9), (4.10), and (4.11) give the 

appropriate values of  1P and  2P for the composite. In order to determine  , the nonlinear 

algebraic equation obtained by combining (4.8) and (4.13), 

           2 1
0 1k P P        

  0
 ,                                 (4.22) 

is solved using (4.21) with (4.9) to constrain the compressions so that (4.10) and (4.11) give the 

average pressures in the epoxy and alumina corresponding a particular value of  . 
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     Figure 9 illustrates predictions for the dependence of the hydrostatic pressure on volume 

strain for a composite with an initial alumina distention 0 2.304  , which corresponds to an 

initial volume fraction 0 0.43  4. The curve showing the lowest prediction for the hydrostatic 

pressure results from using the linear elastic response model. The three curves giving higher 

pressures result from using the large compression model developed with three different values of 

S for the nonlinearity of the epoxy. The curve in Figure 9 labeled 0S  corresponds to an epoxy 

response that is linear in volumetric compression of the epoxy. The curves in Figure 9 labeled 

with  show the effect of the nonlinear response of the epoxy on the hydrostatic 

pressure. Since only small differences in the alumina distention were found for the three 

predictions using the large compression model, it is concluded that the nonlinearity in the 

hydrostatic pressure is primarily due to the nonlinearity of the epoxy. 

1 and 2S 
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Figure 9.  Predicted hydrostatic response for alumina-filled epoxy with an initial 
alumina volume fraction of 43.4% . Predictions are shown for the linear and 
large compression models. Increasing values of S correspond to an increasing 
nonlinear dependence of pressure on compression for the epoxy. 
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C. Uniaxial Plane- Strain Compression 

     The special case of uniaxial plane-strain compression occurs in plate impact experiments used 

to characterize the response of the composite under shock-wave compression.1,2,4 In this case, the 

average motion of the composite can be regarded as one-dimensional and the only non-vanishing 

component of the average strain tensor in the composite is the normal component on the surface 

normal to the direction of shock-wave propagation. As a consequence, the components of 

average shear stresses in the composite will vanish producing an average principal compressive 

stress state (compressive stresses will be reckoned as positive in this discussion). The largest 

average principal stress is the normal compressive stress acting on the plane defined by the 

direction of shock-wave propagation. The other two average principal stresses are two equal 

normal compressive stresses acting on planes perpendicular to the direction of shock-wave 

propagation. If the direction of shock-wave propagation is along the 1 directionx  , these average 

strains and stresses in the composite can be written 

 11 0 22 33 12 23 131 ,C                        0

0

                           (4.23) 

11 22 33 12 23 13, ,C L                                               (4.24) 

where C is the average compressive strain, C is the compressive stress, and L is the lateral 

confining stress. 

     It is useful to work with the strain, , and stress, , deviation tensors defined by ije ijs

1

3ij ij kk ije                                                             (4.25) 

1

3ij ij kk ijs       .                                                     (4.26) 

For plane-strain compression kk C   , 2kk C L      , and the average components of the strain 

and stress deviation tensors are  
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C Ce e e e e e 0
 

     
 

                                     (4.27) 
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     

 
                                     (4.28) 

where   2C L      . 

     The average linear elastic response of the composite can be written in terms of the 

components of the stress and strain deviation tensors as 

 37



1

3 kk M kkK     

e

                                                      (4.29) 

2ij ijs G                                                             (4.30) 

where M is the average mean stress in the material. For plane-strain compression (4.29) and 

(4.30) become 

M CK                                                               (4.31) 

CG e   .                                                              (4.32) 

We note that M  and   can be expressed in terms of invariants of the average stress tensor 

and that C is the first invariant of the average strain tensor. The two non-vanishing 

components of the average stress can be written in terms of M  and   giving 

4

3C M                                                              (4.33) 

2

3L M     .                                                        (4.34) 

     A response model giving equilibrium values for C  in terms of C  for large compressions 

due plane shock-waves is sought. Equation (4.33) can be decomposed into the contributions 

from the average normal stress in the epoxy and alumina as 

      1 2
C C C C

1          .                                               (4.35) 

The structural normal stress is defined as 
 1S

C C C      .                                                        (4.36) 

It is now postulated that the distention of alumina can be related to the invariants of the structural 

stress in the composite, i.e., 

 ,S S
M      .                                                       (4.37) 

Since (4.37) should reduce to (4.13) when S  is zero, the following form is assumed to hold for 

the case of plane-strain compression 

   0 1
S S
M

k g

    
    

