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Abstract 

Thermoelectric materials have many applications in the conversion of thermal energy to 
electrical power and in solid-state cooling. One route to improving thermoelectric energy 
conversion efficiency in bulk material is to embed nanoscale inclusions.  This report 
summarize key results from a recently completed LDRD project exploring the science 
underpinning the formation and stability of nanostructures in bulk thermoelectric and the 
quantitative relationships between such structures and thermoelectric properties.  
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1. Introduction 

Thermoelectric materials have many applications in the conversion of thermal 
energy to electrical power and in solid-state cooling [1].  The central materials research 
challenge is to improve the intrinsic energy conversion efficiency of the thermoelectric 
material.  In general, materials development schemes to improve this efficiency are 
driven by the need to maximize the Seebeck coefficient, α (i.e. the ratio of the developed 
voltage and temperature difference between the points at which the voltage is measured), 
and to balance the competing requirements of high electrical conductivity, σ, and low 
thermal conductivity, κ .  A useful parameter that characterizes the energy conversion 
efficiency of a material is the so-called thermoelectric figure-of-merit, zT = α2σT/κ.  
Advances over the past decade show that it is possible to enhance zT in nanoscale systems 
by taking advantage of quantum confinement and carrier scattering effects to enhance the 
power factor, α2σ, and phonon scattering at interfaces to reduce the lattice contribution to 
κ.  Because many existing and envisioned thermoelectric applications will require a 
material that is itself of macroscopic dimension, recent reports of property enhancement 
in bulk alloys possessing nanometer-scale compositional modulations have generated 
much excitement [2-4].  However, to make progress on developing and applying such 
nanostructured, bulk thermoelectric alloys will require a greatly improved fundamental 
understanding of how the alloys form and the mechanisms by which the thermoelectric 
properties are enhanced.  These issues motivate the questions posed under this LDRD 
project: namely, (1) What controls the formation and thermal stability of property-
enhancing nanostructures in bulk thermoelectric alloys? and (2) How does the 
nanostructure relate quantitatively to the measured thermoelectric properties?    

Under this project we chose to focus on telluride compounds based on the rocksalt 
and tetradymite structures.  Such materials have good thermoelectric properties and are 
widely used in a variety of thermoelectric devices.  Important examples of these materials 
include PbTe [5] and AgSbTe2 [6], which have the rocksalt structure, and Bi2Te3 and 
Sb2Te3 [7], which fall within the broad tetradymite-class of structures [8].  One emerging 
approach to producing nanostructured thermoelectric materials is through the control of 
solid-state phase transformations, such as precipitation[9].   Therefore, a key element of 
our work was to investigate the phase transformation mechanisms in relevant 
nanostructured tellurides.   We focused in particular on second phase formation in the 
rock-salt structured telluride AgSbTe2, which is an important thermoelectric material in 
its own right as well as being a key constituent of both the TAGS and LAST class of high 
performance thermoelectric alloys.  This work is described in section 2.  Ultimately we 
seek to understand the quantitative relationships between the internal nanostructure and 
the thermoelectric performance.  Our experimental work relating the formation of second-
phase precipitates to thermoelectric performance in the AgSbTe2 system is discussed in 
Section 3.  Finally, our theoretical work establishing the mechanisms by which embedded 
nanoscale inclusions can enhance zT, through a combination of energy filtering and 
reduced thermal conductivity, is presented in Section 4. 
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2. Precipitation Mechanisms in Rocksalt-
Structured Tellurides: AgSbTe2 

 
Rocksalt structured tellurides form an important class of thermoelectric materials. 

We chose to study several aspects second phase formation in such materials as a possible 
route to nanostructure.    In this section we focus on second phase formation in AgSbTe2.  
This compound is a good thermoelectric material [6, 10] and is also a critical constituent 
of two classes of high-performance thermoelectric material—(AgSbTe2)1−x(GeTe)x (also 
called TAGS) [11]and (AgSbTe2)1−x(PbTe)x (also called LAST) [2]. Both the TAGS and 
LAST materials have complex microstructures that are thought to enhance the 
thermoelectric performance by affecting the electron (increasing the Seebeck coefficient) 
and phonon (lowering the thermal conductivity) scattering at embedded interfaces [2] 
[11]. However, the factors that control the microstructural evolution in these systems and 
the detailed mechanisms by which nanostructural features enhance the thermoelectric 
performance are still poorly understood. Due to its relatively simple composition, 
AgSbTe2 provides a good starting point for understanding the microstructure–property 
relationships in the more complex TAGS and LAST systems.  

In Section 2.1, we discuss our study of the formation of second phase silver 
telluride precipitates in material of the exact AgSbTe2 stoichiometry [12].  This work has 
helped resolve confusion in the thermoelectrics literature concerning phase-equilibria in 
the Ag-Sb-Te ternary system and the structure of the AgSbTe2 phase.   As we show, the 
formation of crystallographically aligned monoclinic Ag2Te, which is consistent with 
some assessments of the phase diagram, produces additional diffraction peaks that can be 
easily misinterpreted as superlattice reflections.  Our analysis of the orientation 
relationship sheds light on the Ag2Te precipitation mechanisms.  

In Section 2.2, we discuss our work studying the formation of tetradymite-
structured Sb2Te3 plates in AgSbTe2.  Our work investigating the atomic-scale interfacial 
structure at such plates has provided elucidated the role that interfacial line defects can 
play in controlling the precipitation.   This mechanism should also be generally applicable 
to other rocksalt/tetradymite telluride systems.  Our detailed work on the AgSbTe2/Sb2Te3 
system also sets the stage for our work discussed in Section 3 on the relationship between 
thermoelectric transport properties and growth of second phase precipitates in this 
system. 

2.1 Precipitation of Ag2Te in AgSbTe2 

2.1.1 Phase stability and crystal structure 
 

The equilibrium phase diagram [13] for the pseudobinary Ag2Te–Sb2Te3 slice of 
the ternary Ag–Sb–Te system is shown in Fig. 2.1.  For simplicity, the compound with 
approximate composition AgSbTe2 is labeled as the δ phase throughout this report, since 
this single-phase compound exists over a wide range of stoichiometries. The single-phase 
compound is generally thought to be a rocksalt-structured compound with Ag and Sb 
atoms distributed randomly on one fcc lattice and Te on another fcc lattice displaced by 



 

13 

[1/2 1/2 1/2]a (a = 6.078 Å) [14]. However, recent work [15], based on X-ray diffraction, 
has suggested alternative ordered tetragonal and trigonal structures, reopening questions 
about the actual structure of AgSbTe2. 

There is also some disagreement in the literature about the location of the δ phase 
boundaries. Some assessments show the exact AgSbTe2 stoichiometry as being within the 
δ phase boundaries over a range of temperatures [16-18], while others indicate that this 
stoichiometry is always in a two-phase region [13, 19]. Fig. 1 is based on this latter 
interpretation of the phase equilibria. Here, the single-phase δ region is enriched in Sb 
away from the exact composition of AgSbTe2 and extends up to 31 at. % Sb at 575 °C; 
thus, at the exact composition of AgSbTe2, and at temperatures between 360 °C and 548 
°C, the system falls in the two-phase coexistence region for Ag2Te and δ. This 
interpretation is supported by previous X-ray diffraction studies of AgSbTe2 that have 
detected peaks associated with Ag2Te (e.g., [17] [19, 20]).  Although X-ray diffraction 
has shown the presence of Ag2Te, there has been no detailed microstructural analysis of 
the system. Thus, very little is known about the formation of Ag2Te in AgSbTe2, whether 
as a result of the eutectic solidification process or by solid-state precipitation. The 
analysis is further complicated by the transformation of Ag2Te from a cubic to a 
monoclinic phase when cooled below 145 °C [21, 22]. 
 

To address these compositional and structural questions, an ingot of 
stoichiometric AgSbTe2 was prepared and its microstructure was investigated using a 
suite of characterization techniques. The formation of a two-phase mixture of cubic δ and 
monoclinic Ag2Te was verified and the ambiguity in interpreting the δ-phase diffraction 
pattern was resolved. A particular focus was placed on (1) confirming that δ has the 
rocksalt structure, and (2) providing an explanation for the orientation relationship 
observed in the electron diffraction patterns between the monoclinic Ag2Te phase and δ. 
The analysis suggests that this relationship is a direct result of the close alignment of the 
Te sublattices in both the matrix and precipitate phases and likely initiates with the 
nucleation of high-temperature cubic Ag2Te. 

 

2.1.2 Experimental Procedure 
 

A polycrystalline ingot of the stoichiometric composition, AgSbTe2, was prepared 
by melting the elemental components and solidifying the material. The elemental 
components, in pellet form (99.999% pure Ag, 99.9999% pure Sb and Te, Alfa Aesar), 
were loaded into a quartz ampoule. This ampoule was then evacuated to a pressure less 
than 10−4 Torr and sealed. Precise measurements of the weight of the initial components 
determined the composition of the mixture to be 25.00 at. % Ag, 25.01 at. % Sb, and 
49.99 at. % Te. The sealed quartz ampoule containing the pure elements was heated in a 
vertical tube furnace (Lindberg-Blue) to 800 °C and held for 8 h to produce a well-mixed 
liquid. The furnace was cooled at a rate of 6.67 °C/min to 600 °C and was held for 30 min 
just above the liquidus temperature (575 °C) before cooling at 0.1 °C/min to 500 °C. The 
system was held for 48 h to allow formation of the equilibrium phases and large grains. 
Finally, the furnace was turned off and the system was allowed to cool to 150 °C at 
≈3°/min and from 150 °C to room temperature at ≈0.7°/min. 
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The microstructure and local composition of the ingot were analyzed using 

electron microprobe and transmission electron microscopy (TEM). Specimens for TEM 
analysis were prepared by mechanical dimpling (Gatan 656 Dimple Grinder) and argon 
ion milling using a liquid nitrogen cooled stage (Gatan 600 Dual Ion Mill). Coarse-scale 
compositional measurements were made by wavelength dispersive X-ray spectroscopy 
(WDS) in a microprobe (JEOL JXA-8200). Higher resolution imaging and diffraction 
analyses were performed using transmission electron microscopy (120 kV JEOL 1200EX 
and 200 kV JEOL 2010F). Compositional measurements in TEM were made by energy 
dispersive X-ray spectroscopy (EDS) (Oxford, Inc.). 
 

2.1.3 Results 
 
The combination of electron imaging, diffraction, and chemical analysis presented 

in the next three sections confirms that stoichiometric AgSbTe2 phase separates into a 
mixture of monoclinic Ag2Te and rocksalt δ with a disordered cation sublattice. First, a 
measured electron diffraction pattern from fine-scale microstructural features with two 
possible interpretations is presented. Single-phase and two-phase interpretations of the 
diffraction pattern are compared with the data, and evidence is presented that suggests 
this pattern is a result of a two-phase mixture. Larger-scale features from the same sample 
are isolated and electron diffraction patterns and EDS spectra from the matrix and 
precipitate phases are analyzed independently. The structural similarity between the 
large-scale and fine-scale features suggests that they are both the result of a two-phase 
mixture. The ambiguity in the diffraction analysis is a direct result of the crystallographic 
alignment of the matrix and precipitate phases, the origin of which is discussed. 
 

Matrix/precipitate orientation relationship 
 

A typical TEM bright-field (BF) image and diffraction pattern of the solidified 
ingot oriented along a [0 0 1] zone axis orientation are shown in Fig. 2.2(a) and (b). A 
number of reflections are present in addition to those expected for a rocksalt structure. 
Careful examination of the less intense “extra” reflections, such as those labeled c–f and 
p–r, using dark-field (DF) imaging revealed that each reflection excited a series of 
particles approximately 10 nm in diameter. Fig. 2.2(c)–(f) are DF images that were 
recorded using the reflections labeled c–f, respectively, in Fig. 2.2(b). Each “extra” 
reflection excites a unique and spatially distinct set of equiaxed particles. 
 

Two possible interpretations of the diffraction are considered next. One possibility 
is that the material is single phase and consists of the recently proposed tetragonal 
structure of AgSbTe2 [15]. The proposed tetragonal structure is similar to the rocksalt 
structure but has an ordered cation sublattice. An alternative possibility is that the 
material consists of two phases: monoclinic Ag2Te precipitates in a rocksalt δ-phase 
matrix. This latter interpretation is consistent with the expectation from the phase diagram 
shown in Fig. 2.1. Specifically, at 500 °C, the equilibrium phases present in this system 
should be cubic Ag2Te, which transforms to a monoclinic structure below 145 °C, and 
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rocksalt δ. As discussed next, diffraction simulations are consistent with the latter 
interpretation. 

