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Abstract 
 
Mainstream cryptographic hashing algorithms are not parallelizable. This limits their speed and they are 
not able to take advantage of the current trend of being run on multi-core platforms. Being limited in 
speed limits their usefulness as an authentication mechanism in secure communications. Sandia 
researchers have created a new cryptographic hashing algorithm, SANDstorm, which was specifically 
designed to take advantage of multi-core processing and be parallelizable on a wide range of platforms. 
This report describes a late-start LDRD effort to verify the parallelizability claims of the SANDstorm 
designers. We have shown, with operating code and bench testing, that the SANDstorm algorithm may be 
trivially parallelized on a wide range of hardware platforms. Implementations using OpenMP 
demonstrates a linear speedup with multiple cores. We have also shown significant performance gains 
with optimized C code and the use of assembly instructions to exploit particular platform capabilities. 
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1 Introduction 
Cryptographic hashing is the workhorse of authentication services provided by cryptography and is 
required in almost all secure data transactions. The speed in which data authentication can be done plays a 
significant role in the viability of high-speed, secure communications. Since the clock speed of 
microprocessors has leveled off in recent years, the speed in which the authentication mechanisms can be 
accomplished is also limited. The path to increased computing performance is with multiple processors 
(cores) running simultaneously. Unfortunately, current mainstream cryptographic hashing algorithms do 
not support parallelization and thus are not able to take advantage of the current hardware trends. The 
Sandia-designed cryptographic hashing algorithm, SANDstorm [1], was designed to take advantage of 
current and planned multi-core hardware. The algorithm has several different novel features, each of 
which allows significant parallelization.  
 
The purpose of this LDRD project was three-fold. The first effort was to verify empirically the claims of 
the SANDstorm designers (i.e., to show that the algorithm may be parallelized). The second was to 
measure the difficulty and the performance of parallelization. Lastly, the LDRD project focused on efforts 
to speed the algorithm by high performance implementations of core components in optimized C and 
assembly languages.  
 
SANDstorm takes as input a message of arbitrary length, cryptographically hashes the message, and 
outputs a message digest of size 224, 256, 384, or 512 bits in length. SANDstorm-224 and SANDstorm-
256 perform operations on 64-bit words while SANDstorm-384 and SANDstorm-512 perform the same 
operations using 128-bit words. Software using 64-bit words will perform well on 64-bit hardware if 
compiled with a 64-bit compiler. However, software using 128-bit words will require the use of special, 
extended instructions (e.g. SSEx) to perform optimally. The SANDstorm algorithm also supports 
pipelining of the round function due to the data chaining. Verifying the pipelinability was beyond the 
small amount of funds provided in this small late start LDRD, so we did not verify those claims. 
 
This LDRD project has shown that, by far, the largest speed payoff comes from taking advantage of the 
parallelism designed into the algorithm. In summary, there is a linear increase in speed with the addition 
of computing resources. The difficulty of attaining those speed increases is minimal with the instructions 
found in the OpenMP parallel processing library.  
 
Our optimizations using standard serial programming have been shown to be substantial, but of course 
they cannot compete with the linear speed-ups associated with parallelization. Our best implementations 
use both optimized C and/or assembly language with parallelization.  
 
The report is structured as follows: Section 2 gives a very brief description of the SANDstorm algorithm 
needed to explain the various optimization efforts. Section 3 then discusses programming details, Section 
4 the results, and Section 5 concludes the report.   

2 The SANDstorm Algorithm 
Figures 1 and 2 give enough of the SANDstorm details to indicate where our programming efforts have 
been applied. Figure 1 is a representation of the mode, which is the structure from the highest level in 
which the message data is processed. The data message to be hashed is processed by Levels 0 and 1. 
Levels 2-4 take as input the hash outputs from the previous level.  Figure 2 is a closer look at the 
compression function. In particular, it focuses on the chaining of data blocks, the input of the message 
schedule, and the round functions. 
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2.1 The mode 
The mode (Figure 1) was designed so that different levels of the mode and different sections within levels 
can be processed independently. The final amount of parallelization available in the mode is a function of 
the length of the message. For very long messages one may see a maximum of 1000-times speedup over 
serial processing. This speedup would require about 1100 times the serial processing hardware resources. 
For message less than one block in length, only Levels 0 and 4 are required. For messages less than 11 
blocks in length, only Levels 0, 1, and 4 are required.  A message of at least 21 blocks in length is 
necessary to take advantage of Mode parallelization. 
 