       
    




.                                      (4.38) 

The parameter  appearing in (4.38) has already been determined. The parameter  is selected 

to give the same shear stiffness in the composite as the linear response theory in the limit of 

k g
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small deformation, hence parameters for the linear elastic and large compression response are 

related by 

  21 1B G G
g

B

 
 .                                                    (4.39) 

     The responses of the epoxy and alumina for large plane-strain compression are assumed to be 

governed by 

 
 

0
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0 0

1
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
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      
    
                    

 
   

 
                            (4.40) 

   
  

1 1 101
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1 1
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 

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  
   

 


 
                                              (4.41) 

   2
2 2 201M K                                                        (4.42) 

    *
1 1 10 1 11

*
1 1

1G
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1

    


 

      


    


 


                                      (4.43) 

   2
2 2 201G                                                        (4.44) 

where  is the yield stress for the epoxy and 1Y  *
1 10 1 11 Y G       is the average specific 

volume in the epoxy needed to produce an average shear stress equal to the yield stress. Equation 

(4.40) is the constraint on average specific volumes of the composite, epoxy, and alumina 

resulting from the mass fraction of alumina and epoxy being constant. Equations (4.41) and 

(4.42) are used to give the mean stress in the epoxy and alumina, respectively, and are taken to 

be the same as the relations between hydrostatic pressure and volumetric strain since the 

composite, epoxy, and alumina are assumed to be isotropic. Finally, the average shear stress 

invariants in the epoxy and alumina are assumed proportional to the corresponding shear strain 

invariant, and the epoxy is assumed to yield when the shear stress reaches a critical value . It is 

assumed the shear deformation of the alumina remains elastic for the levels of compression of 

interest in this study. 

1Y

     Equations (4.38) through (4.44) specify the plane-strain large compression response model for 

alumina-filled epoxy, and can now be used to predict the average stress C  in a composite 
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composition for given values of C and initial alumina distention 0 . The procedure is similar to 

the one described for the hydrostatic compression response with the value of   obtained from 

   
               2 1 1

0 1 0
M M      

  
          
  

   2

k g

  .            (4.45) 

     Figure 10 illustrates the predicted average normal stresses in the composite for large plane-

strain compression for a composite having an initial distention 0 2.33   (corresponding to 

0 0.43 

6.18k  

). Composites formed by suspending T64 alumina in epoxy are expected to have 

GPa and GPa. Also, a yield stress of 0.2 GPa was assumed for the epoxy. 

The average compressive normal stress components shown in Figure 10 correspond to a given 

average compressive strain predicted by the large compression model. As can be seen, the 

average compressive stress in the composite is between the average compressive stresses in the 

epoxy and alumina. A small change in the slopes of the average normal stresses due to the small 

yield strength of the epoxy occurs below an average compressive strain of 0.01. 

5.45g  
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Figure 10. Average normal stresses predicted for large plane-strain compression 
of an alumina-filled epoxy having an initial alumina volume fraction of 43% . 
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Figure 11. Alumina distention predicted for the large plane-strain compression 
of an alumina-filled epoxy with an initial alumina volume fraction of 43% . 

 

     Figure 11 shows the change in alumina distention as a function of average compressive strain 

in the composite. A decrease in the alumina distention as the average compressive strain in the 

composite increases is seen as expected. The volume fraction of alumina is seen to increase from 

an initial value of ~ 43% to a value over ~ 48% when the compressive strain is ~ 0.12. 

     A comparison of the plane-strain compression response model predictions with measured 

responses on samples of alumina-filled epoxy is shown in Figure 12 for several compositions 

containing different initial volume fraction of T64 alumina. The measured responses correspond 

to the normal stress equilibrium Hugoniot states generated in plate impact experiments on the 

alumina-filled epoxy compositions. The normal stress predictions were calculated for initial 

alumina volume fractions of 0.5, 20, 34, 38, 43, and 48% assuming the epoxy response was 

characterized using the parameters reported above with 1.78S  . 

     The open squares in Figure 12 correspond to equilibrium Hugoniot states determined for each 

composition by impacting a sample of the composition with a plate of the same composition and 

maintaining a nearly constant impact speed for each test. Examination of Figure 12 shows that 

the  stresses predicted by the  model are  reasonably close  to the measured values.  Numerous1,2,4 
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Figure 12. Comparisons of the predicted average normal stress with 
measurements for the large plane-strain compression for several alumina-filled 
compositions. 

