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ABSTRACT 
 
Interfaces are a critical determinant of the full range of materials properties, especially at the 
nanoscale.  Computational and experimental methods developed a comprehensive understanding 
of nanograin evolution based on a fundamental understanding of internal interfaces in 
nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size 
distribution possess a unique combination of high-strength, ductility and wear-resistance.  We 
performed a combined experimental and theoretical investigation of the structure and motion of 
internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain 
boundaries are computed for an unprecedented range of boundaries.  The presence of roughening 
transitions in grain boundaries is explored and related to dramatic changes in boundary mobility.  
Experimental observations show that abnormal grain growth in nanograined materials is unlike 
conventional scale material in both the level of defects and the formation of unfavored phases.  
Molecular dynamics simulations address the origins of some of these phenomena.  
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1. Science at the interface: grain boundaries in nanocrystalline metals 

1.1. Overview 

In virtually every engineered material, interfaces – from free surfaces to interphase and grain 
boundaries –critically affect mechanical, electrical, optical and thermal properties as well as 
materials processing, stability and reliability [1-3].  The importance of interfaces is further 
magnified in nanostructured materials, where interfaces comprise a substantially greater 
proportion of the system.  
  
Over the last several years, there has been increasing interest in incorporating improved 
descriptions of grain boundary properties in mesoscale simulations of microstructural evolution 
[4-7]. Realistic microstructural-scale simulations have revealed the powerful influence of 
boundary properties on microstructural processes, including normal and abnormal grain growth, 
texture development, and recrystallization. This has prompted substantial experimental and 
computational efforts to determine fundamental boundary properties as a function of grain 
boundary structure (misorientation and boundary plane) and to extend mesoscale simulations to 
incorporate this extra information. The available methods limit the scope of the results, however. 
For example, experimental efforts focus either on the average mobility of an ensemble of 
boundaries, ignoring boundary structure entirely, or on single, special boundaries, neglecting the 
diversity of boundary types. In a few special cases, molecular dynamics simulations have been 
used to examine boundary mobility; these simulations have their own limitations.  Simulations of 
curved boundaries only provide information on the product of the boundary mobility and 
boundary stiffness; simulations of elastically strained bicrystals can model only those boundaries 
where elastic anisotropy can provide a sufficient driving force. Prior to this project, there was no 
experimental or computational toolkit for determining boundary properties over the range of 
boundary structure and crystallography. 
 
Advances in the prediction of the properties of internal interfaces using novel atomistic 
simulations and advanced experimental methods have occurred at Sandia and elsewhere that 
allow for advancements in these areas.  In particular, two novel molecular dynamics techniques 
that provide information about boundary properties that was previously unobtainable were 
developed prior to this project.  In the first method, the fluctuations of grain boundary position 
are analyzed to determine both the boundary mobility and the boundary stiffness [8].  The 
stiffness is the sum of the grain boundary free energy and its second derivative with respect to 
boundary orientation and gives the driving force for curvature driven grain growth.  This work is 
the first determination of grain boundary stiffness and provided unexpected results concerning 
the influence of crystallographic direction on stiffness.  The second new method determines the 
true mobility of an arbitrary, flat grain boundary by applying an artificial driving force for 
boundary motion [9].  Prior to this project, this approach had only been used for preliminary 
demonstration calculations.  These preliminary calculations showed that the boundary mobility is 
strongly dependent on the orientation of the boundary plane, contravening the usual assumption 
that the mobility depends only on the crystallographic misorientation between the grains.   
These new simulation techniques for determining grain boundary properties complement atomic 
(atom-probe tomography) and nanoscale (TEM/SEM) observation of these features. High-
resolution TEM observations of single boundaries have revealed previously unknown finite size 
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effects on grain boundary structure [10] and the effects of multi-boundary junctions on boundary 
structure [11, 12]. Both of these phenomena are particularly crucial in nanocrystalline materials, 
which contain a large volume fraction of short boundaries connected to one another at multi-
boundary junctions. Atom-probe examination of boundaries in electrodeposited nanocrystalline 
Ni has disclosed the segregation and metastable precipitation of solutes at certain boundaries, 
both of which appear important to the thermal stability in these materials. Similarly, our TEM 
observations of nanocrystalline boundary networks provide the as-yet-unexplained observation 
that while microscale boundary motion removes lattice defects, nanoscale grain boundary motion 
appears to create them [13].  In particular, as shown in Figure 1, stacking fault tetrahedra are 
found in the abnormal Ni grains even though abnormal grain growth or recrystallization in 
traditional materials produces essentially defect free grains. 
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Figure 1-1. TEM of Nanograined Ni  
(a) A large twinned grain in a 150-nm-thick film after annealing at 548 K for 20 min. (b) 
Electron diffraction pattern demonstrating the twinned relationship between the two grains. The 
arrows indicate the relationship between the matrix and twin diffraction spots. (c) Defect 
structure in the twinned grains; stacking-fault tetrahedra are circled, a planar defect is labeled p, 
and dislocations are arrowed. (d) Enlargement of the indicated area in (c) in which stacking-fault 
tetrahedra are circled.  From reference [13]. 
 

The effects of grain boundary motion manifest on the mesoscale by governing the polycrystalline 
evolution that influences material properties. Sandia has a strong record of incorporating 
boundary structure and properties information into mesoscale models for the evolution of 
polycrystalline boundary networks. For example, the first simulations that included 
crystallographically dependent boundary energy and mobility in a realistic grain structure 
elucidated the nucleation mechanism in recrystallization [14].  Nanoscale polycrystals require 
additional physical information and input, however. For example, grain rotation has been shown 
to be an important grain growth mechanism for nanocrystals, though it is insignificant in 
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microscale polycrystals. Likewise, as our TEM and atom-probe observations indicate, finite size 
effects, defect incorporation mechanisms, solutes and precipitates, and film structure all 
influence how and where boundaries move in a nanocrystal. Thus, a comprehensive approach to 
nanostructural evolution requires a new integration of experimental observations and atomic-
scale information into a mesoscale model that can capture the fundamental evolution processes. 
In this project, we applied and extended our novel computational and experimental methods to 
develop the first comprehensive characterization of internal interfaces in novel materials using 
nanocrystalline nickel as our benchmark. In nanocrystalline materials the network of grain 
boundaries has a profound effect on mechanical properties – strength, ductility, and toughness. 
The controversial Reverse Hall-Petch effect, where strength decreases below a threshold grain 
size, is a result of the scale and properties of the grain boundary network, as is the embrittlement 
and decreased ductility seen at nanoscale grain sizes. Intriguingly, investigators have recently 
shown that nanocrystals with a bimodal grain size distribution, containing a network of 
microscale grains in a nanoscale matrix, possess a unique combination of high strength, ductility, 
and wear-resistance [15]. Achieving a bimodal distribution of grain sizes is straightforward; 
nanocrystalline Ni undergoes abnormal grain growth just above room temperature [13].   
However, under typical processing conditions, abnormal growth may proceed too far, consuming 
the nanocrystalline matrix.  Thus, an understanding of the range of stability of the abnormal 
grain structure is important for the ultimate engineering applications of these materials, so 
structural stability is also of interest.  This project will focus on computational and experimental 
characterization of the interfaces in such materials with the goal of understanding the interface 
properties that control the microstructural evolution and stability. 
 
