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Abstract

Critical infrastructure resilience has become a national priority for the U. S. Department of
Homeland Security. System resilience has been studied for several decades in many different
disciplines, but no standards or unifying methods exist for critical infrastructure resilience
analysis. Few quantitative resilience methods exist, and those existing approaches tend to
be rather simplistic and, hence, not capable of sufficiently assessing all aspects of critical in-
frastructure resilience. This report documents the results of a late-start Laboratory Directed
Research and Development (LDRD) project that investigated the development of quantita-
tive resilience through application of control design methods. Specifically, we conducted a
survey of infrastructure models to assess what types of control design might be applicable
for critical infrastructure resilience assessment. As a result of this survey, we developed a
decision process that directs the resilience analyst to the control method that is most likely
applicable to the system under consideration. Furthermore, we developed optimal control
strategies for two sets of representative infrastructure systems to demonstrate how control
methods could be used to assess the resilience of the systems to catastrophic disruptions.
We present recommendations for future work to continue the development of quantitative
resilience analysis methods.
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Chapter 1

Introduction

1.1 Resilience as a Homeland Security Mandate

U. S. Federal Government critical infrastructure protection (CIP) policies date back at
least to the early 1980s, and, historically, these policies have focused on physical protection
and asset hardening (for example, see [1], [2], [3], [4] ). In 2005, U. S. Department of Home-
land Security (DHS) Secretary Chertoff charged the Homeland Security Advisory Council
to form the Critical Infrastructure Task Force (CITF) and to provide recommendations on
national policy and objectives. The CITFs primary recommendation was that DHS focus
on critical infrastructure resilience (CIR), a concept concerned with ensuring the optimal
delivery of critical infrastructure service in an all hazards environment while simultaneously
reducing the consequences of their exploitation, destruction, or disruption, as its top-level
strategic objective.

The federal government has started a coordinated set of government resilience initiatives
to begin the process of understanding what features create resilience in critical infrastruc-
ture/key resource (CIKR) systems. Agencies were called upon to start measuring the re-
silience of their infrastructure systems. The DHS National Infrastructure Protection Plan
(NIPP), in particular, contains explicit language calling for increasing the resilience of the
nation’s critical infrastructure. Many of the NIPP sector-specific plans (SSPs) also have
broad, if not specific, language that promotes critical infrastructure resilience as a primary
objective.

The process of institutionalizing CIR analysis in federal policy faces many challenges.
In particular, no uniform standards exist for conducting CIR analyses. Existing resilience
assessment methodologies are generally not sufficient for CIR analysis. Current methods
generally have one of the following shortcomings:

• The resilience assessment methods are domain- or model-specific, and, therefore, they
are not applicable to all or any of DHS’s 18 CIKR systems.

• The resilience methods focus on quantifying the impacts of a disruption to system
output levels but do not consider the costs of system recovery. Vugrin et al. [5]
assert that since recovery is a foundational component of resilience, suitable resilience
assessment methods should explicitly consider recovery costs.
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The development and adoption of a standardized approach that addresses these shortcomings
for conducting CIR analysis is a critical step towards DHS’s goal of better understanding
resilient CIKR systems.

1.2 A Quantitative Framework for Assessing Infras-

tructure and Economic Resilience

In an effort to develop a uniform framework for CIR analysis, Vugrin et al. [6] have
proposed the following definition of system resilience for use in CIR analysis:

Given the occurrence of a particular, disruptive event (or set of events), the resilience
of a system to that event (or events) is that system’s ability to efficiently reduce both the
magnitude and duration of the deviation from targeted system performance levels.

According to this definition, systemic impact is measured as the difference between tar-
geted system output levels and actual system output levels following a disturbance. The
magnitude and duration of this disturbance are factors to be considered when quantifying
systemic impact. The ability of the system to efficiently and rapidly return to targeted per-
formance levels refers to the cost of system recovery, or what Vugrin et al. [5] term the total
recovery effort.

Vugrin et al. [6] have further proposed the following approach for quantitatively assessing
system resilience. Consider a dynamic system modeled as follows:

y(t) = f (x(u(t), d(t), t)) , (1.2.1)

where

• x is a state vector with dependence on the recovery effort u and the disturbance d.

• u is a time-dependent vector representing the means by which the system recovers, i.e.,
the recovery effort.

• d represents a time-dependent, piece-wise continuous, disturbance forcing term.

• y is the vector of system outputs under disturbance d, and is obtained by calculation
of the function f.

Let yref be an exogenous reference signal that represents the time-dependent, targeted system
performance level. If t0 > 0 is the first time at which d is non-zero, i.e., the disturbance
initiates, and t1 is the first time at which system output levels return to targeted system
performance levels following a disturbance, i.e., yref (t1) = y(t1), then Vugrin et al. [6] define
TRE, the total recovery effort, as

TRE =

∫ t1

t0

uT Ru dt, (1.2.2)

14



The matrix R is an appropriately sized, positive definite weighting matrix. In general, the
type of disturbance will dictate the recovery strategy. Thus, TRE is a function of d and u.
Vugrin et al. [6] define SI, the systemic impact, as

SI =

∫ t1

t0

[yref − y]T Q [yref − y] dt, (1.2.3)

where Q is another appropriately sized, positive semi-definite weighting matrix.

The recovery dependent resilience costs, RDR, of x to d under u is defined as

RDR (x (t0) , u, d) =
SI + TRE

∫ t1

t0
{[yref ]

T Qyref}dt
. (1.2.4)

The denominator in 1.2.4 is a normalizing term that permits comparison of RDR values for
systems of varying magnitudes. When it exists, optimal resilience costs, OR, of system x to
disturbance d is defined as

OR (x (t0) , d) = min
u

SI + TRE
∫ t1

t0
{[yref ]

T Qyref}dt
. (1.2.5)

The results of the recovery dependent and optimal resilience cost calculations are most
informative when used in the following manner [5]:

• The resilience costs for two different systems to the same disruption are

compared: The system with the lower resilience costs is the more resilient system to
that disruption.

• The resilience costs for one system to different disruption are compared:
The system is more resilient to the disruption that results in lower resilience costs.

• The resilience costs for one system, to one disruption, and different recovery

strategies are compared: The recovery strategy that results in lower resilience costs
will better enhance the system’s resilience.

The approach proposed by Vugrin et al. [6] lends itself nicely to mathematical formu-
lations utilized for the development of optimal feedback control laws. When applied to a
system, feedback controllers utilize measured system outputs to regulate system behaviors
to target conditions while simultaneously providing a measure of the cost in doing so. Incor-
porating feedback control in the quantitative description of resilience could enable automatic
system recovery from disruption while providing a prediction of recovery cost.

As part of a late-start Laboratory Directed Research and Development (LDRD) project,
we investigated the development of quantitative CIR analysis through the application of
control, and optimal control, methods. Specifically, we sought to
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• Investigate feasibility of quantitative CIR analysis through application of control meth-
ods.

• Identify appropriate control methods.

• Apply these control methods to evaluate resilience of representative infrastructure sys-
tems to catastrophic disruptions.

This report documents the outcome of that investigation.

The balance of this report is as follows. Chapter 2 contains the results of a survey of
infrastructure models and control techniques that was conducted to evaluate the suitability
of control methods for quantitative resilience analysis. As a result of this survey, a decision
process was developed that directs CIR analysts to the control method that is most appro-
priate for their particular systems under consideration. The decision process is presented in
Chapter 2, along with brief descriptions of the control techniques included as options in the
decision process. Chapter 3 includes two examples of resilience analysis through application
of optimal control methods to representative infrastructure systems. In the first application,
we evaluate the resilience of a set of supply-consumption systems. We use these examples
to quantitatively verify qualitative observations about resilience enhancement strategies. In
the second application we consider a chemical supply chain prototype model. This system is
modeled by a set of coupled partial differential equations. The number of states required to
simulate this system is large and computationally intensive, a common challenge for model-
ing infrastructure systems. The purpose of this investigation is to demonstrate that reduced
order modeling techniques, such as proper orthogonal decomposition (POD), can be used on
high order systems and then combined with optimal control strategies to perform resilience
analyses. The final chapter, Chapter 4, discusses follow-on work and analyses that should be
considered in the further development of quantitative resilience methods that utilize control
design techniques.
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Chapter 2

Model Issues and Control Selection

for Resilience Analysis

2.1 A Decision Process for Control Method Selection

This project began with the identification of prevalent issues associated with analyzing,
modeling, and simulating infrastructure systems. Infrastructure models and modeling ap-
proaches used and developed by the National Infrastructure Simulation and Analyses Center
(NISAC) were reviewed and assessed. Some of the issues associated with modeling infras-
tructure systems include:

• Lack of a formal model: In some instances resilience analysts do not have a formal
model. They may have only a historical set of input/output data, or the details of a
model may be proprietary and, therefore, unavailable, to the analyst. In the second
instance, the model is essentially a “black box.”

• Nonlinearities: Many infrastructure systems are inherently nonlinear. Linearization
may simplify some of these models, but others may be highly nonlinear, and, thus, not
suitable candidates for linearization.