 
A simulated diffraction pattern of the tetragonal structure provided by Quarez et 

al. [15]is shown in Fig. 2.2(g). In order to replicate all of the less intense reflections of 
Fig. 2.2(b), it is necessary to simulate three variants of the ordered tetragonal structure 
that are crystallographically aligned with a specific orientation relationship. The 
orientation relationship is defined in the equation below: 
 

[001](110)1 || [110](11 0)2

[001](110)1 || [110](001)3

 
 

(2.1)

where [u v w]i ||[u v w]j refers to a specific set of parallel directions, and (h k l)i||(h k l)j 
refers to a specific set parallel planes in the i and j variants, respectively. In the 
simulation, variants 1, 2, and 3, are shown in orange, blue, and green, respectively. The 
black reflections are shared by all variants. The diffraction pattern variants are more 
easily differentiated in the less intense reflections because the more intense reflections 
have overlapping information. 
 

Alternatively, the diffraction pattern in Fig. 2.2(b) can be indexed as a two-phase 
mixture of monoclinic Ag2Te precipitates (a = 8.1616 Å, b = 4.46651 Å, c = 8.97335 Å, 
and β = 124.1528° [22]) exhibiting several symmetric variants of an orientation 
relationship within a δ matrix. A simulation of this diffraction pattern is shown in Fig. 
2(h), in which reflections from the δ phase are shown in black and the four orientation 
variants of the monoclinic Ag2Te phase [22] are shown in blue, green, red, and purple. 
The orientation relationships are defined as: 
 

OR1:[001](200) || [021](112 )Ag2Te  green

OR2 :[001](020) || [021](112 )Ag2Te  blue

OR3:[001](200) || [2 01 ](112 )Ag2Te  red

OR4 :[001](020) || [2 01 ](112 )Ag2Te  purple

 

 
(2.2)

 
The interpretation of this pattern as a two-phase mixture of monoclinic Ag2Te and 

δ provides a more reasonable explanation of the diffraction pattern. One distinguishing 
feature between the tetragonal and two-phase simulations of the diffraction pattern is that 
the reflections labeled d, e, and f in Fig. 2.2(b) should be collinear for a tetragonal 
structure, but offset for Ag2Te. Since they are not collinear, the data is consistent with the 
two-phase diffraction pattern simulation. The combined signal from the dark-field images 
should also completely fill space if the tetragonal simulation is correct; this is not the 
case. A simulation of the multiple variants of Ag2Te precipitates in δ, like the one shown 
in Fig. 2.2(h), is consistent with the observed diffraction pattern in Fig. 2.2(b). 
 

Data from larger-scale microstructural features is presented in the next sections to 
provide more direct compositional and structural evidence that the two phases present in 
the microstructure are the rocksalt δ phase and the monoclinic Ag2Te phase. The 



 

16 

similarities in the diffraction patterns and the orientation relationships between the fine-
scale and larger-scale features suggest that they are both the result of the same two-phase 
mixture. 

Composition and structure of the matrix phase 

Diffraction and chemical analysis confirmed that the matrix phase is a Sb-
enriched, rocksalt structure. Surveys of the sample at lower magnification identified some 
regions without second-phase precipitates in which the matrix phase could be analyzed 
directly. Based on the phase diagram (Fig. 2.1), the δ phase should be enriched in Sb and 
depleted in Ag by several atomic percent relative to 25 at. %. Compositional 
measurements of the matrix phase using electron microprobe yielded a composition of 22 
at. % Ag, 28 at. % Sb, and 50 at. % Te, consistent with such an enrichment, the δ phase 
boundaries of the phase diagram, and within experimental error of measurements from 
previous work (Ag19Sb29Te52) [23]. Similar results were obtained (within 1 at. %) from 
EDS measurements in the TEM. 

Several zone axis diffraction patterns were obtained and compared to the proposed 
structures for AgSbTe2, including the rocksalt structure originally proposed by Geller and 
Wernick [14] and several alternative structures recently proposed by Quarez et al.[15]. 
Representative diffraction patterns from the matrix phase are shown in Fig. 2.3(a). As 
summarized in the table in Fig. 3(a), these diffraction observations are consistent with the 
rocksalt structure. Simulations of the proposed ordered structures, including ordered 
tetragonal, cubic, and trigonal structures, did not reproduce the diffraction patterns 
observed for the matrix phase. We calculated electron diffraction patterns for these 
different structures and found, in each case, that the ordering produces additional 
reflections (a reflection corresponding to a 4.29 Å d-spacing, as one example) that are not 
present in our measured diffraction patterns from the matrix phase. 

Composition and structure of the precipitate phase 

Electron microprobe and diffraction analyses on larger volumes of the precipitate 
phase confirmed the presence of monoclinic Ag2Te. Some regions of precipitate phase 
were large enough to be measured and analyzed independently from the matrix phase. 
The composition of the Ag-rich lamellae was 67 at. % Ag and 33 at. % Te (less than 1 at. 
% Sb), as measured by electron microprobe. As the molten ingot is cooled below 575 °C, 
it goes through a two-phase δ + L region in the phase diagram. At 548 °C, the remainder 
of the liquid phase is enriched in Ag (40 at. % Ag) and undergoes eutectic solidification. 
The final stage of the solidification process produces relatively large, 10-μm-wide, 
alternating lamellae from which independent diffraction and chemical analysis on each 
phase in the two-phase mixture was obtained (images of these features can be found in 
the literature, e.g. [18, 24]). 

A number of diffraction patterns from the lamellae were obtained to establish the 
orientation relationships of the lamellae with respect to the matrix. The lamellae always 
preserved one of the OR variants in Eq. 2.2. Selected-area diffraction patterns of these 
lamellae are shown in Fig. 2.3(a). The diffraction patterns could be indexed consistently 
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according to the monoclinic structure[22]. Both the composition and diffraction data 
confirmed the presence of monoclinic Ag2Te. As shown in Fig. 2.2(h), observed 
diffraction patterns, like those shown in Fig. 2.2(b) with “extra” reflections, can be 
explained as a two-phase mixture of cubic δ phase with fine-scale monoclinic Ag2Te 
precipitates having the orientation variants defined in Eq. 2.2. These smaller precipitates 
likely formed while the sample was cooled between 548 °C and 360 °C as a result of a 
supersaturation of Ag in δ rather than from eutectic solidification. This interpretation of 
the data is consistent with the chemical and diffraction analysis. 

Additional chemical analysis was performed on ≈100-nm-wide ligaments of the 
precipitate material that likely formed as secondary branches of the lamellae during 
eutectic solidification. The corresponding BF and DF images of Fig. 3(b) and (c) show 
examples of these ligaments. When a reflection for one monoclinic variant is chosen to 
create the DF image in (c), then only the regions of the precipitate exhibiting that specific 
crystallographic orientation variant become bright. The bright and dark bands in the 
precipitate BF and DF images correspond to domains of different orientation variants of 
the monoclinic structure. Corresponding EDS spectra for the precipitate (blue) and matrix 
(red) are shown in Fig. 3(d). The measured intensity ratios from the EDS spectra of 
AgLα/TeLα are 1.2 in the precipitate versus 0.72 in the matrix, indicating a precipitate 
enriched with Ag. It was not possible to isolate the signal from these 100-nm-wide 
ligaments because they were embedded in the matrix. Although the phase diagram 
suggests that a eutectoid reaction occurs at 360 °C in which Sb2Te3 precipitates form, 
there was no evidence of Sb2Te3 precipitates in the observed microstructure. The 
formation of Sb2Te3 precipitates may have been suppressed by a sufficiently fast cooling 
rate, ≈3°/min to 150 °C and 0.7°/min to room temperature, as power to the furnace was 
simply turned off.  However, previous experiments [19, 25] on similar systems failed to 
reproduce the eutectoid reaction that was reported by Offergeld et al. [18] and Stegherr et 
al. [26]. The microstructural data in this study is consistent with the presence of only 
Ag2Te and δ. 

2.1.4 Origin and Significance of the Orientation Relationship 
 

The diffraction and chemical analysis presented in earlier sections demonstrated 
the existence of an orientation relationship between monoclinic Ag2Te and δ. The origin 
and significance of this orientation relationship are now discussed. It will be shown that 
the precipitation of Ag2Te begins with the close alignment of the Te sublattices in both 
phases at elevated temperature. Above 145 °C, the equilibrium phase of Ag2Te has a 
cubic crystal structure, with Te atoms occupying the fcc positions and four Ag atoms at 
the 1/4 1/4 1/4 positions to form a zincblende structure with the anions, while the other 
four Ag atoms are distributed statistically over a large number of lattice positions[22]. 
The lattice parameter of the cubic phase varies with temperature and has been reported as 
6.6808 Å at 650 °C [22]. Studies of the cubic-to-monoclinic phase transformation in 
Ag2Te showed that the monoclinic basis vectors a, b, and c have a simple relationship to 
the cubic basis vectors a1, a2, and a3[21]:  
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a  1
2 (a1  a2 ) a3

b  1
2 (a1  a2 )

c  a2  a1

 

 
(2.3)

 
Fig. 2.4(a) shows schematically the ideal relationship between the cubic and 

monoclinic crystal structures. In this figure, only the positions of the Te atoms are shown. 
The monoclinic unit cell is shown in red, and its relationship to the cubic unit cell is 
visible in the figure. Small displacements of the Te atoms from the perfect positions of 
the cubic lattice create the monoclinic structure. This type of displacive transformation 
can occur rapidly because it does not require diffusion. Thus, the cubic phase is not likely 
to be kinetically stabilized at room temperature, which explains why it is not observed. 
The calculated distortions in the monoclinic phase from the ideal fcc structure are a = 
−0.94%, b = 4.5%, c = 4.0%,  = 0%,  = 0.89% and  = 0%. Previously, the 
orientation relationship between the cubic and monoclinic Ag2Te phase was defined as 
[21]: 
 

[001]cubic || [201]monoclinic

[010]cubic || [021]monoclinic

[100]cubic || [021 ]monoclinic

 

 
(2.4)

The orientation relationship between δ and monoclinic Ag2Te defined in Eq. (2.2) 
is symmetrically equivalent to the orientation relationship between cubic and monoclinic 
Ag2Te. A generalized version of this relationship is (<u v w> and {h k l} represent 
families of symmetrically equivalent directions and planes, respectively): 

 
100  ||[021];[2 01 ];[021 ]Ag2Te

{010} || (1 12);(112 )Ag2Te

 
 

(2.5)

 
There are a total of twelve possible symmetric variants (6 parallel zone axes × 2 

parallel sets of planes = 12 variants) for the monoclinic-to-cubic orientation relationship. 
Schematics that illustrate additional orientation variants obtained by 90° rotations about 
cubic axes are shown in Fig. 2.4(b)–(d). These operations generate the four orientation 
variants in Eq. (2). Operations with additional rotation symmetry operators produce all 
twelve variants. 

