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Abstract

In this report we summarize research into new parallel algebraic multigrid (AMG) methods. We
first provide a introduction to parallel AMG. We then discuss our research in parallel AMG algo-
rithms for very large scale platforms. We detail significant improvements in the AMG setup phase
to a matrix-matrix multiplication kernel. We present a smoothed aggregation AMG algorithm with
fewer communication synchronization points, and discuss its links to domain decomposition meth-
ods. Finally, we discuss a multigrid smoothing technique that utilizes two message passing layers
for use on multicore processors.
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Executive Summary

This is the final report for the Lab Directed Research and Development three-year project, ”Highly
Scalable Linear Solvers on Thousands of Processors”. This project’s objectives were several, and
all centered around algebraic multigrid (AMG) algorithms for massively parallel simulations. First,
we focused on improving existing parallel algebraic multigrid methods for current and coming
computer architectures. Second, we investigated novel algorithms with very different properties
than standard methods.

Chapter 1 gives a background on algebraic multigrid. It also covers potential AMG short-
comings in the context of very large-scale computations. Finally, it provides a survey of related
research efforts.

Chapter 2 concentrates on key improvements to computation-intensive kernels in the AMG
setup phase. The dominant cost in setup is calculation of coarse grid matrix approximations to
the application-supplied linear system. This is done by an explicit triple-matrix product. Our
contribution was refactoring the matrix-matrix multiply in the TRILINOS package ML in order
to exploit matrix block structure. This improvement demonstrated significant speedups for block-
structure systems and evidence that the benefit would be much greater for systems with much larger
blocks.

Chapter 3 summarizes our exploration of a AMG method with very different communication
patterns from standard multigrid. This method requires communication only on the coarsest multi-
grid mesh. It is not unusual for latency penalties due to message passing on coarse levels to be as
costly as the finest (application) level. Thus, any method that can avoid these costs has potential
advantages. We begin with a geometric algorithm proposed in the literature and demonstrate how
it can be adapted to AMG methods such as those in TRILINOS. We provide 3D numerical experi-
ments that demonstrate its effectiveness. We discuss limitations to the method that we discovered,
as well as its connections to two-level domain decomposition methods.

Chapter 4 discusses a new multigrid smoother for multicore architectures. This smoother uti-
lizes two layers of MPI communicators for managing local and global communication. It is fully
incorporated into the TRILINOS package IFPACK and has been tested in an outer AMG solver
on up to 10,000 cores of a Cray XT4. We have demonstrated that it outperforms other existing
smoothers on challenging convection-diffusion problems.

In Chapter 5 we discuss interfaces to high-performance third-party numerical libraries (TPL)
that provide capabilities not available in TRILINOS itself. The first TPL is a sparse matrix library
that provides common kernels (e.g., matrix-vector multiplication). We provide numerical experi-
ments on several interesting computing architectures for a number of different matrix types. The
second TPL is a truely parallel incomplete factorization library. This is particular important in

9



combination with the multicore-aware smoother in Chapter 4.
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Chapter 1

Introduction

1.0.1 Parallel Algebraic Multigrid

Multigrid methods (e.g., [25], [46], [7]) are among the most efficient iterative algorithms for solv-
ing the linear system, Ax = f , associated with elliptic partial differential equations. Under certain
basic assumptions, it can be shown that the work per unknown required to reduce the residual
f −Ax by a specified amount is independent of the problem size. The central idea is to reduce
errors by utilizing multiple resolutions in the iterative scheme. High-energy (or oscillatory) com-
ponents are efficiently reduced through a simple smoothing procedure, while the low-energy (or
smooth) components are tackled using an auxiliary lower resolution version of the problem (coarse
grid). The idea is applied recursively on the next coarser level. An example multigrid V-cycle iter-
ation is given in Algorithm 1 to solve

A1u1 = f1. (1.1)

Algorithm 1: multilevel(Ak,bk,uk,k)
Multigrid V-cycle consisting of Nlevels grids to solve A1u1 = f1.
if ( k 6= Nlevels) then1:

uk = Sk(Ak,bk,uk)2:

rk = bk−Akuk3:

Ak+1 = PT
k+1AkPk+14:

uk+1 = 05:

multilevel(Ak+1,PT
k+1rk,uk+1,k +1)6:

uk = uk +Pk+1uk+17:

uk = Sk(Ak,bk,uk)8:

else9:

uk = A−1
k fk10:

end11:

The two operators needed to specify the multigrid method fully are the relaxation (smoothing)
procedures, Sk, k = 1, . . . ,Nlevels, and the grid transfers, Pk, k = 2, . . . ,Nlevels. Note that Pk is an
interpolation operator that transfers grid information from level k +1 to level k. The interpolation
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operators lead to a natural definition of the coarse grid operators Ak+1 by the Galerkin product

Ak+1 = PT
k AkPk, k ≥ 1. (1.2)

The key to fast convergence is the complementary nature of these two operators. That is, errors not
reduced by Sk must be well interpolated by Pk. While constructing multigrid methods via alge-
braic concepts presents certain challenges, AMG can be used for several problem classes without
requiring a major effort for each application. In the remainder of this report, it is assumed that A1
and f1 are given by the application.

We are interested in a particular type of AMG called smoothed aggregation (SA) multigrid,
which forms the basis for the algorithms in the TRILINOS AMG software library ML. For a detailed
description of SA AMG, see [51], [50], [33], [48].

1.0.2 Parallel Performance Bottlenecks

Good performance of SA AMG requires good scaling in both setup and application times. Here,
we discuss the leading issues related to scalability.Multigrid methods require the solution of a
series of linear systems, typically beginning with the finest (application-level) system (1.1). If
some care is not taken, each system can have the same latency characteristics due to message
passing as the fine grid system. This is in spite of the decreasing size of the linear systems. In
effect, the computation requirements of each system decrease, but the communication penalties
remain the same. Multigrid methods can also be sensitive to load-balancing of the matrix data. A
poorly balanced fine-level problem can easily result in poor load balancing of all the coarse linear
systems. In geometric multigrid methods, the problem of interest is discretized on a sequence
of increasingly coarse meshes. In contrast, in smoothed aggregation AMG each coarse linear
system is created via a triple-matrix Galerkin product, specified in equation 1.2. The kernel here
is clearly the matrix-matrix multiplication. This operation requires both the indirect lookup and
communication of matrix data. Clearly, this can be hampered by poor parallel load-balancing of the
nonzero matrix entries. Poor matrix-matrix multiplication performance can be due to uncontrolled
growth in the nonzero density of the individual sparse matrices.

1.0.3 Related Work

Other research efforts have explored a variety of methods to improve parallel AMG scalability.
As discussed in [10], specialized parallel AMG methods can generally be categorized into four
general types: concurrent iterations, multiple coarse grid corrections, full domain partitioning, and
block factorizations.

In standard parallel multigrid, all processors work at the same time to solve a residual equation
on a particular mesh. That is to say, the chain of multigrid levels is processed serially, but the
solution method on a given level is parallel. In concurrent iterations, the chain of multigrid levels
is processed in parallel, so that a smoother may run on one level at the same time as a residual
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equation is being solved on another. Concurrent iterations have been studied in [43, 57, 56, 20, 24,
44, 47, 17, 2, 5]

The second category of specialized parallel multigrid methods are those that uses multiple
coarse grid corrections. In contrast to standard multigrid, in which there is but one coarse grid
correction, this category uses additional coarse grid corrections in an attempt to accelerate con-
vergence. Additional parallelism arises from the fact that each of the coarse grid corrections
can be solved simultaneously. The key in all cases is that the corrections must not interfere
with one another, or the interference must be constructive in nature. Key papers in this area are
[18, 26, 27, 9, 55, 15, 36, 13, 12, 1].

Another category of specialized parallel multigrid is that of full domain partition. In this multi-
grid flavor, there are again many multigrid hierarchies, typically one per processor. The main idea
is that the entire domain is meshed and discretized on each domain. However, only a subdomain of
this mesh corresponds to the true fine grid mesh. On a processor, the mesh becomes much coarser
as the distance from the subdomain increases. Each processor can then traverse its multigrid hierar-
chy independently, only synchronizing at the finest and coarsest levels. This method was proposed
by Mitchell [35, 34].

The last specialized parallel multigrid method is that of parallel multilevel block factorizations.
Here, the fine grid matrix written as a block matrix and approximately factored into upper and
lower block matrices. The approximate lower block factor contains the well-known Schur comple-
ment S. If solved exactly, S requires the inverse of block of the original matrix. However, there are
many techniques for solving S approximately [32, 11].

1.0.4 Project Overview

This project’s objectives were several, and all centered around algebraic multigrid (AMG) algo-
rithms for massively parallel simulations. First, we focused on improving existing parallel alge-
braic multigrid methods for current and coming computer architectures. Second, we investigated
novel algorithms with very different properties than standard methods.

Chapter 2 concentrates on key improvements to computation-intensive kernels in the AMG
setup phase. The dominant cost in setup is calculation of coarse grid matrix approximations to
the application-supplied linear system. This is done by an explicit triple-matrix product. Our
contribution was refactoring the matrix-matrix multiply in the TRILINOS package ML in order
to exploit matrix block structure. This improvement demonstrated significant speedups for block-
structure systems and evidence that the benefit would be much greater for systems with much larger
blocks.

Chapter 3 summarizes our exploration of a AMG method with very different communication
patterns from standard multigrid. This method requires communication only on the coarsest multi-
grid mesh. It is not unusual for latency penalties due to message passing on coarse levels to be as
costly as the finest (application) level. Thus, any method that can avoid these costs has potential
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advantages. We begin with a geometric algorithm proposed in the literature and demonstrate how
it can be adapted to AMG methods such as those in TRILINOS. We provide 3D numerical experi-
ments that demonstrate its effectiveness. We discuss limitations to the method that we discovered,
as well as its connections to two-level domain decomposition methods.

Chapter 4 discusses a new multigrid smoother for multicore architectures. This smoother uti-
lizes two layers of MPI communicators for managing local and global communication. It is fully
incorporated into the TRILINOS package IFPACK and has been tested in an outer AMG solver
on up to 10,000 cores of a Cray XT4. We have demonstrated that it outperforms other existing
smoothers on challenging convection-diffusion problems.

In Chapter 5 we discuss interfaces to high-performance third-party numerical libraries (TPL)
that provide capabilities not available in TRILINOS itself. The first TPL is a sparse matrix library
that provides common kernels (e.g., matrix-vector multiplication). We provide numerical experi-
ments on several interesting computing architectures for a number of different matrix types. The
second TPL is a truely parallel incomplete factorization library. This is particular important in
combination with the multicore-aware smoother in Chapter 4.
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Chapter 2

Improving AMG Sparse Matrix Setup
Kernels

In AMG methods, the time to create the preconditioner can be considerable compared to the time
to apply the preconditioner. Within ML’s AMG setup, a major computational kernel is the matrix-
matrix multiply. It is used in the construction the grid transfer operators that move information to
and from coarser levels and in the coarse approximations to the operator A1 in 1.1. Additionally, it
is used to form the coarse matrix Ai, i > 1, which is often referred to as an RAP calculation because
Ai is the product of three matrices, R, Ai−1, and P. Typically, matrix matrix multiplication accounts
for over 50% of the time used to create an ML AMG preconditioner.

