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Abstract

A few of the many applications for nanowires are high-aspect ratio conductive atomic force micro-
scope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable esti-
mates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest
to help enable these applications. Furthermore, a real-time, non-destructive technique to measure
the vibrational spectra of nanowires will help enable sensor applications based on nanowires and
the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers).

Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered
nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles.
Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a
10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accu-
rately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can
be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the
nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires
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studied are smaller than the wavelength of the vibrometer’s laser, Mie scattering is used to estimate
the lower diameter limit for nanowires whose vibration can be measured in this way. The tech-
niques developed in this thesis can be used to measure the vibrational spectra of any suspended
nanowire with high frequency resolution

Two different nanowires were measured–MWNTs and Ag2Ga nanoneedles. Measurements of
the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic mod-
ulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37±26 GPa, well
within the range of E previously reported for CVD-grown MWNTs. Since the Ag2Ga nanoneedles
have a greater optical scattering efficiency than MWNTs, their vibration spectra was more exten-
sively studied. The thermal vibration spectra of Ag2Ga nanoneedles was measured under both
ambient and low-vacuum conditions. The operational deflection shapes of the vibrating Ag2Ga
nanoneedles was also measured, allowing confirmation of the eigenmodes of vibration. The mod-
ulus of the crystalline nanoneedles was 84.3±1.0 GPa.

Gas damping is the dominate mechanism of energy loss for nanowires oscillating under ambi-
ent conditions. The measured quality factors, Q, of oscillation are in line with theoretical predic-
tions of air damping in the free molecular gas damping regime. In the free molecular regime, Qgas
is linearly proportional to the density and diameter of the nanowire and inversely proportional to
the air pressure. Since the density of the Ag2Ga nanoneedles is three times that of the MWNTs,
the Ag2Ga nanoneedles have greater Q at atmospheric pressures. Our initial measurements of Q
for Ag2Ga nanoneedles in low-vacuum (10 Torr) suggest that the intrinsic Q of these nanoneedles
may be on the order of 1000.

The epitaxial carbon that grows after heating (0001̄) silicon carbide (SiC) to high tempera-
tures (1450–1600◦) in vacuum was also studied. At these high temperatures, the surface Si atoms
sublime and the remaining C atoms reconstruct to form graphene. X-ray photoelectron spec-
troscopy (XPS) and scanning tunneling microscopy (STM) were used to characterize the qual-
ity of the few-layer graphene (FLG) surface. The XPS studies were useful in confirming the
graphitic composition and measuring the thickness of the FLG samples. STM studies revealed a
wide variety of nanometer-scale features that include sharp carbon-rich ridges, moiré superlattices,
one-dimensional line defects, and grain boundaries. By imaging these features with atomic scale
resolution, considerable insight into the growth mechanisms of FLG on the carbon-face of SiC is
obtained.
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Preface

I joined the Reifenberger Nanophysics lab at Purdue University in January 2005 with the goal of
designing a custom scanning tunneling microscope (STM) to measure high frequency oscillations
in the tunnel current. In 2004 Dr. Joel Therrien, a post-doc in the Reifenberger lab, had conceived
of such an STM to measure the oscillations of nanoscale objects, such as multilwalled carbon
nanotubes (MWNTs), placed in the tunnel gap of the STM. Joel’s early data suggested that the
vibrations of the carbon nanotubes, ∼1 nm at 10s of MHz, could be measured by monitoring the
tunnel current. I worked to both repeat Joel’s results and to design a custom STM head to improve
the amplification of the high-frequency signals in the tunnel current. As a short summary, I was
not able to replicate Joel’s results; this effort is described in Appendix B: Tunnel Gap Modulation
Spectroscopy (TGMS).

From the TGMS project, I did learn (1) the theory of nanowire oscillations, (2) how to pre-
pare cantilevered MWNT samples, and (3) scanning tunneling microscopy, three skills which I
have used throughout my degree. At the 2008 APS March Meeting, I presented a talk describing
our measurements of MWNT flexural vibration spectra. This talk led to a collaboration with Dr.
Mehdi Yazdanpanah and Prof. Robert Cohn of the University of Louisville. Dr. Yazdanpanah had
discovered how to fabricate silver gallium nanoneedles on scanning probe microscope tips, but
lacked a facile, non-destructive way to determine their elastic modulus. Using our laser Doppler
vibrometery technique, we were able to measure the thermal and driven vibration spectra of these
silver gallium nanoneedles and determine their elastic modulus.

My prior STM experience, as well as a long-standing interest in graphene, led me to join a
Purdue graphene collaboration in October 2007. I provided STM analysis of epitaxial graphene
grown on silicon carbide. This fruitful collaboration, primarily between electrical engineers and
physicists at the Birck Nanotechnology Center, has led to insights into the nature of the graphene
growth on the carbon-face of SiC.

The results of these projects to measure the vibrational spectra of nanowires, as well as the
STM studies of graphene, are presented in this SAND report.
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19



20



Chapter 1

Introduction

Current commercial applications for nanowires include probe tips for atomic force microscope
(AFM) cantilevers and the use of nanowires as stiffening elements in polymer matrices. Potentially,
nanowires may be incorporated into vibrating nanomechanical systems (NEMS) such as ultra-high
frequency resonators, force and mass sensors, and nanoelectronics. A challenge limiting the use
of nanowires in NEMS is that few methods exist to reliably measure their motion. A real-time
technique capable of measuring the vibration of an individual nanowire would enable the design
of sensitive chemical sensors and the use of nanowires as oscillators in nanomechanical systems.
Of interest are the resonant frequencies of various eigenmodes of oscillation, the quality factor
characterizing each resonant eigenmode, and the nanowire material properties required to explain
each resonance.

As carbon nanotubes (CNTs) are one of the most extensively studied nanowires, number of
methods to determine the resonant frequency of a CNT have been published. Electrically excited
resonant vibrations of a cantilevered multiwalled carbon nanotube (MWNT) were observed in a
transmission electron microscope (TEM) [1] and from the field emission pattern of a vibrating
MWNT [2]. The oscillation of a suspended, doubly clamped MWNT, excited using an oscillating
gate voltage, was detected from the modulation in the conductance of the suspended device [3, 4].
The shape of the first three bending eigenmodes of a suspended, doubly clamped MWNT was
measured using an AFM [5].

A number of the above techniques have been adopted to measure the resonant frequency of
other nanowires. For example, parametric resonance of boron nanowires has been observed in
SEM [6]. Driven resonances of composite SiO2/SiC nanowires have been observed in TEM [7].
Electrostatic actuation and piezoresistive self-detection has been used to detect driven resonance
of clamped-clamped Si nanowire resonators [8].

These techniques require either high vacuum conditions, electron microscopy, or complicated
fabrication methods that utilize advanced lithographic techniques. A feature common to all these
methods is the low frequency resolution that accompanies the measurement of the nanowire vi-
bration spectrum. We have used laser Doppler interferometry to measure the vibration spectra of
nanowires with high frequency resolution.

Albert Michelson used an interferometer in 1887 to measure the velocity of light with respect to
the Earth’s motion [9]. Since then, laser interferometers have been used to measure displacements
and velocities with high resolution. The Laser Interferometer Gravitational Wave Observatory
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(LIGO) is designed to measure displacements of 10−18 m at frequencies as low as 10s of Hz [10].
Interferometers, being highly versatile, are also used to measure acoustic vibrations (few nanome-
ters at tens of kHz frequencies) of the cochlea in the inner ear [11] as well as GHz oscillations of
bulk acoustic wave (BAW) resonators [12].

Laser Doppler vibrometery uses the Doppler shift of a reflected laser beam from a vibrating
object to measure that object’s vibrational velocity. Laser Doppler vibrometers (LDVs) are well
suited for real-time measurements of oscillations up to frequencies of tens of MHz with high
frequency resolution, enabling a precise determination of resonant frequencies and quality factors
of the different eigenmodes. LDV has been used to detect the oscillations of devices such as Si
cantilevers [13] and rotational oscillators [14, 15]. The objects studied with LDV need not be
larger than the laser beam spot size or wavelength. Recently interferometric methods, including
LDV, have been used to measure driven resonances of nanoscale doubly clamped Si beams [16],
cantilevered Ag and Rh nanowires in vacuum [17], and Si nanowires [18]. In order to measure the
driven resonance of a cantilevered MWNT in vacuum with an LDV, a small Si mirror was affixed
to the free end of the MWNT [19].

This report describes the techniques used to measure the vibration spectra of MWNTs and
silver gallium nanoneedles and the results obtained with these measurements. While preliminary
measurements of driven MWNT vibrations were made using an optical microscope, the majority
of the results were obtained using a commercial Polytec MSA-400 scanning LDV.

As demonstrated by the study of these two nanowires, the techniques developed are completely
general and can be used under ambient or vacuum conditions to measure the vibration spectra of
a wide variety of suspended and cantilevered nanotubes and nanowires. The operating deflection
shapes of driven resonances of the silver gallium nanoneedles were also measured. Taken together,
these results represent a major advance in the study of the vibrational properties of nanowires.

1.1 Chapters of this SAND report

The above results are discussed in detail as follows. Chapter 2 is an introduction to carbon nan-
otubes and silver gallium nanoneedles, providing information about their synthesis as well as basic
physical properties. Chapter 3 provides the theoretical background to interpret the measured vi-
bration spectra; this chapter includes Euler-Bernoulli beam theory and calculation of the frequency
response function of a cantilever using the point-mass model. Since most of the experiments were
performed at atmospheric pressure, a discussing of damping and quality factors is presented in
section 3.4. Chapter 4 describes the experimental techniques, namely sample preparation and the
laser doppler vibrometer used, as well as a discussion of Mie scattering as it applies to nanowires.
Chapter 5 presents the results of the nanowire measurements, including the measured oscillation
spectra and calculated elastic moduli, and a brief discussion of mass detection. In October 2007, I
was asked to perform a scanning tunneling microscopy (STM) analysis of graphene samples. An
introduction to graphene, focusing primarily on graphene fabrication and growth, is presented in
Chapter 6. Chapter 7 summarizes the insights gained into epitaxial graphene growth from these
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STM scans. Contributions of this research and suggestions for future work are summarized in
Chapter 8.
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Chapter 2

A brief literature review for carbon
nanotubes and silver gallium nanoneedles

This chapter presents an introduction to the two types of nanowires that I studied, multiwalled car-
bon nanotubes and silver gallium nanoneedles. For both types of nanowires, I discuss growth and
fabrication methods and prior measurements of material properties, such as the elastic modulus,
E. Subsection 2.1.2 describes a number of methods to measure E of a carbon nanotubes; these
techniques are generally applicable for measuring E of any nanowire.

2.1 Overview of carbon nanotubes

Carbon nanotubes (CNTs) are a cylindrical member of the fullerene family. A perfect nanotube
would consist solely of carbon atoms with each carbon atom bonded to three others. The carbon
atoms form a hexagonal planar lattice, as if a sheet of graphene were rolled into a cylinder. Two
forms of carbon nanotubes exist, single-walled (SWNT) and multiwalled (MWNT). As the name
implies, a SWNT is a two-dimensional cylindrical fullerene structure. A MWNT consists of con-
centric tubes of graphene with an interlayer spacing of 0.34–0.39 nm; smaller diameter MWNTs
have a larger interlayer spacing [20]. Typical SWNTs have diameters of 1–2 nm. MWNTs are
larger with outer diameters, do, of 5–300 nm and inner diameters, di, of 2–100 nm.

While S. Iijima is often cited as the discoverer of carbon nanotubes, carbon nanotubes were
observed at least 40 years earlier. Researchers in the 1950s grew carbon filaments with similar
dimensions as MWNTs. However, the graphene structure of these filaments could not be resolved;
transmission electron microscopes (TEMs) did not obtain nanometer resolution until the 1970s.
Two Russian scientists, Radushkevich and Lukyanovich, are credited with first noticing carbon
nanotubes in 1952. Individual shells are not visible in their TEM images of the carbon structures,
but the electron transparency and dimensions are consistent with those of nanotubes. Radushke-
vich and Lukyanovich’s 1952 paper was published in Russian and not widely available in the
west until after the Cold War [21]. In 1991 S. Iijima reported growing “helical microtubules of
graphitic carbon” using arc-discharge evaporation [22]. Both Iijima and Ichihashi and Bethune et
al. reported the formation of SWNTs in 1993 [21]. Early papers referred to carbon nanotubes as
“carbon tubules,” “graphene tubules,” or “graphitic carbon needles.”
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2.1.1 Growth methods for MWNTs

Defects in a CNT can adversely effect the elastic and transport properties. The number of defects in
a CNT depend on growth conditions. The two techniques most commonly used to grow MWNTs
are arc discharge (AD) and chemical vapor deposition (CVD). The arc-discharge method gener-
ally produces the highest quality MWNTs, as judged by their concentric SWNT shells, strongest
mechanical properties, and best electrical transport characteristics [23]. The paucity of defects in
the AD-MWNTs’ shells is due to the high growth temperature, 2000-3200◦ C, which anneals most
defects.

CVD-MWNTs were first reported in in 1994 by Amelinckx et al [24]. CVD-MWNTs grow
from a variety of catalysts, including Fe, Ni, and Co. For CVD growth, a precursor gas, such
as methane, ethane, or other hydrocarbon is used as the feedstock. The high temperatures, typ-
ically 500-1500◦C, inside the growth chamber cause the feedstock gas to disassociate; MWNT
growth then occurs on the catalyst particles [25]. The diameter of the catalyst particles governs
the diameter of the CVD-MWNTs. CVD-MWNTs often exhibit growth defects such as bamboo,
stacked cone, or coffee cup structures [23, 26]. Despite the increased number of growth defects,
CVD-MWNTs are worthy of study since they can be grown to longer lengths, are mass-produced
more economically than AD-MWNTs, and can be grown on substrates at lower temperatures. The
lower CVD growth temperatures are more compatible with standard semiconductor processing
techniques than the high AD growth temperatures.

Plasma-enhanced CVD (PECVD) MWNTs are a subset of CVD-MWNTs. The advantage of
PECVD-MWNTs is that growth can occur at even lower temperatures and that PECVD-MWNTs
can be grown in vertically-alligned arrays. For PECVD growth, the plasma (frequently from a DC
or rf source) disassociates the hydrocarbon feedstock at the surface of the catalyst particle, rather
than in the surrounding atmosphere of the growth chamber. This disassociation at the catalyst
surface allows the PECVD-MWNTs to grow at even lower temperatures than CVD-MWNTs [23].

2.1.2 Mechanical properties of carbon nanotubes

The hexagonal arrangement of the carbon atoms gives carbon nanotubes their robust nature. Each
carbon atom in the graphene tube is σ -bonded to three other carbon atoms through sp2 orbitals.
Nanotubes owe their great strength to the sp2 carbon-carbon bond, which is the strongest of all
chemical bonds [27]. The MWNT shells are coupled mainly by van der Waals intershell attrac-
tion [28]. The weak coupling between shells in a MWNT allows the shells to slide independently
in a telescoping action [29, 30].

Carbon nanotubes are uniquely suited for applications in nanomechanical systems in part due to
their high strength and flexibility. Experiments on AD-MWNTs revealed an elastic (Young’s) mod-
ulus ∼1 TPa, a tensile strength of 11–63 GPa, and a flexural (bending) strength of ∼14 GPa [29].
MWNTs are quite flexible; they buckle readily when compressed [31]. Computer simulations of
small diameter (do ∼ 5–10 nm) MWNTs show that MWNTs can elastically bend through angles
up to 110◦. When bending elastically, the bonds on the outer side of the MWNT stretch and kinks
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form on the inner side; no bonds are broken [32].

Experimental methods to measure the elastic modulus of MWNTs

Values of E reported in literature differ over two orders of magnitude, depending on the growth
method of the MWNTs (see Table 2.1). Two approaches are commonly used to measure E of
MWNTs. By recording the oscillation amplitude at the tip of an oscillating MWNT and the di-
mensions of the MWNT, E can be inferred from an Euler-Bernoulli analysis of a cantilever beam.
In the first experimental determination of E for MWNTs, Treacy et al. observed the thermal ex-
citations of AD-MWNTs in a TEM and noted a full order of magnitude range for E with larger
E for smaller diameter MWNTs. The average value of E, 1.8 TPa, was slightly higher than E for
the basal plane of graphite, 1.06 TPa [33]. In similar experiments, electrically excited resonant
vibrations of MWNTs were observed in a TEM [1] and under a dark-field microscope [34]. Both
Treacy et al. and Poncharal et al. noted a decrease in E with increasing MWNT diameter [33, 1].

Table 2.1. Elastic modulus of MWNTs as determined from ex-
periment. Double-walled MWNTs are indicated by (*).

Author do (nm) E (GPa) Growth method
Treacy et al. (1996) 6–25 400–3700; 〈E〉 = 1800 arc-discharge
Wong et al. (1997) 26–76 〈E〉 = 1280±590 arc-discharge
Poncharal et al. (1999) 8–40 100–1000 arc-discharge
Salvetat et al (1999) 10–20 〈E〉 = 810 arc-discharge
Yu et al. (2000) 19–40 270–950 arc-discharge
Salvetat et al (1999) 26–32 10–50; 〈E〉 =27 catalytic CVD
Gaillard et al. (2005) 50–150 3–300 CVD
Guhados et al. (2007) 20-50 〈E〉 = 350±110 CVD
Lee et al. (2007) 10–25 6–600 catalytic CVD
Lee et al. (2007) 5∗ 700–1500 catalytic CVD
Biedermann et al. (2009) 160–230 〈E〉 = 40±30 PECVD

The elastic modulus has also been measured by performing force versus distance (F(z)) curves
on MWNTs. In such studies, the MWNTs can be cantilevered [35] or clamped-clamped [26, 36,
25, 29]. Both geometries for the F(z) curves share the limitation that the boundary conditions
of the MWNT clamped to the support cannot be determined accurately. Frequently, the MWNTs
are dispersed over a porous substrate; the F(z) curves are performed midway along the suspended
length of a nanotube bridging a gap. Using Euler-Bernoulli theory, E is calculated for a clamped-
clamped beam with the MWNT dimensions determined from AFM scans.

Two groups have reported a decrease in E with increasing diameter for small-diameter (10–
50 nm) CVD-grown MWNTs [36, 25]. Lee et al. theorize that the smaller catalyst particles are
completely liquid during the CNT-growth, which promotes fewer growth defects [25].
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The first measurement of the shear modulus, 〈G〉= 1.4±0.3 GPa, for a MWNT was determined
from F(z) curves of a suspended MWNT, as described above. Guhados et al. calculated the
deformation of a clamped-clamped beam to depend both on the bending deformation and a shear
deformation [36]. This measured value of G is between the values of G = 0.18 GPa for pyrolytic
graphite and G = 4.5 GPa for a perfect graphitic crystal [26].

2.1.3 Electrical properties of carbon nanotubes

To understand the electronic properties of carbon nanotubes, first imagine the prototypical SWNT,
open on each end. A SWNT can be conducting or semiconducting, depending on its structure.
Consider a SWNT as a rolled-up sheet of graphene, as shown in Fig. 2.1 [37]. The chiral vector,
Ch, is the sum of the unit vectors of the honeycomb lattice, a1 and a2; Ch = na1 + ma2, where
n and m are integers and n ≥ m [27]. The length of the chiral vector is the circumference of the
SWNT (|a1| = |a2| = 1.42

√
3 Å) [37]. SWNTs are divided into three symmetry groups: armchair

(n,n), zigzag (n,0), and chiral. SWNTs are metallic if n−m = 3q, where q is an integer, and
semiconducting in all other cases. Thus all armchair SWNTs are metallic as well are one-third of
chiral and zig-zag SWNTs [27].

Figure 2.1. A sheet of graphene with the chiral vector Ch spec-
ifying a SWNT, (n,m) = (4,1). The dashed lines indicate the
surface of the carbon nanotube. The unit vectors, a1 and a2, are
also shown (following Dresselhaus, 1995 [37]).

The electrical properties of MWNTs are a subject of current debate. Each shell of a MWNT
can be considered as a SWNT and is either metallic or semiconducting. However, intershell in-
teractions exist which may change the conductive properties of the MWNT [38]. Theoretical
calculations are reasonably possible only for the simplest case of double-walled carbon nanotubes
(DWNTs). Early theoretical calculations suggested that the intershell interactions did not affect the
electronic properties of DWNTs due to symmetry considerations [38]. Later calculations showed
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that if the inner nanotube were displaced laterally or rotationally to a less symmetric configuration,
pseudogaps appeared in the density of states near the Fermi energy [39].

The band gap, Eg, in semiconducting carbon nanotubes is inversely proportional to R, the radius
of the nanotube,

Eg = |Vo|
ac−c

R
, (2.1)

where |Vo| is the nearest-neighbor transfer integral, 2.7 eV, and ac−c is the carbon-carbon distance,
0.142 nm [40]. Thus, as shown experimentally, narrow MWNTs (do ≤ 30 nm) can be semiconduct-
ing or metallic while wide MWNTs are effectively metallic, regardless of their chiral vector [41].

A N-shell MWNT is, electronically, a set of N parallel conductors (both semiconducting and
metallic). The number and location of shells participating in electronic conduction is an area
of active research. Researchers associated with the Reifenberger Nanophysics Lab found that
25±1 of ∼65 shells of a 40-nm MWNT conducted current. The resistance, measured with a two-
probe technique, of this MWNT was nearly a multiple of the fundamental quantum of resistance
(12.6 kΩ), suggesting ballistic transport [42].

Other studies confirm that multiple shells conduct current, however comparisons between stud-
ies are difficult since nanotube growth conditions and diameters are not consistently reported. To
count the number of shells carrying current, Collins and Avouris measured resistances of arc-
grown MWNTs while sequentially removing the outer shells [43]. This current-induced oxidation
technique only removed the outer shells from the MWNT region between the probe electrodes;
the portion of the MWNT contacting the electrodes remained intact. At room temperature, the
outer shells contributed to conduction; the number of shells conducting ranged from three to nine,
depending on the MWNT sample [44]. A second experiment measuring the gate-dependence of
conductance showed that a MWNT with an outmost semiconducting shell has non-zero conduc-
tance due to inner metallic shells [43].

Chun Lan in the Reifenberger Nanophysics Lab at Purdue University studied the electrical
properties of the same PECVD-grown MWNTs whose vibration spectra are reported in this report.
She discovered that at low bias voltage, only a few of the MWNT shells conducted current. As the
bias voltage increased, more shells conducted current. High bias voltage caused MWNT shells to
fail and break [45].

2.2 Overview of silver gallium nanoneedles

Dr. Yazdanpanah discovered how to fabricate silver gallium nanoneedles in 2005. These nanonee-
dles are a remarkable example of nanoscale self-assembly. Yazdanpanah observed that silver gal-
lium crystals formed when narrow lines of Ga were drawn on thin (15–35 nm thick) Ag films [46].
Further research lead to the fabrication of Ag2Ga nanoneedles on various probe tips such as con-
ventional Si AFM cantilevers and etched W STM tips. X-ray diffraction patterns and TEM micro-
graphs show that the nanoneedles are crystalline, with uniform diameter along their length [46].
Nanoneedles are faceted with 8-16 sides forming a nearly-circular cross-section. [47]. Based on
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the stoichiometric ratio, the density of the Ag2Ga nanoneedles is estimated to be 8960 kg/m3 [48].

2.2.1 Fabrication of Ag2Ga nanoneedles

To prepare an AFM cantilever for use as a substrate for Ag2Ga nanoneedle growth, a thin (10 nm)
Cr adhesion layer is sputter coated onto a pyramidal probe tip. A∼100 nm sputter coated Ag layer
provides the Ag material for nanoneedle growth [48]. Thicker Ag layers enable growth of longer
nanoneedles [47]. Nanomanipulators inside an SEM allow these coated cantilever tips to be dipped
into a sphere of liquid Ga resting on a silicon substrate. As the cantilever is retracted, nanoneedles
crystallize in the Ga meniscus. The Ag2Ga nanoneedles originate from the Cr-Ag boundary [46].

Many short nanoneedles crystallize parallel to the pyramidal AFM tip, but do not protrude past
the tip. An ideal nanoneedle-tiped probe would have a single nanoneedle extending from the apex
of the AFM cantilever. Frequently, two fused parallel nanoneedles of similar diameter and unequal
length extend from the same AFM tip [47]. Typical dimensions of the Ag2Ga nanoneedles are
diameters of 25–500 nm and lengths 1–100 µm. These nanoneedle lengths are much greater than
the thickness of the Ga meniscus [46].

2.2.2 Prior measurements of E, Q, and kc of Ag2Ga nanoneedles

In 2006, the elastic modulus of a set of 21 Ag2Ga nanoneedles was determined from measurements
of their driven eigenfrequencies in SEM in a manner similar to Poncharal’s measurements of driven
MWNT oscillations [1, 48]. From the measured resonance frequencies and dimensions of the
nanoneedles, an E of 42.6±22.4 GPa was calculated. For a subset of seven nanoneedles, quality
factors of 600-3300 in the vacuum of the SEM were estimated from the 3dB-point of the driven
resonance peak [48].

Elastic bending experiments were also used to determine the elastic modulus of individual
Ag2Ga nanoneedles. The deflection and bending shape of a Ag2Ga nanoneedle fabricated on the
end of an AFM cantilever were observed in an SEM as the nanoneedle was buckled by compression
against a substrate. Timoshenko beam theory, which is valid for large deflections, was used to
model the deflection shape of the nanoneedle. From these experiments, a E of 68.3 GPa was
calculated for a 157-nm diameter, 15.6-µm long Ag2Ga nanoneedle [49].

The static bending coefficient, kc, was measured from F(z) curves for two Ag2Ga nanoneedles
attached to the side of AFM tips. The spring constant of the AFM cantilever-nanoneedle system
was modeled as two springs in series. Using this method, kc of 0.033 N/m and 0.085 N/m were
calculated for the two nanoneedles [48].
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2.2.3 Applications for Ag2Ga nanoneedles

Due to their robust nature and high aspect ratio, Ag2Ga nanoneedles can be used as probe tips for
AFM cantilevers. Such nanoneedle-tipped cantilevers can be used for scanning in both contact and
tapping mode [46]. Since the nanoneedles are cylindrical, rather than pyramidal as are conventional
AFM probe tips, they are ideal for measurements of surface tension and wetting forces from force-
distance curves. The low spring constant and constant wetting force as a function of probe diameter
make Ag2Ga nanoneedles ideal for scanning soft materials under liquid, a common condition for
biological AFM samples.
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Chapter 3

Eigenfrequencies and vibrational spectra of
cantilevered nanowires

This chapter presents the fundamental framework for calculating the eigenfrequencies of vibration
for cantilevered nanowires from Euler-Bernoulli beam theory (section 1). The vibrational spectra
of the nanowires is measured, in either the frequency or time domain, and the eigenfrequencies de-
termined using one of two methods. Frequency spectra is analyzed by comparison to the frequency
response function (FRF) for a linear spring-mass system, as described in section 2. The vibrational
spectra of a thermally excited cantilever is random in time. For this reason, the power spectral
density (PSD), appropriate for random signals, is calculated. Section 3 presents the relationship
between the PSD and the FRF using the fluctuation dissipation theorem.

At atmospheric pressures, the dominant mechanism of energy loss is fluid damping. Section
4 presents a brief discussion of the damping in the continuum, cross-over, and free molecular
regimes as they apply to nanostructures of the dimension studied. Estimated quality factors of the
fluid damping are also given.

3.1 Oscillation frequency of cantilevered nanowires

To calculate the resonant frequency of a nanowire, the nanowire is modeled as a cantilevered beam
of length L. By the equipartition theorem, the transverse, longitudinal, and torsional modes of
vibration will be equally thermally excited. For this work, only the transverse mode is consid-
ered since it leads to the greatest displacement of the nanowire. The transversal vibrations of the
nanowire are given by the Euler-Bernoulli equation,

∂ 2w(x, t)
∂ t2 +

EI
ρL

∂ 4w(x, t)
∂x4 = 0 (3.1)

where E is the elastic modulus, I is the areal moment of inertia, and ρL is the density per unit length,
calculated by multiplying ρ , the density of the nanowire by its cross-sectional area. The bending
deflection of the nanowire, w(x, t) = Φ(x)z(t) is a function of x, the distance along the length
of the nanowire and time, t. The bending deflection can be decomposed into Φ(x), a function
describing the oscillation mode shape, and z(t), the deflection of the free end of the nanowire.

33



Using separation of variables, a solution of the form (3.2) is substituted into (3.1)

w(x, t) =
∞

∑
j=1

C jΦ j(x)e±iω jt , (3.2)

which yields
∂ 4Φ j(x)

∂x4 −
(

α j

L

)
Φ j(x) = 0, where, (3.3)

(α j/L)4 = ρLω
2
j /EI. (3.4)

Equation 3.3 is solved by applying the boundary conditions for a cantilevered beam. The resulting
transcendental dispersion equation,

cos(α j)cosh(α j)+1 = 0 (3.5)

is solved numerically; Table 3.1 gives the solutions corresponding to the first five eigenfrequencies,
f j. Appendix A gives a complete derivation of the eigenfrequencies and eigenmodes of oscillation.

The eigenfrequencies of oscillation for a cantilevered beam as a function of length are given
by [50]

f j =
α2

j

2πL2

√
EI
ρL

, (3.6)

assuming that I and ρ are constant along the length of the cantilevered beam.

In the case of a hollow cylinder, such as a MWNT, of inner diameter, di, and outer diameter,
do, Eq. 3.6 can be rewritten as

f j =
α2

j

8πL2

√
E
ρ

(d2
o +d2

i ), (3.7)

where the substitutions I = π(d4
o − d4

i )/64 and ρL = πρ(d2
o − d2

i )/4 were used. For a solid
nanowire (di = 0) Eq. 3.6 simplifies further to

f j =
α2

j

8πL2 do

√
E
ρ

. (3.8)

For both MWNTs and Ag2Ga nanoneedles, typical lengths are 5–50 µm and outer diameters are
50–200 nm. Based on TEM micrographs of MWNTs, di is estimated to be 0.5do. The density of
MWNTs is assumed to be that of graphite, 2300 kg/m3. From the stoichiometric ratio, ρ = 8960
kg/m3 is estimated for Ag2Ga nanoneedles [48]. Estimates for the first eigenfrequencies range
from 10s of kHz for the longest nanowires to 1000s of kHz for short nanowires.

Table 3.1. Allowed α j which correspond to the first five oscilla-
tion frequencies.

j 1 2 3 4 5
α j 1.8751 4.6941 7.8548 10.995 14.1372
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3.2 Frequency response function (FRF) for a cantilever

A cantilevered beam in a fluid (gas or liquid) is an example of a linear spring-mass system with
viscous damping. In the time domain, the motion of such as system is described by Newton’s equa-
tion of motion for damped, driven oscillations. The drive force, f (t), is assumed to be harmonic,
but could represent many types of forcing, including acoustic, base, and thermal excitations. In the
time domain, the displacement z(t) of a linear spring-mass system is

mz̈+ cż+ kcz = f (t) (3.9)

where m is the mass of the cantilever, c is the damping, and kc is the static bending coefficient. For
the case that f (t) is a harmonic forcing of the form Foeiωt , the solution to Eq. 3.9 is assumed to be
z = Zei(ωt−δ ).