• Decentralized structure or “agent-based”: Many infrastructure systems are best
represented as networks of independent agents. The rules that dictate the behavior
of these agents may be simple, but mathematical theory for analysis of these types of
systems is not as developed as the theory developed for physics-based systems modeled
with ordinary or partial differential equations.

• High dimensionality: Detailed infrastructure models can have thousands, even tens
of thousands, of variables. These high dimensional systems can be computationally in-
tensive, and, therefore, difficult to analyze through simulation. Large model dimension
also leads to computational difficulties when utilizing optimal control design methods.

Given the spectrum of issues associated with modeling infrastructures, it is clear that no
single control method is best for all types of infrastructure models. Hence, we developed a
decision process that a resilience analyst can follow to evaluate the best control methodology
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to apply to a specific infrastructure model (Figure 2.1). Completion of the process directs
the analyst to the optimal control method that is most appropriate for performing resilience
analysis on the model. The remainder of this chapter provides brief overviews of the control
techniques that are a part of the decision process.M o d e la v a i l a b l e ? I / O d a t aa v a i l a b l e ?D i s t r i b u t e d o rc o n t i n u o u ss t r u c t u r e ? P I D C o n t r o l U s e o p t i m i z a t i o nm e t h o d s .

L i n e a r ? L o w o r h i g hd i m e n s i o n a l ? O p t i m a l f e e d b a c kc o n t r o l( e . g . , L Q R , L Q G ,H ' i n f i n i t y , M i n ' M a x )
P e r f o r m o r d e rr e d u c t i o n

S u c c e s s f u l ?

T r yl i n e a r i z a t i o n . N o n l i n e a r m e t h o d s a v a i l a b l e ?( e . g . , c e n t e r m a n i f o l d )U s e o p t i m i z a t i o n m e t h o d s .

U s e d e c e n t r a l i z e d o rd i s t r i b u t e d c o n t r o l .
C o n t i n u o u sd y n a m i c so n l y ?U s e h y b r i d c o n t r o l .

T r y s y s t e m i d e n t i f i c a t i o n .

S u c c e s s f u l ?

N oY e s Y e s
Y e s

Y e s Y e sY e s

N o

U s e n o n l i n e a rm e t h o d s .
N o

N oN o

N o
N o Y e s

C o n t i n u o u sD i s t r i b u t e d
H i g h L o w

Figure 2.1. A Model-Dependent Decision Process for Se-
lecting a Control Method for Resilience Analysis

2.2 Methodology Descriptions

2.2.1 PID Control

When possible, it is desirable to utilize a dynamical system model to develop controllers
for a particular system of interest. However, it is often the case that a good model of
the system is unavailable or is very difficult to develop. When a model is not available,
controllers are often developed by use of a Proportional Integral Derivative (PID) control
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design technique.

The use of PID controllers is widespread. The most common implementation of the PID
controller is of the form

u(t) = KP e(t) + KI

∫ t

0

e(τ)dτ + KD

de(t)

dt
. (2.2.1)

In (2.2.1), u is the control signal and e is the tracking error between the system output and
the desired output. As seen in (2.2.1), the typical PID controller is comprised of three terms.
The first term is proportional to the tracking error. The second term is proportional to the
integral of the tracking error. Finally, the third term is proportional to the time-derivative
of the error. The three constants KP , KI , and KD are gains placed on the three terms used
to specify the controller. Their values are specified to place more or less emphasis on their
corresponding terms in the control law.

Each of the three terms in the PID control law has a specific purpose. The first term
adjusts the control input as a function of tracking error. Adjusting the proportional gain
KP results in a corresponding change in the tracking response. Care must be taken when
specifying a value for KP . Setting the proportional gain too high can result in small tracking
errors having large impacts on the control input u(t). Moreover, setting the gain too high
may cause the closed-loop system to become unstable. Conversely, setting the proportional
gain too low can result in small changes to the control input even if there is significant
tracking error. In addition, with a gain that is too low, the control action may not be large
enough to adequately respond to large system disturbances.

The proportional term by itself typically results in a steady-state tracking error. The
addition of the integral term ensures that the system output tracks the reference condition
in steady-state. When the integral term is included, positive steady-state tracking error
results in a corresponding positive increase in the control input. Likewise, a negative steady-
state tracking error yields a decrease in the control input.

The derivative term in the PID controller is included to improve closed-loop stability of
the system. Multiplying the rate of change of the tracking error by the derivative gain KD

results in a controller that includes information about the predicted future tracking error.
However, if the system output has signal noise associated with it, differentiating the tracking
error can amplify the impacts of this noise. As a result, the derivative term is highly sensitive
to noise in the tracking error measurement. This sensitivity can result in the closed-loop
system becoming unstable if the noise and derivative gain are too large.

Many factors must be considered when specifying the PID gains KP , KI , and KD. More-
over, the three terms in (2.2.1) are not always used to develop a feedback control for a
particular system. The characteristics of the system, and potential noise associated with its
measured output, dictate which terms in the PID control law are appropriate for the system
at hand. A good reference for the design of PID feedback controllers is [7].
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2.2.2 System Identification

System identification is another technique that can be used when a dynamical system
model is not available. The main goal of system identification is to produce the simplest
mathematical description that adequately predicts how the process responds to a given set
of inputs [8]. An identified system may adequately predict process behaviors while utilizing
a mathematical structure that is different from that of the actual process of interest [9].

In general, system identification requires a set of input and corresponding output data.
Oftentimes, the modeler may have some idea about the structure of the model and param-
eters that need to be determined but not know the precise structure or values. System
identification may be used to better understand the structure and assign parameter values.
L. Ljung [10] provides a good introduction into system identification and related issues.

System identification is relevant to resilience analysis because it can be used to develop a
mathematical description of a system when a model was not previously available. Frequently,
system identification is used to develop a linear model. If this is possible, then linear optimal
feedback control techniques can be applied to the resulting model.

2.2.3 Linear Optimal Feedback Control

When a dynamical model is available for a given system, it can often be expressed in
a form suitable for linear control law design. Many systematic control formulations lend
themselves to state-space system models of the form

Ẋ(t) = AX(t) + Bu(t), t > 0, (2.2.2)

X(0) = X0(x). (2.2.3)

In (2.2.2), X(t) is called the state vector with components x1(t), x2(t),...,xn(t) being state
variables. Notation Ẋ denotes the differentiation of the state vector with respect to time.
The control input to the system is denoted by u(t). The coefficient matrices A and B are
time invariant.

It is often required that state variables track a particular reference signal. A fixed refer-
ence signal z(x) is specified, and it is desired that solutions of (2.2.2)-(2.2.3) track z(x) as
time evolves. As the tracking signal is time-invariant, the dynamics of the system and the
reference signal are given by

˙[X
z

]

=

[

A 0
0 0

] [

X
z

]

+

[

B
0

]

u (2.2.4)

= ĀX̄ + B̄u, (2.2.5)

where we have defined the augmented state X̄ as X̄ = [X z]T . The initial data of the
augmented system is given by

X̄0 =

[

X0(x)
z(x)

]

. (2.2.6)
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It should be noted that (2.2.2)-(2.2.3) correspond to a linear system. A variety of optimal
control techniques have been developed for linear systems. A particular example is that of
the linear quadratic regulator (LQR) control formulation, which we now describe in detail.

The tracking formulation of the LQR control problem can be applied to the augmented
state equation. For control scenarios where it is desired that state variables track a particular
reference signal in steady-state, a cost function of the form

J(X0, u) =

∫

∞

0

{

(X − z)T Q(X − z) + uT Ru
}

dt (2.2.7)

is used to develop the LQR feedback control. In (2.2.7), Q is a diagonal, symmetric, positive
semi-definite matrix consisting of state weights. R is a diagonal, symmetric, positive definite
matrix of control weights. The optimal control problem we consider is to minimize (2.2.7)
over all controls u ∈ L2(0,∞) subject to the constraints (2.2.4)-(2.2.6).

For a controllable system, the tracking LQR problem has a unique solution [8] of the
form

uopt = −KX̄ (2.2.8)

= −[K1 K2]X̄ (2.2.9)

= −
[

R−1BT Π11 R−1BT Π12

]

X̄, (2.2.10)

where Π11 is the unique symmetric, non-negative solution of the algebraic Riccati equation

AT Π11 + Π11A − Π11BR−1BT Π11 + Q = 0. (2.2.11)

The matrix Π12 in (2.2.10) satisfies the equation
[

AT − Π11BR−1BT
]

Π12 = Q. (2.2.12)

There are many commercial software packages available that can solve the Riccati equa-
tion given by (2.2.11). With the Riccati matrix Π11 in hand, Π12 is found by simply solving
matrix equation (2.2.12).