 

equilibrium Hugoniot stress points for a wide range of compressions have been measured for the 

composition containing ~ 43% alumina by volume. The stresses predicted by the model are in 

excellent agreement with the stresses determined recently by Setchell et al.2,4 and appear to 

provide a reasonable match to the stresses determined by Munson et al.1 more than thirty years 

ago. Measurements1 of equilibrium stresses for compositions containing ~ 20% and ~ 34% 

alumina are shown in Figure 12 using filled diamonds and triangles. Again it appears that the 

model predictions are in reasonable agreement with the measurements. It appears that the model 

stresses are higher than the measurements at compressions above 0.05. This discrepancy may be 

due to slight differences between the alumina particles used in those experiments and the 

alumina particles characterized in this study. The model predictions and the more recent data2 

show better agreement for the single test condition examined for each composition. A prediction 
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is also shown for a composition containing a trace amount of alumina. This curve is compared to 

data obtained on the unfilled epoxy.5 The stresses predicted by the model, while slightly lower, 

are close to the measurements in this limit of model applicability. 

     The value of S used in the model predictions was selected to provide a good match between 

stresses predicted by the model and measured values for the composition with an initial alumina 

volume fraction of 43%. Munson and May5 conducted plate impact experiments on the unfilled 

epoxy and fit the equilibrium Hugoniot states for the epoxy to the Mie-Grüneisen equation of 

state using . Drumheller3 set1.66S  2S  in a response model he developed for the composition 

having an initial alumina volume fraction of 43%. It appears that it may be possible to improve 

the match between predicted and measured equilibrium stresses by adjusting the parameters 

appearing in the model. However the agreement obtained with the simple model developed 

above is remarkable. 
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5. Summary and Discussion 

     Mechanical response models for alumina-filled epoxy have been developed and characterized 

for the composite material formed by suspending alumina particles in epoxy. Response models 

were developed for small linear elastic deformations as well as large hydrostatic and plane-strain 

compressions. The key results of this study were model formulations general enough to be used 

across a range of compositions defined by the initial alumina volume fraction and the remarkable 

agreement found when matching equilibrium Hugoniot stresses measured in plate impact 

experiments with predictions of the large plane-strain compression model. 

     A general linear elastic response model was developed for an isotropic composite consisting 

of uniformly distributed alumina particles bonded perfectly in an epoxy matrix.  As a result of 

characterizing eleven alumina-filled epoxy compositions, it was determined that the linear elastic 

response for compositions formed by suspending various volume fractions of a single type of 

alumina particle in epoxy could be specified using the initial volume fraction of the alumina and 

six model parameters.  Four of these model parameters are known elastic properties of the 

alumina and epoxy used to fabricate the composite. The other two model parameters, called 

strain concentration coefficients, reflect the interactions between the alumina particles and 

epoxy. It was shown that these two additional model parameters could be readily determined for 

a particular composition. Consequently, characterization of the linear elastic response model is 

no more difficult than characterizing any linear elastic material provided properties of the 

alumina and epoxy are known. 

     Analysis of the dependence of the strain concentration coefficients on the initial alumina 

volume fraction, for the eleven compositions characterized, indicates that the two strain 

concentration coefficients could be written in forms having a particularly simple dependence on 

the volume fraction. Consequently, the linear elastic response model could be fully described by 

the initial alumina volume fraction, two elastic moduli each for the alumina and epoxy, and two 

fixed strain concentration parameters that described the dependence of the strain concentration 

coefficients on the initial alumina volume fraction. This result has important implications in 

characterizing alumina-filled epoxy compositions formed using different alumina particle and 

epoxy types, and modeling the linear elastic response for compositions having known variations 

in the initial alumina volume concentration. In the first case, if the elastic properties of the 

alumina and epoxy are reasonably well known, measurement of the effective bulk and shear 
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moduli for a particular composition will provide the strain concentration parameters needed to 

completely specify a linear elastic response model across a range of compositions having a 

variation in initial alumina volume fraction. In the second case, because the linear elastic 

response model depends explicitly on the alumina volume fraction, situations in which there is 

variation in the initial alumina volume fraction, due to processing uncertainty or alumina settling, 

a framework exists to allow for the analysis of these situations with a higher level of confidence. 