Level 0

Level 1

1 Block Initialization Step

10 Blocks 10 Blocks 10 Blocks 10 Blocks 

Level 2 100 Blocks 100 Blocks 

Level 3 Number of blocks / 1000  

Level 4 1-Block Finishing Step 

… … …

… ……

Level 0

Level 1

1 Block Initialization Step

10 Blocks 10 Blocks 10 Blocks 10 Blocks 

Level 2 100 Blocks 100 Blocks 

Level 3 Number of blocks / 1000  

Level 4 1-Block Finishing Step 

… … …

… ……

 

Figure 1  The SANDstorm hash algorithm Mode. 
 
Once Level 0 has been completed, each rectangle in Levels 1 and 2 can be processed in parallel. Level 3 
is fully serial and so caps the amount of parallelization that is available. (However, this truncated tree 
mode also bounds the latency over a full tree). Level 0 and Level 4 are the initialization and finishing 
step, respectively. For very long messages, these computations may be amortized away. In shorter 
messages, they do have a cost.  
 
The speedup factor of 1000 comes from the fact that each block that comes into Level 3 represents 1000 
message blocks. It is not that those 1000 message blocks may be processed independently – indeed they 
cannot because each Level 1 superblock processes 10 blocks at a time. However, 1000 Level 1 
superblocks may be processed independently and fed into 100 Level 2 superblocks. If they are output in 
the right sequence, when the first Level 2 superblock finishes it may begin processing the 101st 
superblock, and so on. Enough hardware must be in place to keep this going. We need to process 1000 
Level 1 superblocks, 100 Level 2 superblocks and 1 block at Level 3. Thus, a total of 1101 times the 
resources needed to process a single block of data. 
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2.2 Chaining, the Compression Function 
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Figure 2  The SANDstorm hash algorithm Compression Function and Chaining mechanism. 
 
The first thing to note in the compression function is that the message schedule (outputs represented by M 
in Figure 2) and the round functions (represented by R in Figure 2) may be computed independently (c0 is 
a constant). The SANDstorm design was such that the cost to compute the round function and the 
message schedule is about equal. Strictly speaking, there is about 45:55 ratio between the two, but there is 
more data organization/manipulation in the round processing, so the actual work is split fairly evenly 
between the two. If there are two independent processors available, the message schedule and the round 
functions may be computed at the same time, giving a factor of two speedup. 
 
There are four chaining variables. During the processing of a single data block, they are processed 
sequentially. They are chained forward and used during the computation of the next block and so on. This 
setup allows for pipelining between data blocks and may add a speed factor of up to four. Pipelining in 
this fashion is reasonable to do in hardware, but is not amenable to multicore processing in software, and 
so we did not attempt to verify this feature. 
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Not shown here is a more detailed description of the computations in the round function and the message 
schedule. They were designed to allow certain operations to be completed simultaneously. This is where 
the optimized C and assembly methods are best brought to bear. 

3 Programming details 
There are multiple ways to increase the performance of the SANDstorm algorithm relative to the original 
functional implementation. The biggest payoff with large messages is leveraging the parallel processing 
features of the algorithm. For a message of any size, improving the performance of the compression 
function (message schedule and round function) is crucial. This improvement is possible with optimized 
C and even more with assembly language targeting certain microprocessor instructions not available in 
the standard C language. 

3.1 Parallelism 
Parallel processing is dependent on a suitable algorithm, suitable hardware, and suitable software for 
computing elements of the computational work simultaneously. As noted in Section 2, the SANDstorm 
algorithm offers several opportunities for parallel process of hashing operations. It is difficult to buy 
desktop computers that do not have multiple processing cores. Finally, there is compiler and operating 
system support for programming an algorithm to perform parallel processing. 
 
We utilized OpenMP [2], possibly the simplest avenue to achieve parallel processing of SANDstorm on 
common desktop computers running Linux and Microsoft Windows operating systems. OpenMP is an 
application programming interface (API) specification for parallel processing in the C and C++ 
languages. It is supported by the Microsoft Visual Studio and GNU compilers and is relatively easy to use 
since it relies on the underlying operating system to interact with the hardware and manage threads. The 
most amount of work involved in taking advantage of OpenMP in our case was restructuring our software 
to utilize loops. Since the length of the message to be hashed is not necessarily known when hashing 
begins, many implementations do not use a loop structure. Once this structure exists the amount of 
additional OpenMP code is trivial.  Figure 1 shows C code employing OpenMP to parallel process the 
SANDstorm mode (Level 1 followed by Level 2). 
 
The following list of activities were performed to restructure the original C implementation of the 
SANDstorm algorithm. 