In this project, there have been several advances in the computational and theoretical 
understanding of the properties of grain boundaries as a function of the macroscopic degrees of 
freedom of the boundary.  Recall that grain boundary crystallography is defined in a five 
dimensional space.  The theoretical challenge is to understand the variation of properties within 
this space.  This understanding can then be incorporated into mesoscale models of grain growth. 
The first contribution of this project was to address a long-standing fundamental mathematical 
issue with regard to grain boundary crystallography, namely the definition of a metric of the 
distance in crystallographic space between two macroscopic grain boundary geometries.  The 
absence of such a metric had been discussed in detail by Cahn and Taylor [16].  Aside from the 
formal importance of such a metric, it is critical from a practical point of view.  In the absence of 
an analytical model for the variation of some grain boundary property, a potential alternative is 
to develop a large database of properties as a function of crystallography and then interpolate in 
this database to estimate the properties of the desired boundary.  A fundamental prerequisite for 
any interpolation scheme, though, is the definition of a metric that defines the “distance” 
between two grain boundary orientations.  Chapter 2 (see also Olmsted [17]) presents such a 
metric along with a discussion of the formal mathematical properties of the metric.  In addition, 
results are presented that demonstrate, at least for the case of grain boundary energy, that nearby 
boundary geometries have similar properties. 
 
A key grain boundary property is the boundary mobility.  This is the proportionality constant 
between the boundary velocity and the driving force for boundary motion and is a key quantity to 
describe grain evolution.  The mobility has till now only been examined in a small number of 
studies.  It has generally been assumed that the temperature dependence of the mobility follows 
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Arrhenius behavior typical of an activated process.  Chapter 3 (see also Olmsted, Holm and 
Foiles [18]) presents a study, using the new synthetic driving force method mentioned above, of 
the temperature dependence.  The results demonstrate that the temperature dependence of the 
mobility is far more complex.  In particular, it is observed that there is a temperature at which 
there is an abrupt change in the mobility.  This temperature is shown to correspond to a 
roughening transition.  Below the transition temperature, smooth boundaries, the mobility is low 
while above the transition temperature the mobility is high.  The presence of such a transition in 
the mobility with temperature had not been previously suspected and will have significant 
implications for grain evolution. 
 
Chapter 4 (see also Olmsted, Foiles and Holm [19]) presents the most complete computational 
survey to date of the grain boundary energy as a function of the boundary crystallography.  A set 
of 388 boundary orientations is generated.  Previous studies have considered the variation of 
energy with respect to some subset of the crystallographic space.  In this study, boundaries 
throughout the crystallographic space are considered. For each boundary, a careful structural 
optimization of the structure was performed and the energy computed. This dataset was used to 
examine various correlations between energy and crystallography that have been discussed 
previously in the literature.  It was shown that none of these correlations provide useful 
predictors of boundary energy.  The dataset can also be used in an interpolative fashion to 
estimate boundary energy.  Results are presented that allow the estimation of the accuracy of 
such interpolations. 
 
Chapter 5 (see also Olmsted, Holm and Foiles [20]) presents the first ever study of the variation 
of grain boundary mobility with respect to boundary crystallography.  In this study, the grain 
boundary mobility was computed as a function of temperature for the set of 388 grain boundaries 
studied above.  Several new observations of the variation of the mobility were made.  It was seen 
that some boundaries move by the coupled shear mechanism and that this mechanism generally 
leads to high mobility.  Various correlations between the high-temperature mobility and 
boundary crystallography are examined, but no predictive correlations were found.  Finally, a 
crude estimate of the distribution of roughening transition temperatures was made. 
 
A surprising experimental observation regarding the annealing of nanocrystalline Ni is presented 
in Chapter 6 (see also Brewer, et al. [21]).  Thin films samples of pulse laser deposited (PLD) Ni 
were annealed at various temperatures with the intent of examining abnormal grain growth in 
this system.  Recall that the equilibrium structure of Ni is face-centered-cubic (FCC).  It was 
observed that some of the large abnormal grains have a highly defected structure close to 
hexagonal-close-packed (HCP).  These large ‘HCP’ grains are surrounded by nanocrystalline 
grains with the FCC structure.  It is therefore unexpected that grains with a nonequilibrium, 
higher-energy structure would grow at the expense of the grains in the equilibrium structure.  
Extensive characterization of these ‘HCP’ grains has been carried out.  This observation is still 
unexplained, though it does point to the possibility of creating novel nonequilibrium structures in 
nanocrystalline metals. 
 
Chapter 7 (see also Foiles [22]) concerns finite temperature effects on grain boundary properties.  
Even though almost all studies of grain boundary energy have calculated the zero-temperature 
excess enthalpy of the boundary, the quantity relevant to grain growth is the grain boundary free 
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energy.  This quantity is much more difficult to compute due to the need to perform some form 
of thermodynamic integration.  Here it is shown that the temperature dependence of the free 
energy can be estimated from the temperature dependence of the bulk elastic properties.  This 
result will be of value to future studies that require an estimate of the free energy. 
 
The final chapter presents direct molecular dynamics (MD) simulations of the grain growth of 
nanocrystalline metals.  There are two interesting observations from these simulations.  The first 
is that the MD simulations reproduce the experimental observation of Hattar et al. [13] that such 
growth produces defected grains.  The presence of vacancy production within the grains is 
verified.  More striking is the formation of a high density of twin boundaries during the growth 
process.  Visualization of the growth provides insight into the mechanism of twin boundary 
formation in this case.  The second observation concerns the grain growth kinetics.  It is seen that 
at early times that the average grain size increases with the square root of time.  This is 
consistent with the behavior of conventional scale grain growth and indicates that in this respect 
nanoscale systems do not behave differently than conventional scale metals.  More surprising is 
the observation of grain growth stagnation.  This is speculated to be a consequence of the 
bimodal distribution of mobilities that result from the roughening transition discussed above [18, 
20].  This is relevant to a long-standing experimental observation that grain growth stagnates in 
real systems.  This is an area that warrants further study. 
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2. A new class of metrics for the macroscopic crystallographic space of grain boundaries. 

2.1. Abstract 

 
The macroscopic description of a defect-free, flat grain boundary in a pure material requires five 
degrees of freedom [1].  There is a need to define the distance between boundaries in this five 
dimensional space, because boundaries that are close together crystallographically should have 
similar properties.  A. Morawiec has recently proposed such a metric, defined in terms of the 
misorientation of the two grains and their boundary normals [2].  This approach has the 
disadvantage that there is no unique way of weighting the importance of the difference in 
disorientation compared to the difference in boundary normals, as was pointed out by Cahn and 
Taylor [3].  In this work a metric is developed using a less familiar description of the 
crystallographic space which avoids this problem.  Two technical results are proven, and a 
sample application to grain boundary properties is offered.  
 

2.2. Introduction 

 
The macroscopic description of a defect-free, flat grain boundary in a pure material requires five 
degrees of freedom [1].  As any of these degrees of freedom is changed, one expects that the 
properties of the boundary will change continuously.  Traditionally grain boundaries were 
considered similar if they were close together in the misorientation space, which considers only 
three of the five macroscopic degrees of freedom.  In particular the Brandon criterion [4] is based 
on a definition of when boundaries are close in misorientation space.  However properties can 
vary greatly between different boundaries with the same misorientation [5].   While it had 
typically not been possible to study boundaries in terms of all five degrees of freedom, that has 
been changing recently, both experimentally and computationally [6,7,8,9,10]. Thus methods are 
needed which assess closeness with respect to boundary normal as well as misorientation, in 
other words with respect to all five degrees of freedom. A. Morawiec has recently proposed a 
metric defined on this space, described in terms of the misorientation of the two grains, and the 
boundary normal [2].  While this is one of the standard ways of defining the crystallographic 
space, in the context of building a metric it has the disadvantage that there is no unique way of 
weighting the importance of the difference in disorientation between two grains with the 
difference in boundary normals, as was pointed out by Cahn and Taylor [3].  In this work a new 
metric, and a variant of it, is developed in terms of a less familiar description of the 
crystallographic space which avoids this problem.  This parameterization of the five dimensional 
space of grain boundaries, while having a noticeable disadvantage compared to the two common 
parameterizations, has advantages which should make it of value in other contexts as well.  Two 
important technical results about the metrics are shown. First that the coincident site lattice 
(CSL) boundaries with rational boundary normals are dense in the space of grain boundaries.  
These special boundaries can then serve as approximations to any boundary, just as the rational 
numbers provide approximations to real numbers.  Secondly, it is shown that the new metrics 



18 

and Morawiec’s metric induce the same topology on the crystallographic space.  Thus the 
answers to some questions, for example “is this point a local minimum of the grain boundary 
energy?”, do not depend on which metric is chosen.  As an example of the application of this 
metric to the analysis of grain boundary properties, a plot is shown of the predicted grain 
boundary energy from molecular statics calculations as a function of the distance of the boundary 
from the deep cusp at the coherent twin boundary. 
 