Since the eigenfrequencies of oscillation are of interest, Eq. 3.9 is converted to the frequency
domain by taking the Fourier transform of Eq. 3.9 which yields

−mω
2Z(ω)+ icωZ(ω)+ kcZ(ω) = F(ω), (3.10)

where z(t)⇔ Z(ω) and f (t)⇔ F(ω). Solving Eq. 3.10 for Z(ω) yields the frequency response
function (FRF, also referred to as the linear response function), Z(ω)

Z(ω) =
F(ω)

[−mω2 + icω + kc]
, (3.11)

where the transfer function is
[
−mω2 + icω + kc

]−1. Using the substitutions kc/m = ω2
o and

c/m = ωo/Q [51], Eq. 3.11 can be re-written in terms of the resonant frequency ωo and qual-
ity factor, Q, as

Z(ω) =
F(ω)/kc[

1−
(

ω

ωo

)2
+ i ω

Qωo

] (3.12)

The magnitude of Z(ω) is

|Z(ω)|= F(ω)/kc√[
1−
(

ω

ωo

)2
]2

+
(

ω

Qωo

)2
(3.13)

The above FRF is valid for any system described by Eq. 3.9, including cantilevered nanowires.
Since the vibration spectra of the MWNTs were measured in the frequency domain, the eigen-
frequencies f j and associated quality factors Q were found by fitting Eq. 3.13 to the measured
spectra.

The two frequency limits (ω � ωo and ω � ωo) suggest how a cantilevered nanowire can
be used as a vibrometer or accelerometer. To understand these limits, consider a sinusoidal base
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motion of the form F(ω) = mω2Abase, where Abase is the base motion of the fixed end of the
cantilever. In the low-frequency limit, Eq. 3.13 reduces to

|Z(ω)|= F(ω)
kc

Abase, where ω � ωo. (3.14)

Since |Z(ω)| is proportional to Abase, the cantilevered nanowire can be used as a vibrometer. In the
high-frequency limit, Eq. 3.13 reduces to

|Z(ω)|= F(ω)
mω2

o

(
ωo

ω

)2
=

acceleration
ω2 , where ω � ωo. (3.15)

Thus in the high-frequency limit, the cantilever behaves as an accelerometer [52].

3.3 Power spectral density (PSD) of a cantilevered beam

With the Polytec MSA-400 system, measurements of the vibration spectrum in time can have a
much higher data resolution than those measured in frequency. For this reason, it is useful to
measure the displacement (or velocity) of the thermally-excited cantilever in the time domain and
Fourier transform that signal to the frequency domain. This approach requires a statistically valid
method to transform the vibration spectrum into the frequency domain so that the eigenfrequency
peaks can be identified. Second, the appropriate theoretical response of the cantilever in the fre-
quency domain must be derived.

3.3.1 Autocorrelation of a random signal

The Fourier transform of a signal is defined only for periodic signals. For this reason, it is not
accurate to directly take the Fourier transform of the time series measurement of a thermally-
excited cantilever’s oscillation. Instead, the autocorrelation function, Rhh(τ), is first calculated.
The autocorrelation function is a mathematical tool for finding periodic signals in random data and
is defined as

Rhh(τ) = lim
T→∞

1
T

∫ T/2

−T/2
h(t)h(t + τ)dt (3.16)

where h(t) is a generic random signal in time, τ is a time interval, and T is the period. The double-
subscript hh indicates the autocorrelation of h(t) with itself. The cross-correlation of signals g(t)
and h(t) would be written as Rgh(τ). An important property of Rhh(τ) is that “If a random pro-
cess has a periodic component, of period T, then the autocorrelation function also has a periodic
component of period T” (ref. [[53]], pg. 201). Taking the Fourier transform of Eq. 3.16 yields the
power spectral density (PSD) Shh(ω), which is defined as [53]

Shh(ω) =
∫

∞

−∞

Rhh(τ)e−iωτdτ. (3.17)
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For white noise, Shh(ω) is a constant.

For discrete data sets, the Fourier transform of the signal’s autocorrelation function can be
accomplished using the PWelch algorithm. This algorithm is implemented in Matlab following the
method of Welch [54]. For an example of the Matlab code used to analyze the time series data, see
Appendix E.

3.3.2 Power spectral density (PSD) of a cantilevered beam

Once the PSD, Szz(ω), has been calculated from the time-series data, z(t), the next step is to
identify the eigenfrequencies and associated quality factors. The fluctuation-dissipation theorem
is an important result from statistical mechanics that relates the equilibrium thermal fluctuations
of an object to the dissipative properties acting on the object. For the case of a classical oscillator,
the fluctuation-dissipation theorem states that

Szz(ω) =
2kBT

ω
Im{Z(ω)}, (3.18)

where Szz(ω) is the power spectral density (PSD) of the mean square fluctuation, kB is Boltzmann’s
constant, and T is temperature [55]. For a damped oscillator, Z(ω) is the FRF given by Eq. 3.11.
For thermally-excited oscillations, the PSD is:

Szz(ω) =
2kBT

ω
Im

{
1/kc

1− ( ω

ωo
)2 + i ω

Qωo

}
(3.19)

Szz(ω) =
2kBT
ωkc

Im

 1− ( ω

ωo
)2− i ω

Qωo[
1− ( ω

ωo
)2
]2

+
(

ω

Qωo

)2

 (3.20)

Szz(ω) =
2kBT

mω3
o Q

1[
1− ( ω

ωo
)2
]2

+
(

ω

Qωo

)2 , (3.21)

where the substitution kc = mω2
o was used. The units of Szz(ω) are [m2s], as they should be.

3.3.3 Extension to multimode harmonic oscillators

By Euler-Bernoulli beam theory, a cantilevered beam oscillates in multiple modes. The above
derivation of the FRF and PSD assumed that the oscillator had a single mode of oscillation. The
point-mass model (single-degree-of-freedom model) is used to extend the derivation of Z(ω) and
Szz(ω) to multimode oscillations.

In the point-mass model, the frequency response of the cantilever is modeled as that of a
damped mass-spring system, as shown in Fig. 3.1. The equation of motion for the jth eigenmode,
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which has frequency ω j, is

M j
eqz̈(t)+C j

eqż(t)+K j
eqz(t) = f j(t), (3.22)

where z j(t) is the tip deflection of the jth eigenmode. The point-mass model of cantilever oscil-
lations is valid for oscillations measured at the free end of the cantilever at frequencies near the
eigenfrequencies. In this limit, the equivalent mass M j

eq, equivalent stiffness K j
eq, and equivalent

damping C j
eq must be identified.

Figure 3.1. A schematic of the the point-mass model for can-
tilever oscillations assuming a stationary base.

The equivalent stiffness and equivalent mass, are defined as [56]

K j
eq = kcα

4
j /12 (3.23)

M j
eq = m/4. (3.24)

The stiffness of the cantilever increases dramatically for higher eigenmodes (eg: K j=1
eq /kc =1.03,

K j=2
eq /kc=40.5, K j=3

eq /kc=317), while the equivalent mass is independent of eigenmode [56]. The
damping is unchanged for higher eigenmodes; C j

eq = c.

Substitution of K j
eq, Q j, M j

eq into Eq. 3.12 for the FRF and Eq. 3.19 leads to

Z(ω) =
F(ω)/K j

eq[
1−
(

ω

ω j

)2
+ i ω

Q jω j

] (3.25)

and

Szz(ω) =
N

∑
j=1

2kBT

M j
eqω3

j Q j

Φ2
j(x)[

1− ( ω

ω j
)2
]2

+
(

ω

Q jω j

)2 . (3.26)

where Φ j(x) is the cantilever deformation of the jth eigenmode, as defined previously [57].
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3.4 Damping and quality factor of cantilevers in fluids

The quality factor Q of an oscillation is proportional to the ration of the energy stored to that
dissipated, that is

Q = 2π
Estored

Ediss
. (3.27)

For a linear harmonic oscillator, Eq. 3.27 can be expressed as [58]

Q =
kc +mω2

2cω
; at resonance, Q =

mωo

c
. (3.28)

Assuming an ideally cantilevered nanowire (ie: displacement and velocity at the fixed end are
zero), mechanisms for the damping of the nanowire’s vibrations include cs, the structural damping
due to phonon modes and defects in the nanowire, and c f , the damping due to the ambient fluid
(gas or liquid). The total damping is c = cs + c f . The fluid damping depends primarily on the
diameter of the nanowire and the pressure of the surrounding fluid.

In order to calculate reasonable estimates for Q, c must be known. For fluid damping of nanos-
tructures, c f � cs, so cs can be neglected. For all the experiments in this report, the surrounding
fluid is standard lab atmosphere, at pressures, P, of 760 Torr and lower. In this gaseous environ-
ment, three different fluid flow regimes can be applicable for the calculation of c f , depending on P
and the dimensions of the nanowire or Si microcantilever.

3.4.1 Damping in the continuum, cross-over and free-molecular regimes

The effect of fluid damping c f depends on the dimensions of the cantilever (eg: nano-wire or Si
microcantilever) and the density of the surrounding fluid. The Knudsen number, Kn, is a dimen-
sionless parameter that can be used to characterize fluid flow regimes:

Kn = lm f p/wrep, (3.29)

where lm f p is the mean free path of the gas molecules, 65 nm for air at STP, and wrep is a rep-
resentative length scale, the width, w, or diameter, do, of an oscillating cantilever [58]. The flow
regimes are defined as continuum (Kn ≤ 0.01), cross-over (0.01 < Kn ≤10), and free molecular
regime (Kn > 10). In the continuum regime, air pressure, P, is considerable and viscous forces act
on the cantilever. In the cross-over regime, the air molecules interact slightly with the cantilever.
At the low relative pressures of the free molecular regime, the forcing is due solely to momentum
exchange of the molecules striking the cantilever and the air-cantilever interactions are described
using statistical mechanics [59]. Since the damping c f depends on the flow regime, it is important
to identify the appropriate flow regime.

During the course of this work, the vibration spectra of numerous nanowires and a few stan-
dard Si microcantilevers, including the µmasch NSC35, were studied. Diameters of 75 nm and
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150 nm are representative of the MWNTs and Ag2Ga nanoneedles studied; the width of the
µmasch NSC35 microcantilever is w = 35 µm.

Using these parameters, the Knudsen number is calculated as a function of pressure between
10 mTorr and 1000 Torr (Fig 3.2). The damping of the Si microcantilever spans all three flow
regimes in the pressure range plotted, while at atmospheric pressures and below, damping of
the nanowire is in the cross-over and free molecular regimes. The cut-off pressure between the
cross-over and free molecular regime is 35 Torr and 75 Torr for the 75-nm and 150-nm diame-
ter nanowires, respectively. At atmospheric pressure, silicon microcantilevers are in the viscous
continuum regime while nanowires are in the cross-over regime.

Figure 3.2. Knudsen numbers calculated for the 35-µm wide
cantilever and two nanowires of different diameters. Shaded re-
gions indicate the free molecular flow, cross-over, and continuum
regimes. The dashed vertical line indicates 760 Torr.

Fluid damping coefficient

The fluid damping coefficient, c f , is a function of pressure and is given by different expressions
in the continuum, crossover, and free molecular regimes. All three expressions for c f contain a
common term equal to ρ f Uth, where ρ f is the gas density and Uth is the rms air speed, Uth =√

3kbNAT
Mm

[58]. In Uth, NA is Avogado’s constant and Mm is the molecular weight of the gas (eg.
29.87 g/mol for Earth’s atmosphere) [60]. Using the ideal gas law, the fluid density ρ f can be
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expressed in terms of the gas temperature T and pressure,

PV = nRoT → P =
mgas

V
RoT
Mm
→ ρ f = P

Mm

RoT
, (3.30)

where the universal gas constant is Ro = NAkB = 8.314 J/(mol K) and mgas is the mass of the gas.
Thus the aforementioned common term can be expressed as

ρ f Uth = P

√
3Mm

RoT
(3.31)

which appears in the below expressions for c f . These definitions for c f in the continuum, cross-
over, and free molecular regime are from Ref. [58].

c f =
√

3[1.41βKcKn]Lwrep P

√
Mm

RoT
Kn≤ 0.01, continuum regime (3.32)

c f = 2
√

3
π3/2Kn

αKn
Lwrep P

√
Mm

RoT
0.01≤ Kn≤ 10 cross-over regime (3.33)

c f =
Fd

u
= 2
√

3Lwrep P

√
Mm

RoT
Kn > 10, free molecular regime. (3.34)

Continuum c f : The continuum fluid damping coefficient depends on the cantilever’s dimen-
sions (L and wrep), the gas properties, and dimensionless parameters β and Kc. Kc, a fluid
density parameter, is a function of β and is given in Ref. [58]. The dimensionless param-
eter β = Re/(4Pw) is a function of the Reynolds number, Re, and a frequency parameter
Pw = Acant/wrep, where Acant is the oscillation amplitude of the cantilever. The Reynolds
number is Re = ρ f Ucant wrep/µ where µ is the dynamic viscosity of the fluid (gas) and
U = Acantω is the oscillation velocity of the cantilever [58].

Cross-over c f : The cross-over fluid damping coefficient is proportional to the free molecular fluid
damping coefficient and depends on the Mach number, Knudsen number, and dimensionless
parameter αKn, where

αKn = ln
(

2
√

πKn
S

)
− γ +0.5+Λ

√
πKn. (3.35)

The Mach number is S = Ucant/Usound; γ is the Euler constant, 0.5772; and Λ, which varies
between 1 and 1.5 in the cross-over regime, is given by

Λ = 1+
1
2
(1− e−Kn/2). (3.36)

Free molecular c f : The free molecular fluid damping coefficient is independent of Knudsen
number and depends linearly on the cantilever dimensions and pressure. The free molecular
fluid damping is proportional to the drag force Fd and a velocity term u.

The non-dimensionalized fluid damping coefficients, c f /(πµL), are plotted in Fig. 3.3 for the
Si microcantilever and two nanowires. As defined previously, L is the length of the cantilever or
nanowire and µ is the dynamic viscosity, µ = 0.45

√
3lm f pP/

√
RoT [58].
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Figure 3.3. The non-dimensionalized fluid damping coefficients
are plotted for the three cantilevers for the case of free molecular
(·), cross-over (o), and continuum (+) flow regimes. The cross-
over solution underestimates the cross-over damping, resulting in
a discontinuity between the cross-over (0) and continuum flow (+)
regimes.

3.4.2 Calculated quality factor due to gas damping at atmospheric pressure

Following Eq. 3.28, the quality factor of the jth eigenmode is

Q j =
mω j

c f + cs
; (3.37)

when c f � cs, Q j is inversely proportional to c f .

Equation 3.37 and the expression for c f in the cross-over regime are used to calculate Q at
760 Torr for nanowires of L = 10 µm, do = 100–200 nm. For MWNTs of these dimensions, Q1
= 3–18; for Ag2Ga nanoneedles of these dimensions, Q1 = 10–60. The above expressions for c f
and Eq. 3.37 are used in the calculation of the minimum detectable mass for cantilevered nanowire
sensors (section 5.5).
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Chapter 4

Experimental details for measurements of
the vibrational spectra of nanowires

4.1 Polytec MSA-400 scanning vibrometer

Nanowire oscillations were recorded using a Polytec MSA-400 scanning LDV. To reduce noise
from flood vibrations, the LDV is situated directly on top of a 30,000 kg cement slab supported by
six air spring dampers. The vibrometer consists of a modified Mach-Zehnder interferometer with
an optical microscope in the signal leg of the vibrometer. The object beam of the interferometer
(wavelength λ=633 nm, power <1 mW) is focused through a microscope objective and is incident
normal to the vibrating nanowire. As shown in Fig. 4.1(a), the backscattered beam is recombined
with a reference beam to form an interference signal which is decoded and Fourier transformed
to yield the vibrational spectra of interest. The LDV can measure velocities in the spectral range
from 0–1.5 MHz and displacements in the spectral range from 50 kHz–20 MHz. The frequency
resolution is 100 Hz for a typical 0-10 MHz frequency scan, allowing for a high resolution of
spectral features.

In the case of the displacement spectra measurements, the backscattered beam is phase-shifted
due to the change in the position of the nanowire as it vibrates. When the phase-shifted backscat-
tered beam is recombined with the reference beam, the resulting interference pattern is decoded
using a fringe-counting method. The velocity spectra measurements were decoded using the well-
known Doppler effect. The nanowire’s oscillatory motion with amplitude A and velocity v at
frequency f caused the backscattered light, which the LDV collects, to be Doppler shifted by a
frequency

∆(t) = ν
′−ν =−v

c
ν cos(2π f t), (4.1)

where v = A(2π f ) and ν = c/λ , where c is the speed of light. When the Doppler frequency shift
is measured at an eigenmode of the MWNT, ∆(t) is proportional to the resonant frequency f j and
amplitude A j of the jth eigenmode. Numerous tests of the LDV show that the frequencies are
measured with high accuracy.

However, the measured amplitude of the LDV is only proportional to the actual displacement
or velocity. When most of the reflected beam is collected by the sensor, the error between the mea-
sured and actual amplitude is small (<10 percent). If only a small percentage of the reflected beam
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Figure 4.1. In (a), a schematic of the Polytec LDV used in this
work, following Ref. [14]. The circularly polarized laser beam is
split by a beamsplitter into an object and reference beam. The ob-
ject beam is focused through a 50× objective onto the vibrating
nanostructure, usually a nanowire. This backscatted object beam
is then recombined with the reference beam, whose frequency has
been shifted by νBragg = 40 MHz. In (b), a schematic diagram of
a cantilevered nanowire. The reflected light (R) of the normally
incident laser beam (I) is Doppler shifted by frequency ∆ when
reflected from the MWNT. In (c), an illustration of the relative
dimensions when the object beam is focused through the 50× ob-
jective. As indicated by the shaded region, the beam waist is much
wider than the nanowire.

is collected by the sensor (small signal return), then the measured signal is only proportional to
the local displacement or velocity of the nanowire and a quantitative estimate of the local velocity
or amplitude becomes problematic, even though the frequencies are accurately measured. Small
signal returns occur (a) when the LDV laser spot lies on the edge of a vibrating structure or (b)
when the vibrating object is much smaller than the spot size of the beam.

Figure 4.2(b) shows the measured operating deflection shape (ODS) of the first eigenmode of
vibration of an Ag2Ga nanoneedle, which was measured at 13 points along the nanoneedle. The
measured ODS corresponds well to the theoretical first eigenmode of vibration for all but the tip-
most data point. The displacement of this tip-most data point is only 75 percent of the expected
value, which was normalized to unity. The under-measurement of the displacement indicates that
the LDV laser spot likely lay on the very end of the nanoneedle, as indicated by the red circle
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Figure 4.2. In (a), an SEM of the 16.6 µm long, 140 nm diameter
nanoneedle NNB2. Two red circles, diameter 0.9 µm, indicate the
spot size of the laser. In (b), the measured ODS and theoretical
first eigenmode, both normalized. The laser return at the tip-most
point on the nanoneedle was poor; for this reason the last data point
under-estimates the displacement amplitude.

drawn on the tip of NNB2 in Fig. 4.2(a).

Since the MWNTs were relatively poor light scatters, all MWNT displacement and velocity
spectra were normalized to a maximum value of unity. Spectra from Ag2Ga nanoneedles and Si
cantilevers are presented with the measured amplitude reported by the LDV, which may differ from
the actual amplitude.

4.2 Calibration of LDV by measuring the thermal tuning curve
of a Si microcantilever

As mentioned above, the LDV output is proportional to the local displacement or velocity. To
check that that measured amplitude of the LDV is reasonably accurate, the thermal spectra of a
conventional silicon microcantilever was measured. By the equipartition theorem (section 4.2.1),
the thermal energy is equally divided between the potential energy and kinetic energy. The poten-
tial energy, Epotential is proportional to the spring constant of the cantilever, kc, and mean square
displacement, 〈z2〉.

1
2

kBT =
1
2

kLDV 〈z2〉= 1
2

kAFM〈z2〉, (4.2)
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where kLDV and kAFM are kc estimated from Sader’s method using the LDV and AFM spectra
respectively. Sader’s method (section 4.2.2) gives a method of measuring kc from the quality
factor and frequency of the resonant peak of a cantilever oscillating in a fluid of known density and
damping. If the LDV calibration is accurate, then the measured Epotential should equal Ethermal ,
assuming the cantilever is in thermal equilibrium with the surrounding atmosphere.

The vibration spectrum of a silicon AFM cantilever was measured using both the LDV and the
Nanotec Electronica AFM. For both measurements, kc was estimated from the vibration spectra
using Sader’s method. Using these kc and the mean 〈z2〉 measured by the LDV, Epotential was
calculated and compared to Ethermal . The experimental details of these measurements are given in
section 4.2.1; the calculated energies are given in Table 4.1.

4.2.1 Experimental details

Asylum Si3N4 microcantilever: An Asylum Research RC800 PSA silicon nitride microcantilever
was studied. The manufacturer dimensions are L = 100 µm and w = 20 µm with a nominal kc =
0.39 N/m. These dimensions were confirmed by measurements with the LDV’s 50× optical micro-
scope. This cantilever was chosen since it had a small nominal spring constant and a rectangular
cross-section.

Nanotec AFM: The cantilever was mounted in the Nanotec chip holder and its tuning curve
was measured using the Nanotec Electronica AFM. The drive voltage for this measurement was
0.02 V. The measured tuning curve and the associated curve fit for the frequency response function
(FRF) are plotted in Fig. 4.3(a).

Polytec LDV: The cantilever, still in the Nanotec chip holder, was then mounted in the field
of view of the LDV. The Nanotec chip holder, held securely in the jaws of an alligator clip, was
positioned using an XYZ micromanipulator. This arrangement allowed the LDV’s signal beam to
be focused on the flat side of the cantilever. For these calibration tests, the laser spot of the LDV
was focused fully on the end of the cantilever. Since the signal return was maximum, the measured
amplitude was as accurate as possible using the LDV.

The displacement as a function of time, zmeas(t), was measured at the free end of the cantilever.
The displacement was measured at 1,048,576 time points over 4.096 sec, resulting in a time resolu-
tion of ∆t = 3.9 µs. By the Nyquist criterion, 2 fNyquist = 1/∆t, the minimum measurable frequency
fNyquist was 128 kHz.

Using the PWelch algorithm detailed in Appendix E, the power spectral density (PSD) of the
displacement zmeas(t) was calculated. This PSD is plotted in Fig. 4.3(b); averaging over 64 fre-
quency windows smoothes the data. To determine Q and f1, the following curve fit,

Szz( f ) =
A

Q1 f 3
1

1[
1− ( f

f1
)2
]2

+
(

f
Q1 f1

)2 +Noise, (4.3)

which is of the form of Eq. 3.19, was fit to the PSD (64 windows) using Matlab’s curve fitting
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toolbox (cftool). In Eq. 4.3, the term A includes the parameters of temperature and cantilever
mass; Noise is a small constant offset.

Figure 4.3. (a) The FRF of a Si3N4 cantilever, as measured using
the Nanotec AFM. (b) The power spectral density measured using
the LDV for the same Si3N4 cantilever. This figure shows the ef-
fect of averaging the PSD over 4 (green) and 64 (blue) windows.
A curve fit (black) is fit to the 64-window data.

4.2.2 kc from Sader’s method for AFM and LDV data

Sader’s method is regularly used to calibrate the static bending stiffness kc of AFM cantilevers
and is implemented in a Nanotec AFM. Assuming a rectangular cantilever of width w, the static
bending coefficient kc is then

kc = 0.1906ρ f w2LQ f Γi(ωo)ω2
o , (4.4)

where ρ f is the density of the surrounding fluid, Q f is the quality factor of the cantilever’s os-
cillation in fluid, Γi is the imaginary part of the hydrodynamic damping function, and ωo is the
fundamental resonant frequency, also measured in fluid [61].

Ryan Wagner measured the tuning frequency response function (FRF) [Fig. 4.3(a)] using the
Nanotec Electronica AFM. From a curve fit to the FRF (Eq. 3.13), we determined f1 = 69.81 kHz
and Q = 89. Using Sader’s method and the measured quantities and cantilever dimensions given
above, we calculated kc = 0.32 N/m.

For the LDV data, Q = 86 was determined by the curve fit of Eq. 4.3 to the PSD, which was
calculated using 64 windows. From this Q, kc = 0.31 N/m was calculated using Sader’s method.
Thus the calculated kc from the AFM tuning curve and the LDV PSD are in good agreement.
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4.2.3 Calculation of 〈z2〉 from zmeas(t) and from the PSD

From the LDV measurement, the mean square displacement 〈z2〉 of the cantilever can be calculated
either directly from zmeas(t) or indirectly from the PSD. By Parseval’s theorem, the total energy of
a signal in the time and frequency domain are equal; that is,

∫
∞

−∞

dt h2(t) =
∫

∞

−∞

d f |H( f )|2, (4.5)

where h(t) and H( f ) are a Fourier transform pair [62].

The deflection at the tip of the cantilever, zmeas(t) was measured using the displacement de-
coder of the LDV. After correcting for the offset, the mean deflection in the time domain 〈z2

time〉=
0.0105× 10−18 m2 was calculated. This calculation assumes that the deflection of the cantilever
at its tip is due solely to the motion of the first eigenmode, z1. While zmeas > z1, the mean square
deflection of the first eigenmode is 39 times that of the second (〈z2

1〉/〈z2
2〉 = α4

2/α4
1 = 6.274), so

the assumption that 〈z2
time〉 ≡ 〈z2

1〉 is accurate to 2 percent.

A better measure of the energy in a single eigenmode is calculated by integrating the PSD.
From Eq. 4.5, ∑

all modes
〈z2

f req, j〉, the mean square deflection in the frequency domain, should equal

〈z2
time〉. From the PSD, 〈z2

f req, j〉 is calculated by numerically integrating (trapezoidal integration)
the PSD over the width of the eigenmode. 〈z2

f req,1〉= 0.0094 nm2 was calculated by integrating the
PSD over a frequency range of 5 kHz, which was centered at f1 = 69.81 kHz. The value of 〈z2

f req,1〉
should be more accurate than the value of 〈z2

time〉 because 〈z2
f req,1〉 only contains contributions from

the first eigenmode.

4.2.4 Comparison of the potential and thermal energy of a Si3N4 cantilever
in thermal equilibrium

Following Eq. 4.2, the potential energy can now be calculated as 1
2kc〈z2〉, where kc is determined

by AFM or LDV. Assuming a room temperature of 293 K, Ethermal is given by (1/2)kBT , which is
equal to 2.02×10−21 J.

The calculated Epotential , as calculated using kc measured from the AFM and LDV, are given
in table 4.1. The error in the measurement is defined as (Ethermal−Epotential/Ethermal). The error
of the measured Epotential is 25 percent, which suggests that the measured 〈z2〉 is ∼25 percent too
small. The measured Si3N4 cantilever is an uncoated cantilever and likely has poor reflectivity.
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Table 4.1. Potential energy of a Si3N4 cantilever, using 〈z2
f req〉

= 0.0094 nm2 and K1
eq = α4

1 kc/12. The Q is determined from the
curve fit to either the AFM or LDV data.

Method Q K1
eq (N/m) Epotential×10−21 J % Error

AFM 89 0.33 1.6 23
LDV 86 0.32 1.5 26

4.3 The MWNT-Ni STM tips

The MWNTs used in this experiment were grown at 900 oC in a SEKI AX5200S microwave
PECVD reactor using Fe2O3 nanoparticle catalyst particles [63]. These MWNTs were grown by
Dr. Placidus Amama of Prof. Tim Fisher’s research group at Purdue University. Chun Lan of the
Reifenberger Nanophysics Lab had studied the electronic properties of PECVD-grown MWNTs
as a function of growth conditions. She discovered that MWNTs grown at 900◦C had a lower
resistance and, thus fewer defect sites, than MWNTs grown at 800◦C or 900◦C [64].

4.3.1 Literature review of affixing MWNTs to AFM tips

The techniques used for affixing MWNTs to STM tips strongly follow the procedure used for cre-
ating MWNT-AFM probes. In 1996 Dai et al. reported affixing MWNTs to both silicon cantilevers
and STM tips using an acrylic adhesive and van der Waals force. Although they reported atomic
resolution STM scans of TaS2 using a∼5-nm wide MWNT protruding from a MWNT bundle [65],
future work from this group and others focused on MWNT-AFM probes.

Researchers at NASA Ames Research Center realized the potential of Ni-coated cantilevers
for fabricating MWNT-tipped AFM probes and developed a technique for transferring a single
MWNT to a probe tip using micromanipulators [66]. Using carbon vapor deposition (CVD), a
cartridge of MWNTs was grown on a PtIr wire in preparation for the MWNTs’ transfer to silicon
cantilevers coated with∼10–15 nm of nickel. The MWNT cartridge and Ni-coated cantilever, held
by micromanipulators, were brought into close proximity under an optical microscope. When a
solitary MWNT suitable for transfer was found, a small electric field (3–10 V) was applied between
the cartridge (anode) and cantilever (cathode) to induce the MWNT to contact the cantilever. Then
the voltage was increased to 10–40 V causing the MWNT to break from the cartridge and weld to
the Ni-coated cantilever by current-induced joule heating [66, 67]. These MWNT-AFM probes are
extremely stable; no degradation in AFM scan quality was seen after scanning continuously for
15 hours [68].
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4.3.2 Creating MWNT-Ni STM tips

Etching Ni tips

The nickel wires were etched into high-aspect ratio STM tips using an electrochemical tip fabrica-
tor, Schrödinger’s Sharpener (Model SS02, manufacturer Obbligato Objectives). The Schrödinger’s
Sharpener consists of a clamp to hold the wire being etched, a dual platinum ring assembly which
supports the etching laminar, and a detection system with an electronic current break. The nickel
wire, held vertically by the anode clamp, extends through the dual ring assembly. Etching occurs
in the top ring (cathode) of the coaxial dual ring assembly. The detection system monitors current
through the bottom sense ring, cutting off the current and stopping the etch as soon as the wire is
etched through.

A nickel wire is cut to a length of 5–6 cm and clamped in the Schrödinger’s Sharpener. Then
the dual ring assembly and wire are dipped in the etchant, a 2M solution of KCl dissolved in Birck
ultra-pure water. Often the rings and wire must be dipped a few times before a stable laminar film
forms on both rings. Next a small ball of Play-Doh (∼5 mm diameter) is slid on the free end of
the nickel wire. The extra weight of the Play-Doh helps ensure that the tips from both the top and
bottom halves of the wire are sharp, avoid torque at the tip etch point, and stop corrosion of the
lower tip by causing it to fall as soon as etching is complete [69]. An added benefit is that the
Play-Doh ball protects the lower tip as it falls, decreasing the probability that the lower tip will
be bent on impact. The Schrödinger’s Sharpener control electronics apply a 2.0 VDC voltage and
etching begins with the following chemical reaction [69],

Cathode: 2H2O + 2e− → H2(g) + 2OH−

Anode: Ni(s)+4Cl− → NiCl24 + 2e−.

As the etching proceeds, green NiCl24 salts accumulate along the Pt ring. Occasionally the laminar
in either ring breaks before the etching is completed. In that case the Play-Doh ball is removed, the
rings and wire are again dipped in etchant, the Play-Doh ball is replaced, and the etching voltage
applied again. To etch a good pair of Ni-STM tips typically required 5–10 minutes. After etching
is complete, the tips are held in an ultrasonic bath of Birck ultra-pure water for a minute to remove
salts and then rinsed with isopropanol to remove oils.

