SANDIA REPORT

SAND2009-6068
Unlimited Release
Printed September 2009

Approaches for Scalable Modeling
and Emulation of Cyber Systems:
LDRD Final Report

Jackson R. Mayo, Ronald G. Minnich, Don W. Rudish, Robert C. Armstrong

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering:  http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2009-6068
Unlimited Release
Printed September 2009

Approaches for Scalable Modeling and Emulation of
Cyber Systems: LDRD Final Report

Jackson R. Mayo
Visualization & Scientific Computing

Ronald G. Minnich Don W. Rudish Robert C. Armstrong
Scalable Computing R&D

Sandia National Laboratories, P.O. Box 969, Livermore, @A%1-0969

Abstract

The goal of this research was to combine theoretical and atatipnal approaches to better un-
derstand the potential emergent behaviors of large-sghler systems, such as networks-of.(P
computers. The scale and sophistication of modern comgoferare, hardware, and deployed
networked systems have significantly exceeded the compuightesearch community’s ability to
understand, model, and predict current and future behavidris predictive understanding, how-
ever, is critical to the development of new approaches foagtively designing new systems or en-
hancing existing systems with robustness to current anolddyber threats, including distributed
malware such as botnets. We have developed preliminarydatieal and modeling capabilities
that can ultimately answer questions such as: How would Wweatethe Internet if it were taken
down? Can we change network protocols to make them moreesegtitout disrupting existing
Internet connectivity and traffic flow? We have begun to aslsltbese issues by developing new
capabilities for understanding and modeling Internetesystat scale. Specifically, we have ad-
dressed the need for scalable network simulation by cagrgit emulations of a network with
~ 10° virtualized operating system instances on a high-perfaoeaomputing cluster — a “vir-
tual Internet”. We have also explored mappings betweenquely studied emergent behaviors of
complex systems and their potential cyber counterparts.ré&ults provide foundational capabil-
ities for further research toward understanding the effeEtomplexity in cyber systems, to allow
anticipating and thwarting hackers.
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Chapter 1

Introduction

1.1 Background

The scale and sophistication of modern computer softwaejware, and deployed networked
systems have significantly exceeded the computationargseommunity’s ability to understand,
model, and predict current and future behaviors. This pte@i understanding, however, is crit-
ical to the development of new approaches for proactiveligieng new systems or enhancing
existing systems with robustness to current and futurercytseats. At the same time, basic the-
oretical considerations on complexity indicate that cyfetems have “emergent” behaviors that
are not straightforwardly predictable. In general, onlyesylicitly modeling such a system at a
sufficient level of complexity and then carrying out a sintida can we predict emergent behav-
iors with confidence. The limitations of traditional engeneg approaches when applied to cyber
systems have led to growing reliability and security praiden today’s computers and networks,
particularly exemplified by distributed malware such asbts.

The dual role of computers as both the systems of interesttenglatforms for simulation
creates the possibility of extremely realistic simulasipoalled emulations, that directly run the
real-world software of interest on an experimental commuplatform. But the extreme scale of
networks relevant to understanding today’s cyber thresaish as botnets, makes straightforward
replication infeasible even on large high-performanceoating clusters. Such a cluster, however,
can use virtualization technology to run many separateitgs of an operating system on a single
physical node. In this way, through creation of humeroutugirmachines and virtual network
connections, emulation allows a physical computer clustgace efficiently and with high realism
the behavior of a much larger network of computers. The tiesutradeoff, however, is that the
virtual machines must share the available physical regsyusuch as CPU time and memory. The
virtual machines on a physical node must take turns exegwiantask switching. Furthermore,
all virtual machines must fit in memory at once, because simggpeir states to disk would have
an unacceptable performance impact; thus small-footgtightweight” yet realistic versions of
operating systems and other software are necessary.

Such large-scale network emulation (including real opegagystems, network routing proto-
cols, and complex topology) is critical to understanding Borecasting the behavior of real-world
nation-scale networks and large, distributed attacks aadiotnets. While interest in such a capa-
bility is high within DARPA, the intelligence community,@f frameworks that can scale to realis-
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tic numbers (e.g., millions) of emulated nodes did not presly exist. In past work at Sandid]|

we demonstrated an emulation environment containing 5@¥arked Linux instances~( 60
Linux instances per host on an 80-node cluster) and thedpifeasimple worm through that sys-
tem. In the present work, we have scaled this emulation dtyalp to 10° virtualized instances
using the Sandia’s Thunderbird cluster. While this ematatiapability is initially focused on rep-
resenting current protocols, operating systems, andt)riééorms the basis for future exploratory
networked environments in which novel protocols, defemsiystems, etc., can be analyzed. The
large-scale emulation work performed in this project waallelnging primarily because various
technical details for virtualized emulation of large netkghad not been previously solved.