2.3. Approach 

There are at least two generally accepted methods of describing a grain boundary in terms of its 
five macroscopic degrees of freedom [1].  One is to start with the three degrees of freedom 
representing the misorientation between the two grains, and then add two degrees of freedom to 
describe the orientation of the boundary plane.  The second is to start with the boundary normals 
in each grain, two x two = four degrees of freedom, and add one to describe the “twist”.  Both of 
these methods of describing the grain boundary include degrees of freedom of two types.  For the 
purpose of describing a boundary, there is nothing wrong with this, but having two distinct types 
of parameters is inconvenient in defining a distance.  For example, it is standard to measure 
distance in misorientation space in terms of the angle of rotation or some function of it.  And for 
two boundaries with identical misorientations, it should be possible to define the difference in 
the boundary plane orientation.  But for two boundaries with different misorientations, what does 
it mean to have the same boundary plane orientation?  Any well-defined reference orientation for 
the boundary plane is suitable for describing a boundary, but here we need for “the same 
boundary plane orientation” to mean that the boundaries are as close as they could be, given their 
respective misorientations.  A. Morawiec [2] takes the approach of looking at the boundary 
normals in each crystal and creating a 4x4 matrix which includes the misorientation matrix, (9 
entries) the boundary normal in each crystal (6 entries) and a zero; and then defining a distance 
based on the difference in misorientation between two boundaries and the difference in boundary 
normals, with the difference in boundary normals in each crystal weighted equally.  This is a nice 
approach, but as discussed by Cahn and Taylor [3], it requires a choice of weighting of the 
misorientation contribution to the distance vs. the boundary normal contribution1.  Since any 
weighting will produce an equally mathematically valid definition of distance, each worker is 
free to choose their own weighting.  In some circumstances this might allow tuning the definition 
of distance to the particular problem, but it would be desirable to have an approach that does not 
require mixing apples and oranges at all. 
 
It is therefore useful to consider a description in which all of the parameters are of the same type.  
First choose a fixed reference configuration for the crystal.  For a cubic crystal, for example, one 
might choose the coordinate axes to be the cubic axes.  We must ensure, of course, that our 
definition of distance between two boundaries is independent of our choice of the reference 
configuration.  Now consider the grain boundary situated so that the boundary plane is the plane 
z=0.  We can describe the grain with z < 0 by the rotation matrix A required to turn the reference 
configuration into the configuration of that grain.  Similarly the grain with z>0 is described by a 

                                                
1 It should perhaps be pointed out that in their discussion of possible metrics on the five dimensional space of grain 
boundaries based on misorientation difference and boundary normal difference Cahn and Taylor do not mention the 
need to handle the boundary normal as defined in crystal A and as defined in crystal B symmetrically. 
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rotation matrix B.  Thus the grain boundary is described by two parameters, both of which are 
rotation matrices.  Each rotation provides three degrees of freedom, so one of these must be 
redundant.  This is because a common rotation of both grains about the z-axis does not change 
the boundary, but does change the rotations matrices.  This will be dealt with shortly.   
 

2.4. Definition of the macroscopic crystallographic space of grain boundaries. 

 
Consider an infinite planar grain boundary, and choose coordinates such that the boundary plane 
is the plane z=0.  Call the grain where z<0 grain A, and the grain where z>0 grain B.  There is an 
arbitrary choice as to which direction in the plane of the boundary to call the x-direction.  For a 
homophase boundary the choice of which normal direction is caused positive z could also be 
considered arbitrary, but for the moment we will consider A-B and B-A to be different 
boundaries.  We are concerned with only the five macroscopic degrees of freedom, so we ignore 
relative displacements of the lattice, relaxation, etc.  Thus, for our purposes, grain A is 
completely determined by its lattice vectors, given in the sample reference frame we have 
specified.  We now need a mathematical description of this boundary, and will follow Cahn and 
Taylor in referring to this as a parameterization [3].  To do this, we choose a reference crystal.  
(For a heterophase boundary, we would need to choose a reference crystal for each material.)  
For example, for an fcc material, we could choose the fcc lattice vectors specified in cubic 
coordinates as the reference crystal.  The choice of the coordinate frame in the reference crystal 
is arbitrary, and the metric will not depend on it.  There is now at least one rotation matrix A that 
takes the lattice vectors of the reference crystal to the lattice vectors of grain A.  (For a crystal 
with an inversion symmetry we require this to be a proper rotation.  For a crystal without an 
inversion symmetry, we can follow Morawiec in treating the enantiomorphic versions as 
different materials, or we could say that the space of grain boundaries breaks down into two 
disconnected regions.  In that case some boundaries would be infinitely far apart.)  Similarly 
there is a rotation matrix Bwhich gives the lattice vectors of grain B.  Thus by specifying two 
rotation matrices (A, B), we have fully parameterized the boundary.  We will not need to further 
parameterize the rotation matrices, but keep in mind that each rotation matrix represents three 
degrees of freedom, so as it stands our parameterization of the boundary has six degrees of 
freedom.  The extra degree of freedom can be seen as coming from the arbitrary choice of 
coordinates in the plane of the boundary.  That is to say, a rotation of the whole sample space 
about the z-axis will not change the boundary, but will change the rotation matrices that describe 
it.  Thus (UA, UB) represents the same boundary as (A, B), where U is any rotation about the z-
axis.  We write .  If the crystal has non-trivial rotation symmetries, then the 
rotation matrix A will represent the same grain as the rotation matrix AT, where T is any 
element of the point symmetry group of the crystal which is a proper rotation (hereafter “rotation 
symmetry”)2.  Thus we can write , where U is any rotation about the z-
axis in the sample frame, and T1 and T2 are any rotation symmetries of the crystal expressed in 
the reference frame.  For the moment we take as our description (definition) of the macroscopic 

                                                
2 Some crystals have symmetries that cannot be factored into a rotation and a translation.  Because relative 
translation of the two grains is considered a microscopic, rather than a macroscopic, degree of freedom the 
translation can be ignored.  Thus for such a crystal one would need to include rotations which differ from an element 
in the point group in our group of rotation symmetries, along with the rotations that are actually in the point group. 
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crystallographic grain boundary space these equivalence classes of ordered-pairs of rotation 
matrices.  Note that this parameterization depends on the choice of orientation of the reference 
crystal, although the metrics will not. 
 