Once the gain matrix K is obtained, the feedback control law is placed into the augmented
state-space equation. The resulting closed-loop system is of the form

˙̄X = (Ā − B̄K)X̄, (2.2.13)

X̄(0) = X̄0. (2.2.14)

LQR is only one of several optimal control methods suitable for linear systems. Other
techniques include linear quadratic Gaussian (LQG) optimal control, a method utilized when
measurements are affected by “white, Gaussian noise” or if full state measurement is not
possible. There are also robust control techniques, such as H-infinity control, that are used
when it is necessary to stabilize a system in the presence of external disturbances. Zhou and
Doyle [11] provides an excellent discussion of robust and optimal control methods for linear
systems.
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2.2.4 Linearization

It is often that case that a nonlinear system can be linearized about an equilibrium
point with control subsequently designed from the linearized system. In this approach, the
linearized model is a good representation of the nonlinear system inside some neighborhood
about the equilibrium point. As a result, incorporating a feedback control law developed from
the linearized system into the nonlinear plant can often give sufficient control performance
inside the region of validity of the linearized model. The application of this approach to a
nonlinear dynamical system can be found in [12].

2.2.5 Nonlinear Control

For some nonlinear systems, the stability of equilibria can not be determined by use of the
linearized plant. As a result, the effectiveness of a control developed from the linearized plant
is uncertain when placed in the original nonlinear model. For cases such as this, it is necessary
to develop controls directly from the nonlinear model. Depending on the system under
consideration, a combination of nonlinear control design tools may be required to provide
effective control. Possible methods include sliding mode control, Lyopunov formulations, and
applications of the celebrated Center Manifold Theorem. The use of these nonlinear control
design techniques is outside the scope of this effort. Discussions of them can be found in
[13].

2.2.6 Decentralized Control

Agent-based modeling is a commonly applied modeling technique applied to infrastruc-
ture systems. Agent-based models consist of a set of “agents” that interact with each other.
Their interactions are generally determined by a set of simple rules. The agents generally
behave in a manner that optimizes their own performance, rather than acting for the “greater
good.” Decentralized systems are often well suited for agent-based modeling approaches.

These types of systems and models often require decentralized controllers. In the decen-
tralized control problem, agents generally have their own performance indices that they are
attempting to maximize. Local controllers are developed based on the local dynamics, reg-
ulating the local behavior of agents [14]. A coordinator has a global performance index that
is determined by the agents’ local performance indices. Through the use of a decentralized
control strategy, the coordinator attempts to optimize the global performance index. Sandell
et al. [14] provides a good survey of decentralized control methods.
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2.2.7 Hybrid Control

Many infrastructure models may exhibit radically different dynamics in different regions
of the problem domain. For example, a dynamical model for an airplane may differ sig-
nificantly during take-off and landing when compared to “cruise control” behavior at high
altitudes. These types of models, termed hybrid models, can simultaneously display different
types of dynamic behavior in different parts of the system [15]. This behavior frequently
results a pairing of continuous elements with discrete planning algorithms or event-based
elements (e.g., on-off switches).

These types of models require a type of control termed hybrid-control. Similar to the
way dynamics of the system vary amongst different regions in the domain, controllers for
hybrid systems vary from region to region. The references [16], [17], and [18] provide detailed
discussions of hybrid systems and controllers for these systems.

2.3 Reduced Order Modeling: Proper Orthogonal De-

composition

Reduced-order modeling is often used to reduce the dimension of dynamical systems in
order to lessen the burden of computation. Proper orthogonal decomposition (POD) is a
popular order reduction technique that extricates a small set of optimal basis functions from
large sets of observed system data. A POD algorithm [19, 20] based on the snapshot method
[21] can be used to construct a low order basis suitable for the development of a reduced
order system model. We now describe this basis construction technique. A data ensemble
of snapshots {Si(x)}N

i=1
is generated for the system of interest via numerical simulation or

experiment, where N is the total number of snapshots. Each snapshot consists of instanta-
neous system data. With the snapshot ensemble in hand, the N × N correlation matrix L
defined by

Li,j = 〈Si, Sj〉 (2.3.1)

is constructed. In this work, we utilize the standard L2(Ω) inner product

〈Si, Sj〉 =

∫

Ω

SiS
∗

j dx, (2.3.2)

where S∗

j denotes the complex conjugate of Sj, in the construction of L.

The eigenvalues {λi}
N

i=1
of L are calculated and sorted in descending order. The ratio

100

(

∑M

i=1
λi

∑N

i=1
λi

)

(2.3.3)

is used to determine the number of POD basis functions to construct. The quantity in (2.3.3)
provides a measure of the ensemble variability that is captured by a POD basis consisting of
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M modes. By requiring a percentage of the variability contained in the snapshot ensemble
be contained in the basis, the smallest value of M is calculated such that the quantity in
(2.3.3) is greater than or equal to that percentage.

The eigenvectors {vi}
M

i=1
corresponding to the M eigenvalues of largest magnitude are

calculated. Each eigenvector is normalized so that

‖vi‖
2 =

1

λi

. (2.3.4)

The orthonormal POD basis set {φi(x)}M

i=1
is constructed according to

φi(x) =
N
∑

j=1

vi,jSj(x), (2.3.5)

where vi,j is the jth component of vi. With the basis in hand, system states X(t,x) are
approximated as a linear combination of POD modes, i.e.,

X(t,x) ≈
M
∑

i=1

αi(t)φi(x). (2.3.6)

Split-POD

Using an argument based on (2.3.3) is a convenient way to determine the number of
POD modes to retain for a given system. However, blindly applying (2.3.3) to determine the
necessary number of modes is problematic in many settings, particularly those with control
action restricted to the system spatial domain boundary. In boundary control applications,
it is desired that control input energy be as small as possible while still satisfying the con-
trol objective. Simply applying (2.3.3) to an ensemble consisting of baseline and boundary
actuated data presents the risk of important system information due to control input being
discarded. System behaviors induced by boundary actuation often have much lower energy
content than those associated with the baseline dynamics. For these reasons, the POD al-
gorithm described above was extended in [22] so that baseline and control input energy are
considered separately. This method is referred to as split-POD. The basis resulting from this
method consists of modes significant to the baseline dynamics as well as those significant
from an actuation standpoint.

The basic idea of split-POD is to decompose each snapshot in the ensemble into a com-
ponent in the span of a baseline POD basis and an orthogonal component. This is done by
employing useful properties of orthogonal projections on Hilbert spaces [23]. By considering
the case of baseline and actuated data separately, the orthogonal component is constructed
such that it contains new information due to the control input.

An ensemble of solution snapshots is generated for the case of zero control input. From
this baseline snapshot ensemble, a set of POD modes is constructed that contains a high
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percentage of the baseline variability. For notational convenience, denote this baseline basis

by {ξj}
M̄B

j=1
where M̄B is the number of modes. By employing the ratio in (2.3.3), M̄B is

chosen so that the baseline basis contains most of the variability contained in the baseline
snapshot ensemble.

With a large set of baseline modes in hand, an ensemble of solution snapshots is generated
for the case of nonzero control input. Denote the actuated ensemble by {Ti}

NA

i=1
where NA is

the number of actuated snapshots.

The component that is in the span of the baseline basis is determined for each snapshot
in the actuated ensemble. In particular, define bij according to

bij = 〈Ti, ξj〉 , 1 ≤ i ≤ NA, 1 ≤ j ≤ M̄B. (2.3.7)

Then, bij is the projection of the ith actuated snapshot Ti onto the jth baseline POD mode
ξj. In other words, the product bijξj is the component of Ti that is in the direction of ξj.

The linear combination
∑M̄B

j=1
bijξj is the component of Ti in the span of the baseline basis.

Define T̄i according to

T̄i = Ti −

M̄B
∑

j=1

bijξj. (2.3.8)

Then, T̄i is the component of Ti not contained in the span of the high order baseline basis. As
Ti is a solution snapshot for the case of nonzero control input, T̄i consists of new information
due to the control input. A second set of POD modes is constructed from the data ensemble
{T̄i}

NA

i=1. This set of “actuator modes” is denoted by {ηi}
MA

i=1
, where MA is the number of

modes. The ratio in (2.3.3) is used to determine MA such that the basis of actuator modes
contains an arbitrary amount of the additional variability resulting from the control input.
The high order baseline basis was employed to extricate new information resulting from the
control. Having done that, the baseline basis is truncated to contain a more reasonable
number of modes for model development. Denote MB as the number of baseline modes
retained after truncation with corresponding basis set {ξj}

MB

j=1

To simplify reduced order modeling, it is advantageous to use a basis consisting of or-
thonormal modes. It is shown in [22] that the sets of baseline and actuator modes can be
combined into an overall basis set

{φi}
MB+MA

i=1 = {ξ1, ξ2, ..., ξMB
, η1, η2, ..., ηMA

}, (2.3.9)

where all modes in the basis are orthonormal. The system states X(t,x) are still approxi-
mated as a linear combination of modes as in (2.3.6). Moreover, separate consideration of
baseline and actuated system data allows us to write this linear combination as

X(t,x) ≈

MB
∑

j=1

θj(t)ξj(x) +

MA
∑

i=1

βi(t)ηi(x), (2.3.10)
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where {θj}
MB

j=1 and {βi}
MA

i=1 are temporal coefficients for the baseline and actuator basis,
respectively. This allows system states to be represented as the summation of a baseline
component and an additional component induced by the control input.