The crystallographic alignment between the monoclinic phase and δ at room 
temperature suggests that the two phases must be aligned at elevated temperature also. As 
a result, it can be inferred that the cubic phase of Ag2Te is topotactically aligned with the 
δ phase in a cube-on-cube orientation at elevated temperature even though the lattice 
misfit between the two cubic phases is relatively high (approximately 8–10%). The cubic 
Ag2Te phase can form topotactically on the already present Te sublattice in δ by 
rearranging Ag atoms and displacing Sb atoms. The extent of diffusion required for the 
phase transformation is greatly reduced because the Te is already positioned on the 
appropriate lattice sites for the new phase. In this way, the Te sublattice in the δ phase 
provides a nucleation template for the cubic Ag2Te phase and its formation occurs 
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without an energetically costly transformation event. A displacive transformation then 
provides an easy route to the monoclinic structure. This sequence of incremental 
microstructural changes leads the final microstructure observed at room temperature. 
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Figure 2.1 Pseudobinary Ag2Te–Sb2Te3 slice of the ternary Ag–Sb–Te phase 
diagram[13]. The rocksalt AgSbTe2 phase is only stable in the region marked . 
Note that there exists considerable disagreement in the literature concerning the 
exact phase boundaries for the  region (see text). Below 145 ◦C, the cubic -
Ag2Te phase transforms into the monoclinic -Ag2Te phase. Each phase is 
identified with a Greek letter: ()monoclinic Ag2Te, () face-centered cubic 
Ag2Te, () body-centered cubic Ag2Te, and () trigonal Sb2Te3. The dot-dash grey 
arrows identify the thermal treatment of the sample in this study. 
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Figure 2.2 (a-f) see next page for caption. 
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Figure 2.2 (see a-f on preceding page). Bright-field image (a) of a 
solidified ingot in a [0 0 1] zone axis orientation with dotted lines marking 
the region used for the higher-magnification dark-field images in (c)–(f). 
Corresponding diffraction pattern (b) with extra reflections that do not 
belong to a disordered rocksalt structure are labeled c, d, e, f, p, q, and r. 
Each image (c)–(f) corresponds to its respective extra reflection in (b). A 
comparison between simulated zone axis diffraction patterns for (g) three 
variants of the tetragonal structure (orange, blue, green, and black for 
reflections shared by all variants), and (h) four orientation variants of a 
monoclinic Ag2Te (purple, red, blue, and green) phase in a cubic,  
(black) matrix show that (h) is the more likely possibility because d, e, 
and f in (b) are not collinear. 
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Figure 2.3a Measured d-spacings from several indexed high-symmetry zone axes and 
corresponding diffraction patterns from matrix and precipitate phase. Interplanar 
spacings were calculated from crystallographic information contained in refs. [14] and 
[22]. The diffraction data is consistent with the rocksalt structure, for which Ag and Sb 
are distributed randomly on the cation sublatttice, and the monoclinic Ag2Te phase.. 
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Figure 2.3(b-d) Corresponding (b) BF and (c) DF images of secondary branches of 
lamellae that formed during eutectic solidification. The intensity of the EDS spectra in (d) 
of the blue and red points shown in (b) and (c) shows that the precipitate is enriched in 
Ag. The intensity ratio of AgL˛/TeL˛ is 1.2 in the precipitate, compared to 0.72 in the 
matrix. Accurate compositional quantification is not possible because the precipitates are 
embedded in the matrix. 
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Figure 2.4 (a) Schematic showing the relationship between the cubic basis vectors a1, 
a2, and a3 and the monoclinic basis vectors a, b, and c of Ag2Te. Only the Te atoms are 
shown. Small displacements of the Te atoms relative to the ideal cubic structure shown 
in (a) occur rapidly during the diffusionless transformation at 145◦C and result in the 
observed monoclinic structure. The monoclinic unit cell is shown in red. Three other 
symmetric variants, which are shown in (b), (c), and (d), are related to (a) by a 
90◦rotation about a3, a 90◦ rotation about a2, and a 90◦ rotation about a2 followed by a 
90◦ rotation about a3, respectively. There are a total of 12 symmetric variants of the 
orientation relationship.  
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2.2 Interfacial Defect Structure at Sb2Te3 Precipitates in AgSbTe2 
 

It is also useful to consider interfaces between rocksalt structured tellurides, such 
as  in PbTe [5]and AgSbTe2 [6],  and tetradymite structured tellurides[8], such as Bi2Te3 
and Sb2Te3 [7]. That such compounds consist of similar stackings of close-packed metal 
and chalcogen layers (see Fig. 2.5) suggests the possibility of forming well-ordered 
coherent or semicoherent heterophase interfaces.  This notion has motivated recent 
interest in combining rocksalt and tetradymite-structured tellurides as nanocomposites, 
with the goal of improving thermoelectric properties by using high densities of embedded 
interfaces to reduce thermal conductivity through increased phonon scattering [4].   One 
route to producing such multi-phase thermoelectric structures is through solid-state phase 
transformations. For instance, recent work has explored the growth of lamellar 
PbTe/Sb2Te3 nanocomposites through control of eutectoid decomposition reactions and 
solid-state precipitation [27-30].    

In this section, we investigate an interface between AgSbTe2 and Sb2Te3 to gain 
insight concerning the transformation mechanism between these rocksalt and tetradymite 
structured tellurides. We use high-resolution transmission electron microscopy (HRTEM) 
to analyze a line defect at the {111}AgSbTe2/(0001)Sb2Te3 interface.  From this analysis 
we discuss the role that such defects may play in the growth of the tetradymite-structured 
precipitates within rocksalt structured tellurides. 

2.2.1 Experimental procedure 
To study the interface between Sb2Te3 and AgSbTe2, we prepared an ingot by 

melting elemental constituents in an appropriate ratio and then solidifying and annealing 
this material.  We chose a composition of 16.7 at % Ag, 30.0 at % Sb, and 53.3 at % Te.  
This composition falls on the Ag2Te-Sb2Te3 pseudo-binary section of the Ag-Sb-Te 
ternary phase diagram [13, 18, 19] and corresponds to a composition of x=0.642 in the 
formula (Ag2Te)1-x(Sb2Te3)x.  As noted in section 2.1, the single-phase rocksalt phase 
"AgSbTe2"  exists over a range of stoichiometries.  For large enrichments of the Sb2Te3 
mole-fraction, cooling from the solid-solution region yields plates of Sb2Te3 that lie 
parallel with the {111} planes of the rocksalt phase [16, 19].  Our goal was to create a 
compound that could be supersaturated in Sb2Te3 at elevated temperature such that a 
solid-state precipitation reaction would occur at reduced temperature to form a two-phase 
mixture. The composition we chose for our samples is significantly enriched in Sb2Te3 
such that it is possible to form a supersaturated “AgSbTe2” rocksalt compound at elevated 
temperature and precipitate Sb2Te3 in the solid state at reduced temperature. 

The elemental constituents, in pellet form (99.999% Ag, 99.9999% Sb and Te, 
Alfa Aesar) were loaded into a quartz ampoule that was then evacuated to a pressure less 
than 10-7 Torr and sealed.   We chose a thermal treatment to precipitate Sb2Te3 following 
the phase-diagram as assessed by Maier [13].  This treatment consisted of melting and 
holding the material at 850°C for 3.5 h with gentle agitation three times over this period; 
solution annealing the material in the single-phase rocksalt "AgSbTe2" region of the 
phase diagram at 552°C for 112 h; and, finally, annealing the material in the two-phase 
AgSbTe2+Sb2Te3 region of the phase diagram at 500°C for 4.5 h. Following each of these 
steps the material was quenched into iced brine. After annealing for 112 h at 552°C, a 
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powder XRD diffraction pattern confirmed that all peaks belonged to the AgSbTe2 phase. 
Only after the anneal at 500°C was the formation of a second phase detected, which is 
consistent with a solid-state precipitation reaction.   Specimens for TEM analysis were 
prepared by mechanical dimpling, followed by argon ion milling using a liquid-nitrogen-
cooled stage.  Electron microscopic observations were conducted in a 200kV JEOL 
2010F TEM and a 400 kV JEOL 4000EX HRTEM.    
 

2.2.2 Results and Discussion 
Lower magnification observations of the microstructure following annealing 

showed the formation of plate-like precipitates of the Sb2Te3 phase.  A TEM image of 
these plates is shown in Fig. 2.6.  Selected area electron diffraction shows that the plates 
are oriented with {0001}Sb2Te3

|| {111}AgSbTe2and  21 1 0 Sb2Te3
||110 AgSbTe2 .   This 

orientation relationship aligns the close-packed planes and directions in both phases. 
These plates are similar in morphology and orientation relationship to the Sb2Te3 plates in 
PbTe recently analyzed by Ikeda et al. [29]. 

We observed atomic-scale steps along the interface.  An HRTEM image of one 
such step is shown in Fig 2.7.  Interfacial defects with step and dislocation content, 
termed interfacial "disconnections"[31], play important roles in many solid-state phase 
transformations.  A critical question is what role such defects play in the atomic 
rearrangements required for the  transformation from rocksalt to tetradymite to occur.  To 
address this question, we analyzed the geometrical and dislocation properties of this 
defect. 

We employed the formalism developed by Pond and Hirth [32, 33] to analyze the 
defect by a circuit mapping procedure.  The Burgers vector of a line defect at an interface 
between two crystals,  and , can be determined by circuit-mapping from: 
b  [C()  PC()], where C() and C() are the segments of the circuit in the  and  
crystals and P is a matrix that transforms a vector from the crystal coordinates of  to 
those of .  In our case, we take AgSbTe2 and Sb2Te3 as  and , respectively.   Figure 
2.7 shows the circuit elements determined from the HRTEM image and gives the values 
for C() and C().  To define the Burgers vector, we chose a reference state for which the 
(0001)Sb2Te3 and {111}AgSbTe2 planes are aligned and strained into coherency. With this 
consideration, and for the coordinate system defined here, P is obtained from: 

   P  LAM 

1

2

1

6

1

3

0
2

6

1

3
1

2

1

6

1

3























r 0 0

0 r 0

0 0 1















1
1

2
0

0
3

2
0

0 0 

























r

2

r

2


3

0
r

2


3

r

2
0


3























        (2.6) 



 

28 

Here, M converts from  crystal coordinates to unit orthogonal coordinates, A brings  

and  into coherency, and L converts from unit orthogonal coordinates to  crystal 

coordinates.  Finally, r is the ratio of distances between close-packed atoms in the rock-

salt and tetradymite phases (i.e., r  acub / 2ahex =1.008) and  is the c/a ratio in the 

tetradymite phase ( =7.136).  (Note that in this equation, the directions in the tetradymite 

phase are expressed in three-index rather than four-index notation).  Table 1 summarizes 

the Burgers vector and step character of the defect analyzed in Fig. 2.7.   

The physical significance of this defect can be understood by considering the 

relationship between the rocksalt and tetradymite structures.  Frangis and co-workers 

have previously discussed similarities between rock-salt and tetradymite chalcogenide 

compounds of the general form MX and M2X3 [34].  As they discuss, the stacking 

sequences of the close packed planes in these structures (i.e. (0001) and {111} in the 

M2X3 and MX structures, respectively) can be represented symbolically as: 
 

AC B AC B AC B ... (MX)       (2.7a) 

ACB CBA BAC ...         (M2X3)    (2.7b) 

In this representation, the Roman letters (A,B,C) represent the chalcogenide layers (e.g. 

Te, Se), the Greek characters represent the metal layers, and each increment in either the 

Roman or Greek alphabet represents a lateral displacement of the layer by a vector of 

type 1
3 101 0  (or equivalently 1

6 121 relative to the cubic crystal system).   

These layers are labeled accordingly in the schematics of the MX and M2X3 

structures shown in Fig. 2.5.  The essential difference between the two structures is the 

following:  in the MX structure, the layers alternate between metal and chalcogen layers 

throughout the structure, whereas, in the M2X3 structure, two adjacent chalcogen layers 

arise every five planes within the sequence.   The M2X3 structure can thus be generated 

from the MX structure by removing every 6th metal plane, closing the resulting gap, and 

shearing each remaining 5-layer block laterally to restore the correct stacking sequence.  

The interfacial disconnection that we have observed here provides a means to 

accomplish this series of operations.  To see this, it is helpful to decompose the Burgers 

vector into components normal and parallel to the interface plane (see Table 1).  The 

normal component, b , arises from the difference in step heights in the two crystals.  In 

the AgSbTe2 crystal () this step corresponds to 6 close-packed planes ( h  3acub ), 

whereas in the Sb2Te3 crystal () the step consists of 5 close-packed planes ( h  chex /3).    

As illustrated schematically in Figure 4, this difference in step heights is consistent with 

that expected for removal of one of the close-packed metal planes from the rock-salt 

phase by dislocation climb.  This process on its own would produce two adjacent layers 
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of Te atoms, but these layers would be left in the wrong stacking sequence.  As shown in 

Figure 4(b), motion of the parallel component of the disconnection, b||  acub /6 1 21  , 
which is analogous to a Shockley partial dislocation, shears these layers into the correct 

stacking sequence, thereby moving the rocksalt/tetradymite interface up to this plane. 

Growth of the Sb2Te3 plate requires a net influx of Sb and rejection of Ag.  

(Although some Ag is soluble in Sb2Te3, our microprobe measurements indicate that this 

is less than 1 at. % Ag is present in Sb2Te3 at equilibrium).  The atomic flux for motion of 

the disconnection can be quantified from its geometrical properties using the theory 

developed by Hirth and Pond [33].  Specifically, the number of atoms of species i, Ni, 

required to move a length of disconnection, L, by a distance along the interface, y, can 

be determined from: 
    

Ni

Ly
 Xi

  Xi
 h  Xi

b           (2.8) 

where h is the overlap step height (in this case equal to h  chex /3) and b  is the normal 
component of the Burgers vector ( 3acub  chex /3).  In this expression, the left and right 
terms represent the fluxes associated, respectively, with the step and dislocation parts of 
the disconnection.   