1.2 Research Goals

This project aimed to develop tools that can enable undetsig of emergent behaviors in large-
scale cyber systems, building both on theoretical insifybta complexity science and on Sandia’s
unique capabilities in large-scale emulation. Complexesysmodeling and simulation are vital
not only to cybersecurity but to other Sandia mission arsawell. Studying the dynamics of

large computer networks is a particularly valuable andlehging application for advancing our

understanding of complex systems.

Theoretical and modeling capabilities are needed thataNdlw us to answer questions such
as: How would we reboot the Internet if it were taken down? @archange network protocols
to make them more secure without disrupting existing Irdeaonnectivity and traffic flow? Or
can we dynamically modify the protocols so as to sidesteprgoearily unworkable Internet —
i.e., can we do the equivalent of shifting from AM to FM and bee invisible to a denial of
service attack? Can a quantifiable increase in Internetisgbte achieved by greater diversity in
“ubiquitous” software and hardware implementations?

We proposed to begin to address these issues by developingapabilities for understand-
ing and modeling Internet systems at scale. We sought teeagdhe need for scalable network
simulation by carrying out emulations of a network with agnumber of virtualized operating
system instances on a high performance computing clustévirtaal Internet”. We also wished
to explore mappings between previously studied emergdraviers of complex systems and their
potential cyber counterparts.
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Chapter 2

Botnets

2.1 Description

Among the current and anticipated future cyber threats ¢hatrise to the level of imperiling
the security of a nation-state, some of the most dangeraiffgygtive and difficult to combat are
posed by botnets. A botnet is a large collection of hackedpeders, up to a million or more,
that coordinate their malicious activities using a commgesmmunication network overlaid on the
Internet. Botnets now infest the Internet as thoroughlyras anfest our houses. They are so
widespread, in fact, that any attempt to discover a new tyg®tnet, or a new mode of botnet
information transmission, results in new discoveriest junghe week of September 7, 2009, we
found botnets using Apache on Linux and Google Talk for comications. When such usage
started is not clear; it is only clear that once the questfaammew mode of botnet operations was
asked, it was answered immediately, and in the affirmative.

Still worse, botnets operate on such a scale, and in such aendhat no single organization
possesses more than a fraction of the resources neededdoewat scale. While it is known that
estimates of botnet size can be off by an order of magnitahging from 200,000 to 10 million
nodes, there is general agreement that a minimum size ieartter of 200,000 nodes. Each of
these nodes may, in turn, connect to several hundred otltesnd-inally, the set of individual
compromised nodes is in continual flux; estimates are thagrakthousand nodes per hour join
and leave a given botnet.

For the newer botnet, worm, and distributed denial of ser(izDoS) attacks, which can in-
volve millions of machines, scale is everything. Scalalneusation is necessary to truly under-
stand the phenomenology of large networks. The U.S. Degaitof Defense well understands
the need to simulate the large-scale behavior of networkishwis why DARPA is funding efforts
to develop a National Cyber Rang®;[but even the Cyber Range is too small. Large networks
such as the Internet exhibit behaviors, such as fast ewalini their topology, that emerge only
at scale. Complex patterns of coordination between insnt malicious software, such as that
manifested by botnets, also emerge only at large netwolkscarying to reproduce the behavior
of bots or other sophisticated malware in small networkoeds has become increasingly difficult.
Trying to understand Internet events and behaviors froremBsions alone is difficult, error-prone,
and time-consuming. Just mapping the Internet topologytemely difficult; it took months to
understand what happened during the attacks on Estonia.
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Figure 2.1. Schematic fractal network structure of a botnet using
the Kademlia protocol.

A single botnet in today’s world can be larger than the erititernet was at the time the first
large-scale worm, the Morris worm, was released in 19891 Waam took over many thousands
of systems before it was even discovered, much less stopyediere lucky that time: Because of
the architectural diversity of the systems on the Intemmeiny systems remained uninfected. Such
diversity is now a rarity, as organizations cleave to a grggiftware system and even to a single
version of that system. We are now much more vulnerable.

We need to gain an understanding of the behavior of botndighwequires a system that
can provide an emulation environment for botnets. We can tlevelop mathematical models
for botnets. These models might allow us to quickly deteeminfrom a single organizational
perspective — that a botnet exists, how large it is, and homyrofiour organization’s machines are
infected. The emulation can, in turn, provide a validatiapability for the mathematical models.