     An analysis of the effect of alumina particle morphology and size on the strain concentration 

parameters indicated only slight differences in the elastic response due to these compositional 

properties. Since no significant difference in the strain concentration parameters was found for 

the T64, AA5, and AA18 alumina particles examined in this study, it seems reasonable to 

conclude effects of particle morphology and size on the equilibrium elastic response are much 

less significant than the effect of initial alumina volume fraction. Additional studies would be 

needed to determine the effect of varying the epoxy type, using other particle morphologies, and 

particle sizes on the linear elastic response model, and the results described above provide a 

useful foundation for planning additional studies on alumina-filled epoxy or related composites. 

     As an example of model use, the effect of initial alumina volume fraction on the apparent 

bulk and shear moduli of the T64 alumina-filled epoxy was calculated. Predictions using the 

parameters determined from material characterization and from various analytic estimations were 

compared. It is clear that the large difference in stiffness between the alumina and epoxy limited 

the usefulness of analytic estimation to very small values of the initial alumina volume fraction. 

Consequently, estimates of the apparent bulk and shear moduli across a range of possible initial 

alumina volume fraction would be much improved if the strain concentration parameters could 

be determined for at least one particular composition of interest. 

     The extension of the response model to large compression proved to be quite successful in the 

case of large plane-strain compression as demonstrated by the remarkable agreement between 

model predictions and measurements of the equilibrium Hugoniot stresses from plate impact 

experiments. Key to the success of this effort were the observations that, due to the large 

differences in stiffness between the alumina and epoxy, the alumina volume fraction in the 

composite would change with compression and the suspension of alumina in the epoxy would 

respond in a fashion similar to the matrix material of a porous solid. These observations allowed 

the large compression response model to be developed without explicit consideration of specific 
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relations between average strain for the composite and the components of the composite. Any 

extension of the model to more general large compression strain states would likely need to 

generalize the model presented in this study. 

     The analysis of hydrostatic compression indicated that the nonlinear response of epoxy under 

large compression was sufficient to account for most of the nonlinearity in the compression of 

the composite. The increase in the volume fraction of the alumina was however still apparent. 

     The success of the large plane-strain compression response model in matching the 

equilibrium Hugoniot stresses across a wide range of compositions is remarkable because only 

the parameter defining the nonlinearity of the epoxy (S) was selected to improve the match 

between the predictions and measurements. The other parameters appearing in the response 

model were reasonably well established for the alumina and epoxy or specified by requiring that 

the large compression model produced the same apparent bulk and shear moduli for a 

composition as given by the linear elastic response model. The fact that the value for S selected 

was not significantly different than that measured in plate impact experiments on the unfilled 

epoxy provides additional credibility to the model. 

     It should be remarked that, even though the large compression response model performed 

well in predicting the equilibrium Hugoniot stresses, additional development is required before 

the model would be able to adequately predict the evolution of non-steady stress waves. Previous 

studies1,2,4 have established that wave propagation through alumina-filled epoxy is dispersive. In 

fact, the study2 on compositional effects on shock-compression of alumina-filled epoxy 

demonstrated effects due to particle morphology and size as the dispersive wave-front 

transitioned into a steady wave. The largest effect on the structure of the wave-front was seen to 

be due to the initial volume fraction of alumina but there were discernable differences due to 

particle morphology and size. It seems likely that the particle morphology and size effects 

observed were due to the small size of the wave-front resulting in significant strain gradients in a 

representative volume of material. 

     Previous response models1,3 have accounted for dispersion by allowing the stress to evolve 

from an instantaneous value to an equilibrium value in response to the compressive strain.  

Munson et al.1 used a Maxwell response model having different relaxation times when the 

material was compressing or unloading. Drumheller3 presented a model using a single relaxation 

time for the epoxy but constrained the densities of the composite and alumina to change the 
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material response on unloading. It seems reasonable that future development work on the 

response model described above could accommodate features resulting in wave dispersion by 

allowing the alumina distention to evolve using a Maxwell type model with the equilibrium 

value being defined as described above. While unloading of the composite has not been 

examined in detail here, it is clear that the model described will respond differently on unloading 

from highly compressed states since the epoxy will unload elastically with an apparent stiffness 

controlled by the level of compression. 
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	    Equations (2.3) and (2.5) provide relations between average field quantities in the composite and each of its component materials. However, additional information relating the average stress and strain describing the composite to corresponding quantities of the components is required before the elastic response of the composite can be specified in terms of the reinforcement volume fraction and elastic properties of the matrix and reinforcement materials. Suppose that in equilibrium the average strains in the matrix and particles are uniquely related to the average strain for the representative volume according to the transformations