Table 2.2 shows the computed atomic fluxes required to move the disconnection 
for the simplified case in which the two phases are at the exact stoichiometries of 
AgSbTe2 and Sb2Te3.   Here, the flux of Te atoms associated with the dislocation and step 
parts of the disconnection are exactly opposite, and therefore cancel. Thus, long-range 
diffusive transport of Te is required for motion of the disconnection.   In contrast, the Sb 
and Ag fluxes are largely associated with motion of the step part of the disconnection, 
with the total Ag flux being a factor three larger than the total Sb flux and oppositely 
signed.   This analysis can be extended straightforwardly to more realistic compositions 
based on the actual bounds of the solid solution regions for the two phases, in which case 
the rock-salt phase is enriched in Sb and Te, while the tetradymite phase also has Ag and 
is deficient in Te.  Under these more realistic conditions defect motion leading to growth 
the tetradymite plates would thus also require a net rejection of Te. 

 

2.2.3 Conclusion 
 The type of analysis presented here should be generally applicable to other rock-
salt/tetradymite telluride systems.  In addition to providing insight concerning the 
transformation mechanism, the analysis of such defects should also help in understanding 
how misfit is accommodated at such interfaces.  In the AgSbTe2/Sb2Te3 system the 
{111}/(0001) misfit is reasonably small (~0.8%); however in other rock-salt/tetradymite 
telluride systems of interest, such as PbTe/Sb2Te3, the misfit can be much larger. An 
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improved understanding of the atomic mechanisms underpinning interface formation and 
stability in these systems should be useful in tailoring processes for forming 
thermoelectric nanocomposite of these materials and in understanding what controls their 
long-term stability. 



 

31 

 
 

Table 2.1.  Summary of the geometrical properties of the observed disconnection 

at the AgSbTe2/Sb2Te3 interface. 
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chex

3 3
,

8

6
acub 

chex

3 3
,

5

6
acub 

chex

3 3







 0.7966, 2.2424,  0.7966  Å  

| b | 2.509 Å 

Normal Component: 

b  acub 
chex

3 3







111  

| b | 0.3747 Å  

Parallel Component: 

b|| 
acub

6
1 2 1   

| b|| | 2.481 Å 

Step Heights: 

h  3acub 10.527 Å                h 
1

3
chex 10.152 Å  

 

The lattice parameters are AgSbTe2:  acub=6.078Å [14];  Sb2Te3:  ahex=4.264Å, 
chex=30.458Å [35].   refers to the AgSbTe2 crystal and  refers to the Sb2Te3 crystal.  
The Burgers vector is expressed relative to the  crystal (AgSbTe2) as oriented in Figure 
2.7.   
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Table 2.2.  Summary of the mass flux required for motion of the disconnection at 

the AgSbTe2/Sb2Te3 interface. 
 

Species 
Step flux 
(atoms/Å2) 

Dislocation 
flux (atom/Å2) 

Total flux
(atom/Å2) 

 
 

Ag 

2

3

chex

acub
3  

 

+0.09043 

2

acub
3 3acub  chex /3 

 

+0.00334 

2 3

acub
2

 

 

+0.09377 
 
 

Sb 

2

3

chex

acub
3 

8 3

3acub
2

 

 

-0.03459 

2

acub
3 3acub  chex /3  

 

+0.00334 


2 3

3acub
2  

 

-0.03126 
 
 

Te 


4

acub
3 3acub  chex /3 

 

-0.00668 


4

acub
3

3acub  chex /3 
 

 +0.00668 

 

 
0 

 

In this table, we have chosen a sign convention for which a negative flux corresponds to 
transfer of atomic species into the defect for motion of the defect to the left with reference 
to Figure 2.7. 
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Figure 2.5. Schematic showing crystal structures for the  (a) rock-salt and (b) 
tetradymite structured tellurides.  The rocksalt structure (a) is projected along 
[10 1 ] and the  tetradymite structure (b) is projected along [2 110].  For both 
phases the stacking of the close-packed planes are given by the lettering with 
the metal (e.g. Ag, Sb) and tellurium planes indicated by Greek and Roman 
letters, respectively.  
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 Figure 2.6.  (a) TEM micrograph showing example of an Sb2Te3 plate in rock-
salt AgSbTe2 matrix.  Electron diffraction (b) shows that these plates are oriented 
with (0001)Sb 2Te3

|| (111)AgSbTe2and [2 110]Sb 2Te3
|| [10 1 ]AgSbTe2 . 
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Figure 2.7.  HRTEM image of the step-defect, or "disconnection," analyzed in 

this section. The step joins 6 close-packed planes in the upper AgSbTe2 () 

crystal ( h  3acub ) crystal to 5 close-packed planes in the Sb2Te3 () crystal 

( h  chex /3).  From the circuit elements of C()  1
4 25, 38,  25  1

4 1,0,1  in 

the upper crystal and C( )  1
6 65,130, 2  1

2 1,0,0  in the lower crystal, 

application of equation 2.6 gives a Burgers vector of 

b 
5

6
acub 

chex

3 3
,

8

6
acub 

chex

3 3
,

5

6
acub 

chex

3 3







 (expressed in the rocksalt 

coordinate frame). 
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Figure 2.8. (a) Schematic of the observed interfacial disconnection. (b) 

Sequence of rearrangements produced by motion of the perpendicular and 

parallel components of the defect.  Removal of the metal plane (g) in (i) by climb 

of the dislocation component normal to the interface, b, produces two adjacent 

layers of Te in (ii), but leaves these layers in the wrong stacking sequence, BA.  

Glide of the parallel component, b|| , between these layers shears the crystal into 

the correct stacking, BC, thereby moving the rock-salt/tetradymite interface up to 

this plane. 
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3. Influence of Nanostructuring and 
Heterogeneous Nucleation on zT in AgSbTe2 
 

3.1 Introduction 
As discussed in the previous section, solid-state precipitation provides one route 

to form and control nanoscale inclusions within a bulk material. In this section, we 
investigate how nanoscale solid-state precipitation systematically affects zT in a bulk 
thermoelectric material. Sb2Te3 precipitates were embedded within Sb-rich AgSbTe2. In 
this system, we could vary precipitate size from nanometers to microns while tracking , 
S, and . The transport data tracked the nucleation/growth and coarsening regimes of 
precipitation, separately determined from electron and optical microscopy. By thinking of 
this system as an AgSbTe2/Sb2Te3 composite, we found that thermoelectric properties 
could be understood using effective medium theory simulations.  Effective medium 
theory relates the transport properties of a macroscopically heterogeneous composite to 
that of its components (see e.g., ref.[36]). It was shown that the zT of a two component 
composite can never be larger than that of its constituents[37]. The effective medium 
behavior found in the Sb2Te3/AgSbTe2 system therefore shows that precipitates do not 
increase zT in this case. Using microstructural measurements, we discovered that 
precipitates almost entirely nucleated at planar defects in the matrix and at grain 
boundaries. This heterogeneous nucleation caused precipitates to form a complex, 
interconnected network. We will argue that this is one reason our data is consistent with 
effective medium theory. One of the main conclusions of this work is that achieving zT 
improvement from nanostructuring through solid-state precipitation will require avoiding 
heterogeneous nucleation because this promotes effective medium behavior in transport 
properties.  

3.2 Experimental Procedures 

3.2.1 Sample Preparation 
Our goal was to control second phase nucleation and growth of Sb2Te3 in the 

homogeneous AgSbTe2 matrix. The alloy “AgSbTe2” forms within the Ag2Te-Sb2Te3 
pseudobinary phase diagram. We found that the two most reliable phase diagrams are 
those reported by Maier et al.[13] and Marin et al.[19].  The positive slope of the Sb-rich 
AgSbTe2 solvus boundary (Fig. 3.1) with Sb content allows one to tune precipitation by 
annealing at lower temperatures. In this system, the relevant precipitate is (Ag-doped) 
Sb2Te3 and the matrix is Sb-enriched AgSbTe2, denoted henceforth as (Ag,Sb)Te. Having 
fixed the Sb content in this study, the equilibrium precipitate volume fraction depends on 
annealing temperature, as does the time scale for precipitation kinetics. We use the 
notation A:B to denote precipitate A forming in matrix B: (Sb,Ag)2Te3:(Ag,Sb)Te. 

A homogeneous sample was synthesized at the stoichiometry of Ag16.7Sb30Te53. 
The elements (~50 g total, 99.999 % purity) were melted together at 850 °C in a sealed 
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and evacuated quartz tube, followed by quenching to room temperature in ice water. This 
quenching step was critical for minimizing Ag2Te precipitate formation. The sample was 
then annealed in the single phase  region for 120 hours at 552 °C (Fig. 3.1, inset) and 
then quenched in ice water. The final ingot was about 1 cm in diameter and 3 cm long. 
This  phase displayed a simple rocksalt X-ray powder diffraction pattern. No Sb2Te3 
precipitates were observed either with X-ray diffraction or electron microscopy in these 
samples. 

 

3.2.2 Microscopy and Transport Measurements 
Microstructure was analyzed using TEM, SEM, and optical microscopy. Samples 

were polished and viewed in an optical microscope and SEM for coarse scale observation 
and electron micro probe analysis (EMPA). Electron transparent samples for the TEM 
were made by core drilling 3-mm thick discs followed by mechanical dimpling and ion 
milling. Conventional imaging and diffraction experiments were performed in a JEOL 
2010F equipped with an Oxford EDS system and Gatan GIF for chemical analysis. In 
order to accurately measure the width of precipitates, electron diffraction was used to 
orient precipitates edge-on to their habit planes. Powder X-ray diffraction was performed 
on all samples. 

The properties , S, and  were measured simultaneously on bar shaped samples 
using the Thermal Transport Option in a Quantum Design PPMS. For all pieces 
measured, approximately the same geometry (~2 mm2 6 mm) was used in order to 
further reduce systematic errors (e.g. due to geometry and thermal radiation). Four nickel 
contacts were electroplated onto the samples after polishing. Silver epoxy was then used 
to make Ohmic contacts to electrical leads, resulting in good (<1 ) 2-probe resistances. 
Hall effect measurements were performed using the Van der Pauw method and the AC 
Transport bridge of the Quantum Design PPMS up to  80 kOe magnetic field (H). 
Separate pieces were cut from the ingot into square shapes (~2mm2), then thinned to 
~100 m. Nickel contacts followed by silver epoxy were used for 1 mil Au wire electrical 
connections (<1 ) at the side corners. A 1 mA excitation current was used and no 
heating effects were observed. 

3.2.3 Link between precipitation and transport measurements 
In order to induce second phase precipitates at various stages of annealing, five 

pieces were cut from the starting homogeneous ingot at random and then separately 
annealed at 500 °C (heated at 15 °C/min) for 5, 15, 30, 60, and 120 minutes (Fig. 3.1, 
inset). All samples were quenched in iced water after annealing. We expected a 
precipitation reaction of the form ’+(Sb1-xAgx)2Te3 Judging from the phase diagram 
and EDS, the difference between  and ’ was less than 1% Sb content, while x, the 
amount of Ag in Sb2Te3 precipitates was <5%. At this annealing temperature and Sb 
content, we estimated the equilibrium volume fraction at ~5-8% using the lever rule and 
area fraction measurements using optical micrographs of samples annealed for 4 hours. 
Precipitate size typically reached several m after more than 2 hours of annealing at 500 
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°C. All samples had a grain size of ~1-2 mm, which stayed fixed during the precipitation 
annealing experiments. No change in oxide content was found for annealed samples. 

In order to link changes in zT with the formation of precipitates, we compared 
microscopy and transport measurements on ingot pieces before and after annealing. We 
first measured transport on seven pieces (with similar geometry) of the ingot before 
annealing, yielding a measurement of the “homogenous” ingot. The transport values of 
the homogeneous ingot at room temperature were: =6.5mcm, S=1947 V/K, 
=0.650.05 W/Km, carrier concentration n=411020cm-3, yielding a zT=0.260.04. 
Since the microstructure was consistent throughout the ingot, a small variation in the 
carrier concentration likely caused the variation in the transport properties. We performed 
, S, and  measurements on the five aforementioned annealed pieces and compared their 
properties to adjacent un-annealed pieces to partly control for carrier concentration 
variations. Three annealed pieces were measured this way for Hall effect measurements. 

