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Abstract

A key aspect of decision making is determining when errors or conflicts exist in
information and knowing whether to continue or terminate an action. Understanding
the error-conflict processing is crucial in order to emulate higher brain functions in
hardware and software systems. Specific brain regions, most notably the anterior
cingulate cortex (ACC) are known to respond to the presence of conflicts in information
by assigning a value to an action. Essentially, this conflict signal triggers strategic
adjustments in cognitive control, which serve to prevent further conflict. The most
probable mechanism is the ACC reports and discriminates different types of feedback,
both positive and negative, that relate to different adaptations. Unique cells called
spindle neurons that are primarily found in the ACC (layer Vb) are known to be
responsible for cognitive dissonance (disambiguation between alternatives). Thus, the
ACC through a specific set of cells likely plays a central role in the ability of humans to
make difficult decisions and solve challenging problems in the midst of conflicting
information. In addition to dealing with cognitive dissonance, decision making in high
consequence scenarios also relies on the integration of multiple sets of information
(sensory, reward, emotion, etc.). Thus, a second area of interest for this proposal lies in
the corticostriatal networks that serve as an integration region for multiple cognitive
inputs. In order to engineer neurological decision making processes in silicon devices,
we will determine the key cells, inputs, and outputs of conflict/error detection in the
ACC region. The second goal is understand in vitro models of corticostriatal networks
and the impact of physical deficits on decision making, specifically in stressful scenarios
with conflicting streams of data from multiple inputs. We will elucidate the mechanisms
of cognitive data integration in order to implement a future corticostriatal-like network
in silicon devices for improved decision processing.
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I. Introduction

According to the conflict-monitoring model, information processing conflict registered
in the anterior cingulate cortex (ACC) triggers the prefrontal cortex to reduce conflict
susceptibility. This conflict monitoring model suggests that control is modulated
through a system situated in the ACC, which constantly extracts from ongoing
processing information an abstract index of information conflict [1]. It has been
determined that a higher value of this index triggers regulative control sites in the
prefrontal cortex to boost activity. The goal of this study is to determine which
prevailing ACC model is the most relevant for implementation into a solid-state format
such as a neuromorphic computational process.

Neuroimaging studies show that the anterior cingulate cortex (ACC) is critically involved
in cognitive control [2]. Moreover, neuroimaging literature has demonstrated that the
ACC is activated during a wide range of tasks that involve response conflict, such as the
Stroop [3], the Eriksen [4] and the go/no-go [5] tasks. Of the models investigated in this
study, most were based on idea that the ACC detects errors as discrepancies between
actual and intended events [6]. We refer to these models as the conventional ACC
conflict-control loop model. Other models proposed that the ACC may detect conflict
between mutually incompatible response processes such as incorrect versus correct
responses [2]. Though the models examined account for most of the ACC behavior, it
remains unclear how the brain learns to exert cognitive control over behavior to resolve
conflicts. A more recent computational model suggests that the ACC assigns a prediction
of error likelihood [7]. This model specifically predicts that the ACC response to a given
task will be proportional to the perceived likelihood of an error.

A well cited example of conflict-monitoring at work is whether the current trial n is
impacted by the result of trial n-1. Based on this line of thought, any conflict on trial n-1
should tighten the controls on trial n. The type of trial appropriate from cognitive
control is the Flanker test, which measures congruency (i.e. attention span) over a set of
trials. The idea of the n-1 trials leading to tighter controls on the subsequent trials
seems to be invalid according to a recent study [8]. The primary finding was reduced
activation on incongruent trials than on congruent trials, suggesting that the ACC does
not self regulate but merely registers the conflict.

The ACC is also known to communicate with the lateral region of prefrontal cortex (PFC)
which has been studies extensively using neuroimaging [2] and neural network models
[1]. Conflict can be thought of as the simultaneous coactivation of incompatible
responses, such as trying to name the ink color of the word red written in green ink as in
the Stroop test. In some cases conflicting tasks generate inappropriate responses,
which require cognitive control to mediate the source of the conflict. The early models
used to assess conflict monitoring were based on a structured conflict-control loop in
Figure 1, where the ACC strictly serves as a conflict monitor. This view is in debate as
will be discussed in the following sections.
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Figure 1. Example of a computational model of an interference task. When relevant
(color) and irrelevant (word) stimulus dimensions are incongruent and activate con-
Nicting responses, the anterior cingulate cortex (ACC) detects this conflict and engages
attentional control mechanisms in the dorsolateral prefrontal cortex (DLPFC).