In fact I will consider a couple of different definitions.  The above definition is the simplest, and 
is probably suitable when a grain A is specified in a polycrystal and one asks about its boundary 
with a neighboring grain B at a given point where a well defined boundary normal exists.  In 
considering the properties of individual grain boundaries, the choice of grain A as primary is 
arbitrary, however.  Suppose we rotate the whole bicrystal about the y-axis in the sample space.  
This would then be considered the same boundary, and we can modify the definition above to let 

, where Z is a rotation of 180 degrees about the y-axis in the sample frame.  
(The choice of which axis in the boundary plane to specify here does not matter, because we 
already have  for any rotation about the z-axis.)  This also seems a reasonable 
definition of when two boundaries are the same.  And as a practical matter, for purposes of 
investigating the properties of individual grain boundaries one can go even further.  If we take 
the bicrystal and reflect it about the x-z plane in the sample space, we get a mirror image of the 
original boundary.  While one would not want to call this “the same boundary”, it clearly will 
have the same energy, free energy, mobility, etc.  Thus for interpolating into a table of grain 
boundaries energies, for example, one could treat two boundaries as close if one were close to a 
mirror image of the other.  In the examples below, which involve the energy of single 
boundaries, boundaries are treated as the same if they differ by either of these operations.   
 
As defined above, when the rotations A and B are identical the two crystals are perfectly aligned, 
and so there is no grain boundary.  And two such “grain boundaries” are considered the same 
only if they have crystallographically equivalent “boundary normals”.  While these “no 
boundaries” are not interesting in themselves, how they are handled in defining the mathematical 
space of grain boundaries is important because it affects how the distance between low angle 
grain boundaries are defined, as discussed by Cahn and Taylor [3].  In misorientation space, 
clearly all low angle boundaries are close together, but their boundary planes may be very 
different.  The approach that will be taken here is to say that a low angle boundary with 
boundary planes, for example, near <111> is not necessarily close to a low angle boundary with 
boundary planes near <100>; but that is not the only possible approach. Morawiec defines a 
separate distance measurement to determine how close a boundary is to being the “no-boundary 
boundary” [2].  Cahn and Taylor describe a method for taking a metric such as Morawiec's 
general metric and adjusting it so that all small angle boundaries are close together [3].  They 
also discuss the possibility of excluding the “no-boundary boundary” from the space altogether.  
In that case some small angle boundaries are not close to each other.  Cahn and Taylor do not 
offer an explicit opinion with regard to the choice between these treatments.  The approach I will 
advocate is in some ways equivalent to excluding the “no-boundary boundary”.  Here there is a 
two-dimensional family of points in the five dimensional space which correspond to no-
boundary.  This corresponds to a literal treatment of the misorientation/boundary normal 
description of the five dimensional space.  A boundary is “no-boundary” when the misorientation 
is zero.  This still leaves two degrees of freedom to describe its boundary normal.  Consider the 
following physical “argument” to motivate this approach.  Suppose I wish to describe a grain 
boundary in sample coordinates as follows.  First I pick the boundary plane in sample space.  
Then I specify the orientation of the grain on each side of it.  If I choose the orientations to be the 
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same, I have described a hypothetical “no-boundary” in the material.  But the plane I chose 
originally has a specific orientation in the uniform crystal, so there are different “no-boundaries” 
possible depending on their boundary normal.  This does not in itself provide evidence that 
treating these “no-boundaries” as different is the better approach, but it does seem to provide 
some rationale for considering it.  More importantly, do the “properties” of these “no-
boundaries” differ?  Clearly the no-boundary itself has no properties that depend on its boundary 
normal.  What about boundaries which are very close to it?  As a boundary approaches any no-
boundary its energy approaches zero.  However, there is some evidence suggesting that as a 
boundary approaches zero-misorientation the zero-misorientation limit of its mobility depends on 
the boundary normal of the no-boundary it is approaching [10].  If this is indeed the case, it 
would provide a strong motive for treating “different” no-boundaries as different. 
 

2.5. Definition of the metrics 

 
Consider two boundaries (A,B) and (C,D) with representations and .  We will 
define a trial distance between the two boundaries based on the representation, and define the 
distance between the boundaries as the minimum over all equivalent representations.  The 
rotation matrix to turn grain A into grain C, expressed in the reference coordinates is , and 
the rotation angle for any rotation matrix F satisfies .  Two measures of 
how far we had to rotate grain A to turn it into grain C will be considered, 

, and  for small .   

We take the trial distance to be either where , or 

 which are approximately equal when they are small.  
Because the metrics depend only on combinations of the form they are independent of 
the choice of orientation of the reference crystal.  One key feature of a useful definition of 
distance, and a requirement to meet the mathematical definition of a “metric” is the triangle 
inequality [11].  This simply states that the distance from a point A to a point C cannot be further 
than the distance from A to a third point B, plus the distance from B to C.  That is to say, going 
from A to C via B could be the shortest distance, or it could be going out of one’s way, but it 
cannot be shorter than the shortest route.  That the trial distances for specific representations of 
three grain boundaries must satisfy the triangle inequality follows from  the fact  and 

are standard metrics on , along with the Minkowski inequality [12].  (Other 
variations on the Minkowski inequality could of course be chosen in combining the individual 
values for the two rotations instead of  [3].)  That the minimizations over the various 
representations of each grain boundary do not disturb the triangle inequality is shown in 
Appendix A.   
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2.6. Comments and comparisons 

 
The minimizations of the trial distance over the rotation symmetries of the crystal are 
straightforward as they involve a finite set of trial distances.  The minimization over the rotations 
about the z-axis requires a numeric minimization with respect to the rotation angle, as far as I can 
see, in the case of .  For , however, the minimization can 
be done analytically as given in Appendix B.  This makes its computation much quicker that the 
computation of .   
 
In comparing these metrics to Morawiec’s metric [2], it is most useful to ignore the special 
distance he defines for small angle boundaries, and simply compare to his general metric as if he 
had treated no-boundaries with different boundary normal as different boundaries.  References to 
Morawiec’s metric below refer to the general metric. 
 
These metrics and Morawiec’s metric satisfy the condition that for every  there exists 

 such that , where  are any two of the three 
metrics.  This is shown in Appendix C.  In particular, this implies that these metrics induce the 
same topology on the space of grain boundaries as Morawiec’s does. 
 
The (countable) set of CSL boundaries with rational boundary normals is dense in the space of 
grain boundaries under these metrics.  This is shown in Appendix D.  Thus, as is at least 
implicitly well known, any boundary can be approximated as closely as desired by a CSL 
boundary with a rational normal.  Because these boundaries can be simulated in MD using 
periodic boundary conditions and without misfit strain, this is valuable.   
 
 

2.7. Sample calculations 

 
A primary motivation for defining a metric on the space of grain boundaries is to use it to study 
grain boundary properties.  For example, assuming that grain boundary energy is a uniformly 
continuous function of macroscopic crystallography, then a table of grain boundary energies for 
an adequate finite set of grain boundaries can be used to predict the energy of any grain 
boundary to within some tolerance.   Using a set of 388 grain boundaries, and their energies in Ni 
as predicted by an EAM potential [9, 13], figure 1 shows the difference in energy plotted against 
the distance d for all pairs of boundaries with d<1.0.  As expected, the plot is consistent with the 
energy being a uniformly continuous function of the macroscopic crystallography.  The red line 
described in the figure caption can be used to estimate how close two grain boundaries need to 
be to obtain an acceptable estimate of the energy for one from the other.   
 



23 

 
Figure 2-1. Energy difference as a function of crystallographic distance 
The difference in energy between pairs of grain boundaries as a function of the crystallographic 
distance d between boundaries, based on 388 Ni boundaries. Only pairs separated by less than a 
distance of 1.0 are shown. The cyan points indicate that one of the two boundaries is the coherent 
twin, while the yellow points indicate that one of the two boundaries is the low energy Σ11.  The 
red line is chosen to include 90% of the data points where the distance is less that 0.1, excluding 
boundary pairs containing either the coherent twin or the low energy Σ11 boundary) which are 
anomalously low in energy. Above the graph is shown a rough conversion of the distance to 
degrees, chosen so that for two pure twist boundaries about the same axis it is the difference in 
misorientation.  (For small enough differences that rotational symmetries do not intervene.) 
 