The geometrical errors in  and  measurements led to a nearly 50 % uncertainty 
in the absolute value of zT, so we focused on , S, , and n individually and considered 
the largest source of error (either ingot variation or geometry). There was no change in 
the homogeneous sample properties with time (below 400 K) over the course of the 
annealing experiments.  

3.3 Results 

3.3.1. Thermoelectric Transport and Effective Medium Behavior 
The transport properties of the matrix  phase are consistent with homogeneous 

Sb-rich AgSbTe2 (representative sample, Fig. 2). S and  monotonically increased with 
increasing T.  was weakly T-dependent with a low magnitude, consistent with previous 
reports[38]. The Hall number (RH) was positive (in agreement with the sign of S) and 
weakly T-dependent. We found that samples with different signs for RH and S were 
contaminated with minute amounts of Ag2Te as reported for AgSbTe2 earlier[24, 39] and 
were discarded from this study. The Hall resistivity (Hall) was linear in H for the entire T-
regime studied, justifying the simple relationi n=1/eRH, where e is the electron charge. 
The carrier concentration for this particular sample was ~2.61020cm-3 at 300 K.  From 
the transport data, our starting ingot Ag16.7Sb30Te53 was a degenerate semiconductor with 
p-type charge carriers. 

As a function of annealing time,  decreased and  increased (Fig. 3.3).  For 
clarity, only 300 and 400 K measurements are shown. The dashed regions in Fig. 3.3 
indicate the variation (one standard deviation) of the pre-annealed ingot properties.  
(and nS is defined as the difference (t) . Here t is the annealing time,  
was measured on an un-annealed piece, and (t) was measured on a separate piece, 
adjacent to that used for (0), after annealing. At t>30 minutes,  decreases with time 
(Fig. 3.3a). At t<30 minutes,  does not vary monotonically. This short annealing time 
behavior was not reproducible on separate trials and so probably resulted from cracks 
introduced during rapid heating/cooling cycles. An increase in  is also visible after 
annealing for 120 minutes (Fig. 3.3b). The variation in  roughly tracks that of , as 
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determined by the Weidemann Franz law (black dots, Fig. 3.3b). The large error bars in 
the  and  data sets are due to geometry. The concentration n (1/eRH) decreased with 
annealing time (Fig. 3.3b, inset) consistent with the behavior  and a constant carrier 
mobility. 

S had a much clearer change in t, even at early times, and could be closely 
compared with the introduction of precipitates determined through X-ray powder 
diffraction (Fig. 3.4). The powder diffraction data provided bulk-averaged, semi-
quantitative measurements of precipitate formation.  The intensity of the highest visible 
Sb2Te3 X-ray peak, the (1 0 10) plane (Fig. 3.4a, inset), increased monotonically as a 
function of t (Fig. 3.4a). Assuming the main contributor to the intensity change is 
precipitate volume fraction, Fig. 3.4a signals an increasing precipitate volume fraction 
with annealing time consistent with the expected precipitate reaction. The X-ray intensity 
t-dependence has two different regimes: intensity increased sharply for t<30 minutes and 
became nearly constant for t>30 minutes. S (Fig. 3.4b) also changed with annealing at 
two different time scales (Since S involves no geometrical measurements the error bars 
were much less than in  and , and were taken from the ingot variation (dashed region in 
Fig. 3.4b). Using similarly shaped samples also reduced systematic errors from the 
absolute geometry). For t<30 minutes, S decreased more rapidly than for t>30 minutes.  
In the entire t-regime, S was always bounded by that of (Ag,Sb)Te (dashed region) and 
pure (Sb,Ag)2Te3 (shaded region). This S cannot be explained only through the behavior 
of n (Fig. 3b, inset) since S normally increases with decreasing n in degenerate 
semiconductors[7]. However, the common t-dependence of S and X-ray intensity 
suggests a link between the transport properties and precipitate volume fraction. 

The t-dependence of the transport data suggests an analysis based on the effective 
medium theory of composites. First, Fig. 3.4 shows that there is an explicit link between 
transport and volume fraction. Second, S(t) (Fig. 3.4b) is sharply bounded by the 
separate properties of precipitate and matrix, in agreement with strict bounds derived 
from analytical effective medium theory[37]. Note that both (Sb,Ag)2Te3 and (Ag,Sb)Te 
are p-type. 

Consider a composite made up of only two components (A, B). A general 
expression for the effective (E) composite (thermal and electrical) conductivity as a 
function of volume fraction has been proposed by McLachlan et al.[40]: 
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Here, xA is the volume fraction of component A and  is the electrical (or thermal) 
conductivity of A, B, or E. The constant a=(1-xC)/xC, where xC is the “percolation 
threshold”. In the present context, xC would correspond to the critical xA at which 
precipitates become interconnected. When A/B <<1,  is the scaling exponent of E 
near the percolation threshold. When A~B (as in the present case), McLachlan et al. 
suggested that  will depend on microstructure[40]. Bergman et al. extended the effective 
medium theory to describe the thermopower as[41]: 
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In equation 3.2, E and E are computed using equation (3.1). These equations were used 
successfully describe the transport properties of alloys with second phase precipitates at 
large volume fractions[42]. 

Using equations 3.1 and 3.2, we simulated the effective medium theory prediction 
by letting A=(Sb,Ag)2Te3 and B=(Ag,Sb)Te and then using the data of Lostak et al.[43] 
and Fig. 3.2, respectively. In order to compare the simulations with the data, the absolute 
volume fraction had to be estimated.  First, the equilibrium volume fraction was measured 
(~7.2 %, consistent with the lever rule) by determining the precipitate area fraction from 
several optical micrographs of samples annealed for more than 4 hours (where 
precipitates became more than 1 m in size). The tdependence of the X-ray intensity 
(Fig. 3.4a) was then normalized by assuming that samples annealed at 2 hours or more 
had the equilibrium precipitate volume fraction. 

The parameters  and xC were varied and compared to the , , and S data 
(Fig. 3.5a, b, and c, respectively). Even assuming 3D percolation in a random, continuous 
medium, the value of xC and  will greatly depend on the geometry of precipitates. We 
compared four different curves: (1) xC=0.15, which was the lowest[44] value found in the 
literature for the 3D continuum threshold with spheres, with =1 (red line), (2) parallel 
conduction (dashed line), (3) xC=0.03, with =1 (blue line), and (4) xC=0.03 and =2 
(brown line, S plot only). (For parallel conduction, the electrical/thermal conductivity is 
given by E = xAA + (1-xA)B and SE = (xAASA + (1-xA)BSB)/(xAA + (1-xA)B).) 
Another uncertainty in the simulation will come from how well the properties of the 
components are known. The spread in properties reported for (Sb,Ag)2Te3 [43]will 
produce a spread in the simulations, as shown around the xC=0.03/=1 and xC=0.15/=1 
S curves (Fig. 3.5c) only for clarity. The simulations reveal that our transport data is 
consistent with the effective medium theory within the uncertainties of the measurements 
and known properties of (Sb,Ag)2Te3 and (Ag,Sb)Te. In order to interpret the 
approximate range of parameters (e.g. xC~0.03 and =1), further knowledge of the 
microstructure is needed. 

3.3.2 Precipitate Microstructure and Heterogeneous Nucleation 
Although the  phase has a simple rocksalt structure, we found that its 

microstructure, is complex. We observed a dense array of interconnected planar defects, 
typically microns long. In Fig. 3.6a, a typical bright field image, viewed on the [110] 
zone axis, revealed a series of bands and sharp lines. By rotating the sample, we found 
that the bands and lines were a kind of planar defect inclined with respect to each other. 
These features were always observed to be interconnected. By comparing the bright field 
image with corresponding diffraction pattern (Fig. 6a, inset), the planar defects were 
found to be oriented along the close-packed planes of the host rocksalt structure, 
suggestive of a stacking fault. For example, when viewed on the [110] axis the defects are 



 

42 

edge on and appear bright, occurring along (1̄11) and (11̄1) planes. Defects were always 
oriented at 110°, close to 109.5° expected between (1̄11) and (11̄1) planes. Planar defects 
were always found oriented along one of the close packed (111) family of planes. When 
tilted away from a high-symmetry zone axis, these planar features had bright/dark fringe 
contrast typically seen in stacking faults. For clarity, we now tentatively refer to the 
observed planar defects as stacking faults. Coarse scale microscopy (optical, SEM) 
revealed only grain size structure, for which no preferred orientation, relative to the 
growth axis, was found. 

Nucleation and growth of precipitates occurs during annealing times <30 minutes. 
Fig. 4.6b shows a typical bright field image ([110] zone axis) after 15 minutes of 
annealing. Precipitates were identified using selected area diffraction. With its larger 
repeat distances, Sb2Te3 tetradymite diffraction spots will be more closely spaced than 
that of rocksalt (Ag,Sb)Te. The diffraction pattern ([110] zone axis, inset Fig. 4.6b), 
shown for area 1 of Fig. 4.6b, is a superposition of the matrix rocksalt pattern and one in 
which 8 additional superlattice reflections occur parallel to the close packed (11̄1) 
rocksalt plane. The tetradymite structure should exhibit 5 extra superlattice reflections. 
The presence of extra superlattice reflections indicates that precipitates are a metastable 
Sb-Te phase.  Samples annealed for t<30 minutes typically had these metastable Sb-Te 
phases. Nevertheless, precipitates were always found oriented along the rocksalt close 
packed planes and took the form of long (~m), thin (~40 nm) plates.  Stacking faults 
(area 2 of Fig. 6b) were also observed in the surrounding rocksalt matrix, identical to 
those found in Fig. 6a. This similarity in orientation relationship and aspect ratio suggests 
that stacking faults serve as heterogeneous nucleation sites for precipitates.  

For t>30 minutes of annealing, larger precipitates began to appear with the Sb2Te3 
tetradymite structure, consistent with the precipitate reaction expected from the phase 
diagram. Fig. 4.6c shows a typical bright field image ([110] zone axis) of a sample 
annealed for 120 minutes. The diffraction pattern (inset, Fig. 4.6c) shows a superposition 
of the rocksalt and tetradymite patterns, notably with 5 extra superlattice reflections. 
These Sb2Te3 precipitates were about a micron wide. The superlattice reflections were 
parallel to the close packed (11̄1) rocksalt plane. In the tetradymite structure, the observed 
superlattice reflections (Fig. 4.6c, inset) are parallel to the (0001) family of planes. This 
implies that Sb2Te3 and (Ag,Sb)Te were oriented such that their close packed planes 
containing Te atoms lined up. Precipitate formation observed here was very similar to the 
isomorphic PbTe-Sb2Te3 system[29]. Samples annealed longer than 120 minutes 
produced no significant changes in precipitate size, morphology, or composition. 

For samples annealed more than 2 hours, precipitates, being a micron or more in 
size, could be viewed using optical microscopy. In Fig. 4.6d, a typical optical micrograph 
is shown. The white regions correspond to precipitates. These precipitates were 
confirmed to be (Sb,Ag)2Te3 using an SEM. The vast majority of micron-sized 
precipitates were found near grain boundaries. While some smaller precipitates were 
found within the grains, the large precipitates comprise most of the volume fraction. By 
extracting precipitate area fraction from these images, we found the precipitate volume 
fraction of ~7.3 %, within that expected from the lever rule, and used in the analysis of 
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Fig. 4.5. From Fig. 4.6d, we concluded that grain boundaries, in addition to the stacking 
faults found in the matrix phase, provide heterogeneous nucleation centers for precipitates 
in this system. 