Figure 1 Conventional conflict-control model. [9]

The commonly accepted conflict control theory of the ACC was originally based on data
obtained from speeded response tasks and has received reasonable validation from
fMRI and lesion studies. Of significance is that when the ACC is lesioned, animals have
difficulty using preceding trial history and fail to work as hard for rewards. This suggests
that the conflict monitor, namely the ACC is unable to mediate the task conflict. Thus,
the neural region cognitive control is thought to comprise an evaluative component
located in the anterior cingulate cortex (ACC) and an executive component in the
prefrontal cortex (PFC). The control mechanism itself is thought to be mainly local,
triggered by response conflict (monitored by the ACC) and involved in the allocation of
executive resources (recruited by the PFC) in a trial-to-trial fashion. In the following
discussion we review three widely cited models and discuss their implementation in a
neuromorphic format.

I1. Results and Discussion
A. Computational Models of ACC-PFC

I. Choice Discrimination Model (Conflict Type Model)

Reference: [10]
In this model the three distinct speeded response tasks (two-alternative forced choice,
go/no-go, and oddball) were examined. The idea of these tasks was to isolate the



common factor of stimulus frequency, which modulates the degree of conflict present
on any given trial. Stimulus frequency could alter the global response and/or the local
sequential history or both. The neural network model in Figure 2 exhibited the
following characteristics:

1) More difficult to respond appropriately to low-frequency events.

2) For task performance, the conflict index from the model closely resembled the
frequency-related pattern of ACC activation.

3) The sequential history task study revealed that the model demonstrated that
performance on two-response tasks can affected by subtle differences in
sequential history.

4) The local sequential history rather than global frequency modulates the ACC
activity in both one and two response tasks.

5) Direct detection of conflict leads to control adjustments.

6) Premature activation did not generate incorrect responses since the network can
recover from an error under the one task situation.

Model Architecture

Strategic
Priming Unit

Control
Adjustment

e (70 @

R "
Deticion. Conflict
Detection
(ACC)
Input

Figure 2. Schematic diagram of model architecture. The network consisted of three feed-
forward lavers with lateral inhibitory connections at the response decision and response ex-
ecution lavers, Conflict was measured at the decision layer, and modulated activity in the de-
cision and execution lavers via a strategic priming unit. Repetition priming and alternation
priming (not shown) were also applied to the decision and execution layers.

Figure 2 Neural network model of the ACC implemented by [10].

This model extended the conventional ACC conflict-control model. This was
accomplished by using three different tasks (e.g. go/no go, oddball, two-alternative
forced choice) to tap a common factor, namely the stimulus frequency that modulates
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the degree of conflict present in a given trial. Neuroimaging data shows significantly
increased ACC activity for low-frequency stimuli, relative to high-frequency stimuli [11].
This model accurately predicted this behavior in the task performance trials by closely
resembling the frequency-related patterns of ACC activation [10].

II. Extended Time-Scale Model

Reference: [12]

The interaction of the PFC and ACC regions has largely been performed using neural
network models in terms of a single conflict-control loop mechanism [2]. In the case of a
single control-loop the performance of a certain task leads to detection of a response
conflict, which then leads to an increase in cognitive control, resulting in conflict
resolution. One neural network model in particular made significant improvements by
adding an additional control loop to model the interaction between the ACC and PFC
[12]. A key aspect of this model was the addition of sustained active maintenance of
task-set information contained in a separate model of the PFC which was driven by a
long-time scale conflict on the order of several minutes. The goal of this new model was
to resolve discrepancies between empirical data on human behavior and brain
activation. The task for this neural network model is the color naming Stroop test.
Briefly, the task requires verbally responding with the name of the font color when
presented as a word. Examples include “GREEN” written in green designate a congruent
trial, DOG written green is neutral and “RED” written in blue is incongruent. In Figure 3
a neural network model was constructed to capture the physiological pathways of the
ACC-PFC regions. In the model connectivity strength between the “word” and
“response” were increased over the connection with the “color” layer to capture the
asymmetrical behavior.