The metric can also be used to look at energy near a boundary which lies at a local minimum of 
the energy, such as the coherent twin boundary.  Figure 2 shows the predicted energies of 425 Ni 
boundaries (including the 388 discussed above) as a function of the distance d from the coherent 
twin.  The red symbols represent grain boundaries that have the same Σ3 misorientation as the 
coherent twin, but differ in that their boundary planes are no longer <111>.  The slope of the 
cusp is lower for the Σ3 boundaries nearest the coherent twin than for the curve of <111> twist 
boundaries, indicated in green, which have different misorientations but the same boundary plane 
as the coherent twin.  And another boundary can be seen close to the coherent twin that lies 
along a third direction in the five dimensional space along which the slope of the cusp is even 
higher.  
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Figure 2-2. Energy of Ni boundaries by their distance from coherent twin 
Energy of 425 Ni boundaries plotted by their crystallographic distance from the coherent twin.  
Red symbols indicate Σ3 boundaries.  Green symbols indicate <111> twist boundaries.  Black 
symbol indicates the coherent twin.  Blue symbols indicate all other boundaries.  The coherent 
twin represents a cusp in the grain boundary energy, however the rate of increase in energy as 
one moves away from it depends on the direction chosen in the five-dimensional space.    
 

2.8. Conclusions 

 
A new class of metrics for the five dimensional macroscopic crystallographic space of grain 
boundaries has been described.  That space is defined in this work in terms of the two rotations 
that transform the upper (lower) grain of one boundary into the upper (lower) grain of the other 
boundary.  Thus the space is defined as equivalence classes in SO(3) x SO(3).  The space thus 
defined consists of the same points as when defined in terms of, for example, misorientation and 
boundary normal.  In comparison with the metric developed by A. Morawiec, this approach 
avoids the issue of how to weight a difference in misorientation between the two boundaries and 
the difference in boundary normals.  The two metrics described here, as well as the metric of 
Morawiec induce the same topology on the space of grain boundaries.  It was shown that the 
CSL boundaries with rational boundary normals is dense in the grain boundary space under this 
topology. 
 

2.9. Appendices 

 

2.9.1. Appendix A 

The metrics satisfy the triangle inequality.  Consider three boundaries (A,B), (C,D) and (E,F).  In 
computing  some representation gave the minimum trial distance, say 
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.  In fact this can be simplified.  The trial distance involves, for 

A and C,  

where  is a rotation about the z axis, and  is a rotation symmetry.  Thus, 
without loss of generality, we can assume that the representations that gave the minimum trial 
distance for d((A,B),(C,D)) were of the form , and similarly for 
d((C,D),(E,F)) the chosen representation was . But the latter gives the 
same trial distance as the representation .  Thus we 
have 

 

for both of our metrics. 

2.9.2. Appendix B 

Analytical minimization of  with respect to the general 
rotation O about the z-axis.  This is equivalent to minimizing , 
which can be done as follows: 
 
Taking O as 

, 

gives 

 

Hence 

 

and minimizing with respect to   gives 
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2.9.3. Appendix C. 

The metrics considered here, and , and Morawiec’s metric[2],  satisfy the condition 
that for every  there exists  such that , where 

 are any two of the three metrics. 
 
I. For and this follows from the continuity of the arccosine.   
 
II. . 
To show that we need to control , , 
and , where ,  for some rotation symmetry  and 

.  Because  is small, for some 
, T1, T2  is small.  Thus .  This can be 

written , and hence their product 
.  Thus 

, where the cyclic 
property of the trace has been used.  Because is a rotation about the z-axis, 

 and similarly . Therefore 
 and  as needed. 

 
III. . 
This direction is slightly more complicated because of the need to determine the rotation 
about the z-axis.  Without loss of generality take .  The misorientation 
matrices of the two boundaries are . From  
[[ ]]

we have [[
]] .  We also have , so [[

]] .  Thus is approximately 
a rotation about the z-axis, and what is needed is a rotation exactly about the z-axis 
approximately equal to it.  Letting [[ ]] , consider , and 
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.  Because is small, .  Take  to be the rotation about the 

z-axis that takes .  .  Thus [[
]] .Hence  and 

 as needed.  The detailed estimations indicated by can all be worked 
out by writing the various rotation matrices in the form 

 where  is the rotation angle and is the rotation 
axis taken as a unit vector, and computing. 
 

2.9.4. Appendix D. 

The set of CSL boundaries with rational boundary normals (CSL-RBN) is dense in the 
macroscopic crystallographic space of grain boundaries.  By the result in appendix B, this will be 
true for all of the metrics under discussion if it is true for any one of them.  I will show it using 
Morawiec’s metric.  Given any boundary (A,B) and any  we need to find a CSL-RBN 
boundary (A*,B*) with .  Let be the rotation axis of (A,B), expressed 
in the (fcc) reference coordinates and  the angle of rotation.  We can choose a rational rotation 
axis  , where h, k and l are integers, such that each of the components of  
is as close as we need to .  The key point is that there is an angle as close as we need to , 
that gives a CSL misorientation.  The angles that give CSL misorientations are those angles  

where  for any integers m and n. [1]  This insures we can choose 

a   as close as we like to .   Now for the boundary normals.  Let be the boundary normal 
in grain A, expressed in the reference coordinates.  We can choose any rational boundary normal 
we wish in A*, and so can choose as close as needed to .  The boundary normal in grain B 
is  ( is the misorientation matrix expressed in the reference coordinates.)  The 
boundary normal in B*,  is given in the same way.  
To show that we need to control , , 
and .  After writing  and similarly for 

; and computing the three values, straightforward estimation gives the desired result. 
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3. Grain boundary interface roughening transition and its effect on grain boundary 

mobility for non-faceting boundaries 

 

3.1. Abstract 

 
Like other interfaces, equilibrium grain boundaries are smooth at low temperature and rough at 
high temperature; however, little attention has been paid to roughening except for faceting 
boundaries. Using molecular dynamics simulations of fcc Ni, we studied two closely related 
grain boundaries with different boundary planes. In spite of their similarity, their boundary 
roughening temperatures differ by several hundred degrees, and boundary mobility is much 
larger above the roughening temperature. This has important implications for microstructural 
development during metallurgical processes. 
 

3.2. Introduction 

 
Many engineered materials, including most metals and many ceramics and polymers, are 
polycrystalline; they are agglomerates of tiny, individual crystallites (grains), which are 
separated by internal interfaces (grain boundaries). Because grain boundaries contribute free 
energy to the system, there is a driving force for their removal. Thus, at high temperatures, grain 
boundaries move to decrease boundary area (e.g. via grain growth) or to eliminate high energy 
grains in favor of low energy grains. For example, grains with a magnetization vector parallel to 
an applied magnetic field are energetically preferred relative to those with magnetization 
orthogonal to the applied field; grains favorably aligned with a strain field are preferred relative 
to less favorably aligned grains. In both cases, given sufficient thermal energy the grain 
boundaries will move to eliminate the unfavored grains. The rate of grain boundary motion is 
governed by the boundary mobility. 
 
Recent work has addressed the important issue of the dependence of the mobility of grain 
boundaries on their crystallography. Boundary crystallography is given by the angular 
misorientation of the neighbor grains (three degrees of freedom) and the boundary plane (two 
degrees of freedom)[1]. Since most experimental and computational investigations of grain 
boundary mobility study curved boundaries [2,3,4,5], they cannot characterize boundary plane 
effectsor determine the absolute mobility. A few studies have investigated motion of flat 
boundaries under applied magnetic or mechanical driving forces,[6,7,8] obtaining the absolute 
mobility as a function of misorientation and boundary plane; however, these studies are limited 
in the boundary structures and the materials that can be accessed. 
 