The annealing time dependence of the microstructure agreed qualitatively with the 
time dependence of the transport properties (Fig. 4.3 and 4.4) and the bulk averaged X-
ray diffraction (Fig. 4.4). In particular, the presence of many small precipitates for t<30 
minutes (Fig. 4.6b) suggests that nucleation and growth occurs in this annealing regime. 
For t>30 minutes, significantly larger precipitates were observed with fewer 
nanoprecipitates, suggestive of coarsening behavior. This separation of time scales 
qualitatively matches the previous bulk measurements. However, the detailed 
microstructure was very complicated. Precipitates in (Sb,Ag)2Te3:(Ag,Sb)Te were highly 
anisotropic, long and plate-like, and did not nucleate homogenously throughout the 
sample. We found that heterogeneous precipitate nucleation will result from (1) the 
preexisting planar defects (likely stacking faults) in the (Ag,Sb)Te matrix and (2) grain 
boundaries. At early stages of precipitation, surprisingly, a metastable Sb-Te phase 
formed rather than Sb2Te3, expected from the phase diagram. At longer annealing times, 
the precipitates had the equilibrium Sb2Te3 structure. Though the metastable phase found 
at early annealing times complicates the fine details of the effective medium analysis 
(section IIb, Fig. 5), we can conclude that heterogeneous nucleation will force the 
percolation threshold, xC, to a very small, if not zero value. This will be true even 
ignoring the spherical precipitate continuum approximation of Fig. 4.5. In the limit of 
xC0 and t1, the generalized effective medium equations reduce to purely parallel 
conduction[42].  The simulations of Fig. 4.5 therefore suggest that the data is close to a 
parallel conduction model, since agreement between simulation/data becomes poorer by 
increasing either xC or  .  

 

3.4 Discussion and Conclusions 
A binary composite effective medium theory provides the most consistent 

explanation for the change in the transport data with annealing time observed in our 
experiments.  Furthermore, the simulations in Fig. 4.5 point to a composite microstructure 
favoring parallel conduction. Microstructural observations support the conclusions of the 
effective medium simulations because precipitates are always found in an interconnected 
network.  This observation holds at very small scales, where nanoprecipitates nucleate at 
interconnected stacking faults, and at larger scales, where micron size precipitates 
decorated grain boundaries.  

Both grain boundaries and stacking faults seem to serve as preferred nucleation 
sites for precipitates, and therefore promote heterogeneous nucleation. Solid-state 
precipitation involves an activation barrier for nucleation that is significantly reduced at 
imperfections such as a grain boundary (e.g. [45]). Sb2Te3 precipitation at planar defects 
in the (Ag,Sb)Te matrix is also a form of heterogeneous nucleation.  

Avoiding a non-uniform, interconnected network due to heterogeneous nucleation 
poses a significant hurdle to realizing zT gains through nanostructuring by solid-state 
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precipitation. On the basis of an analytical effective medium theory, Bergman et al. 
established strict bounds on thermoelectric properties of a two component composite[37].  
Assuming the analytic theory holds, a thermoelectric composite will obey the inequality: 
zET<Max(zAT,zBT); the effective (E) zT will never be larger than that of its components 
(A, B). As noted previously, S(t) (Fig. 3.4b) obeys the bounds for the analytic effective 
medium theory: SB<SE<SA (with SA>SB). These bounds do not depend on the detailed 
microstructure of the composite if the analytic theory holds. The analytic effective 
medium theory is strictly valid far from the percolation threshold. Heterogeneous 
nucleation promotes an interconnected network of precipitates. This pushes xC0 and 
therefore causes the precipitate/matrix system to be far from the percolation threshold at 
all finite volume fractions, guaranteeing the validity of the analytic effective medium 
theory and reduction of zT. 
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Figure 3.1 Synthesis and control of nanoprecipitates in thermoelectric alloy 
(Ag,Sb)Te. (a) The homogeneous AgSbTe2  phase occurs in the Ag2Te-Sb2Te3 
pseudobinary system. Inset: Enlarged view of phase diagram in (a). A solid state 
precipitation reaction d-->d’+(Sb,Ag)2Te3 occurs at 500 °C, where the d phase 
(30 at.% Sb) decomposes into an Sb deficient (~29 at. %) d’ phase with Ag-
doped Sb2Te3 precipitates.  
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Figure 3.2  Representative transport properties of the homogeneous  (a) 
Seebeck coefficient (S) versus temperature (T). All samples were p-type. (b) 
Resistivity () versus T. Inset: Thermal conductivity () versus T. (c) Hall number 
(RH) versus T. Inset: The Hall resistivity (Hall) was linear as a function of 
magnetic field (H). All samples were p-type, in agreement with S(T), in the entire 
T-regime studied. 
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Figure 3.3  Change in average transport properties of homogeneous  with the 
introduction of (Sb,Ag)2Te3 precipitates. The variation in properties across the 
homogeneous ingot is indicated by the dashed area. Error bars shown are the 
larger of the ingot variation or geometrical error. Measurements were taken at 
300 K and 400 K. (a) The resistivity () did not significantly change versus 
annealing time.(b) Variations in the total thermal conductivity (, open circles) 
are partly explained by changes in  given by the Weidemann Franz law (WFL). 
No significant change is seen in  versus annealing time. 
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Figure 3.4  S shares a common time dependence with the formation of Sb2Te3 
precipitates as determined from powder X-ray diffraction. (a) Peak intensity of the 
[1 0 10] Sb2Te3 peak as a function of annealing time at 500 °C. Inset: Raw Xray 
intensity versus 2 of the peak displayed in (a) at different annealing times. (b) 
S versus annealing time shares the same time dependence as the Xray data in 
(a). The shaded region corresponds to the expected difference in S between  
and p-type Ag-doped Sb2Te3. S for (Ag,Sb)Te with (Sb,Ag,)2Te3 precipitates is 
bounded by that for pure (Ag,Sb)Te and pure (Sb,Ag)2Te3. 
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Figure 3.5 Transport properties compared with calculations from effective 
medium theory. 
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Figure 3.6 Representative microstructures observed by TEM as a function of 
time. Insets show electron diffraction patterns. (a) Initial microstructure of the 
"homogeneous" -phase contains large number of planar defects. (b), (c) initial 
precipitation occurs with metastable formation of tetradymite-type structure.  (d) 
at long times, the equilibrium Sb2Te3 plates form. 
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Figure 3.7 Precipitates form a percolating network (a) Composite BF TEM image 
showing many planar defects. Since planar defects form an interconnected 
network in the unannealed  phase. Precipitates preferentially nucleate at planar 
defects upon annealing. (b) Optical bright field micrograph of sample annealed 
for 4 hours at 500 °C. Large mm size precipitates decorate grain boundaries. 
Grain boundaries are therefore also nucleation sites for Sb2Te3 precipitates in 
AgSbTe2. 
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4.   Theory of Thermoelectric Enhancement Due to 
Nanoinclusions 

 
In this section, we present a theoretical model and numerical calculations of the 

thermoelectric properties of bulk semiconductors containing metallic nanoparticles [46].    
Our model considers scattering of electrons on the band bending at the interfaces between 
the semiconductor host and randomly distributed metallic islands. This causes energy 
dependent scattering of electrons, leading to an energy filtering effect that increases the 
Seebeck coefficient.  This provides an explicit physical model for the proposed energy 
filtering effect [3]. By combining this model with a model for phonon scattering on the 
nanoinclusions, we predict significant enhancement of the zT factor. We point out that 
while the role of metallic nanoinclusions may appear at first to be similar to that of point 
defects for which extensive work has been done, the physics is actually quite different.   
Indeed, in addition to the electronic scattering, the phonon scattering on nanoinclusions 
occurs in a completely different regime than that on point defects, as will be discussed in 
Sec. IV B. The central idea in this paper is illustrated in Fig. 4.1.  There, spherical 
metallic nanoinclusions with radius R and volume fraction x are randomly distributed in a 
bulk semiconductor material.  In general, at such metal/semiconductor interfaces, charge 
transfer between the metal and the semiconductor leads to band bending away from the 
interface, characterized by the electrostatic potential V(r)  (Fig. 4.1b).  The presence of 
this potential causes energy-dependent scattering of electrons, as illustrated in Fig. 4.1c.  
The high energy electrons are unaffected by the potential,  but the low energy electrons 
can be strongly scattered. Because the Seebeck coefficient depends on the energy 
derivative of the relaxation time d ln (E)/dE at the Fermi energy, this type of energy 
filtering is precisely the prescription to increase the Seebeck coefficient of thermoelectric 
materials.  

Our theoretical model is based on the Boltzmann transport equation  (BTE) within 
the relaxation time approximation. We apply the model to a system of n-doped PbTe with 
metallic nanoinclusions because of the availability of experimental data and good 
understanding of scattering mechanisms in bulk PbTe [47-49], although the theory can be 
used for any thermoelectric material. 
 

4.1  CHARGE AND HEAT TRANSPORT IN BULK PbTe 
 

In this section we will review the expressions[47-49] for the charge and heat 
transport in bulk PbTe with n-type doping. The valence band of PbTe contains four 
energy minima located at the L points. The energy dispersion relation near each minimum 
is usually described by the Kane model[47] 
 

(4.1) 
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where Eg is the direct energy gap of PbTe,  is the Planck constant, and k and m* are the 
electron wave vector and effective mass  (at minimum energy point k=0, E=0) along the 
longitudinal  (suffix l) and transverse  (suffix t) directions of the corresponding L point. 
For n-type PbTe,  the electron 
concentration is given by 
 

(4.2) 

 
 
where md

*  42/3(ml
*mt

*2 )1/3 is the density of states effective mass in which the fourfold 
degeneracy is included, kB is the Boltzmann constant, and f0(z) is the Fermi function 
written in terms of dimensionless variables z=E/(kBT) and zF=EF/ (kBT).  EF is the Fermi 
energy and the function (z)=z+bz2, where b=kBT/Eg.  In the relaxation time 
approximation the BTE expressions for electrical conductivity, , Seebeck coefficient, S, 
and electron contribution to thermal conductivity, 
e, are[47] 
 

 
(4.3)

 
 
 

 
(4.4)

 
 
and 
 
 

 
(4.5)

 
where mc

*  3/(1/ ml
*  2 / mt

* ) is the effective conductivity mass, and the average is 
defined as: 
 
 

 
(4.6)
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In bulk PbTe at room temperature the dominant contributions to the total 
relaxation time, bulk(z), are scattering by  the deformation potential of acoustic and 
optical phonons, and polar scattering by optical phonons [47-49]. We also take into 
account scattering on the short-range potential of vacancies although it gives a much 
smaller contribution compared to scattering by phonons. Thus, the total relaxation time 
for bulk PbTe is given by: 
 
 

 
(4.7)

 
The relaxation time due to polar scattering by optical phonons reads [47, 49] 
 

 
(4.8)

 
where md1

*  (ml
*mt

*2 )2/3 is the density of states effective mass in the single valley, the 
function '(z)=1+2bz, and  and  are the static and high frequency permittivities, and   
 

 
 

(4.9)

 
Here  =(2kr0)−2 with r0 the screening length of optical phonons: 
 

 
(4.10)

 
The relaxation time due to scattering by the deformation potential of acoustic and 

optical phonons, and also due to scattering on the short range potential of vacancies can 
be written generally as [47, 49], 
 
 

 
(4.11)

 
 
where A=bz(1−Km)/'(z), and B=8bz(1+bz)Km/(3'2(z)), with the suffix m=a for acoustic 
phonons, m=o for optical phonons, and m=v for vacancies. The constants 0,m and Km are 
defined as 
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(4.12)

 
 

 
(4.13)

 
 

 
(4.14)

 
 
Here Cl is a combination of elastic constants, Eac and Eav are the acoustic phonon 
deformation potential coupling constants for conduction and valence bands, Eoc and Eov 
are optical phonon deformation potential coupling constants for conduction and valence 
bands, Uvc and Uvv are coupling constants of the short range potential of vacancies for 
conduction and valence bands, a is the lattice constant, 0 is the frequency of optical 
phonons, and  is the mass density. Nv is the concentration of vacancies calculated from 
the condition that one vacancy gives two charge carriers, Nv=n/ 2. The parameters used 
for calculation of the relaxation times in bulk PbTe at T=300 K are taken from Ref. [49]. 
These parameters are shown in Table 4.1. For calculations at different temperatures we 
assumed the values of these parameters to be the same as for T=300 K except for Eg and 
mt

*, which were linearly interpolated and extrapolated using T=4.6 K and T=300 K 
values[49], with Eg saturating for T>400 K [47]. 
 