............
.....
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Fig. 1. A model of dual mechanisms in cognitive control in the color-naming Stroop test. Excitatory conneclions (arrowheads) impinging on units
represent unil-specific inputs: connections impinging on network layers (represented by rectangles) represent inputs to the entire layer. Inhibition (circle-
heads) is also present within each layer. For detailed description and equations see main text and Table 1.

Figure 3 Large scale connectionist network of interaction between ACC and PFC. [12]. This model is an extended
form of the one developed by [1].

This model had the following features: learning was absent, lateral inhibition within
each layer ensured competitive dynamics, and noise was present. The Hopfield energy



was calculated for conflict across a short time-scale with a second conflict set for a long
time-scale. The long time-scale conflict parameter remained constant for each trial and
was computed as an average of previous short time-scale conflicts. This long time-scale
conflict input had the tendency to exert more control following high levels of
experienced conflict. A key issue of debate is whether the level of experience impacts
subsequent trials and therefore models with this behavior may not be physically
relevant under certain cases. For analysis results from trials developed for this model
were compared with brain imaging taken from fMRI. This model appears to capture
several notable behaviors of the ACC-PFC region:
1) Local and sustained experience of conflict during performance might lead to a
shift in the neural mechanisms of cognitive control engaged to perform the task.
2) Since individuals were not aware of changes in the trials, the adjustments had to
occur implicitly without conscience intervention.
Yet this model lacks a learning element that is characteristic of all other models. It
seems apparent that this model may only capture a small subset of the ACC behavior.
Key issues with the conflict model include:
1) Fails to show how the ACC contributes to decision making.
2) There is no mechanism for context-sensitive learning which is critical for
adaptive behavior.

II1. Error-Likelihood Model

Reference: [7, 13]

In this model the hypothesis is that the ACC assigns a prediction of error likelihood and
that the response of the ACC to a given task condition is proportional to the perceived
error likelihood. The goals were to examine how ACC representations might develop
through experience and explicitly investigate the implications of this hypothesis.
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A Error-Likelihood Model
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Figure 4 Error-Likelihood model versus the conflict model [7]. Only the error-likelihood model predicts effects of
high-error—versus low-error-likelihood conditions in the low-conflict go (thick green versus thin green lines) as well
as high conflict change conditions (thick red versus thin red lines).

This model has the following characteristics:

1. Substantiates support for error driven ACC function in which the ACC learns to
signal from the magnitude of its activity, which conflict based models have
not yet attempted to do.

2. The predicted likelihood of an error occurs in response to a given task
condition.

3. Possibly able to recruit cognitive control to match predicted demand.

4. Consistent with the idea that a dopaminergic training signal in ACC is involved
in a common role in reinforcement learning and cognitive recruitment.

5. ACC serves a general function of detecting and avoiding risk.

The error-likelihood model appears to capture a majority of the observed behavior for
the ACC region and offers specific improvements over the conflict model. One major
drawback is that recent experiments fail to find effects on ACC activation from cues that
signal error likelihood. Yet a clear advantage of this model is the ability to account well
for learning effects, a behavior that is lacking in the conflict-control loop models.

IV. The Role of the ACC in Anxiety Processing

The ACC region of the brain plays a critical role in the processing of error and conflict
information. However, more recently the ACC has been involved in affective and anxiety
processing [14]. For example, individuals with anxious behavior showed altered biases
when attempting to disambiguate affective information. In this case the appraisal task
was to assess the emotional states of faces with specific emotional expressions. In
particular, anxiety prone individuals activate the dorsal ACC more (and the ventral ACC
less) during decision-making in the context of affective ambiguity, and the amount of
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activation in the dorsal ACC relates to the bias in the capacity to detect facial
expressions [14]. This behavior of the ACC may be interesting to implement in a solid-
state computational model given the activation levels in different parts of the ACC.

B. Neuromorphic Models

Neuromorphic circuits are solid-state implementation of the biological systems in a
silicon-chip. In this case the neuron behavior is based on physiological recordings that
are modeled using differential equations. In this formalism the ion-channel behavior,
synapse location, distribution, spike rate, connectivity, and overall organization are
represented by an analogue system implemented in silicon transistors. By operating the
transistors in a sub-threshold state, power dissipation levels are now compatible with
very large scale integration. Using conventional CMOS technology, scalable
architectures of neural networks have been developed that operate as bidirectional
associative memories (BAM) [15]. The scalability depends on the physical behavior that
can be captured by a computational element (i.e. transistors). An example of
implementing neurons in VLSI is shown in Figure 5. This early study was aimed at
determining the computational penalty associated with using several transistors to
perform neural-based computations.