2.2 Behavior

All known early and current botnets have been built on thedfalia [LO] peer-to-peer sharing
algorithm. Providing a binary fractal structure illusedtin Figure2.1, Kademlia defines concepts
like “nearest neighbor” and a distance measure betwees.peéerestingly, this distance measure
is completely aloof from the the physical location or subimetvhich the peer is located. This
is accomplished by generating a random 128-bit hash keytitisdilmost certainly be unique in
the bot-world and then determining the position of the pedkademlia space from there. The
implementation of Kademlia most botnets use, called Oveprevides the connectivity of the
Kademlia algorithm as a protocol plus a means for bootsingppewly infected nodes into the
net.

12



The robust functioning of a botnet depends primarily on rr@aining connectivity and coordina-
tion among infected nodes. The topological aspect of thisdetstanding the extent of connected
clusters in various graphs — is a well-studied problem inhmiaatical physics known as percola-
tion. In fact, when the amount of local connectivity amonggafied” (infected) nodes in a graph
approaches the threshold at which very large connectetectusppear (the percolation threshold),
the resulting topology is generically self-similar and da understood using renormalization-
group techniques. This provides a particularly simple aldvant example of critical behavior
and associated scaling laws.

The question of coordination, beyond simple connectivwitiyoduces the detailed entity-level
dynamics of botnets simulated as agents. A simple model @fdazation involves entities that
undergo a quasi-periodic variation in state (represerdisgquence of operational phases in the
behavior of a bot) and attempt to synchronize these osoiiatwith one another. The amount of
synchronization achieved is closely related to the proldéabstracting a reduced model, such as a
Boolean network (BN), to represent the entities in a moralided and tractable way. When entity
activities are uncoordinated (not in phase), the projedtica BN will introduce much “noise” into
truth tables and will lead to chaotic BN dynamics. When thmotogy and dynamics of the botnet
model are in a regime such that entity activities becomelaymized, the projection to a BN will
reflect natural timesteps, and more meaningful and comsistgh-table functions, that produce
nontrivial global emergent behavior. This abstractiorcess can be used to probe the parameters
influencing the large-scale dynamics of botnets and meacguftering them.

While there exists somewhere a bot-herder that exertsaamter his botnet, it is in the bot-
herder’s advantage to make the bots as autonomous as pog&slohuse he does not have to attend
to the bots personally, the botnet scales to enormous giopsr Probably more importantly, the
more autonomous the botnet, the less likely the bot-hem®be traced and prosecuted. For both
of these reasons, it follows that a useful and not too idedlinodel of a botnet is an array of
automata. Each bot is a automaton in the array and has sortefimed role; the array taken as
a whole will exhibit an emergent behavior dependent upothnbtinecessarily predictable from,
the local behavior. This last observation merits some egfilin and is at the crux of the reason to
model botnets in the first place.

Why must botnets must be simulated in aggregate and at scale®g’s halting problem,
Rice’s undecidability theorem and Godel's incompletasrmaeof all state that the emergent behav-
ior of an infinite array of automata cannot be decided aheddttifig it “run”. Another way of
stating this observation is that, in general, the behavisuoh arrays is “irreducible”: No simpler
or more compact description of the system can be derivedik&im statistical thermodynamic
systems, there is no bound that can be put on the behaviompeebabilistically. Understanding
the behavior of large arrays of automata is essential torstateling the behavior of botnets: From
a simulation perspective, botnets are little else.

As described in Sectio8.1, there is ample evidence for this irreducibility manifesie other
arrays of automata — for example, the sandpile experimesgllinlar automatad] and other clas-
sical observationsl[l, 16].

Most efforts devoted to analyzing and diagnosing botnetscantered on analyzing the mal-
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ware constituting the individual bots. Because the botrggmammers have an incentive not to re-
veal the mechanics of their individual bots, encryption ahfliscation of the malware makes this
task difficult. Even so, if and when a complete understandinidpe individual bots is achieved,
this does not mean that we know what the botnet in aggregdtdaviCiting the theorems above,

in the general case, we need to “run” the botnet at scale ée&fercan understand its emergent
behavior.
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Chapter 3

Complex System Models

3.1 Cellular Automata

Cellular automata provide an especially simple settingjustrate the emergence of rich phenom-
ena from basic underlying rules. Extensive theoretical@rdputational results have been previ-
ously obtained for cellular automata, showing that thesgéesys exhibit a wide range of behaviors
seen in the natural and manmade wofl€][

A cellular automaton consists of a lattice of cells, each bich carries a definite state at any
giventime. The evolution of the system is carried out in digetimesteps. As a result, a specifica-
tion of the underlying dynamics of the system can be exaeglyaduced in a computer simulation,
provided enough memory and processing time are availabhe |dttice of cells can exist in a
“space” of one, two, three, or more dimensions. The proeetiur‘updating” a cellular automa-
ton (evolving to the next discrete timestep) is usually gmztvia a function that determines the
new state of a given cell based on the current state of thisdelits nearest neighbors.