Applications that have more than one degree of freedom (DOF) per node often lead to block
structured matrices. These matrices can be stored in a special format called variable block row, in
which the DOFs associated with a node are stored in a dense submatrix. This suggests that we may
be able to capitalize on the block structure in the setup and execution of the matrix matrix multiply
in order to significantly speedup the setup of the AMG preconditioner.

In this section, we report on a new implementation and initial profiling of a matrix matrix
multiply method for variable block matrices. In §2.1, we motivate why a block matrix matrix
multiply is important to ML. In §2.2, we give an overview of ML’s existing point matrix matrix
multiply. In §2.3, we discuss the design and implementation of the block matrix matrix multiply.
In §2.4, we provide some initial numerical profiling results. In §2.5, we suggest future directions.
Finally, in §2.6 we present the conclusions we draw from our work.

2.1 Motivation for having a block matrix-matrix multiply

Applications governed by systems of PDEs often lead to block structured matrices. Examples of
such applications are linear elasticity, chemically reacting flow, and compressible flow calculations.
These problems have multiple degrees of freedom (DOFs) associated with each grid point (node)
in the problem mesh. The group of DOFs at a node comprise a block of coefficients in the matrix.
Matrices with block structure can be stored in a variable block row (VBR) structure [8, 49]. The
salient feature of this matrix structure is that individual blocks are stored as dense matrices. Hence,
accessing column indices require fewer indirect references, and tuned numerical routines may be
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used for the dense computation.

Profiling of ML’s point matrix matrix multiply has shown that the majority of time to calculate
the matrix product AB is in the lookup of B’s column indices. More specifically, suppose A and
(more importantly) B can be stored as VBR matrices. The reduction in lookups of B’s column
indices is directly related to the block size in B. If B has d×d blocks, then the number of column
indices is reduced by a factor of d2, compared to storing B as a point matrix. We note that d = 3
is the smallest typical block size. It is not unusual for applications to have d = 5 or even larger
block sizes. Hence, a reduction of these indirect lookups should lead directly to improvements in
the overall runtime.

2.2 Overview of the current point matrix matrix multiply

We first give a high level logical overview of how ML performs a matrix-matrix multiply, A×B.
For simplicity, Ai denotes the subset of rows of A stored on processor i. First, rows of B are
exchanged among processors so that processor i has all the information that it needs to calculate
Ai×B. Second, the column indices of B are stored in global numbering in a hash table for fast
lookup. Third, the local product Ai×B is calculated. Fourth, the product is converted back to local
numbering. Descriptions of the major ML functions used in setup and execution of matrix matrix
multiplies in ML are given in Table 2.1. As mentioned in §1, the matrix-matrix multiply is an

Function Description
Convert Convert matrix from point to VBR format
Exchange Rows Communicates rows of B for the product Ai×B.
Matrix Matrix Multiply Performs actual matrix-matrix multiply
Back to Local Converts matrix column indices from global to local
Getrow Access single point or block row of a block matrix

Table 2.1. Important functions in ML for calculating the matrix product A×B.

important kernel in the setup of ML’s multigrid preconditioners. It is used in the creation of the
grid transfer operators, Pi, from preliminary transfer operators, P(t)

i . For more details on how P(t)
i

is constructed, see [51]. Once P(t)
i is available, the prolongator Pi is formed via the step

Pi = P(t)
i

Pi ← (I−ωiD−1
i Ai)Pi, (2.1)

where I is an identity matrix, ωi is a damping parameter, and Di is the diagonal of Ai. We note that
in some cases it is desirable to used repeated applications of (2.1), each of which involves a matrix
matrix multiply.
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The matrix matrix multiply is also used heavily in the creation of the coarse grid operators Ai,
i > 1. Once Pi and Ri are available, then Ai is formed as in (1.2). Multiplications are performed
from right to left. Proceeding in this manner reduces the memory requirements and operation
counts in the intermediate product matrices.

2.3 Design and Implementation of block matrix matrix multi-
ply

In this section, we discuss the design and implementation strategy of the block matrix matrix mul-
tiply. As mentioned in §2.1, when the matrix A arises from a system of PDE’s, a block matrix
multiply has the potential to speedup of the entire multigrid setup, compared to the same calcula-
tion with point matrices. This is largely due to multiplication with VBR matrices requiring fewer
indirect references.

There are two logical approaches to implementing a block multiplication. In the first approach,
every function required to complete the multiplication is refactored to operate natively on block
matrices. While this avenue should lead to the best speedups possible, it would also require a large
amount of human effort. In the second approach, only certain time-intensive kernels are refactored
to operate on block matrices, while the remaining functionality leverages existing point-matrix
capabilities.

To keep this project within the scope of a summer, we chose the second approach. Numerical
studies in §2.4 demonstrate that this decision still leads to acceptable overall speedups. In the
remainder of this section, we discuss the major phases of the multiplication, our changes to key
phases, and potential benefits to refactoring the remaining phases.

The first major component that we implemented is a function that converts point matrices to
VBR. This function plays four important roles. First, it was very convenient for testing purposes.
It allowed us to use existing point matrices to produce VBR matrices. Second, this method is
essential for converting (portions of) a matrix from point to block form after exchange rows has
been called. Third, this method allows us to convert an existing P(t) to VBR, rather than having
to generate P(t) in VBR format initially. 1 Fourth, this method converts R back to VBR after it is
created by transposing P. The convert function is sufficiently flexible to be able convert a matrix
both before and after rows of that matrix have been communicated. There are two different modes
for the function: first, to convert matrices prior to a call to exchange rows; second, to convert the

1The first phase in which the matrix matrix multiply is used in the creation of P from P(t). (See (2.1).) From
initial performance runs it is unclear whether AP(t) multiplication is faster in point or in block form. This is due to the
sparsity of the blocks in P(t), which have nonzero entries only on their main block diagonal. If P(t) is in VBR form,
all zero entries within a block must be stored explicitly. This increases the effective number of nonzeros by n2− n
times for relatively small n× n blocks. This also increases the amount of data that needs to be exchanged in parallel
by a corresponding amount in the exchange rows function. Finally, the number of arithmetic operations is increased a
factor of n, which is not be an important factor in the cost as mentioned in §2.1 due to the dominant cost of indirect
referencing in the matrix-matrix multiply. We estimate that the cost of converting the point matrix P to VBR is 25%
of the cost of creating P initially as a VBR matrix.
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data received by exchange rows. The convert function performs a deep copy of data. An important
feature of the convert before exchange rows is called is to ensure that blocks are fully populated
(dense) with any missing zeros. By doing so, this speeds up the convert of any exchanged rows.

The second major component that we implemented was two getrow methods. One extracts
from a VBR matrix a single point row, and the other extracts a single block row. The capability
to extract a point row from a VBR matrix allows us to use any existing ML matrix function that
requires point row access. In particular, this allowed us to reuse the exchange row function (dis-
cussed below). The capability to extract a block row is critical for the core matrix matrix multiply
function.

The third major component that we implemented was the matrix matrix multiply kernel. We
began this summer project with an existing prototype block multiply. This prototype was capable
of squaring a square matrix with n× n blocks. However, it had several serious limitations. It
assumed a fixed block size and worked only in serial. From this prototype, we produced a fully
parallel matrix matrix multiply kernel that supports variable block sizes. Tasks included defining
a new VBR structure within ML, allowing for variable block sizes for the left matrix and a fixed
column width for the right matrix, and establishing correct storage estimates for block matrices.

A function that we decided not to refactor is the exchange rows. As mentioned previously in
§2.2, exchange rows must be invoked to communicate rows of B before the product AB can be
calculated. Exchange rows accesses matrix data in point fashion (one row at a time). Refactoring
this function to access VBR matrices in block fashion could easily have required the entire summer.
Moreover, we would have had to ensure that the resulting function’s efficiency and scalability were
similar to that of the point version. However, because we implemented a VBR matrix getrow that
fetches one point row at a time, we were able to reuse the point version of exchange rows.

Refactoring exchange rows may have longer term benefits, however, assuming that a block
version has similar performance characteristics to the point version. The cost of data movement
of the point version is over 95% of its total cost. A VBR version will still move roughly the
same amount of data. However, the data produced by a block exchange row would already be in
block format. In contrast, the data from the point version must be converted to block format. The
percentage of total time spent in the point exchange row and subsequent convert varies with the
amount of data on each processor. At 5000 DOFs per processor, the cost is approximately 66%
of the total multiply. At 40000 DOFs per processor, the cost is approximately 25%. Regardless
of work per processor, we have observed that the conversion from point to block format requires
approximately 25% of the time of the exchange row routine. Based on this data, we expect that
a block exchange row could decrease the runtime of each multiply by 5-15%. One necessary
component that we have not implemented, but that must be, is back to local. In ML, the product of
two matrices is a matrix with column indices that are globally numbered. In order for the product
to be used in subsequent calculations, the column indices must be converted to local numbering.
Because the underlying VBR data structure is quite different than that of the ML point matrix, ML
requires a new method to convert VBR matrices from global to local column indices. Without this
capability, the conversion to local is possible but is computationally infeasible.

Finally, we decided not to refactor the point matrix transpose. While not a core piece of the
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matrix matrix multiply, this function is necessary to the calculation (1.2). We expect that the
difference in cost between a block and point transpose operation will be similar to that of exchange
rows. This is because each is bound by data transfer, and each exchanges approximately the same
information between processors. However, the result of the point transpose will be a fairly dense
matrix and will therefore be costly to convert. For this reason, we believe that a native block matrix
transpose will be beneficial. The effort to write a block transpose should be significantly less than
writing a new exchange rows routine.2

2.4 Results

Testing and profiling of functions discussed in §2.3 were performed on the Sandia CSRI machine
QED. QED is a 32 node, 64 processor cluster with 2GB of memory per node. Tests were run
on three different size matrices, described in Table 2.2. These matrices are typical of those used
in elasticity problems and contain 3× 3 subblocks. Processor counts from 1 to 40 were used in
tests. The larger matrices were not run on the smallest processor counts due to memory limitations.
Each calculation involved squaring the matrix. This was done since it is much easier to setup and

Matrix Degrees of Freedom Number of non-zeros
I 26460 1928958
J 201720 15494286
K 403440 31311086

Table 2.2. Test matrices

run tests in this fashion. These tests should be indicative of the potential performance gains from
embedding the block multiply fully within the setup of a multigrid cycle for two reasons. First, in
the ML RAP process, the intermediate matrices will be have fewer columns than A, and therefore
require less time to convert and exchange data than with A itself. Second, 3× 3 blocks represent
the smallest block size for which the routine can be expected to be used. Other typical sizes such
as 3×6, 5×5 and 6×6 will yield larger gains in performance due to less indirect addressing per
calculation. As shown by Figure 2.1(a) the new block multiply results in a 1.3 to 2.3 speedup in
the overall multiply calculation. This is due to the 2 to 4.5 speedup of the core multiply routine
itself, as shown in Figure 2.1(b). Figures 2.2(a) and 2.2(b) show the component breakdown of
the overall costs of the point and block routines for matrix J. The exchange rows function in each
routine takes approximately the same time for the same processor count. The main advantage
of the block routine is from the reduced cost of the multiply routine. The time spent in the two
conversions, however, offsets some of this reduction. The conversions account for approximately
25% of the overall runtime, and are a potential spot for further optimization.