Affixing MWNTs to Ni-STM tips

Individual MWNTs were affixed to etched nickel STM tips using the procedure described by
Stevens et al. [66]. This procedure was observed under a darkfield microscope (Zeiss Jenoptik
D-07739), which has 5x and 50x magnification. A pair of XYZ nanomanipulators hold the Ni-
STM tip and the MWNT cartridge above the microscope stage. To prepare the MWNT cartridge,
a small (∼ 3× 3 mm) piece of conducting SEM tape is held in a alligator clip so that it barely
protrudes past the end of the clamp. The SEM tape is then dipped in a sample of matted MWNTs.
The mats of MWNTs are gently brushed off, leaving MWNTs stuck in the SEM tape at random
directions.
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To make the MWNT attachment more robust, the Ni tip is touched to soft double-sided carbon
scanning electron microscope (SEM) tape (STR tape from Shinto Paint Co. Ltd.) before adding
the MWNT. A small amount of adhesive from the SEM tape sticks to the Ni tip and helps affix the
MWNT. Without the adhesive from the SEM tape, the forces of adding a glass bead to the MWNT
would frequently push the MWNT off the Ni tip.

Under the 5x magnification, the MWNT cartridge and Ni-STM tip are brought a few hundred
microns of each other. The magnification is increased to 50x and MWNT cartridge is scanned to
find a solitary MWNT sticking out roughly perpendicular to the cartridge. The desired MWNT is
brought into focus and the Ni-STM tip is brought within close proximity using the nanomanipu-
lators. The shallow focal plane of the darkfield microscope ensures that if both the MWNT and
Ni-STM tip are in focus, they must be in the same plane. The Ni-STM tip is then brought alongside
the MWNT with 5–10 µms of overlap. At this point van der Waals attraction causes the MWNT
to snap in contact with the Ni-STM tip. The Ni-STM tip position is adjusted slightly, if necessary,
so that the MWNT contacts the Ni-STM tip along the tip’s length and not just at one point. An HP
6234A Dual Power Supply, applies a 10–30 V voltage pulse to the MWNT (anode) and Ni-STM
tip (cathode). This voltage pulse breaks the MWNT off of the SEM tape and firmly bonds the
MWNT to the Ni-STM tip. Figure 4.4 is a darkfield image of a typical MWNT-Ni STM tip.

Figure 4.4. Darkfield image of a 13.5 µm MWNT affixed to a
nickel STM tip. The magnification is 50x.

4.4 Ultimate measurement limits for LDV calculated using Mie
scatting theory

When a cylinder (such as a nanowire) is illuminated by light, the amount of light scattered and
absorbed depends in a complicated way on the geometry and optical properties of the cylinder,
the index of refraction of the surrounding medium, and the wavelength and polarization of the
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incident light beam. When the incident wavelength becomes comparable to the dimensions of
the cylinder, Mie scattering theory rather than geometrical optics is applicable. In Mie theory,
the scattering cross section per unit length of the cylinder, Csca, depends on the diameter of the
cylinder do, the complex index of refraction of both the cylinder (N) and surrounding medium
(Nmed), and the wavelength (λ ) and angle of incidence of the light beam. From these parameters,
expressions for Csca far from the cylinder can be derived [70]. A particularly useful quantity is
the scattering efficiency Qsca, which is defined as Qsca = Csca/do. If Qsca is greater than 1, then
light is effectively scattered from an apparent object that is larger in cross-section than the actual
scattering object.

Following Bohren and Huffman [70], Qsca is calculated for the case of light (of wavenumber
k) normally incident on a cylinder,

QT M
sca = 2

χ
(|bo|2 +2∑

∞
n |bn|2)

QT E
sca = 2

χ
(|ao|2 +2∑

∞
n |an|2),

(4.6)

where the dimensionless size parameter, χ , equals ka [70]. In the case of circularly polarized light,
the transverse magnetic (TM) and electric (TE) modes contribute equally, so Qsca = 1

2(Qsca,T M +
Qsca,T E) [71]. The coefficients a and b are a function of the ratio of the index of refraction of the
surrounding medium (Nmed) to that of the cylinder (Ncyl) and the size parameter x.

an = ηJ
′
n(χ)Jn(ηx)−Jn(χ)J

′
n(ηx)

mJn(ηχ)H(1)′
n (χ)−J′n(ηχ)H(1)

n (χ)

bn = Jn(ηχ)J
′
n(χ)−ηJ

′
n(ηχ)Jn(χ)

Jn(ηχ)H(1)′
n −ηJ′n(ηχ)H(1)

n (χ)
, where n = 0,1,2, ...

(4.7)

where H1
n is a Hankel function (H1

n = Jn + iYn), Jn and Yn respectively are Bessel functions of the
first and second kind, and η = |Ncyl|/|Nmed|.

We use Mie theory to calculate the scattering efficiency Qsca of graphite, silver, and silicon
nanowires, which are modeled as dielectric cylinders of diameter do. This calculation allows us
to better understand the limits of light scattering from a nanowire and to estimate the smallest
diameter nanowire whose oscillation might be detected. A FORTRAN program for calculating
Qsca as a function of incident angle was modified to calculate Qsca as function of do, N, and
Nmed [70]. This modified FORTRAN program and a sample output are given in Appendix D.
Calculations of Qsca are plotted in Fig. 4.5 and were performed for the case of circularly polarized
633-nm light to match the conditions of our experiments.

Optical constants for MWNTs and Ag2Ga nanoneedles are not well established. However,
a MWNT is similar in structure to pyrolitic graphite for which the optical constants are known.
With this in mind, any light reflected from the front surface of a MWNT scatters from graphitic
planes similar in orientation to the [0001] basal plane of graphite. Any light scattered from the
outer edge of a MWNT reflects from graphitic planes similar in orientation to the [1120] plane of
graphite. Following this logic, realistic limits on Qsca can be obtained using the appropriate optical
constants of pyrolytic graphite [72]. The index of refraction for silver (NAg = 0.135+ i3.99) is used
as a rough approximation for the N of Ag2Ga nanoneedles [73].
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Figure 4.5. The calculated Qsca for circularly polarized 633 nm
light normally incident on a cylindrical nanowire in air as a
function of diameter. In (a), the case of light scattering off of
metallic silver (NAg = 0.135 + i3.99; solid red line) and graphitic
nanowires. For the graphitic nanowires, light scattering off the
[0001] plane (NG = 1.5+ i0; dotted cyan line) and the [112̄0] plane
(NG = 2.7 + i1.4; solid blue line) are considered. The diameters
of MWNTs studied fall within the range indicated by the dashed
vertical lines. In (b), the case of light scattering off of a semicon-
ducting silicon nanowire (NSi = 3.877+ i0.019).

We conclude from Fig. 4.5(a) that for diameters less than ∼250 nm, the edges of the MWNT
will more effectively scatter light. Assuming that the signal-to-noise ratio (SNR) of the vibrational
resonance peak is proportional to the amount of light scattered, we can estimate the smallest diam-
eter MWNT that reflects just enough light so that its oscillation might be detected. From our mea-
sured data, we typically find a SNR at resonance of 5:1. We define the smallest diameter MWNT
whose oscillation spectra can be measured as a MWNT that scatters light at resonance with a SNR
of 1:1. From the calculations leading to Fig. 4.5(a), we estimate that MWNTs with diameters be-
tween 70 and 100 nm meet the SNR criterion of 1:1. This suggests that MWNTs with diameters in
the range between 70 and 100 nm are the smallest diameter MWNTs that can be studied using the
Polytec MSA-400 scanning LDV. To date, the smallest diameter Ag2Ga nanoneedle studied had
a diameter of 60 nm. This nanoneedle still reflected sufficient light so that its oscillation spectra
could be recorded.

Since Qsca depends strongly on the index of refraction N of the cylinder, nanowires of other
materials might scatter light more effectively, thereby allowing the vibrational spectra of smaller
diameter nanowires to be detected. Consider the case of Si(111) nanowires which have N = 3.9+
i0.02 [74]. Calculations give a Qsca one to two orders of magnitude higher than MWNTs of the
same diameter, suggesting that the oscillation of silicon nanowires can be measured to diameters
less than 50 nm [Fig. 4.5(b)].
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Chapter 5

Measured vibration spectra, elastic
modulus, and quality factors of MWNTs
and Ag2Ga nanoneedles

5.1 Qualitative MWNT vibration spectra

Our first experiments to measure the vibration spectra of MWNTs were low-resolution qualitative
measurements to estimate the resonant frequency of individual MWNTs. 1 A priori we had as-
sumed that the elastic modulus of the PECVD-grown MWNTs was∼1 TPa, as it is for SWNTs and
pristine arc-discharge MWNTs. Using E=1 TPa and approximate MWNT dimensions of 5-10 µm,
do = 100 nm, and di = 0.5do, the resonant frequency was estimated to be in the 10s of MHz.

To obtain rough estimates for f1, we electostatically excited MWNTs affixed to nickel STM tips
and observed the oscillation in a darkfield microscope. The design of the electrostatic excitation
experiment was inspired by the work of J. Galliard et al. [34] and by conversations with Dr. Steve
Howell of Sandia National Laboratories. Both the MWNT, mounted on a Ni STM tip, and an
etched Ni STM tip counter electrode were held in alligator clips. Using nanomanipulators, the
MWNT and counter electrode were positioned nearly perpendicular to each other, approximately
2–4 µm apart, as shown in Fig 5.1(a). This perpendicular configuration was chosen to maximize
the electric field on the MWNT. Care was taken to ensure that the gap distance was large enough
to prevent the MWNT from snapping into contact with the MWNT; such contact would cause the
MWNT to spark shorten.

The MWNT tip was biased by 30 VDC to draw charge to the tip of the MWNT. A DC bias
applied between the MWNT and electrode caused the MWNT to bend toward the Ni electrode.
If the point of attachment were weak, the MWNT would pivot at MWNT-Ni tip junction. As the
electrostatic drive frequency was increased, the magnitude of the oscillation was monitored in the
darkfield microscope. At low excitation frequencies (∼2-20 Hz), the MWNT would oscillate with
amplitude 1–2 µm. As the drive frequency was increased past∼50 Hz, the amplitude of oscillation
decreased to near zero. The frequency response remained flat until the drive frequency approached

1Portions of this chapter were previously published in Ref. [75], L. B. Biedermann, R. C. Tung, A. Raman, and
R. G. Reifenberger, “Flexural vibration spectra of carbon nanotubes measured using laser Doppler vibrometry,” Nan-
otechnology 20:3 035702 (2009). Please see the copyright statement in Appendix F.
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Figure 5.1. In (a), a schematic of the experimental set-up for
electrostatic excitation of a MWNT. In (b), the electrostatic excita-
tion of MWNT A7a−9 at resonance. The E for this MWNT was
calculated to be 4.1 GPa.

the resonant frequency. At resonance, the approximate vibration amplitude was 1–2 µm with a
drive voltage of 20 Vpp, as shown in Fig. 5.1(b).

The oscillation amplitude depends strongly on the distance between the MWNT and the counter-
electrode to which the AC electric potential was applied. Decreasing the MWNT-electrode distance
increased both the oscillation amplitude and the risk of the MWNT contacting the electrode and
spark shortening. We noted the resonant frequency by an increase in the oscillation amplitude, but
the resolution of our frequency measurements was low, ∼50 kHz.

Figure 5.2 shows the calculated E for seven MWNTs whose resonant frequencies were esti-
mated using electrostatic excitation. By inverting Eq. 3.7, E is written as

E =
(8π)2ρ

α4
j (d2

o +d2
i )

f 2
j L4. (5.1)

For these calculations of E, do was assumed to be 180 nm and di = 0.5do. Two MWNTs, A7a−2
and A7b− 2, had exceptionally low moduli of 0.2 and 1.1 GPa respectively. These two MWNTs
showed an unusually high degree of freedom at the attachment point to the Ni STM tip and are
thus excluded from the calculation of the average E. The average E for the remaining five MWNTs
was 17 GPa with a standard deviation of 17 GPa. Despite the low frequency resolution of this
method, these electrostatic excitation experiments clearly demonstrated that the E for PECVD-
grown MWNTs was much lower than we originally assumed. Furthermore, the wide resonance
peak indicated that the quality factor of these oscillations was low.

5.2 Quantitative MWNT spectra measured using LDV

In order to accurately determine E of PECVD-MWNTs, we used a laser Doppler vibrometer to
measure their thermal vibration spectra. This work was done in collaboration with Ryan Tung
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Figure 5.2. The E calculated for seven PECVD-MWNTs based
on the resonant frequencies measured in the electrostatic excitation
experiments. Lengths were measured in the darkfield microscope;
do was estimated to be 180 nm for all MWNTs.

and Prof. Arvind Raman of the School of Mechanical Engineering at Purdue. As described in
section 4.1, the high frequency resolution (100 Hz) of the LDV allows accurate measurements of
the vibration spectra, and thus determination of the elastic modulus.

The vibrational spectra of both bare MWNTs and MWNTs with glass beads affixed to the
end were recorded. While the diameters (176 and 230 nm) of the bare MWNTs studied were well
above the theoretical small diameter limit predicted by Mie scattering (section 3.6), identifying and
focusing the laser beam on such small structures was difficult. MWNTs with glass beads affixed
to the end had greater laser signal return and were easier to focus in the 50× bright-field optical
microscope.

For each MWNT studied, 5-10 thermal oscillation spectra were acquired and averaged to pro-
duce a resultant spectrum that was used for further analysis. For each MWNT, a background
spectrum with the laser beam focused on the Ni tip was also acquired. The mass of the Ni tip was
great enough that there should be no measurable thermal oscillations and indeed, measurements of
a background spectra were uniformly featureless.

After the thermal vibration spectra from an individual MWNT were recorded, the MWNT
dimensions (L, do, and bead diameter, dbead , if applicable) were measured using a Hitachi S-4800
field emission scanning electron microscope (FESEM). The inner diameters, di, were assumed to
be di = 0.5do. This assumption was based on parallel studies of TEM micrographs of representative
MWNTs.

The eigenfrequencies and corresponding quality factors, Qmeas, of the MWNTs (both bare
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MWNTs and MWNTs with beads) was found by fitting the measured resonance to Eq. 5.2, which
is of the same form as Eq. 3.13,

Z(ω) =
G√[

1−
(

ω

ω j

)2
]2

+
(

ω

ω jQ

)2
+Noise, (5.2)

In Eq. 5.2, Z(ω) is the normalized amplitude of the MWNT oscillation, ω is the frequency at which
Z(ω) was measured, G is the overall gain, ω j is the resonant frequency (ω j = 2π f j), and Noise
is the noise offset. To fit the velocity spectrum, the displacement spectrum is differentiated with
respect to time, which, in the frequency domain, amounts to multiplying the displacement spectrum
by ω . After a least squares fit of the resonance data to Eq. 5.2 was performed, the Q-factor was
calculated from the 3dB points determined by the fit.

5.2.1 Vibration spectra of bare MWNTs

The vibration spectra of two bare MWNTs were measured. One such spectrum taken from MWNT
NT 1 is shown in Fig. 5.3(a). We attempted to measure the vibrational spectra of other bare
MWNTs, but their small diameter prevented us from accurately focusing them in the 50× bright-
field microscope of the LDV. The elastic modulus was calculated using Eq. 5.1. Vibration spectra

Table 5.1. Experimentally measured elastic modulus for the
MWNTs studied. The calculations in this table assume di = 0.5do.
The estimated estimated errors are ±10 nm for do, ±0.2 µm for L,
and ±2 kHz for f j.

Bare MWNT do (nm) L (µm) f1 (kHz) f2 (kHz) E1 (GPa) E2 (GPa)
NT1 230 14.4 285 1930 6.2±0.8 7.3±1.0
NT2 176 12.6 929 6730 66.0±9.8 88.2±13.2

from the MWNTs studied revealed peaks at both the first and second bending mode eigenfrequen-
cies, f1 and f2. Table 5.1 summarizes the dimensions, resonant frequency peaks, and E for two
bare MWNTs. We note the f2/ f1 ratio for sample NT 2 is 7.2, somewhat higher than the theoreti-
cal value of 6.3. However, the Euler-Bernoulli beam theory assumes straight, homogenous beams
while the MWNTs studied are curved, have carbonaceous deposits on the exterior, and, in some
cases, exhibit non-uniform mass density along their length (see Fig. 5.3(c)). Any of these reasons
might explain why the f2/ f1 ratio does not exactly match the expected value of 6.3.
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Figure 5.3. In (a), the displacement frequency spectrum from
MWNT NT1 shows eigenmode peaks at 285 and 1930 kHz at-
tributed to the 1st and 2nd bending modes of the MWNT. In (b), an
SEM micrograph shows the MWNT affixed to the Ni tip. The red
and blue arrows represent where the laser vibrometer was focused
on the MWNT and Ni tip, respectively. (Reprinted with permis-
sion from Ref. [75]. Copyright 2009 by IOP Publishing.)

5.2.2 Extension to smaller diameters: vibration spectra of MWNTs with
beads

The lower diameter limit of 70–100 nm for detecting MWNT oscillations restricts this optical
technique to relatively large diameter MWNTs. An additional complicating factor is that MWNTs
and nanowires with a diameter of only 100 nm are not visible in the 50× bright-field optical
microscope used to focus the laser light of the vibrometer. As a first step to measuring the vibration
spectra of MWNTs and nanowires with smaller diameters, we developed a technique to add a small
glass bead to the end of an individual MWNT. An advantage of adding a glass bead is the additional
light that scatters from the bead makes the bead easier to align with the focused laser beam.

Partially gold-coated glass beads (Duke Scientific 9002 borosilicate glass spheres with diam-
eter 2.0± 0.5 µm) were prepared and transferred to a MWNT using a 0.25 mm diameter Ni wire
under the magnification of a 50× dark-field microscope. The Ni wire was first inserted into a vial
containing the glass beads. Upon withdrawal, hundreds of glass beads were attached to the Ni
wire. One side of each bead was then partially coated with a thin layer of gold after inserting the
Ni wire into a thermal evaporator. An STM tip was then used to transfer an individual glass bead
from the Ni wire to a MWNT by repeatedly pushing and pulling the MWNT against the bead, as
illustrated in Fig. 5.4.

In the case of a large mass added to the end of the MWNT (mbead � mMWNT ), the mass of
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Figure 5.4. In (a), a 50× darkfield image of a MWNT affixed
to an Ni STM tip. In (b), a gold-coated glass bead is on the tip of
an etched wire. By repeatedly pushing and dragging the MWNT
against the bead, the bead can be transfered to the MWNT, as seen
in (c). In (d), if the MWNT has a “kink” defect along its length,
the MWNT will bend when pushed against the glass bead. Such
MWNTs with “kink” defects were excluded from further study.

the MWNT can be neglected and the fundamental bending frequency fbend can be approximated
as fbend = 1

2π

√
k/mbead . For a cantilevered beam kc = 3EI/L3, so the bending frequency is

fbend =
1

2π

√
3EI

L3mbead
. (5.3)

Thermal oscillation spectra were recorded and averaged for several MWNTs with attached
beads. Again, the background vibrational spectrum from the Ni tips was uniformly featureless.
One such spectrum taken from MWNT NT 5 is shown in Fig 5.5(a). Figure 5.5(b) shows an SEM
micrograph of the MWNT with an Au-coated glass bead. Table 5.2 summarizes the dimensions,
resonance frequency peaks, and E calculated for three MWNTs with glass beads affixed. The
values of E are within the range of modulus values, Ē=3-600 GPa, previously reported for CVD-
grown MWNTs [26, 34, 36, 25].
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Figure 5.5. In (a), the velocity spectrum of a MWNT showing a
vibration peak at 53.3 kHz that is attributed to the bending oscil-
lation of the MWNT. In (b), an SEM micrograph of the MWNT
with gold-coated glass bead affixed to the MWNT tip. The red and
blue arrows represent where the laser vibrometer was focused on
the bead and Ni tip respectively. (Reprinted with permission from
Ref. [75]. Copyright 2009 by IOP Publishing.)

Table 5.2. Experimentally measured elastic modulus for
MWNTs with beads. The calculations in this table assume di =
0.5do. The estimated estimated errors are±10 nm for do,±0.2 µm
for L, and ±2 kHz for f j. Bead diameters (not listed, estimated er-
ror ±20 nm) were measured in the FESEM and used to estimate
the mass of the bead.

MWNT with bead do (nm) L (µm) mbead (pg) fbend (kHz) E (GPa)
NT3 160 14.0 12.1 44.9 29.3±8.6
NT4 177 15.1 4.88 68.4 22.9±6.0
NT5 176 14.7 17.1 53.3 60.8±16.6
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5.3 Ag2Ga nanoneedle results

A key advantage of the LDV technique is that it is completely general and can be used to measure
the vibration spectra of any nanowire that reflects sufficient light. After hearing our presentation on
the above research on MWNTs at the 2008 APS March Meeting, Dr. Mehdi Yazdanpanah asked
us to collaborate with him to measure the E and Q of Ag2Ga nanoneedles.

During the course of this research, the vibrational spectra of eight Ag2Ga nanoneedles with
diameters 65–300 nm and lengths 4–60 µm were measured using laser Doppler vibrometery. The
dimensions of these nanowires are tabulated in Table 5.3. As described in section 2.2, the nanonee-
dles are faceted with a nearly-circular cross-section. Since the number of facets is not known, the
nanoneedle cross-section is approximated as circular. These nanoneedles, grown by Dr. Yaz-
danpanah, were grown on both etched W STM tips and conventional AFM cantilevers, using the
methods described in section 2.2.1. No characteristic difference was observed for the nanoneedles
grown on STM tips versus AFM cantilevers.

Table 5.3. Dimensions of the eight Ag2Ga nanoneedles studied as
determined from SEM micrographs. In what follows, nanoneedles
NNB, NND, NNE, NNG, and NNB2 are discussed in more detail.

Designation Length (µm) Diameter (nm) Comments
NNA 23 & 30 115 & 194 two conjoined nanoneedles of

unequal diameter and length
NNB 60 206 long, straight nanoneedle
NNC 9.6 163 short, stiff nanoneedles
NND 4.3 96 flat frequency response <2 MHz
NNE 6.2 106 flat frequency response <1 MHz
NNF 22 65 very soft cantilever (kc ∼ 10−5)
NNG 10 301 high Q1 = 50 in atmosphere
NNB2 16.6 & 17 140 two conjoined nanoneedles of

nearly equal diameter and length

The vibration spectra was primarily measured using the displacement decoder (frequency range
0.05–20 MHz) so that the higher eigenfrequencies could be detected. The vibration spectra of a
few long nanoneedles with f1 ∼ 10s kHz were also measured with the velocity decoder (frequency
range 0–1.5 MHz).

All the spectra presented in this section were measured in the time domain; an autocorrelation
algorithm implemented using Matlab’s PWelch function was used to transform the time signal
(displacement or velocity) into a power spectra density in the frequency domain. The Matlab code
used to analyze the vibration spectra is given in Appendix E.

Since the Ag2Ga nanoneedles are more reflective than the MWNTs, the scanning feature of
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the LDV could be used to measure the vibration spectra along the entire length of the nanoneedle.
To measure the operating deflection shape (ODS), the nanoneedles were mounted on top of a
piezoelectric plate and excited using the “PsuedoRandom” excitation mode of the LDV. With the
phase information obtained from the drive signal, the ODS could be measured.

5.3.1 Eigenfrequencies f1– f9 measured from the vibration spectra of a long
Ag2Ga nanoneedle

The vibration spectra of an exceptionally long nanoneedle, NNB, (L = 60 µm, do = 205.5 nm)
were measured using both the velocity decoder and the displacement decoder. Both decoders
were used since the first eigenfrequency, f1=0.026 MHz, was below the frequency limit, 50 kHz,
of the displacement decoder. From these spectra the f j and associated quality factors, Q j, were
determined by curve fits of the PSD. The displacement spectra is fit by

Szz( f ) =
A j

Q j f 3
j

1[
1− ( f

f j
)2
]2

+
(

f
Q j f j

)2 +Noise j, (5.4)

which is the extension of Eq. 4.3 for multimode oscillations. To fit the velocity spectra, Eq. 5.4 is
multiplied by (2π f )2; that is,

Szz, vel( f ) =
A j

Q j f 3
j

(2π f )2[
1− ( f

f j
)2
]2

+
(

f
Q j f j

)2 +Noise j. (5.5)

Since the velocity PSD Szz, vel( f ) is only fit to the eigenfrequency peaks, a constant noise offset
is assumed. Figure 5.6 shows the velocity (b) and displacement spectra (c) of NNB with overlaid
curve fits, as well as an SEM micrograph of NNB (a).

The eigenfrequency peaks were identified by the comparing the measured ratio f j/ fk to the
theoretical ratio (α j/αk)2. From this comparison (see Table 5.4), the spectral peaks were identified
as corresponding to the 1st through 4th eigenmodes of vibration for the velocity spectra and the 2nd

through 9th eigenmodes for the displacement spectra. This identification of the eigenfrequencies
was confirmed by observing the ODS; Fig. 5.6(d) shows the ODS of the eighth eigenmode. The
low error (less than 1 percent) of the frequency ratio demonstrates that the motion of this straight,
high-aspect ratio nanoneedle is well described by Euler-Bernoulli beam theory.
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Figure 5.6
In (a), an SEM micrograph of NNB, which was grown on a Ag-coated W STM tip. (b) The
1st through 4th eigenfrequencies are observed in the velocity PSD. (c) The displacement PSD
shows the 2nd through 9th eigenfrequencies. The tick marks above the spectra peaks indicate the
theoretical location of each eigenfrequency peak. In (b) and (c), the curve fits to Eqs. 5.4 and 5.5
indicate the frequency range of the integral used to calculate 〈z2

j〉. In (d), the measured operating
deflection shape at 3.8 MHz has eight extrema, as is expected for the eighth eigenmode.
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Figure 5.6.
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Table 5.4. The measured eigenfrequencies, f j, of NNB and mean
square displacements, z2

j , of the 1st–9th eigenmodes, as determined
from both the velocity and displacement spectra. The percent error
is calculated from the frequency ratios. The scaling factor γ j is
calculated from Eq. 5.10.

Measured frequencies Areas of peaks
j f j f j/ f2 (α j/α2)2 % error K j

eq, f req 〈z2
j〉 K j

eq, area γ j

(MHz) (N/m) (nm2) (N/m)
Values measured from NNB’s velocity spectra

1 0.0256 — — — 1.2 ×10−4 32 1.27 ×10−4 0.83
2 0.153 1.000 1.000 0 0.0041 0.67 0.0060 0.69
3 0.423 2.809 2.800 0.30 0.033 0.079 0.052 0.63
4 0.846 5.528 5.486 0.76 0.13 0.033 0.12 1.0

Values measured from NNB’s displacement spectra
2 0.152 1.000 1.000 0 0.0042 0.84 0.0048 0.84
3 0.428 2.822 2.800 0.78 0.032 0.10 0.041 0.80
4 0.838 5.528 5.486 0.77 0.12 0.024 0.17 0.74
5 1.388 9.156 9.070 0.94 0.34 0.0098 0.41 0.82
6 2.079 13.71 13.55 1.2 0.76 0.0054 0.75 1.0
7 2.900 19.13 18.93 1.1 1.5 0.0036 1.1 1.3
8 3.846 25.37 25.20 0.69 2.6 0.0032 1.3 2.1
9 4.938 33.57 32.36 0.65 4.3 0.0011 3.8 1.1

The first eigenfrequency, f1 = 0.0256 MHz, is higher by 4.8 percent than the value expected
from Euler-Bernoulli beam theory. Assuming that f2 is as predicted using Euler-Bernoulli beam
theory, then

f1 =
f2

(α2/α1)2 =
0.153 MHz

6.27
= 0.0244 MHz. (5.6)

This frequency shift of 1.2 kHz could be caused by a small force on the free end of NNB. A
small force on the free end of the nanoneedle would (1) raise the eigenfrequencies and (2) have
the greatest effect on the least stiff eigenmode, j=1. The incident laser light exerts a small optical
force on the nanoneedle, as discussed in Section 5.3.4.

From the measured f j and the dimensions of NNB, E is calculated using Eq. 5.1. From the
displacement data for NNB, E = 84.4± 0.6 GPa, where the error in the measurement is due to
the variance in the eight measured f j. (The larger variance in the f j determined from the velocity
spectra yields E = 87.2± 3.9 GPa.) The equation for the static bending stiffness from Section
4.2 (kc = 3EI/L3) gives kc = 1.02× 10−4 N/m for this nanoneedle, where the value of E was
determined from the eigenfrequencies of the displacement spectra. The equivalent spring constant
(K j

eq, f req = kcα4
j /12) is tabulated for each eigenmode in Table 5.4.

Following the method of Section 3.2.3, the mean square displacement (MSD) is calculated
from zmeas(t) (displacement spectra only). As mentioned earlier, this method overestimates 〈z2〉
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for the first eigenmode because the contributions of the higher modes can not be discarded. After
correcting for the offset, the MSD in the time domain is 〈z2

time〉 = 44.6 nm2. Using the value
of kc from above, the potential energy measured in the time domain is 2.27× 10−21 J. By the
equipartition theorem, the thermal energy is equated to the potential energy,

1
2

kBT =
1
2

kc〈z2
time〉, (5.7)

At T = 293 K, Ethermal = 2.0×10−21 J. The good agreement between Ethermal and Epotential suggest
that there is no significant heating of the nanoneedle by the laser.

The equivalent spring constant, Keq can also be calculated from the peak areas of each eigen-
mode. By the equipartition theorem,

K j
eq, area =

kBT
〈z2

j〉
(5.8)

From the measured PSD, 〈z2
j〉 is calculated for each eigenmode. For the displacement spectra, 〈z2

j〉
are calculated by numerically integrating the area under each eigenfrequency peak, as described
previously. To calculate 〈z2

j〉 from the velocity PSD, the measured Szz, vel is converted to frequency
units before integrating over the width of the frequency peak, 2∆ f . For the velocity spectra,

〈z2
j〉=

∫ f j+∆ f

f j−∆ f
d f

Szz, vel( f )
(2π f )2 (5.9)

The calculated K j
eq, area and 〈z2

j〉 for each eigenmode are given in Table 5.4.

The spring constant should be the same whether it is derived from the eigenfrequencies and
nanoneedle dimensions, as is K j

eq, f req, or the area under the PSD, as is K j
eq, area. For this reason, a

scaling factor γ j is introduced where

γ j =
K j

eq, f req

K j
eq, area

. (5.10)

Ideally, γ j = 1. In practice, γ j < 1 indicates that the 〈z2
j〉 inferred from the PSD underestimates

the actual MSD. An underestimation of the MSD is expected for objects much smaller than the
0.9 µm spot size of the LDV’s laser beam (cf. Fig. 4.2). Only for the highest eigenmodes ( j=7-
9) is γ j > 1. The signal-to-noise ratio decreases for higher eigenmodes; values of γ j > 1 likely
indicate increased noise contributions to the calculated 〈z2

j〉.

5.3.2 Vibrational spectra of short nanoneedles show flat frequency response
below 1 MHz

For sensing applications, a flat frequency response over a large frequency bandwidth is ideal. Short
nanoneedles are thus ideal, since f j ∝ L−2. To investigate this further, the thermal vibration spectra
of two short nanoneedles [NND, (L = 4.3 µm, do = 96 nm) and NNE, (L = 6.2 µm, do = 106 nm)]
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were measured. Both spectra show a flat frequency response below ∼1 MHz [Fig. 5.7(a,b)].
Nanoneedle NND has a pair of first eigenfrequency peaks at 2.17 MHz and 2.44 MHz; the slightly
longer NNE has a pair of eigenfrequency peaks at 1.18 MHz and 1.51 MHz (see Table 5.5). For
both nanowires, kc ∼0.01 N/m. As described in the following section, these split eigenfrequency
peaks are due to an asymmetrical nanoneedle cross-section. A close examination of Fig. 5.7(d)
reveals a second nanoneedle, only 1.5 µm long, grown parallel to the 6.2 µm long nanoneedle.