 Include omp.h in any C file utilizing OpenMP functions. 
 Structure the hashing of input data to use for loops. 
 Minimize the use of shared data.  Each processor (core) needs its own set of variables and must 

properly index the shared input buffer and output buffer. 
 Add the following OpenMP pragma statement prior to the for loop that is to be parallel processed. 

   #pragma omp parallel for 
 
The following actions are necessary to utilize OpenMP in the two listed C compilers. 

 Visual Studio:  Enable OpenMP with the following integrated development environment setting. 
    Configuration Properties  C/C++  Language  OpenMP Support = Yes 

 GCC:  Add the following switch to the compiler command line. 
    -fopenmp 
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#include <omp.h>

// Check for enough data to parallelize L1 superblock processing (>= 20 blocks)
if (…) {

…
#pragma omp parallel for

for (k = 0; k < nL1superblocks; k++) {
int h, i;
u64 dataIndex;
u64 MSd[33]; // Message schedule buffer
u64 prevBlock[5][4]; // Hash state
…
for (h = 0; h < 10; h++) {

PREPARE_DATA (MSd, data, dataIndex);
Compress (MSd, prevBlock); // Compress message block
dataIndex += MAXBYTES;

}
…

}
…

#pragma omp parallel for
for (k = 0; k < nL2superblocks; k++) {

…
for (h = 0; h < 100; h++) { … }
…

}
}  

Figure 3  C code for parallel processing of the SANDstorm mode using OpenMP. 
 

3.2 C 
The primary implementation technique used to improve the speed of the C implementation of 
SANDstorm was the elimination of function calls. Each call to a C function involves saving the state 
(registers) of the processor, establishing new variables for use by the function, and restoring the original 
state of the processor. If a function is called many times, the expense of these operations can be 
significant. An alternative approach is to use macros instead of functions. Macros may look like functions 
from the standpoint of readability, but the compiler treats them as direct substitutions of C statements, 
resulting in inline code. 
 
Another opportunity for speed enhancements of C code is to use intrinsic functions. These function lie 
somewhere between C and assembly language and are not part of the standard C language. They are 
callable from C and allow the program to take advantage of hardware attributes of specific processors. In 
the case of SANDstorm, there is an intrinsic function that takes two 64-bit operands and returns the 128-
bit product of them, which greatly improves the speed of SANDstorm-512. The C programming language 
has no rotate operator and generally requires two shift operations and a bit-wise OR operation instead. 
However, most microprocessors have left and right rotate instructions. SANDstorm makes use of the 
rotate operation and benefits from the rotate intrinsic function.  
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3.3 Assembly Language 
Using x86 assembly language is the lowest level of implementation that we utilized for parallelism in 
SANDstorm. The SANDstorm design allows for parallelism at many levels. One part of the design is that 
the Message Schedule processes the input message into intermediate results that are passed to the Round 
Function. About 60% of the work of SANDstorm takes place in the Message Schedule. This work can be 
overlapped with the work of the Round Function, and leads to roughly a factor of two speedup. 
 
The Intel x86 architecture has evolved considerably over the years. In the current incarnation (early 
2009), each core of the processor has three sets of registers for working with data. These registers are of 
different lengths (some 64 bits, some 128 bits) and use different instructions for processing. The core 
contains several processing engines for working with the different register sets, so several operations can 
be accomplished simultaneously, if they are using different register sets. (The processor also contains a 
lot of logic to make sure that the simultaneous operations are non-interfering, and can be serialized to 
match the programmer's implied serial intent.) 
 
We have organized the assembly language code to use one set of registers for the Message Schedule 
processing, and a second set for the Round Function. The third set of registers is used for interactions 
between the Message Schedule and the Round Function. The SANDstorm Message Schedule produces 
five inputs to the Round Function, one input for each iteration of the Round Function. The first input is 
relatively simple, and is produced quickly, allowing the Round Function to get started on Round 0. 
After this, the Message Schedule and Round Function compute simultaneously. 
 
The instructions for the Message Schedule and Round Function are interleaved (in the instruction stream 
in memory), and the processor sends them to the different arithmetic engines that work with each register 
set. This case is practically a poster child for flexible design: The Intel x86 architecture is an ad hoc 
collection of registers and instructions, evolved over the years for whatever tasks were important for each 
year's marketing effort. And yet, the SANDstorm design is able to make effective use of the hodgepodge, 
getting a speedup of roughly a factor of two over serial processing, and using a large fraction of the 
available raw computing power. 

4 Results 
For the international hash competition, the National Institute of Standards and Technology established a 
reference platform on which to test candidate algorithms. This platform consists of an Intel Core 2 Duo 
64-bit microprocessor running at 2.6 GHz and the Windows Vista (32-bit and 64-bit) operating system 
(OS). Table 1 shows performance results of the SANDstorm algorithm hashing large messages on this 
machine. 
 