Note that the time for exchange rows in both routines increases when moving from 20 to 40
processors. As there was no attempt to load balance other than the equal distribution of rows

2Note that this must be written from scratch, or after exchange rows is rewritten, as the current transpose routine
uses a multiplication by the identity in its operation which requires a call to exchange rows.
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Figure 2.1. Performance gains from block multiply
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Figure 2.2. Component costs for multiplying the J matrix

among processors this 3 fold increase could be due to a bad data exchange pattern or a bad parallel
distribution of matrix rows. In a real application load balancing would likely fix this issue. Figures
2.3(a) and 2.3(b) show the scaling of the convert of the B matrix to VBR and the block multiply.
The results are normalized to the speed per nonzero of the I matrix running in serial. Scaling of
exchange rows is not shown as previous work has explored its scaling properties, and no work was
done on this function during this project. The scalability of the second convert was not studied as
its cost is approximately 25% of cost of exchange rows.

What is shown in 2.3(a) is the convert becomes more efficient per nonzero converted as the
work per processor decreases up to a certain point, where the trend reverses. In addition for larger
matrices the convert is less efficient than for smaller ones. For the multiply 2.3(b) shows that the
scaling of the multiply is tied to the number of processors used for the problem. With the exception
of the 5 processor example for the J matrix, the efficiency of the computation is nearly identical
for each matrix when the number of processors is held constant.
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Figure 2.3. Relative speed of convert and multiply routines

2.5 Future work

To fully integrate the block matrix-matrix multiply into the ML multigrid setup phase, a few func-
tions need to be finished. More specifics are outlined in the ML developers documentation [22]. A
VBR version of back to local should be written. The writing of a wrapper routine modeled after the
current driver and ML 2matmult() would make the routine much more accessible for a developer
to call.

Within the current design approach, if one were looking for additional efficiency, the following
are the best candidates for performance gains. By changing the convert to handle matrices ex-
changed in point format, P(t) could be more efficiently exchanged. This may increase the convert
time on the exchanged rows but would decrease the exchanged information to 1/n of its current
amount, where n× n is the block size. The convert routine has not been profiled, and there is
a chance it has inefficiencies that could eliminated. Also, while the multiply has no obvious in-
efficiencies, it may benefit from calls to BLAS [14] routines, especially for larger block sizes.
Profiling of this routine might uncover other areas for improvements, though this is unlikely as it
was derived from an efficient point multiply. A VBR matrix vector multiply could also lead to
performance gains in the application of the multigrid preconditioner.

If full fledged VBR support were desired, we suggest the following order for the implemen-
tation. First if a VBR transpose is easy to write, or if an EPETRA function can be utilized, this
would be the easiest function to write with potentially the largest performance gains. If the trans-
pose is not easy or requires a block exchange row function to work, then the creation of a block
P(t)should be the first priority. A new exchange rows function should be lowest priority, unless
a block transpose requires it. This is because the expected reduction in runtime of a new block
exchange rows is small in comparison to the effort to refactor the code.
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2.6 Conclusions

We have demonstrated 2-4.5 times speedups in the multiply kernel for linear systems with 3× 3
blocks, and overall speedups of 1.3-2.3, although these results are likely a lower bound on actual
performance. Development time was dramatically reduced through the use of a point-to-VBR con-
verter function and existing point matrix capabilities, while still allowing for significant speedups.
While we chose to refactor only portions of the multiply, we believe that the results from the initial
profiling show this decision was correct.
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Chapter 3

Domain-Decomposed Multigrid

Brandt and Diskin [6] proposed a multigrid method that trades communication for computation. It
can be viewed as a hybrid overlapping domain decomposition technique. The key feature is that
synchronization is only necessary at the coarsest level. The authors refer to this method as domain-
decomposed multigrid; we will call this method DDM. We first present Brandt and Diskin’s DDM
method, then our variant adapted to smoothed aggregation multigrid as well as analysis thereof.
Finally, we present experiments illustrating the effectiveness of the proposed solver.

3.1 The Domain-Decomposed Multigrid (DDM) Algorithm

We explain the two-level geometric DDM algorithm proposed by Brandt and Diskin [6] in the
context of solving,

L1u1 = f 1, (3.1)

on the domain in Figure 3.1(a), where level 1 is the fine level, i.e., the system of interest. The

ΩΩ1 2

x=0
(a) Two-dimensional do-
main.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

overlap edge

x=0

Ω1

overlap

border

(b) Subdomain Ω1 and
overlap region.

Figure 3.1. Two-dimensional example domain used in the DDM algorithm.

example computational domain Ω is symmetric about the y-axis, e.g., Ω = [−1,1]× [0,1]. Ω is
split into two subdomains, Ω1 and Ω2. The dividing line is the y-axis, and the subdomains share
the points on the y-axis. In Figure 3.1(b), we show examples of a border, overlap region, and
overlap edge. These terms will be used in the following discussion. Table 3.1 shows the notation
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used in our description of Brant and Diskin’s DDM. Algorithm 2 shows the DDM algorithm with
our explanatory comments in italics. This algorithm can also be executed in a V-cycle (rather than
FMG) fashion and this is illustrated in Figure 3.2.

symbol definition
Ωk

p That part of grid Ωk that belongs to processor p
Ω

k, j
p extension of Ωk

p by adding all points at a distance of jhk or closer
J(k) amount of overlap on level k
Ω̂k

p Ω
k, j
p where j = J(k)

I j
k grid transfer from level k to level j using full-weighting

Î j
k grid transfer from level k to level j using injection

ũk,p
i current approximate solution for processor p at grid point i ∈ Ω̂k

p
ũk

i “genuine” value of ũk at point i, given by

ũk
i =

{
ũk,pi

i for i not on borderline and living on processor pi
1
N (ΣN

p=1ũk,p
i ) for i on borderline and found on N processors

Table 3.1. Notation for Brant and Diskin’s DDM multigrid method.
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Figure 3.2. A V-cycle variant of Brant and Diskin’s DDM

Brant and Diskin discuss several issues with respect to a multilevel (rather than two level)
variant of Algorithm 2, though they do not provide a concrete path to implementation. However,
they do note that the level K at which communication occurs should be chosen so that the number
of points on level K is at least as great as the number of points in the interface [6],

hK ≥O(h(d−1)/d
M ), (3.4)

where M is the finest grid level and d is the problem dimension. Of course, we could continue
coarsening past level K using a standard multigrid technique should we desire to do so, instead of
using a direct solver at level K.

3.2 A Full Algebraic Multilevel Variant of DDM

Brant and Diskin’s DDM has two main limitations. First, its extension from a two level method to
a multilevel method is not obvious. Second, it is a purely geometric algorithm. We now propose
a fully algebraic multilevel variant of the DDM. Notation for this variant of DDM can be found
in Table 3.2. Our proposed method is divided into three separate parts — treatment on the fine
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Algorithm 2: Brant & Diskin Two Level DDM Method
% Establish a good initial guess.

Solve L2u2 = f 2 = I2
1 f 1 however you like.1:

% Interpolate this approximate solution to the fine grid as follows.

For each overlapping subdomain Ω̂1
p, ũ1,p

i = (Π1
2u2)i for each i ∈ Ω̂1

p, where Π1
2 is bicubic2:

interpolation.
Higher order interpolation is standard in FMG for the initial fine grid approximate solution. In overlap region,
solution is the same for each processor p.
while not done do3:

% Pre-smoothing

Each processor p ∈ {1,2} smooths ν times on its subdomain Ω̂k
p. (Note: in the overlap4:

region, solution no longer the same.)
We have observed that the points at the overlap edge must not be smoothed (see Figure 3.1(b)). These
points can be thought of as boundary points, but where the boundary conditions are unknown. Smoothing
them pollutes the solution in the rest of the subdomain. To deal with them, we turn them into Dirichlet
points during smoothing.
% Coarse Grid Correction

Calculate the coarse right-hand side f̃ 2 = L1(Î2
1 ũ1)+ I2

1 r1, where the coarse grid vectors5:

Î2
1 ũ1 and I2

1 r̃1 are given as follows:

(Î2
1 (ũ1))i =

{
ũ1,p

1i for interior points i
1
2(Σpũ1,p

1i ) for boundary points i
(3.2)

(I2
1 r̃1

i )i =

{
f 1
i −L1ũ1,p

i for interior points
f 1
i − 1

2(Σp(L1ũ1,p
i )) for boundary points i

(3.3)

The solution is restricted via injection. The residual is restricted via full-weighting.

Solve L2ũ2 = f̃ 2 exactly.6:

For each processor p, correct approximate solution is: ũ1,p← ũ1,p + I2
1 (ũ2− Î2

1 ũ1,p).7:

The solution, ũ1,p, in the overlap region must be consistent among processors before adding in the coarse
grid correction. This is due to the fact that the coarse grid correction is calculated using a consistent
solution.
% Post-smoothing

Each processor p smooths ν ′ times on its subdomain Ω̂k
p.8:

end9:
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level, treatment on the coarse level, and treatment on all intermediate levels. The coarse level
most closely resembles that of the V-cycle variant of Algorithm 2. From there up we eschew all
communication until we reach the fine level, where we will need to synchronize solutions between
domains. Algorithm 3 shows a three-level variant of the proposed method, which is also illustrated
in Figure 3.3.

notation definition
G j Standard AMG “grid” on level j.
A j Standard AMG matrix on grid level j
Pj Standard AMG prolongator from grid level j to j +1 (Pj : G j→ G j+1).
G(i)

j “Grid” for overlapping subdomain i at level j.

R(i)
j Maps from unified (AMG) grid to overlapping subdomain i at level j (R(i)

j : G j→ G(i)
j ).

A(i)
j Matrix corresponding to domain i on grid-level j.

P(i)
j Prolongator on subdomain i from level j to j +1 (P(i)

j : G j j(i)→ G(i)
j+1).

Table 3.2. Algebraic Multilevel DDM Notation
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Figure 3.3. Fully Algebraic Multilevel DDM

The Fine Level (1)

We first define R(i)
1 operators that transfer between the consistent global grid and various subdo-

mains. For the case of two subdomains, they will look like,

R(1)
1 =

[
I 0 0
0 I 0

]
, (3.5)

R(2)
1 =

[
0 I 0
0 0 I

]
, (3.6)

where the columns are ordered in the order G(1)
1 \G(2)

1 , G(1)
1 ∩G(2)

1 , G(2)
1 \G(1)

1 . The multi-domain
case is handled similarly.

The R(i)
1 operators now allow us to define the operators on each domain A(i)

1 in the Galerkin
sense, namely,

A(i)
1 = R(i)

1 A1

(
R(i)

1

)T
. (3.7)
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Levels 2, . . . ,n−1

Starting with level j, we now desire to define operators for level j+1. We then create prolongators,
P(i)

j , which create coarser levels unique to each domain. In order to glue the domains back together
at the bottom of the hierarchy, these prolongators must be chosen such that nodes which are part
of multiple subdomains (i.e. the nodes in the overlap) are aggregated in the same fashion on each
subdomain.

We can now define the matrix on the next level by an ordinary Galerkin product,

A(i)
j+1 =

(
P(i)

j

)T
A(i)

j P(i)
j . (3.8)

The Coarse Level (n)

To move towards the coarse problem, we need to be able to glue things back together at level n−1.
Since we have assumed that the intermediate levels have coarsened the overlap regions consistently
between subdomains, we can now create R operators for level n−1.

