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Abstract

Staggered bioterrorist attacks with aerosolized pathogens on population centers present a formidable
challenge to resource allocation and response planning. The response and planning will commence
immediately after the detection of the f rst attack and with no or little information of the second
attack. In this report, we outline a method by which resource allocation may be performed. It
involves probabilistic reconstruction of the bioterrorist attack from partial observations of the out-
break, followed by an optimization-under-uncertainty approach to perform resource allocations.
We consider both single-site and time-staggered multi-site attacks (i.e., a reload scenario) under
conditions when resources (personnel and equipment which are diff cult to gather and transport)
are insuff cient. Both communicable (plague) and non-communicable diseases (anthrax) are ad-
dressed, and we also consider cases when the data, the time-series of people reporting with symp-
toms, are confounded with a reporting delay. We demonstrate how our approach develops alloca-
tions prof les that have the potential to reduce the probability of an extremely adverse outcome in
exchange for a more certain, but less adverse outcome. We explore the effect of placing limits on
daily allocations. Further, since our method is data-driven, the resource allocation progressively
improves as more data becomes available.
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Chapter 1

In troduction

This report describes a set of resource allocation techniques developed to address the problem of
a “reload” scenario, i.e., a series of time-staggered bioterrorist attacks conducted over population
centers with an aerosolized pathogen. Such a problem is extremely challenging since it requires
one to allocate resources early, after the detection of the f rst attack and in ignorance (or with little
knowledge) of the subsequent attacks. Resources here refer to those which are diff cult to gather
and transport and may thus be considered scarce, for example, medical equipment and personnel.
Current approaches leave much to be desired, since they make scant use of the only source of data
in the aftermath of a successful attack, i.e., the morbidity stream, which typically consists of the
number of people showing symptoms. Instead, they rely heavily on detection via aerosol sensors.
Such an approach has its merits; early detection, followed by heavy prophylaxis, has the potential
to prevent an outbreak [1]. However, if the aerosolized pathogen is not detected (for example, if
the attacked site is not instrumented with sensors), an outbreak may be expected, leading to a rapid
and large increase in demand for medical resources. A proper resource allocation technique would
consist of drawing estimates of the resource demand from the available data, and performing the
resource allocation accordingly. Since the data streammay reasonably be expected to becomemore
informative as one progresses into the outbreak, demand estimates and resource allocations should
be dynamically updated for accuracy. In this report, we demonstrate how the estimation may be
performed probabilistically, followed by a resource allocation using the uncertain resource demand
estimates. Our formulation allows the calculation of the risk associated with the allocation, and is a
function of a free parameter, representing the risk appetite of the resource allocator or alternatively,
the risk associated due to the constraints of the transportation infrastructure. The results here are
preliminary, but show promise for both non-communicable and communicable diseases. Further,
the techniques are not specif c to bioattacks; they can be be used in other scenarios where the effects
of an attack are delayed (i.e., there is an “incubation” time) and an estimation has to be performed to
determine the cause. Thus the hazards posed by the percutaneous absorption of chemical agents (or
toxic industrial chemicals) which have an “incubation” period of about a day, as well as radiation
exposure (somewhat larger delays) are also problems where our resource allocation technique may
f nd use.

The problem of the “reload” scenario was f rst described by Danzig [2]. The report had a strong
policy focus, and did not delve into technical means of addressing the problems that could be
expected in a “reload” scenario. A detailed system-dynamical study was performed by Edwards et
al. [3] and certain technical and procedural changes/targets were suggested. However, the emphasis
was on detection rather than response. The problem of an undetected attack (or multiple small
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undetected attacks) was not considered.

The problem of resource allocation in case of an undetected bioattack presents some interest-
ing mathematical challenges. In such a context, the only source of data is the time-series of pa-
tients infected with the aerosolized pathogen in question. This information stream will be em-
bedded in the normal background morbidity stream that might be expected in any population
center. During the aftermath of the bioattack, the background morbidity will be augmented by
hypochondriacs/“worried-well” individuals. Further, time-series of infected people showing symp-
toms will be confounded with a random reporting delay – infected, symptomatic people cannot be
expected to report to medical institutions immediately after the exhibition of symptoms. Thus the
“signal” of the attack in the morbidity time-series may suffer from a low signal-to-noise ratio for
a signif cant duration, before the anomalously large morbidity level due to the attack triggers an
alarm.

In the absence of a background morbidity, the “signal” from a bioattack will consist of the time-
series of infected patients turning symptomatic and reporting to medical institutions for care. The
delay between infection and exhibition of symptoms is the incubation period, and is characteristic
of a disease, i.e., if the etiological agent is known, a model for the incubation period is generally
available. The delay between the exhibition of symptoms and reporting for care is called the
“reporting delay” in this report. It has been modeled for particular populations (usually as a log-
normal distribution), but will probably differ from site to site (i.e., it is best extracted from the data
at hand, with perhaps existing reporting delay models to guide us). The signal will also depend on
the number of people infected, N (and in case of communicable diseases, this number can be further
divided into the index cases Nind, a stationary number, and secondary infections Nsec, a time-
variable quantity), the time of infection τ and in case of dose-dependent incubation periods (e.g., in
anthrax), the dose D. Thus the time-series could be used to back-calculate {N,τ, log10(D)} which
we will henceforth refer to as the attack parameters. Since the inference will need to be performed
early after the detection, the time-series will be short (and noisy), rendering any estimate of the
attack parameters uncertain; thus they are best inferred as probability density functions (PDFs).
Samples of attack parameters, drawn from the PDFs conditioned on time-series data could be used
to perform posterior predictive runs (with a conventional epidemic model) to bound the possible
evolution of the outbreak. The ensemble of runs embodies a large fraction (but not all) of the
uncertainty regarding future demands on resources (e.g., it would not capture the uncertainty /
inaccuracies in the epidemic model), and allows one to consider a resource allocation procedure
that could reduce the chances of an extremely bad outcome. Def ning what a desirable outcome
might be is case dependent, but will extend beyond minimizing the expected number of casualties
and will be addressed in this report.

The question of an “optimal” allocation of resources, given an uncertain demand for them, is ad-
dressed using a multistage optimization technique. In case of a “reload”, one will have uncertain
demands at multiple sites, with differing levels of uncertainty. However, both the epidemic and
the demand for resources will evolve over time, allowing one to consider a time profileof resource
allocation, which can be updated as the morbidity time-series lengthens. The updating will be
constrained by the capacity of the transportation infrastructure as well as the risk-appetite of the
emergency manager, if subsequent attacks are expected and resources have to be husbanded. The
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resource allocation prof le can be used to dispatch resources in the short term (timescale of a day)
and plan for transportation needs in the long term (O(τ) days). The constraints placed on the re-
source allocation prof le can have a signif cant impact on the risk (henceforth def ned as the PDF
of casualties, given an ensemble of outbreak realizations and a resource allocation prof le). These
constraints can be parameterized and we investigate the sensitivity of the risk to these free param-
eters. The parameterized constraints are termed “free” since they are governed by transportation
and/or risk appetite, which are exogenous to the information content of the morbidity time-series
and thus cannot be informed by better data analysis.

Apart from a multistage optimization technique, resource allocation may also be performed using
a “market-based” technique, i.e., a system where individual entities (“agents”) negotiate/converge
to a resource allocation prof le depending upon their need and supplies of resources. Such a system
requires the relevant information (on the need for resources at various sites) to permeate throughout
the system (the “market”) via interactions between “agents” (one of whom may be a “market-
maker”). This is a novel technique, but has not been explored in this study. This has the potential
to arrive at better resource allocation in real life, but faces many modeling and computational
challenges. However, we include a review of literature on this area in this report.

The report is structured as follows. In Chapter 2, we review recent work on the inference of at-
tack/outbreak parameters from time-series of morbidity data. We also include a short discussion of
the reporting delay, as well as a review of robust techniques in multi-stage stochastic optimization.
The chapter also contains a description of “market-based” and “agent-based” modeling approaches
to resource allocation. In Chp. 3 we address the question of how the reporting delay may be esti-
mated and used to correct the morbidity time-series (which consist of symptomatic patients who
have reported to medical institutions) to obtain an approximation the actual number of infected,
symptomatic people (some of whom may not have begun to seek medical attention). The impact
of the “corrected” time-series on the inference of attack parameters will be studied. In Chp. 4
we formulate the resource allocation problem (including the means to accommodate multi-site de-
mands with disparate levels of uncertainties in the demand estimates) and present examples using
a non-communicable disease, specif cally anthrax. We study the effect of the “free” constraint pa-
rameter, and also show how a “naive” allocation (an allocation based on the mean of the ensemble
of outbreak realizations) leads to a very risky allocation. In Chp. 5 we show how the inference
procedure can be extended to address a communicable disease, specif cally, H1N1 f u modeled
on the 1918 pandemic; the process of conducting posterior predictive runs and performing the re-
source allocation is the same as in anthrax and is omitted. In Chp. 6, we summarize our f ndings,
and identify topics which need further investigation. These may be needed to accurately gauge the
potential of our technique for responding to both bioattacks and epidemics/pandemics engendered
the increased contact between humans and wildlife, spurred by both economic, climate change and
spread by globalization.
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Chapter 2

Li terature review

In this chapter, we review some existing literature on the inference of outbreak/attack parame-
ters, stochastic, multi-stage optimization and agent-based market simulations. The latter are two
different radically different approaches to computing resource allocations,

2.1 Inference of attack parameters

The approaches used to characterize (i.e., estimate attack parameters) partially observed outbreaks
are very different for non-communicable and communicable diseases. For non-communicable dis-
eases, current literature consists of a few studies involving releases of aerosolized anthrax. Walden
& Kaplan [4] introduced a Bayesian formulation for estimating the size and time of a bioterror
(BT) attack and tested it on a low-dose (less than ID25, the dose at which a person has a 25% prob-
ability of incurring the disease) anthrax release corresponding, approximately, to the Sverdlovsk
outbreak [5] of 1979. Their formulation incorporated an incubation period model developed by
Brookmeyer et al.[6] and demonstrated the use of prior distributions on N to reduce uncertainty in
the inferred characteristics. Brookmeyer & Blades [7] used a maximum likelihood approach, along
with the anthrax incubation model in [6], to infer the size of the 2001 anthrax attacks [8] before
estimating the reduction in casualties due to the timely administration of antibiotics. Both [4] and
[7] developed similar expressions for the likelihood function, i.e., the probability of observing a
patient time series given an attack at time τ with N infected people. The incubation period model
in [6] was not dose-dependent, and hence no doses were inferred in these two studies.