For non-faceting boundaries, boundary motion is presumed to be an activated process, so the 
dependence of mobility on temperature is expected to be a simple Arrhenius function. It is well 
known that surfaces and interfaces, including grain boundaries, undergo a roughening transition 



30 

because of the competition between energy, which favors a smooth boundary, and entropy, 
which favors a rough one. While the behavior of a grain boundary will naturally differ between 
the smooth and rough states, this has typically been ignored, except in the case of faceting 
boundaries [1]. In this paper we show that, even for non-faceting boundaries, mobility is very 
different above and below the interface roughening transition. And since we also show that the 
roughening temperature itself can vary substantially with grain boundary crystallography, it is 
clear that the effect of roughness on grain boundary mobility requires more attention than it has 
received. 
 

3.3. Approach and Results 

 
In order to study the dependence of grain boundary mobility on temperature and crystallography 
conveniently, we must measure the absolute mobility of flat boundaries. To achieve this, we 
performed molecular dynamics (MD) simulations of flat boundaries moving under the synthetic 
driving force developed by K. G. F Jansenns et al.[9] This method uses a classical interatomic 
potential and adds a potential energy to each atom that depends on the location of its nearest 
neighbors. If the neighbor locations are exactly, or very close to, the favored crystal A, the added 
energy is zero. If the neighbor locations are exactly, or very close to, the unfavored crystal B, the 
added energy is a fixed amount u, which in this work varies in magnitude from 0.0025 eV to 
0.05 eV per atom. For positive u, system energy decreases when atoms of crystal B are converted 
into the orientation of crystal A. This can be achieved by moving the boundary between B and A 
into crystal B (or by other mechanisms, such as crystal rotation, if the system allows). While this 
synthetic driving force does not arise from or represent a physical driving force, it is most similar 
to a magnetic driving force, which in appropriate cases it could mimic. 
 
Results for two boundaries will be presented here.  Both boundaries are ∑5 <001> tilt 
boundaries.  One, which will be called boundary I, is an asymmetric boundary with boundary 
normals of <100> and <430>.   The other, boundary II, is a symmetric boundary with <310> 
normals.  For the results reported here, the simulation cells had periodic boundary conditions in 
the two directions lying within the grain boundary plane. At the ends parallel to the grain 
boundary they had free surfaces, so that there was a single grain boundary. The grain boundary 
was set up as a coincident site lattice boundary, and where atoms were within 1 Å of each other, 
one atom was removed; the system was subsequently relaxed before the driving force was 
applied. Mobility results shown below are generally based on eight simulations: four with 
positive and four with negative added potential energies; the average of all eight is shown. 
Simulation cell sizes varied from approximately 105 Å x 35 Å x 35 Å to 105 Å x 140 Å x140 Å, 
with about 70 Å available for boundary motion. Simulation times were chosen to make the total 
motion most of the available 70 Å. The simulations without driving force were run for 1 ns. 
 
Whether and how mobility depends on the nature of the driving force is an open question in 
microstructural science[10]. It is especially pertinent to these simulations, which utilize a driving 
force that does not arise from a physical process. To investigate how the synthetic driving force 
compares with a physical driving force, we compared the motion of a boundary under the 
synthetic driving force to motion of the same boundary under an elastic driving force, as 
simulated by H. Zhang et al. [6]. Both simulations examine the same asymmetric Σ5 <100> tilt 



31 

boundary with <100> and <430> boundary normals (termed boundary I) using the Voter-Chen 
Embedded Atom Method (EAM) potential for Ni [11], the MD method, and similar simulation 
cells. As shown in Figure 1, in the limit of low driving force, the synthetic driving force and the 
elastic driving force yield the same mobility within statistical errors. Thus, boundary motion 
appears independent of the origin of the applied driving force, at least in this case, and the 
synthetic potential method gives physically relevant results. 
 
At higher driving forces the synthetic driving force produces velocities that are closer to being 
linear in driving force than does the elastic driving force.  As discussed in [6], the elastic driving 
force involves either a tensile or compressive stress, which gives an expected non-linearity at 
high driving forces.  The synthetic driving force, which has no stress component, gives velocities 
that are approximately linear in driving force throughout the range studied. According to Sutton 
and Balluffi [1], typical stress induceddriving forces on grain boundaries are 10-5 to 10-4 GPa, 
well below even the smallest driving forces simulated.  Thus we would expect agreement 
between the elastic and symthetic driving forces throughout the physically relevant range. 
 

 
Figure 3-1. Velocity as a function of driving force 
Velocity as a function of driving force: Ni (Voter-Chen), ∑5 <100> asymmetric tilt grain 
boundary with boundary normals <100><430>. In the limit of low driving force the results of the 
current, synthetic, driving force, and the elastic driving force of reference 6 are consistent. 
 
One measure of boundary roughness is the standard deviation of boundary position. For periodic 
snapshots of our MD-generated boundaries, we measure the position of the interface in the 
direction normal to the interface relative to the average for that snapshot; this is often called the 
interface height function. Figure 1 shows the standard deviation of the interface height function 
averaged over all snapshots of boundary I. (Note that except for all results in Figure 1 are for the 
Foiles-Hoyt Ni EAM potential [12].) Roughness is a function of both temperature and simulation 
cell size. For the largest simulation cell shown, a roughening transition occurs in the 
neighborhood of 900K. At this temperature, the roughness becomes non-deterministic, with 
some simulation runs conforming to the higher temperature data, while others line up with lower 
temperature data. In smaller systems no clear indicator of the transition is apparent in the 
roughness metric. However, even at the smallest size studied, where the boundary is 
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approximately 35 Å by 35 Å, the results we show later exhibit a discontinuous change in the 
mobility at the roughening temperature. 
 

 
Figure 3-2. Roughness as a function of temperature 
Roughness as a function of temperature: Ni (Foiles-Hoyt) Σ5 <100> asymmetric tilt grain 
boundary with boundary normals <100><430>.For the largest system size studied, a transition 
occurs at approximately 900K. At smaller sizes no transition is apparent. Identical symbols 
indicate different simulations under the same conditions. 
 
While the key point in the current context is the existence of the transition and its temperature, 
notice that the spread of roughness values in Figure 2 at 900K suggests that the transition might 
be first order, with the potential for rough and smooth regions to coexist in the same boundary at 
the transition temperature. Although boundary roughening is often presumed second order, C. 
Rottman has suggested that long-range effective interactions between local boundary distortions 
can lead to a first order transition [13]. It would be interesting to perform hysteresis simulations 
to attempt to determine whether or not the transition is first order. 
 
Figure 3 shows the absolute mobility (i.e. velocity divided by driving force) for boundary I as a 
function of temperature and driving force. Above the roughening temperature, the mobility is 
roughly independent of driving force and exhibits the expected Arrhenius behavior with an 
implied activation barrier of roughly 0.16 eV. Zhang et al. found an implied barrier of 0.26 +/- 
0.08 eV for this boundary, but they included 800K data in the fit, which we believe is below the 
roughening transition and so should have different behavior. 
 
Note that driving forces simulated are larger than almost all typical driving forces on real grain 
boundaries[1, page 524].  Thus the relevant results from our simulations are the low driving 
force limits of the simulation data. 
 
For boundary I at 800K, which is below the roughening transition, Figure 3 shows that mobility 
decreases with driving force. Because MD is limited in the timescales it can achieve, we cannot 
observe very low mobilities, so we cannot measure a driving-force-independent limit for the 
mobility of the smooth boundary. However, we can conclude that the intrinsic mobility of the 



33 

smooth boundary is much smaller than that of the equivalent rough boundary. Moreover, this 
effect is not a simple Arrhenius dependence on temperature, but rather reflects a change in 
boundary motion mechanism as the boundary structure transforms from smooth to rough. 
 