The split-POD technique can be used to construct an optimal low-dimensional basis
from experimental as well as simulated data. This technique is combined with PID control
to develop feedback controllers from collected wind tunnel data in [24] for a hemispherical
turret application. Its impact on LQR control effectiveness is demonstrated in [22] for a
nonlinear dynamical system in simulation.
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Chapter 3

Resilience Analysis of Representative

Infrastructure Systems

In this chapter we present example demonstrations of resilience analysis through control
design for a set of representative infrastructure systems. The first set of systems are rela-
tively simple supply-consumption systems, and we examine the resilience of these systems
to supply disruptions before and after resilience enhancements are made to the systems.
We additionally consider a distributed chemical supply chain analogue. The system is com-
plex,and the model for this system involves thousands of state variables. We investigated
the resilience of this system to demonstrate that resilience analysis could be applied to large,
computationally intensive models. We applied reduced-order modeling techniques in order
to perform the analysis.

3.1 Supply-Consumption Systems

The first system that we consider, a modification of Sterman’s stock management struc-
ture [25]( see Figure 17-4) is shown in Figure 3.1. This model represents a relatively simple
supply-consumption system, and we use systems dynamics modeling techniques to represent
the dynamics of the system. In this system, the rate of consumption, C, of a commodity
is the sum of the loss rate, LR, of a stock, S, and the rate at which an emergency supply,
ESR, can supply that commodity to the consumer. The acquisition rate, AR, for the stock
is the sum of the expected consumption rate, EC, and a stock adjustment strategy, AS, that
attempts to have stock levels track a desired stock profile, S∗. The stock loss rate is propor-
tional to the inventory of the stock. For this system, the emergency supply rate represents
the control term. The emergency supply is intended to be activated when the consumption
cannot meet the external demand signal.

We use the following set of equations to model the supply-consumption system:

d

dt
S(t) = AR(t) − LR(t), (3.1.1)

d

dt
C(t) = LR(t) + ESR(t). (3.1.2)
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Figure 3.1. A Supply-Consumption System Represented
with Systems Dynamic Conventions

The variables AR and LR are defined as follows:

LR = k1S, (3.1.3)

where k1 is a proportionality constant, and

AR = SA + EC. (3.1.4)

The stock manager’s adjustment strategy, SA, is defined as

SA =
S∗ − S

SAT
. (3.1.5)

The constant SAT represents the stock adjustment time.

Estimated consumption is the average consumption over a fixed time period. It is calcu-
lated according to

EC =
C(t) − C(t − td)

td
. (3.1.6)
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The term td is the period over which consumption is averaged.

These variables can be combined into a two-dimensional, differential-delay equation that
describes the entire system:

d

dt

[

S(t)
C(t)

]

= A0

[

S(t)
C(t)

]

+ A1

[

S(t − td)
C(t − td)

]

+

[

1
0

]

N(t) +

[

0
1

]

ESR(t), (3.1.7)

where

A0 =

[

−1/SAT − k1 1/td
k1 0

]

, (3.1.8)

A1 =

[

0 −1/td
0 0

]

, (3.1.9)

and N(t) represents a potential disturbance to the system. The measured output, y, for the
system is calculated

y(t) =
[

0 1
]

[

S(t)
C(t)

]

= C(t). (3.1.10)

3.1.1 The Optimal Resilience Problem

For the supply-consumption system, we consider the following set of resilience analysis
questions:

• Given the dynamics of the supply-consumption system described in equations (3.1.1) -
(3.1.10), what are the resilience costs of a system, as defined in equation (3.1.11) with
no emergency supply to a particular disruption?

J(S(0), C(0), ESR) =

∫

∞

0
[C(t) − D(t)]2 dt
∫

∞

0
[D(t)]2 dt

+

∫

∞

0
R [ESR(t)]2 dt
∫

∞

0
[D(t)]2 dt

, (3.1.11)

In (3.1.11), D(t) represents an exogenous demand signal and R is a scalar constant
that balances the cost of the systemic impact, C(t) − D(t) with the recovery effort
ESR(t).

• For that same system, what are the resilience costs when an emergency supply is
available?

• What is the optimal emergency supply strategy that minimizes the resilience costs and
maximizes the system’s resilience to the disruption?

As discussed in [5], we observe that the addition of the emergency supply should enhance the
absorptive capacity of the system, thus increasing the system’s resilience. We now perform
a resilience analysis to quantitatively verify this hypothesis.
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3.1.2 Methodology

To perform the resilience analysis, we utilized LQR optimal feedback control described
in Section 2.2.3. This approach is well-suited to this particular system since the model is
linear. The system is infinite dimensional due to the delay term, C(t − td). Hence, in order
to perform simulation, the system must be approximated and discretized. We used the
averaging scheme described in [26], [27], and [28] to do so. This approximation methodology
was selected as feedback control approximations developed with the averaging scheme have
been shown to converge (in norm) to the optimal control for the infinite dimensional system
[28] and [29]. Kappel [28] describes in detail how to develop the matrices required for the
LQR methodology.

Empirical testing indicated that relatively low order (N ≈ 4) approximations sufficiently
represent the solution. As a result, reduced-order modeling methods were not necessary to
decrease the order of the system.

3.1.3 Resilience Analysis

Table 3.1 lists the system parameter values that we used for the resilience analysis.
Additionally, equations (3.1.12) and (3.1.13) define the history functions (i.e., how S(t) and
C(t) are evaluated over [−td, 0)) and S∗.

Table 3.1. System Parameters for Resilience Analysis

Parameter Value
SAT 8
td 1
k1 0.25

We evaluated the resilience of two supply-consumption systems. The first is the supply-
consumption system when no emergency supply exists, i.e., ESR = 0. The second system is
identical with the exception that it has an emergency supply. The addition of the emergency
supply is expected to enhance the absorptive capacity of the system, and consequently, the
system with the emergency supply should be more resilient than the system without.

S(t) = 1/2 [1 + sin(t)] , t ∈ [−1, 0), (3.1.12)

S∗(t) = 1/2 [1 + sin(t)] . (3.1.13)

Figure 3.2 shows the dynamics of the supply-consumption system for undisrupted con-
ditions. The dynamics are identical with and without the emergency supply. Figure 3.3
displays the dynamics of the system without an emergency supply when we impose a dis-
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Figure 3.2. Nominal Supply-Consumption Dynamics

ruption N(t) (defined in equation (3.1.14) to the acquisition rate.

N(t) =

{

−1, 1 ≤ t ≤ 1.2,

0, otherwise
(3.1.14)

Stock levels drop sharply as soon as the disruption occurs. When the disruption ends,
the gap between disrupted and undisrupted stock levels decreases, but stock levels never
attain undisrupted levels. The decrease in stock leads to a decrease in the consumption
rate, which affects the expected consumption rate. (Recall that the expected consumption
rate is determined by averaging the consumption rate.) Disrupted consumption levels never
reach nominal consumption levels, and the gap between the two increases over time. The
consumption rate is directly proportional to the stock level, so decreased stock levels result
in decreased consumption rates, causing the growing gap between disrupted consumption
levels and nominal consumption levels.

Figure 3.4 shows the stock and consumption levels for the system with the emergency
supply in place. The rate at which the emergency supply is utilized is determined through an
LQR control design that attempts to make the disrupted consumption levels track demand
levels (D in equation (3.1.11)) that are equal to the nominal consumption levels. In this
figure, we see that the disrupted consumption levels decrease relative to the nominal con-
sumptions immediately following the disruption. However, the control term (shown in Figure
3.5), prevents that decrease from reaching the disrupted consumption levels that were seen
when no emergency supply was available. Furthermore, the gap between the consumption
levels for the nominal case and the disrupted case with emergency supply does not increase
following the disruption.

The resilience costs, as calculated with equation (3.1.11), for the supply-consumption
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Figure 3.3. Disrupted Supply-Consumption Dynamics: no
emergency supply reserve

system without an emergency supply are 7E-3 (unitless). The resilience costs for the supply-
consumption system with the emergency supply were decreased to 7E-5 (unitless). Hence, in
this example, we are able to quantitatively demonstrate that the addition of the emergency
supply decreases resilience costs and, therefore, increases the resilience of the system to this
disruption.

3.1.4 Comparing the Resilience of a Multi-plant Supply-Consumption

System Across Different Disruptions

Figure 3.6 shows a variation of the previously considered supply-consumption model. This
system is a “multi-stock, single control” system in which four stocks feed the consumption
term, and one emergency supply reserve can supplement the supply from the four stocks
when a disruption affects one or more of them. (The dynamics for the individual stocks are
identical to the dynamics of the stock in the previous example, so system parameters for the
individual stocks are identical to the parameters in Table 3.1.)

Under nominal conditions in the “multi-stock, single control” system, all plants run at
near capacity; one plant provides 75 percent of the nominal consumption rate, two plants
provide 10 percent each of the nominal consumption rate, and one plant provides 5 percent
of the consumption rate.

We considered the resilience of this system to two types of disruptions. In the first
disruption scenario, the acquisition rate to the largest plant is disrupted. In the second
disruption scenario, the acquisition rate to smallest plant is identically disrupted. One
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would expect that the system will be more resilient to the second type of disruption than
the first type.