4.2 ELECTRON SCATTERING ON BAND-BENDING POTENTIAL 
OF NANOINCLUSIONS 
 

4.2.1. Band-bending potential 
In our model we assume that spherical metallic nanoinclusions with radius R and 

volume fraction x are randomly distributed in a n-doped PbTe host material.  In this 
section we will calculate the contribution to the relaxation time due to scattering of 
electrons on the band-bending potential at the metal-semiconductor interface. For a single 
nanoinclusion, the electrostatic potential V(r) can be calculated by solving the Poisson 
equation 
 

 
(4.15)
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The right-hand-side of this expression is simply the spatially varying charge  (see 

Eq. 4.2)) calculated by assuming a rigid shift of the electronic bands with the local 
potential V_r_. We solve the Poisson equation with the boundary conditions V(∞)=0 and 
V(R)=VB.  (VB is the potential at the semiconductor/metal interface. The value of VB is 
fixed for a particular metal and depends on the detailed properties of the interface. 
However, one may consider it to be an optimization optimization parameter provided that 
the physics of the metal/ semiconductor interface allows tailoring of VB by choosing the 
metal.) We used the fourth-order Runge-Kutta and shooting methods in order to solve Eq. 
4.15. Figure 4.1b shows an example of the calculated potential V(r). 
 

For small values of VB or for large r  (when the potential is screened and small) 
the right-hand-side of Eq. 4.15 can be linearized with respect to small V: 
 
 

 
(4.16)

 
 
where  is the screening length. The solution of Eq. 4.16 is 
 

 
(4.17)

 
 
For degenerate electrons the expression for _ takes the simple form: 
 

 
(4.18)

 
Due to the large value of the dielectric constant in PbTe,  0=400,  the screening 

length for typical doping concentrations is several times larger than the wavelength of 
electrons on the Fermi surface. For example, for n=5X1019 cm−3 one can obtain from Eq. 
4.18=11 nm and kF =7, where kF is the wave vector of the electron on the Fermi 
surface. This value of kF slowly varies with doping (for degenerate electrons we can use 
Eqs. 4.2 and 4.18 to obtain the dependence on doping kF n1/6 ).  On the other hand, a 
large value of  can lead to an overlap of the band bending between nanoparticles, which 
may change the bulk carrier concentration. We have restricted our calculations to a 
parameter range (doping and inclusion volume fraction) where such effects are not 
significant. 
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4.2.2. Relaxation time for scattering on nanoinclusions 
When the electron scattering on nanoinclusions is taken into account, the total 

relaxation time  is 
 

 
 

(4.19)
 
 
where the relaxation time for bulk PbTe is given by Eq. 4.7 and i is the relaxation time 
due to scattering by V(r) at randomly distributed metallic inclusions 
 

 
 

(4.20)
 
Here 
 

 
 

(4.21)
 
 
is the concentration of inclusions, t is the electronic transport scattering cross section, 
and v= ∂pEp is the electronic velocity with p the momentum. 

In order to calculate the transport cross section in a system with nonparabolic 
energy dispersion, we consider an  electron with momentum p and wave function 

p (r)  up (r)eipr /  in the periodic field of the unperturbed PbTe crystal of unit volume. 
Here up(r) is the periodic Bloch amplitude. As mentioned earlier, the nonparabolicity of 
the electron energy dispersion near the conduction band minima is usually described by 
the Kane model[47] 
 

(4.22)

 
 

The isotropic energy dispersion in a form of Eq. 4.22 with density of state mass 
md1

*  is usually assumed in the calculation of the relaxation time[47-49].  The transition 
probability for scattering from state pi to state pf per unit time due to a perturbation 
potential V(r) is given by the standard formula of perturbation theory[50] 
 

 
 

(4.23)

 
where dv  d 3p /(2)3. The matrix elements are 
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(4.24)

 
where we used the fact that collisions with a small momentum transfer dominate 
scattering on the slow-varying bendbending potential, therefore, the Bloch amplitudes 
entering Eq. 4.24 are rather close to each other, and the overlap factor is about unity 

up '
* (r)up (r)d3r 1 . 

 
Applying Eq. 4.24 to Eq. 4.23, the calculation of dwfi becomes identical to the 

calculation of the transition probability for scattering of a plane wave eipir /  in a model 
system described by an equation 
 

 
 

(4.25)
 
 
with unperturbed Hamiltonian E ¦ p , ¦ p  ir  and perturbation potential V(r).  Applying 
the operator 1E ˆ p / Eg  to Eq. 4.25 one obtains 
 
 

 
(4.26)

 
 
Here we neglect the commutator term Eg

1[E ¦ p ,V (r)]  

 
 

 
(4.27)

 
using the fact that rV(r) is a slow varying function and kF>>1. 
 

Equation 4.26 has the form of the usual Schrödinger equation that can be used for 
numerical solution of the scattering problem with a potential 
 
 

 
(4.28)
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4.2.3. Calculation of transport cross section 
 
The transport cross section for scattering on the spherically symmetric potential is given 
by[50] 
 

 
(4.29)

 
where f() is the scattering amplitude defined from the large -r asymptote of the wave 
function 
 
 

 
(4.30)

 
The wave function  is a solution of the Schrödinger Eq. 4.26 with potential Up(r) given 
by Eq. 4.28.  It can be expressed as a sum of contributions with different angular 
momentum l [50] 
 
 

 
(4.31)

 
where Pl are the Legendre polynomials and Rkl(r) are solutions of the radial Schrödinger 
equation (k  p /): 
 
 

 
(4.32)

 
 
The large-r asymptote of Rkl(r) has the form 
 
 

(4.33)

 
 
where l is the phase shift of Rkl(r) relative to the potential free solution. The scattering 
amplitude f() can be expressed in terms of the phase shifts as [50] 
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(4.34)

 
The calculation of the transport cross section (Eq. 4.29) with scattering amplitude 

(Eq. 4.34) can be performed in the same way[50] as the usual cross section (without the  
(1−cos) factor in Eq. 4.29.  In the integrals that appear in the evaluation of the transport 
cross section (Eq 4.29) , only terms with l'=l , l±1 give nonvanishing contributions [50]. 
After integration over , Eq. 4.29 can be expressed in terms of the l as: 
 
 

 
(4.35)

 
 

We used the following numerical procedure to solve the Schrödinger equation 
(Eqn 4.32) and calculate the phase shifts. The spherical Bessel function jl(kr) is a regular 
solution of Eq. 4.32 for r<R, in the region where Up(r)=0. We used the fourth-order 
Runge-Kutta method to solve Eq.4.32  for r >R with boundary conditions such that the 
solution Rl(kr) and its derivative match the spherical Bessel function at r=R. At some 
large r=rmax we assume that the potential Up vanishes and match the solution Rl(kr) and 
its derivative Rl'(kr) to a linear combination of the spherical Bessel function jl(kr) and 
spherical Neumann function yl(kr) (which is another solution of Eq. 4.32 for Up(r)=0): 
 
 

 
 

(4.36)
 
 
with  =(Rlyl'−Rl'yl') / (jl'yl'− jl'yl) and =−(Rljl'−Rl'jl) / (jlyl'− jl'yl). Finally the phase shift l 
is given by 
 
 

 
 

(4.36)
 
 
 
In conjunction with Eqs. 4.20 and 4.35 this provides expressions to numerically calculate 
i for a given V(r). An example of the numerically calculated i is given in Fig. 4.1c for 
scattering by V(r) of Fig. 4.1b, with an inclusion volume fraction x=5%. A simple fit 
gives the dependence i(E)~E1.39 as shown by the dashed line in Fig. 4.1c.  This energy 
dependence of i(E) is much stronger than that of bulk and leads to enhancement of the 
Seebeck coefficient.  
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To obtain an analytical description of i(E), we also calculated i in the Born 
approximation by using Fermi’s golden rule [first term in r.h.s. of Eq. 4.23] 
 
 

 
(4.38)

 
 
Here  is the angle between initial and final momenta p and p'. The expression for i

Born 
can be simplified by taking the angle integration in Eq. 4.38 for Vp'p and making the 
substitutions of integration variables t=2kR sin(/2) and y=r /R. Finally one obtains 
 
 

 
(4.39)

 
where 
 

 
(4.40)

 
Numerical tests show that for |VB|~<0.1 eV, the Born approximation  is valid, 
i(E)~i

Born(E)., while for |VB|>0.1 eV, i
Born(E) begins to deviate from i(E) calculated 

from the exact solution of Schrödinger’s equation (4.32).   Nevertheless, Eq. 4.39 allows 
us to analyze the energy dependence of the relaxation time that is difficult to do by using 
the exact formulas 4.20 and 4.35.  For energies E~>0.1 eV, the integral over variable t in 
4.40 weakly depends on the upper limit of the integration, and the function E,R) varies 
slowly with both E and R. Thus, we have i

Born(E)~E3/2, in good agreement with the full 
numerical calculations, which yielded a dependence E1.39. Comparing the 
resulti

Born(E)~E3/2 with expression 4.20 (and using v(E)~E1/2), we find that the electronic 
scattering cross section of the bandbending potential depends on energy as E−2; this 
strong energy dependence is responsible for the superlinear energy dependence of i(E). 
 

4.3. RESULTS AND DISCUSSION 

4.3.1. Enhancement of the Seebeck coefficient and power factor 
The calculation of the total relaxation time allows us to obtain S, , and e using 

expressions 4.3-4.5.   We first consider a specific case by adopting a simple model for the 
interface potential VB=m−+EF withm the metal work function and  the electron 
affinity, and choose m−=−0.35 eV corresponding to Pb nanoinclusions (work function 
m =4.25 eV (Ref. [51])) and an electron affinity for PbTe, PbTe=4.6 eV [52].   Figure 
4.2 shows the calculated room temperature Seebeck coefficient as a function of the 
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doping n and fixed nanoinclusion volume fraction x=5%. We note the excellent 
agreement between the experimentally measured S (filled circles) [53, 54] and that 
calculated numerically (solid line) for bulk PbTe.  In addition, one can see that for any 
nanoinclusion radius, the Seebeck coefficient is always increased compared to that of the 
inclusion-free system. In fact, for the smallest nanoinclusion radius considered here (1.5 
nm), the enhancement in S is over 100% at high doping.  

It is interesting to consider the impact of VB on the calculated Seebeck coefficient. 
Figure 4.3a shows S as a function of VB. It is clearly seen from this figure that the 
presence of an extended electrostatic potential leads to an increase in S regardless of the 
sign of VB.  (VB=0 is equivalent to bulk PbTe with nanoinclusions. Negative values 
correspond to the situation of Fig. 1, and positive values represent a Schottky barrier.)  
This general behavior can be understood (at least for small |VB|) from the Born 
approximation, which predicts that the inverse scattering time is proportional to the 
square of the perturbation potential. With increase of |VB| the contribution to the total 
inverse relaxation time from inclusion scattering increases, leading to an increase of S 
because the energy dependence of  changes from that of bulk to the more strongly energy 
dependent i. For large values of |VB| the contribution of island scattering becomes 
dominant, and S saturates as seen in Fig. 4.3a.  Figure 4.3a also shows the calculated 
values of  as a function of the interface potential VB. The conductivity decreases as |VB| 
is increased, with a fairly symmetric behavior for ±VB. Combining the results for s and S, 
we obtain the power factor S2s as depicted in Fig. 4.3b. There, one can see that the power 
factor is increased compared to that at VB =0, in a range of interface potentials −0.15 
eV<VB <0.15 eV. The power factor has two maxima at some optimal values of VB 
because the Seebeck coefficient saturates for large |VB|, while the electrical conductivity  
continues to decrease with increase of |VB|. 

For the optimal interface potential VB~±0.07 eV, we find that the power factor is 
increased by ~35%.  Importantly,  the power factor does not decrease substantially over a 
wide range of values of the interface potential. Thus, it is possible to take full advantage 
of the reduction in thermal conductivity due to phonon scattering at the nanoinclusions, as 
we will discuss later. 

Instead of optimizing the value of the interface potential VB to achieve the 
maximum power factor as shown in Fig. 4.3b, we can keep VB fixed (by choosing a 
specific metal for the inclusions) and optimize other parameters, for example the 
inclusion volume fraction or radius. To analyze the dependence of the transport 
coefficients on these parameters, we can use Eq. 4.39. As we noted above, the function 
(E,R) in Eq. 4.40 varies slowly with both E and R, so the inverse relaxation time due to 
electron  scattering by inclusions can be approximated as i

-1(E)~CE−3/2, where the 
constant C depends on VB, x, and R mostly through the combination (at least for small VB) 

 
 

 
 

(4.41)
 

 
In turn, the transport coefficients (S, , and e) depend only on this ratio of 



 

63 

parameters. This means that if any two parameters out of these three are fixed, one can 
always adjust the third parameter (for example, the one that can be most easily tuned in 
the experiment) to maximize the power factor. 