A well-known cellular automaton that provides an instruetcomparison for malware is the
Bak—Tang—Wiesenfeld (BTW) sandpile mods], [which is defined on a two-dimensional square
lattice. This model represents an idealization of the cemjblehavior of a pile of sand, which
becomes unstable when its height exceeds a critical vaiubelupdating rule, a cell whose “sand
level” exceeds the threshold will relax by distributing dao its nearest neighbors — potentially
causing them in turn to exceed the threshold. As a resulgntiss randomly added to a pile
in various locations, “avalanches” eventually occur. Depeg on the exact configuration at the
location and time of the perturbation, an avalanche may talileed or it may sweep over a large
part of the system. If this model is run for a sufficient peradtime, what is observed is something
similar to a second-order phase transition, where ava&molcur on all scales available to the
system, obeying a power-law distribution but appearin@uotise random.

The network analogue would be a possibly unremarkable pobthere each machine is sim-
ilarly arranged on a logical grid and has a counter that iseimented when either a random
event occurs or a neighbor communicates with it. If the ceuntaches a specific threshold,
then the machine will communicate with its nearest neigbb&ecause this behavior is isomor-
phic to the sandpile model, this innocuous-seeming proteitiresult in similar communications
“avalanches” that will occur at all scales of the participgtmachines, including the entire net-

15



work. Such potentially disruptive avalanches are not ‘@&d” in any way but are an artifact of
the emergent behavior of the protocol that each particijgkmitically adopts.

3.2 The Internet

The emergent behavior of complex systems, including cyyp&tiems, can arise spontaneously or
it can be the result of an adaptation to solve a problem. Iblkeas found that the morphology and
robustness of these two scenarios differ greaflyRRecent findings on the structure and dynamics
of the Internet as a whole present an interesting compatgsbotnets and suggest potential new
regimes for network malware. The two system types can beitdesicas follows:

1. Sdf-organized criticality is spontaneous self-organization, usually of a fractalcstre —
exemplified by the idealized botnet connectivity in Fig@ré As is well-known [L1, 16],
complex networks as dynamical systems can exhibit qui¢scetical, and chaotic behav-
iors. Here the scales present in the emergent behavioraatalfrwith a self-similar cascade
reflecting the scales present in the initial conditions dredstructure of the dynamical net-
work. Examples are the sandpile modg] &nd the preferential attachment generator for
“scale-free” graphsd]. The latter has been proposed as a reasonable physicesespation
for phenomena as diverse as the Internet and the natioc#iielgower grid. A snowflake is
a good metaphor for this type of emergent behavior: somgthiat is the same at all scales
and regular in structure.

2. Optimized networks have been selected or “evolved” by an agency outside thendigsaof
the network itself. Often this agency is a “landscape” thgtoses constraints or selects for
“fitter” networks. An obvious example involves biologicabanisms evolved from simpler
forms [L1]. Another example involves “highly engineered” systemsthat are manmade
with optimized design characteristics.

Some controversy has erupted on these two views of compkexd the dynamical structure of
the Internet. For some time, the Internet has been deemedambtwork of Typd above P]. In-
deed, scale-free networks were credited for reproduciegémeral connectivity robustness of the
Internet but held out dire predictions of catastrophe bsedhe highly connected central routers
predicted by such networks implied a severe vulnerabity [t became clear to Internet practi-
tioners that the predictions of router connectivity wer@hysically high. But these predictions
went largely unchallenged until recentl¥d, 15], when it was suggested that a Typenetwork
(highly optimized tolerance) can reproduce newer data enlitkernet and better coheres with
known dynamics. Nonetheless, the newer models still ekiilgower-law degree distribution
similar to the Typel networks above.

Beyond Typel and Type2, there is a third possibility: A complex networked systemldde
TypeZ2 at one scale and Tydeat another. This scenario has been observed in studiegetsaale
computer networksg]. It is rationalized ] that at the level of the data center or organization, the
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network is optimized (Typ@) for cost and throughput, but becomes more ad-hoc (Typé& much
larger scales where there may not be an external organizingjjpe.