The BARD [9] effort also seeks to characterize a BT attack from the presentation of symptoms.
It attempts to estimate the location, height, and time of an airborne anthrax release, as well as
the number of spores. The observables consist of respiratory visits to emergency departments,
as might be obtainable from syndromic surveillance systems such as RODS [10]. The model
that relates these observables to the characteristics of the outbreak includes a Gaussian dispersion
plume [11], Glassman’s infection relation [12], and a log-normal distribution of incubation peri-
ods, with dose-dependent mean and standard deviation. However, BARD’s use in an urban context
is only approximate since Gaussian plumes are suited mainly for open spaces [11]. Further, esti-
mation of the release parameters was an intermediate aim in [9]; its thrust is to detect anomalous
morbidity patterns using a spatiotemporal approach, which is considerably assisted if the spatial
distribution of infected people (i.e., the “footprint” of the plume) can be estimated. A similar,
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spatiotemporal approach to attack parameter estimation can be found in Legrand et al. [13]. The
formulation is Bayesian, and the paper contains a thorough testing of their estimation technique
against competing ones. The study also dealt with how medical resources/care could be prioritized
spatially, based of the severity of infection in different locations in the attacked site.

In this report, the inference of attack parameter is performed using the Bayesian technique de-
scribed in [14]. The method is solely temporal and thus has simple data needs (it does not
need any spatial information, unlike [9] and [13]). It yields estimates of the attack parameters
{N,τ, log10(D)}. The data consists of a time-series of the number of new patients exhibiting
symptoms on a daily basis. The model validation performed in [14] demonstrated that about 5
days of data are suff cient to develop informative PDFs of the attack parameters and perform pos-
terior predictive runs. In certain cases, 5 days of data could lead to a wrong estimation, but they
were quickly corrected as more data became available. However, a shortcoming of the technique
is that it requires a time-series of the actualnumber of symptomatic individuals, including those
who had not reported for medical care. In this study we will investigate how such a time-series
may be approximated from a time-series of symptomatic individuals who seeking medical care.
The difference between the two arises from a reporting delay which has been modeled [15], and
which can be explicitly estimated from data. This is described in Chp. 3.

The spread of communicable diseases shows many dynamical features and gives rise to a different
parameter estimation problem. Traditionally, this has meant estimating the rate of spread of a
disease from data. There is a vast literature on f tting conventional SEIR models to data [16, 17,
18, 19, 20, 21], and of late, this has been extended to network-based epidemic models [22] as well
as inferring chains of transmission [23]. A simple approach to estimating outbreak parameters is
described in [24]. The authors assume that there exists a time-dependent infection intensity and
an unknown number of infected and infectious individuals. The (unknown) infection intensity,
convolved with the incubation period of the disease results in the time-series of people exhibiting
symptoms. This technique was used to back-calculate the number of individual infected with
HIV using the data collected in 1980–1988. In this work, we will use this simpler model of a
communicable disease to infer the number of secondary infection as well as estimate the shape of
the infection intensity curve.

2.2 Least-regret and multi-stage stochastic optimization tech-
niques

Given that we can obtain a probability density function that captures the uncertainty in the extent
of an anthrax attack, the problem becomes one of optimally allocating resources to minimize the
expected number of deaths. The idea is to sample the PDF to obtain scenarios of the number of
people who will arrive at the hospital each day over the extent of the attack. As we expected, these
scenarios can, and do, vary widely, especially early in the attack when little is known from which
to calculate the PDFs. The challenge is to create an optimization model, based on these scenarios,
that takes into account other relevant constraints, including logistics limitations, including the risk
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appetite of the emergency manager, and social, or fairness, constraints that allocate resources pro-
portionally over several attack sites. We give two approaches, a so-called “least-regret” model and
a more classic stochastic optimization with recourse model. We combine these to get an optimal
allocation for today from the stochastic optimization model along with a proposed allocation over
the entire period from the least-regret model.

The idea behind the least-regret approach is f rst to solve a resource allocation problem for each of
the scenarios. Since for each scenario we know exactly how many people arrive and we know the
expected effectiveness of our resources, the optimization problem is a classical resource allocation
problem that is easily solved. In fact, such problems are straightforward linear programming prob-
lems; many implementations of fast, reliable algorithms are available to solve them. After solving
these problems, we have a resource allocation schedule and the minimal number of deaths for each
scenario. At this point we could make a naive choice of simply using the average of all of the
allocations for today as our choice, but this has certain drawbacks, as we report in [25]. A better
strategy is to solve a f nal optimization problem that picks an allocation schedule such that we de-
viate as little as possible from the minimal number of deaths in each of the scenarios. Specif cally,
let r be an allocation schedule, i.e., r j is the allocation made on day j . Let D∗

i be the minimum
number of deaths obtained in scenario i and let Di(r) be the number of deaths that would occur if
allocation r is used in scenario i. Then the least-regret problem is to minimize over all allocation
schedules r the quantity

K

∑
i=1

(Di(r)−D∗
i )
2,

where K is the number of scenarios. This allocation has the advantage of not allowing any scenario
to dominate the calculation. Of course, other criteria could be postulated, but this formulation is
appealing on both computational and practical grounds. From a computational point of view, this
will result in a quadratic programming problem for which there are many good algorithms.

In our experimentation and testing we included a number of constraints that are meant to show
the ability of the model to handle a variety of situations that may reasonably arise. For example,
we considered bounds on the number of units of resource that could be shipped on each day, we
included a “ramp-up” at the beginning to allow for a logistics resources to be put in place, we
included an assumption that allowed for the effectiveness of treatment to vary over the course of
the attack, and we allowed for the reuse of resources if patients receiving them died.

We also included in our model the possibility of an attack on another target (the “re-load” case)
within a few days of the f rst attack. In this case we had to explicitly constrain the solution to make
allocations to both cities. Without this, the optimization model could achieve the same minimal
number of deaths by allocating all (or most) resources to only one city. Our assumption is that
such an allocation would be socially unacceptable, so we added a constraint that ensured that all
targets received proportional allocations.

We now describe the stochastic optimization model, which includes the above constraints.

Stochastic optimization with recourse provides another, more conventional way to choose resource
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allocations under uncertainty. If we have some idea about the probabilities of events in subsequent
days, perhaps (as in the present application) based on historical data and incoming observations,
we can formulate models that account for corrective actions — recourse — we can take once more
is known, and we can make today’s decisions in light of expected recourse costs.

With both least-regret and stochastic programming formulations, the goal is to make a reasonable
decision about what resources to allocate today. Tomorrow we will have gathered more data and
can rerun the calculations with updated data to help make tomorrow’s allocation decision. In our
recourse formulation, we used today’s allocation as the f rst stage and allocations for the subse-
quent days under each of the scenarios generated from today’s data as the second stage, and with
expected deaths as the cost of recourse. That is, our objective was to minimize expected deaths,
subject to the previously described constraints. This results in a single linear programming prob-
lem (a “deterministic equivalent”) that is larger than least-regret problem, but faster to solve. Both
formulations give similar decisions about today’s allocation. A detailed description of our recourse
formulation appears in [25] and in Chapter 4 below.

2.3 Agent-based market simulations

The previous sections have dealt with centrally planned allocation of resources (goods) in response
to a crisis. Allocation of goods can also be performed using market mechanisms, based on a price
of the good, attributes of the buyers and sellers or government policies. Over the last 15 years,
agent-based simulations have been used to model and understand how markets function, where a
market in the formal sense is “any context in which sale and purchase of goods and services takes
place” [26]. Each market tends to be for a single good (e.g., vaccines), sellers are those who are
willing and able to sell the paticular good and buyers are those willing and able to purchase it.
As compared with the centrally planned allocations of these goods and services, markets provide
mechanisms for allocating based on the price of the particular good or service. Given that in a real
market individual buyers and sellers have private encapsulated knowledge about themselves (as
well as about other buyers and sellers) and have private encapsulated procedures that they follow
and that the resulting market behavior based on the public actions of these buyers and sellers is
dynamic, nonlinear and complex, agent-based models are an ideal approach.

Agent-based market simulations have been used extensively to model a wide array of markets,
starting largely from the seminal work of Palmer et al [27], Axelrod [28], Arthur et al [29] and
Epstein and Axtell [30], the later of whom formalized the notions of agents as “people” in “en-
vironments” that follow “rules”, all of which results in emergent “social structures”. Their work
indicated that the traditional theories of market equilibrium were very sensitive to the set of mar-
ket conditions (buyer behavior, seller behavior, numbers of buyers and sellers, information and
market-clearing mechanisms).

Since then, there have been a vast expansion of research in many market domains that focus on
analyzing market design (auctioning and other market mechanisms for rationalizing resources from
sellers to buyers) and learning and adaptive seller/buyer behaviors. A prominent example is agent-
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based simulation of spot markets for wholesale electric power, where wholesale electric power that
has not already been sold through long-term contracts is sold in short-term markets. As described
in [31], many electric power market models have been developed primarily to analyze power buyer
and seller learning and resulting market dynamics, complexity and ultimately the reliability of
these spot markets to deliver power and eff cient prices. A signif cant motivation for this body
of research was the failure of electric power spot markets in California, where poor spot market
designs resulted in market-induced supranormal prices and prof ts and ultimately rolling “brown-
outs”.

Another prominent example is agent-based simulations of f nancial markets, where changes in
market design and buyer/seller behaviors can have complex, unforseen outcomes in market prices,
i.e., the value of assets traded and stability i.e, the liquidity and f uctuations in valuations that can
destabilize and even stop a market from functioning. As described in [32], NASDAQ has used
agent-based simulations to analyze impact of regulatory changes on their market under various
changes in buyer/seller strategies, price increments and so on; furthermore, eBay uses intelligent
agents to help its customers with their market bidding.

Ehlen et al [33] used Sandia N-ABLE model to analyze how real-time pricing of consumer power
would affect wholesale and transmission market pricing and stability; Sprigg and Ehlen [34] use
ASPEN [35] to simulate how agents can f nd their Nash equilibrium prices with little information
and simplistic decision rules. Agent-based simulations have also been used to investigate how spot,
future and option markets could be destabilized by terrorist events [36].
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Chapter 3

Modeling reporting delay

As discussed in Chp. 2, Sec. 2.1, the estimation of the demand for resources requires one to charac-
terize the number of index cases, and if the disease is communicable, the secondary cases too. This
estimation is performed using the time-series of new people exhibiting symptoms. However, since
symptomatic people do not seek care immediately on exhibiting symptoms, this time-series is fre-
quently not available. What is available is a time-series of symptomatic patients who have sought
care. Given a daily time-series of length R, the reporting delay (which, in case of the Sverdlovsk
anthrax outbreak was characterized as a lognormal distribution with a median of 2.7 days [15])
leads to a severe under-reporting of the number of symptomatics over the time interval [R−5,R).
Any inferences drawn with such an erroneous time-series will be misleading; ignoring the last 5
days of data is not an option since that would increase the length of the observation period. In
a situation where a response has to be formulated quickly, such an approach would be useless.
Thus one has to consider either “correcting” the data for the reporting delay, or formulating an
estimation problem for the index cases which incorporates the delay.