TABLE 1
COMPARISON OF ASSOCIATIVE MEMORY MODELS
Hopfield Net | 2-Layer BAM | 3-Layer BAM |
Neurons 64 64 128 Synapse
Synapses 4032 2048 4096 =
Memory (Kbits) 28 6 2 -—
Inefficiency T 3 1 "og
CE's 64 32 64
Neon-thresholding neuron
€
—] —
a) b)

Figure 5 Implementing neurons in VLSI. a) Efficiency of Implementation in VLSI CE: computing element that can
perform a multiplication or addition operation. Inefficiency is defined as hardware bits per information bits, b)
Simple synthetic neural circuit. The synapses are programmable transconductances and the capacitance served as
interconnects. These neurons are thresholding and nonthresholding neuron. A bias circuit allows the current
levels to be externally programmed.

These elements in Figure 5b can be combined to implement the three layer architecture

of a BAM [15] as shown in Figure 6.
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Figure 6 Three layer BAM circuit for neural chip design.

Using these constructs for neurons, cortical pyramidal cell have been modeled in silicon.
The circuit consisted of an n-type current carrier and a p-type winner-takes-all (WTA)
circuit. The WTA architecture selects one node out of many through competition
mechanisms that depend on the amplitude of the architecture input signals. These
circuits are useful optimizing power consumption. In this case, the WTA circuit current
conveyors compete for current supplied to a common line. When a WTA cell and
current conveyor feed each other, their current buffering devices, M1 and M2 act as
common source amplifiers. The result is an unstable positive feedback loop and Xy and
X, go to the voltage rails. The additional transistor prevents the device from entering
the linear range by driving node Xy to maintain saturation of the buffer current (Figure
7).
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through node X, and a p-type WTA cell realizes lateral inhibition through node X, The circuit symbol includes
the current conveyor's control and supply nodes and the WTA’s input, as well as the communication nodes.

Figure 7 Circuit for cortical pyramidal cell [16].

Rather than implementing abstract neural networks that may only partially resemble a
physical process, neuromorphic systems are hardware devices, containing analog
circuits that attempt to model physical processes at the device physics level. In the past
several years dedicated neuromorphic circuits have been constructed for various
biological processes. Recent neuromorphic studies range from cochlear implantable
processors [17], massive parallel networks of integrate and fire neurons [18], speech
recognizers, sonar chips based on bat echolocation, and silicon retinas [19].

I. Communication across the Chip

The strategy used by neuromorphic devices to communicate analog signals across chip
boundaries uses an asynchronous communication protocol. Analog signals are
converted into streams of non-clocked digital pulses (spikes) and encoded using pulse-
frequency modulation (spike rates). This method is called address-event representation
(AER). In AER, each analog element is assigned an address. When a spiking element
generates a pulse its address is instantaneously put on a digital bus using asynchronous
logic. Address events are the digital pulses written to the bus. Systems containing
multiple AER chips can be constructed by implementing special purpose off—chip
arbitration schemes

II. Neuromorphic Learning Methods

While mean rate Hebbian learning algorithms are difficult to implement using analog
circuits, spike-timing-based learning rules map directly onto silicon [20]. A promising
class of spike-driven learning rules that is particularly well suited to VLS| implementation
is the one based on the spike-timing dependent plasticity (STDP) mechanism [21]. In
STDP the precise timing of spikes generated by the pre and postsynaptic neurons shape
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the synaptic efficacy. If a presynaptic spike arrives at the synaptic terminal before a
postsynaptic spike is emitted, within a critical time window, the synaptic efficacy is
increased. Conversely, if the postsynaptic spike is emitted before the presynaptic one
arrives, the synaptic efficacy is decreased. Several modeling studies have developed
learning algorithms based on STDP, and demonstrated how systems that use these
types of algorithms can carry out complex information processing tasks [22].