Malware networks such as botnets operate largely indepdigdef the underlying Internet
topology, but the same theoretical considerations carydpgheir virtual connectivity and com-
munication dynamics. Present-day botnets largely seemittibié Type 1 behavior, but as their
designs become more sophisticated and/or an “ecosystenwtoéts leads to evolution and selec-
tion of fitter specimens, admixtures of TyRdoehavior can be expected to appear. Other potential
malware types may be interact directly with the underlyintginet topology and may acquire
Type 2 characteristics in this way.
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Chapter 4

Emulation Technology

We overcame various technical challenges to develop a dapédr instantiating a million-node
virtual network on a much smaller computer cluster of sewb@isand physical nodes, providing
the means to study large-scale emergent phenomena suctatsbés discussed previously, the
motivation for such a capability is that since there isanq@riori way to understand the aggregate
behavior of bots forming a botnet, they must be simulated. afAspecial case achieving high
realism, they are emulated. This means that the largesiigp@ssaimber of discrete instances of
Linux need to be running and interacting together at once single parallel machine.

To accomplish this, we took our lead from embedded systemigievhere size and respon-
siveness are paramount. A special virtual machine, créfoedthe “lguest” systeml[4] for small-
est size, was created. The operating system was taken festahdard GNU/Linux distribution,
pared down to less than 10 MB per virtual machine yet fullyctional with the same kernel and
code that all other Linux distributions draw from. RoughB02copies of the virtual machine and
operating system can be booted and run on a single physidal ey information on our emu-
lation of 1@ virtual nodes is given in Tablé.1 The successful booting of this unprecedentedly
large emulation garnered public recognition for SandieaMiew York Times article]2).

The emulation can perform all of the operations that malwareld be expected to perform:

e SMTP primary mail transfer agent;

Table 4.1.Parameters for emulation of @Qirtual nodes.

Cluster Thunderbird
Location Sandia/New Mexico
Physical nodes 4480

Virtual machines per physical node 250

Memory per virtual machine 25 MB

Root filesystem RAMFS

Hypervisor Iguest x86

Linux kernel 2.6.29.2
Management software OneSIS and XCPU
Utilities Busybox
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e web server complete with CGl scripting;
e ssh server and client;

e routing, port forwarding, and packet manipulation.

Real botnets grow partly because gullible human beingk oliclinks directed at bot web servers
that download files and infect their machines. This meansdh@&asonable facility has to be
provided to emulate this behavior. We have chosen to useubeembeddable scripting language
for this and other behaviors that are not represented byatdrGNU/Linux software. Again, this
choice is governed by size and responsiveness. Lua is a¢hieev over C and can call and be
called easily from C. The Lua implementation used in thiskasroughly 100 KB.
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Chapter 5

Discussion

5.1 Significance

The principal motivation for developing a platform capableunning 16 or more instances of an
operating system is to shed some light on the expected lmtaarge-scale cyber systems, e.g.,
of a botnet as a whole. This is particularly important sinttkldata exists on this level. Because
much of a botnet is unseen and because it is establisheddaspieot accessible to researchers,
data for botnet behavior in the wild is necessarily local andcdotal. The hope is that from an
understanding of the essential behaviors of bots, bot rsardel be constructed and embedded in
a sufficiently realistic environment that will allow us tdén realistic behavior at scale.

Theoretical analysis of the structure and dynamics of lietared the entire Internet as com-
plex systems can also produce useful insights drawing astiegiidealized models of emergent
behavior. Understanding the range of emergent behavionesgseen in cyber systems will allow
not only better responses to current threats, but alsorkattecipation of future threats that may
exploit large-scale emergent behavior in novel ways.

5.2 Future Directions

The emulation capability developed in this work will progid foundation for new techniques to
be pursued in a funded FY10-12 LDRD by some members of theprésam. Extending emu-
lation to~ 107 virtual nodes will begin to reach the range of full-scale &atian of the computer
networks of a nation-state. Much detailed information om ¢éimergent behavior of botnets and
other cyber systems is expected to be discovered using sipelividities.

This work connects programmatically to several currenigtives, including Sandia’s plans for
the Emulytics Roadmap and the Complex Adaptive Systems ste8ys (CASOS) thrust area, as
well as the DOE Grassroots cybersecurity initiatéle Members of the present team are involved
in all these related areas and will work to leverage the tesiilthis project.
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