The number of people seeking care on a given day can be always be asked about their time of
exhibition of symptoms. Thus for a given reporting day r , one can construct a time-series Ni,r

consisting of the number of people who exhibited symptoms on day i, i ≤ r . One can curate such
time-series over R days to obtain a table. An example of such a table is Table 3.1, which was
generated from a simulated anthrax attack (described in Sec. 3.2), with a reporting delay model
obtained from [15]. Here, each column r contains information on the number of people showing
symptoms on each day i, i < r . The rows of the table denote the day i.

Compare the column r = 6 with the last column, r = 9. N0,6, the number of people turning symp-
tomatic on day 0, as known on reporting day 6 (alternatively, an approximation of M0, the number
of people who turned symptomatic on day 0) is not very different from the estimate N0,7. This is
because most of M0 symptomatic patients have sought medical care (i.e., have been reported) by
day 6. However, if one considers the case of M6, N6,6 and N6,9 differ by an order of magnitude. In
fact, each row of the table traces out the cumulative distribution function of the reporting delay, and
asymptotes to the true number of Mi of the number of index cases who turn symptomatic on day i.
If one assumes a model for the reporting delay distribution (e.g., a log-normal or Γ-distribution),
one can obtain the model parameters by regressing to the data in the table; obtaining the asymptotic
value Mi , given the f rst few days of observations Ni,r , r < R is then a trivial exercise.

An alternative approach to estimating the attack parameters is to incorporate the reporting delay in
the model used for estimation. The data consists of the new number of symptomatic cases seeking
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r=0 1 2 3 4 5 6 7 8 9
i=0 0 16 45 70 89 100 108 115 116 117
1 - 14 161 328 457 548 605 649 678 700
2 - - 31 338 710 1006 1207 1340 1415 1481
3 - - - 44 509 1077 1484 1759 1932 2057
4 - - - - 65 570 1211 1669 2008 2219
5 - - - - - 48 453 1042 1540 1835
6 - - - - - - 62 497 1053 1501
7 - - - - - - - 51 428 880
8 - - - - - - - - 39 379

Table 3.1. Number of individuals, Ni,r , turning symptomatic on
day i as known by day r.

care, collated on a daily basis. This data can be obtained by performing column-wise sums in
Table 3.1 (which would provide a running sum of the total number of people who have sought
care by day r) and subtracting the column-wise sums from their predecessor (which would provide
the new daily cases). Consider that there exists an unknown number N of index cases, who were
infected τ days before the reporting of f rst symptoms. Assume that an average dose D was the
infecting dose. Let fI (x;D) represent the dose-dependent incubation period of anthrax. Then the
number of people ni seeking care on day i, i.e., in the time interval [ti−1, ti) is given by

ni = N
Z ti

ti−1
fI (s;D)(C(ti −s;p)−C(ti−1−s;p))ds, (3.1)

whereC(t;p) is the cumulative distribution function (CDF) of the reporting delay. This formulation
was adapted from [24]. The parameters of the CDF, p, along with N,τ and D, can be estimated
from the time-series ni .

In this work, we will investigate the f rst approach rather than the one based on Eq. 3.1. The eff cacy
of Eq. 3.1 has been investigated in [24]; furthermore, it estimates more parameters (N,τ,D,p) from
less data (one time-series) than the tabulation approach that regresses a distributionmodel to a table
of data. Furthermore, it allows one to compare the eff cacy and applicability of validated models
that exist in literature with a more realistic data-stream.

Below, we present a formulation that allows us to model the reporting delay as Γ-distribution.
The parameters of the distribution are estimated from the data in Table 3.1 using a least-squares
method, and thereafter used to correct the observation to obtain estimates of Mi . We then use Mi to
infer the attack parameters, and compare them with inferences drawn from M∗

i , the true time-series
of symptomatics. These tests are performed using synthetic data from a simulated anthrax attack.
The reporting delay in the simulated attacks is modeled using the log-normal distribution in [15].
We also compare the posterior predictive runs obtained from Mi and M∗

i to gauge what the impact
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of reporting delay correction might be on the allocation mechanism.

3.1 Formulation for Correcting the Reporting Delay

In correcting for the reporting delay, we assume that the PDF of the delay between when an individ-
ual turns symptomatic and seeks treatment will follow a Γ-distribution. The fraction fi,r = Ni,r/M∗

i
of people who turned symptomatic on day i as known by day r will then follow the Γ-distribution
CDF,

F(x;k,θ) ≡ γ(k,x/θ)

Γ(k)
=

R x/θ
0 qk−1e−qdq
R ∞
0 qk−1e−qdq

, (3.2)

with shape parameter k > 0 and scale parameter θ > 0 f xed over time. Here, Γ(k) is the Gamma
function and γ(k,x/θ) is the lower incomplete Gamma function. This implies that the CDF of the
reporting delay depends only on the delay between turning symptomatic and seeking treatment,
∆ = r − i. Due to the coarse binning of the data, we allow a shift between ∆ and x, using x= ∆+δ,
where δ is our third f tting parameter.

Because we do not know M∗
i , however, we will instead f t the ratio fi,r/ fi,r+1 = Ni,r/Ni,r+1 (illus-

trated in Table 3.2 for the test case), in which the unknown term cancels, using the f tting function

η(∆;k,θ,δ) ≡ F(∆+δ;k,θ)

F(∆+δ+1;k,θ)
. (3.3)

The regression was performed using ITT Visual Information Solutions IDL with the routine MP-
FIT by Craig Markwardt. MPFIT is based on the MINPACK-1 Fortran package for least-squares
minimization. When performing the regressions described below, we omitted the day i = 0 as well
as the delay ∆ = 0 data. After the CDF model parameters (k, θ, δ) are determined from the regres-
sion, estimates of M∗

i (given in Table 3.3) are computed using Mi = Ni,R/ fi,R, where R is the most
recent reporting day.

3.2 Test Cases

A simulated population of 80,000 people was exposed to Anthrax, resulting in 23,917 being in-
fected. The average dose of those infected was 2,754 spores. The elapsed time between developing
symptoms and seeking treatment for each individual was drawn from a log-normal distribution,

f (x;µ,σ) =
1√
2πσx

exp
[

− log(x/µ)

2σ2

]

, (3.4)
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∆=0 1 2 3 4 5 6 7 8
i=0 0.0000 0.3556 0.6429 0.7865 0.8900 0.9259 0.9391 0.9914 0.9915
1 0.0870 0.4909 0.7177 0.8339 0.9058 0.9322 0.9572 0.9686 -
2 0.0917 0.4761 0.7058 0.8335 0.9007 0.9470 0.9554 - -
3 0.0864 0.4726 0.7257 0.8437 0.9105 0.9392 - - -
4 0.1140 0.4707 0.7256 0.8312 0.9049 - - - -
5 0.1060 0.4347 0.6766 0.8392 - - - - -
6 0.1247 0.4720 0.7015 - - - - - -
7 0.1192 0.4864 - - - - - - -
8 0.1029 - - - - - - - -

Table 3.2. Ratios Ni,r/Ni,r+1 computed for f tting the fraction
of individuals that turned symptomatic on day i that have sought
treatment within ∆ = r − i days.

with µ= 2.73 and σ = 0.7, consistent with the Sverdlovsk incident, where x, µ, and σ are given in
days. Individuals turning symptomatic on days i = [0,8] who sought treatment by day r = 9 were
included in the observations (see Table 3.1).

Each column of Table 3.3 shows the corrected values as determined using data available only up to
day R= r . Simply for comparison, the f nal column shows the actual number of individuals who
developed symptoms on a given day. This pristine data would not be available in the case of a real
attack but is useful in analyzing the accuracy of our correction as applied to the simulated data.
For reporting day R= 6, we will present PDFs drawn from the corrected data as compared to those
drawn from the pristine data. Figure 3.1 directly compares the raw observations, the observations
after being corrected for the reporting delay, and the pristine data for the case being analyzed. The
corrected curve follows the pristine data closely with the exception of on the most recent day. Our
goal here is to determine how sensitive the PDFs will be to differences between the corrected and
pristine data.

Figure 3.2 compares the 1D PDFs of the number infected, the time of infection, and the logarithm
of dosage, as determined from the corrected observations and the pristine data. On day R= 6, the
pristine data shows a bimodal distribution for the number infected, shown in the top panel, with
the primary peak most closely ref ecting the actual number infected. The PDF developed from the
corrected data is much more narrow and suggests a signif cantly smaller infected population. If
we take an additional day of data and perform this comparison for R= 7, we f nd that the PDF
developed from the pristine data is no longer bimodal and is better matched by the PDF from the
corrected data. For R= [8,9], we f nd that the PDF from the corrected data very closely matches
that from the pristine data, showing that our correction should provide very reliable results as the
epidemic progresses.
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R=4 5 6 7 8 9 M∗
i

i=0 137 115 118 121 119 119 123
1 889 700 708 707 714 725 753
2 2051 1541 1567 1549 1545 1569 1618
3 3323 2318 2305 2249 2240 2263 2340
4 - 2557 2626 2549 2580 2598 2651
5 - - 2058 2226 2371 2385 2477
6 - - - 2256 2278 2340 2350
7 - - - - 1973 1926 1998
8 - - - - - 1760 1690

Table 3.3. Each column provides the estimate Mi of the number
of individuals turning symptomatic on day i, using only data col-
lected on days r < R. The f nal column shows the actual number
of symptomatics, M∗

i , for comparison.

The middle panel of Figure 3.2 shows the PDFs of the time of infection. We f nd that the peak for
the corrected data is close to that for the pristine data when R= 6. When looking at R= [7,9], we
f nd that the PDFs match for the corrected and pristine data, again validating our method. In the
bottom panel, we see that the PDF of the logarithm of dosage is much wider for the pristine data as
compared to the corrected data for R= 6. As was the case for the number infected, the difference
between the PDFs for dosage is much smaller for R= [8,9].