Table 5.5. The measured eigenfrequencies and quality factors of
nanoneedles NND and NNE. Only a single second eigenfrequency
above the noise floor was observed for NNE.

f1,a f1,b f2,a f2,b Q1,a Q1,b Q2,a Q2,b
NND 2.17 2.44 12.7 14.4 17 28 56 65
NNE 1.18 1.51 8.67 7.4 16 75

Figure 5.7. In (a) and (b), log-log plots of the power spectra
densities of NND and NNE, respectively, show a flat frequency
response below ∼1 MHz. In (c) and (d), SEM micrographs of
NND and NNE, respectively.
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5.3.3 Non-degenerate eigenfrequency peaks caused by asymmetrical nanonee-
dle cross sections

The vibrational spectra can be used to identify the degree of asymmetry of the nanoneedles. Cir-
cularly symmetric nanoneedles, such as NNB [Fig. 5.6(c)] have degenerate eigenfrequencies in the
perpendicular directions x̂ and ŷ, where x̂ and ŷ are normal to the long axis of the nanoneedle. A
pair of eigenfrequency peaks, such as seen in Fig. 5.7, occurs when the areal moment of inertia, I,
is no longer degenerate. In this case, Eq. 3.6 leads to a pair of eigenfrequencies, f j,a and f j,b:

f j =
α2

j

2πL2

√
EI
ρL
⇒

f j,a =
α2

j
2πL2

√
EIx
ρL

f j,b =
α2

j
2πL2

√
EIy
ρL

(5.11)

Elliptical nanowires

It is possible that the cross-sectional area of a single nanoneedle is out of round, resembling an
ellipse rather than a circle. The areal moment of inertia of an ellipse is Io = π

4 ab3, where a is the
semimajor axis and b is the semiminor axis. The two inertias Is are Ix = π

4 ab3 and Iy = π

4 a3b. For
a nanowire with an elliptical cross-section, one might expect two closely spaced frequency peaks,
with the ratio of the frequency peaks given by Eq. 5.13,

f j,a

f j,b
=
√

Iy

Ix
=

a
b
. (5.12)

Consider Table 5.5. The implication is that a/b ' 1.12–1.28, indicating that the needles are ”out
of round” by 10–30 percent.

Conjoined cylindrical nanowires

An extreme example of a non-symmmetric nanoneedle is nanoneedle NNB2, which consists of
two parallel nanoneedles, 16.6 µm and 17 µm long, each with a diameter of ∼140 nm, as shown
in Fig. 5.8(b)]. The average length of these nanoneedles is Lavg = 16.8 µm. These nanoneedles are
joined together and oscillate in unison in the perpendicular directions x̂ and ŷ, as shown in Fig. 5.8.

The vibrational spectra of NNB2 (as shown in Fig. 5.9) has a pair of first eigenfrequency
peaks at f1,a = 0.22 MHz and f1,b = 0.46 MHz and a pair of second eigenfrequency peaks at
f2,a = 1.42 MHz and f2,b = 2.79 MHz. As before, these eigenfrequencies are identified by their
ratios, f2,a/ f1,a = 6.40 and f2,b/ f1,b = 6.03, both of which are close to the theoretical value of
6.27. This frequency splitting is attributed to the asymmetric I. Following Eq. 5.11, the measured
moment of inertia ratio can be calculated from the ratio of the eigenfrequency pairs,

Iy

Ix
=
(

f j,a

f j,b

)2

. (5.13)
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Figure 5.8. In (a) and (b), SEM micrographs of nanoneedle B2
show two parallel nanoneedles, 16.6 µm and 17 µm long. In (c),
an illustration of the cross-sectional area.

For NNB2, the ratio Iy/Ix is 0.23 for the first eigenmode and 0.26 for the second eigenmode.

For the conjoined nanoneedle pair NNB2, Ix and Iy are calculated using the parallel axis the-
orem. The parallel axis theorem gives the areal moment of inertia through an axis parallel to the
object’s center of mass:

I‖ = Icm +Ad2, (5.14)

where Icm ≡ I, the areal moment of inertia for a cylinder, A is the cross-sectional area of the
nanowires, and d is the perpendicular distance from the parallel axis to the object’s center of mass.
For conjoined nanoneedles, A = π(R2

a + R2
b). Following the convention of diagram Fig. 5.8(c), Ix

and Iy are given by

Ix =
(

π

4 R4
a +R2

a ·πR2
a
)
+
(

π

4 R4
b +R2

a ·πR2
b

)
= 5π

4 (R4
a +R4

b)
Iy = π

4 (R4
a +R4

b)
(5.15)

where Ra and Rb are the radii of the two nanoneedles. The theoretical ratio of the moment of
inertia is Iy/Ix = 0.2 for conjoined nanoneedles. The measured Iy/Ix ratios, 0.23 and 0.26, are in
good agreement with the theoretical ratio.

Recall that the elastic modulus is

E =
ρA
I

(
f j2πL2

α2
j

)2

. (5.16)

For the case of two parallel nanoneedles of equal radius, R, and length, Lavg, substitutions of
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Figure 5.9. The vibrational spectra of nanoneedle pair NNB2
shows two first eigenfrequency peaks at f1,a = 0.22 MHz and
f1,b = 0.46 MHz and two second eigenfrequency peaks at f2,a =
1.42 MHz and f2,b = 2.79 MHz.

Ix, Iy, and A = 2(πR2) yields

Ex = 4ρ

(
f j,b2πL2

avg

Rα2
j

)2

Ey = 4ρ

5

(
f j,a2πL2

avg

Rα2
j

)2

,

(5.17)

where the higher f j,b eigenfrequencies are associated with the larger Ix.

The above analysis was used to calculate E for nanoneedle NNB2. Both of the component
nanoneedles were assumed to have the same diameter, 140 nm, and length Lavg = 16.8 µm. Ta-
ble 5.6 gives the possible values of E, which are calculated from Eq. 5.17 and the eigenfrequencies
of Fig. 5.9. The mean value of E is E = 85±10 GPa for this coupled nanoneedle pair.

Table 5.6. Calculated elastic moduli for NNB2.

f1,a (kHz) f1,b (kHz) f2,a (kHz) f2,b (kHz)
Ex (GPa) — — 80 74
Ey (GPa) 91 95 — —

The alternative possibility that the two nanoneedles oscillated independently was also consid-
ered. However, that condition led to the unlikely value of E ∼ 370 GPa and was thus discarded.
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5.3.4 Optical forcing and trapping of a Ag2Ga nanoneedle

Brief literature review of optical trapping

Optical trapping of a spherical particle by a single laser beam was first demonstrated in 1986.
Ashkin et al. trapped spherical dielectric silica and glass particles of diameter ∼25 nm to 10 µm
in water using a 514.5 nm Gaussian laser beam [76]. Cylindrical particles can also be manipulated
and moved in an optical trap. Depending on the aspect ratio of the cylinder, the cylinders may
align either parallel to or perpendicular to the direction of propagation of the laser beam. Gauthier
et al. trapped glass cylinders, do = 5 µm, with a 515-nm laser. They found that long cylinders
(L = 26 µm) aligned with propagation axis of a laser beam while short cylinders (L = 5 µm)
aligned transverse to the propagation axis [77].

The ability of a particle, such as a nanowire, to be caught in an optical trap depends on the
refractive index, N = n+ iκ , and, to a lesser degree, the cross-section of the nanowire. Pauzauskie
et al. stably trapped semiconducting wires having circular and polyhedral cross-sections (Si, GaN,
SnO2) with n varying between 1.9 and 3.6 and do between 10 nm and 600 nm. The semiconducting
SnO2 nanowires with asymmetric (ribbon) cross-sections oscillated between two and six states.
However Ag nanowires (do = 50 nm) could not be trapped; instead the Ag nanowires were repelled
from the laser focal spot [78]. [Please note, the value of n = 6.1 at λ = 1064 nm (1.16 eV) quoted by
Ref. [78] is an order of magnitude greater than reported by other sources. For example, Ref. [73]
gives N = 0.226+ i∗6.99 for Ag at 1.2 eV. Despite this numerical discrepancy, I believe the results
Pauzauskie et al. reported are valid.]

Optical forces relevant to trapping

The optical force on a particle in a laser beam can be decomposed into three components, Fsca, Fabs,
and Fgrad . The scattering force, Fsca, and the absorption force, Fabs, both act parallel to the direc-
tion of propagation of the beam [79]. The gradient force, Fgrad , has two components, one parallel
(‖) and one perpendicular (⊥) to the beam. The condition for stably optically trapping a particle is
that the parallel forces must be equally balanced, so that |Fgrad|‖ =−(|Fsca|+ |Fabs|)‖ [80]. These
forces in turn depend on the polarizability, α , of the particle and the scattering and absorption cross
sections, Csca and Cabs. The optical forces are

Fsca = nmed
c 〈~S〉Csca

Fabs = nmed
c 〈~S〉Cabs

Fgrad = 1
2 |α|∇〈~E

2〉
(5.18)

where nmed is the index of refraction of the medium, c is the speed of light, E is the electric field,
and S is the Poynting vector [81, 82].

The polarizability, α is a function of the dielectric constant of the particle, ε̃ , and the surround-
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ing medium, ε̃med . The polarizability of a particle of effective volume Ve f f is [79]

α = 3Ve f f
ε̃− ε̃med

ε̃ +2ε̃med
, where ε̃ = ε1(λ )+ iε2(λ ). (5.19)

The dielectric constant, ε̃ , is directly related to the index of refraction by [83]

ε1 = n2−κ
2 and ε2 = 2nκ. (5.20)

For the relevant case of silver particles in air illuminated by 633 nm laser, ε̃Ag =−16.0+ i1.12 [73]
and ε̃med = 1. Thus α/(3Ve f f ) = 1.21+0.017 i. The effective volume of a cylinder of length L and
radius a is [79]

Ve f f = 2πL
∫ a

0
dr r e(r−a)δ = 2πLδ

2[e−a/δ +a/δ −1], (5.21)

where the skin depth is δ = λ/(2πκ).

The scattering efficiencies, Q, defined in section 4.4, are proportional to the cross sections, C;

Qsca =
Csca

G
, Qabs =

Cabs

G
, (5.22)

where G “is the particle cross-sectional area projected onto a plane perpendicular to the incident
beam” [70]. For a spherical particle of radius a, G = πa2. Since the nanowires are modeled
as infinite cylinders illuminated by a laser beam of radius ro, G = 2doro for cylinders (assuming
do < ro). For an Ag nanowire, Csca = 2doroQsca; the values of Qsca for circularly-polarized 633-
nm light are plotted in Fig. 4.5(a).

Optical forces exerted on cylindrical Ag nanowires

The optical forces (Eq. 5.18) can be estimated for the case of a cylindrical nanowire placed at the
beam waist of a focussed laser beam. At the beam waist, the power Po of a Gaussian beam is
proportional to the intensity, Io, at the center of the beam, Po = (1/2)πIor2

o. The radial intensity,
I(r) of such a Gaussian beam is

I(r) = Io exp[−r2/(2r2
o)], (5.23)

where r is the radial distance perpendicular to the propagation direction of the beam. The optical
forces will then be [79]

|Fsca(r)|=
ε̃medCsca

c
I(r)

|Fabs(r)|=
ε̃medCabs

c
I(r)

|Fgrad(r)|=
e1/2|α|
ε̃medcro

I(r),

(5.24)

where e = 2.718. The maximum forces |Fsca| and |Fgrad| are plotted in Fig. 5.10 as a function of
the nanowire diameter for Po = 1 mW and ro = 0.5 µm. Since Fsca > Fgrad for Ag nanowires of
do < 300 nm, we conclude that Ag nanowires can not be stably optically trapped.
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Figure 5.10. The optical forcing on a Ag nanowire from a
633 nm, 1 mW Gaussian laser beam as a function of nanowire
diameter.

Experimental observations of optically forced nanoneedles

Optical forcing of nanoneedles was observed for both small diameter (NNF , do = 65 nm) nanonee-
dles in air and large diameter (NNB, do = 205.5 nm) nanoneedles in low vacuum (600 mTorr). Both
quasi-static bending and oscillatory forcing were observed.

For the case of quasi-static bending, as the laser beam was scanned along the length of the
nanoneedle, from the fixed end to the free end, the nanoneedle would bend away from the laser
spot. The distance the nanoneedle would bend was often sufficient to bend it out of the spot depth
of the interferometer, thus making measurements of the vibration spectra difficult. An example
of quasi-static bending caused by optical forcing is shown in Fig. 5.11, an optical microscope
image of nanoneedle NNF . Based on the dimensions of NNF and assuming E = 85 GPa, kc for
this nanoneedle is estimated to be 2×10−5 N/m. The force required to bend the NNF a distance
∆ = 2 µm from the equilibrium position, Fspring = kc∆, is 0.2 pN. From Eq. 5.24, for a 65-nm
diameter Ag nanowire, the radial force Fgrad , is 0.2 pN and the axial force, Fsca is 0.5 pN. These
optical forces are approximately equal to the measured Fspring.

Optical forcing in atmospheric pressure was only observed for nanoneedle NNF , which had a
spring constant an order of magnitude smaller than any other nanoneedles studied. As the pressure
is decreased, the damping due to the air molecules no longer is sufficient to damp out the oscilla-
tions due to optical forcing. At lower pressures (P < 1 Torr), other nanoneedles were also optically
forced in a similar manner as NNF .

Less commonly observed was an oscillatory motion that could be excited by positioning the
laser beam on a “lucky” resonant position on the nanoneedle. In low vacuum, 650 mTorr, a 200 nm
diameter nanoneedle, NNB, was optically forced into resonance. The envelope of the resonance
could easily be seen in the 50× optical microscope. Reifenberger also witnessed this oscillatory
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Figure 5.11. A 50× optical microscope image of nanoneedle
NNF (do=65 nm, L=21.5 µm), bent ∆ = 2 µm away from the equi-
librium position due to the optical forcing. The dotted blue line
indicates the original, unbent position of the nanoneedle.

forcing effect while I was taking data. By tuning the the focus and location of the LDV laser spot,
we were able to quasi-statically bend NNB. If the laser spot was focused in a “lucky” position
near, but not at, the free end of NNB, NNB could be driven into optical resonance. We speculate
that NNB was at a slight angle and the “lucky” position was where the focus of the optical beam
was coincident with NNB.
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Figure 5.12. (a) The time series measurement of the fundamental
( j=1) oscillations of NNB shows sinusoidal oscillations with an
amplitude of ∼25 nm and a beat frequency of 2.0 kHz. In (b), the
Fourier transform of the time series signal has two low-frequency
peaks at 29.9 kHz and 31.9 kHz.

The time series measurements of the oscillations of NNB show a resonance with a beat fre-
quency of 2.0 kHz resulting from oscillations at 29.9 kHz and 31.9 kHz (Fig. 5.12). These res-
onant frequencies are slightly higher than the f1 = 0.026 MHz first eigenfrequency measured in
atmosphere. The optical force on the end of NNB likely changes the boundary conditions of the
Euler-Bernoulli beam equation. A clamped-clamped beam has higher eigenfrequencies than a can-
tilevered beam. So it is reasonable that the optical forcing tends to increase the resonant frequency
of NNB.
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5.3.5 Nanoneedle vibration spectra measured in low vacuum

Due to optical forcing, nanoneedle spectra measured under vacuum conditions can be more dif-
ficult to interpret than spectra measured under atmospheric conditions. The vibration spectra of
nanoneedle NNB, measured at 650 mTorr, is shown in Fig. 5.13. So that the high Q eigenfre-
quency peaks could be resolved, the displacement spectrum was measured with a high frequency
resolution. 131,072 data points were recorded in 12.8 ms, resulting in a frequency resolution of
78 Hz. Following the method of section 5.3.1, curve fits to Eq. 5.4 were used to determine f vac

j
and Qvac

j .

Table 5.7. A comparison of the eigenfrequencies and quality fac-
tors of NNB at 760 Torr ( f atm

j ) and 650 mTorr ( f vac
j ). Split eigen-

frequency pairs are observed for f vac
2 and f vac

3 . An undetermined
eigenfrequency peak is observed at 0.53 MHz. No peak attributed
to the fifth eigenmode was observed. The percent error is calcu-
lated from the difference of f vac

j / f vac
2 and (α j/α2)2.

j f atm
j (MHz) f vac

j (MHz) (α j/α2)2 f vac
j / f vac

2 % error Qatm Qvac

1 0.0256 2.2
2 0.152 0.14 1.000 1.00 0 5.0 200

0.1542 1.000 1.10 10 420
3 0.428 0.3147 2.800 2.25 20 13 270

0.3902 2.800 2.79 0.46 260
? 0.5326 ? 3.80 ? 310
4 0.838 0.7667 5.486 5.48 0.18 21 250
5 1.388 9.070 34
6 2.079 1.810 13.559 12.9 4.6 67 180
7 2.900 2.328 18.925 16.6 12 100 370

The eigenfrequencies in vacuum, f vac
j (tabulated in Table 5.7) are slightly lower than the atmo-

spheric f atm
j measured for this nanowire. The quality factor of these oscillations, Q =∼200–400

at 650 mTorr, is one to two orders of magnitude greater than in atmosphere. Furthermore, split
eigenfrequency peaks are now observed for f vac

2 and f vac
3 . At atmospheric pressures, split eigen-

frequency peaks were not observed in the NNB spectra. The split f vac
2 and f vac

3 eigenfrequency
peaks indicate a slight degree of asymmetry for NNB. The high Q j in vacuum allows the split
eigenfrequency peaks to be resolved. To understand the degree of asymmetry for NNB, NNB is
modeled as an elliptical beam. Following Eq. 5.12, the ratio f vac

2,a / f vac
2,b = 0.14 MHz/0.15 MHz

=0.9. Thus the ratio of the semimajor and semiminor axes of the beam is 0.9.
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Figure 5.13. (a) The thermal spectra of nanoneedle NNB, mea-
sured at 650 mTorr, shows f2– f4, f6, and f7. In (b) the split eigen-
frequency peaks f vac

2 and f vac
3 are visible in this smaller frequency

range. Inset (c) highlights the high quality factor of these vibra-
tions, Qvac

7 = 370. The PSD was calculated using eight Hamming
windows with a 50 percent window overlap.

5.4 Measured quality factors of nanowire oscillations

The quality factor of a specific eigenmode quantifies how much energy is dissipated during one
oscillation cycle. High Q (small energy dissipation) is desirable for many applications. Reliable
estimates for Q are often difficult to obtain since the measured shape of the resonance as a function
of frequency is required for accurate Q determination.

We first report the Q-factors for the MWNTs previously discussed in Section 5.2. The measured
Q-factors for our MWNT spectra are reported in Table 5.8. A notable feature of these Q values
is they are considerably smaller when compared to micron-sized resonators. For example, Si
microcantilevers commonly used in AFM applications typically have Q values of 100-500 when
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measured in air. Referring to Table 5.8, we find that for the bare MWNTs, the Q of the second
eigenmode is higher than the first. This result is due to the increased stiffness of the second
eigenmode, since the Q-factor is proportional to the square root of the modal stiffness [56]. Thus
the increased Q is a direct consequence of the increased modal stiffness of the higher eigenmodes.

Table 5.8. Quality factors for the MWNTs studied were deter-
mined by fitting Eq. 5.2 to the oscillation resonance spectrum.

Bare MWNT f1 (kHz) Q1 f2 (kHz) Q2
NT1 285 2.8 1930 9.9
NT2 929 3.3 6730 18

MWNT with bead fbend (kHz) Q
NT3 44.9 5.9
NT4 68.4 5.0
NT5 53.8 6.2

From Table 5.8, we also observe that Q increases with the added mass of the beads. This
increase in Q with added mass was recently reported for silicon cantilevers [84] and occurs because
Q is also proportional to the square root of the modal mass. When a bead is added, the modal
stiffness of the MWNT is unchanged, but the MWNT’s modal mass increases which leads to an
increase in Q.

The Q-factors for the Ag2Ga nanoneedles were also measured, as reported in Tables 5.5 and
5.7. At atmospheric pressure, the Q j of the MWNTs were a factor of five higher than the Q j of the
MWNTs. At low vacuum, Q j of the Ag2Ga nanoneedles was 200–400. The Q j of NNB, measured
at atmospheric pressure for the 2nd to 9th eigenmodes, are plotted in Fig. 5.14. In atmosphere, the
measured Q-factors increased linearly from Q2=5.0 to Q9=103.

5.5 Theoretical basis for understanding Q-factors

To quantitatively understand the measured Q values, we note that the measured Q-factor is given
by an effective Q (Qe f f ), where

1
Qe f f

=
1

Qgas
+

1
Qclamp

+
1

Qintrinsic
+ · · · . (5.25)

In Eq. 5.25, Qgas accounts for the damping of the oscillating nanowire due to air, Qclamp is the
damping due to energy lost at the interface of the nanowire and its support (STM or AFM tip), and
Qintrinsic represents the energy lost due to intrinsic defects in the MWNT itself.
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Figure 5.14. The measured Q j of NNB increased linearly with
frequency.

The displacement of the MWNT at the Ni tip is several orders of magnitude smaller than
the oscillation amplitude of the free end of the MWNT; thus we can treat the clamp as a rigid
support, and therefore, 1/Qclamp is negligible. From other experiments on MWNTs conducted
in UHV, we estimate Qintrinsic ∼ O(102) [3, 4]. We conclude that when a MWNT is vibrating in
air, the majority of the energy is dissipated through gas damping. Using the same arguments, we
expect gas damping will also dominate energy loss for Ag2Ga nanoneedles when measured in air
at ambient pressures.

To further check that gas damping is responsible for the small Q values of nanowires oscillating
in air, we calculate the Knudsen number, Kn = lm f p/do, where lm f p, the mean free path of air
molecules, is 65 nm for air at STP. Thus the nanowires we have studied have Kn≈ 0.4 indicating
they are in a cross-over regime (0.1< Kn <10) [58] for which only approximate gas damping
models are available (see section 3.4.1). However at slightly greater Kn numbers (Kn >10) the
damping is in the free molecular regime and published theories can be used to estimate Qgas.

In the free molecular regime, the primary source of damping is momentum transfer due to
collisions with the surrounding gas molecules. Assuming a flexible beam and following Christian’s
model [85] for momentum transfer mediated gas damping in the free molecular regime, we find
that an expression for gas damping of the jth eigenmode of the MWNT is given by

(Qgas) j =
ω jρA
4bP

√
πRoT
2Mm

, (5.26)

where P, Ro, and Mm, are the pressure, universal gas constant, and molar mass, respectively. In the
case of a cylindrical beam, the effective area for damping per unit length, b, is πdo/4 [86]. From
Eq. 5.26, we calculate Qgas at atmospheric pressure for (bare) MWNTs and Ag2Ga nanoneedles
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of representative diameters. In Fig 5.15, the measured quality factors corresponding to the first
eigenmodes of vibration are superimposed on the calculated Qgas.

Figure 5.15. The calculated Qgas for nanowires oscillating at at-
mospheric pressure, using the calculations of the free molecular
flow regime. Qgas is calculated for Ag2Ga nanoneedles (red) and
MWNTs (blue) of representative diameters. Measured Qmeas cor-
responding to the first eigenmode of vibration are superimposed
on the calculated Qgas

These calculations of the gas damping confirm that the small Q of nanowires oscillating under
ambient conditions arises naturally from gas damping. Since the density of Ag2Ga nanoneedles is
approximately three times that of MWNTs (ρAg2Ga = 8960 kg/m3 versus ρMWNT = 2300 kg/m3),
the nanoneedles have a greater Q at atmospheric pressures.

5.6 Proposed application: nanowires as mass sensors

Microscale and nanoscale cantilevers are being investigated as chemical sensors. In the case that an
analyte with mass δm binds to a cantilever of mass m, the resonance frequency ω0 of the cantilever
will be downshifted by an amount δω where

δω =
ω0

2m
δm, (5.27)

assuming the presence of the analyte does not change the stiffness of the cantilever [87]. Since m is
small for MWNTs, the mass of a virus (10−15 g) will cause a frequency shift on the order of 10s of
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kHz. However, the low quality factor of MWNTs in air limits the minimum detectable frequency
shift. For this reason, it is interesting to compare the minimum detectable mass for cantilevered
MWNTs and Ag2Ga nanoneedles. Since Si microcantilevers are currently used as mass sensors,
the minimum detectable mass for a standard microcantilever is also calculated.

Thermomechanical noise due to cantilever oscillations limits the minimum detectable mass.
The mean-square frequency modulation, 〈(δω)2〉, is given by

〈(δω)2〉= ωo

Q
kBT

kc〈z2
osc〉

B, (5.28)

where B is the detection bandwidth and 〈z2
osc〉 is the mean square amplitude of the self-oscillating

cantilever [88]. For multimode oscillations, kc = 12K j
eq/α4

j ; the mean-square frequency modula-
tions are then

〈(δω j)2〉=
α4

j

12
ω jkBT B

Q jK
j

eq〈z2
j, osc〉

, (5.29)

To calculate 〈(δω j)2〉, assume that 〈z2
j, osc〉 is proportional to the thermal displacement, 〈z2

j, thermal〉,

〈z2
j, osc〉= A j〈z2

j, thermal〉= A j
kBT

K j
eq

, (5.30)

where A j = 1 for thermally-excited oscillations and A j > 1 for driven oscillations. The mean-
square frequency modulation is thus

〈(δω j)2〉=
α4

j

12
ω jB
Q jA j

. (5.31)

The thermomechanical-noise limited minimum detectable mass, δm j, min, is

δm j, min =
2mδω j

ω j
=

2m
ω j

√
α4

j

12
ω jB
Q jA j

. (5.32)

The minimum bandwidth possible while still avoiding aliasing is B = 2ω j. Thus the minimum
detectable mass is proportional to the mass of the cantilever,

δm j, min =
2α2

j√
6

m√
Q jA j

. (5.33)

Recall Eq. 3.37 from section 3.4, Q j = mω j/(c f + cs). The minimum detectable mass is pro-
portional to the damping, c, and inversely proportional to the resonant frequency,

δm j, min = 2
α2

j√
6

√
m(c f + cs)

A jω j
(5.34)
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Recalling Eq. 3.32, the fluid damping, c f , is proportional to the cantilever dimensions, L and wrep,
and the pressure, P. The representative width, wrep, is the width of a rectangular cantilever or the
diameter of a cylindrical nanowire. In all fluid damping regimes, c f ∝ LwrepP. At atmospheric
pressure, c f � cs, so the minimum detectable mass is proportional to

δm j, min ∝ α
2
j

√
mLwrep

A jω j
P. (5.35)

Thus short, low mass nanowires with high resonant frequencies are ideal for mass sensors. Fur-
thermore, consideration of ω j suggests that a larger elastic modulus is also desirable.

The mass resolution, δm j, min/SA, is frequently used to characterize and compare mass sensors.
The surface area, SA, of the mass sensors is assumed to be functionalized to provide binding sites
for the analyte mass. To enable comparison with existing sensors, the mass resolution is calculated
for four representative, thermally-excited cantilevers: an Si microcantilever, two MWNTs, and
NND. The dimensions, mass, first and second eigenfrequency, and associated quality factors for
these four cantilevers are tabulated in Table 5.9. These calculated f j and Q j agree with experimen-
tally measured values for cantilevers of similar dimensions (cf. Table 5.5 for the eigenfrequencies
of NND).

Table 5.9. Dimensions and calculated f j and Q j of four repre-
sentative cantilevers. The silicon microcantilever has a width of
35 µm and a thickness of 2 µm. The MWNT dimensions are rep-
resentative of typical values. NND is a Ag2Ga nanoneedle whose
vibrational spectra was measured (see Section 5.3.2).

Cantilever do L SA m f1 f2 Q1 Q2
(nm) (µm) (cm2) (pg) (MHz) (MHz)

Si µcantilever — 110 8.1×10−5 2.5×105 0.21 1.3 270 670
long MWNT 150 20 9.4×10−8 0.81 0.19 1.2 2.2 11
short MWNT 75 5.0 1.2×10−8 0.051 1.5 9.5 4.4 23
NND 96 4.3 1.3×10−8 0.28 2.2 14 37 200

The minimum detectable masses for the first and second eigenmodes were calculated using
Eq. 5.34 and Q = Q1 as given in Eq. 3.37; these δm1, min are tabulated in Table 5.10. As expected,
the mass sensitivity increases with decreasing cantilever mass. Despite the much lower Q1 for the
MWNTs, the minimum δm1, min detectable is a factor of 106 smaller for the short MWNT than
for a standard Si microcantilever. The associated δ f1 frequency shifts, 0.1–1.0 MHz, due to the
presence of the analyte are readily detectable using the LDV (δ f1 are calculated from Eq. 5.27).

Next, the mass resolution is calculated for thermally-excited (A1=1) cantilevers at atmospheric
pressure (Table 5.10). The calculated δm1, min/SA values represent a worst case scenario for mass
sensing. Driving the cantilever would enhance the mass resolution; an order of magnitude increase
in A1 would yield a factor of three decrease in δm1, min. Decreasing the pressure and detecting the
frequency shift at higher eigenmodes would also enhance the mass resolution.
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Table 5.10. At atmospheric pressure (760 Torr), the calculated
minimum detectable mass, mass resolution, and expected fre-
quency shift for four representative thermally-excited cantilevers.

First eigenmode
Cantilever δm1, min (pg) δm1, min/SA (pg/cm2) δ f1 (MHz)
Si µcantilever 43000 5.3×108 0.019
long MWNT 1.6 1.7×107 0.18
short MWNT 0.070 5.9×106 1.03
NND 0.13 1.0×107 0.53

We think that the derivation presented in Eqs. 5.28–5.34 is an overly conservative estimate for
heavily damped oscillations. A quick, back-of-the-envelope assumption of δ f j,est = f j/Q j yields
smaller minimum detectable masses of δm j, est = 2m/Q j. For NND, this estimate yields δm1, est
= 0.015 pg, which represents a factor of 10 improvement in mass sensitivity.

The mass resolution of these thermally-excited cantilevers is not as good as that of driven
oscillation mass sensors such as quartz crystal microbalances (QCMs) and surface acoustic wave
(SAW) sensors. At atmospheric pressure, a driven QCM with f1 = 2 MHz and Q1 = 8660 was
found to have a resolution of 6.7×103 pg/cm2 [89]. A driven SAW has an even greater mass
sensitivity, 10 pg/cm2 [90]. The greater mass sensitivities of the QCM and SAW are due to their
much larger quality factors and the enhancement of the driven amplitude (cf. Eq. 5.34).
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Chapter 6

A brief review of methods for fabricating
graphene and the properties of graphene

My interest in graphene dates to a proposal I wrote to the National Science Foundation’s Graduate
Research Fellowship Program (NSF-GRFP) in Fall 2004. I had proposed to use STM and AFM to
measure the normal and lateral conductance of few-layer graphene (FLG) sheets. Since graphene
can be conceptualized as an “un-zipped” single wall carbon nanotube (SWNT), the conductance of
graphene was to have been compared to that of the well-studied SWNTs. Novoselov and Geim’s
paper reporting the fabrication of exfoliated graphene was published just before I submitted the
NSF-GRFP application [91]. This application was not funded, although I did receive an honorable
mention from the NSF.

As my research on MWNT vibrations progressed, interest in graphene by the scientific com-
munity ignited. Furthermore, alternative methods of preparing graphene were discovered. Re-
searchers at the Birck Nanotechnology Center at Purdue University who had experience in grow-
ing SiC for high-power device applications began investigating epitaxial graphene grown on SiC.
Scanning probe microscopy studies were needed to understand the nature of the graphene growth.
I took advantage of this opportunity to study epitaxial graphene and performed the following STM
studies detailed in Chapter 7.