The simulations confirm that hypothesis. Consumption levels for the two scenarios are
indistinguishable, and track the nominal consumption fairly well (Figure 3.7(a)). However,
the amount of emergency supply required to maintain these consumption levels are much
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higher for Scenario 1 when the larger plant is disrupted (Figure 3.7(b)). Though the two
systems have similar system impacts, the total recovery costs resulting from the use of the
emergency supplies are larger for the first scenario. Hence, the system is more resilient to
the second type of disruption that affects the smallest plant.

3.1.5 Summary of Supply-Consumption System Analyses

In the supply-consumption system, we quantitatively evaluated resilience in two differ-
ent ways. In the first configuration, we compared the resilience of two different systems:
one without an emergency supply of a commodity and one with an emergency supply. This
emergency supply was expected to enhance the absorptive capacity of the system and lead to
greater resilience. We subjected both systems to identical disruptions, and through applica-
tion of optimal control laws, we were not only able to quantitatively support this hypothesis,
but we also identified the optimal strategy that best utilized the emergency reserve.
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Figure 3.7. Multiplant System Consumption Levels and
Emergency Supply Rates for Two Disruption Scenarios

In the second evaluation, we compared the resilience of a multi-plant, single emergency
reserve system to two types of disruption scenarios. In the first scenario, the acquisition
rate of the largest plant was negatively affected. In the second scenario, the smallest plant’s
acquisition rate was identically impacted. Though the system impacts were nearly identical
for the two scenarios, the total recovery cost, or cumulative control, for the first scenario was
much higher. Hence, the resilience costs for the first scenario are larger, and the system is
more resilient to the second type of disruption.

3.2 Distributed Chemical Supply Chain

Many physical processes that are important from an infrastructure resilience standpoint
have dynamics that vary spatially as well as temporally. These dynamics can often be
modeled by partial differential equations with appropriate initial and boundary conditions.
Advantages gained by incorporating feedback control methods in the quantitative resilience
methodology are now illustrated in a chemical supply chain configuration described by a set
of coupled partial differential equations. A schematic illustrating the supply chain is shown
in Figure 3.8. The supply chain is comprised of five chemical species V , W , F , G, and H
with their concentrations denoted by CV , CW , CF , CG, and CH , respectively. The chemical
concentrations vary with time and space, and their evolution is described by a set of five
coupled partial differential equations over the spatial interval [0, L]. These equations are of
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Figure 3.8. Distributed Chemical Supply Chain

the form

∂

∂t
CV (t, x) = ǫ

∂2

∂x2
CV (t, x) − µ

∂

∂x
CV (t, x) − kV CV (t, x), (3.2.1)

∂

∂t
CW (t, x) = ǫ

∂2

∂x2
CW (t, x) − µ

∂

∂x
CW (t, x) + yW kV CV (t, x) − kW CW (t, x), (3.2.2)

∂

∂t
CF (t, x) = ǫ

∂2

∂x2
CF (t, x) − µ

∂

∂x
CF (t, x) + yF kW CW (t, x) − kF CF (t, x), (3.2.3)

∂

∂t
CG(t, x) = ǫ

∂2

∂x2
CG(t, x) − µ

∂

∂x
CG(t, x) + yGkW CW (t, x) − kGCG(t, x), (3.2.4)

∂

∂t
CH(t, x) = ǫ

∂2

∂x2
CH(t, x) − µ

∂

∂x
CH(t, x) + yHkW CW (t, x) − kHCH(t, x), (3.2.5)

for t > 0 and x ∈ (0, L]. In (3.2.1) - (3.2.5), the constants kV , kW , kF , kG, and kH are first
order reaction rates. Stoichiometric yield factors are denoted by yW , yF , yG, and yH . Species
dispersion is prescribed by the constant ǫ. Finally, µ is a velocity parameter, which we take
to be constant for the sake of simplicity in what follows.

In the supply chain configuration, the desired mode of operation is for species W to
dissociate into the three daughter products F , G, and H. The target operating condition
is for daughter concentration CG(t, x) to be at a specific value at x = L. Under normal
operating conditions, this target value is attained by specifying a nominal value of CW (t, x)
at x = 0. This nominal value results in a concentration profile of species W along the interval
[0, L] that yields the desired concentration of daughter product G at x = L. The resulting
boundary condition at x = 0 for the concentration of species W is of the form

CW (t, 0) = f(t), (3.2.6)

where f(t) is the (possibly) time-varying nominal value of CW (t, x) at x = 0 that provides
the desired concentration of species G at x = L.

Chemical species V has species W as a daughter product. As a result, species V is used
as an emergency supplier of species W in the event that species W has a disruption in its
availability. In other words, the concentration of species V at x = 0 is used as a control
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input to the supply chain. The resulting boundary condition is of the form

CV (t, 0) = u(t), (3.2.7)

where u(t) is the time-varying closed-loop input to the system that automatically compen-
sates for disruptions in the supply of CW (t, 0). In the nominal operating condition, u(t)
remains held at a value of zero. Under disrupted operating conditions, u(t) becomes nonzero
to keep the concentration of species G at its target value at x = L until the concentration
CW (t, 0) returns to its nominal value f(t).

Homogeneous conditions are specified for the concentrations of species F , G, and H at
x = 0. The resulting boundary conditions are of the form

CF (t, 0) = 0, (3.2.8)

CG(t, 0) = 0, (3.2.9)

CH(t, 0) = 0. (3.2.10)

A Robin boundary condition is specified for the five species concentrations at x = L,
resulting in

rCV (t, L) +
∂

∂x
CV (t, L) = 0, rCW (t, L) +

∂

∂x
CW (t, L) = 0, (3.2.11)

rCF (t, L) +
∂

∂x
CF (t, L) = 0, rCG(t, L) +

∂

∂x
CG(t, L) = 0,

rCH(t, L) +
∂

∂x
CH(t, L) = 0,

for a constant r ≥ 0.

Finally, the model is completed with initial species concentrations in L2([0, L]).

3.2.1 Numerical Discretization

The infinite-dimensional system given by (3.2.1) - (3.2.11) is discretized utilizing a finite
difference scheme. As we aim to utilize model-based control design methods to develop
feedback controllers, the discretized system we desire is in the form of a state-space model.
The interval [0, L] is uniformly partitioned with spatial step-size h. The resulting grid nodes
are denoted by x1, x2, ..., xN . Second-order discretizations are used for both the first and
second-order spatial derivatives in (3.2.1) - (3.2.5). In addition, a second-order discretization
is used for the first-order spatial derivatives in the Robin conditions in (3.2.11). Utilizing
these discretizations results in a system of ordinary differential equations approximating the
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model given by (3.2.1) - (3.2.11). The discretized system is of the form

˙











CV

CW

CF

CG

CH













=













ACV
0 0 0 0

yW kV I ACW
0 0 0

0 yF kW I ACF
0 0

0 yGkW I 0 ACG
0

0 yHkW I 0 0 ACH

























CV

CW

CF

CG

CH













+













BCV

0
0
0
0













uV (t) +













0
FCW

0
0
0













f(t),

(3.2.12)
which we simply write in the state-space representation

Ċ = AC + Bu + Ff (3.2.13)

C(0) = C0(x). (3.2.14)

In (3.2.12), I denotes the N × N identity matrix. The matrices ACV
, ACW

, ACF
, ACG

, and
ACH

are tridiagonal matrices of dimension N ×N . The matrices BCV
and FCW

separate the
influence of time-varying boundary conditions in the model and are of dimension N × 1. In
(2.2.2), the vector C has dimension 5N × 1. The matrix A is of dimension 5N × 5N . The
control matrix B has dimension 5N × 1. Forcing vector F is also of dimension 5N × 1.

38



3.2.2 Nominal and Disrupted Dynamics

To illustrate the impacts of disruption on the ability of the default supply chain (without
control) to maintain its target output, nominal and disrupted supply chain dynamics are now
compared. In the results that follow, species dispersion ǫ is prescribed a value of 10. First
order reaction rates kV , kW , kF , kG, and kH are given values of 0.2, 0.1, 0.02, 0.02, and 0.02,
respectively. Stoichiometric yield factors of yW = 0.5, yF = 0.3, yG = 0.2, and yH = 0.1 are
specified. The velocity parameter µ is set to 0.4. The behavior of the supply chain without
disruption, a nominal value of f(t) = 1, and a target value of CG(t, L) = 0.0372 with L = 40,
is shown in Figure 3.9. In Figure 3.9(b), the desired concentration of species G is denoted by
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Figure 3.9. Nominal Supply Chain Dynamics

the asterisks at x = 40 in the plot of CG(t, x). As is evident, the target value is maintained
well under the undisturbed nominal operating condition. In this condition, the emergency
supply V is not required for the target performance level to be met, as seen in Figure 3.9(a).