Figures 3.3 and 3.4 show 4000 samples from the joint PDF of the attack parameters as determined
from the corrected observations and the pristine data, respectively. As was seen in the 1D PDFs,
the distribution is signif cantly narrower for the corrected data as compared to the pristine data.
This could give an inaccurate picture of the uncertainty in the attack parameters when determining
the resource allocations. However, the corrected data give us a starting point for making resource
allocations that was not available with only the raw data.
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Figure 3.1. Number of individuals who have reported by day
R = 6 having developed symptoms on days i = [0,5]. The long
reporting delay results in a large discrepancy between the number
of individuals who have sought treatment by day 6 (blue) and the
number who actually developed symptoms on a given day (red).
Also shown is our estimation of the total number to develop symp-
toms (green), which closely tracks the red curve except for the f nal
point.
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Figure 3.2. Comparison of the 1D PDFs of the number of indi-
viduals to be infected (top), the time of infection (middle), and the
logarithm of dosage (bottom), based on the pristine data and the
corrected data on day R= 6, as presented in Figure 3.1.
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Figure 3.3. Evolution of the epidemic using 4000 samples taken
from the joint PDF of the attack parameters based on the corrected
data on day R= 6 as presented in Figure 3.1.
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Figure 3.4. Evolution of the epidemic using 4000 samples taken
from the joint PDF of the attack parameters based on the pristine
data, for comparison to Figure 3.3.
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Chapter 4

Resource allocation in attacks with
non-communicable agents

In this section, we formulate a resource allocation problem, based on probabilistic reconstruc-
tion of an attack’s parameters, as discussed in [14]. The solution of the problem results in a
time-dependent allocation prof le, which can updated with the availability of information and con-
strained by the actual capabilities of the transportation infrastructure. This enables an eff cient yet
realistic allocation of resourcesin a “reload” scenario. In this chapter, we will use anthrax as the
agent for conducting the attacks.

4.1 Formulation

The problem of resource allocation in reload scenarios is governed by two non-dimensional num-
bers, which are ratios of timescales. The response to a bioattack, of a reload nature, is governed by
three main processes viz,

1. the time-scale of the epidemic/outbreak, τE. For the anthrax attacks, τE ≈ 15 days.

2. the time-scale of the transportation infrastructure, τR. This may be the time required to
gather and transport signif cant fractions of the resource demand, starting from a “standstill”.
Typically τR≈ 2 days.

3. the stagger time-scale τS. This is the average time-delay between subsequent attacks.

The following time-scale ratios should hold if a set of staggered bioattacks are to be amenable to
the resource allocation techniques outlined here:

• τS/τE ≪ 1. This condition indicates that the stagger should be relatively small, e.g., typically
less than the time required for the f rst attack to be detected. It is expected that the heightened
security posture after the detectionof a bioattack will prevent any subsequent attacks. Also,
the parameter domain τS/τE ≫ 1 indicates a large separation between two bioattacks; these
can be addressed separately and do not constitute a “reload” scenario. A “good” value for
τS/τE is 0.2.
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• τR/τI ≪ 1. This condition indicates that response time of the transportation infrastructure
should be signif cantly smaller than the epidemic, so as to accommodate changes in resource
allocations, as dictated by the data stream. An inability to respond to the dynamic changes
in resource demand essentially renders the current treatment useless; one may as well con-
sider a static/point estimate of the resources required, allocate it, and ignore the information
content of the morbidity streams. A “good” value is τR/τI ≪≈ 0.2.

4.1.1 Optimal allocation of resources

As noted above, the basic problem is one of making optimal allocation of resources under signif -
cant uncertainty. In previous work, we showed how to capture this uncertainty in a PDF that can be
used to predict the number of patients who arrive at the hospital requesting treatment. Specif cally,
we construct a number of such scenarios that are consistent with the data we currently have.

The basic strategy is to use the data that we have to make a decision of how much resource to
allocate today. We also estimate the quantity of resources that might be required in the future
(i.e., a resource allocation prof le) to plan future logistical requirements. When new information
is obtained the next day, a new estimation of the attack parameters (and the resource demands)
is performed. The scenarios are recalculated in light of the new data, the available resources
are decreased by the amount allocated today, and the allocation recalculated. Thus we have one
decision variable: the amount we allocate today based on the information at hand. Let that variable
be a.

We adopt the following assumptions and notations: Let

• K be the number of scenarios;

• T be the number of days that we consider, i.e., the planning horizon of the epidemic;

• Nk, j be the number of people requiring treatment who arrive on day j in scenario k;

• rk, j be the allocation made on day j in scenario k;

• Dk, j be the number of people who die on day j in scenario k;

• Dk be the total number of people who die in scenario k;

• R be the total number of resource units available for the attack, where we assume for sim-
plicity that one unit of resource treats one patient;

• sk, j be the number of resource units available on day j of scenario k;

• t j be the fraction of people, arriving on day j , who will die having been treated;

• u j be the fraction of people, arriving on day j , who will die not having been treated.
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We assume that those arriving later in the attack will be more likely to be successfully treated.
This is motivated by the fact that longer incubations generally indicate a lower dose exposure
(or a robust constitution). Thus we assume that t j+1 > t j and u j+1 > u j . In practice, we make
this difference (t j+1− t j = u j+1−u j = ε = 10−6) small and it merely serves as a mathematical
stratagem to remove multiple solutions.

To construct the optimization problem, we need to specify the objective function. As a f rst cut,
let us assume that we want to minimize some function of the sum of the number of deaths in each
scenario, i.e., we seek to minimize

K

∑
k=1

M(Dk)

where M(Dk) is some measure of Dk. We could consider various measures, but clearly one could
take M to be simply the expected number of deaths. The optimization problem is then

min
a

K

∑
k=1

M(Dk),

where we have to specify constraints on resources and on how to compute Dk. The resource
constraint is, clearly,

0≤ a≤ R.

Given the treatment assumptions described above, we can easily compute

Dk, j = rk, j t j +(Nk, j − rk, j)u j . (4.1)

For day 1, we tentatively substitute a for rk,1.

The allocations rk, j , j > 1 can be chosen to be the optimal allocations for scenario k, given that
allocation awas made in day 1. These allocations will be constrained as follows:

rk, j ≥ 0
T

∑
j=2

rk, j ≤ R−a for each k. (4.2)

Although it is possible to iteratively solve problems for each scenario separately, it is more eff cient
to make the collection rk, j variables in the optimization problem and solve one large problem rather
than K smaller problems for each trial value of a.
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Before we pose the f nal version of the initial problem, we must address an important situation.
It is possible that in some scenarios, an allocation a or rk, j will be greater than the number of
people who arrive, i.e., a > Nk,1, in which case, the value of Dk, j from above will not correctly
calculate the number of deaths. To handle this situation, instead of substituting a for all rk,1, we
retain separate rk,1 variables and impose the constraint rk,1 ≤ a for all k. We also impose the simple
bound constraints rk, j ≤ Nk, j for all (k, j), and we change (4.2) to

T

∑
j=2

rk, j ≤ R− rk,1.

Another important concern is that without further constraints, the optimal choice of a may be to
allocate all possible resources on the f rst day, which seems unlikely to be the best policy. One
way to address this issue is to make tentative allocations for all days in the planning horizon, i.e.,
to introduce decision variables ai ≥ 0 for 1 ≤ i ≤ T and to restrict each scenario’s allocations by
rk, j ≤ a j , with a1 = a and

T

∑
j=1

a j ≤ R.

In other words, we decide, a priori, that the daily allocation cannot exceed a certain level. Obvi-
ously the level chosen has a signif cant impact on the quality of the allocation calculated. This is
studied further below.

Of course, the purpose of the exercise is still to choose the f rst day’s allocation a = a1. Another
possibility is to penalize over-allocation of resources, in keeping with some standard approaches.
To do this, we introduce a penalty term in the objective function of the form

ρ · (a− rk,1)+,

where x+ = x if x > 0 and 0 otherwise, and ρ is a constant chosen to appropriately balance the
costs, i.e., penalize wastage / overallocation of resources. We choose this form for our studies
here.

Policy makers may further wish to limit daily allocations to specif ed fractions of the available
resources, say a j ≤ σ jR. For simplicity, below we use a common value σ j = σ ∈ (0,1] for all j
(with σ = 1 imposing no further restriction).

The f nal topic we consider here is the reuse of resources. As noted, a high percentage of patients
being treated will die anyway and they will die at a nonuniform rate. Some, in fact, will die quite
early and their resources can be used on incoming patients. Data for estimating the rates are not
readily available, but reasonable approximations can be made. Based on typical treatment progres-
sions, the longer one survives, the more likely complete recovery becomes. Thus the percentage of
people who die after n days of treatment should increase rapidly for a few days and then gradually
decrease. As a f rst cut, we assumed a ten-day period and used a simple function, fn = f 0n/∑10

k=1 f 0k
with f 0n = n/(1+ exp(n/2)) to estimate these rates (with fn = 0 for n > 10). This is in the form
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of the expected percentage of people being treated who will die n days after treatment has begun.
Given fn, it is straightforward to estimate the number of resources that will be available on any
given day, as in (4.5) below. Along the same lines, as noted above, there will be some scenarios
for which allocations will exceed demand and the extra resources will likewise be available for
incoming patients. The number of people who will die is still given by (4.1).

Our optimization problem is shown in Figure 4.1. Some remarks about it are in order. It is a two-
stage stochastic optimization problem with recourse. The f rst stage is today and the second stage
is days 2–T. Each scenario takes recourse on the basis of today’s allocation and does the best that
it can after that. Constraints (4.3), (4.4), and (4.5) together imply that each scenario consumes at
most R resources.

min
a,rk, j ,sk, j

1
K

K

∑
k=1

{

M(Dk)+ρ(a− rk,1)+
}

subject to: 0 ≤ a≤ σR

0 ≤ rk, j ≤min(Nk, j ,σR)

rk,1 ≤ a

rk, j ≤ sk, j (4.3)
sk,1 = R (4.4)
sk, j = sk, j−1− rk, j−1 (4.5)

+
j−1
∑
n=1

fnt j−nrk, j−n

Dk, j = t jrk, j +(Nk, j − rk, j)u j

Dk =
T

∑
j=1

Dk, j .

Figure 4.1.Multi-scenario resource allocation problem.

One could, in principle, construct a multi-stage problem by dividing the days 2–T into two or more
stages. Suppose, for example, that the second stage is days 2–4. Then one could trace each of the K
scenarios through day 4. At that point, one assumes that, for each k, the data Nk, j , j = 1, . . . ,4, are
“true”, constructs a PDF based on this data and samples that to obtain K new time series for each
k. Although this can be easily continued, it is clear that the number of possible paths through the
attack grows rapidly. In this paper, we conf ne ourselves to just the two stages, but the extension to
more stages is theoretically possible.