R(1)
n−1 =

[
I 0 0
0 I 0

]
R(2)

n−1 =
[

0 I 0
0 0 I

]
(3.9)

where the columns are ordered in the order G(1)
n−1 \G(2)

n−1, G(1)
n−1∩G(2)

n−1, G(2)
n−1 \G(1)

n−1. The multi-
domain case is handled similarly.

Using those R operators and AMG’s prolongator for that level Pn−1 we can now form the
Galerkin coarse grid operator,

Ãn = PT
n−1

(
∑

i

(
R(i)

n−1

)T
A(i)

n−1R(i)
n−1

)
Pn−1. (3.10)

3.3 Analysis of Multilevel DDM

Like any DDM or multilevel method, the entire technique can be written as a matrix splitting. For
simplicity’s sake, assume that our smoothing operator, called S(i)

j , is applied directly to the relevant
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Algorithm 3: Sample 3-Level Algebraic DMM
% Form residual
r1 = b1−A1x11:

For i = 1, . . . , p2:

% Grid Transfer G1→ G(i)
1

b(i)
1 = R(i)

1 r1, x(i)
1 = 0.3:

% Smooth on Level 1

x(i)
1 =

(
M(i)

1

)−1
b(i)

14:

% Residual

r(i)
1 =

(
I−A(i)

1

(
M(i)

1

)−1
)

b(i)
15:

% Grid Transfer G(1)
1 → G(i)

2

b(i)
2 =

(
P(i)

1

)T
r(i)

1 , x(i)
2 = 0.6:

% Smooth on Level 2

x(i)
2 =

(
M(i)

2

)−1
b(i)

27:

% Residual

r(i)
2 =

(
I−A(i)

2

(
M(i)

2

)−1
)

b(i)
28:

end9:

% Form r2

r2 = ∑
p
i=1 R(i)

2 r(i)
210:

% CGC on Level 3

x2 = P2Ã−1
3 PT

2 r211:

For i = 1, . . . , p12:

% Update Level 2

x(i)
2 + =

(
R(i)

2

)T
x213:

% Smooth on Level 2

x(i)
2 + =

(
M(i)

2

)−1
(b(i)

2 −A(i)
2 x(i)

2 )14:

% Grid Transfer G(1)
2 → G(i)

1

x(i)
1 + = P(i)

2 x(i)
215:

% Smooth on Level 1

x(i)
1 + =

(
M(i)

1

)−1
(b(i)

1 −A(i)
1 x(i)

1 )16:

end17:

% Create Solution

x1 = ∑
p
i=1

(
R(i)

1

)T
x(i)

118:
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residual (i.e. it has a zero initial guess). Then the three-level method shown in Algorithm 3 can be
written as,

x =
p

∑
i=1

(
R(i)

1 S(i)
1 P(i)

1 S(i)
2 (R(i)

2 )T
)

P2Ã−1
3 PT

2

p

∑
i=1

(
R(i)

2 S(i)
2 (P(i)

1 )T S(i)
1 (R(i)

1 )T
)

r1. (3.11)

Adding additional levels just adds terms to the appropriate sums. From this matrix splitting
statement, we can look at the analysis of our multilevel DDM in two ways, both of which are based
on the analysis of classical Schwarz methods. The first such classical method is 1-level additive
Schwarz [43, Algorithm 1.3.3], which we restate in our notation for convenience in Algorithm 4.
The second algorithm is a method which applies a multiplicative coarse grid correction and an
additive domain decomposition correction, which is referred to the 2-level Hybrid II Schwarz
preconditioner in [43, Algorithm 2.3.5]. We reproduce this in Algorithm 5. In both of these
cases, the subdomain correction B(i)

1 is usually implemented with a direct solve on the subdomain,
namely, B(i)

1 = (R(i)
1 )T (A(i)

2 )−1R(i)
1 . However this correction can be performed approximately, so

long as the approximation is good enough, and the relevant results still hold.

Algorithm 4: 1-Level Additive Schwarz

x = ∑
p
i=1 B(i)

1 r11:

Algorithm 5: 2-Level Hybrid II Schwarz

x = ∑
p
i=1 B(i)

1 r11:

x = x+P1A−1
2 PT

1 (r1−A1x)2:

We now detail two ways of analyzing our DDM method. The first is based on the one-level
additive Schwarz technique shown in Algorithm 4. The second is based on the Hybrid II technique,
shown in Algorithm 5.

3.3.1 DDM as One-Level Additive Schwarz

We note first that our method can be considered as an additive Schwarz method on the fine-level
with approximate subdomain solves (which include the rest of the V-cycle). More specifically, we
can define the B(i)

1 operators as,

B(i, j)
1 =

(
R(i)

1 S(i)
1 P(i)

1 S(i)
2 (R(i)

2 )T
)

P2Ã−1
3 PT

2

(
R( j)

2 S( j)
2 (P( j)

1 )T S( j)
1 (R( j)

1 )T
)

, (3.12)

which is a kind of Petrov-Galerkin “projector-like” correction. If the subdomain smoothers and
grid transfer operators are good enough, then it is easy to show that the DDM method converges at
least as well as classical one-level additive Schwarz with an approximate subdomain solve.
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Assume that h represents the mesh diameter of a typical Laplace problem. It is well know
that when additive Schwarz is used as a preconditioner for a Krylov method, it does not have h-
independent convergence unless a coarse grid correction is used [45]. Thus, viewing DDM as a
one-level Schwarz technique cannot give us the convergence result we desire.

3.3.2 DDM as Two-Level Additive Schwarz

From our discussions with Clark Dorhmann, we note that there are certain circumstances when
our multilevel DDM is exactly equivalent to a two-level additive Schwarz method. Specifically,
consider the symmetric two-level Schwarz method shown in picture form in Figure 3.4. This
method uses a two-level multigrid algorithm on each subdomain and an aggressively coarsened
coarse grid correction that creates a grid which is coarser than any of the subdomain grids.

For simplicity, we’ll look at the three-level case, though everything extends to hierarchies of
arbitrary depth mutatis mutandis. Consider again Algorithm 3, as shown in Figure 3.3. Let us
change the way we define the R(i)

2 operators from (3.9). Instead, let

R(i)
2 = P1,2R(i)

1 (P(i)
1 )T , (3.13)

where P1,2 is the aggressive prolongator shown in Figure 3.4. Figure 3.5 shows graphically that
these new R(i)

2 ’s allow us to create a multilevel DDM which is exactly equivalent to a two-level
symmetric Hybrid II algorithm that uses a two-level multigrid on each subdomain. Under a certain
set of assumptions, the R(i)

2 ’s given by (3.9) and by (3.13) are in fact identical. First, the overlap
must be coarsened in a fashion such that overlap nodes are only aggregated with other overlap
nodes. Second, the overlap nodes must be aggregated in the same fashion regardless of which
domain they are in. Third, prolongator smoothing cannot be used. If all three of these conditions
hold, then the two methods produce identical R(i)

2 ’s, for ideal aggregates on a regular mesh.

In practice, the approach of (3.13) is preferable since it allows us more flexibility in the aggre-
gation process than the approach of (3.9). Perhaps more importantly, the approach of (3.9) requires
that the overlap on the fine grid be sufficiently large to allow it to be coarsened repeatedly, which
means the overlap must grow as the number of levels needed increases. With this is mind, we have
concluded that (3.13) is a superior approach in practice.

Let H be the size of the subdomain and δ measure the width of the overlap. Then the con-
ditioned number of a Laplace problem preconditioned with a two-level Schwarz method, such as
the one shown in Algorithm 5 is O(1 + H/δ ). This means that if we fix the ratio of subdomain
to overlap and if the preconditioner on the individual subdomains is good enough, we can expect
similar convergence for our DDM.
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Figure 3.4. Two-level additive Schwarz method with approximate subdomain solves
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Figure 3.5. Multilevel DDM as a two-level additive Schwarz method

3.4 Experiments

Consider the model problem:

∆u = f on Ω

u = 0 on δΩ (3.14)

where Ω = [0,1]d and d is the number of dimensions. We discretize this problem with finite
differences and consider the performance of our DDM solver. We consider the problem in one,
two and three dimensions, varying the number of levels in our hierarchy between two and five and
varying the number of domains between two and 27. We fix the amount of overlap at two fine grid
points, which means that both H and δ should shrink as the grid is refined, although the latter will
shrink far more rapidly than the former.

Figure 3.3 shows both GMRES iterations and operator complexity for the 1D version of the
test problem. We note that the operator complexity is comparable to that of a traditional smoothed
aggregation multigrid algorithm (which is about 1.5 for this problem). In the 2D case, shown in
Figure 3.4, we note that our methods are slightly more expensive in terms of operator complexity
than traditional smoothed aggregation AMG (which is about 1.2 for this problem). The 3D case,
as shown in Figure 3.5, is similar.

In Figures 3.3, 3.4 and 3.5, we can interpret the iteration counts in four different ways. First,
we can read between subtables, which shows the effect of changing the number of levels in the
multilevel method. Each additional level added the hierarchy is another level without communi-
cation and therefore a smaller (globally synchronized) coarse problem. Thus we should expect an
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increase in the number of iterations as the number of levels increases.

If we read across a row, we are decreasing H while fixing h and δ . In this regime, we should
see a condition a number of O(1 + H/δ ). Thus, convergence should be better as we add more
subdomains. We do not seem to see that in practice, but this is likely because our number of
subdomains is too small for this asymptotic result to take hold.

If we read down a column we are refining h and shrinking δ . In this regime, our method
should yield a condition number of O(2 + H0/(c0h)), where c0 = δ0/h, H0 is the diameter of the
subdomain without overlap and δ0 is the amount of overlap on the coarsest grid. This predicts
performance degradation in the asymptotic case, although we don’t seem to see that in practice.