Evidence for this change in motion mechanism is captured in Figure 4, which shows spatial 
trajectories for the rough (1400K) and smooth (800K) boundaries. While the rough boundary 
moves continuously so that its position is linear in time, the smooth boundary moves in a 
stepwise manner, characterized by sudden motion events interspersed with static periods of 
varying duration. The step size is half the lattice parameter, as expected for motion of an atomic 
flat boundary of this orientation. Clearly, the rough and smooth boundaries move in 
fundamentally different manners. 
 
Interestingly, at high driving force, the mobility of boundary I at 800K appears to become 
consistent with the mobility predicted by the activation barrier derived from the higher 
temperature data. This suggests that the mechanism of boundary motion has become 
indistinguishable from that of the rough boundaries. We conjecture that the 800K boundary has 
become “dynamically” roughened at high driving force, but have not attempted to measure the 
roughness of the moving boundaries directly. 
 

  
Figure 3-3. Mobility as a function of driving force 
Mobility as a function of driving force: Ni (Foiles-Hoyt), ∑5 <100> asymmetric tilt grain 
boundary with boundary normals <100><430>.For temperatures of 1000K and above, the 
mobility is independent of the driving force within the range studied. For 800K, the mobility is 
similar to the high temperature mobility at very high driving force, but is substantially smaller at 
low driving force, and a low driving force limit is not reached at the lowest driving forces 
studied. 
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Figure 3-4. Motion of grain boundary I 
Motion of grain boundary I at the smallest driving force at 800K and 1400K. At 1400K the 
boundary is rough and moves fairly continuously. At 800K the boundary is smooth and moves in 
distinct steps.  
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Figure 3-5. Roughness as a function of temperature 
Roughness as a function of temperature: Ni (Foiles-Hoyt) Σ5 <100> symmetric tilt grain 
boundary with <310> boundary normals.For the two largest system sizes studied, a transition 
occurs at about 1250K. 
 
Different behavior above and below the roughening transition has typically been studied only in 
faceting boundaries. However, boundary I is a general high angle boundary and should not 
exhibit faceting. We conclude that the difference in behavior between rough and smooth 
boundaries must be taken seriously for non-faceting boundaries as well. This is a primary 
conclusion of this paper. 
 
Figure 5 and Figure 6 show the roughness and mobility of a symmetric Σ5 <100> tilt boundary 
with <310> boundary normals, which we will refer to as boundary II. This symmetric boundary 
is low energy, and boundaries vicinal to this one could show faceting, so it might be considered a 
faceting boundary in some sense. We do not observe any obvious faceting in these small 
systems, however. 
 
For boundary II, Figure 5 shows a roughening transition near 1250K for the two larger system 
sizes studied.Notice the significant difference (~300K) in roughening temperature for boundaries 
I and II, which have the same misorientation and differ only in boundary plane. Because there is 
only one simulation for each parameter set, we cannot see “mixed” behavior at the transition 
temperature as we did for boundary I. Histograms of the data at the largest size suggest that the 
transition for boundary II is similar to that of boundary I, however.  
 
The mobility of boundary II, shown in Figure 6, is qualitatively similar to that of boundary 
I.Above the roughening transition, mobility is independent of driving force and follows 
Arrhenius behavior. At 1000K, well below the roughening transition, mobility shows no 
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measurable lower limit as driving force decreases but at high driving force the smooth boundary 
approaches the high temperature mobility.Again it appears that there is a large discontinuity in 
mobility between smooth and rough boundaries that is mitigated at high driving forces. 
 
We also have simulated the other symmetric Σ5 <100> tilt boundary, which has <210> boundary 
normals.  Although we will not report on it here in detail, we should briefly mention that it shows 
additional behavior.   This boundary appears to show a roughening transition around 1250K. 
Above and just below the roughening temperature it behaves qualitatively like the two 
boundaries discussed here. However, well below the roughening transition, from 500K to 1000K, 
boundary mobility increases as temperature decreases, indicating a barrier-free motion subject to 
damping that increases with increasing temperature. The increase in mobility is substantial 
enough that the 500K mobility is considerably higher than the 1400K mobility. This unexpected 
behavior appears to be related to a boundary motion mechanism involving shear [14,15], and will 
be discussed in another paper. 

 
Figure 3-6. Mobility as a function of driving force 
Mobility as a function of driving force: Ni (Foiles-Hoyt), Σ5 <100> symmetric tilt grain 
boundary with <310> boundary normals. For temperatures of 1200K and 1400K, the mobility is 
independent of the driving force within the range studied. At 1000K, the mobility is similar to 
the high temperature mobility at very high driving force, but is substantially smaller at low 
driving force, and a low driving force limit is not reached at the lowest driving forces studied. 
 

3.4. Summary 

 
In summary, we find that simulations of grain boundary mobility in Ni using synthetic and 
elastic driving forces give the same results. Thus, grain boundary mobility appears to be an 
intrinsic material property independent of driving force origin for these two driving forces. 
 
A non-faceting, asymmetric Σ5 Ni grain boundary undergoes a roughening transition at 900K. 
Above the roughening temperature, boundary motion is continuous and mobility is high, 
independent of driving force, and Arrhenius in temperature. Below the roughening temperature, 
boundary motion is stepwise and mobility is low, decreasing with driving force, and non-
Arrhenius. At high driving forces, the low temperature boundaries have mobilities consistent 
with rough boundary structures. 
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A symmetric Σ5 Ni grain boundaries exhibits similar behavior to the asymmetric boundary, but 
with a roughening temperature that differs from the asymmetric boundary by 300K.  
 
Computational studies of grain boundary motion often give results for activation barriers and 
mobilities that fail to agree with experimental results. While this is often attributed to solute 
effects, our results imply that the boundary roughening transition is a likely source of differences 
as well. 
 
The large change in mobility at the roughening transition may have major impacts on 
microstructural development in polycrystalline systems. Large differences in grain boundary 
mobility within a single microstructure can cause abnormal grain growth [16]. At a temperature 
where some boundaries are smooth and others are rough, such boundary mobility differences 
may exist and may substantially alter the course of microstructural evolution. 
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4. Survey of grain boundary properties in FCC metals: I. Grain boundary energy 

4.1. Abstract: 

The energies of a set of 388 distinct grain boundaries have been calculated based on embedded 
atom method interatomic potentials for Ni and Al.  The boundaries considered are a complete 
catalog of the coincident-site-lattice boundaries constructible in a computational cell of a 
prescribed size. Correlations of the boundary energy with other boundary properties 
(disorientation angle, Σ value, excess boundary volume, and proximity of boundary normals to 
<111>) are examined.  None of the usual geometric properties associated with grain boundary 
energy are found to be useful predictors for this data set. The data set is incorporated as 
supplemental material to facilitate the search for more complex correlations.  The energies of 
corresponding boundaries in Ni and Al are compared and found to differ approximately by a 
scaling factor related to the Voigt average shear modulus or C44.  The correlation of the energy 
between boundaries that are crystallographically close is explored. 
 