The supply of concentration W at x = 0 is now severely disrupted. At t = 5, species
W undergoes a catastrophic failure, with its available supply at x = 0 being completely
eliminated. The supply of species W does not begin to recover until t = 75, when it is
gradually brought back online to its nominal value. The behavior of the disturbed supply
chain with no control is shown in Figure 3.10. As seen in Figure 3.10(b), the severe disruption
in the supply of species W causes the concentration of daughter species G to severely depart
from its target value at x = 40. The impact of the disruption on the supply chain is more
clearly seen in Figure 3.11. In that figure, the dashed curve denotes the desired value of
CG(t, 40). The solid curve denotes the value attained for CG(t, 40) for the disrupted supply
chain. Obviously, the disruption causes CG(t, 40) to depart significantly from its target value.
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Figure 3.10. Disrupted Supply Chain Dynamics
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Figure 3.11. Departure of Species G from the Target Value
After Disruption

3.2.3 Tracking Control

We now formulate a feedback control formulation with the aim of holding CG(t, L) at
its target value, even during a disruption in the availability of species W . As discussed
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previously, the concentration of species V at x = 0 is the control input to the system. As
the control input enters the system via a boundary condition, the corresponding control
formulation designates a boundary control problem. The need to hold CG(t, L) at a target
value corresponds to tracking control. As seen in (3.2.1) - (3.2.5), the governing equations
that describe the system are linear. For the chemical supply chain configuration discussed
in this section, a tracking LQR control formulation is used to obtain the boundary feedback
control u(t). To this end, steady-state target reference concentrations are specified of the
form

Cref =
[

CVref
CWref

CFref
CGref

CHref

]T
. (3.2.15)

As the reference concentrations do not vary with time, the dynamics of the species concen-
trations and the reference signals are given by

˙[

C
Cref

]

=

[

A 0
0 0

] [

C
Cref

]

+

[

B
0

]

u +

[

F
0

]

f (3.2.16)

= ĀC̄ + B̄u + F̄ f, (3.2.17)

where we have defined the augmented state C̄ as

C̄(t) =

[

C(t)
Cref

]

with C̄(0) =

[

C0

Cref

]

. (3.2.18)

The tracking LQR problem is solved, and the resulting optimal feedback control is placed
into augmented state-space equation (3.2.17). The resulting closed-loop system is of the form

˙̄C = (Ā − B̄K)C̄ + F̄ f (3.2.19)

C̄(0) = C̄0. (3.2.20)

The LQR controller can take values that are either positive or negative. There is nothing
in the tracking LQR formulation that restricts the control input to non-negative values. The
control input to the supply chain is the concentration of species V at x = 0. As such, a
negative value for the controller does not make physical sense as it corresponds to a negative
concentration. To account for this, negative values for the controller are replaced by a value
of zero during implementation.

3.2.4 Controlled Results

We now demonstrate the increase in supply chain resilience due to the incorporation
of feedback control. The steady-state concentration profile for species G obtained in the
nominal operating condition is used for the reference profiles in (3.2.15). This reference
profile is shown in Figure 3.12. As seen in Figure 3.12, the reference profile has the target
value of 0.0372 at x = 40.

As the control objective is only concerned with the tracking of CG(t, x), states corre-
sponding to the other four chemical concentrations are prescribed state-weights of zero in
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LQR cost function (2.2.7). To isolate the concentration of species G near x = 40 in the
control problem, values of CG(t, x) over the interval [39.6, 40] are prescribed state-weights of
5.0 × 109. Values of CG(t, x) outside of this interval are given state-weights of zero. Unit
weight is specified for the control input in the definition of R. The behavior of the disturbed
chemical supply chain with incorporated feedback control is shown in Figure 3.13. As seen
in Figure 3.13(a), species V turns on after failure to force the necessary profile in its daugh-
ter chemical, species W . This allows for the target value of CG(t, 40) to be maintained,
even during the severe disruption to the nominal operating condition. The improvement in
the supply chain resilience is easily seen by comparing the results of Figure 3.13(b) to the
uncontrolled results seen in Figure 3.10(b). With incorporated feedback control, the target
condition is held quite well during the disruption whereas the uncontrolled supply chain
deviates severely.

The ability of the feedback control to maintain the target condition, even during a severe
disruption, is more clearly seen in Figure 3.14. As is evident by comparing the results of Fig-
ure 3.14 and Figure 3.11, incorporating feedback control allows for much better performance
during disruption, and increases the resilience of the chemical supply chain. As species W is
gradually brought back to its nominal value after t = 75, species V gradually vanishes from
the system and eventually returns to zero.
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Figure 3.13. Disrupted Supply Chain Dynamics with Con-
trol
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3.2.5 Low-Dimensional Supply Chain Model

Extending the feedback control techniques utilized in this section to highly discretized,
multi-dimensional spatial domains or to supply chain configurations comprised of many
chemical species introduces computational challenges. As the number of states described
by the supply chain model becomes very large, numerically calculating the solution to the
algebraic Riccati equation becomes problematic. Solving the Riccati equation requires find-
ing a matrix solution that satisfies the nonlinear equation in (2.2.11). The Riccati solution
matrix is symmetric. Thus, calculating it requires that n(n+1)/2 matrix unknowns be solved
for, where n is the number of states in the system. As n becomes large, the calculation of
the Riccati solution becomes intractable. Order reduction of the system model is required
for cases such as these. Proper orthogonal decomposition has been successfully combined
with weakly formed Galerkin projections to reduce dynamical system order and obtain low-
dimensional state-space representations [30, 31, 32, 33]. These order reduction techniques
also lend themselves to nonlinear control methods where low system order is critical [34, 35].
To demonstrate the utility of these ideas for chemical supply chain configurations, we now
develop a reduced-order model for the supply chain described by (3.2.1) - (3.2.11). The
split-POD technique is used to construct an overall basis consisting of optimal baseline and
actuator modes. With the basis set in hand, the five chemical species concentrations are
represented as linear combinations of these modes. The basis mode expansions are of the
form

CV (t, x) ≈

NV
∑

i=1

αi(t)φi(x), (3.2.21)

CW (t, x) ≈

NW
∑

i=1

βi(t)φi(x), (3.2.22)

CF (t, x) ≈

NF
∑

i=1

ξi(t)φi(x), (3.2.23)

CG(t, x) ≈

NG
∑

i=1

ηi(t)φi(x), (3.2.24)

CH(t, x) ≈

NH
∑

i=1

θi(t)φi(x), (3.2.25)

where NV , NW , NF , NG, and NH are the number of modes used in the expansion of each
species concentration. The scalars αi(t), βi(t), ξi(t), ηi(t), and θi(t) are the temporal coeffi-
cients used in the POD expansions of concentrations CV (t, x), CW (t, x), CF (t, x), CG(t, x),
and CH(t, x), respectively.

The reduced-order model for the distributed parameter system describing the chemical
supply chain is now developed. The aim is to reduce the infinite-dimensional system given by
(3.2.1) - (3.2.11) to a small set of ordinary differential equations. As the boundary conditions
for CW (t, x) and CV (t, x) at x = 0 are time-varying, we need boundary conditions (3.2.6)
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and (3.2.7) to be explicit in the reduced model. We make these conditions explicit during
order reduction by forming the weak Galerkin projection of each governing equation onto
the POD basis. We begin with species concentration CV (t, x).

Taking the L2([0, L]) inner product of governing equation (3.2.1) with the i-th POD mode
φi(x) results in a variational equation of the form

∫ L

0

ĊV (t, x)φi(x)dx = ǫ

∫ L

0

C
′′

V (t, x)φi(x)dx−µ

∫ L

0

C
′

V (t, x)φi(x)dx−kV

∫ L

0

CV (t, x)φi(x)dx.

(3.2.26)

Boundary conditions are made explicit by constructing the weak formulation of (3.2.26).
Integrating by parts yields

∫ L

0

C
′′

V (t, x)φi(x)dx = C
′

V (t, L)φi(L) − C
′

V (t, 0)φi(0) −

∫ L

0

C
′

V (t, x)φ
′

i(x)dx (3.2.27)

≈ −rCV (t, L)φi(L) −

[

CV (t, h) − u(t)

h

]

φi(0) −

∫ L

0

C
′

V (t, x)φ
′

i(x)dx,

(3.2.28)

where the Robin condition in (3.2.11) has been used to replace C
′

V (t, L) by −rCV (t, L).
In addition, C

′

V (t, 0) has been replaced by a forward difference approximation with h > 0.
This allows us to make time-varying boundary condition (3.2.7) explicit. In the results that
follow, h is prescribed to be the spatial step-size used in the finite difference discretization
of the distributed parameter system.

In a similar fashion, integration by parts provides that

∫ L

0

C
′

V (t, x)φi(x)dx = CV (t, L)φi(L) − u(t)φi(0) −

∫ L

0

CV (t, x)φ
′

i(x)dx, (3.2.29)

where boundary condition (3.2.7) has been used to replace CV (t, 0) by u(t).

Substituting (3.2.28) and (3.2.29) into (3.2.26) results in the weak formulation

∫ L

0

ĊV (t, x)φi(x)dx = −φi(L)CV (t, L)(ǫr + µ) −
ǫ

h
CV (t, h)φi(0)

+

∫ L

0

[(

µCV (t, x) − ǫC
′

V (t, x)
)

φ
′

i(x) − kV CV (t, x)φi(x)
]

dx +
[(

µ +
ǫ

h

)

φi(0)
]

u(t).