Section 6.1 briefly introduces the fundamental physics of graphene and a presents few proposed
applications utilizing graphen. As I studied only epitaxial graphene, a literature review on the
growth methods of epitaxial graphene is given in section 6.2. Section 6.3 briefly describes other
methods of graphene formation, namely graphene exfoliation, chemical vapor deposition (CVD)
of carbon on transition metals, and reduction from graphene oxide.

6.1 Motivation for studying graphene: fundamental physics
and applications

Graphene is unique in that it is a stable, one-atom thick, zero-band gap semi-metal [92]. Since
the chemical potential of graphene exactly crosses the Dirac point, electrons in ideal graphene
behave as massless Dirac fermions. The Fermi velocity, vF , of the electrons is only 300 times
slower than the speed of light [93]. Due to the relativistic Fermi velocity, a number of fundamental
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physics properties can be observed in graphene. Those properties observed include the ambipolar
electric field effect, the anomalous integer quantum hall effect [92, 93], and the Shubnikov-de Hass
effect [94]. The above physical properties are primarily observed in pristine exfoliated graphene in
ultra-high vacuum, liquid helium temperature, and/or large magnetic fields. A number of practical
applications for graphene, such as its use in high-speed transistors and as a transparent, conductive
electrode, also drive graphene research.

Because electrons in graphene travel so rapidly, graphene can be used to fabricate transis-
tors which operate at GHz frequencies. Lin et al. recently fabricated transistors from exfoliated
graphene deposited on SiO2/Si substrates. By decreasing the width of the gate from 500 nm to
150 nm, the cut-off frequency was raised from 3 to 26 MHz. Transistors have also been fabricated
from epitaxial graphene [95] and from CVD-graphene grown on Ni [96].

One near-term potential application for graphene is its use as transparent, conductive electrodes
for LCDs and dye-synthesized solar cells. Currently, most transparent electrodes are made of
indium tin oxide (ITO), however, indium is a limited resource.

Blake et al. fabricated a liquid crystal device using a 1 ML flake of exfoliated graphene as
one of the two conducting electrodes; the transparency of this device decreased from 98 percent to
nearly 0 percent as the voltage across the cell was increased from 8 to 100 V [97]

Wang et al. fabricated solid state dye-synthesized solar cells using a electrodes composed
of overlapping graphene flakes with a net thickness of 10 nm. These graphene electrodes were
created by depositing graphene oxide (GO) flakes onto transparent substrates such as quartz, then
annealing the GO to form graphene flakes. The power conversion efficiency of these graphene
solar cells was 0.26 percent, a factor of three smaller than the 0.84 percent efficiency of similar
solar cells with fluorine tin oxide electrodes [98].

6.2 Epitaxial graphene growth on SiC

Silicon carbide is composed of planes of Si and C atoms arranged such that each Si atom is tetrag-
onally bonded to four C atoms and each C atom is tetragonally bonded to four Si atoms. This
tetragonal bonding results in a SiC bilayer with one plane composed of Si atoms and the other
plane composed of C atoms. At least 75 polytypes of SiC exist; these polytypes are distinguished
by slight variations in the stacking of the tetragonal bilayers [99]. The most commonly-studied
polytypes of SiC are the cubic (zinc blende) 3C-SiC polytype and the hexagonal 4H-SiC and 6H-
SiC polytypes [100]. The naming of the polytypes reflects the structure; the crystalline structure
of the polytype repeats every three, four, or six bilayers aligned along the c-axis. The ‘C’ and ‘H’
refer to a cubic or hexagonal structure [101]. For the purposes of this thesis, it is important to
note that all three of these polytypes have a polar faces; one basal plane is composed of C atoms,
the other of Si atoms. For the hexagonal polytypes, SiC(0001) is the Si-face and SiC(0001̄) is the
C-face. Epitaxial graphene is primarily grown on the hexagonal polytype.

Epitaxial graphene is grown on SiC by annealing the SiC to high temperatures (1100 – 1600◦C)
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in low vacuum or UHV vacuum environments. Since Si has a lower vapor pressure than C, the Si
atoms sublime and the remaining C atoms reconstruct to form graphitic films on the SiC. Epitaxial
growth of graphitic films on SiC(0001) was reported in 1975 by van Bommel et al. [102]. Forbeaux
et al. reported a higher rate of graphitization for the C-face, 6H-SiC(0001̄) than for the Si-face, 6H-
SiC(0001). The C-face graphitic films were polycrystalline with significant azimuthal disorder; the
Si-face graphitic films were single-crystalline [100, 103].

Despite nearly thirty years of research on epitaxial graphite growth, until exfoliated monolayer
graphene was reported in 2004 epitaxial graphite was of only moderate interest. The Web of
Science citation record for Forbeaux et al.’s 1998 report of heteroepitaxial graphite on SiC received
23 citations through December 2004 but 95 citations for January 2005 – 26 April 2009. The report
of monolayer epitaxial graphene formation on the Si-face of SiC in 2006 [104, 105] spurred further
epitaxial graphene research. Recent epitaxial graphene research has yielded methods to produce
monolayer and few-layer graphene. The monolayer and few-layer graphene grown on SiC have
similar structures and disorder as the ultra-thin epitaxial graphite films.

Epitaxial graphene growth on both the C-face and Si-face of SiC occurs first at low binding
energy locations, namely step edges and point defects. The rate of graphene growth is governed
by the detail balance equation,

SiC ⇀↽ Si(vapor)+C(graphene).

The rate of graphene growth increases with increasing growth temperature and decreasing Si vapor
pressure. Ideally, as the growth temperature or growth time is increased, the small initial patches
of graphene growth would merge into a continuous, uniform 1-ML thick graphene film. However
a number of defects, including the formation of graphene pits [106] on the Si-face, limit the quality
of the graphene growth.

Recent reports show that slowing the rate of graphene growth leads to higher quality graphene.
Epitaxial Si-face graphene, grown either with a disilane back pressure [107] or an argon atmo-
sphere of ∼760 Torr [108], has larger graphene domains and higher Hall mobilities than Si-face
graphene grown under UHV conditions. Epitaxial C-face graphene, 5 ML thick, has been grown
in UHV [109] and pressures of 0.1 mTorr [110]. The UHV-grown graphene had high azimuthal
disorder and showed signs of stretched and otherwise deformed graphene lattices, as evidenced by
variable periodicity moiré regions [109]. While the graphene grown at 0.1 mTorr also had some
regions of rotational disorder, there were also many few µm2 areas of uniform graphene [110].

6.3 Other methods of producing graphene: exfoliation, chemi-
cal vapor deposition, and reduction from graphene oxide

Mechanical exfoliation was the first method used to produce individual graphene sheets [91]. To
form mechanically-exfoliated graphene, adhesive tape is used to cleave bulk graphite or HOPG.
Initially, tens to hundreds of graphene monolayers may stick to the adhesive tape. The graphite
sample is repeatedly cleaved using the adhesive tape. This resulting flakes are then deposited onto
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an SiO2/Si wafer. Using optical microscopy, the location and thickness of the graphene flakes are
identified by the color of the flakes. Since the optical detection method relies on an interference-
like contrast between the graphene and the SiO2/Si substrate, the thickness of the SiO2 layer –
300 nm – is critical [92]. Exfoliated graphene has the highest electron mobilities of any form of
graphene, greater than 15,000 cm2/(V s) [111], but is clearly not suitable for mass-production.

Chemical vapor deposition (CVD) can be used to grow graphene on transition metal substrates,
such as Ni. A thin fim, 500 nm thick, of Ni is evaporated onto an SiO2/Si substrate. The Ni is
then annealed to promote single-crystal domains. The CVD growth on the Ni/SiO2/Si substrate
occurs at 900–1000◦C; the precursor gas is a mixture of methane and hydrogen. At the growth
temperature, the methane molecules crack and the C atoms become saturated in the Ni. As the
sample cools to room temperature, the C atoms precipitate out of the Ni and a graphene film,
1–12 ML, forms on the Ni surface. The thickness of the graphene layers is proportional to the
thickness of the Ni film. However, thinner Ni films also have smaller Ni grain sizes, which leads
to more defects in the graphene layers [96].

A wet transfer technique can be used to transfer the graphene films to nonspecific substrates.
Prior to transfer, a PMMA layer is deposited on top of the graphene films; the Ni is then dissolved
using hydrochloric acids. These graphene films, optimally 1–2 ML thick and a few cm2 can be
transfered to other substrates. Raman and electron diffraction studies show that these films have a
slightly disordered stacking of graphene layers. The optimum films produced in this manner are
1–2 ML thick, a size of a few cm2, and have an electron mobility of 100–2000 cm2/(V s) [96].

Lastly, sheets composed of overlapping graphene flakes can be prepared by chemically reduc-
ing graphene oxide (GO). Eda et al. used a vacuum filtration method to deposit thin films, 1–2 nm
thick, of GO onto glass and plastic substrates. After deposition, the GO was reduced to graphene by
exposing the GO films to hydrazine vapor and annealing the fils in vacuum at 200 C. An advantage
of this technique is that graphene flakes can be deposited over large areas of flexible, transparent,
and/or insulating substrates. However the electron mobilities of these graphene films is low, only
0.2 cm2/(V s)[112].
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Chapter 7

Insights into Few-Layer Epitaxial Graphene
Growth on 4H-SiC(0001̄) Substrates from
STM Studies

7.1 Introduction

The production of high-quality materials with nanoscale size and reduced dimensionality is desir-
able for many advanced electronic applications. 1 Materials like two-dimensional (2D) graphene,
one-dimensional (1D) carbon nanoribbons, and 1D carbon nanotubes represent a class of new ma-
terials that may well serve as the building blocks for future carbon-based nanoelectronics. Because
of the reduced dimensionality of these emerging new materials, electron transport properties are
expected to be strongly affected by disorder introduced by impurities, topological defects, or long
range deformation modes [113]. In nanomaterials, such disorder will cause unwanted quantum
interference effects leading to increased scattering, unwanted localization, and an overall degra-
dation in electronic performance. For this reason there is a pressing need to better characterize
defects in any carbon-based nanomaterial.

A promising large area technique for graphene synthesis is to anneal in high vaccum a (0001̄)
silicon carbide (SiC) substrate to produce epitaxial carbon layers. Graphene-like sheets form in
a complex process initiated by the sublimation of Si atoms and the formation of a carbon-rich
surface containing mobile carbon atoms. Surface diffusion of carbon at elevated temperatures
produces stacked sheets of planar, six-fold coordinated carbon atoms.

A priori, it is possible to imagine a myriad of problems that may limit the quality of graphene
layers that form on SiC. To begin, a high quality SiC substrate is needed since a substrate sur-
face full of step edges, localized defects, and microstructures will likely hinder atomic diffusion
and thereby degrade the quality of the graphene layers formed. To obtain the highest quality
single or bilayer graphene, a growth temperature that optimizes carbon atom diffusion with re-
spect to Si atom sublimation must be determined. Because of the weak interaction between lay-
ers in stacked graphene, it is likely that shifts in atom stacking can develop between two adja-

1Portions of this chapter were previously published in Ref. [110], L. B. Biedermann, M. L. Bolen, M. A. Capano,
D. Zemlyanov, and R. G. Reifenberger, “Insights into few-layer epitaxial graphene growth on 4H-SiC(0001̄) substrates
from STM studies,” Phys. Rev. B 79, 125411 (2009). Please see the copyright statement in Appendix F.
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cent graphene layers. To produce large areas of high quality graphene, carbon grain boundaries
must be reduced by both controlling and optimizing the number of C-rich seed regions. Identify-
ing optimal growth conditions that i) minimize the number of atomic scale defects in a graphene
sheet [114], ii) minimize the presence of grain boundaries [115], and iii) eliminate interstitial car-
bon atoms [116, 117, 118, 119, 120] between the graphene sheets presents a formidable challenge.
Before fabricating high quality graphene-based electronic devices on an industrial scale, many of
these important questions must first be addressed.

Traditional surface characterization tools such as low energy electron diffraction (LEED), Ra-
man, and X-ray photoelectron spectroscopy (XPS) are capable of providing structural and chemical
information spatially averaged across the carbon-rich SiC substrate at the millimeter length scale.
Low energy electron microscopy (LEEM) can provide structural information with a spatial resolu-
tion of ∼10 nm. Atomic force microscopy (AFM) can provide useful topographic information for
length scales ranging from tens of microns down to nanometers, but cannot address local atomic
or electronic structure. To obtain useful information about the quality of the carbon layers at the
nanoscale, techniques capable of imaging individual carbon atoms are required. For this purpose,
only scanning tunneling microscopy (STM) techniques seem suitable since STM techniques can
reveal the atomic rearrangements produced by strains and defects as well as probe the local elec-
tronic properties of the graphene layers.

In what follows, we use ambient STM to characterize the atomic-scale structures found on
epitaxial few-layer graphene (FLG) grown by heating (0001̄) SiC to high temperatures (1450–
1600◦C) in vacuum. Such a study is warranted since historically, the C-face is seldom studied
because of the wide-spread use of the Si-face in the production of SiC power devices [121]. By
careful study of the the atomic-scale STM images for different growth conditions, useful infor-
mation about the quality of the FLG is obtained and valuable insights into the likely processes
influencing the growth of graphene layers can be inferred.

7.2 Superlattices in layered carbon

7.2.1 Defects in highly orientated pyrolitic graphite

The defects likely to occur in epitaxial graphene layers can be inferred from the extensive prior
literature on highly orientated pyrolitic graphite (HOPG). Since the mid-1980s, STM has been used
to extensively characterize defects in as-prepared HOPG that include (i) monolayer pits, step edges,
stacking faults and microholes [122, 123], (ii) pentagonal/heptagonal defective unit cells, (iii) the√

3×
√

3R30o superstructure caused by perturbation of the electronic charge density produced by
point defects and adsorbed species [124, 125], (iv) 1D superlattices attributed to grain boundaries
in HOPG [126], and (v) moiré superlattices [127, 128, 129].

Of particular interest to the current work are the high quality moiré superlattices observed in
STM images of HOPG surfaces [127, 128, 129]. The moiré superlattices on HOPG are character-
ized by a well-defined hexagonal superlattice with periodicities considerably larger than the atomic
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spacing between carbon atoms. Moiré regions observed on HOPG frequently have a sharp 1D tran-
sition, often described as a “string of beads” [128], between the area supporting a superlattice and
an adjacent area characterized by the 0.246 nm atomic periodicity of HOPG. The bead-like fea-
tures demarcating the sharp boundary between the two regions typically have the same periodicity
as the superlattice [129].

The presence of moiré superlattices on HOPG is usually attributed to the rotation of the top
graphene sheet with respect to the second layer, which can result from purely mechanical means [128,
130]. In the case of a rotation, the moiré superlattice has a constant periodicity across the moiré re-
gion. Alternatively, a screw dislocation can cause a gradual rotation of the top graphene layer
in HOPG; the superlattice periodicity around such a dislocation continuously varies with dis-
tance [129]. While the origins and manifestations of these superlattices on HOPG are interest-
ing in their own right, the observation of moiré superlattices on FLG grown epitaxially on SiC is
relatively new [109].

7.2.2 Superlattices observed in graphene

Three types of superlattices have been reported on epitaxial graphene formed on a SiC substrate.
First, for epitaxial graphene grown on the Si-face of SiC, the SiC susbtrate reconstruction can be
observed using STM, LEED, or surface x-ray diffraction (SXRD) [131, 132, 133, 104, 134, 135,
136, 137]. As observed by STM and LEED studies of Si-face graphitized SiC, this reconstruction
is manifest as a 6×6 or a (6

√
3×6

√
3)R30o structure [102, 100, 103, 138].

A second type of fixed-periodicity superlattice is the dilation moiré superlattices observed
on chemical vapor deposition (CVD) grown graphene on substrates such as Ir(111), Ni(111),
Ru(0001), and Pt(111) [139, 140, 98, 141]. In this case, the superlattice is attributed to differences
between the lattice constants of the graphene and substrate, not to a rotation between graphene
layers.

A third type of superlattice with variable periodicity has been observed on FLG grown on the
C-face of SiC. This moiré superlattice is due to the rotation or dislocation of the top graphene
layers. Such superlattices were recently reported on epitaxial graphene by Varchon et al., who
found six distinct moiré regions within a 150 × 150 nm2 STM scan with periodicities ranging
from 2.5 to 3.8 nm [109]. The separate moiré regions were bounded by either ridges (called pleats
by Varchon et al.) or a “string of beads” [109]. By contrast, the C-face reconstructions are not as
well studied; J. Hass et al. have reported a (

√
13×
√

13)R46.1o superlattice on 4H-SiC(0001̄) with
STM [142].

7.2.3 Atomic arrangement of moiré superlattices

The origin of the moiré superlattices are an enhancement in the density of states (DOS) which
occurs when the topmost layer of graphene is rotated with respect to the underlying layer(s) [143].
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The relevant atomic-scale shift between layers of C atoms is illustrated in Fig. 7.1(a) which shows
the relevant atomic stacking arrangement for HOPG.

For HOPG with ABAB stacking, two types of carbon atoms can be denoted. The α carbon
atoms sit above a carbon atom in the underlying layer while the β carbon atoms sit above a hole in
the underlying layer. In STM scans of ideal (Bernal stacked) HOPG, only the β atoms, which have
a higher density of states (DOS) around the Fermi level, are imaged [144]. When the topmost layer
of graphene is rotated with respect to the underlying substrate, a range of atomic arrangements are
possible. Three key stacking sequences are shown in Fig. 7.1(b). In AAB stacking, each atom in the
top layer is directly above an atom in the next lower layer. In BAB stacking, the rotation preserves
the standard Bernal arrangement. An intermediate case is referred to as the slip B stacking. In this
case, the BAB stacking is offset slightly such that neither atom in the top layer is directly above an
atom in the next lower layer.

Figure 7.1. In the Bernal stacking of HOPG (a), the layers alter-
nate ABAB. (b) A rotation of the top graphene layer of the HOPG
can lead to AAB, slip B, or BAB stacking sequences.

Using density functional calculations, Campanera et al. found that the moiré superlattices ob-
served by STM could be replicated by a model using four layers of BA-stacked graphite, where
the top layer was rotated with respect to the bottom layers [143]. The brightest features observed
in STM images of the moiré patterns correspond to the AAB stacking, which was found to have
the highest DOS. Dim features correspond to the slip B stacking, while the darkest features corre-
spond to the standard BAB Bernal stacking of HOPG. Furthermore, Campanera et al. calculated
a relative formation energy cost of a few meV/atom, with a higher energy cost corresponding to
larger observed periodicities [143].

The superlattice periodicity can be characterized by a length D given by

D =
a

2sin(Θ/2)
, (7.1)
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where a is the basal lattice constant (0.246 nm for HOPG) and Θ is the rotation angle between
two layers of the hexagonal lattice. The orientation of the moiré lattice with respect to the atomic
orientation of the top graphene layer is given by φ , where [129]

φ = 30o−Θ/2. (7.2)

As evident from Eq. 7.1, a small rotation angle, Θ, corresponds to a large superlattice periodicity,
D .

It is important to note that the moiré superlattices are atomically flat; the apparent enhanced
corrugation is an DOS effect. The presence of moiré superlattices implies that electrons in FLG
traversing a region containing the superlattice are subjected to a sinusoidal potential with a period-
icity determined by the relative angle of rotation between the top two graphene sheets. Since the
moiré superlattice is a DOS effect, the prominence of this superlattice depends on the bias voltage
and tunneling current. The moiré superlattice is most prominent when the STM tip is closest to the
sample, which corresponds to small bias voltage and large tunnel currents.

7.3 Experimental considerations

7.3.1 Graphene growth

Three inch diameter 4H- SiC wafers (Cree, high purity, semi-insulating) with a nominal off-cut
angle of 0o were used throughout this study. The as-received SiC wafers were polished by No-
vaSiC to remove scratches and other surface defects. The wafers were then diced into 8×8 mm2

substrates and cleaned.

The FLG samples were grown on the carbon face of the SiC(0001̄) substrates in an Epigress
VP508 hot-wall chemical vapor deposition reactor. The temperatures reported in this study were
determined using a Heitronics KT81R two-color rationing pyrometer (spectral bands 0.7 µm and
1.2 µm) with a calibration traceable to the melting temperature of Si, 1410◦C.

Prior to carbon growth, the SiC substrates were hydrogen annealed at 1600◦C to etch residual
polishing damage. The temperature was reduced to 700◦C and the pressure was reduced to 2×
10−7 mbar. The temperature was then ramped up to a growth temperature between 1475◦C and
1600◦C to form continuous carbon layers. The SiC substrate was held at the growth temperature
for 10 minutes before the sample was cooled under vacuum [95] and prepared for characterization
by XPS and STM.

7.3.2 XPS considerations

The XPS data were obtained with a Kratos Ultra DLD spectrometer using monochromatic Al Kα

radiation (hν = 1486.58 eV). Survey and high-resolution spectra were collected at fixed analyzer
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pass energies of 160 eV and 20 eV, respectively. The spectra were collected at 0, 30, 45, 52, 60o

with respect to the surface normal (photoemission angle θ ). All binding energy (BE) values refer
to the Fermi level. The charge shift was corrected to the C 1s peak set at 284.5 eV for the graphitic
component [105]. The standard deviation of the peak position associated with the charge reference
procedure was±0.05 eV. The data were analyzed with commercially available software, CasaXPS
(version 2313Dev64). The spectra were fitted by a Gaussian-Lorentzian function after linear or
Shirley type background subtraction.

7.3.3 STM considerations

Ambient STM scans were performed using a Nanotec Electronica STM. The scans were performed
under a bell jar that was back-filled with dry nitrogen to atmospheric pressure. The X , Y , and Z
piezos were calibrated using the known atomic lattice (0.246 nm) and mono-step height (0.335 nm)
of HOPG.

In order in increase the stability of the STM, the sample was frequently placed in the STM,
under dry nitrogen, 3–12 hours before scanning. Placing the sample in the STM ahead of scanning
allowed the piezo and sample to come to a thermal equilibrium, which minimized drifts. The
STM head was withdrawn 1–3 mm from the sample to protect the STM tip. A scan range of
∼ 1 × 1 µm2 is set to exercise the tube piezo which controls the sample’s motion. (In the Nanotec
Electronica STM, the STM head is fixed and the sample is rastered beneath it.) When the tube
piezo is exercised in such a manner, the scan size should be ∼10 percent of the maximum scan
range. Larger scans, which correspond to large voltages on the piezo, can lead to break-down of
the piezo. Smaller scans are not as efficient at the aligning domain boundaries within the piezo that
can cause non-linear piezo motion.

In practice, the graphene-STM samples were often scanned for two or three consecutive days.
The first day was spent identifying representative regions of the sample and/or searching for moiré
regions. To check the quality of the STM tip, particular attention was paid to the shape of step
edges. The sample was also rotated 90◦ to check for multiple-tip effects. At the end of the day,
the STM tip was positioned over an interesting region and withdrawn 1–3 mm before exercising
the piezo overnight. The following day, the STM would be extraordinarily stable and the region of
interest could be readily scanned with atomic resolution.

Typical scan parameters included a 0.1–5 nA tunnel current (Iset) and a bias voltage of 0.05–
5 V (Vbias). STM scan sizes ranged from 2 × 2 nm2 to 5 × 5 µm2. Typical image acquisition
times ranged from 30 s to 10 mins. All STM scans presented were obtained using a cut PtIr
tip. The majority of the scans were taken in the constant-current mode; a few of the atomic-
resolution scans were taken in the constant-height mode (Fig. 7.10). Nanotec Electronica’s WSxM
software program was used for both data acquisition and image processing [145]. The STM scans
of epitaxial graphene presented in this chapter represent only a small fraction of the few thousand
of STM scans acquired and analyzed. Table 7.1 correlates the STM scans with the sample number
and growth temperature.
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Table 7.1. Five C-face epitaxial graphene samples were studied
in depth with STM and AFM. Only AFM scans are presented for
samples 924 and 926, which had incomplete graphene coverage.
The growth temperatures and figures acquired from these samples
are tabulated below.

Sample Growth Temp. (◦C) Figures
926 1350 7.3(a) (AFM scan)
924 1450 7.3(b) (AFM scan)
985 1475 7.3(c), 7.5
976 1500 7.3(d), 7.4(b), 7.6–7.8, 7.10–7.12
971 1500 —
927 1550 7.3(e), 7.4(a), 7.13, 7.14
9xx 1600 7.3(f), 7.9

7.3.4 Preparation of epitaxial graphene samples for STM

The most important criteria for sample preparation of the graphene-SiC samples were (1) to mini-
mize surface contamination and oxide formation by always storing and scanning the samples under
dry nitrogen and (2) to use vacuum-compatible sample mountings so that the samples could later
be examined via XPS. To avoid contaminating the samples with finger oils, nitrile gloves were
always worn while handling the samples.

The graphene-SiC samples were mounted on 15-mm diameter steel mounting disks (SPI sup-
plies, part number 07620-AB) with a piece of 3M double-sided copper tape (SPI supplies, part
number 05085-AB) sandwiched between the sample and mounting disk. Both the steel mounting
disk and copper tape are compatible with the vacuum environment of the XPS. In order to ground
the surface of the graphene-SiC sample, one or two short pieces of copper tape placed across a top
corner(s) of the sample provided a conductive path between the top surface of the graphene-SiC
and the grounded mounting disk.

7.4 XPS confirmation of graphitic carbon and estimation of
graphene thickness

Systematic angle-resolved XPS studies were performed on FLG samples. Of prime interest were
confirmation of graphene growth and a non-intrusive estimate of FLG thickness. For this reason,
we focus on the FLG samples grown at 1475◦C, and 1500◦C. Figure 7.2 shows an example of
the C 1s core level spectrum obtained from a FLG sample grown at 1500◦C; the spectrum from a
reference HOPG sample is shown for comparison as well. The spectra from both HOPG and the
1500◦C FLG sample show a main peak at 284.5 eV, indicating the presence of sp2 hybridized C-C
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bonds. This peak at 284.5 eV is a signature of graphitic carbon [146]. The small peak at 283.0 eV
in the XPS spectrum from graphene-SiC sample is assigned to carbon bound to silicon [147, 146].

Another signature of graphitic carbon is a weak peak at ca. 291 eV, which is identified as a
shake-up satellite of the peak at 284.5 eV. The shake-up satellite is a well-established characteristic
of the photoemission process in aromatic and graphitic systems [148]. The shake-up is a two elec-
tron phenomenon; the emitted photoelectrons with energy 284.5 eV can excite a π→ π∗ transition
resulting in an additional peak at higher BE. Aromatic and graphitic systems show a shake-up peak
shifted towards higher BE from the main peak by ca. 6.5-7 eV with an intensity ranging up to 5–10
percent of the graphitic peak [148].

Figure 7.2. The C-1s XPS spectra, collected at θ = 0o, from a
reference HOPG substrate (a) and from a FLG sample grown at
1500 ◦C on SiC (b). The similarity of the two XPS spectra indi-
cates the presence of graphitic carbon on SiC. Both spectra were
obtained at a photoemission angle of 0o. A closer examination of
the region between 288 eV and 295 eV from both samples provides
evidence for shake-up satellites (insets). (Reprinted with permis-
sion from Ref. [110]. Copyright 2009 by APS.)

In order to estimate the thickness of the graphitic carbon from XPS data, we utilized the ap-
proach proposed by Fadley [149]. Assuming the graphene-SiC sample can be modeled as a semi-
infinite SiC substrate with a uniform graphene overlayer of thickness t, t can be calculated from the
ratio between the intensity of the graphitic component at 284.5 eV from the graphene overlayer,
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NG(θ), and the intensity of the SiC component at 283.0 eV from the SiC substrate, NSiC(θ):

NG(θ)
NSiC(θ)

=
ρGΛG

e (EC1s)
ρSiCΛSiC

e (EC1s)

(
1− exp( −t

ΛG
e (EC1s)cosθ

)

exp( −t
ΛG

e (EC1s)cosθ
)

)
. (7.3)

Here ρG and ρSiC are the densities of carbon atoms in graphene and SiC in atoms per cm3, respec-
tively. ΛG

e and ΛSiC
e are the attenuation lengths for the C 1s photoelectron with kinetic energy EC1s.

The quantities ΛG
e =3.10 nm and ΛSiC

e =2.58 nm were calculated using NIST SRD-82 [150]; details
of this calculation and the derivation of Eq. 7.3 are explained in the supporting information of
Ref. [110]. The peak intensities, N(θ) also depend on physical parameters of the spectrometer and
electron analyzer, but these parameters are the same for both NG(θ) and NSiC(θ) and thus cancel.

The XPS spectra can be fit by two components, as shown in Fig. 7.2, and the ratio between the
graphene and SiC components, NG(θ)/NSiC(θ), can be accurately measured. Since NG(θ)/NSiC(θ)
was measured over a range of θ between 0o and 60o, a least-squares fit to Eq. 7.3 was used to
determine t. For more information on the thickness calculation, please see the supplementary in-
formation. Since the XPS spot size is 0.4×0.7 mm, the thickness estimate represents an average
value characterizing the FLG thickness across a few hundreds of microns. In this way, the average
thickness of the FLG grown at 1500◦C was found to be 2.4± 0.2 nm, or approximately 7 mono-
layers (ML) of graphene. Using the same XPS analysis method, the average thickness of the FLG
grown at 1475◦C was found to be 1.8±0.1 nm, or approximately 5 ML of graphene. These thick-
ness values provide a convenient benchmark to qualitatively estimate the thickness of FLG formed
at different growth temperatures.

7.5 STM study of the C-face growth

In what follows, we discuss in turn the nanoscale features that have been found on FLG using
STM. These features are useful for providing insight into graphene growth.

7.5.1 General observations

AFM studies [151] show the SiC substrate (carbon face) to be stepped, with flat terraces a few
hundred nanometers wide. The terraces are terminated by steps ranging in height from∼0.5 nm to
∼2 nm. The flat terraces occasionally show rough features, presumably due to inadequate chemo-
mechanical polishing.

A wide growth temperature range, 1350—1600◦C, was investigated to better understand the
growth mechanisms of graphene on SiC. Parallel XPS and AFM studies [151] provided evidence
that at temperatures below 1475◦C, the carbon coverage was sufficiently sparse that continuous
FLG was not formed [Fig. 7.3(a and b)]. The samples grown at these lower temperatures were not
extensively studied by STM since the low electrical conductivity of the exposed SiC substrate led
to an unstable tunnel current.
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Figure 7.3. A gallery of 2 × 2 µm2 AFM (a-b) and STM (c-
f) scans showing the stages of graphene growth. In (a) and (b),
sparse patches of graphene growth on the SiC step edges are ob-
served at 1350◦C and 1450◦C. At 1475◦C (c), the SiC substrate is
entirely covered with graphene. At 1500◦C (d) and 1550◦C (e),
a network of ridges and wrinkles appears. At 1600◦C (f), faceted
ridges, intersecting at angles near 120◦, separate regions of smooth
FLG.
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At growth temperatures of 1475◦C [Fig. 7.3(c)] and above, the SiC surface was continuously
covered with graphene; STM was extensively used to image these samples. Intersecting networks
of graphene ridges were found at growth temperatures of 1500◦C [Fig. 7.3(d-f)] and above. In
what follows, the above observations are discussed in detail.