III. Advanced Integrate and Fire Models

Generally, VLSI I&F neurons integrate presynaptic input currents and generate a voltage
pulse when the integrated voltage reaches a threshold. A very simple but influential
circuit implementation of this model is the “Axon—Hillock.” In this circuit, an integrating
capacitor is connected to two inverters, a feedback capacitor, and a reset transistor
driven by the output inverter. The Axon—Hillock circuit is very compact, comprising only
six transistors and two capacitors, but it has a major drawback: it dissipates significant
amounts of power. An example of an I&F circuit optimized with respect to power
consumption in shown in Figure 8. This circuit is optimized for power consumption and
implements spike-frequency adaptation as well as a tunable refractory period, and
voltage threshold modulation [18].
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Fig. 2. Circuit diagram of the 1&F neuron. See Section 111-A for a detailed deseription of circuit operation.

Figure 8 Advanced integrate and fire model low power requirements and tunable features [18].

IV. Neuromorphic Model of ACC

A neuromorphic model of the ACC requires a complete paradigm shift from the neural
network models discussed in the previous sections. The primary reason is that the
neural network lack physical detail as compared to their intended biological
counterparts. Though these models have been widely successful predicting the
behavior of the ACC at several levels, including trial-to-trial learning and adaptive
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processing, the physical model of detailed connectivity at the neuron level is lacking.
Neuromorphic models inherently demand a more detailed model of the neuron type,
synapse connectivity, and process control compared to their neural network cousin. In
contrast, a detailed physical model may not be necessary given the success of neural
network based approaches, provided the key functional elements are captured in the
neuromorphic model. One aspect of this project that makes the feasibility a reality is
that the current models of the ACC are control-loop or error driven based. This type of
error-driven behavior has been previously demonstrated in neuromorphic models [17,
18].

A control-loop model would be an excellent starting point for a neuromorphic approach.
Moreover, key technologies for neuromorphic chip implementations have been
developed and are suitable for immediate use. Though these chips are largely based on
integrate-and-fire type neurons, they are able to capture a large number of physical
effects. Neuromorphic chips (CMOS) are available with imbedded training algorithms,
USB connectivity, and software control to configure the problem. The issue of whether
it can be implemented is not as critical as to whether the model represents physical
brain function. From the previous discussion, though ACC neural network models are
clearly not physical, they capture the primary behavior of the ACC conflict control
learning mechanism.

C. Patterning, Topographical, and Organizational Methods for
Neural Cell Cultures

I. Introduction

We have focused a portion of this LDRD work on developing a new strategy for
organizing living cells into pre-defined arrangements. This technique utilizes buried
microfluidic channels in glass substrates that are selectively coated with a molecule that
promotes cell attachment. Large cell attachment centers allow cells to attach to the
substrate at specific locations, and narrow microfluidic channels connected to these
structures permit outgrowth of processes (axons and dendrites) from the cells. The
channels also contain pores in the top surface that permit diffusion of medium/reagents
to the confined cells. We present evidence that neurons can be effectively guided and
directed on these substrates, thus this technique presents a new method for guiding
cells using both chemical and topographical cues with an improved capability of long-
term guidance given the increased level of confinement.
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II. Previous Work in the Literature

There is an extensive history
in the literature for efforts
aimed at utilizing
microfabricated structures
(b) ) to guide cells, including
neurons. Early work by
Britland et al. demonstrated
the use of topographical
and chemical guidance cues
© @ ; for guiding nerve cells [23].
m Recent work by Claverol-
Tinture et al. [24]
demonstrated the use of
@ ' w _ (h) silicone elastomer
— . W |  microfluidic channels for
guiding neurons towards
Figure 9 Fabrication process for the buried microfluidic cell guidance cues. recording microelectrodes
embedded in the substrate.
Similar approaches have been developed using structures of agarose gel [25], as well as
grooves etched into glass substrates [26] and patterned resist [27]. Heuschkel et al.
described a method of creating buried microchannels for guiding neurons in pre-defined
locations [28].