Before closing this section, we remark that we have searched for resonant 
tunneling states in the positive VB regime as a way to enhance S. However, we have not 
found any significant increase in S beyond that already discussed. The reason is that, 
because the potential contains contributions from several Legendre polynomials l, the 
appearance of a resonant state for one value of l is washed out by the nonresonant 
conditions in the other channels. 
 

4.3.2. Enhancement of the zT factor 
While S and  are quantities of fundamental interest, for applications it is usually 

zT=S2T/ that is most important. The electronic relaxation time calculated above leads 
directly to the electronic thermal conductivity e. Since the total thermal conductivity is 
the sum of electronic and phonon contributions,  =e+ph, to obtain zT we also need to 
calculate ph. For this purpose, we adopt a previous method[55, 56] that considered the 
scattering of phonons on nanoinclusions, with the scattering mechanism for short 
wavelength phonons being the different sound velocities in the host and nanoinclusions. 
This approach has been shown to give excellent agreement with experiments on 
nanoscale ErAs inclusions in InGaAs [55].  For T~>TD  (TD=130 K is the Debye 
temperature of PbTe) ph can be written as[47] 
 
 

 
(4.42)

 
where vs is the speed of sound in PbTe, and   is the phonon energy. The phonon 
relaxation time ph is given by 
 
 

(4.43)

 
 
where U

−1=cT2 is the contribution of umklapp scattering[47] and D is due to scattering 
by nanoinclusions. The constant c was determined from Eq. 4.42  using the experimental 
value ph

bulk=2.0 W/mK for PbTe at T=300 K. For D we used the expression derived in 
Refs. [55] and [56]. In the near-geometrical scattering regime (qR~>1) D reads 
 
 

(4.44)

 
where =qR(vs /vs'−1), q is the phonon wave vector, and vs' is the speed of sound inside 
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the inclusion. Numerical tests show that when the difference in the sound velocities is 
larger than 20% the integrated quantity ph weakly depends on this difference and D can 
be approximated by its geometrical limit value 
 
 

 

 
(4.45)

 
 
Note that this phonon scattering regime is opposite to that on point defects where qR<<1. 
 

Figure 4.4 shows zT and its components calculated for x =5%, R=1.5 nm, and a 
doping n=2.5X1019 cm−3, as a function of temperature. We discuss this doping first 
because experimental values of zT and all of its components are readily available for 
inclusion-free PbTe, and can be compared with our calculations; indeed, the calculated 
values for zT, S, , and (solid lines in Fig. 4.4a-4.4d) are in good agreement with 
experiment[54]  (filled squares) for T<~700 K.  (The deviations for T~>700 K originate 
in our neglect of the hole contribution to the charge and heat transport).  In the presence 
of nanoinclusions, the individual components of zT deviate from their bulk PbTe values at 
all temperatures shown. For T~>400 K the increase of the Seebeck coefficient is 
compensated by decrease of the conductivity, and the optimized power factor is close to 
that of bulk PbTe (see inset in Fig. 4.4c).  At such temperatures the small increase of the 
zT factor due to ”electron-only” scattering by nanoinclusions  (open circles in Fig. 4.4a) is 
a result of the decrease in e (open circles in Fig. 4.4d). Comparing the zT shown by filled 
and open circles in Fig. 4.4a, one can conclude that at a doping n=2.5X1019 cm−3 the 
enhancement of the optimized zT is primarily due to decrease of ph, at least for T~>400 
K. 

To get a more comprehensive understanding of the role of nanoinclusions in 
enhancing the thermoelectric properties, we show in Fig. 4.5  the room-temperature zT 
factor as a function of the interface potential for two values of the doping. In addition, we 
plot zT calculated using the bulk value of the phonon thermal conductivity ph

bulk (dotted 
lines). We first consider the situation of high doping, as depicted in Fig. 4.5a. In the 
absence of a spatially-varying potential (VB=0) and without phonon scattering on 
nanoinclusions, zT is given by the filled circle. Turning on the phonon scattering gives a 
modest 25% increase in zT (the star in the figure). Similarly, one can consider the 
increase in zT without phonon scattering on the nanoinclusions (dotted line); in this case, 
a large increase in zT of up to 224% is obtained. Thus at this doping, electron scattering 
can give a much larger increase in zT. However, the true advantage of nanoinclusions is 
realized when both electron and phonon scattering are included, and the zT factor can be 
increased by as much as 430%. This increase is much larger than simply the sum of the 
individual electronic and phonon contributions. 

The origin of this behavior lies in the nonadditive effects of electronic and phonon 
thermal conductivities, since zT depends inversely on their sum. For the large doping 
situation of Fig. 4.5a we have e

bulk=4.2W/mK, ph
bulk =2.0 W/mK, and therefore 

ph
bulk<e

bulk. In this case, reducing  ph by itself does not lead to an appreciable gain in 
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zT. However, when e is also reduced because of scattering and becomes comparable to 
ph, then both work in concert and lead to a large increase in zT. Thus, one can imagine 
that electron scattering on the electrostatic potential serves as an amplification mechanism 
to enhance the impact of the reduction in phonon thermal conductivity. This mechanism 
works here because at high doping (i)ph

bulk<e
bulk and (ii) the power factor is maintained 

or even enhanced in a wide range of interface potentials. 
 

The situation is quite different in the case of low doping, whereph
bulk>>e

bulk, as 
illustrated in Fig. 4.5b. In this case, the electronic thermal conductivity is already quite 
low, e

bulk =0.6 W/mK < ph
bulk =2.0 W/mK, and the main impact of nanoinclusions is to 

decrease the phonon thermal conductivity. The maximum increase in zT is 107%, with 
94% coming from phonons alone. In fact, for this low doping, the power factor is always 
reduced compared to the inclusion-free system—–a signature of this effect is the 
reduction of zT below that of the inclusion-free system for larger values of VB. 

Figure 4.6 shows the calculated zT as a function of temperature for low (n=5X1018 
cm−3) and high (n=5 X1019 cm−3) doping levels. Included in the figure are the zT factor 
calculated with both electron and phonon scattering on nanoinclusions (filled circles), that 
calculated with electron- only scattering on nanoinclusions and with bulk PbTe values of 
ph (open circles), and the zT calculated for inclusion-free bulk PbTe (solid line).  The 
corresponding values of VB that maximize zT are shown in the insets by filled circles. The 
inset in Fig. 4.6a  shows that at n=5X1018 cm−3, the optimal VB is very small |VB |= 0.03 
eV and even vanishes for T > 600 K. Thus, the electron contribution to enhancement of 
optimized ZT is negligible (solid line and line with open circles almost coincide in Fig. 
4.6a) and, the enhancement of the optimized zT is dominated by the reduction in ph due 
to phonon scattering on the inclusions. This can be explained by the fact that for bulk 
PbTe, the Seebeck coefficient increases with decrease of the doping concentration n, and 
the relative enhancement of the Seebeck coefficient from its bulk value due to electron 
scattering on inclusion is smaller at low doping compared to high doping (see Fig. 4.2). 
As a consequence the reduction of  at low doping overweights the increase of S2, and the 
power factor is reduced compared to the inclusion-free system, leading to small or 
vanishing optimal VB. From a practical point of view this result means that in order to 
enhance the zT factor at low-doping levels one needs to find a metal that gives little or no 
interfacial potential. 

For larger doping the electron contribution to enhancement of zT becomes 
important, and the optimized VB increases. It is seen in Fig. 4.6b that for n=5X1019 cm−3, 
the electron-only contribution to enhancement of the optimized zT makes up over 50% of 
the enhancement at T<~600 K, and the optimized VB is as large as 0.2 eV.  Moreover, at 
large doping, e

bulk>ph
bulk, and the reduction of e due to scattering on inclusions 

amplifies the effect of the reduced ph. The upper inset in Fig. 4.6b  shows that the power 
factor S2 is enhanced only for T<600 K. The reduction of the power factor relative to the 
inclusion-free system at T>600 K is due to the fact that at high temperature, the Seebeck 
coefficient of bulk PbTe is already large  (see Fig. 4.4b); the relative increase in S 
induced by electron scattering on inclusions becomes smaller at increased temperature, so 
the reduction of  overweights the increase of S2. Nevertheless, the electron-only 
contribution results in enhancement of zT (open circles in Fig. 4.6b) even at higher 
temperatures due to reduction of e. 
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Figure 4.6b shows by open squares the zT factor for PbTe with Pb inclusions 
(assuming VB

Pb−EF=−0.35 eV) for parameters n=5X1019 cm−3, R=1.5 nm, and x=5%. For 
this set of parameters the interface potential VB

Pb is close to the optimal one (see inset in 
Fig. 4.6b) in a wide range of temperatures, so the zT factor for the system with Pb 
inclusions is very close to the optimal zT. The enhancement of zT due to Pb inclusions is 
on the order of 400% at room temperature and 50% at T=900 K, where it reaches a value 
as high as 1.5. 
 

4.4 CONCLUSION 
In conclusion, we developed a theory that allows the calculation of the zT factor 

and its components for a system of a semiconductor host material with spherical metallic 
nanoinclusions. The enhancement of the Seebeck coefficient can be explained by a strong 
energy dependence of electron scattering on the band bending at the interface between 
metallic inclusions and the semiconductor host. The electronic contribution to 
enhancement of zT is important for high doping, while at low doping the enhancement of 
zT is dominated by the reduction in the phonon thermal conductivity. The theory can be 
used to choose the optimal parameters for the metal nanoinclusions (interface potential, 
inclusion volume fraction or radius) in order to maximize zT. 
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Table 4.1 Parameters used to calculate the relaxation times for bulk PbTe at  

T=300 K [49]. m0 is the free electron mass. 
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Figure 4.1 (a) Schematic of the semiconductor host with metallic 
nanoinclusions. Panel (b) shows an example of the calculated potential 
V(r) and the energy diagram for PbTe at T =300 K, n=2.5X1019 cm−3, 
VB=−0.11 eV, and R=1.5 nm. Panel (c) illustrates the concept of energy 
filtering: low energy electrons scatter strongly with the potential, but high 
energy electrons are unaffected. The calculated electronic relaxation time 
for the potential of panel (b) is also shown. 
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Figure 4.2 Calculated Seebeck coefficient for PbTe with metallic 
nanoinclusions as a function of the doping for severaldifferent values of 
the nanoinclusion radius. 
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Figure 4.3 Panel (a) shows the calculated Seebeck coefficient and 
conductivity for PbTe as a function of the interface potential VB. Panel (b) 
shows the resulting power factor. Parameters are R=1.5 nm, T=300 K, 
x=5%, and n=2.5X1019 cm-3. 
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Figure 4.4 Thermoelectric coefficients as a function of temperature 
calculated for n=2.5X1019 cm−3, x=5%, and R=1.5 nm. (a) The optimized 
zT factor, with the optimal values of VB, is shown in the inset. (b) The 
Seebeck coefficient. (c) The electrical conductivity. Inset shows 
optimized (filled circles) and bulk PbTe (solid line) power factor S2. (d) 
The thermal conductivity. In all panels, solid circles include electron and 
phonon scattering on the inclusions; open circles include electron 
scattering onthe inclusions but with bulk PbTe values of ph; solid lines 
and filled squares are the calculated and measured Ref. [54] values for 
bulk PbTe. 
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Figure 4.5 Calculated ZT factor for PbTe illustrating the relative effects of 
electronic and phonon scattering on nanoinclusions. In both panels 
R=1.5 nm, x=5%, and T=300 K. (a) High doping n=5X1019 cm−3. (b) Low 
doping n=5X1018 cm−3. Dotted lines are calculated using the bulk phonon 
thermal conductivity. Filled circles correspond to the bulk PbTe system. 
Stars include only the phonon scattering on nanoinclusions. 
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Figure 4.6 Temperature dependence of the optimized ZT factor for 
PbTe. (a) low doping n=5X1018 cm−3 and (b) high doping n=5X1019 cm−3. 
In both panels filled circles denote the optimized zT calculated with both 
electron and phonon scattering on nanoinclusions, open circles denote 
zT calculated with electron scattering on nanoinclusions and with bulk 
PbTe values of ph, and the solid line is for bulk PbTe. The inset in (a) 
shows the values of VB that maximize zT. In (b) the bottom inset shows 
the optimal values of VB that maximize zT (filled circles) and VB

Pb for Pb 
nanoinclusions. The top inset shows the calculated power factor. 
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