Pits in the substrate

Occasionally, large pits (∼0.3–1.0 µm wide) surrounded by multiple graphene ridges were found.
These defects were rare and are thought to be formed from screw or edge dislocations in the SiC
substrate. It is likely that the hydrogen etching procedure enhanced these defects [152]. If a such
a pit as in Fig. 7.4(b) were found, the tip would be moved to a new region of the sample. These
pit defects show the variability of the epitaxial graphene grown on the C-face. Figure 7.4(a) and
fig. 7.13 are from the same sample 927, grown at 1550◦; fig. 7.4(b), fig. 7.8, and 7.9 are from the
same sample 976, grown at 1500◦. Excepting Fig. 7.4, all STM scans presented were taken away
from such pits.

Figure 7.4. Two examples of ridges surrounding pits in the sub-
strate. In (a), a 2 × 2 µm2 region showing a small pit completely
surrounded by ridges (sample 927, grown at 1550◦). In (b) a
7.5 × 7.5 µm2 region showing the highest ridge density observed
on these epitaxial graphene samples (sample 976, grown at 1550◦).
Scan parameters are Iset = 1.0 nA for (a) and (b) and Vbias = 300 mV
for (a) and 500 mV for (b).
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7.5.2 Rough Graphene

At growth temperatures of 1475◦C, smooth graphene-like surfaces of t = 1.8±0.1 nm (XPS mea-
surement) allowed reliable and reproducible STM studies. The graphene that formed at this growth
temperature showed two morphologies that we name smooth graphene and rough graphene. An
STM image of these two regions is provided in Fig. 7.5(a). A step edge of 1.4 nm separates
the smooth and rough regions. The smooth graphene, as confirmed by atomic resolution scans,
was atomically flat and provided evidence for monolayer C step heights of 0.3 nm. The rough
graphene had an rms roughness of typically 0.15–0.20 nm and showed peak to valley heights of
∼0.2–0.5 nm (Fig. 7.5(b)). In spite of the roughness, it was possible to obtain atomic resolution
scans over small 4–10 nm2 regions. Fourier transforms (FFT) of atomic resolution scans yielded a
hexagonal periodicity of 0.22±0.01 nm, indicating the presence of graphene.

Figure 7.5. STM images of graphene grown at 1475 ◦C shows
the two growth morphologies. In (a), an 800 × 800 nm2 region,
the rough graphene region is on the left while the smooth graphene
region is on the right. In (b), a 50 × 50 nm2 image showing the
detailed morphology of the rough graphene. In (c), a 2 × 2 nm2

atomic resolution image of the rough region in (b) reveals a hexag-
onal lattice. The lattice parameter, a = 0.245 nm of the hexago-
nal lattice indicates the presence of graphene. The original STM
scan was processed with wavelet analysis [153]. Scan parameters
are Iset = 5.0 nA and Vbias = 72 mV for (a) and Iset = 3.0 nA and
Vbias = 100 mV for (b) and (c). (Reprinted with permission from
Ref. [110]. Copyright 2009 by APS.)

We find evidence for grain boundaries in rough graphene formed at a growth temperature of
1500◦C (t = 2.4± 0.2 nm, XPS measurement). This is illustrated in Fig. 7.6(a) which shows a
grain boundary separating two regions of rough graphene. The width of the boundary is ∼50 nm.
A more detailed STM image of the boundary region is provided in Fig. 7.6(b). This figure shows
randomly oriented parallel 1D features with a periodicity of ∼4 nm. These localized, 1D features
have only been observed in the rough graphene regions of the substrate.
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Figure 7.6. STM images of a region from the graphene grown
at 1500 ◦C. In (a), a 500 × 500 nm2 image showing the pres-
ence of a grain boundary in the upper half of the image. In
(b), a 150 × 150 nm2 image showing the parallel 1D features
within the grain boundary. Scan parameters are Iset = 2.0 nA and
Vbias = 100 mV for (a) and (b). (Reprinted with permission from
Ref. [110]. Copyright 2009 by APS.)

7.5.3 1D superlattice on smooth FLG

We have observed 1D superlattices that cut across smooth regions of FLG. An example of such a
defect on sample 2, grown at 1500◦C, is shown in Fig. 7.7(a). Two fiducial lines AB and CD are
drawn parallel to each other. The resulting angles between the fiducial lines are 6 ABC = 141o±5o

and 6 CDE = 136o±5o, indicating that the 1D superlattice is bent from a straight line by an average
angle of about 42o±5o The periodicity of the 1D superlattice is well-defined and equal to 7.0 nm
between points A and B (see Fig. 7.7(b)). This 1D feature resembles a 1D moiré superlattice
reported on HOPG that contained a 30o bend and was attributed to a grain boundary in the graphene
layer [126].

7.5.4 Ridges and wrinkles on FLG

As the epitaxial graphene cools from the growth temperature, the SiC substrate contracts more
than the FLG. This contraction leads to the formation of graphitic ridges and wrinkles. Ridges
are contractions of multiple graphene layers and terminate in nodes. Wrinkles terminate into the
smooth portion of the graphene [151]. As seen in Fig. 7.3, the ridges become wider and more
pronounced as the growth temperature increases.

At growth temperatures of 1500◦C, the FLG (t = 2.4±0.2 nm, XPS measurement) exhibited
atomically smooth surfaces across large regions of the underlying SiC substrate. In addition, fine
ridge-like features, up to ∼10 nm tall, begin to form boundaries around the atomically smooth,
FLG domains. In many cases, the ridges cross step edges in the underlying SiC substrate with
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Figure 7.7. (a) An STM image of a 200× 200 nm2 region shows
a 1D superlattice. (b) A line profile along the line ABCDE, which
follows the profile of the 1D superlattice. Scan parameters are Iset

= 2.0 nA and Vbias = 300 mV. (Reprinted with permission from
Ref. [110]. Copyright 2009 by APS.)

no change in height or direction (see Fig. 7.8(a)). Occasionally, ridges form on step edges, as is
the case for the 6-nm high ridge, which is located on a 4.5-nm step edge (see Fig. 7.8(b)). The
formation of a ridge that exactly follows a step edge suggests that step edges in the underlying SiC
substrate might provide a diffusion barrier to mobile carbon atoms at 1500◦C.

As the growth temperature increases beyond 1500◦C, the ridges appear to coalesce into much
taller, wider folds (up to ∼20 nm high) that form boundaries encompassing larger areas of smooth
FLG [see Fig. 7.3(f)]. Buckled ridges, characterized by parallel features 10s of nanometers wide,
are common at the higher growth temperatures [see Fig. 7.8(d-f)]. STM I(V) measurements on the
ridges show a linear behavior that is indistinguishable from I(V) data acquired on the nearby flat
regions of the FLG. Frequently, the ridges intersect with angles near ∼120o [Fig. 7.3(f)]. These
ridges of graphene are thought to be caused by the thermal expansion mismatch between graphene
and SiC [142, 151]. Similar ridges are observed on CVD-graphene grown on Ni [140].
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Figure 7.8. STM images of epitaxial graphene grown at 1500 ◦C
(a-c) and 1600 ◦C (d-f). (a) An STM image (a) of a 5 × 5 µm2 re-
gion shows fine ridges, 5–10 nm high, crossing the sample. (b) A
1.5 × 1.5 µm2 region, located in the center of (a), reveals a super-
lattice, the boundaries of which are indicated by the dashed lines.
This superlattice is bounded by the ridge on the left-hand side and
is discussed further in Fig. 7.11. A profile (b) across (c) shows a 6-
nm high, 40-nm wide ridge. Steps in the underlying SiC substrate
are indicated by vertical black bars, 1.1-nm tall. Scan parameters
are Iset = 5.7 nA and Vbias = 72 mV for (a) and Iset = 1.0 nA and
Vbias = 300 mV for (c). (Images (a-c) are reprinted with permission
from Ref. [110]. Copyright 2009 by APS.)
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7.5.5 Moiré superlattices on FLG

Moiré superlattices were observed on 4H-SiC(0001̄) FLG samples grown at 1500◦C and 1550◦C.
Interestingly, no moiré superlattices were observed on samples grown at either 1475◦C or 1600◦C.
An example of a moiré region is provided in Fig. 7.8(b) (growth temperature of 1500◦C). These
superlattices were confined to regions adjacent to ridges; the superlattices were found either on one
or both sides of the ridge. It was often observed that the FLG regions adjacent to the ridges were
no longer flat, but exhibited a pronounced curvature that persisted over∼ 0.5 µm distance from the
ridge. Superlattices were never found as isolated islands surrounded entirely by a flat FLG region.
By randomly sampling well-separated regions of the FLG surface, Moiré regions with different
superlattice periodicities were found at different positions across the same FLG sample. These
results are summarized in Table C.1, which indicates that periodicities of the superlattices from
three FLG samples range between 4 and 13 nm.

Table 7.2. Samples with moiré superlattice regions and their mea-
sured periodicity

Sample Growth Temp. (◦C) D (nm) Θ (degrees)
971 1500 5.6 ± 0.3 2.5 ± 0.1
971 1500 4.2 ± 0.2 3.3 ± 0.1

4.7 ± 0.3 3.0 ± 0.2
9.4 ± 2.2 1.5 ± 0.3

12.7 ± 2.1 1.1 ± 0.2
927 1550 6.4 ± 0.7 2.2 ± 0.3

7.2 ± 0.5 2.0 ± 0.2
9.0 ± 0.6 1.6 ± 0.1

7.5.6 Atomic resolution within a moiré superlattice

Atomic-resolution STM images of a moiré superlattice are given in Fig. 7.9(a,c). Distinct regions
of apparently different heights are clearly visible as dark, dim, and bright areas. As a guide to the
eye, two lines are drawn on top of the STM image; the dashed line follows the superlattice bright
areas while the solid line follows the atomic lattice of the carnon atoms.

By resolving the atomic positions in the FLG layer, two independent ways of determining
the relative rotation angle of the top graphene layer with respect to the underlying layers become
possible. First, using the measured periodicity of the superlattice from the 2D-FFT (4.44±0.31 nm
in Fig. 7.9(b)), the angle φ = 28.4± 0.2o can be calculated from Eqns. 7.1 and 7.2. Second, the
angle can be measured directly from the atomically resolved STM image in Fig. 7.9(a), giving a
value of φ = 26± 2o. These two results are in good agreement with each other. As indicated by
the fiducial lines in Figs. 7.9(b,d)), the same relative rotation, φ , observed in Fig. 7.9(a)) is seen
between the Fourier components in the superlattice scale and atomic scale 2D-FFTs.
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Figure 7.9. (a) An STM image of a 20 × 20 nm2 region shows
a moiré superlattice. The 2D-FFT of the moiré superlattice (b)
shows the hexagonal superlattice (D = 4.44±0.31 nm). Image (b)
is a 2D-FFT of a 60× 60 nm2 region; the larger image is necessary
for a high-resultion FFT. (c) A 6 × 6 nm2 zoom of (a) shows the
hexagonal lattice of the top graphene layer. (d) From the 2D-FFT
of (a), the atomic lattice is found to be 0.23 ± 0.09 nm, close to
the accepted value of 0.246 nm. The scale bars in (b) and (d) are
the length of the k-vector where 1/k is the lattice periodicity. Scan
parameters are Iset = 5.7 nA and Vbias = 72 mV. (Reprinted with
permission from Ref. [110]. Copyright 2009 by APS.)

7.5.7 I(V) across a moiré region

Since the moiré superlattice is an DOS effect, the tunnel current in the moiré region should reflect
the variation in the DOS. Campanera et al. calculate that the DOS of AA-stacked graphite (bright
areas) is 0.0082 states/eV atom, while the DOS of BA-stacked graphite (dark areas) is 0.0040
states/eV atom [143]. This variation in DOS should influence the I(V) data at low bias voltages, at
which the tunnel current is roughly proportional to the substrate DOS.

In order to measure the DOS across the moiré patterns, a 3D-mode STM experiment was
performed on the FLG sample 976 grown at 1500◦C. First, an atomically flat moiré region was
scanned in constant-height mode [Fig. 7.10(a)]. In this scan, the bright features (indicated by blue
triangles) correspond to a larger measured tunnel current, while the dark features (indicated by red

105



Figure 7.10. (a) A constant-height STM scan of a 14.5 ×
14.5 nm2 region with a moiré superlattice having a periodicity of
4.8±0.3 nm (Vbias = 300 mV). In (b), a 3D-mode STM scan of the
same superlattice region. The y-axis varies linearly from +300 mV
bias to -300 mV bias. The x-axis is 15 nm. The four vertical lines
represent the location of the I(V) curves plotted in (c). In the low-
bias (±50 mV) range, the I(V)s obtained from the 3D-mode STM
scan in (b) are linear.

circles) correspond to a smaller measured tunnel current. In this 3D-mode STM experiment the
fast scan direction (x̂) is the position of the STM tip and the slow scan direction (ŷ) is the bias
voltage applied to the sample. As is the case for constant-height STM scans and I(V) curves, the
feedback is disabled and the instantaneous tunnel current recorded. In Fig. ??, the measured tunnel
current is plotted as a function of tip position and sample bias.

The conductivity, G, is calculated as the slope of the I(V ) curve [Fig. ??]. For the high DOS
(bright) regions of the moiré pattern, Ghigh = 2.9 nS; for the low DOS (dark) regions of the moiré
pattern, Glow= 1.7 nS. The ratio of the conductivities, Ghigh/Glow = 1.7 is consistent with the
theoretical ratio of 2.0 calculated by Campanera et al. [143].
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7.5.8 A moiré superlattice across a SiC step edge with constant periodicity

The long lateral range over which the moiré superlattices were observed permits an exquisitely
sensitive way to map carbon atomic positions across localized defects such as a step edge in the
underlying SiC substrate. One such example is illustrated in Fig 7.11(a) which is an image from
the FLG sample 2 grown at 1500◦C. In Fig. 7.11(b), the superlattice is observed to persist across
a 1.1 nm step edge associated with the SiC substrate.

Figure 7.11. (a) An STM image of a 600 × 600 nm2 region
shows a moiré superlattice continuing across two step edges (both
1.1 nm high) in the SiC substrate. The dashed box in (a) indicates
the 150 × 150 nm2 region in (b), which was scanned at a higher
resolution. The superlattice is clearly visible in (c), a 50 × 50 nm2

magnified region of the center of (b). A profile (d) drawn across the
step edge in (b) illustrates that no apparent row of atoms is missing
at the step edge. To enhance the apparent periodicity, the height of
the step edge was subtracted from this profile. Scan parameters
are Iset = 1.0 nA and Vbias = 300 mV for (a) and Iset = 1.5 nA and
Vbias = 50 mV for (b) and (c). (Reprinted with permission from
Ref. [110]. Copyright 2009 by APS.)

The measured periodicity of the superlattice in Fig 7.11(b) was determined to be D = 4.7±
0.3 nm. In Fig 7.11(d), the phase of the superlattice is tracked across the step edge. This topography
profile illustrates that the superlattice exhibits a constant value of D and remains in phase as it
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traverses the step edge, indicating that the relative rotation between the top two layers of graphene
is constant across the step. The observation of a commensurate moiré superlattice spanning a
step edge in the substrate supports the suggestion that FLG growth follows a carpet-like growth
mechanism proposed by Seyller et al. [154].

7.5.9 Termination and energetics of a small moiré region

Typically, the moiré regions in the FLG grown samples studied were large enough that the entire
pattern could not be imaged within a single scan of dimension 1× 1 µm2. While larger STM scans
are possible, the decreased lateral resolution obscures the moiré superlattice (cf. Fig. 7.11(a,b)). An
unusually small moiré region that could be imaged in a single STM scan was found on sample 2,
which was grown at 1500◦C. This superlattice is characterized by a periodicity D = 12.7±2.1 nm
and spans an area of 2.3×105 nm2. As shown in Fig. 7.12(a), this moiré region is bordered by two
tall ridges (8–10 nm high) located on the right and bottom of the image.

Figure 7.12. (a) An STM image (1000 × 700 nm2) shows the
extent of the moiré region with a periodicity of D = 12.7±2.1 nm,
as indicated by the solid line. The exceptionally jagged edge of
the moiré region is illustrated by the 350 × 250 nm2 inset. Scan
parameters are Iset = 1.0 nA and Vbias = 300 mV for (a) and Iset

= 2.0 nA and Vbias = 100 mV for (b). (Reprinted with permission
from Ref. [110]. Copyright 2009 by APS.)

While the boundaries between moiré regions and Bernal stacked (BAB) graphene are rarely
straight, the boundary of this superlattice is unique for the number of jagged protrusions it reveals
(see Fig. 7.12(b)). The ragged termination of the superlattice suggests that the relative rotation
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between the top two layers of graphene is relaxed by local defects in one of the two layers. The
origin of the superlattice is likely high strain fields produced during ridge formation. Evidently
the graphene lattice relaxes away from the ridge, causing the superlattice to disappear. The moiré
periodicity remains constant up to the superlattice boundary, indicating that the graphene lattice
does not appear to be stretched or otherwise distorted.

The minimum relative formation energy of a moiré superlattice is calculated to be 2.5 meV/atom
[143]. At the 1500◦C growth temperature, the thermal energy per atom confined to 2D, kBT , is
0.15 eV, where kB is the Boltzmann constant. At this growth temperature, there is more than suffi-
cient thermal energy to anneal this rotational defect, if the rotation occurs at 1500◦C. This suggests
the rotational defect is pinned by an energy barrier that requires significantly more than thermal
energy before the rotational defect is relaxed. If the rotation occurs while the FLG sample is cool-
ing, there may not be sufficient thermal energy to anneal the defect. Since the moiré regions are
predominately found near ridges, it seems likely that the formation of a ridge causes a rotation of a
few graphene layers, resulting in a moiré superlattice that is both created and pinned by the upward
lift of individual graphene layers during the ridge formation.

7.5.10 Moiré superlattices coexistent with wave-like features

Wave-like features or ripples with a height of about 1 nm have been reported in TEM images of
suspended exfoliated graphene sheets [155] as well as in STM studies of graphene [156, 157].
The existence of ripples have implications for charge transport, since curved regions of graphene
are expected to modify the local density of electron states due to a potential that develops that is
proportional to the square of the local mean curvature [158, 159, 160]. The precise origin of these
ripples, with a focus on the structural integrity of a 2D graphene membrane, has been extensively
discussed [161, 162, 163, 164, 92, 165, 166].

We find evidence for rippling in FLG grown on SiC as shown in Fig. 7.13(a), on sample 3,
grown at 1550◦C. The ripple-like features emanate from a 1-nm high line defect and are aligned
roughly perpendicular to this line defect. The ripples are approximately parallel to each other
with a height of 0.1 to 0.2 nm and an apparent width of 20–50 nm (see Fig. 7.13(b,d)). The ripples
continue across a 0.65 nm step edge in the substrate. While usually found on flatter regions of FLG,
a moiré superlattice has also been observed on this rippled region. A superlattice with an area of
∼ 500 nm×1000 nm floods the surface spanning the ripples. This superlattice is not disrupted by
the ripples in the FLG surface.

Careful analysis of the FFT from Fig. 7.13(a) shows that the superlattice is actually a superpo-
sition of two moiré superlattices, implying that at least the top two, if not more, graphene layers are
rotated with respect to each other. The relevant FFT is given in Fig. 7.13(c) and shows one period-
icity with D = 9.3 nm and Θ = 1.5o (highlighted by white circles in Fig. 7.13(c)), corresponding to
the bright, inner hexagonal pattern in the FFT. A second moiré superlattice (highlighted by white
ellipses in Fig. 7.13(c)) is characterized by FFT spots that are dimmed and blurred slightly, but still
clearly resolved. The periodicity and rotation of this second superlattice are measured to be D =
6.4 nm and Θ = 2.2o.
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Figure 7.13. (a) An STM image, 500 × 500 nm2, shows a 1
nm high line defect that runs parallel for ∼200 nm of its length
to a 0.65 nm step edge. Carbon ripples emanate from the line de-
fect and are found to cross over the step edge. In (b), an STM
image of a 300 × 300 nm2 zoom of the rippled region of (a) re-
veals that a superlattice is coexistent with the ripples. In (c), the
hexagonal periodicity of the superlattice is confirmed by a 2D-FFT
of (b). The superlattice is a superposition of two moiré patterns,
with periodicities of D = 9.3± 1.2 nm (bright inner spots) and
D = 6.4± 0.7 nm (dim outer spots). In (d), a profile of the rip-
ples along the blue line in (b). Scan parameters are Iset = 1.0 nA
and Vbias = 500 mV. (Reprinted with permission from Ref. [110].
Copyright 2009 by APS.)
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7.6 Implications for epitaxial graphene growth on SiC

Taken together, the results of the STM studies presented above are consistent with a non-uniform
and heterogenous environment for the growth of FLG on 4H-SiC(0001̄) substrates. A priori, there
are many reasons why a spontaneous and unseeded growth of a truly uniform, perfectly periodic
FLG layer over an area larger than a few square micrometers of a 4H-SiC(0001̄) substrate might be
difficult to achieve. First, the basal plane lattice constant of graphene is ∼30% smaller than SiC.
As a consequence, in one layer of SiC, there are 12.2 C atoms/nm2. To form one layer of graphene,
38.2 C atoms/nm2 are required. Therefore, to free enough C atoms to form a continuous layer of
graphene requires the sublimation of more than three layers of SiC [142, 136]. Second, it is rea-
sonable to expect that graphene growth nucleates at many sites across the SiC wafer. Lastly, there
is a mismatch in thermal expansion between graphite and SiC. Our STM data provides evidence
which suggests that all these issues hinder uniform graphene growth.

It is likely the growth of FLG nucleates at step edges or terrace defects on SiC. Our studies
show that at growth temperatures of 1475◦C, any localized patches of FLG that form on the C-
face of SiC have already merged to completely cover the SiC substrate. The observation of rough
graphene in FLG could reflect a deficit in the supply of C atoms required to form a continuous layer
of graphene. Owing to its random nature, sublimation is an uncontrollable process on the atomic
scale that inherently roughens the substrate surface. Since the sublimation of more than three layers
of SiC are required to free sufficient carbon to form one continuous graphene layer, it is likely that
for the thinnest layers of FLG, the underlying roughness created by the uneven evaporation of
the SiC substrate seeds the rough graphene growth. Compounding this stoichiometric issue is
the reported rapid oxidation rate of the C-face [167]. Oxidation of the SiC surface might also
significantly contribute to the roughening of the first few layers of graphene. XPS data show the
presence of SiO2 decreases as the growth temperature increases from 1475◦C to 1550◦C.

The presence of grain boundaries between advancing graphene layers might be anticipated if
graphene growth is heterogeneously seeded across the SiC substrate. Indeed, we find evidence in
the top FLG layer of 1D boundaries separating two graphene regions (see Fig. 7.7). The presence
of these boundaries suggests that graphene sheets, seeded at different nucleation sites across the
SiC substrate, do not always uniformly merge into one continuous graphene layer. An alterna-
tive explanation for the 1D boundaries is the formation of pentagonal/heptagonal defects during
graphene growth, causing local buckling of the FLG.

As the growth temperature increases, we observe a transition between rough graphene layers
(seen regularly at 1475◦C) to uniform, atomically smooth FLG having an atomic periodicity iden-
tical to HOPG (seen regularly at 1550◦C). The increase in temperature increases the rate of Si
sublimation, which occurs most rapidly at step edges, thereby providing more free carbon atoms.
The higher growth temperature also increases the surface carbon atom mobility. As a consequence,
at higher temperatures, thicker graphene films form with carbon atoms more readily forming sp2

bonds, thus mitigating the surface roughness inherent at the SiC-graphene interface. Both the
greater number of available carbon atoms and the increase in mobility contribute to the atomic
smoothing of the graphene film.
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As smooth FLG forms, our STM studies suggest that both 1D ridges and moiré superlattices
develop. It is likely the ridges form due to the difference in thermal contraction between the basal
plane of graphite and the SiC substrate [151]. The exact location of a ridge could be seeded
by lines of defects in the FLG layer. Based on I(V) data, we have evidence that the 1D ridges
(see Fig. 7.8) are as conducting as the surrounding flatter regions, suggesting that the ridges are
graphitic. The height of the ridges is found to increase with the graphene layer thickness. Two
ridges often intersect at a point, forming a subtended angle near 120o.

While ridges frequently traverse 1–2 nm high step edges at random angles, the ridges can also
be aligned along step edges in the SiC substrate, such as the ridge parallel to the 4.5-nm step
edge seen in Fig. 7.8(a). The co-location of a ridge perfectly aligned along a step edge suggests
the graphene layers located at step edges contain a number of atomic-scale defects which seed
buckling under the compressive stress of cooling.

The formation of ridges in turn cause a rotation in the top layer(s) of the FLG, resulting in a
moiré superlattice. We estimate that moiré regions are found near ridges in about 20 percent of
our images. Moiré regions are never found as isolated regions surrounded by flat graphene layers.
Moiré regions are common on FLG samples grown at 1500◦C, rare on 1550◦C samples, and never
found on 1600◦C samples. The ridges, next to which the moiré regions are usually found, have
high aspect ratios at 1500◦C, but are smoother and more rounded at 1600◦C. These observations
suggest that high stresses in the graphene layer, which are proportional to the aspect ratio of the
ridges, can produce localized rotation of graphene layers.

It is possible that the moiré superlattices form when two disparate growth regions of graphene
layers merge and overlap. If this is the explanation for the 2D moiré superlattices, then the likeli-
hood of finding a moiré region would be roughly the same as the number density of graphene seed
regions. However, we find that the moiré regions are the exception, not the norm, suggesting that
they are produced by a relatively rare set of circumstances.

It is possible that the moiré superlattice form when graphene growth encounters a SiC step
edge. If, for example, the graphene growing on the top terrace has a different rotation from that
growing on the lower terrace, then the growth of an overlayer across a step edge could cause a
moiré superlattice to form. However, graphene growth near many of the step edges in FLG exhibits
a standard Bernal stacking, with no evidence for a moiré superlattice. Also, it is possible to find
examples (see Fig. 7.11) that indicate graphene growth must be commensurate across both upper
and lower terraces to account for the same periodicity and orientation of the moiré superlattice on
both sides of a step edge. These observations all argue against overlayer growth as a possible cause
of the moiré superlattices.

It is also possible that atomic-scale defects in the graphene layers, such as the formation of
pentagonal-heptagonal defects, nucleate a moiré superlattice. It is well established that a pentagonal-
heptagonal defect produces a localized upward puckering of the graphene layer, accompanied by
a rotation of the graphene lattice. As a result, the graphene lattice would be highly rotated near the
pentagonal-heptagonal defect and would relax to an undeformed lattice as a function of distance
from the defect. The resulting moiré superlattice formed by the growth of a pristine graphene layer
over such a pentagonal-heptagonal defect would have a radially varying periodicity, similar to that
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around a screw dislocation. The moiré superlattices found in our STM study all have a constant
periodicity across their entire area, eliminating the possibility that they are formed by localized
pentagonal-heptagonal defects.

Since there is sufficient thermal energy at the growth temperature to anneal any moiré super-
lattices that might develop during growth, we believe that the 2D moiré superlattices in FLG must
be produced during the formation of ridges upon cooling. The ridge formation evidently causes a
relative rotation between different graphene layers.

7.7 Conclusions

Studies to characterize few layer graphene (FLG) formed on 4H-SiC(0001̄) substrates have been
summarized. FLG grown at temperatures ranging between 1475◦C and 1600◦C have been inves-
tigated. In our study, we confined our attention to FLG that was grown during a ten-minute time
interval at the specified growth temperature.

Both X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) were
used to characterize the quality of the FLG surface. The XPS studies were useful in confirming the
graphitic composition and estimating the thickness of the FLG layers. STM studies revealed a wide
variety of different nanometer-scale features on the FLG surface which include rough graphene,
atomically smooth graphene, 1D grain boundaries, 1D ridges, and 2D moiré superlattices.

Our efforts to understand the origin of these varied features provide considerable insights into
the relevant growth mechanisms of FLG on 4H-SiC(0001̄) substrates. In general, our data are
qualitatively consistent with a carpet-like growth mechanism of FLG, in which select nano-facets
on SiC step edges rapidly produce excess C atoms which diffuse across the substrate to form
graphene layers. Upon cooling, the graphene layers are subject to a compressive thermal stress
which causes the FLG to fold and buckle along lines of defects that are weak points in the graphene
layers. This buckling produces ripples and ridges which induce local strain fields that occasionally
cause a rotation of the graphene layers, forming 2D moiré superlattices. The additional periodicity
imposed on the electron states in FLG supporting a superlattice will create many narrow minibands
separated by small energy minigaps. The creation of these minibands has important implications,
especially with regard to increased electron scattering and optical absorption in superlattice regions
of FLG.
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Chapter 8

Contributions and suggestions for future
study

This SAND report presents two avenues of research into nanoscale materials. First, the vibrational
spectra of MWNTs and Ag2Ga nanoneedles were measured using electrostatic excitation and laser
Doppler vibrometry. Second, scanning tunneling microscopy scans of graphene provided insights
into the nature of epitaxial graphene growth on the C-face of SiC.

The specific contributions of this work are:

1. A demonstration that laser Doppler vibrometery is a practical, non-destructive means to
measure the thermal vibration spectra of nanowires.

(a) The thermal vibration spectra of five MWNTs and eight Ag2Ga nanoneedles were mea-
sured and analyzed.

(b) From these vibration spectra and the dimensions of the nanowires, the elastic modu-
lus of the nanowires and quality factor of oscillation were calculated. PECVD-grown
MWNTs were found to have an elastic modulus, E = 37± 26 GPa, well within the
range of E previously reported for MWNTs. The E of Ag2Ga nanoneedles is 84.3±
1.0 GPa. For both nanowires, Q at atmospheric pressure was dominated by gas damp-
ing.

(c) The operating deflection shape of acoustically-excited Ag2Ga nanoneedles was used to
confirm the identification of the eigenmodes.

2. Estimates for the smallest diameter nanowires whose vibrational spectra can be measured in
this way were calculated using Mie scattering theory. A method of adding reflective glass
beads to nanowires to increase their optical scattering was developed.

3. Theoretical approximations sensitivity of cantilevers used as mass sensors were presented.
These approximations suggest that short, low mass cantilevers with high E are best suited
for mass sensing applications.

4. Scanning tunneling microscopy scans confirmed the presence of few-layer graphene on C-
face epitaxial graphene samples grown at temperatures of 1475◦ and higher.
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5. Moiré superlattices were found only near ridges, indicating that the ridge formation can
cause mis-rotations of the FLG layer(s). These ridges form as the epitaxial graphene cools
due to the thermal contraction of the SiC substrate.

6. The paucity of the moiré superlattices, which were found near only ∼20 percent of the
ridges, indicates that Bernal stacking of FLG is highly energetically favorable.

7. I(V) measurements of the moiré superlattices showed that the high DOS regions had a con-
ductivity 1.7 times greater than that of the low DOS regions.

Both projects offer many possibilities for future research. A few possibilities are:

1. Further research is needed to understand the vibration spectra of optically forced nanonee-
dles. For optical forcing studies, a variable density filter should be placed in the optical path
of the LDV. Rotating the filter would decrease the power of the transmitted laser beam. At
lower laser powers, the optical forcing should be minimal.

2. With such a variable density filter in place, the vibrational spectra of nanoneedles in vacuum
could be measured without significant optical forcing effects. Measurements of the qual-
ity factor of nanoneedles in low vacuum (∼10 Torr) would provide good estimates for the
intrinsic quality factor of Ag2Ga nanoneedles.

3. Recent papers by Seyller et al. and Hannon and Tromp [108, 107] illustrate the importance
of slowing the rate of Si sublimation to improve the quality of graphene grown on the Si-face
of SiC. The epitaxial graphene presented in this thesis was grown in a slight over-pressure of
Si. I am interested in the results of growing C-face graphene in an overpressure of argon. I
expect the growth rate to be retarded, which might allow for monolayer and bilayer graphene
growth.