Software Implementation Speedups Compiler Speed (Cycles/byte) 
SANDstorm-256 compression function  Assembly 64-bit 13 
SANDstorm-256 hash (serial) Assembly 64-bit 15 
SANDstorm-256 hash (parallel) Assembly 64-bit 8 
Original SANDstorm-512 compression function  64-bit 90 
SANDstorm-512 compression function Macros 64-bit 49 

SANDstorm-512 compression function 
Macros 
Intrinsics 

64-bit 24 

SANDstorm-512 hash (serial) 
Macros 
Intrinsics 

64-bit 27 

SANDstorm-512 hash (parallel) 
Macros 
Intrinsics 

64-bit 14 

Table 1  Performance of SANDstorm on dual-core NIST reference platform. 
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Table 1 illustrates the speedup afforded by the parallelized implementation with and without assembly 
language. Both the serial and parallel implementations incorporated optimized C code. The hardware 
consisted of 64-bit dual quad-core PCs running 64-bit Windows Vista and 64-bit Ubuntu Linux. The 
parallel code is nearly eight times as fast as the serial code. On a dual-core process, the parallel code is 
twice as fast. As the number cores increases, the size of the message must increase as well in order to take 
full advantage of the hardware. 
 

Software Implementation Speed (Cycles/byte) 
Serial 18.5 
OpenMP Parallel 2.4 
OpenMP Parallel with 64-bit Assembly Code 2.1 

Table 2  Performance of SANDstorm-256 on dual quad-core microprocessors. 
 
Figure 4 illustrates the relationship of message size and speedup on dual quad-core hardware. It is clear 
that it takes a message of approximately 100,000 blocks (64 Mbytes) to achieve an 8-times speedup. 

 

Figure 4  SANDstorm-256 parallel processing speedup as a function of message size on eight cores. 
 
Empirical results prove that the SANDstorm algorithm allows parallel hashing to be performed eight 
times faster with eight cores than hashing sequentially. Figures 5-8 show how the algorithm performs on 
processors with more cores. The UltraSPARC T2 microprocessor is Sun Microsystems’ 2nd generation of 
the Niagara platform. It is a multithreading, multicore microprocessor with up to 8 cores per chip, up to 
64 threads per CPU, and huge memory capacity. SANDstorm performance was tested on a 64-core Sun 
Sparc system with 2 8-core Niagara processors. The Intel Xeon 5400 series microprocessors (also known 
as Nehalem), supports up to 4 cores and two threads per core with hyperthreading enabled. SANDstorm 
performance was tested on hardware with 2 4-core Nehalem processors. The key difference between these 
two multicore processors is that the Niagara contains more cores and allows more threads, but each core 
is relatively simple and slow whereas the Nehalem processor contains fewer, but larger and more 
powerful cores. 
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Figure 5  SANDstorm-256 speedup vs. Threads using OpenMP on a 50 MB message. 
 

 

Figure 6  SANDstorm-256 speedup vs. Threads using OpenMP on a 500 MB message. 
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Figure 6 shows that scaling improves with a larger message. Figures 7 and 8 shows that the Nehalem 
processor has better absolute performance (13-47%) than the Niagara processor, although the Niagara 
scales better (Figures 5 and 6). 
 

 

Figure 7  SANDstorm-256 absolute speed vs. Threads using OpenMP on a 50 MB message. 
 

 

Figure 8  SANDstorm-256 absolute speed vs. Threads using OpenMP on a 500 MB message. 
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5 Conclusions 
The SANDstorm cryptographic hashing algorithm was designed to allow a high degree of freedom for 
various kinds of parallelism. The intent was to provide multiple avenues that were not tied to any 
particular hardware architecture. The work in this LDRD has confirmed that many of the design goals 
were met.  
 
We have shown that the mode may be parallelized by producing actual code and comparing the timings 
with equivalent serial implementations on several different hardware platforms. We have also shown that 
with the OpenMP library, exploiting the parallelization in the mode is simple and straight forward, 
requiring only a few lines of code, and results demonstrating a linear speedup with multiple cores. 
 
We have shown that in the compression function, the round function work and the message schedule 
work can be separated. Using SSE instructions and redundant registers we were able to parallelize those 
two operations.  
 
We have shown a number of assembly and C coding techniques targeting the computational engine of 
SANDstorm, the compression function. Together with code optimizations and parallel implementations, 
we have shown that the SANDstorm algorithm is very efficient and may be parallelized up to an amount 
beyond currently reasonable hardware bounds. 
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