If we read diagonally from top left to bottom right, we are decreasing both h and H. This
should yield a O(1) condition number and thus a flat iteration profile. Once we get past very small
numbers of subdomains we do indeed see this behavior.
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# of Domains
Grid Refinement 2 3 9 27
Number of Levels: 2 Levels

27 7 7 7 ∗
81 7 7 7 7

243 7 7 7 7
729 7 7 7 7

2,187 7 7 7 7
6,561 7 7 7 7

19,683 7 7 7 7
59,049 7 7 7 7

177,147 7 7 7 7
531,441 7 7 7 7

Number of Levels: 3 Levels
27 8 9 ∗ ∗
81 8 9 13 ∗

243 8 9 10 13
729 8 9 9 10

2,187 8 9 9 9
6,561 8 9 9 9

19,683 8 9 9 9
59,049 8 9 9 9

177,147 8 9 9 9
531,441 8 9 9 9

Number of Levels: 4 Levels
81 8 12 ∗ ∗

243 9 12 18 ∗
729 9 10 13 21

2,187 9 10 11 13
6,561 9 10 10 10

19,683 9 10 10 11
59,049 9 10 10 10

177,147 9 10 10 10
531,441 9 10 10 10

Number of Levels: 5 Levels
243 9 14 ∗ ∗
729 9 13 23 ∗

2,187 9 12 15 35
6,561 9 11 13 15

19,683 9 11 13 13
59,049 9 11 12 13

177,147 9 11 11 13
531,441 9 11 11 12

# of Domains
Grid Refinement 2 3 9 27
Number of Levels: 2 Levels

27 1.44 1.57 2.33 ∗
81 1.37 1.41 1.66 2.41

243 1.35 1.36 1.44 1.69
729 1.34 1.34 1.37 1.45

2,187 1.33 1.34 1.35 1.37
6,561 1.33 1.33 1.34 1.35

19,683 1.33 1.33 1.33 1.34
59,049 1.33 1.33 1.33 1.33

177,147 1.33 1.33 1.33 1.33
531,441 1.33 1.33 1.33 1.33

Number of Levels: 3 Levels
27 1.54 1.61 ∗ ∗
81 1.48 1.50 1.70 ∗

243 1.46 1.46 1.53 1.73
729 1.45 1.45 1.47 1.54

2187 1.45 1.45 1.45 1.48
6,561 1.44 1.45 1.45 1.45

19,683 1.44 1.44 1.45 1.45
59,049 1.44 1.44 1.44 1.45

177,147 1.44 1.44 1.44 1.44
531,441 1.44 1.44 1.44 1.44

Number of Levels: 4 Levels
81 1.51 1.51 ∗ ∗

243 1.49 1.49 1.54 ∗
729 1.48 1.48 1.50 1.55

2,187 1.48 1.48 1.49 1.50
6,561 1.48 1.48 1.48 1.49

19,683 1.48 1.48 1.48 1.48
59,049 1.48 1.48 1.48 1.48

177,147 1.48 1.48 1.48 1.48
531,441 1.48 1.48 1.48 1.48

Number of Levels: 5 Levels
243 1.50 1.50 ∗ ∗
729 1.50 1.49 1.51 ∗

2187 1.49 1.49 1.50 1.51
6,561 1.49 1.49 1.50 1.50

19,683 1.49 1.49 1.49 1.50
59,049 1.49 1.49 1.49 1.49

177,147 1.49 1.49 1.49 1.49
531,441 1.49 1.49 1.49 1.49

Table 3.3. Preconditioned GMRES iterations and multilevel operator complexities for a 1D Laplace problem (3.14) pre-
conditioned with multilevel DDM. Asterisks(∗) indicate invalid combinatations of number of domains and grid refinement.
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# of Domains
Grid Refinement 2 3 9 27
Number of Levels: 2 Levels

92 8 8 ∗ ∗
272 9 10 10 ∗
812 10 10 10 10

2432 10 10 10 10
7292 10 10 10 10

Number of Levels: 3 Levels
272 10 12 ∗ ∗
812 11 13 15 ∗

2432 11 12 12 15
7292 11 12 12 12

Number of Levels: 4 Levels
812 15 19 ∗ ∗

2432 17 18 24 ∗
7292 17 18 19 25

Number of Levels: 5 Levels
2432 24 28 ∗ ∗
7292 27 30 38 ∗

# of Domains
Grid Refinement 2 3 9 27
Number of Levels: 2 Levels

92 1.98 2.85 ∗ ∗
272 1.45 1.72 3.41 ∗
812 1.28 1.37 1.91 3.60

2432 1.23 1.26 1.44 1.98
7292 1.21 1.22 1.28 1.46

Number of Levels: 3 Levels
272 1.57 1.86 ∗ ∗
812 1.40 1.51 2.03 ∗

2432 1.35 1.38 1.56 2.09
7292 1.33 1.34 1.40 1.58

Number of Levels: 4 Levels
812 1.42 1.53 ∗ ∗

2432 1.37 1.40 1.58 ∗
7292 1.35 1.36 1.42 1.60

Number of Levels: 5 Levels
2432 1.37 1.40 ∗ ∗
7292 1.35 1.36 1.42 ∗

Table 3.4. Preconditioned GMRES iterations and multilevel operator complexities for a 2D Laplace problem (3.14) pre-
conditioned with multilevel DDM. Asterisks(∗) indicate invalid combinatations of number of domains and grid refinement.

# of Domains
Grid Refinement 2 3
Number of Levels: 2 Levels

93 9 9
273 11 11
813 12 12

Number of Levels: 3 Levels
273 12 14
813 13 14

# of Domains
Grid Refinement 2 3
Number of Levels: 2 Levels

93 2.41 3.84
273 1.54 1.98
813 1.27 1.41

Number of Levels: 3 Levels
273 1.86 2.25
813 1.65 1.77

Table 3.5. Preconditioned GMRES iterations and multilevel operator complexities for a 3D Laplace problem (3.14) pre-
conditioned with multilevel DDM. Asterisks(∗) indicate invalid combinatations of number of domains and grid refinement.
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Chapter 4

Multicore-aware Smoothing

In this chapter we describe a novel smoother intended for distributed memory machines with many
cores per compute node. The motivation for this smoother is to address current and future computer
architectures that are characterized by increasing on-chip core counts. In essence, this smoother al-
lows for much more expensive local computation, e.g., incomplete factorizations or local multigrid
methods, while minimizing off-node computation in a domain-decomposition like manner.

4.0.1 Algorithm Description

The smoother can be viewed as an overlapping domain decomposition method. In this case, the
subdomains are groups of matrix rows. Subdomain identification is determined at runtime and is
controlled by the calling application. A natural definition is to assign the processes on a given com-
pute node to the same subdomain. This is not strictly required, however. A node could be divided
into multiple subdomains, or subdomains could span nodes. In any case, the processor groups must
be disjoint. Figure 4.1 shows the layout of compute nodes and individual MPI tasks for a simple
two-dimensional mesh on the unit square. Once processor groups are identified, each subdomain

(a) Mesh nodes (b) Subdomain and processor distribution.

Figure 4.1. (a) Nodes of two-dimensional Cartesian mesh. (b) Mesh node ownership. The heavy dashed squares
denote subdomain ownership. The thin solid squares denote individual MPI task ownership.

is assigned its own message-passing communicator. These processor-group communicators han-
dle all intra-group processor communication and thus allow for independent computation on each
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subdomain that can proceed in parallel. A global communicator associated with the linear operator
then provides for intergroup communication. The subdomains may either be nonoverlapping or
overlapped.

The overall AMG algorithm can then be applied as in Algorithm 1, with smoothers on one
or more levels replaced by the multicore-aware smoother. Within the multicore-aware smoother,
we have complete freedom in the choice of subdomain solve. For example, one can use a very
lightweight solve, e.g., Chebyshev polynomials, or more expensive solves, such as an incomplete
factorization. In practice, we have used a multigrid method on the local domain as a smoother.

4.0.2 Software Description

All algorithms are implemented within the TRILINOS package IFPACK [39]. Ifpack provides a
suite of algebraic preconditioners, such as successive overrelaxation methods and incomplete fac-
torizations. These methods are available as smoothers, via factory interfaces, to ML [23], the
TRILINOS AMG solver package. The two main classes in Ifpack that implement the multicore-
aware smoother are Ifpack OverlappingRowMatrix and Ifpack NodeFilter . The first class has
been heavily modified and extended from an existing implementation, and the second class is new.

Class Ifpack OverlappingRowMatrix

Class Ifpack OverlappingRowMatrix inherits from the pure virtual class Epetra RowMatrix. The
constructor for class Ifpack OverlappingRowMatrix is given here:

I f p a c k O v e r l a p p i n g R o w M a t r i x ( c o n s t Teuchos : : RCP<c o n s t
Epet ra RowMatr ix> &M a t r i x i n , i n t O v e r l a p L e v e l i n , i n t
myNodeID )

The constructor accepts an Epetra RowMatrix. The amount of overlap is specified by the second
parameter. Subdomain assignment is based upon the value of myNodeID, the node identifier. All
processes that have the same identifier are assigned to the same subdomain and MPI communi-
cator. The processes in each subdomain work in concert to identify ghost information that must
be imported from other subdomains. Each process sends the ghost rows that it requires to local
process 0. Process 0 acts as the arbiter to break ties between processes that depend on the same
off-node information and need to import it. It is important to note that this class does not dupli-
cate information on the interior of a subdomain. Only ghost information is duplicated on the local
subdomain. The amount of duplication is proportional to the subdomain boundary size, and thus
a low order effect. Class OverlappingRowMatrix establishes the proper EPETRA row and column
maps such that an additive Schwarz domain decomposition method can be applied. We note that
the overlapped matrix’s row map is not one-to-one, as is usually the case. This is due to the fact
that ghost row information is replicated on each subdomain.
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Class Ifpack NodeFilter

The class Ifpack NodeFilter is a lightweight class that allows independent computation on each
subdomain. This class also inherits from the pure virtual class Epetra RowMatrix. The construc-
tor’s signature is given by

I f p a c k N o d e F i l t e r ( c o n s t Teuchos : : RCP<c o n s t Epet ra RowMatr ix>
&Matr ix , i n t nodeID )

The constructors accepts an Epetra Rowmatrix and a node identifier, nodeID, that is the same
as that supplied to Ifpack OverlappingRowMatrix. Class Ifpack NodeFilter does not copy data.
However, it recalculates Epetra maps, importers, and exporters based upon a local communicator.
This is so that local solves be applied independently of any other subdomain solves. We note that
this recalculation is done only when the smoother is set up and is not compute intensive. The local
remapping does require an additional layer of indirection when Ifpack NodeFilter−>Apply() is
called, i.e., during a subdomain matrix/vector multiply. Profiling indicates that this overhead is
quite low.

4.0.3 Invocation

An application typically will not interact with either class directly. Instead, multicore-aware
smoothing is requested as an option while setting up the AMG preconditioner. This is done via a
TEUCHOS parameter list option. Internally, ML calls the Ifpack additive Schwarz solver factory,
which in turn calls both the Ifpack OverlappingRowMatrix and Ifpack LocalFilter constructors.
Figure 4.3 shows a fragment of an XML input deck.

4.0.4 Numerical Results

We now examine the effectiveness of an AMG preconditioner that uses the multicore-aware smoother.
The problem we will consider is a two-dimensional recirculating flow on the unit square with
Dirichlet boundary conditions:

−ε∆u+v ·∇u = f , (4.1)

where the components of v are given by

vx = 4x(x−1)(1−2y),
vy = −4y(y−1)(1−2x).

The diffusive term is discretized using a five-point stencil and the convective term is discretized
using a standard upwind stencil.
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The subsequent experiments use ε = 10−8. We considered weak-scaling on the Oak Ridge
National Laboratory machine “Jaguar”, a Cray XT4. Each node has a single quad-core AMD
Opteron 1354 (Budapest) 2.1 GHz processor and 8 gigabytes of RAM.

Figure 4.2 illustrates scaling results on the Cray XT4 for problem (4.1). It compares the best
existing AMG method to an AMG method using the multicore aware smoother. Note that the two
methods are competitive until 8100 cores. From 8464 to 10000 cores, the AMG with multicore-
aware smoother demonstrates modestly better solve times. Details of the right portion of the plot

Figure 4.2. Weak scaling on Cray XT4.