4. The nature of the SiC reconstruction and the buffer layer which forms is understood for the
Si-face, but rarely discussed for the C-face. UHV-STM studies of the fractional-coverage
C-face growth at 1450◦C could show the atomic arrangements of the atoms in the initial
growth patches.
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Appendix A

The solution to the Euler-Bernulli beam
equation for a cantilevered beam

The transversal vibrations of the MWNT are given by the Euler-Bernoulli equation,

∂ 2w(x, t)
∂ t2 +

EI
ρL

∂ 4w(x, t)
∂x4 = 0 (A.1)

where E is the elastic modulus, I is the areal moment of inertia, and ρL is the density per unit length,
calculated by multiplying ρ , the density of the nanowire by its cross-sectional area. The bending
deflection of the nanowire, w(x, t) = Φ(x)z(t) is a function of x, the distance along the length
of the nanowire and time, t. The bending deflection can be decomposed into Φ(x), a function
describing the oscillation mode shape, and z(t), the deflection of the free end of the nanowire.
Using separation of variables, a solution of the form (A.2) is substituted into (A.1)

w(x, t) =
∞

∑
j=1

C jΦ j(x)e±iω jt . (A.2)

In the above equation, C j is the normalization constant and ω j is the oscillation frequency (in
rad/sec). Substituting in the solution (Eq. A.2) yields a homogenous fourth-order linear differential
equation,

i2ω
2
j Φ j(x)e±iω jt +

EI
ρL

(
d4Φ j(x)

dx4 )e±iω jt = 0

d4Φ j(x)
dx4 −

ω2
j ρL

EI
Φ j(x) = 0

d4Φ j(x)
dx4 −α

4
j Φ j(x) = 0, where

(
α j

L

)4
=

ω2
j ρL

EI
=

ρL(2π f j)2

EI
.

(A.3)

The general solution to the above differential equation is assumed to be a superposition of trigono-
metric terms,

Φ j(x) = Asin(
α jx
L

)+Bcos(
α jx
L

)+Csinh(
α jx
L

)+Dcosh(
α jx
L

). (A.4)
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For a cantilevered rod with one fixed end (x = 0) and one free end (x = L), the boundary conditions
are as follows [50],

(a) Φ j(0) = 0 fix the amplitude of the beam to be zero

(b)
dΦ j

dx
(0) = 0 fix the inclination of the beam to be zero

(c)
d2Φ j

dx2 (L) = 0 fix the torque at the free end of the beam to be zero

(d)
d3Φ j

dx3 (L) = 0 fix the force at the free end of the beam to be zero.

(A.5)

Applying boundary conditions (a) and (b) yields

Φ j(0) = B+D = 0 ⇒ D =−B

Φ
′
j(0) = α j[A+C] ⇒C =−A.

(A.6)

Thus the general solution can be rewritten as

Φ j(x) = A[sin(
α jx
L

)− sinh(
α jx
L

)]+B[cos(
α jx
L

)− cosh(
α jx
L

)]. (A.7)

Applying boundary conditions (c) and (d) to Eq. A.7 yields

1
α2

j
Φ
′′
j(L) =−A[sin(α j)+ sinh(α j)]−B[cos(α j)+ cosh(α j)] = 0

1
α3

j
Φ
′′′
j (L) =−A[cos(α j)+ cosh(α j)]+B[sin(α j)− sinh(α j)] = 0

(A.8)

In order for the solution to the linear homogenous differential equations in (A.8) to be non-
trivial, the determinate formed by the coefficients A and B must be zero.∣∣∣∣ sin(α j)+ sinh(α j) cos(α j)+ cosh(α j)

cos(α j)+ cosh(α j) −sin(α j)+ sinh(α j)

∣∣∣∣= 0

[sin(α j)+ sinh(α j)][−sin(α j)+ sinh(α j)]− [cos(α j)+ cosh(α j)]2 = 0

sin2(α j)+ sinh2(α j)− cos2(α j)−2cos(α j)cosh(α j)cosh2(α j) = 0
−2−2cos(α j)cosh(α j) = 0
⇒ cos(α j)cosh(α j) =−1, (A.9)

(A.10)
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Table A.1. Allowed α j which correspond to the first five oscilla-
tion frequencies.

j 1 2 3 4 5
α j 1.8751 4.6941 7.8548 10.995 14.1372

The resulting transcendental equation is solved numerically; table A.1 gives the solutions corre-
sponding to the first five oscillation frequencies. Solving Eq. A.8 for the coefficients A and B
yields

A =−cos(α j)+ cos(α j) and B = sin(α j)+ sinh(α j). (A.11)

The eigenfunctions for the mode shapes can be written as

Φ j(x) = (sinα j + sinhα j)[cos(
α jx
L

)− cosh(
α jx
L

)]− (cosα j + coshα j)[sin(
α jx
L

)− sinh(
α jx
L

)].
(A.12)

Recalling Eq. A.3, the eigenfrequencies of a cantilevered beam are

f j =
α2

j

2πL2

√
EI
ρL

. (A.13)

Using the equipartition theorem, Butt and Jaschke showed that the average oscillation ampli-
tude at the end of a cantilevered rod is [50]

〈z j〉=
√

12kcT
Kα4

j
. (A.14)

The normalization coefficient, C j, in equation (3.2), is found by dividing the average oscillation
amplitude, (A.14), by the amplitude at the end of the beam (A.12),

C j =
〈z j〉

Φ j(L)
. (A.15)

Thus the general solution to the Euler-Bernulli equation is given by

w(x, t) =
∞

∑
j=1

〈z j〉
Φ j(L)

{
(sinα j + sinhα j)[cos(

α j

L
x)− cosh(

α j

L
x)]

−(cosα j + coshα j)[sin(
α j

L
x)− sinh(

α j

L
x)]
}

e±iω jt . (A.16)

The above derivation applies for any cantilevered beam, regardless of geometry.
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To find the mode shapes and oscillation frequencies for a nanowire, we need the spring constant
for a cylindrical object, kc = 3EI/L3, the areal moment of inertia, I, and the linear mass density,
ρL. The areal moment of inertia of a solid cylinder is given by

I =
∫

y2dA

I = 4
∫

dyy2
√

R2− y2

I =
4
8
[tan−1(

y
R2− y2 )R4 + y

√
R2− y2(2y2−R2)]|R0

I =
π

4
R4.

(A.17)

Thus the areal moment of inertia for a MWNT with outer diameter do and inner diameter di is
I = π

64(d4
o−d4

i ). The linear mass density, ρL, can be rewritten in terms of the volumetric density ρ

as follows,

ρL =
m
L

where m = ρV = ρLπ[(
do

2
)2− (

di

2
)2]

ρ =
πρ

4
(d2

o−d2
i ).

(A.18)

Substituting ρ and I into Eq. A.13 yields

f j =
α2

j

8πL2

√
E
ρ

(d2
o +d2

i ) (A.19)

for the oscillation frequency of the MWNTs. While the mode shapes, Φ j(x), depend only on the
boundary conditions, the general solution, Z(x, t), (Eq. A.16) depends on geometry and material
properties, specifically E and ρ . The first three mode-shapes of a 5-µm nanowire are shown in
Fig. A.1.
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Figure A.1. The first three eigenmodes of a cantilevered
nanowire with the following physical properties: E=1 TPa;
ρ=2300 kg/m3; do=100 nm; di=44 nm, and L = 5 µm.
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Appendix B

Tunnel Gap Modulation Spectroscopy

Please note that this section describes the TGMS experiments, as we understood them at the time.
Initial literature surveys of the Young’s modulus of MWNTs suggested that all MWNTs had E ∼
1 TPa. We now know that the E of CVD and PECVD-grown MWNTs is much lower, 10s-100s of
GPa, as is reported in the literature. However, changing the estimated value of E in this appendix
would mis-represent the experiments performed.

B.1 Aim of tunnel gap modulation spectroscopy (TGMS)

Since the development of STM in the early 1980s, STMs have been primarily used to examine
samples that remain fixed over long periods of time. In certain cases, STMs have been used to
study atom diffusion across substrates with atomic resolution. In traditional STM studies, changes
in images typically occur at frequencies in the 1 Hz–1 kHz range. However STMs have also been
used to monitor the average distance between an STM tip and an oscillating object. For example,
STMs have been used to detect cantilever oscillations in AFM experiments.

Tunnel Gap Modulation Spectroscopy (TGMS) is an STM-derived technique that utilizes the
exponential dependence of tunnel current to gap distance to measure the frequency of vibrations
at the nanoscale. Consider a vibrating object attached to an STM tip that modulates the size of the
tunnel gap. The tunnel gap acquires a time-dependence given by

z(t) = zo +A⊥sin(2π f1t), (B.1)

where zo is the tunnel gap maintained by the feedback of the STM (typically 0.4–0.7 nm), A⊥ is
the amplitude of the vibrating object in the direction perpendicular to the substrate’s surface, and
f1 is the natural frequency of vibration of the object; f1 can span the MHz to GHz range. The
periodic modulation of the tunnel current, i(t) will result in a periodic variation at f1 given by,

i(t) = ioe−2αz(t), (B.2)

where io, the dc tunnel current, is approximately constant and α ∼= 20 nm−1 for typical barriers
in STM. In what follows, it is important to remember that for this value of α , a change in z(t) by
∼0.1 nm produces a factor of ∼10 change in i(t). Calculations of the resulting time dependent
current (B.2), when Fourier analyzed, exhibit peaks at n f1, where n = 1,2,3,4, etc.
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Two possible modes of operation for TGMS are proposed. In the first, a conventional STM
tip can be used to measure the oscillation frequency of a rapidly rotating object (such as a C60
molecule) [168]. In the second, a vibrating object (such as a MWNT) is attached at an angle to a
conducting STM tip that is held above a conducting substrate (Fig. B.1). In both cases, the STM

Figure B.1. Schematic of a MWNT attached at angle φ to an
STM tip (not drawn to scale). The size of the tunnel gap, zo, is set
by the tunnel current set point; A⊥ is the amplitude of the MWNT
oscillations.

feedback loop maintains a tunnel gap zo consistent with a given set point current. In the first case,
the rotating C60 modulates the size of the tunnel gap; in the second case, the thermally excited
vibration of the MWNT modulates the size of the tunnel gap. TGMS offers a means of detecting
the oscillations of MWNTs in air. Both thermally-excited [33, 1, 169] and electrically-driven
vibrations of carbon nanotubes in vacuum [1, 2, 3] have been previously reported.

Estimated size of the tunnel gap

If a MWNT is attached at an angle φ to an STM tip, a tunnel gap of size zo can be established
between the end of the MWNT and a conducting substrate in the usual way. In this case, the sub-
strate is usually inert, freshly cleaved, highly oriented pyrolytic graphite (HOPG). Using TGMS,
the resonant frequency of a MWNT mounted on a STM tip can be measured. As derived in Chap-
ter 2, the natural frequency of oscillation of a MWNT of length, L, inner diameter, di, and outer
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diameter, do, is given by [50]

f j =
α2

j

8πL2

√
E
ρ

(d2
o +d2

i ). (B.3)

For typical values of L ∼3–10 µm, do = 100 nm, and di = 44 nm, which are estimated from TEM
micrographs, Eq. 3.7 predicts frequencies in the 10s of MHz range.

The size of the tunnel gap is proportional to the oscillation amplitude of the MWNT. The
average oscillation amplitude at the end of the MWNT is given by [50]

〈z j〉=
√

12kBT
Kα4

j
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√
12kBT

α4
j

L3

3EI
; (B.4)

for MWNTs with the above parameters, 〈z1〉 ranges from 0.18 nm to 1.08 nm, as shown in Fig. B.2.
The modulations of the tunnel gap, z, depend on the angle, φ , between the MWNT and the normal

Figure B.2. Calculated fundamental oscillation frequency and
amplitude of MWNT as a function of length. The MWNT is
assumed to have the following physical properties: E=1 TPa;
ρ=2300 kg/m3; do=100 nm; di=44 nm. The optimum nanotube
lengths for experimental purposes are between 3 and 10 nm.
Shorter MWNTs are hard to affix to STM tips and have oscilla-
tion frequencies above 40 MHz, the upper limit of our spectrum
analyzer; longer MWNTs are likely to snap into contact with the
substrate.
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to the conducting substrate. From simple geometry we find

A⊥ = 2〈z j〉sinφ . (B.5)

For a 5 µm-long MWNT at φ = 30o from the normal, we calculate the that change in the tunnel
gap due to the fundamental mode of the oscillating MWNT is 0.19 nm, a value that should easily
be detected using TGMS.

While positioning the MWMT at φ = 90o from the normal leads to the greatest modulation of
the tunnel gap, this configuration is inherently unstable. When parallel to the substrate, the MWNT
is likely to snap into contact with the substrate. Conversely, a MWNT held perpendicular to the
substrate is in the most stable configuration, yet the modulation of the tunnel gap is infinitesimal.
The optimum attachment angle is between 15o and 35o from the normal, as illustrated for a 5-µm
MWNT in Fig. B.3.

Figure B.3. Modulation of the tunnel gap as a function of attach-
ment angle for a 5 µm-long MWNT. The red portion indicates the
range of optimum attachment angles.

B.2 Initial TGMS experiments by J. Therrien

Joel Therrien, a former post-doc in the Reifenberger Nanophysics Lab, developed the concept of
TGMS and performed initial experiments demonstrating the viability of the technique. The fol-
lowing experimental procedures are generally applicable to the experiments described in “Results
and Discussion” and “Future Work.”
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For the initial TGMS experiments, a MWNT was carefully mounted to the end of a freshly
etched STM tip using nanomanipulators under a darkfield microscope. One nanomanipulator held
a cartridge of MWNTs stuck to conducting carbon tape; the other nanomanipulator held a high-
aspect ratio tungsten STM tip. Bringing the STM tip in close proximity to a protruding MWNT
caused the MWNT to snap into contact with the tip due to van der Waals interaction. A small po-
tential difference, 3-10 V, between the MWNT cartridge and STM tip increased this attraction [66].
Once the MWNT and STM tip were in contact and the MWNT was roughly parallel to the axis of
the tip, a voltage pulse of∼20-30 V was applied to break apart the contacted MWNT from the mat
of MWNTs on the carbon tape. A bright flash indicative of an electric arc usually occurred when
the MWNT broke off of the carbon tape. At this point the MWNT was affixed to the STM tip by
the van der Waals force.

The MWNT-tip assembly was then placed in the tip-holder of a modified Nanotec ElectrónicaT M

STM head operating in air, as shown in Fig. B.4. The STM head was placed on top of a two-level
vibration isolation system inside a Faraday cage. The input lines between Dulcinea, the STM
controller, and the STM head are filtered with commercial low-pass π filters (Spectrum Control
case filter 51-311-314). The π filters block nearly all high-frequency noise emanating from Dul-
cinea; only a 32-MHz clock signal passes through the π filters into the STM pre-amp. The STM is
described in detail in Section 3.1.

The thermally-excited oscillations of the MWNT cause a high-frequency oscillation of the
tunnel current. These high-frequency signals are shunted around the pre-amp (cut-off frequency
∼20 kHz) of the current-to-voltage converter and are amplified by an external rf amplifier with a
gain of 20 dB between 100 kHz and 1 GHz. An HP spectrum analyzer Model 3585A was used
to analyze the spectral content from the rf amplifier. This spectrum analyzer, while limited to
frequencies under 40 MHz, allowed signal averaging over a specified dwell time per channel to
further improve the signal to noise ratio (Fig. B.4).

Because of the small signal strength, repeated measurements of the spectral content of the rf
amplifier output were performed over a selected frequency range. Each scan was saved and then
averaged before any TGMS signal could be identified above the noise floor. For the most robust
MWNTs,∼20 separate scans could be reliably obtained, but often the number of scans was limited
by inadvertent tip failure [173]. For the following experiments, a MWNT-tip assembly was brought
within tunneling range of the substrate and four sweeps of the tunneling current between 0 and
40 MHz were recorded. To obtain the background spectra, the MWNT-tip assembly was withdrawn
a few hundred nanometers from the substrate, resulting in a complete loss of the tunnel current.
Four sweeps of the background signal between 0 and 40 MHz were then recorded. The four tunnel
current scans and background scans were separately averaged; the TGMS current appearing in
each tunnel current scan is effectively amplified while random peaks from the noise are cancelled
out. Comparisons of the tunnel current and background signal show an identifiable signal at a well-
defined frequency. This identifiable signal was believed to be from the modulated tunnel current of
the MWNT since this signal was present only when the MWNT was in tunneling range (Fig. B.5).

After measuring the spectral content of the tunneling data, the lengths and outer diameters of
many MWNTs were determined by SEM. Approximately 30 MWNT samples were investigated.
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Figure B.4. A block diagram of the experimental setup showing
the low frequency STM preamp (cutoff frequency 20 kHz) and
the rf amplifier (flat 20 dB gain between 100 kHz and 1 GHz).
High frequency signals from Dulcinea are attenuated by low pass
π filters. The entire apparatus is enclosed in an rf shielded box.
The two level system of vibration damping for the STM is not
shown.

Of these, seven MWNTs were sufficiently free of carbonaceous debris to allow comparison to
Eq. 3.7. The measured frequencies are compared with those calculated for a cantilevered beam
with L and do determined from SEM and assuming di ≈ 0.44do, as estimated from TEM micro-
graphs. The frequency decreases systematically with increasing length of the MWNT (Fig. B.6)
The frequency of the spectral peak for each of the MWNTs follows the overall trend in the calcu-
lation remarkably well [173]. There appears to be a systematic variation of E/ρ; smaller values of
E/ρ are needed for longer MWNTs. Variations of E/ρ in the same range for MWNTs have been
previously reported [33].

B.3 Redesign of the rf-STM circuit (June 2006)

Orcad PSpice was used to design a custom STM head with improved amplification of high-
frequency signals. To optimize the detection and amplification of high-frequency signals, I built
a custom rf-STM head. This head, based on the the Nanotec ambient air STM head, interfaced
with the Nanotec Electrónica control electronics, Dulicinea, and the data acquisition and analysis
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Figure B.5. The frequency spectra obtained with a MWNT af-
fixed to an STM tip. Each line is the average of four scans taken
consecutively. The red curve shows the spectral content with a
tunnel current from the MWNT; the black curve plots the spectral
content without a tunnel current. The 32 MHz clock signal due
to the control electronics is present and dominates both spectra.
The 33.5 MHz signal was only present when the MWNT was in
tunneling range; this signal was attributed to the modulation of the
tunnel gap.

system, WSxM c© (http://www.nanotec.es).

Other than the obvious introduction of a high-frequency amplification circuit in the rf-STM
head, the key differences between the two STM heads is as follows. First, the primary op amp in
the current-to-voltage converter is an OPA129 in the rf-STM head, rather than a OPA111. OPA129
has a lower input bias current and guard shielding around its input pins, which helps reduce noise.
The rf-STM head lacks noise filters on the power supply lines, resulting in a tendency to amplify
60-Hz noise. I think the lack of noise filters is a key reason atomic-resolution STM scans were
never obtained with the rf-STM head. Other differences are (1) all the op amps in the rf-STM head
are surface-mount components, (2) the rf-STM head’s circuit board has a ground plane, unlike the
circuit board in Nanotec’s STM head, and (3) the electronic connections between the rf-STM head
and the cable to the chassis are physically stronger.

An HP spectrum analyzer, Model 3585A, was used to analyze the spectral content output from
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Figure B.6. A plot of the measured frequencies (diamonds) vs.
nanotube length for MWNTs whose lengths were determined from
SEM micrographs. Theoretical estimates of the fundamental fre-
quency of oscillation, as given by Eq. 3.7, are plotted for compari-
son, assuming all nanotubes have diameters do=100 nm, di=44 nm.
The error bars represent the uncertainty in diameter (±10 percent)
and length (±2 percent).

the high-frequency portion of the rf-STM head. This spectrum analyzer has a range of 20 Hz to
40 MHz and was controlled by Collect Spectra.vi, a LabView program, which stored and averaged
the data sets.

B.3.1 Design and theoretical performance of the June 2006 rf-STM circuit

The custom rf-STM preamp utilized an inductor-capacitor pair to split the tunnel current into two
outputs. The low-frequency portion of the tunnel current wad shunted through the inductor, am-
plified and converted to a voltage, and sent to the feedback electronics, as described in Chapter
1. High-frequency signals were shunted through a capacitor into a series of two wideband (0.1–
40 MHz) fixed-gain amplifiers. These high-frequency signals were input into the spectrum an-
alyzer and recorded. A discussion of the active portions of the preamp and a simplified circuit
schematic (Fig. B.7) follows. The following preamp design iteration is named June06 rfSTM, but
frequently is referred to as the custom rf-STM preamp in following sections.
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Figure B.7. Simplified circuit diagram for June06 rfSTM and the
theoretical frequency response, which was modeled using OrCAD.
Low frequency (<1 kHz) tunnel current signals are amplified with
a gain of 108. High frequency signals between 1 and 100 MHz are
amplified with a gain of 105.

OrCAD R© Capture CIS, a Candence R© circuit design and PSpice analysis program, was in-
strumental in the design and analysis of the June06 rfSTM circuit. Style files for the operational
amplifiers (op amps) were downloaded from the manufacturers’ websites, allowing for accurate
modeling of the op amps’ behavior. OrCAD R©’s analysis capabilities allowed me to select low-
pass and high-pass filter pairs for the ideal frequency response. Once the circuit design in OrCAD
was completed, Mark Smith laid out the circuit components and traces for the circuit board, which
was printed by PCBexpress. Mark also provided invaluable support throughout the circuit design
process.

Op amp OPA129, in a current-to-voltage converter configuration, converted the tunnel cur-
rent from the STM tip into a voltage with a gain of 108 V/A; the gain was set by R2. An active
low-pass filter (R2 and C2 in parallel) with a 3dB point at 720 Hz shunted high frequency signals
around OPA129. The tunnel current was the inverting input for OPA129; the bias voltage was the
noninverting input. The output of OPA129 was the inverting input for AD620, a high accuracy
instrumentation amplifier manufactured by Analog Devices. AD620, which was in a unity-gain
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configuration, subtracted the bias voltage from the output of OPA129 and outputs the tunnel cur-
rent. The tunnel current is measured in volts; the conversion is 0.1 V=1 nA. This low-frequency
portion of the rf-STM preamp is based predominately on the Nanotec Electrónica design. The
only change to note is that Nanotec design utilizes op amp OPA111, which is now obsolete and
was replaced by OPA129.

The high input impedance (1013 Ω || 1 pF) and low input bias current (± 30 fA) of OPA129
made it ideal for a current-to-voltage converter in an STM. At frequencies under 47 kHz the power
response is linear and set by the supply voltages. The low input bias of OPA129 is achieved by
having a non-standard pin layout. Pin 5 is the negative power pin, instead of pin 4. Pins 1 and 4
are not connected to the internal circuitry of OPA129, allowing a guard trace to completely sur-
round the inputs (pins 2 and 3). OPA129 was originally designed by Burr-Brown and is currently
manufactured by Texas Instruments.

High-frequency signals passed through the high-pass filter pair of C1 and R1 (3dB point at
0.26 MHz) into a series of two wideband fixed-gain amplifiers, THS4303. A Texas Instruments
op amp, THS4303 has a linear gain of 20 dB (10 V/V) from 0.1 to 40 MHz and a nearly-linear
gain (≥19 dB) from 40 MHz to 1000 MHz. In this circuit THS4303 was used in a wideband,
noninverting gain configuration nearly identical to that shown in Fig. 43 of the TI application
notes [175].

Through the J1 connector Dulcinea control electronics supplied the ±12 V power supply
needed for OPA129 and AD620, the bias voltage, and an electronics ground. The bias voltage
was controlled using WSxM software. An external power supply provided the ±2.5 V needed for
the THS4303s.

B.3.2 Tests of the low-frequency performance of the June 06 rf-STM circuit

The Nanotec STM head was the basis for the current-to-voltage convertor portion of the rf-STM
head. As expected, both heads had similar performance. While I was never able to obtain atomic-
resolution STM scans with the rf-STM head, the rf-STM head accurately measured the topography
of samples such as HOPG, as shown in Fig. B.8. This scan was obtained with a PtIr STM tip, a
tunnel current set point of 1 nA and a potential bias of 500 mV. The quality of this image obtained
with the rf-STM head is comparable to images obtained with the Nanotec STM head.

B.3.3 Tests of the high-frequency performance of the June 06 rf-STM circuit

Before attempting to measure TGMS signals, the output of the high frequency portion of the rf-
STM circuit was tested for known signal outputs. A constant DC signal at the STM input should
result in a 0 V output of the high-frequency portion, while AC signals above 1 MHz should have a
gain of 106 at the high-frequecy output. Dr. Robert Santini, the director of instrumentation for the
Jonathan Amy Facility for Chemical Instrumentation in the Department of Chemistry at Purdue,
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Figure B.8. Constant current STM image of HOPG obtained
with the custom rf-STM head. There are overlapping step edges
of 0.3 nm and 0.6 nm. The top graphene layer on the right-hand
side has likely been peeled up slightly during the cleaving process,
similar to the curving corners of a well-read book. This curling
of the graphene layer results in a measured step edge of 0.4 nm.
Scan parameters are frequency=2.035 Hz, points=256, (XY, Z)
gain= (1,5), and (P, I) gain= (0.5, 0.1).

assisted us in the tests of the high-frequency portion. Dr. Santini’s tests revealed that resistances
in the power filtration circuit led to self-oscillation at 50 MHz for most input conditions. Second,
in order to decrease the inductance of the circuit traces at MHz frequencies, the traces should
have been 1–5 mm wide. Third, the first high-frequency op amp (U3) should have been placed as
close to the STM top as physically possible, since the path between the STM tip and U3 acts as an
antenna. Finally, the ground vias for the tantalum capacitors (C10 and C11) should have been much
wider and should have been placed directly underneath the capacitors. These tantalum capacitors
are part of the power filtration circuit for the high-frequency portion of the rf-STM circuit.

Rather than redesign the high-frequency portion, Dr. Santini suggested that we bypass it en-
tirely and use commercial amplifiers instead to amplify the TGMS signal. Dr. Santini lent us a
Keithley 110 high-impedence (10 MΩ input impedance, 50 Ω output impedance) unity-gain am-
plifier and a pair of Keithley 108 X10 wideband amplifiers. The unity-gain amplifier has an input
impedance of 10 MΩ and an output impedance of 50 Ω; this amplifier was used to match the
high-impedance of the STM input with the 50 Ω impedance of the X10 gain amplifiers. The entire
high-frequency portion of the rf-STM circuit board (beginning with C2) was bypassed with a thin
RG174 coax cable.

Bench-top tests of the Keithley amplifiers showed that they accurately amplified MHz signals
generated by a function generator. Extensive tests of the rf-STM/Keithley pair revealed repeatable
noise signals in the output of the high-frequency portion. The many approaches tried to reduce
or block the noise included locating the rf-STM/Keithley pair in the electromagnetically shielded
Hall Nanometrology Room at the Birck Nanotechnology Center, inserting a DC block between the
rf-STM/Keithley pair and the spectrum analyzer, and adding pi filters to the voltage supply lines
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between the Dulcinea control electronics and the rf-STM circuit. One key source of noise was
the digital signal processor (DSP) in the STM control computer. The DSP generated harmonics at
multiples of 2.4 MHz.

Despite all these challenges, numerous attempts were made to measure the TGMS signal of a
MWNT affixed to a nickel STM tip. Prior to the TGMS experiments, the resonant frequency of
each MWNT was first estimated by observing the electrostatically driven resonance in the dark-
field microscope. These resonance measurements provided a guide for the frequency range to be
measured with the HP3585A spectrum analyzer. Background spectra were obtained by record-
ing the output of the Keithley amplifiers while the MWNT-Ni STM tip was millimeters above the
HOPG substrate. At such a distance, no tunnel current flowed between the MWNT and HOPG. The
MWNT-Ni STM tip was then brought to within tunneling range of the substrate using the conven-
tional STM control electronics. The output of the Keithley amplifiers was again recorded. After
these TGMS measurements, the status of the MWNT-Ni STM tip was checked in the darkfield
microscope to ensure that the MWNT had not fallen off.

TGMS spectra were measured for seven MWNTs. While all of these spectra showed numerous
noise peaks, none showed a reproducible signal that could be attributed to the MWNT’s oscil-
lations. At this point (August 2007), Prof. Arvind Raman had just obtained the laser doppler
vibrometer. Since the LDV experiments were so successful, we ended the TGMS measurements.

B.3.4 June06 rf-STM circuit layout and bill of materials

Please note, due to a late change in the circuit design, R8 does not exist.
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Table B.1. Bill of materials for rf-STM June06 circuit.

Symbol Type Footprint Value
B1, B2 bead 1206 80 Ω

C1 capacitor 0603 1.2 pF
C2 capacitor 0603 2.2 pF
C3 capacitor 0603 240 pF
C4, C5, C6, C7 capacitor 0603 0.1 µF
C8, C9 capacitor 0402 47 pF
C10, C11 capacitor 7343 22 µF
C12 capacitor 0603 0.022 µF
J1 connector C grid 5 pins
J2 connector C grid 2 pins
J3 connector SMA end launch 4
L1 inductor 1 mH
R1 resistor 0402 510 kΩ

R2 resistor RAZL0P3 100 MΩ

R3 resistor 0402 1.5 kΩ

R4 resistor 0402 43.0 kΩ

R5, R6, R7 resistor 0402 100 Ω

R9 resistor 0402 21 kΩ

R10, R11 resistor 0603 49.9 Ω

R12,R13 resistor 0402 30.1 Ω

T1-T9 test point test point
U1 op amp 8 SOIC OPA129
U2 op amp HCPL-0708 SO8 AD620AR 8
U3, U4 op amp RGT THS4303
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Appendix C

Polytec MSA-400 Laser Doppler
Vibrometer

Section 1 of this appendix lists the physical parameters and manufacturer specifications for the
Polytec MSA-400 Laser Doppler Vibrometer. Section 2 presents a user’s guide for the LDV, with
a focus on thermal measurements of nanowires.

C.1 Manufacturer specifications for the Polytec MSA-400-M2-
20 Micro System Analyzer

OFV-5000 vibrometer control (SN# 0108029)

MSA-400 optics head junction box (SN# 108301)

OFV-551 fiber vibrometer (SN# 0108030)

Mitutoyo NIR lenses 2×, 5×, 10×, 20×, 50×

Wavelength: 633 nm

VD-02 Velocity decoder Freq: 0.5 Hz–1.5 MHz • Resolution: 0.1–2.5 µm/s/
√

Hz • minimum
detectable velocity: < 0.15 µm/s •Maximum velocity: 10 m/s

DD-300 Displacement decoder Freq: 50 kHz–20 MHz • Resolution: 0.1 pm/
√

Hz • minimum
detectable displacement: 0.1 pm •Maximum displacement: ±75 nm

C.2 Basic instructions for using the Polytec MSA-400 LDV

1. Start-up procedure

(a) Turn on the junction box. The toggle switch is in the back of the box.
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Table C.1. Specifications for the M Plan NIR Mitutoyo objec-
tives

Zoom NA Field of view WD Pixel res. Spot diam. Focal depth
(mm×mm) (mm) (µm) (µm) (µm)

2 0.055 0.90 × 0.67 34.0 3.225 7.0 188
5 0.14 1.8 × 1.34 37.5 1.29 2.8 29
10 0.26 0.90 × 0.67 30.5 0.645 1.5 8.4
20 0.40 0.45 × 0.335 20.0 0.323 1.0 3.6
50 0.42 0.18 × 0.134 17.0 0.129 0.9 3.2

(b) Turn on the vibrometer controller.