We have not yet specif ed M in the objective function, but we note that the constraints are all linear.
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Thus, if M is a linear function, we have a classical linear programming problem for which there
are many excellent algorithms available. If we take M to be the identity operator, i.e.,

M(Dk) = Dk =
T

∑
j=1

Dk, j (4.6)

then we are simply computing the expected number of deaths in each scenario, and

D̄ =
1
K

K

∑
k=1

Dk (4.7)

is the expected number of deaths over all the scenarios. This has an obvious appeal; results using
this choice ofM are reported in the next section. A potential problemwith this is that scenarios with
a large number of infected people could dominate the decisions. Recall our assumption that people
arriving later are better candidates for treatment; in a scenario with a large number of people, the
algorithm would delay the allocation of resources much more so than for a scenario with a much
smaller number of infected people. It could be argued that the sampling procedure should properly
account for this, but one could also divide Dk by the total number of people infected in scenario k.
This downplays the inf uence of the larger cases, while keeping the problem linear.

A different approach, related to the work in [37], is to compute the optimal number of deaths for
each scenario in K separate problems. Call the results Dk

∗. Then one could obtain an allocation
that stays as close as possible to all of these in some sense. A natural way to do this is to minimize
the variance between the vector Dk

∗ and the vector Dk resulting from any other allocation. In
particular, one could use

K

∑
k=1

(Dk−Dk
∗)2

as the objective function. In [37] we referred to this as the least-regret formulation with the inter-
pretation that the allocation made today is the one that we will least regret in the future since it does
reasonably well for all scenarios. As above, we could scale each of the terms by the total number
of arrivals in that scenario. Since this is a quadratic function, the optimization is now a convex
quadratic programming problem; again, good algorithms exist. The computation of each Dk

∗ is a
small linear programming problem that is solved quickly. One advantage of the least-regret for-
mulation is that is produces an allocation schedule, i.e., an allocation for each day over the entire
course of the episode. This provides the emergency manager with a better planning aid than just
the allocation for today. Thus, in our reporting below, we calculate the allocation for today using
the problem in f gure 4.1 and then calculate the schedule for the remaining days using least regret.

We now present some numerical results illustrating some of the issues raised here.
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4.2 An attack on one city

To explore the approach, we f rst generated a test case involving an anthrax attack on a sin-
gle city. This is described in [37]. Brief y, an aerosolized anthrax release is simulated over
a domain with spatially variable population density. Per this distribution and an atmospheric
dispersion model, 22,384 individuals are infected with a range of doses, with an average dose
of 1470 spores. People develop symptoms over time; the time series for the f rst 10 days is
{3,123,719,2046,2202,2194,2058,1918,1656}. This time series was used to draw 100 samples
from the joint PDF of the attack parameters using a single-component random-walk Markov Chain
Monte Carlo (MCMC) sampler. Note that these samples were drawn after the MCMC sampler had
“burnt-in” and had “converged” per the mcgibbsit package in R (Chapters 7 and 8 in [38]; also
see [39]). For each attack parameter sample, 10 epidemic realizations were calculated (the forward
model is stochastic), resulting in a set of 1000 epidemic realizations (or scenarios). Such ensem-
bles, generated from the f rst 5 days of data in the time-series above, are plotted as the gray region
in Figure 4.2. Note that we measure time from the day that the f rst person was diagnosed with
anthrax (rather than the time of attack/infection). The distribution developed with data collected
through Day 7 is much narrower than that through Day 3, conf rming that the addition of 4 extra
days of data signif cantly reduces the uncertainty. This has not been plotted here.

The model was implemented in AMPL [40, 41, 42] and used the CPLEX 11 [43] simplex method
to solve the problems.

We ran many tests based on the model described above. We f xed our available resources such
that they could treat 10,000 patients (out of the 22,384 infected), i.e., they are scarce. Our f rst
observation is that the form of the function M does not make much of a difference in the results.
Thus all of the results we show here were calculated using (4.6) to minimize the expected deaths
(4.7). Our second observation is that the penalty parameter, ρ, should be taken to be a small value
to ensure its desired effect. After some tests with several values of ρ, summarized in Table 4.1, we
chose use ρ = 0.001 for all of the results reported here.

ρ a D̄
0. 10000 9358.0
0.0001 2384 9358.0
0.001 2364 9358.0
0.01 2317 9358.2
0.1 2261 9360.2

Table 4.1.Effect of ρ on a and expected deaths (4.7).

In Figure 4.2 we plot the allocations, given a resource demand drawn from 5 days of observations
in the time series. The gray region denotes the ensemble of scenarios. The time-series values used
for the inference are plotted with triangles; the future observations in the time-series are plotted
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with diamonds. Allocations were calculated for σ = 0.04 and 0.1. Clearly σ makes a signif cant
difference. Recall that there are two possible reasons for imposing a constraint on the amount
of resource that can be shipped on a given day: the f rst is that this may simply be a logistical
constraint; the second is that the emergency manager may want to conserve resources as a hedge
against a subsequent attack. Observe that our formulation only computes the allocation for Day 6;
to give managers an idea of allocations that might be appropriate on subsequent days, we obtain
tentative allocations for days 7–T by averaging the allocations for each day over all of the scenarios.
(Subsequently arriving data should inf uence the actual allocations for later days.) As is evident
in Figure 4.2, the severe restriction imposed by σ = .04 implies that many fewer resources can
be allocated than for the lighter restriction of σ = .10. Thus there is a commensurate increase in
the number of deaths with σ = .04, as we show in Figure 4.3. Here we plot the PDF of excess
casualties (over the optimal/minimal level that we would have achieved had we perfect knowledge
of the epidemic) for the two values of σ. As might be expected, the effect of σ (i.e., the placing of
a ceiling on how much can be shipped on a given day) is felt mainly in those scenarios that project
a large number of infected people turning symptomatic. We also see that increasing σ narrows the
PDF (we reduce the long-tail probability of an extremely adverse outcome) while raising the peak
of the PDF and moving to lower values of excess casualties, i.e., increasing the probability of a less
adverse outcome. Since the probability mass under the PDF is 1, this is tantamount to increasing
the probability of a certain (acceptable) level of casualties while simultaneously trading it to reduce
the probability of an extremely adverse outcome— a classic hedging / risk management operation.
This is captured quantitatively in the change of shape of the PDF with σ.

For σ ≥ 0.20 we obtain an allocation (not shown here) resulting in very few excess casualties in
each scenario. These results show that the model can be used for assessing the effects of conserving
resources in anticipation of a second attack or for planning purposes to see the need for a higher
shipping capacity.

One could also compare the PDFs of excess casualties if a “naive” approach to resource allocation
was considered, e.g., given an R, one allocates on a scenario-by-scenario basis (leading to 1,000
allocations), then simply uses the mean of these allocations. Such a “naive” allocation results in
a very long tail (see [37] for a comparison) and is not very competitive for hedging purposes vis-
à-vis the more sophisticated techniques considered here and in [37]. For the rest of this paper, the
“naive” approach will be ignored.

4.3 An attack on two cities: The “reload” case and the equili-
bration of pain

The main complication in dealing with an attack on two or more cities is in deciding how to allocate
the resources among all of the cities. From the point of view of the model, it does not make any
difference if a life is saved in the f rst city or the second. Thus, without further constraints, there is
an inherent non-uniqueness in the solution of the problem, since the optimal number of deaths can
be achieved in many ways, including the extreme one of sending all of the resources to one city
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and ignoring the other. In practice, it seems reasonable to assume that there will have to be some
“social” or infrastructural constraint to ensure that all cities are treated fairly. We illustrate how
this could be achieved below, but f rst we deal with another issue, namely that of whether or not to
anticipate subsequent attacks.

As noted in Section 4.1.1 an emergency manager may wish to restrict the amount of resources that
can be shipped on each day. This is done by imposing the constraints rk, j ≤ σR. The manager
could equally well choose σ to conserve some of the resources in case there is a subsequent attack,
the “reload” case. If there is a subsequent attack, there is no way to say anything about it until
there is some evidence in the form of people in the second city arriving at the local hospital in need
of treatment. As is the case for the f rst city, a few days of data are required before any reasonable
PDF can be computed and sampled.

Extending the basic model above to the case of several cities is straightforward. The major addition
for the reload case is the social constraint. We illustrate the possibilities with a simple constraint
that seeks to ensure that each city receives a proportional amount of the resources. A way to do
this is to impose the constraints

Di/Ai ≤ (1+π)∑
j 6=i

D j/∑
j 6=i

Ai ,

where Di are the deaths in city i, Ai is the total number of patients in city i, and π ∈ [0,1]. For the
results reported here, we used π = 0.1, so that the relative resource allocations are within 10%.

We demonstrate this allocation approach on a simulated reload scenario. The f rst attack (on
City A) is the same as in Section 4.2. However, on Day 3 of the f rst attack, City B records an
anthrax diagnosis and it is verif ed that it too has been attacked. The time-series for City B is
{0,0,1,76,711,1765,2720,3099,3186,2896} for the f rst 10 days. The attack on City B was sim-
ulated in the manner described in [37]. 29,861 people were infected, with an average dose of 2749
spores. The two attacked cities therefore have a resource demand of around 50,000 units. In the
study below, we will assume that only 25,000 units are available.

The allocations are shown in Figures 4.4 and 4.5 for Day 6 of the attack, i.e., we have a time-series
5 days long for City A and 3 days long for City B. The gray region in Figures 4.4 and 4.5 show
the ensemble of scenarios for the two attacks; as expected, the ensemble for City B is far broader
than City A, denoting a larger uncertainty arising from a smaller time-series of observations. The
observed and unobserved evolution of the epidemic in the two cities is plotted using triangles and
diamonds. The allocations developed with σ = 0.04 and 0.1 are plotted for Day 6 (and beyond)
of the epidemic. Note that the allocation is only meant for Day 6. Both the plots demonstrate
how allocations are curtailed as σ decreases, leading to extra casualties, especially for scenarios
that project larger epidemics. Also note that the effect of σ is felt mostly during the peak of the
epidemic; the allocations are similar towards the end. This is a consequence of our modeling
decision to slightly favor later allocations.