(from 8100 cores upwards) are given in Table 4.1. This table compares AMG methods that use
multicore-aware and standard (”single core”) smoothers. Note that the W-cycle improves iteration
counts, as expected. However, it also is the most expensive in solution time. The AMG with
multicore smoother is slightly more expensive to setup, but this cost is offset by its faster solve
times.
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#cores Method Iteration Solution Time Timer per iteration Setup Time
multicore 278 69.0050 0.2482 3.0385

single core 300 78.8532 0.2628 2.1076
6724 multicore W cycle 119 104.8935 0.8815 3.1808

single core W cycle 119 103.4593 0.8694 2.2932
multicore 289 81.6527 0.2825 3.1513

single core 293 84.8143 0.2895 2.1667
7056 multicore W cycle 125 111.0956 0.8888 3.4737

single core W cycle 120 108.3071 0.9026 2.2156
multicore 344 86.1292 0.2504 3.5490

single core 381 94.3887 0.2477 2.2432
7396 multicore W cycle 135 128.3267 0.9506 3.2964

single core W cycle 135 136.5535 1.0115 2.2897
multicore 356 92.8327 0.2608 3.7389

single core 363 97.8513 0.2696 2.2723
7744 multicore W cycle 128 127.4574 0.9958 4.0151

single core W cycle 120 115.1721 0.9598 2.4379
multicore 296 73.9988 0.2500 3.8733

single core 320 91.2657 0.2852 2.3032
8100 multicore W cycle 121 117.8392 0.9739 4.4177

single core W cycle 140 142.1480 1.0153 2.6778
multicore 359 88.9224 0.2477 3.9305

single core 383 109.2368 0.2852 2.6478
8464 multicore W cycle 130 134.5475 1.0350 3.5371

single core W cycle 136 148.2833 1.0903 2.3605
multicore 341 93.6434 0.2746 3.7616

single core 400 109.4229 0.2736 2.4052
8836 multicore W cycle 150 158.5187 1.0568 3.8069

single core W cycle 149 159.8648 1.0729 2.4483
multicore 386 99.6191 0.2581 4.5088

single core 439 112.2955 0.2558 2.6458
9216 multicore W cycle 125 136.9810 1.0958 4.7513

single core W cycle 136 145.2709 1.0682 2.5478
multicore 458 123.4286 0.2695 3.9548

single core 454 130.6036 0.2877 2.8888
9604 multicore W cycle 147 177.0784 1.2046 4.2746

single core W cycle 150 173.8975 1.1593 2.8072
multicore 464 130.5256 0.2813 4.0989

single core 494 136.6465 0.2766 2.7809
10000 multicore W cycle 150 175.3394 1.1689 4.2566

single core W cycle 136 160.5415 1.1805 2.6837

Table 4.1. Details for Figure 4.2, scaling comparison on Cray XT4. Iterations, solve time, time per iteration, and setup
time.
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<P a r a m e t e r L i s t name=” M u l t i L e v e l P r e c o n d i t i o n e r ”>

<!−− Genera l o p t i o n s −−>
<P a r a m e t e r name=” S e t D e f a u l t s ” t y p e =” s t r i n g ” v a l u e =”SA” />
<P a r a m e t e r name=”ML o u t p u t ” t y p e =” i n t ” v a l u e =” 10 ” />
<P a r a m e t e r name=”max l e v e l s ” t y p e =” i n t ” v a l u e =” 10 ” />

<!−− Smoother o p t i o n s −−>

<!−− a l l l e v e l s u n l e s s o t h e r w i s e s p e c i f i e d ( p o l y n o m i a l ) −−>
<P a r a m e t e r name=” s m o o t h e r : t y p e ” t y p e =” s t r i n g ” v a l u e =”

Chebyshev ” />

<!−− l e v e l 1 o n l y ( m u l t i c o r e aware ) −−>
<P a r a m e t e r name=” s m o o t h e r : t y p e ( l e v e l 1 ) ” t y p e =” s t r i n g ”

v a l u e =” s e l f ” />
<P a r a m e t e r name=” s m o o t h e r : sweeps ( l e v e l 1 ) ” t y p e =” i n t ”

v a l u e =” 1 ” />
<P a r a m e t e r name=” s m o o t h e r : p r e o r p o s t ( l e v e l 1 ) ”

t y p e =” s t r i n g ” v a l u e =” p r e ” />
<P a r a m e t e r name=” s m o o t h e r : s e l f o v e r l a p ( l e v e l 1 ) ”

t y p e =” i n t ” v a l u e =” 2 ” />

<!−− subdomain s o l v e o p t i o n s ( use AMG) −−>
<P a r a m e t e r L i s t name=” s m o o t h e r : s e l f l i s t ”>

<P a r a m e t e r name=” S e t D e f a u l t s ” t y p e =” s t r i n g ” v a l u e =”SA” />
<P a r a m e t e r name=” s m o o t h e r : t y p e ” t y p e =” s t r i n g ”

v a l u e = ” Chebyshev ” />
<P a r a m e t e r name=”ML o u t p u t ” t y p e =” i n t ” v a l u e =” 10 ” />

< / P a r a m e t e r L i s t>

< / P a r a m e t e r L i s t>

Figure 4.3. XML input for invoking multicore-aware smoothing
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Chapter 5

Interfaces to HPC Libraries

5.1 Introduction

In the course of improving parallel AMG performance, we investigated some third-party high-
performance libraries whose capabilities complement those in TRILINOS. In this chapter we dis-
cuss our experiences with these third-party high performance libraries and in some cases present
numerical results to demonstrate their performance within TRILINOS. We developed interfaces to
the Optimized Sparse Kernel Interface (OSKI) and Hierarchical Iterative Parallel Solver (HIPS).
Our interest in OSKI is to improve single-processor sparse matrix kernel performance, and in HIPS
to improve AMG multicore performance via true parallel incomplete factorization smoothers.

5.2 OSKI

In this section, we discuss a new interface within the TRILINOS package EPETRA [40] to the
Optimized Sparse Kernel Interface (OSKI) [53, 3, 53], and assess OSKI’s impact on TRILINOS

computations. EPETRA is a foundational package within TRILINOS that provides fundamental
classes and methods for serial and parallel linear algebra, e.g., point and block matrices, multivec-
tors, and graphs. All solver packages within Trilinos can use EPETRA kernels as building blocks
for both serial and parallel algorithms. Therefore, making improving EPETRA’s single processor
speed will improve the performance and efficiency of other packages that depend on it. The new
EPETRA/OSKI interface enables Trilinos and application developers to leverage the highly tuned
kernels provided by OSKI in a standardized manner.

In Section 5.2.1, we give an overview of the design and features of the OSKI package itself.
In Section 5.2.2, we discuss the design of the EPETRA interface to OSKI. In Section 5.2.3, we
discuss the results of performance tests run on the OSKI kernels within EPETRA. Tests were run
on individual OSKI kernels, and include small scaling studies. In Section 5.2.6, conclusions of
the work and results described in this section are presented. In Section 5.2.7, ways to add more
functionality to our implementation, and suggestions of things to test in new OSKI releases are
presented.
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5.2.1 OSKI High Level Overview

OSKI is a package used to perform optimized sparse matrix-vector operations. It provides both a
statically tuned library created upon installation and dynamically tuned routines created at runtime.
OSKI provides support for single and double precision values of both real and complex types,
along with indexing using both integer and long types. When possible it follows the sparse BLAS
standard [16] as closely as possible in defining operations and functions.

Before a matrix can use OSKI functionality, it first must be converted to the matrix type
oski matrix t. To store a matrix as an oski matrix t object, a create function must be called
on a CSR or CSC matrix. An oski matrix t object can either be created using a deep or shal-
low copy of the matrix. When a shallow copy is created, the user must only make changes to the
matrix’s structure through the OSKI interface. When a deep copy is created, the matrix that was
passed in can be edited by the user as desired. OSKI automatically makes a deep copy when any
matrix is tuned in a manner that changes its structure.

Routine Calculation
Matrix-Vector Multiply y = αAx+βy or

y = αAT x+βy
Triangular Solve x = αA−1x or

x = αAT−1x
Matrix Transpose Matrix-Vector Multiply y = αAT Ax+βy or

y = αAAT x+βy
Matrix Power Vector Multiply y = αApx+βy or

y = αAT px+βy
Matrix-Vector Multiply and y = αAx+βy and
Matrix Transpose Vector Multiply z = ωAw+ζ z or

z = ωAT w+ζ z

Table 5.1. Computational kernels from OSKI available in EPETRA.

OSKI provides five matrix-vector operations to the user. The operations are shown in Table
5.1. Hermitian operations are available in OSKI, but are not shown in the table since EPETRA

does not include Hermitian functionality. The last three kernels are composed operations using
loop fusion [21] to increase data reuse. To further improve performance, OSKI can link to a highly
tuned BLAS library.

OSKI creates optimized routines for the target machine’s hardware based on empirical search,
in the same manner as ATLAS [54] and PHiPAC [4]. The goal of the search is create efficient static
kernels to perform the operations listed in Table 5.1. The static kernels then become the defaults
that are called by OSKI when runtime tuning is not used. Static tuning can create efficient kernels
for a given data structure. To use the most efficient kernel, the matrix data structure may need to
be reorganized.

When an operation is called enough times to amortize the cost of rearranging the data structure,

42



runtime tuning can be more profitable than using statically tuned functions. OSKI provides multi-
ple ways to invoke runtime tuning, along with multiple levels of tuning. A user can explicitly ask
for a matrix to always be tuned for a specific kernel by selecting either the moderate or aggressive
tuning option. If the user wishes for OSKI to decide whether enough calls to a function occur to
justify tuning, hints can be used. Possible hints include telling OSKI the number of calls expected
to the routine and information about the matrix, such as block structure or symmetry. In either
case, OSKI tunes the matrix either according to the user’s requested tuning level, or whether it
expects to be able to amortize the cost of tuning if hints are provided. Instead of providing hints
the user may, periodically call the tune function. In this case, the tune function predicts the number
of future kernel calls based on past history, and tunes the routine only if it expects the tuning cost
to be recovered via future routine calls.

OSKI can also save tuning transformations for later reuse. Thus, the cost of tuning searches
can be amortized over future runs. Specifically, a search for the best tuning options does not need
to be run again, and only the prescribed transformations need to be applied.

OSKI is under active development. As of this writing, the current version is 1.0.1h, with a
multi-core version under development [52]. While OSKI provides many optimized sparse matrix
kernels, some features have yet to be implemented, and certain optimizations are missing. OSKI is
lacking multi-vector kernels and stock versions of the composed kernels. These would greatly add
to both OSKI’s usability and performance. The Matrix Power Vector Multiply is not functional.
Finally, OSKI cannot transform (nearly) symmetric matrices to reduce storage or convert from
a CSR to a CSC matrix (or vice versa). Both could provide significant memory savings. Thus,
performance gains from runtime tuning should not be expected for point matrices. An exception is
pseudo-random matrices, which may benefit from cache blocking.

5.2.2 Design and Implementation

In the design and implementation of the EPETRA OSKI interface the EPETRA coding guidelines
[29] were followed as closely as possible. In doing so, we ensured the consistency of our code with
the existing EPETRA code base, as well as its readability and maintainability. Finally, the EPETRA

interface to OSKI will likely be ported to Kokkos [41], and the interface’s design will make this
process easier.

In the design phase we focused on allowing the greatest amount of flexibility to the user, and
exposing as much of the functionality of OSKI as possible. In some places, however, OSKI func-
tionality is not exposed because there is not a corresponding EPETRA function. For example, OSKI
has a function that allows changing a single value in a matrix, but EPETRA does not. When two
copies of a matrix exist, as when the OSKI constructor makes a deep copy of the underlying data,
the corresponding EPETRA copy is guaranteed to contain the same data. Since EPETRA can only
change data values one row at a time, a point set function is not included in the OSKI interface.
Instead, we include a function to change a row of data within OSKI by overloading the EPETRA

function to change row data. When a single copy of the data exists, the EPETRA function is called
on the matrix. When both an OSKI and EPETRA matrix exist, both the matrix copies are modified
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to keep the data consistent. The EPETRA function is called once for the EPETRA version of the
matrix, and the OSKI matrix has its point function called once for each entry in the row.