(c) Turn on the data acquisition and analysis computer.

(d) At any time during the start-up, turn on the laser. The laser needs∼20 minutes to warm
up.

(e) If only the computer is turned on, the Polytec PSV 8.5 software is then available for
data analysis. Before acquiring data, the junction box and vibrometer controller need
to be turned on and the computer restarted.

2. Connect the vibrometer controller and junction box as shown in Fig. C.1. Note that the only
difference between displacement and velocity scans is the input to “Vel In” of the junction
box. For displacement scans, the auxiliary output of the vibrometer controller is connected
to “Vel In;” for velocity scans, the velocity output of the vibrometer controller is connected
to “Vel In.”

3. Start the PSV 8.5 software and select the “Acquisition” icon in the toolbar. Starting PSV 8.5
activates the microscope display.

4. Bring the object into focus

(a) If microscope screen image is all lines, turn off (small power button on screen) and
back on again to refresh

(b) Right-click on the microscope image to adjust the microscope brightness, contrast, and
illumination. This menu is also available under Menu→ Scan→ Properties→ Video

(c) For best results, position the sample in the center of the field of view. Also, align the
long scanning axis in the x-direction.

5. Select the “Perform 2D alignment” icon in the toolbar to begin aligning the laser

(a) Create scan points by clicking where the laser beam reflects off of the sample

(b) Depress the mouse wheel and drag the mouse to move the laser beam
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Figure C.1. A diagram indicating the connections for the coaxial
cables connecting the Polytec vibrometer controller and junction
box. Note that the displacement output of the vibrometer controller
is connected to the output of the Auxiliary row, “Auxilliary,” not
the displacement row.

6. Define the scan range or individual scan points using the “Define Scan Points” option in the
toolbar

(a) Select a scan range (rectangle, ellipse, polygon) or individual points by selecting the
appropriate box from the icon menu.

(b) Set the density of scan points in x and y. Greater numbers of scan points yield higher
spatial resolution but slower scan times.

(c) For a background signal, ensure that the scan range or points includes a region that is
not expected to oscillate in the frequency range of interest. For the nanowire experi-
ments, the oscillations of the supporting SPM tip were measured.

7. Set scan options using the “A/D” icon in the toolbar and save the data

(a) Choose scan parameters using the A/D box as described below

(b) Check that the laser signal return is optimized

(c) Select saving options, then begin scanning using the “Scan” icon.

8. Open the data analysis window by selecting the “Presentation” icon.
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(a) The operating deflection shape (ODS) at any frequency can be plotted for driven vibra-
tion spectra.

(b) The thermal vibration spectra for any individual scan point can be displayed

9. Export data

(a) Vibration spectrum: Save the vibration spectrum, either from the current point or all
points, by clicking on the spectra and then selecting “Export to ASCII” under the file
menu.

(b) Movies of the operating deflection shape: After selecting the desired frequency and
view, select File→ Save animation.

(c) Screen capture of the ODS: After adjusting the ODS to the desired view, pause the
animation and select File→ Save graphics

(d) Microscope image without overlaid graphics: Turn “3D” off, remove root components,
and save the microscope image using the Save graphics command.

10. Turn-off procedure

(a) Quit PSV 8.5 and turn off computer

(b) Turn off vibrometer controller

(c) Turn off junction box

C.2.1 A/D box scan parameters

The A/D box has nine scan parameters tabs: General, Channels, Filters, Frequency, Window,
Trigger, SE (speckle enhancement), and Vibrometer. Each of these tabs is described below.

• General controls the measurement mode – Time or FFT – as well as the signal averaging.

– For movies of the driven operating deflection shape, choose FFT.

– For the highest frequency resolution, chose Time.

– Averaging options are Off, Magnitude, Complex, Peak Hold, and Time

– Use Magnitude averaging for random excitation and Complex averaging for determin-
istic signals

– For FFT scans, I typically used 20–30 averages

• Channels controls the type of measurement – Displacement or velocity – as well as the
voltage ranges.
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– The default is for both “Active” boxes to be checked and the direction in “+Z”

– For displacement measurements, the impedance should be 50 Ω; for velocity measure-
ments, the impedance should be 1 MΩ. If displacement spectra are measured with a
1 MΩ impedance, the measured amplitude will be twice the actual amplitude. The
frequencies will not be changed.

– Range should be adjusted to the smallest value between 200 mV and 10 V which does
not lead to “Out of range” error messages.

• Filters are generally not used (“No Filter”) unless (1) the input signal will be integrated or
differentiated or (2) selected frequencies within the selected measurement bandwidth will be
selected

• Frequency (FFT mode) sets the frequency range and data resolution.

– Choose a bandwidth greater than or equal to fmax.

– If in displacement mode, Fmin ≥ 50 kHz.

– For best frequency resolution, chose as close to 6400 lines as possible.

• Time (time mode): sets the sampling frequency and number of samples (2N). Per the
Nyquist criterion, the sampling frequency should be at least two times the highest signal
frequency.

• Windows are available for both the vibrometer and reference signal.

– For thermal, pseudo-random driven, and periodic chirp driven, use rectangular win-
dowing of the vibrometer signal.

– For random driven, use Hanning; for sinusoidal driven, use flat top; for transient driven,
use exponential.

• Trigger is required for driven oscillations, but not thermal oscillations. For driven oscilla-
tions, ”External (TTL), rising” was used.

• Speckle enhancement (SE): Enabling SE will increase the number of averages on the nois-
ier scan points so that the signal-to-noies ratio is comparable for all scan points.

• Vibrometer has the options of Velocity, Tracking Filter, Low Pass Filter, and High Pass
filter.

– Velocity was usually set to 25 mm/s/V

– Tracking filter was always off

– Low-pass filter was set to the maximum value of 1.5 MHz

– High-pass filter was set to 100 Hz to block some environmental noise.
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• Generator is used for driven scans, but not thermal scans. While a wide variety of wave-
forms are available, Pseudo Random, 2V excitations, was generally used. For thermal scans,
ensure that the ”Active” box is not checked.
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Appendix D

Mie Scattering Codes

D.1 Fortran code used to calculate Qsca

The Fortran code, InfiniteCylinder v1.f, is based on a Fortran program, CALCYL.F, given in Ap-
pendix 2 of “Absorption and Scattering of Light by Small Particles” by C. F. Bohren and D. R.
Huffman [70]. The below wavelength (WAVEL), cylinder radius (RAD), real medium refractive
index (REFMED), and complex cylinder refractive index (REFRE and REFIM) should be adjusted
for the appropriate experimental conditions.

PROGRAM CALCYL

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C CALCYL CALCULATES THE SIZE PARAMETER (X) AND RELATIVE

C REFRACTIVE INDEX (REFREL) FOR A GIVEN CYLINDER REFRACTIVE

C INDEX, MEDIUM REFRACTIVE INDEX, RADIUS, AND FREE SPACE

C WAVELENGTH. IT THEN CALLS BHCYL, THE SUBROUTINE THAT COMPUTES

C AMPLITUDE SCATTERING MATRIX ELEMENTS AND EFFICIENCIES

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

COMPLEX REFREL,T1(200),T2(200)

DIMENSION ANG(200)

Open(Unit=5, File=’SiNanoWire633.txt’, STATUS=’NEW’)

WRITE (5,11)

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C REFMED = (REAL) REFRACTIVE INDEX OF SURROUNDING MEDIUM

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

REFMED=1.0

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C REFRACTIVE INDEX OF CYLINDER = REFRE + I*REFIM

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

REFRE=3.877

REFIM=0.019

REFREL=CMPLX(REFRE,REFIM)/REFMED
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WRITE (5,12) REFMED,REFRE,REFIM

PI=3.14159265

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C RADIUS (RAD) AND WAVELENGTH (WAVEL) SAME UNITS

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

RAD=50

WAVEL=633

X=2.*PI*RAD*REFMED/WAVEL

WRITE (5,13) RAD,WAVEL

WRITE (5,14) X

WRITE (5,15)

CALL BHCYL (X,REFREL,T1,T2,QSCPAR,QSCPER)

NPTS=1

T11NOR=0.5*(CABS(T1(1))*CABS(T1(1)))

T11NOR=T11NOR+0.5*(CABS(T2(1))*CABS(T2(1)))

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C T33 AND T34 MATRIX ELEMENTS NORMALIZED BY T11

C T11 IS NORMALIZED TO 1.0 IN THE FORWARD DIRECTION

C POL = DEGREE OF POLARIZATION (INCIDENT UNPOLARIZED LIGHT)

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DO 107 J=1,NPTS

TPAR=CABS(T1(J))

TPAR=TPAR*TPAR

TPER=CABS(T2(J))

TPER=TPER*TPER

T11=0.5*(TPAR+TPER)

T12=0.5*(TPAR-TPER)

POL=T12/T11

T33=REAL(T1(J)*CONJG(T2(J)))

T34=AIMAG(T1(J)*CONJG(T2(J)))

T33=T33/T11

T34=T34/T11

107 T11=T11/T11NOR

C WRITE (5,68) RAD,T11,POL,T33,T34,TPAR,TPER,QSCPAR,QSCPER

WRITE (5,68) RAD,QSCPAR,QSCPER

WRITE (*,68) RAD,QSCPAR,QSCPER

68 FORMAT (1X,F8.2,2X,E13.6,2X,E13.6)

11 FORMAT (/"CYLINDER PROGRAM: NORMALLY INCIDENT LIGHT"//)

12 FORMAT (5X,"REFMED =",F8.4,3X,"REFRE =",E14.6,3X

*"REFIM ="E14.6)

13 FORMAT (5X, "CYLINDER RADIUS (nm) = ",F7.3,3X,
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* "WAVELENGTH (nm) = " ,F7.3)

14 FORMAT (5X,"SIZE PARAMETER =",F8.3/)

15 FORMAT (//2X,"RADIUS",10X,"QSCPAR",10X,"QSCPER"//)

C 15 FORMAT (//2X,"RADIUS",7X,"T11",12X,"POL",12X,"T33",12X,"T34",

C *12X,"TPAR",12X,"TPER",10X,"QSCPAR",10X,"QSCPER"//)

STOP

END

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C SUBROUTINE BHCYL CALCULATE AMPLITUDE SCATTERING MATRIX

C ELEMENTS AND EFFICIENCIES FOR EXTINCTION AND SCATTERING

C FOR A GIVEN SIZE PARAMETER AND RELATIVE REFRACTIVE INDEX

C THE INCIDENT LIGHT IS NORMAL TO THE CYLINDER AXIS

C PAR:ELECTRIC FIELD PARALLEL TO CYLINDER AXIS

C PER:ELECTRIC FIELD PERPENDICULAR TO CYLINDER AXIS

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SUBROUTINE BHCYL (X,REFREL,T1,T2,QSCPAR,QSCPER)

COMPLEX REFREL,Y,AN,BN,A0,B0

COMPLEX G(1000),BH(1000),T1(200),T2(200)

DIMENSION THETA(200),ANG(200),BJ(1000),BY(1000),F(1000)

Y=X*REFREL

XSTOP=X+4.*X**.3333+2.

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C SERIES TERMINATED AFTER NSTOP TERMS

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

NSTOP=XSTOP

YMOD=CABS(Y)

NMX=AMAX1(XSTOP,YMOD)+15

NPTS=1

DO 555 J=1,NPTS

555 THETA(J)=0

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C LOGARITHMIC DERIVATIVE G(J) CALCULATED BY DOWNWARD

C RECURRENCE BEGINNING WITH INITIAL VALUE 0.0 + I*0.0

C AT J = NMX

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

G(NMX)=CMPLX(0.0,0.0)

NN=NMX-1

DO 120 N=1,NN

RN=NMX-N+1

K=NMX-N

120 G(K)=((RN-2.)/Y)-(1./(G(K+1)+(RN-1.)/Y))
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C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C BESSEL FUNCTIONS J(N) COMPUTATED BY DOWNWARD RECURRENCE

C BEGINNING AT N = NSTOP + NDELTA

C BESSEL FUNCTIONS Y(N) COMPUTATED BY UPWARD RECURRENCE

C BJ(N+1) = J(N), BY(N+1) = Y(N)

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

NDELTA=(101.+X)**.499

MST=NSTOP+NDELTA

MST=(MST/2)*2

F(MST+1)=0.0

F(MST)=1.0E-32

M1=MST-1

DO 201 L=1,M1

ML=MST-L

201 F(ML)=2.*FLOAT(ML)*F(ML+1)/X-F(ML+2)

ALPHA=F(1)

M2=MST-2

DO 202 LL=2,M2,2

202 ALPHA=ALPHA+2.*F(LL+1)

M3=M2+1

DO 203 N=1,M3

203 BJ(N)=F(N)/ALPHA

BY(1)=BJ(1)*(ALOG(X/2.)+.577213664)

M4=MST/2-1

DO 204 L=1,M4

204 BY(1)=BY(1)-2.*((-1.)**L)*BJ(2*L+1)/FLOAT(L)

BY(1) =.636619772*BY(1)

BY(2)=BJ(2)*BY(1)-.636619772/X

BY(2)=BY(2)/BJ(1)

NS=NSTOP-1

DO 205 KK=1,NS

205 BY(KK+2)=2*FLOAT(KK)*BY(KK+1)/X-BY(KK)

NN=NSTOP+1

DO 715 N=1,NN

715 BH(N)=CMPLX(BJ(N),BY(N))

A0=G(1)*BJ(1)/REFREL+BJ(2)

A0=A0/(G(1)*BH(1)/REFREL+BH(2))

B0=REFREL*G(1)*BJ(1)+BJ(2)

B0=B0/(REFREL*G(1)*BH(1)+BH(2))

QSCPAR=CABS(B0)*CABS(B0)

QSCPER=CABS(A0)*CABS(A0)
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DO 101 K=1,NPTS

T1(K)=B0

101 T2(K)=A0

DO 123 N=1,NSTOP

RN=N

AN=(G(N+1)/REFREL+RN/X)*BJ(N+1)-BJ(N)

AN=AN/((G(N+1)/REFREL+RN/X)*BH(N+1)-BH(N))

BN=(REFREL*G(N+1)+RN/X)*BJ(N+1)-BJ(N)

BN=BN/((REFREL*G(N+1)+RN/X)*BH(N+1)-BH(N))

DO 102 J=1,NPTS

C=COS(RN*THETA(J))

T1(J)=2.*BN*C+T1(J)

102 T2(J)=2.*AN*C+T2(J)

QSCPAR=QSCPAR+2.*CABS(BN)*CABS(BN)

123 QSCPER=QSCPER+2.*CABS(AN)*CABS(AN)

QSCPAR=(2./X)*QSCPAR

QSCPER=(2./X)*QSCPER

C QEXPER=(2./X)*REAL(T2(1))

C QEXPAR=(2./X)*REAL(T1(1))

RETURN

END

The output of the above Fortran code is saved as “SiNanoWire633 matrix.txt” and is given
below.

CYLINDER PROGRAM: NORMALLY INCIDENT LIGHT

REFMED = 1.0000 REFRE = 0.387700E+01 REFIM = 0.190000E-01

CYLINDER RADIUS (nm) = 5.000 WAVELENGTH (nm) = 633.000

SIZE PARAMETER = 0.050

RADIUS QSCPAR QSCPER

5.00 0.333851E-01 0.232472E-03

10.00 0.348122E+00 0.188290E-02

15.00 0.163471E+01 0.645613E-02

20.00 0.462656E+01 0.155888E-01

25.00 0.687577E+01 0.311169E-01

30.00 0.656217E+01 0.552895E-01

35.00 0.557216E+01 0.914917E-01
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40.00 0.476084E+01 0.146797E+00

45.00 0.422571E+01 0.242116E+00

50.00 0.406950E+01 0.461965E+00

55.00 0.512439E+01 0.125162E+01

60.00 0.877412E+01 0.332410E+01

65.00 0.671257E+01 0.254393E+01

70.00 0.486165E+01 0.189195E+01

75.00 0.402043E+01 0.179955E+01

80.00 0.353167E+01 0.200380E+01

85.00 0.317163E+01 0.254983E+01

90.00 0.288094E+01 0.368535E+01

95.00 0.382501E+01 0.373235E+01

100.00 0.200540E+01 0.121540E+01

105.00 0.118649E+01 0.563510E+00

110.00 0.154127E+01 0.511242E+00

115.00 0.177777E+01 0.582353E+00

120.00 0.180067E+01 0.764852E+00

125.00 0.168753E+01 0.162270E+01

130.00 0.174388E+01 0.911419E+00

135.00 0.119338E+01 0.227894E+00

140.00 0.161077E+01 0.466165E+00

145.00 0.311864E+01 0.129306E+01

150.00 0.347326E+01 0.156187E+01

D.2 Matlab code used to plot Qsca

% Mie_SiNanowires_633nm.m

% Reads and plots data from variation of "Normally Illuminated

% Infinite Cylinder"

% This variation calculations Qsca as a function of cylinder

% diameter

% Appendix C, Bohren and Huffman’s text

% Absorption and Scattering of Light by Small Particles

% 28 May 2008
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clc; clear all; close all;

v1 = FuncMatrixRead(’SiNanoWire633_matrix.txt’);

radius = v1(:,1); % radius in nanometers

QSCPAR = v1(:,2); QSCPER = v1(:,3);

diam = 2*radius; % diam in nm

Qsca = 0.5*(QSCPAR + QSCPER); % assuming circ polarized light

figure(1)

hold on

plot(diam, Qsca, ’g’,’LineWidth’, 2)

plot(diam, Qsca, ’g.’,’MarkerSize’,20)

hold off

xl=xlabel(’Diameter (nm)’), yl=ylabel(’Q_{scatt}’)

tl=title(’Mie scattering of 633 nm light from a Si nanowire...

(N=3.877+i0.019)’)

axis([0 300 0 inf])

set(xl,’fontsize’,14); set(yl,’fontsize’,14); set(tl,’fontsize’,16);
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Appendix E

Matlab code for power spectral density
(PSD) analysis of vibration spectra

Below is the Matlab code used to generate Fig. 5.13. The subroutines called by

NNB_vacuum_4April09Analysis_v1.m

are given in full, in the order in which they are called.

E.1 Main analysis code

% NNB_vacuum_4April09Analysis_v1.m

% Reads in data of Nanoneedle NNB taken 23 Jan 09

% Labbook pg 56-59

clc; close all; clear all

% STEP 1: Load data, previously imported and saved as a .mat file

load NNB_Res5_Pt2_23Jan09;

NNB_Res5_Pt2 = NNB_Res5_Pt2_23Jan09;

% STEPS 2&3: Call Pwelch_PlotAnalysis

% 1) subtracts any background offset

% 2) calculates PWelch spectra (mˆ2/Hz)

% 3) smooths the data by Navg and Nsmooth

Lw = 8; overlap = 50; % window length divisor (length = N/Lw)

% and overlap

[DataA, FreqA] = Pwelch_PlotAnalysis2(NNB_Res5_Pt2, Lw, overlap, 0);

[DataB, FreqB] = Pwelch_PlotAnalysis2(NNB_Res5_Pt2, 4, overlap, 0);
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[DataC, FreqC] = Pwelch_PlotAnalysis2(NNB_Res5_Pt2, 1, overlap, 0);

figure(10); semilogy(FreqA, DataA, ’r.’)

% STEP 4: Find peaks in the oscillation spectrum

df = FreqA(2) - FreqA(1);

MPD = ceil((0.07e6)/df); MPH = 8e-25;

clc

[pksA, indA] = findpeaks(DataA, ’MinPeakHeight’, MPH, ...

’MinPeakDistance’,MPD);

PeakFA = FreqA(indA); PeakFA*1e-6

PeaksA = [indA(2:8)’ PeakFA(2:8)]; % Index & Freq (Hz)

[pksB, indB] = findpeaks(DataB, ’MinPeakHeight’, MPH, ...

’MinPeakDistance’,MPD);

PeakFB = FreqB(indB); PeakFB*1e-6

PeaksB = [indB(2:8)’ PeakFB(2:8)]; % Index & Freq (Hz)

% STEP 5: Calculate the power in each peak using trapzoidal integration

% Choose a peak width of 200 kHz, centered around PeakF

PW = 0.1e5; % Hz

[FsegA, PksegA, FrangeA, PowerA] = PeakPower(FreqA,DataA,PeaksA,PW,df);

[FsegB, PksegB, FrangeB, PowerB] = PeakPower(FreqB,DataB,PeaksB,PW,df);

disp(’Frequency ranges (MHz)’), [FrangeA*1e-6 FrangeB*1e-6]

disp(’Calculated power (mˆ2)’), [PowerA’*1e18 PowerB’*1e18]

% STEP 6: Use cftool to plot curve fits

% First, scale data so that Peak(1,2) = 1

DataScaledA = DataA/max(PksegA(:,1));

DataScaledB = DataB/max(PksegB(:,1));

% Curve fits from cftool: General model:

% f(x) = ((A*1e18)/(Q*fˆ3))*(1/((1-(x/f)ˆ2)ˆ2 + (x/(Q*f))ˆ2))+N

%FitX = [’A’; ’N’; ’Q’; ’f’]

% Fits to smoothed data (Lw = 4)

FitA1 = [4.987e-6; 5.675e-12; 197.5; 1.4e5]; % j=2?

FitA2 = [1.409e-5; 9.998e-11; 422.1; 1.542e5]; % j=2?

FitB = [1.901e-7; 6.659e-5; 268.3; 3.147e5]; % j=3?
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FitC = [3.932e-6; 0.000137; 263.9; 3.902e5]; % j=3

FitD = [8.218e-7; 5.622e-5; 310.9; 5.326e5]; % j=?

FitE = [5.986e-7; 8.689e-5; 248.7; 7.667e5]; % j=4

FitF = [2.414e-5; 4.013e-5; 182.4; 1.81e6 ]; % j=6

FitG = [2.87e-5; 8.638e-7; 373.2; 2.328e6]; % j=7

Fit = [FitA1 FitA2 FitB FitC FitD FitE FitF FitG];

FitFreq = Fit(4,:)’*1e-6

% Define frequency ranges, fr, for curve fits

% Calculate the fit curves using LorentzFRF

frA1 = [1.35e5 1.45e5];

frA2 = [1.45e5 1.6e5];

frB = [FsegB(1,2) FsegB(length(FsegB),2)];

frC = [FsegB(1,3) FsegB(length(FsegB),3)];

frD = [FsegB(1,4) FsegB(length(FsegB),4)];

frE = [0.7631e6 0.7703e6];

frF = [1.804e6 1.816e6];

frG = [2.323e6 2.332e6];

CurveA1 = LorentzPSD(frA1, FitA1);

CurveA2 = LorentzPSD(frA2, FitA2);

CurveB = LorentzPSD(frB, FitB);

CurveC = LorentzPSD(frC, FitC);

CurveD = LorentzPSD(frD, FitD);

CurveE = LorentzPSD(frE, FitE);

CurveF = LorentzPSD(frF, FitF);

CurveG = LorentzPSD(frG, FitG);

% STEP 7: Calculate percentage errors from eigenfrequency ratio

% Define the eigenfrequency points.

% Calculate ratio of frequency peaks, ExpRatio

ExpRatio1(1) = 0;

ExpRatio1(2) = FitA1(4)/FitA1(4);

ExpRatio1(3) = FitA2(4)/FitA1(4);

ExpRatio1(4) = FitB(4)/FitA1(4);

ExpRatio1(5) = FitC(4)/FitA1(4);

ExpRatio1(6) = FitD(4)/FitA1(4);

ExpRatio1(7) = FitE(4)/FitA1(4);

ExpRatio1(8) = FitF(4)/FitA1(4);
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ExpRatio2(1) = 0;

ExpRatio2(2) = FitA1(4)/FitA2(4);

ExpRatio2(3) = FitA2(4)/FitA2(4);

ExpRatio2(4) = FitB(4)/FitA2(4);

ExpRatio2(5) = FitC(4)/FitA2(4);

ExpRatio2(6) = FitD(4)/FitA2(4);

ExpRatio2(7) = FitE(4)/FitA2(4);

ExpRatio2(8) = FitF(4)/FitA2(4);

disp(’Experimental ratio, f_j/f_A1’); ExpRatio1’

disp(’Experimental ratio, f_j/f_A2’); ExpRatio2’

% From CantileverSeparationConstants.m

a = [1.8751 4.6941 7.8548 10.995 14.1372 17.2788 ...

20.4204 23.5619 26.7035 29.8451];

for i = 1:length(a)

ratio(i) = a(i)/a(2);

FreqRatio(i) = ratio(i).ˆ2;

end

ratio(1) = 0; FreqRatio(1) =0;

for i = 1:8

err1(i) = abs(FreqRatio(i) - ExpRatio1(i))/FreqRatio(i);

err2(i) = abs(FreqRatio(i) - ExpRatio2(i))/FreqRatio(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(2)

semilogy(FreqB*1e-6, DataB,’k.’); hold on

semilogy(CurveA1(:,1)*1e-6, CurveA1(:,2)*max(PksegB(:,1)), ’r’, ...

’LineWidth’, 3);

semilogy(CurveA2(:,1)*1e-6, CurveA2(:,2)*max(PksegB(:,1)), ’r’, ...

’LineWidth’, 3);

semilogy(CurveB(:,1)*1e-6, CurveB(:,2)*max(PksegB(:,1)), ’m’, ...

’LineWidth’, 3);

semilogy(CurveC(:,1)*1e-6, CurveC(:,2)*max(PksegB(:,1)), ’m’, ...

’LineWidth’, 3);

semilogy(CurveD(:,1)*1e-6, CurveD(:,2)*max(PksegB(:,1)), ’y’, ...

’LineWidth’, 3);

semilogy(CurveE(:,1)*1e-6, CurveE(:,2)*max(PksegB(:,1)), ’b’, ...
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’LineWidth’, 3);

semilogy(CurveF(:,1)*1e-6, CurveF(:,2)*max(PksegB(:,1)), ’g’, ...

’LineWidth’, 3);

semilogy(CurveG(:,1)*1e-6, CurveG(:,2)*max(PksegB(:,1)), ’c’, ...

LineWidth’, 3);

hold off

axis([0.05, 2.5, 1e-26, 5e-21]);

xl=xlabel(’Frequency (MHz)’); yl=ylabel(’Power (mˆ2/Hz)’);

tl=title(’NNB: In vacuum (650 mTorr)’);

set(xl, ’FontSize’, 18); set(yl, ’FontSize’, 18);

set(gca,’FontSize’, 18); set(tl, ’FontSize’, 22);

E.2 Pwelch PlotAnalysis2.m

function [Data, Freq] = Pwelch_PlotAnalysis2 ...

(data, Lwindow, overlap, i);

% Calculates PWelch for given data, number of windows, and overlap

% Number of windows = length(data)/Lwindow

% if i == 1, then plot instant Pwelch.

% STEP 1a: Import data (do before runing Pwlech_PlotAnalysis)

% STEP 1b: Calculate and subtract average displacement of NNB

N = length(data);

AvgZ = sum(data(:,2))/N;

disp(’Un-shifted average z(t)’), AvgZ

data(:,2) = data(:,2) - AvgZ;

disp(’Check that average z(t) is now zero’), [sum(data(:,2))/N]

% STEP 2: Use PWelch to calculate the PSD of data

dt= data(2,1) - data(1,1);

Fs = 1/dt;

% Experiment with window lengths and overlap

h1 = spectrum.welch(’hamming’, length(data)/Lwindow, overlap);

hopts1 = psdopts(h1,data); % Default options

set(hopts1,’Fs’,Fs,’SpectrumType’,’onesided’,’centerdc’,false);

hpsd1 = psd(h1,data(:,2), ’Fs’, Fs);

%power_hpsd1 = avgpower(hpsd1);
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FullData = hpsd1.data; FullFreq = (hpsd1.frequencies);

L = length(FullFreq);

% STEP 3b: Omit frequencies < 0.05 MHz

df = FullFreq(2)-FullFreq(1);

StartInd = ceil((0.05e6)/df);

Freq = FullFreq(StartInd:L);

Data = FullData(StartInd:L);

% sometimes I want the instant plot, othertimes I don’t

if i == 1;

figure(1)

semilogy(Freq, Data, ’k.’, Freq, Data, ’k’)

axis([0.05e6, inf, -inf, inf]);

xl=xlabel(’Frequency (Hz)’);

yl=ylabel(’Power/Frequency (mˆ2/Hz)’);

tl=title(’PWelch PSD spectra data’);

set(xl, ’FontSize’, 16); set(yl, ’FontSize’, 16);

set(tl, ’FontSize’, 16); set(gca,’FontSize’, 16);

end

E.3 PeakPower.m

function [Fseg, Pkseg, Frange, Power] = ...

PeakPower(Freq,Data,Peaks,PW,df)

d_ind = floor((PW/2)/df); % [integer] df in indices to count

S = size(Peaks)

if S(1) ==1

L=1

else

L=length(Peaks)

end

for i = 1:L % had been i=1:length(Peaks)
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if (Peaks(i,1) - d_ind) < 1

Fseg(:,i) = Freq(1: (Peaks(i,1) + d_ind));

Pkseg(:,i) = Data(1: (Peaks(i,1) + d_ind));

Frange(i,:) = [1, Peaks(i,2) + PW/2];

else

Fseg(:,i) = Freq((Peaks(i,1) - d_ind): (Peaks(i,1) + d_ind));

Pkseg(:,i) = Data((Peaks(i,1) - d_ind): (Peaks(i,1) + d_ind));

Frange(i,:) = [Peaks(i,2) - PW/2, Peaks(i,2) + PW/2];

end

Power(i) = trapz(Fseg(:,i), Pkseg(:,i));

end

E.3.1 LorentzPSD.m

function [FRF] = LorentzPSD(FreqRange, Fit)

% Calculates a matrix of the Lorentzian curve fit given data

% output from the cftool (G, N, W, F) and the subset frequency

% range (fmin to fmax).

% General model:

% f(x) = ((A*1e18)/(Q*fˆ3))*(1/((1-(x/f)ˆ2)ˆ2 + (x/(Q*f))ˆ2))+N

% The output data curve, DataCurve, is easily plotted on

% top of the original data

A = Fit(1);

N = Fit(2);

Q = Fit(3);

F = Fit(4);

fmin = FreqRange(:,1);

fmax = FreqRange(:,2);

% Calculate the subset frequency vector, x (same units as f)

x = linspace(fmin, fmax); %x = x’;

%y = G./((1-(x/F).ˆ2).ˆ2 + (x/(Q*F)).ˆ2) + N;

y = ((A*1e18)./(Q*Fˆ3))*(1./((1-(x./F).ˆ2).ˆ2 + (x./(Q*F)).ˆ2))+N;

FRF = [x’ y’];
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Appendix F

Copyright statements for previously
published work

Portions of this SAND report, both text and figures, have been previously published in academic
journals. The previously published figures are noted by an appropriate citation in the figure caption.
Furthermore, the text of this report is only slightly modified from the Laura Biedermann’s PhD
dissertation, “Vibrational Spectra of Nanowires Measured Using Laser Doppler Vibrometry and
STM Studies of Epitaxial Graphene,” Purdue University, 2009.

Figures 5.3 and 5.5 are derived from Figs. 1 and 3 of “Flexural vibration spectra of carbon
nanotubes measured using laser doppler vibrometry,” by L. B. Biedermann, R. C. Tung, A. Raman,
and R. G. Reifenberger, which was published in Nanotechnology 20:3, 035702 (2009). Portions
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