(3.2.30)

Approximating CV (t, x) as a linear combination of orthonormal POD modes as in (3.2.21)
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results in a Galerkin system of the form

α̇i(t) =
NV
∑

j=1

[

−φi(L)φj(L)(ǫr + µ) −
ǫ

h
φj(h)φi(0) +

∫ L

0

{(

µφj(x) − ǫφ
′

j(x)
)

φ
′

i(x) − kV φj(x)φi(x)
}

dx

]

αj(t)

+
[(

µ +
ǫ

h

)

φi(0)
]

u(t), i = 1, 2, ..., NV .

(3.2.31)

The system of ordinary differential equations in (3.2.31) is written as a matrix equation
of the form

α̇ = Aαα + Bαu(t), (3.2.32)

where

Aα(i, j) = −φi(L)φj(L)(ǫr+µ)−
ǫ

h
φj(h)φi(0)+

∫ L

0

{(

µφj(x) − ǫφ
′

j(x)
)

φ
′

i(x) − kV φj(x)φi(x)
}

dx,

(3.2.33)

Bα =
(

µ +
ǫ

h

)

















φ1(0)
φ2(0)

.

.

.
φNV

(0)

















, (3.2.34)

for i, j = 1, 2, ..., NV .

The development of the weak Galerkin system for the remaining four chemical species is
similar. However, as seen in governing equations (3.2.2) - (3.2.5), the remaining species are
coupled. Concentration CW (t, x) is coupled to concentration CV (t, x) via the stoichiometric
yield factor yW . Similarly, concentrations CF (t, x), CG(t, x), and CH(t, x) are coupled to
concentration CW (t, x) via the stoichiometric yield factors yF , yG, and yH , respectively.
This coupling results in a slightly more complicated Galerkin system for the four remaining
concentrations.

Proceeding as before, it follows that the weak formulation for concentration CW (t, x) is
of the form

∫ L

0

ĊW (t, x)φi(x)dx = −φi(L)CW (t, L)(ǫr + µ) −
ǫ

h
CW (t, h)φi(0) +

[(

µ +
ǫ

h

)

φi(0)
]

f(t)

+

∫ L

0

[(

µCW (t, x) − ǫC
′

W (t, x)
)

φ
′

i(x) − kW CW (t, x)φi(x) + yW kV CV (t, x)φi(x)
]

dx.

(3.2.35)

As seen by comparing (3.2.30) and (3.2.35), the coupling of concentration CW (t, x) to CV (t, x)
results in an additional term in the integrand of the weak formulation.
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Approximating CW (t, x) and CV (t, x) as linear combinations of POD modes as in (3.2.21)
- (3.2.22) results in

β̇i(t) =
NW
∑

j=1

[

−φi(L)φj(L)(ǫr + µ) −
ǫ

h
φj(h)φi(0) +

∫ L

0

{(

µφj(x) − ǫφ
′

j(x)
)

φ
′

i(x) − kW φj(x)φi(x)
}

dx

]

βj(t)

+
[(

µ +
ǫ

h

)

φi(0)
]

f(t) + yW kV

NV
∑

m=1

[
∫ L

0

φm(x)φi(x)dx

]

αm(t), i = 1, 2, ..., NW .

(3.2.36)

The system of ordinary differential equations in (3.2.36) is written as a matrix equation
of the form

β̇ = Aββ + Fβf(t) + Iβα. (3.2.37)

In (3.2.37), matrix Aβ has dimension NW ×NW , and is analogous to the matrix Aα in (3.2.33)
with kV replaced by kW . Matrix Fβ has dimension NW × 1, and is akin to matrix Bα in
(3.2.34). Matrix Iβ has dimension NW × NV . Due to the orthonormality in L2([0, L]) of
modes used in the POD expansion, elements of Iβ are of the form

Iβ(i, j) =

{

yW kV , when i = j,

0, otherwise
(3.2.38)

for i = 1, 2, ..., NW and j = 1, 2, ..., NV .

The systems for daughter concentrations CF (t, x), CG(t, x), and CH(t, x) are found in a
similar fashion. As these concentrations are held at zero at x = 0, their matrix equations
are of the form

ξ̇ = Aξξ + Iξβ, (3.2.39)

η̇ = Aηη + Iηβ, (3.2.40)

θ̇ = Aθθ + Iθβ. (3.2.41)

Matrix Aξ, Aη, and Aθ have dimensions NF × NF , NG × NG, and NH × NH , respectively.
Matrix Iξ is of dimension NF ×NW . Iη has dimension NG ×NW . Finally, Iθ is of dimension
NH × NW .

The systems of equations (3.2.32), (3.2.37), (3.2.39) - (3.2.41) are combined into an overall
matrix equation, resulting in a reduced-order model describing the evolution of the temporal
coefficients in the POD expansions (3.2.21) - (3.2.25). The reduced order model is of the
form

˙











α
β
ξ
η
θ













=













Aα 0 0 0 0
Iβ Aβ 0 0 0
0 Iξ Aξ 0 0
0 Iη 0 Aη 0
0 Iθ 0 0 Aθ

























α
β
ξ
η
θ













+













Bα

0
0
0
0













u(t) +













0
Fβ

0
0
0













f(t). (3.2.42)

The reduced model is completed with an initial condition [α(0) β(0) ξ(0) η(0) θ(0)]T .
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3.2.6 Reduced Model Results

Utilizing the reduced-order model in (3.2.42) requires the construction of a split-POD
basis. The high-dimensional discretized supply chain model given by (3.2.12) is used to
generate instantaneous snapshots for the system with and without boundary actuation. To
generate a baseline POD basis capable of spanning dynamics resulting from a variety of
initial conditions, baseline data is generated by prescribing several nonzero initial profiles for
concentration CW (t, x). Profiles specified are of the form

CW (0, x) ≡ 3, CW (0, x) = 3
x

L
, (3.2.43)

CW (0, x) = −3
x

L
+ 3, CW (0, x) = 3sin

(πx

L

)

,

CW (0, x) =
1

2

[

cos

(

2πx

L

)

+ 1

]

.

For each case specified in (3.2.43), the concentration of species V is initially held at zero.
In addition, the concentrations of the three daughter species F , G, and H are initially
held at their steady-state profiles that result from the nominal supply chain configuration.
Simulated data is generated for each initial configuration from t = 0.2 to t = 75 in increments
of ∆t = 0.2. Snapshots generated for all five species concentrations are collected into a single
snapshot ensemble. A baseline POD basis consisting of four modes captures 99.9 percent of
the baseline data variability. The baseline POD basis is shown in Figure 3.15(a).
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Figure 3.15. The Baseline and Actuator POD Bases

With the baseline basis in hand, data is generated for the solution with nonzero boundary
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actuation. Each species is held at its nominal concentration profile initially. To generate a
rich actuated ensemble over a range of input frequency, chirp inputs of the form
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are specified for boundary conditions (3.2.6)-(3.2.7). Data for each of the three actuated
cases are generated from t = 0.2 to t = 75 in increments of ∆t = 0.2. The three sets of
actuated data are then combined to yield an overall actuated snapshot ensemble. Split-
POD is performed on this ensemble of actuated data. An actuator basis consisting of 3
modes captures 99.9 percent of new variability induced by boundary actuation. The basis
of actuator modes is shown in Figure 3.15(b).

The baseline and actuated bases are combined into an overall basis as in (2.3.9). The
combined basis consists of 7 modes - 4 baseline modes and 3 actuator modes. As the
daughter concentrations CF (t, x), CG(t, x), and CH(t, x) are specified to have homogeneous
boundary conditions in the distributed parameter system, only the baseline modes are used
in the expansions for these concentrations. As a result, NF = NG = NH = 4 in (3.2.23) -
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Figure 3.16. Reduced-Order Nominal Supply Chain Dy-
namics

(3.2.25). Parent concentrations CV (t, x) and CW (t, x) have time-varying boundary conditions
at x = 0. Thus, the full combination of baseline and actuated bases is used in their mode
expansions. This results in NV = NW = 7 in (3.2.21) - (3.2.22). With the spatial resolution
used in the simulations, the full-dimensional discretized system in (3.2.12) describes 1,330
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state variables. With the split-POD basis shown in Figure 3.15, the reduced-order model in
(3.2.42) describes only 26 state variables, resulting in significant reduction in the dimension
of the state-space representation.

The ability of the reduced-order model to reproduce the nominal chemical profile con-
figuration in seen in Figure 3.16. As was the case for the highly discretized supply chain
model, a nominal value of f(t) = 1 results in the target value of CG(t, 40) = 0.0372. As was
done before, the desired concentration of species G is denoted by asterisks at x = 40 in the
plot of CG(t, x). By comparing the results of Figure 3.16 to the full-order nominal results
shown in Figure 3.9, it is seen that there is virtually no difference between the reduced and
full-order solutions for the nominal configuration.