In Figure 4.6 we plot the PDFs of excess casualties (over the minimum that we would achieved had
we perfect knowledge of the attack and the epidemic). The excess casualties for Cities A and B,
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for σ = 0.02,0.04 and 0.1 are totaled and plotted. Note that the σ = 0.1 case is not at all restrictive
and one even has overallocation of resources (the “negative” casualties). This happens when two
exceptionally small scenarios for City A and B are considered. Note that the σ value merely
places a bound on daily allocation; the constraint that daily allocations must add up to the available
resources is not violated. The hedging effect of σ seen in Section 4.2 is also reproduced here,
though with a few modif cations. In all cases, we see a multimodal excess-casualty distribution.
While σ = 0.04 does manage to translate the excess-casualty PDF to the left (vis-à-vis σ = 0.02),
we see the width of its support is unchanged, i.e., the higher value of σ reduces the expected
casualties (and consequently risk), but does not improve the hedge compared to σ = 0.02.

4.4 An attack on one city with corrected data

As reported in Chp. 3, the raw data consisting of just the number of people who arrive on a given
day is not suff cient to create good PDFs, since we need to know the day on which they became
symptomatic. In this section, we show the differences in the PDFs between the corrected and
uncorrected data and then show a series of resource allocations made based on the corrected data
over a 6-day period of the same attack. The results demonstrate that the resource allocations early
in the attack are quite good. That is, even as we get additional data and the PDFs narrow, the
allocations do not differ very signif cantly.

Fig. 3.3 and 3.4 show the resulting set of scenarios from Day 6 with the corrected and uncorrected
data. As one can readily see, there is a signif cant difference in the size and range of the scenarios
and thus there would be a signif cant difference in the allocations.

In Fig. 4.7 we show the allocations schedules that are calculated for days 4–9. We assume that it
takes 3 days to ramp up the transportation infrastructure for resource distribution purposes, thus
placing a constraint on the allocation that can be realistically performed. Days 4, 5, and 6 show the
effect of this ramp-up to enable a full allocation of 10% of the resources. Note that the form of these
allocations is nearly the same, i.e., we ship at high levels early in the attack and then decrease the
shipments rapidly thereafter. Also note that the scenarios for days 8 and 9 are very close and so we
do not expect much change to occur after day 9. Also note that in this case, a better reconstruction
of the epidemic (with more data) results in lower levels of allocation (see the allocations for Day
6-9). Further, most of the allocation is done early with a quick curtailing of allocation later in the
outbreak. This is because as the outbreak is better def ned/reconstructed from data, the fall-off
in the epidemic curve becomes more certain, allowing a better (less uncertain) allocation in that
regime.
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Figure 4.2. Allocations for the attacked city, obtained from data
collected over the f rst 5 days. The gray region denotes the evolu-
tion of all the scenarios considered. The net effect of σ is to reduce
the allocation during the early days of the epidemic. R = 10,000.
The observed evolution of the epidemic is plotted with triangles;
the future, unobserved evolution with diamonds.
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Figure 4.3. PDFs of excess casualties for σ = 0.04 and 0.1. R
= 10,000. A tighter daily constraint on allocations (σ = 0.04) in-
creases the probability of excess casualties. However, note that the
PDFs have rather compact support.
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Figure 4.4.Allocation under various values of σ for City A. The
gray region denotes the evolution of all the scenarios considered.
R = 50,000 (total for both cities). These allocations were drawn
from data collected over 5 days; allocations are for Day 6. The
observed evolution of the epidemic is plotted with triangles; the
future, unobserved evolution with diamonds.

41



Day

S
ym

pt
om

at
ic

pa
tie

nt
s

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

Day
0 5 10 15 20 25 30

Observed
Unobserved
City B; σ = 0.02
City B; σ = 0.04
City B; σ = 0.1

Figure 4.5.Allocation under various values of σ for City B. R =
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data collected over 3 days (Days 3, 4 and 5, the attack stagger
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Figure 4.6. PDF of excess casualties for σ = 0.02,0.04 and 0.1.
R = 50,000. Note how σ = 0.1 results in certain “negative” casual-
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responding to σ = 0.02 and 0.04 have a similar support widths but
the higher value of σ reduced the expected value of casualties.
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Figure 4.7.Resource allocation prof les over the durations Days
4-9 calculated from inferences drawn from increasing amounts of
data. We see the effect of the 3-day ramp up. Further, most of the
allocation is done early with a quick curtailing of allocation later
in the outbreak.
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Chapter 5

Resource allocation for outbreaks caused by
communicable diseases

In this chapter, we will address the problem of resource allocation in case of outbreaks of com-
municable diseases. As mentioned before, the process consists of two elements viz. estimation of
outbreak parameters and the resource allocation process under an uncertain characterization of the
outbreak (in the form of an ensemble of outbreak realizations).

The resource allocation problem for communicable diseases is considerably more involved com-
pared to non-communicable diseases. In Chp. 4, where we discussed the allocation of equipment
and personnel in response to an anthrax attack, we assumed that the level of resource allocated
made no difference to the evolution of the outbreak. This is because, unlike antibiotics which
suppress and can cure the disease, the resources considered (equipment and personnel) provide
palliative or supporting care. Thus the resource allocation / optimization procedure did not require
estimating the impact of the allocation on the outbreak itself; only the effect on casualties was
estimated. If any distribution of antibiotics disrupted the outbreak, the data-driven methodology
would capture the disruption and predict a smaller outbreak (though with a time-lag, required to
collect suff cient data to capture the disruption).

In case of a communicable disease, equipment and personnel are most likely to be engaged in
disrupting the transmission itself, and any resource allocation procedure will require the evaluation
of its disruptive effect. This leads to an extremely computationally intensive procedure, which we
will not address in this study. However, there also exist resources, e.g., drugs like Tamif u, which
provide palliative/supporting care, whose demand estimates are set by the size of the outbreak;
the availability of such resources reduces casualties (and other losses) but does nothing to disrupt
the epidemic. However, if exogenous process (e.g., medical responses like vaccinations etc) are
involved in modulating disease spread, their effect can impact resource allocation greatly. Thus
such modulations need to be captured for a proper estimation of resource demand.

In our study we will concentrate on resources that provide palliative care during an epidemic of a
communicable disease. The procedure developed for anthrax in Chp. 4 is directly applicable, and
we will not demonstrate its performance on epidemics of communicable diseases. Rather, we will
develop an estimation procedure for the important epidemic parameters, with the understanding
that posterior predictive calculations (which result in an ensemble of outbreak realizations) and
the least-regret calculations are identical to that of anthrax and therefore need not be investigated
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further.

5.1 Disease dynamics

Epidemics of communicable diseases show rich dynamics. Starting from a few index cases, they
spread. In certain cases, the outbreak may cease because of its low transmissivity or because it
infects a relatively unconnected clique of people. In other cases, it spreads widely, till changes in
social behavior (usually social distancing) halts its spreads. Thus the infection intensity (rate of
new infections) initially increases in time, before settling into a decline. This temporal variation
of infection intensity cannot, of course, be observed; at most one may know the number of people
exhibiting symptoms, at the end of their incubation period. Typically (e.g., for smallpox, plague,
inf uenza and a host of diseases), the incubation phase is not contagious, and transmission starts
only after a person shows symptoms. The symptomatic are often measured/recorded when the seek
medical care; if this data is used to analyze an outbreak, one must also accommodate a reporting
delay, as described in Chp. 3.

In this chapter, we will attempt to infer outbreak parameters of a communicable disease from
a time-series of symptomatics (and NOT people seeking medical care, i.e., we will not include
reporting delay in out inference) collected on a daily basis. Thus we have a time-series ni of the
number of new symptomatics on Day i, over a time duration 0 ≤ t ≤ T. We assume that there
exist a total of Ntot affected people, of which a fraction 1−α are index cases. The index cases are
assumed to have been infected τ days before the f rst exhibition of symptoms, i.e., τ < 0. There
exists an unknown infection intensity f (t;p), parameterized by p). The objective is to determine
estimates of {Ntot,α,τ,p}. Choosing the form of f (t;p) is a challenge; sometimes the choice may
change as an epidemic progresses.

The data for the inference will be obtained from agent-based simulation of a communicable dis-
ease. The technique depends on the existence of a social network between individuals (agents),
over which the spread of the disease occurs. A outbreak is very dependent on the index cases (or
rather the connectivity of the index cases in the social network) and multiple simulations with the
same numberof index cases (but with different choices of them) can lead to very different out-
breaks. The simulation technique is very similar to the one employed in [44] and is described in
detail in [23], Sec. 3.

Below, we formulate a Bayesian inverse problem, where we leave f (t;p) unspecif ed. Thereafter,
we demonstrate the inference technique on a plague and an inf uenza epidemic. In each case, we
describe the particulars of the transmission dynamics of the outbreaks. The true values of Ntot, τ
and 1−α are known from the simulation and are provided for comparison with inferred values.
The estimates of p as a function of ni are also provided.
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5.2 Formulation of the inverse problem

Consider an epidemic that has been observed in the time duration 0 ≤ t ≤ T, during which time,
Ntot = Nind +Nsechave been infected. This includes the Nind index cases and Nsecsecondary cases.
For large T, α = Nsec/Ntot ≈ 1. Assume that the index cases were infected at time τ,τ < 0. t = 0
indicates the time the f rst person (one of the index cases) shows symptoms and starts spreading
the disease.

During the time-period [0,T], there exists a time-dependent infection intensity given by αNtot f (t;p),
which is the rate at which people are infected. The function f (t;p) is unknown and models the
spread of the disease, which in turn is governed mainly by the social network and the transmissivity
of the disease. Note that

Z T

0
f (t;p)dt = 1 (5.1)

The limits of integration are [0 . . .T] since this is the time-duration over which symptomatic pa-
tients spread the disease. Consider the time-series ni , i = 0 . . .m of new symptomatic cases that
appear in the time-interval [ti−1, ti), ti − ti−1 = ∆t = 1 day. ni is a mixture of index cases and
secondary cases turning symptomatic and can be given by

nmodel
i = Ntot

(

(1−α) [C(ti)−C(ti−1)]+α
Z T

0
f (s;p) [C(ti −s)−C(ti−1−s)]ds

)

ni = nmodel
i + ε (5.2)

where C(t) is the cumulative distribution function (CDF) of the incubation period of the disease
and ε ∼ N(0,σ2) is a measurement error.

Thus given a set of outbreak parameters {Ntot,α,τ,p}, the likelihood of observing the time-series
ni , i = 0 . . .m is

π(ni, i = 0 . . .m|Ntot,α,τ,p) = exp
(

−∑m
i=0(ni −nmodel

i )2

2σ2

)

. (5.3)

Using Bayes’ theorem, the joint posterior probability π(Ntot,α,τ,p) conditioned on data is

π(Ntot,α,τ,p|ni, i = 0 . . .m) = exp
(

−∑m
i=0(ni −nmodel

i )2

2σ2

)

πprior (Ntot,α,τ,p) (5.4)

The posterior distribution can be sampled using a Markov Chain Monte Carlo (MCMC) method
and marginalized to obtain probability density functions for each of the parameters in question.
We use a simple random-walk MCMC to sample the posterior. Further, to assist in sampling
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we reparameterize the problem in terms of the logarithms of the parameters (except for τ which,
since it is a negative quantity, is reparameterized in terms of log(−τ)). The priors on each of the
parameters are assumed independent, are vague and are modeled as normal distribution, unless
mentioned otherwise.