(a) ()

I11. Device Operation

The work presented here is unique and novel in its approach, finished structure, and
capabilities. Figure 9 shows a schematic of the fabrication process. Initially, fused silica
wafers (Figure 9a) are coated in low-stress LPCVD silicon nitride (b). This is a conformal
coating that coats the entire wafer, and this material is highly resistant to hydrofluoric
(HF) acid which is used to etch the channels later in the processing. The next step is to
spin photoresist (c) and then pattern the photoresist with a mask that contains a series
of small holes (d). These holes are then transferred into the silicon nitride layer with a
CF4 reactive ion etch (e). The next step is to etch the substrate in buffered HF (f), a
process which leaves the photoresist and silicon nitride materials intact and removes
underlying glass material from the substrate. The spacing of the holes in the silicon
nitride layer is crucial to forming buried channels, as the BHF etch is isotropic and
closely spaced holes will then merge to form continuous buried microchannels with lids
that contain the original holes. The remaining holes will serve as perfusion orifices to
allow medium and nutrients to diffuse to growing cells within the buried channels.
These pores permit waste to diffuse away from the cells and prevent it from being
trapped in close proximity to the cells. After thorough rinsing, the substrate was
subjected to glow discharge plasma to increase hydrophilicity to prepare for poly-L-
lysine deposition. The substrate is immersed in a poly-lysine solution (1 mg/ml in borate
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buffer) for 4 hours to overnight (g). The final step is to rinse the substrate in clean buffer
and water, and then acetone, isopropanol, and water to remove the photoresist. This
leaves poly-lysine only on the surfaces within the channels. Larger holes (15-20 um in
diameter) in the silicon nitride layer are placed adjacent to these buried microchannel
features to allow cell bodies to attach and permit axon/dendrite outgrowth along the
buried channels. Figure 10 shows a bright-field image of a complete buried guidance cue
feature with 15 um wide cell attachment sites. As mentioned previously, these sites are
open at the top and allow cells to attach to the bottom of the substrate. This device was
BHF etched for 22 minutes to allow pore features to connect and create continuous
buried channels. Figure 10b shows an example of a device with 6 pores that were not
completely etched all the way through the silicon nitride layer. The pore features are
visible (since they are inadvertently partially etched into the nitride) while the undercut
regions are not visible as in the nearby pore features. Figure 10c shows an SEM image of
a cross-section of a buried channel. The 1 um pore features produce approximately 3.5
um wide undercut buried channels during a 22 min BHF etch. The silicon nitride layer is
approximately 250 nm thick and readily withstands the BHF etch. Figure 10d is a cross-
section showing the intersection of three buried channels with the cell attachment
feature.

Figure 10 (a) Buried guidance cue features showing the cell body attachment
site and neurite outgrowth features. (b) Example of a set of incomplete
features. (c) Cross-section of a buried channel at the location ¢ shown in (a).
(d) Cross-section across three channels at the location d shown in (a).

Primary hippocampal neurons have been cultured on these substrates with moderate
success. Figure 11 shows examples of cells that have attached and extended processes
along the buried guidance cue features. Samples were fixed after six days of culturing.
Scanning electron microscopy (SEM) shows evidence that some of the processes are
entering the buried channels and are guided along the top surface of the features.
Additional guidance cue designs have been developed to promote the connection
between multiple neurons guided by interconnected buried features.
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Figure 11 (top) Fluorescence images of neurons grown on the buried channel
guidance cue features. (bottom) Scanning electron microscope images on
neurons growing on the substrates, showing evidence of cell processes entering
the buried channels.

II1. Conclusions

Based on this review, all the existing models of the ACC were found to be neural
network implementations. The major differences in the models were the type of the
signals used to represents perceived conflict. The well established models are based
conflict-control loop theory of the ACC that suggest trial history impacts level of conflict.
More recent models argue that the conflict models fail to account for learned behavior
[7, 13], whereas the conflict-model proponents argue that there is a lack of
experimental data to support error likelihood models. Despite these differences in the
ACC models, there is a sufficient understanding of the ACC to model the primary
conflict-control behavior. To implement the ACC as a neuromorphic system would
require training sets similar to those used in neural networks in the form of congruent,
incongruent, neutral, and go/no go type tasks. We expect the primary challenges for
success would be translating the neural network equivalents into the neuromorphic
chip, either as differing neuron types or altering synapse functionality. A clear benefit of
the neuromorphic approach is a more physical representation of the ACC could be
created. Clearly, the flexibility or analogous plasticity inherent to neuromorphic chips
would be an ideal media to model the behavior of the ACC.
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