When there are clear equivalent functions in OSKI and EPETRA, the OSKI function is designed
to overload the EPETRA function. In the cases where OSKI provides more functionality than EPE-
TRA, the interface is designed with two functions to perform the operation. The first function mim-
ics EPETRA’s functionality and passes values that eliminate the extra functionality from OSKI. The
second function exposes the full functionality OSKI provides. Also, as appropriate new functions
are added that are specific to OSKI, such as the tuning functions. Conversely, EPETRA functions
without any analogue in the OSKI context are not overloaded in the Epetra Oski namespace.

The interface is also designed to maintain robustness and ease of use. All
Epetra OskiMatrix functions that take in vectors or multi-vectors allow for the input of both
Epetra Vector or Epetra MultiVector objects, and Epetra OskiVector or Epetra OskiMultiVector
objects. The objects are converted to the proper types as necessary through the use of the lightest
weight wrapper or converter possible.

The implementation follows the idea of wrapping and converting data structures in as lightweight
a fashion as possible, to maximize speed and minimize space used. In addition, the implementa-
tion provides the user with as much flexibility as possible. For example, the user can specify as
many tuning hints as they like. Alternatively, the user can ask EPETRAto figure out as much as
it can about the matrix and pass along those hints to OSKI. Both options can be combined, with
user-specified hints taking precedence over automatically generated hints. Options are passed by
the user via Teuchos parameter lists [42].

Class Function
Epetra OskiMatrix Derived from Epetra CrsMatrix.

Provides all OSKI matrix operations.
Epetra OskiMultiVector Derived from Epetra MultiVector.

Provides all OSKI multi-vector operations.
Epetra OskiVector Derived from Epetra OskiMultiVector.

Provides all OSKI vector operations.
Epetra OskiPermutation Stores permutations and provides Permutation

functions not performed on a Epetra OskiMatrix.
Epetra OskiError Provides access to OSKI error handling functions

and the ability to change the default OSKI error
handler.

Epetra OskiUtils Provides the initialize and finalize routines for
OSKI.

Table 5.2. OSKI classes within EPETRA.

Finally, the design is broken into six separate classes. Table 5.2 shows the classes and provides
information about which classes each derives from, and what functions each contains. The design
is as modular as possible to allow for the easy addition of new functions, and to logically group
related functions together.
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5.2.3 Results

To assess the potential benefit of using OSKI in Sandia applications, we ran tests on representative
data and a variety of advanced architectures. For these tests OSKI version 1.0.1h was used. OSKI
runtimes were compared to the runtimes of the currently used EPETRA algorithms, in both serial
and parallel. In this section, we first present our test environment and methodology, and then
present the results of performance tests run comparing EPETRA to OSKI.

5.2.4 Test Environment and Methodology

Performance tests were run on two different machine architectures in serial and parallel. The first
test machine has two Intel Clovertown processors. The second test machine has one Sun Niagara-
2 processor. Machine specifications and compilers are shown in Table 5.3. On each machine,
Trilinos was compiled with widely used optimizations levels, and OSKI was allowed to pick the
best optimization flags itself.

processor #chips cores threads frequency L2 cache compiler
Clovertown 2 8 8 1.87 Ghz 4 M per 2 cores Intel
Niagara-2 1 8 64 1.4 Ghz 4 M per core Sun

Table 5.3. Test machines used for performance testing.

These machines were chosen for their diversity and potential for use at Sandia. The Clovertown
is one of Intel’s latest processors, and the Niagara is an example of an extremely parallel chip.

On each machine, tests were run on three matrices arising from Sandia applications. The
first matrix is from a finite element discretization within a magnetics simulation. The second is a
block-structured Poisson matrix. The third matrix is unstructured and represents term-document
connectivity. The data is from the Citeseer application. Table 5.4 gives some matrix properties.
Each matrix was able to fit within the main memory of each test machine. These matrices were

matrix rows columns nnz structure
point 556356 556356 17185984 nearly symmetric point
block 174246 174246 13300445 symmetric 3 by 3 blocks
Citeseer 607159 716770 57260599 unstructured point

Table 5.4. Test machines for EPETRA OSKI performance testing.

also used in a scaling study. Tests were run up to the total number of available threads that can be
executed simultaneously, on each machine.
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5.2.5 Performance Test Results

The serial results for each machine are shown in Figures 5.1 and 5.2 for four OSKI kernels: Ax,
AT x, AT Ax, and the two-vector multiplication y = Ax; z = Aw. The last operation is henceforth re-
ferred to as “2Mult”. In addition, Table 5.5 shows the speeds of EPETRA calculations as a baseline.
Since OSKI has no atomic versions of the composed kernels, the OSKI stock numbers represent
two separate matrix-vector multiply calls to OSKI. There is potential that the tuned composed
kernels are not performing optimally due to tuning to a non-ideal data structure, as is seen in the
tuning cost data later. Results for the matrix power kernel are unavailable due to a bug in the ker-
nel. Also results for the AAT kernel were excluded because EPETRA only stores matrices in CSR.
OSKI cannot convert CSR to CSC, which is needed to take advantage of these kernels in serial.
Finally, the direct solve kernel was not profiled, as it is not critical to many Sandia applications.

Figure 5.1. Relative performance of EPETRA and OSKI in serial on Clovertown.

Machine Ax AT x AT A 2Mult
Clovertown 220/227/55 150/154/43 178/183/48 178/184/48
Niagara 58.3/69.9/20.7 56/66.4/20.3 57.1/68.1/20.5 57.1/68.1/20.5

Table 5.5. EPETRA serial routine speeds in Mflops. Results are in the form point/block/Citeseer.

On the Clovertown, OSKI produced large speedups over EPETRA for all matrices in serial, as
shown in Figure 5.1. The stock kernels demonstrated speedups of 1.8 to 2.8. Tuning improved the
block matrices by about one third when compared to the stock kernels. The composed algorithms
demonstrated even more significant speedups of up to 5.5, when composing and blocking were
combined. Tuning did not improve the runtime of point matrices, except when a composed kernel
was used. In the case of the Citeseer matrix, a composed kernel resulted in either no performance
gain or performance degradation.

Figure 5.2 shows that on the Niagara, the stock OSKI and EPETRA kernels had roughly the
same performance Tuning for point matrices once again resulted in either no gains or slight losses.
Tuning for block matrices resulted in a one third to one half gain in speed. Again, composing
increased the speed of all kernels significantly, except for the Citeseer matrix, for which the OSKI
kernels where actually slower.

As expected, the serial tests show that the tuning of point matrices is counterproductive, except
when needed to use composed kernels. However, tuning of block matrices results in significant
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Figure 5.2. Relative performance of EPETRA and OSKI in serial on Niagara.

speedups through the reduction of indirect addressing. For the pseudo random Citeseer matrix,
tuning is never beneficial. This is probably due to either lack of cache-blocking in the composed
kernels and/or more random access, which create a greater number of cache misses. For structured
matrices, composing results in a 25% to 60% gain over the faster of the stock and tuned kernels.

Even if the tuning gains shown above are large, the amount of time it takes to tune a matrix at
runtime is important in determining whether tuning will result in performance gains. Tables 5.6,
5.7 and 5.8 show the cost of tuning and the number of matrix-vector calls needed to amortize that
cost for the point, block, and Citeseer matrices, respectively. The tuning and retuning costs are
expressed in terms of the number of matrix-vector multiplies that could be performed in the time it
takes to tune. Tuning cost is the amount of time it takes to tune a matrix the first time, and includes
time to analyze the matrix to determine what optimizations are beneficial. Retuning cost is the
amount of time it takes to tune the matrix if the optimizations to be performed are already known.
All comparisons are to the faster of the EPETRA and OSKI matrix-vector multiplies. The amortize
columns show the number of calls to the tuned kernel needed to realize tuning gains. When N/A is
listed in an amortize column, it is never better to tune because the tuned kernels are no faster than
the untuned kernels. We note that the tuning cost depends only on the matrix structure, not on the
matrix kernel to be performed.

Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 37.6 / 20.1 N/A 48 / 26 45 / 24
Niagara 22.1 / 12.7 N/A 56 / 33 40 / 24

Table 5.6. OSKI tuning costs for point matrix. Cost is equivalent number of matrix-vector multiplications.

Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 31.1 / 17.7 131 / 75 27 / 16 28 / 16
Niagara 22.5 / 14.1 86 / 54 22 / 14 21 / 13

Table 5.7. OSKI tuning costs for block matrix. Cost is equivalent number of matrix-vector multiplications.

In many cases, the tuned OSKI kernels are much more efficient than the EPETRA and OSKI
stock kernels. However, the data structure rearrangement required to create an OSKI kernel is non-
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Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 14.5 / 6.7 N/A N/A N/A
Niagara 11.5 / 5.2 N/A N/A N/A

Table 5.8. OSKI tuning costs for Citeseer matrix. Cost is equivalent number of matrix-vector multiplications.

trivial. The cost of tunings ranges from 11.5 to 37.6 equivalent matrix-vector multiplies. It can
require as many as 131 subsequent kernel applications to recoup the cost of initial tuning. However,
re-tuning costs are usually slightly over half the cost of the initial tuning, so saving transformations
for later use could be profitable. Block matrices require the smallest number of calls to recover
tuning costs, and when combined with composed kernels, this number drops even more. For point
matrices tuning the matrix-vector multiply is never profitable, but the tuning of composed kernels
can be profitable for structured matrices.

While serial performance is important to application performance, most scientific simulations
are run on parallel machines. The first level of parallelism is within a single node, which typically
contains one or two multicore processors. To test the scalability of our implementation of OSKI,
within EPETRA, we ran tests on each matrix on 1 to 8 cores of each machine and also on 1 to 8
threads per core on the Niagara.
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Figure 5.3. OSKI matrix-vector multiply strong scaling results.
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Figures 5.3(a)-5.3(c) show the strong scaling of the matrix-vector kernel for each matrix. Fig-
ure 5.3(a) shows that on the Clovertown that EPETRA has better scaling than OSKI. Table 5.9
shows, however, that the overall performance of OSKI is either comparable or better to that of
EPETRA. The better scaling for EPETRA comes from its slower performance in the single proces-
sor case, which allows for more improvement within a limited memory bandwidth situation. For
the point matrix, both EPETRA and OSKI improve significantly until each is running at about 735
Mflops on 4 cores. At this point, the calculations likely become memory bandwidth limited. With
added processing power, the speeds then improve to slightly under 800 Mflops. The block matrix
results show a similar pattern, with the OSKI block matrix remaining more efficient throughout.
The Citeseer matrix does not scale most likely due to the large amounts of data it needs to ex-
change, because its unstructured. Also it could not be run on 8 processors due to an increasing
memory footprint, perhaps due to exchanged data.

machine point block Citeseer
EPETRA/OSKI EPETRA/OSKI EPETRA/OSKI

Clovertown 798/782 810/1099 59.6/122
Niagara 1 thread/core 508/507 578/778 22.3/22.0
Niagara multiple threads/core 4767/4321 3447/4847 23.2/23.2

Table 5.9. EPETRA and OSKI maximum parallel matrix vector multiply speeds in Mflops.