5.3 Test case 1: A plague outbreak

In this section, we consider the inference of a plague outbreak. First, we describe the epidemic
model.

5.3.1 The outbreak simulation

The epidemic is assumed to evolve over a graph. Nodes in the graph represent people and the
edges represent social links over which the disease could potentially travel. The transmission is
stochastic and is modeled as a Poisson process with rate λ. Each node undergoes a susceptible –
exposed (i.e., incubating) – infectious – removed sequence, with removal denoting recovery (and
immunity) or death. The mortality rate for PPP, if left untreated, is 100% [45]. Treatment during
the incubation phase has a 100% probability of success [45]. Treatment during the infectious
(symptomatic) phase is unknown.

Each node i, on being infected, resides in the exposed and infectious phases for time τE and τI . τE

and τI are random variables obeying a log-normal distribution with means (SD) of 4.3 (1.8) and
2.5 (1.2) days. These are obtained from [45].

The transmissionmodel on a network is somewhat different from typical ODE-based SEIR models.
In [46], it was observed by following infection networks that the effective reproductive number of
PPP R(T) could be expressed as

R(T) = R0 exp(−δT) (5.5)

where R0 = 2.99, δ = 0.0615 and T is the time measured since the start of the epidemic. On
the other hand, in [45], a “steady-state” reproductive number was assumed, and was found to be
equal to 1.3. Curiously, if one averages the R(t) over 30 days (the duration of the Madagascar and
Mukden outbreaks considered in [46]), one obtains an average R= 1.39. However, a reproductive
number over 1.0 as proposed in [45] would indicate an epidemic that grows without bounds; on
the other hand the expression in Eqn. 5.5 ensures that the epidemic will eventually die down.

Eqn. 5.5 is adapted for use in a network model. We proceed as follows. Consider a node i with
incubation and infectious periods of τE and τI . Consider, too, that social links l i j exist between
nodes i and j , j ∈ Li , where Li is the set of nodes i is connected to (i.e., node i’s neighbors). Let
|Li | denote the number of neighbors node i has.
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When node i is infected, it is allocated a reproductive number per Eqn. 5.5. R(Ti) denotes the
number of people i will infect over the period τI , where Ti is the time that i was infected (this also
ensures that the time-varying nature of the effective reproductive number is captured).

Since i has |Li | neighbors, a subset of them are marked for potential infection by i. We iterate
through them and mark them for infection (via transmission from i) with probability R(Ti)/|Li |. If
Li contains nodes which have already been infected, they are skipped over in the iteration process.

Once the potential “victims” of i are marked, we proceed with the dynamics of transmission.
Consider a node j, j ∈ Li which has been marked for infection. The probability pi j that i will
infect j is given by pi j = 1− exp(−αiλiti j ) where λi = 1/τI is the rate of infection, ti j is the time
duration over which transmission could have occurred between i and j (essentially, duration of
contact between i and j after i turned infectious) and αi is a constant (for a given node i) that
ensures that i will succeed in infecting j with a probability of 0.9999 (i.e., 1.0 - 10−5) by the
conclusion of its infectious period. Thus αi = − ln(10−5).

5.3.2 Inference of outbreak parameters

Fig. 5.1 shows the temporal evolution of an outbreak. We start with 100 index cases, who infected
an 1063 people over the next 43 days. Plotted in red are the new symptomatic cases, collated on
a daily basis. It is noisy, and peaks at around day 15; thereafter, it decays, indicating a weakening
epidemic. Plotted in blue is the latent infection intensity as a function of time. We see clearly that
for the f rst 10 days, the infection intensity rises, after which it settles into a decline over the next
30 days.

Inferring the infection intensity f (t;p) is key to predicting the evolution of the outbreak and con-
sequently the resource requirements. We model the infection intensity as a Γ distribution, i.e.,

f (t;p) =
g(t;k,θ)

G(T;k,θ)
=

1
θγ(k,T/θ)

( t
θ

)k−1
exp

(

− t
θ

)

. (5.6)

where γ(k,T/θ) is the incomplete Gamma function, g(;) is the Gamma probability density function
and G(;) is the corresponding CDF. Note that the expression in Eq. 5.6 obeys the normalization
Eq. 5.1. Also, the parameters p are the shape (k) and scale (θ) parameters of the Gamma distribu-
tion.

Following the description in Sec. 5.2, we perform an inference of the outbreak parameters using a
time-series 20 days long. Over this duration, an extra 805 people were infected via transmission.
The inference was performed using the transformed variables (i.e., the log-variables), though all
results will be shown in terms of the variables {Ntot,α,τ,θ,k}. The priors used are

log(Ntot ∼ N(log(103),10),
α ∼ B(1.25,1.25),
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Figure 5.1. Evolution of the plague epidemic. New cases of
symptomatic patients are plotted in red while the latent infection
rate (daily infections) are in blue. The simulation was started with
100 index cases distributed in the social network. We see, from the
symptomatic cases, that the epidemic peaks around Day 15. The
infection rate peaks a few days before.

.

log(−τ) ∼ N(0,1),
log(θ) ∼ N(0,22),
log(k) ∼ N(0,1)

The f rst two prior are recognizable vague. The incubation period distribution for plague [45], with
a median of 4.3 days, ensures that given 100 index cases, one may have, with high probability,
one symptomatic case within edays of infection. Similarly, the prior for θ, indicates that the time-
scale for the decline of the epidemic may vary by e2 days, approximately a week. The prior for
k was chosen so that the rise in infection intensity would be roughly linear, a results that can be
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obtained from early-epoch linearization of conventional SEIR epidemiology models. The standard
deviation of the measurement error, σ is set to 10.

In Fig. 5.2 we plot the MCMC chain and the histograms of the samples of the outbreak parameters,
i.e., of {Ntot,α,τ,k}. The chains mix properly, i.e., ergodicity of the MCMC chain is achieved. The
histograms on the right indicate the posterior marginalized distribution of the outbreak parameters.
In Fig. 5.3, we determine the maximum a posterioriestimates of the outbreak parameters and plot
the corresponding latent infection intensity; the actual intensity too is plotted as a comparison. The
blue dot at the left extreme is the number of index cases; the numerical estimate from the time-
series has not been plotted. For both 10 and 25 days of data, we see that the infection intensity
is properly captured, including the downturn in the infection intensity, as the outbreak begins to
decline. The infection intensity curve from the 10-day time-series is seen to underpredict future
infection intensities; the one developed from the 25-day time-series over-predicts it. This is a con-
sequence of the Gamma-distributed model trying to capture the stochastic nonlinear dynamics of
the spread of the disease on a social network. A more mechanistic model of the disease spread
would likely provide a better bit, but it is unclear what such a model would be, which preserves
the speed and parsimony of a Gamma model. In Table 5.1, we summarize the outbreak param-
eter estimates drawn from time-series of different lengths. Note that the true values of Ntot and
α are functions of time, i.e., they increase as the epidemic progresses. We see that the inference
procedure is fairly accurate; further, the simple model for the infection intensity is quite success-
ful in summarizing the involved stochastic transmission dynamics simulated in the agent-based
simulation.

5.4 Test case 2: An influenza outbreak

In Sec. 5.3, we showed how an outbreak that “failed to take off” could be modeled and inferred
from a short time-series. The Gamma-distribution model of the infection intensity can be used to
approximately infer characteristics of an endemic disease (where the infection intensity reaches a
constant) by employing a large value for scale parameter θ. However, it is not very useful for a
large pandemic that grows in time.

Given the recent interest in swine f u [47, 48], we simulate an inf uenza epidemic which proves re-
sistant to countermeasures and therefore grows “unbounded” (i.e., before saturation effects become
important). This is done with our agent-based simulation capability, with parameters obtained from
the 1918 pandemic. These results are then used to infer outbreak parameters.

5.4.1 The outbreak simulation

The disease dynamics for inf uenza are slightly different from that of plague. While the disease
transmission occurs over a social network, the reproductive number does not decay in time (the
primary reason why the outbreak can become a pandemic). Transmission is modeled as a Poisson
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Figure 5.2. The MCMC chains for the outbreak parameters
{Ntot,α,τ,k}, plotted in sequence, from top to bottom, on the left.
On the right are the histograms of the samples of the outbreak pa-
rameters. These were developed from a time-series 20 days long.
The f gures for θ were left out for lack of space.
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the maximum likelihood estimates of the outbreak parameters, us-
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series.

process, but the disease shows 2 extra stages, compared to plague. The different compartments of
disease progression are

1. Susceptible (S), people who can be infected.

2. Exposed (E), i.e., people who are incubating the disease, but are not contagious. They move
on to the I and A stages described below.

3. Infectious (I ), people who are symptomatic and contagious. These people are generally the
ones who seek medical help and a fraction of them may be hospitalized and reported.
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Variable m = 10 m = 15 m = 20 m = 25

Ntot 397 (284,609) 673 (537, 1133) 848 (743,974) 1024.4 (927.6,1612.2)
[497] [725] [905] [1048]

α 0.79 (0.63, 0.95) 0.87 (0.39, 0.96) 0.90 (0.67,0.98) 0.92 (0.41, 0.98)
[0.80] [0.86] [0.89] [0.90]

τ -1.75 (-4.7, -0.4) -1.9 (-10.6, -0.5) -1.9 (-9.1, -0.5) -2.0 (-13.8, -0.5)
[-2] [-2] [-2] [-2]

θ 6.5 (0.79, 125) 10.4 (2.16, 156.6) 10 (3.5, 75) 10.2 (4.8, 36.5)

k 2.3 (1.2, 7.2) 2.13 (1.32, 4.7) 2.0 (1.25, 3.84) 1.98 (1.28, 4.98)

Table 5.1.Estimates (medians) of the outbreak parameters devel-
oped from time-series of different lengths. The 95% conf dence
intervals are mentioned in parenthesis and the true values are in
square brackets.

4. Asymptomatic and contagious (A), this being inf uenza. In fact most people infected with
inf uenza are in the A category. Such people are not very contagious, but they do exist in
large numbers.