The behavior of the disrupted reduced-order model with no control is shown in Figure
3.17. As was seen before, the severe disruption in the supply of species W causes the
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Figure 3.17. Reduced-Order Disturbed Supply Chain Dy-
namics

concentration of species G to depart significantly from its target value at x = 40. By
comparing the disturbance results of Figure 3.17 to the full-order disturbance results shown
in Figure 3.10, it is apparent that there is very good agreement between the reduced and
full-order models for the disturbed case. The impact of the disruption on the reduced-order
model is more clearly seen in Figure 3.18. As before, the dashed curve denotes the desired
value of CG(t, 40). The solid curve denotes the value attained for CG(t, 40) in the disrupted
supply chain. In the reduced model, the disruption causes CG(t, 40) to depart significantly
from its target value. As is evident by comparing Figure 3.18 and Figure 3.11, the departure
predicted by the reduced-order chemical supply chain model is similar to that obtained by
the full-order system.
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Figure 3.18. Departure of Species G from the Target Value
After Disruption for the Reduced Model

3.2.7 Controlled Reduced Model

The tracking LQR formulation in (2.2.7) is now used to develop a feedback controller for
the reduced-order supply chain model. As the reduced-order model describes the evolution
of the POD temporal coefficients in basis expansions (3.2.21) - (3.2.25), the reduced-order
feedback controller must act on these coefficients. In the full-dimensional control problem,
large state-weights could be placed on states over specific locations in the interval [0, L] to
emphasize the control of these states in the control problem. This is not the case for the
reduced model. POD modes are defined over the entire interval [0, L]. As a result, controlling
a particular POD temporal coefficient potentially has an impact over the entire interval. In
order to formulate the reduced-order control problem so that the concentration of species
G at x = 40 maintains its target value during a disruption, a reference steady-state profile
is generated for CG(t, x). To ensure that this concentration profile provides an attainable
control objective, it is obtained after specifying a zonzero constant value for CV (t, 0) with
CW (t, 0) fixed at zero. The subsequent steady-state profile for CG(t, x) is calculated and
scaled so that it satisfies the target value at x = 40. The scaled steady-state profile is used
as the reference condition in the reduced-order control problem. The particular reference
profile used in the results that follow is shown in Figure 3.19. This profile is projected onto
the POD basis for concentration CG(t, x), resulting in reference temporal coefficients in the
tracking LQR cost function (2.2.7). As discussed previously, only the four baseline POD
modes are used in the basis expansion of CG(t, x) given by (3.2.24). The weights prescribed
on the temporal coefficients for these modes in the control problem are 15,000, 1,000, 100,
and 100 for η1(t), η2(t), η3(t), and η4(t), respectively. All other temporal coefficients in the
reduced model are prescribed weights of zero. Unit weight is specified for the control input.
The dynamics of the controlled reduced-order model are shown in Figure 3.20.

51



0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

C
G

re
f

Reduced Model Concentration Reference Profile

Figure 3.19. Concentration Reference Profile for the
Reduced-Order Control Problem

0 10 20 30 40 0 50 100 150 200
0

2

t

Parent Concentrations

x

C
V
(t

,x
)

0 10 20 30 40 0 50 100 150 200
0

0.5

1

tx

C
W

(t
,x

)

(a) Reduced-Order Controlled Dynamics for Species
V and W

0
10

20
30

40 0
50

100
150

200
0

0.05

0.1

t

Daughter Concentration

x

C
G

(t
,x

)

(b) Reduced-Order Controlled Dynamics for Species
G

Figure 3.20. Reduced-Order Disturbed Supply Chain Dy-
namics with Control

As seen in Figure 3.20(a), the feedback controller automatically compensates for the
disruption in the availability of species W . This allows CG(t, 40) to remain near its target
value until the supply of species W is gradually brought back online. Once CW (t, 0) returns to
its nominal value, the control input becomes zero, allowing species V to gradually dissipate
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from the system. The controlled results obtained for the reduced-order model are quite
similar to those obtained for the full-order system, as is evident by comparing Figure 3.20 to
Figure 3.13. The ability of the controller to effectively maintain the target condition in the
reduced-order model is more clearly seen in Figure 3.21. As seen in that figure, the target
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Figure 3.21. Departure of Species G from the Target Value
After Disruption for the Reduced Model with Control

value is maintained fairly well. There are slight deviations from the target value near the
start and end of the disruption. These deviations are due to the controller being unable to
assume negative values. Near the beginning and end of the disruption, negative values for
CV (t, 0) resulting from optimal control law (2.2.8) are overwritten with a value of zero as
negative concentration values do not make physical sense. This leads to deviations when the
boundary input can not assume it optimal value determined from the feedback control law.
A control formulation able to provide a strictly non-negative optimal feedback controller
would likely reduce or eliminate the deviation from the target state.

3.2.8 High-Dimensional Tracking

To validate the utility of the feedback controller developed from the reduced-order model,
it must be incorporated and tested in the full-order system. This requires that it be imple-
mented in the full-order dynamical system (2.2.2)-(3.2.14). One can not directly incorporate
the reduced-order controller in the full-order system model, however. Controllers obtained
via the reduced-order model act on POD temporal coefficients. As a result, one must project
the full-order solution at each time step onto the POD basis to obtain temporal coefficients
on which the reduced-order control can act. As the control input enters the system by way of
a time-varying boundary condition, a technicality must be resolved. The POD basis modes
used to construct the reduced-order model cover the entire spatial domain, including the
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boundary. To project the full-order solution onto the POD basis, all boundary conditions
must be specified for the full solution prior to the projection. As a result, the projection of
the full-order solution with boundary data onto the POD modes requires that the boundary
control in the full-order solution be specified beforehand. In effect, the boundary input due
to the controller needs to be specified before it has been calculated, a seeming impossibility.
We overcome this difficulty by utilizing a fixed-point subiteration [30] to project the full-order
solution onto the POD basis at each time step. With the temporal coefficients obtained via
this subiteration in hand, the reduced-order control is implemented in the full-order system.
The dynamics of the full-order system driven by the reduced-order feedback controller found
previously are shown in Figure 3.22. By comparing the closed-loop dynamics of Figure 3.22
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Figure 3.22. Controlled Full-Order Supply Chain Dynam-
ics with Reduced-Order Control Implementation

to the reduced-order results of Figure 3.20, it is evident that there is very good agreement
between the reduced and full-order models under feedback. The reduced and full-order re-
sults are virtually identical. The reduced-order controller is able to control the full-order
system quite nicely, and the dynamics of the full-order system under feedback are predicted
well by the closed-loop reduced model.

The good agreement between the full and reduced-order models under feedback is also ap-
parent in the results of Figure 3.23. When implemented in the full-order system, the reduced-
order controller maintains the target condition as predicted by the closed-loop reduced-order
model. The results of Figure 3.23 and Figure 3.21 are almost identical. In both cases, the
deviation from the target near the beginning and end of the disruption is due to the inability
of the controller to assume negative values. The feedback controller designed from a reduced-
order model with 26 unknowns is able to effectively control the full-order discretized system
describing 1,330 state variables. The relevance to multi-dimensional or very large chemical
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Figure 3.23. Departure of Species G from the Target Value
After Disruption for the Full-Order Model with Reduced-
Order Control

supply chains is obvious. Using control design techniques to perform resilience analysis on
very large systems requires a reduction of the system order. The reduced model can then be
used to develop suitable controllers for the full-order system.

These results illustrate the advantages of reduced-order modeling when applied to sys-
tems that yield exceedingly large discretized models. If done carefully, system dimension can
be reduced by several orders of magnitude with very little loss in accuracy. The significant
reduction of system order greatly reduces the computational burden associated with simu-
lating these systems. Moreover, order reduction enables investigations of system stability
and optimal feedback control design for configurations in which these pursuits are com-
putationally intractable when attempted on the full-order system. This enables resilience
analysis using control design methods for configurations in which these pursuits would be
computationally intractable when attempted on the full-dimensional system.
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Chapter 4

Summary and Future Work

Critical infrastructure resilience has become a national priority for the U. S. Department
of Homeland Security. For this project we investigated the development of quantitative
resilience analysis methods through control design. Specifically, we developed a decision
process that resilience analysts can use to identify a suitable control method when performing
quantitative resilience analysis. The selection of a control method is dependent upon the
characteristics of the model used to represent the infrastructure system. Additionally, we
applied control methods to two sets of representative infrastructure systems to demonstrate
how control methods can be utilized to perform resilience analysis.

The development of quantitative resilience methods still requires much work. Some of
the technical work to be done includes:

• Apply control methods, similar to those demonstrated in Chapter 3, to

more detailed, complex infrastructure system models: The models used in
this project were representative of generic infrastructure systems. Demonstrating that
control methods can be applied to an actual national infrastructure system, e.g., the
national petrochemical supply chain, could be useful in further vetting how control
methods can be used for CIR analysis.

• Leverage infrastructure expertise to develop customized control methods

for nonlinear systems: Control of highly nonlinear systems cannot be approximated
well through linearization. For these types of systems, it may be necessary to develop
customized control methods.

• Investigate the use of optimization methods to use for resilience analysis:
Any optimal control problem can be posed as a more general optimization problem.
The use of optimal feedback control algorithms can make solution of these problems
more efficient, but the application of these methods requires linearity of the system.
When it is not possible or preferable to apply or develop a nonlinear control method,
nonlinear optimization methods can be utilized. It would be worthwhile to investigate
the use of nonlinear optimization techniques for resilience analysis methods.
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