Figure 5.3(b) shows that on the Niagara both the point and block matrix algorithms scale lin-
early with the number of cores. Essentially, there is enough memory bandwidth to feed each core.
As seen in Figure 5.3(c), adding more threads per core to the calculating power leads to approxi-
mately linear speedup for all matrices. This begins to tail off at 5 threads for block matrices, and
7 threads for point matrices. The Citeseer matrix once again does not scale and becomes too large
to run above 32 threads.

Scalability also matters when a matrix is being tuned. Figures 5.4(a)-5.4(c) show how well
each matrix scales on each machine in terms of tuning cost. Scaling is usually linear or slightly
better with the number of processors. This result is expected as tuning is a local computation with
no communication between processors. As seen in Figure 5.4(c), increasing the number of threads
per Niagara processor initially leads to improved performance, before dropping off at 6 or more
threads per processor. The dropoff is most likely due to threads competing for processor resources.
Results for the Citeseer matrix were not shown, as OSKI does not tune its matrix-vector multiply
kernel for the Citeseer matrix. Finally, note that the retune function demonstrates better scaling
than the same tune function in all cases.

In addition to strong scaling tests, we also ran a weak scaling test on the Niagara. We used the
block matrix from the 8 thread test case in Table 5.4. Tests were run on 1, 8, 27 and 64 threads.
Results are shown in Figures 5.5(a)-5.5(c). As seen in Figure 5.5(a), the OSKI tuned and untuned
matrix-vector multiplies both scale similarly to EPETRA’s matrix-vector multiply. Figure 5.5(b),
shows that the tuned composed kernels do not scale well. The same result was seen for the untuned
composed kernels. For these operations to be possible there is extra data copying in the wrapping
of the serial kernels, which could be the problem. There could also be inefficiencies in the code
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Figure 5.4. Scalability of OSKI tuning.
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in other places or resource contention on the processor. Figure 5.5(c) shows that re-tuning scales
better than tuning as the problem size grows.
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Figure 5.5. Weak scalability of OSKI on Niagara

5.2.6 Conclusions

Overall, OSKI can produce large speedups in sparse matrix computational kernels. This is espe-
cially true when the matrix is block structured or multiple multiplications are performed using the
same matrix. In some cases it can also produce large gains for matrix-vector multiplies involving
only a single matrix. However, OSKI is still missing some features, such as a multi-vector kernel
and the ability to tune matrices to make them symmetric. Both could produce large runtime gains.
Our EPETRA/OSKI interface has stubs to allow the use of these missing features as soon as they
become available in OSKI. Our experiments show that Sandia applications that make heavy use
certain sparse matrix kernels can benefit from the current version of OSKI. As new OSKI features
become available, its potential impact on other Sandia applications should increase.
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5.2.7 Future Work

For the current (1.0.1h) version of OSKI, a developer may want to implement the solve function
and run more weak scalability or other parallel tests to determine why the composed kernels do not
scale well. For a newer version of OSKI, a developer may want to test any new tuning features, the
matrix power kernel, as well as any other new functions. Finally, we recommend any new version
of OSKI be tested on the Barcelona and Xeon chips, as we were never able to successfully install
OSKI on these architectures. The Barcelona is of particular interest, as it is the processor found in
the center section of Red Storm.

5.3 HIPS

In this section we discuss a new interface in TRILINOS/IFPACK to a subset of the functionality
of the HIPS library (formerly PHIDAL) developed at INRIA Bordeaux - Sud Ouest and made
available through the LGPL-compatible CeCILL-C license. [19]. The HIPS functionality we have
made available through IFPACK is focused predominantly on their multistage parallel incomplete
factorization routines. Prior to the incorporation of an interface to HIPS, IFPACK’s incomplete
factorization methods would disregard off-processor connections. With HIPS accessible through
IFPACK, such dropping is no longer required.

5.3.1 HIPS Overview

The core HIPS functionality made available through IFPACK is a multistage ILUT algorithm [28].
The core insight behind HIPS is to exploit a “hierarchical” graph decomposition in a fashion in-
spired by cross points in domain decomposition. The algorithm begins with a graph partitioning
(with overlap 1) by either METIS or SCOTCH [30, 38]. Interfaces to parallel graph partitioners
like ParMETIS or PT-SCOTCH [31, 37] have not been integrated into HIPS as of the writing of this
document, so the initial partitioning occurs in serial. The overlap of this initial partitioning serves
as a separator for the lower levels and the algorithm continues recursively. Computational experi-
ments with PHIDAL, HIPS’ predecessor, have yielded reasonable scalability up to 256 processors
[28].

5.3.2 IFPACK-HIPS Interface

Like many other preconditioners in IFPACK, Ifpack HIPS inherits from the Ifpack Preconditioner
class. It takes a Epetra RowMatrix in the constructor and is driven by a TEUCHOS ParameterList
which exposes a select subset of the HIPS functionality to IFPACK users. Specifically, users can
control drop tolerances, optimizations for symmetry, output levels and special treatment for ma-
trices with multiple dofs per node. The only complication is that the user must call the proper
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initialization (and cleanup) routines for HIPS outside of the Ifpack HIPS class, since HIPS uses
it’s own pre-allocated static storage to store it’s internal data, and assigns each instance of HIPS an
id handle to access the HIPS storage. Since users may wish to have multiple copies of HIPS set up
at any point in time, such allocations and cleanup cannot be handled in the Ifpack HIPS class.

5.3.3 Experiments

We consider the same model convection-diffusion problem discussed in Section 4.0.4. Again we
consider an ε = 10−8 convection parameter and test on the 16 core per node “glory” Linux clus-
ter. For testing purposes we using non-symmetric smoothed aggregation (NSSA) multigrid with
IFPACK’s ILU(0) as a smoother on all levels except for level 1 and the coarsest level. On level 1
we use a domain-decomposition smoother and the on the coarsest level we use LU. As previously,
we study the problem in a weak scaling sense.

Figure 5.10 shows results where we do a single pre-smoothing sweep on each level of the hier-
archy. We compare using a single smoothing sweep of domain-decomposed ILU(0) from IFPACK,
with a single smoothing sweep of domain-decomposed HIPS (with a drop tolerance of 5e−3) on
level 1. Since HIPS does not drop off-core entries, we have each node serve as a additive Schwarz
domain. As for the ILU(0), we have each code serve as an additive Schwarz domain. From these
results we can see quite clearly that while on a single node these methods are comparable, the
node-level HIPS smoothing converges on larger problems, while the ILU(0) does not.

Number of Glory Nodes
Method 1 4 9 16 25 36 49 64
HIPS(node) 53 80 112 150 181 229 268 301
ILU 52 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 5.10. GMRES iterations for NSSA using one smoothing sweep with additive Schwarz (either node-level HIPS or
IFPACK’s ILU(0)) on level 1 for a convection-diffusion problem on an orthogonal grid with diffusion coefficient ε = 1e−8.
Asterisks (∗) indicate inability to converge in less than 500 iterations.

Figure 5.11 shows similar results to Figure 5.10, only we do two smoothing sweep at each
level. With respect to level 1, we do one sweep of additive Schwarz with two HIPS/ILU(0) sweeps
inside the subdomain. Again we note that the HIPS performance is better than IFPACK’s ILU(0)
in terms of iterations, but as Figure 5.12 shows, HIPS is usually slower than IFPACK on smaller
problems. The greater scalability of HIPS shows itself after about 16 cores, where the ILU(0)
method starts to degrade in performance rapidly.

5.3.4 Conclusions

In summary, the implementation of a HIPS interface in IFPACK has provided an important new fea-
ture to the TRILINOS, namely the ability to do parallel incomplete factorizations without dropping
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Number of Glory Nodes
Method 1 4 9 16 25 36 49 64
HIPS(node) 28 53 76 94 125 142 160 179
ILU 32 57 84 117 189 228 ∗ ∗

Table 5.11. GMRES iterations for NSSA using two smoothing sweeps with additive Schwarz (either node-level HIPS or
IFPACK’s ILU(0)) on level 1 for a convection-diffusion problem on an orthogonal grid with diffusion coefficient ε = 1e−8.
Asterisks (∗) indicate inability to converge in less than 500 iterations.

Number of Glory Nodes
Method 1 4 9 16 25 36 49 64
HIPS(node) 2.0 3.9 7.8 9.8 15.8 21.3 24.2 32.2
ILU 1.3 2.4 5.8 8.3 18.1 26.4 ∗ ∗

Table 5.12. Solve times in seconds for NSSA using two smoothing sweeps with additive Schwarz (either node-level
HIPS or IFPACK’s ILU(0)) on level 1 for a convection-diffusion problem on an orthogonal grid with diffusion coefficient
ε = 1e−8. Asterisks (∗) indicate inability to converge in less than 500 iterations.

off-processor entries. HIPS is also a natural match for the domain decomposition-based node-level
parallelism discussed in Chapter 4, as incomplete factorizations tend to perform well in modestly
parallel conditions. We have also demonstrated that such a preconditioner can be more effective
than a similar technique based on IFPACK’s ILU(0) routine for particularly challenging convection-
diffusion problems.
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Chapter 6

Conclusion

In this report we have summarized the results of our LDRD, ”Highly Scalable Linear Solvers on
Thousands of Processors.” We have improved existing multigrid methods as well as developed new
algorithmic capabilities. We have made significant improvements in compute intensive kernels
used during the AMG setup. Numerical results show that for block structured matrices these
kernels can result in significant speedups over the existing production kernels. We have extended a
geometric two-dimensional multigrid algorithm to a two- and three-dimensional algebraic method.
We have shown how this algorithm can be interpreted in a domain-decomposition context. Finally,
we have developed a smoother for multicore architectures, deployed this smoother in the TRILINOS

framework, and shown that it can be effective on large-scale problems.
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[19] J. Gaidamour, P. Hénon, and Y. Saad. Hips user’s guide. Available from: http://hips.
gforge.inria.fr.

[20] D. B. Gannon and J. R. van Rosendale. On the structure of parallelism in a highly concurrent
PDE solver. Journal of Parallel and Distributed Computing, 3(1):106–135, 1986.

[21] G. R. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array contraction.
In 1992 Workshop on Languages and Compilers for Parallel Computing, number 757, pages
281–295, New Haven, Conn., 1992. Berlin: Springer Verlag.

[22] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, M. G. Sala, and I. Karlin. ML developer’s
guide. 2007.

[23] M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, and M.G. Sala. ML 5.0 smoothed aggrega-
tion user’s guide. (SAND2006-2649), 2006.

[24] A. Greenbaum. A multigrid method for multiprocessors. In S. McCormick, editor, Proceed-
ings of the Second Copper Mountain Conference on Multigrid Methods, volume 19 of Appl.
Math and Computation, pages 75–88, 1986.

[25] W. Hackbusch. Multigrid Methods and Applications, volume 4 of Computational Mathemat-
ics. Springer–Verlag, Berlin, 1985.

[26] W. Hackbusch. A new approach to robust multi-grid methods. In First International Confer-
ence on Industrial and Applied Mathematics, Paris, 1987.

[27] W. Hackbusch. The frequency decomposition multigrid method, part I: Application to
anisotropic equaitons. Numer. Math., 56:229–245, 1989.

58

http://doi.acm.org/10.1145/77626.79170
http://hips.gforge.inria.fr
http://hips.gforge.inria.fr
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