5. Recovered (R); people from the I and A stages move into this stage.

6. Dead (D); people from the I stage can move into this stage.

As discussed in [49], only about 36% of the people in the 1918 epidemic in Geneva progressed
from the E to the I stage in the (more virulent) “fall” version of the disease; in the “spring’ version,
only about 10% of the people showed severe symptoms. Further, the asymptomatic patients were
far less contagious; the parameter estimates in [49] show that the contagiousness of the asymp-
tomatic were 0.003 and 0.014 times that of the symptomatic patients. In our model, we will
assume that the asymptomatic cohort exists, but is not contagious. Mortality rate was 0.7% for
the “spring” outbreak and 3.25% for the “fall” outbreak [50]. We also limit our simulation for a
short period of time so that births and deaths in the general population do not appreciably affect
the progress of the disease.

Each node spends a duration in each of stages E, I and A. These durations are modeled as random
variables. Bombardt [7] models the E phase with a lognormal and the I phase with a normal
distribution, which we adopt here.Bombardt states the the mean and standard deviation for the
E stage are 2 days and 1 day respectively, while those for I stage are 5 days and 1 day. Gani
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Source Incubation (E) Symptomatic (I ) R0 Remarks
Chowell [49] 2 2 1.49 & 3.75 1918, Geneva

Mills [52] 1.9 4.1 2.0 1918, US cities

Longini [51] 1.9 4.1 1.4 Southeast Asia; “regular” f u

Fraser [48] 1.9 - 1.58 Swine f u; Mexico, 2009

Gani [50] 2.0 4.0 1.39 1957, 1968 pandemics

Bombardt [53] lognormal; normal; 1918 Camps Custer
mean = 2; sd = 1 mean = 5; sd = 1 and Valdahon

Table 5.2.Summary of inf uenza characterization from a variety
of sources. All estimates of duration are in days.

et al. [50] f nd that the mean incubation period (i.e., E stage) is 2 days for pandemic inf uenza
(specif cally H5N1 “avian f u”) and 4 days for the symptomatic period. Longini et al. [51] and
Mills et al. [52] cite 1.91 and 4.1 days respectively for the mean values for E and I stages, even
though the f rst publication targets the 1957-1958 and 1968-1969 inf uenza pandemics while the
latter models the 1918 pandemic, with data collected from US cities. The recent swine f u E stage
has been estimated to be 1.9 days too [48]. Thus, the characterization of the progress of the disease
seems consistent.

The basic reproductive number R0 shows signif cant variations. Chowell et al. [49] report a R0
of 1.49 for the “spring” outbreak and 3.75 for the “fall” outbreak in Geneva, 1918. US cities, on
the other hand, showed an R0 of 2 in 1918 [52]. Studies for inf uenza epidemic (mostly H5N1) in
Southeast Asia [51, 50] have tended to assume a R0 of 1.4, which is similar to the R0 observed in
the recent swine-f u epidemic [48] (1.58). We summarize the results reviewed to date in Table 5.2.

For our modeling purposes, we choose a consensusset of f gures. We will model incubation E
as Bombardt does, i.e., as a lognormal distribution with mean 2 days and standard deviation of 1
day. The symptomatic stage I will be modeled using a normal distribution, with a mean of 4 days
and standard deviation 1. The asymptomatic stage Awill be modeled identical to I, except that the
cohort does not suffer deaths. We assume that only 36% of the people coming out of incubation
will progress to the I stage, with the rest moving on to the A cohort. Since we aim to capture the
1918 effects, we will assume a mortality rate of 3.25% and a λ that corresponds to a R0 of 3.75.
On recovery, people are assumed to be immune to inf uenza. These are summarized in Table 5.3
below.

The implementation of the disease model is the same as in Sec. 5.3 and is omitted.
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Model Parameter Value
Incubation period (E) log-normal, mean = 2 days, std. dev. = 1 day
Infectious period (I ) normal, mean = 4 days, std. dev. = 1 day

Asymptomatic period (A) same as I
Infectious fraction 36 %
Mortality rate 3.25%; applies only to the I cohort

R0 3.75

Table 5.3.Summary of parameters for our inf uenza model.

5.4.2 Inference of outbreak parameters

Fig. 5.4 shows the temporal evolution of an outbreak. We start with 100 index cases, who infected
26479 people over the next 42 days. Plotted in red are the new symptomatic cases, collated on a
daily basis. Plotted in blue is the latent infection intensity as a function of time. Both the infection
intensity and the new symptomatic cases (collated daily) show a monotonic increase.
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Figure 5.4. Evolution of the inf uenza epidemic. New cases of
symptomatic patients are plotted in red while the latent infection
rate (daily infections) are in blue. The simulation was started with
100 index cases distributed in the social network. We see that both
the time-series exhibit an upward trend.
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Inferring the infection intensity f (t;p) is key to predicting the evolution of the outbreak and con-
sequently the resource requirements. We model the infection intensity as follows

f (t;p) =
a(exp(t/b)−1)

ab(exp(T/b)−1)−aT
(5.7)

where T is the time duration over which the infection process has occurred. The expression in
Eq. 5.7 obeys the normalization Eq. 5.1. a and bare the governing parameters of the infection inten-
sity and form the objects of inference from data. Following the description in Sec. 5.3, we perform
an inference of the outbreak parameters using a time-series of different lengths. The problem was
reparameterized in terms of the logarithms of the quantities being inferred, i.e., {Ntot,α,τ,a,b}.The
priors used are

log(Ntot ∼ N(log(103),10),
α ∼ B(1.25,1.25),

log(−τ) ∼ N(0,1),
log(a) ∼ N(0,52),
log(b) ∼ N(0,52)

For the purposes of this study, the standard deviation of the measurement error σ is set to 50.

In Table 5.4, we summarize the outbreak parameter estimates drawn from time-series of different
lengths. We see that the size of the epidemic Ntot is estimated fairly accurately, but there are
signif cant errors in estimates of the rest of the parameters. This is conjectured to be due to the
exponential nature of the infection intensity, which makes the predictions nmodel

i very sensitive to
the model parameters. We are currently investigating how reparameterizing may ameliorate the
sensitivity and allow more robust inferences.
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Variable m = 15 m = 25

Ntot 1671 (795, 13873) 5220 (2994, 29691)
[1474] [4614]

α 0.54 (0., 0.92) 0.78 (0.04, 0.98)
[0.93] [0.98]

τ -4 (-19,, -0.1) -6.8 (-28, -0.27)
[-1] [-1]

a 2.73 (1.06, 15.8) 2.8 (1.2, 14.8)

b 104.9 (26, 1.2×105) 192 (11.3, 2.1×105)

Table 5.4.Estimates (medians) of the outbreak parameters devel-
oped from time-series of different lengths. The 95% conf dence
intervals are mentioned in parenthesis and the true values are in
square brackets.
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Chapter 6

Conclusions

Our study of resource allocation techniques in reload scenarios was driven by the realization that
mounting a quick and eff cient response to a bioattack holds the largest potential to reduce casu-
alties and minimize impact on the affected population. To date, early warning via detection of
aerosolized pathogens by environmental sensors has been viewed as the optimal way of determin-
ing when and how to mount a medical response. We consider the case when an attack may be not
be detected by such sensors either because the site was not instrumented or if the pathogen was
introduced via a vector (which, for communicable diseases, could be humans). In such a case,
the estimation of resource allocation have to be performed using the time-series of morbidity (di-
agnosed cases etc) that would result from the ensuing outbreak. In our study, we have restricted
ourselves to resources like medical equipment and personnel which are diff cult to gather and
transport.

We have developed an approach that allows the estimation of attack/outbreak parameters from
short time-series of morbidity data. The attack parameters, viz., the number of infected people, the
time of attack and the dose, can be related to the time-dependent demand for medical resources
directly using existing epidemic and resource-use models. The attack parameters are estimated
probabilistically, which ref ects the uncertainty due to lack/quality of the data. The attack param-
eters are used to bound the possible realizations of the resource demand; thereafter, a stochastic
optimization algorithm develops a resource allocation prof le (in time). Resources are assumed to
be insuff cient (hence an eff cient allocation is paramount). This can be used to dispatch resources
in the short term and plan for transportation needs in the long term. We f nd that our resource
allocations amount to hedging – they render the probability density function of casualties resulting
from a resource allocation prof le compactly supported, indicating a signif cant reduction of the
probability of an exceedingly bad outcome. The price for reducing this probability is the increased
probability (almost a certainty) of a smaller, perhaps acceptable, level of casualties. Our test cases
have involved single-site attacks as well as staggered attacks on multiple sites, where the resource
demands at different sites have different levels of uncertainty. The observations above hold true in
both cases; further, for multi-site attacks, our allocation technique ensures “fairness”, i.e., there are
no hot-spots of risk which could endanger the entire system via cascading failures. We observe,
empirically, that resource allocation prof le does not vary signif cantly (by more than 25%) after
about 6 days of data. This lack of volatility in the allocation prof le is helpful since it assists in
planning for the mobilization of infrastructural capabilities (and to some extent, resource reserves).

Our algorithm involves a “free” parameter. An optimal value of this “free” parameter cannot
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be gauged from the time-series of morbidity and thus is exogenous to the problem at hand. It
represents a “risk appetite” and takes the form of a constraint on the daily allocation of resources.
This constraint can be used to prevent an over-allocation of resources, a recourse that may prove
important in the aftermath of an attack, if further attacks are expected and resources have to be
husbanded. More practically, this constraint may be used to enforce resource allocation which
conform to the dictates of the transportation infrastructure. In the immediate aftermath of an attack,
the available rolling/transportation stock may simply be insuff cient. The constraint can be made
time-dependent, to ref ect the mobilization of infrastructural capabilities to meet an emergency.

The technique works well for outbreaks/attacks carried out with pathogens causing non-commu-
nicable diseases. The problem of epidemics caused by communicable diseases is more diff cult,
primarily as it poses a harder (non-stationary) estimation problem. We have outlined an estimation
approach here, but it is limited by the simple epidemicmodel employed in the estimation algorithm.
This is an area that should be investigated in more detail; our resource allocation techniques can
f nd use in responding to endemic diseases (and their possible pandemic variants). Our example in
Chp. 5 used inf uenza modeled on the fall variant of the 1918 pandemic.

In our study, we have not attempted to model the imperfections of transportation infrastructure
beyond assuming that there is an initial mobilization delay. However a 25% volatility in resource
allocation is not trivial, and advanced routing algorithms (for rolling stock) may be required to
accommodate it. Routing on networks is an enduring problem in operations research, and our
technique for estimating uncertain demands/throughputs at certain points in the network may allow
the application of network routing algorithms to a new f eld of national security/interest.
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