4.2. Introduction: 

The grain-level microstructure of a metal influences a wide range of materials properties 
including strength, toughness, and corrosion resistance among others[1-3].  For that reason, 
understanding and controlling microstructural evolution is one of the central tasks of materials 
science.  Since grain boundary properties, such as energy and mobility, play a key role in 
determining the growth of grains, there has been a long-standing interest in these topics.  
Recently, there has been a resurgence of interest in boundary properties due to the advent of 
microstructure modeling work that explicitly includes the variation of boundary properties with 
the boundary type[4-8].  These studies employ simple models for the variation in boundary 
properties with macroscopic boundary geometry and would benefit from a more complete 
description of the property variations.  The theoretical challenge is the vast number of possible 
planar grain boundaries.  Grain boundary crystallographic space is described by five 
macroscopic degrees of freedom[3]: three degrees of freedom define the relative rotation of the 
two neighboring grains and two more define the orientation of the boundary plane relative to the 
grains.  Alternatively, one can describe a grain boundary in terms of the two surfaces that are 
joined at the boundary and a relative rotation around the boundary normal[9].  In that view, one 
needs two degrees of freedom to define each surface and a fifth degree of freedom to specify the 
rotation about the boundary normal.  While there is some understanding of how boundary 
properties vary over special subsets of this 5-D space and while there has been a renewal of 
interest in the variation of grain boundary properties[10-17], the variation of boundary properties 
over the entire space is not yet fully understood.  In this work, the energy of a large selection of 
boundaries is computed via atomic-scale simulations with the goal of providing a database for 
developing an understanding of the variation of grain boundary energy across the full 5-D space.  
Alternatively, the results could be used in an interpolative scheme to determine the energy of an 
arbitrary boundary.  In a companion paper, the mobility of these boundaries have been 
computed[18] based on a recently developed synthetic driving force method[19]. 
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There have been several previous computational studies[3, 16, 17, 20-25], of the structure and 
energy of grain boundaries as a function of subsets of the five macroscopic degrees of freedom 
for both fcc [21, 26-37] and bcc [38-40] metals. The studies for fcc metals considered grain 
boundaries on (111) and (100) planes [26, 30, 34], (110) and (113) planes [27], symmetric tilt 
boundaries [28, 31], asymmetric tilt boundaries [32, 41, 42], Σ3 boundaries [37]  and general 
asymmetric boundaries for four choices of boundary normals [29]. These calculations have been 
reviewed in various places [23, 24, 33, 36, 43].  More recently, there have been experimental 
efforts to determine the relative free energies and the relative populations of grain boundaries 
geometries in aluminum [44-46], brass [47] and magnesia [48, 49]. 
 
There have also been various efforts to rationalize the variation of the grain boundary energy 
with the macroscopic degrees of freedom of grain boundaries.  Sutton and Balluffi [23] critically 
examined the predictive power of various geometric criteria for low energy geometries compared 
to both experimental and computational data and found no support for the general usefulness of 
such criteria.  The energy of low angle grain boundaries is predicted by a classic dislocation 
based model due to Read and Shockley[50].  Wolf demonstrated that the energies predicted by 
this approach can be extended to high-angle boundaries for the case of (111) and (100) twist 
boundaries and <111> and <100> symmetrical tilt boundaries [51].  Wolf and Philpot [52] 
proposed that grain boundaries formed along dense planes will have lower energies.  They also 
noted a correlation between grain boundary energy and volume expansion of grain boundaries 
for the set of boundaries studied.  Wolf [53] proposed, based on a series of simulations for 
symmetric and asymmetric tilt and twist boundaries, that the boundary energy variation can be 
rationalized in terms of the number of broken bonds in a manner similar to that for free surfaces.  
Wynblatt and coworkers proposed a more fully realized broken bond model for grain boundary 
energy[54, 55]. Recently, Tschopp and McDowell have suggested that the energy of asymmetric 
tilt boundaries can be modeled in terms of ideal faceting onto symmetric tilt boundaries[41].  The 
distribution of grain boundary geometries has been determined experimentally in commercially 
pure aluminum[45].  The results indicate that there is a higher population, and so presumed 
lower energy, for grains that terminate on low index planes with large interplanar spacing.  In 
particular, boundaries terminated by (111) planes dominate the population and boundaries 
containing (113) planes also have a higher than random population. 
 
The current work computes the energy of a large selection of grain boundary geometries for 
interatomic potentials that model Ni and Al.  These energies are then used to examine various 
correlations between the energy and other boundary properties that have been suggested 
previously.  In addition, the detailed boundary energy data is included as supplemental 
information to facilitate the use of this data to evaluate future proposed models, for comparison 
with experimental efforts to examine the variation of grain boundary energy and to provide data 
for interpolative approaches.  The primary difference between the present work and the work 
mentioned above is the choice of the boundaries to be studied.   The present study includes a 
wider range of more general boundaries in the set.  In the above studies, particular types of 
boundaries, for example symmetric tilt boundaries, were chosen for study.  In the present work, 
we consider all boundaries that can be constructed within a specified size limit as discussed 
below.  While this set includes many of the boundaries included in earlier work, it also contains a 
large number of boundaries that have not been considered previously.   A similar study of the 
properties of boundaries in two dimensional systems has been performed by Coffman and Sethna 
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[16]. Another difference between the current work and previous studies concerns the details of 
the energy minimization calculations.  As discussed below, great care has been taken in the 
current work to determine optimal or near-optimal boundary structures and energies. 
 

4.3. Computational Approach: 

We wished to use atomistic simulations to study grain boundary properties throughout the five 
dimensional space of the macroscopic grain boundary parameters without arbitrarily considering 
preselected types of boundaries.  To accomplish this, we considered all grain boundaries that can 
be constructed within a specified maximum cell size as described below. We chose to look at 
infinite planar boundaries, and so set up our system with periodic boundaries in the directions 
lying within the grain boundary plane.  Taking the plane x = 0 as the nominal grain boundary 
plane, we thus have periodic boundary conditions in the y and z directions in both crystals.  Both 
grains have the grain boundary as one surface in the x-direction.  At the far surface in the x-
direction are flat surfaces, with boundary conditions described below.  This setup limits us to 
studying boundaries with coincident site lattice (CSL) misorientations[3], and rational boundary 
plane normals.  Our approach to choosing a group of reasonably small boundaries, but without 
imposing other conditions, is to look at all boundaries that can be built in such a simulation cell 
where the periodic length of each grain along the principal axes of the simulation cell is no more 
than a maximum length, .  Taking , where is the lattice spacing, gives 388 
distinct fcc boundaries, and these are the boundaries considered here.  Note that we have treated 
mirror image boundaries as identical, since they must have identical properties. 
 
All boundaries with CSL misorientation and rational boundary planenormals can be built in this 
configuration for large enough .  While not all boundaries are precisely CSL boundaries, any 
non-CSL boundary, in a single material, can be approximated arbitrarily well by a CSL 
boundary[56]. Thus sampling the set of CSL boundaries should provide a good coverage of the 
space of possible boundary orientations while maintaining computational convenience.  Some 
issues with the consideration of CSL boundaries have been discussed by Sutton[57]. CSL 
boundaries are often characterized by their Σ value which is the inverse density of coincident 
sites for that misorientation[3].    The largest  in this set of boundaries is 385; the smallest 
not contained in this set of boundaries is 23. There are 72 distinct misorientations represented in 
the 388 boundaries.  Some additional boundaries outside of this set were also considered, as 
discussed in the results section. 
 
The grain boundary energies were predicted using molecular statics calculations based on 
embedded-atom method (EAM) potentials[58].  For Ni the Foiles-Hoyt[59] potential was used, 
and for Al the Ercolessi-Adams[60] potential.  Both potentials reproduce the elastic moduli of 
the real materials.  The Ni potential predicts stacking fault energy of 127 mJ/m2 in good 
agreement with the experimental value of 125 mJ/m2.   The unstable stacking fault energy, which 
is related to dislocation nucleation, for this potential is 260 mJ/m2 is good agreement with the 
value of 280 mJ/m2 computed via density functional theory electronic structure calculations by 
van Schilfgaarde as reported by Zimmerman, et. al.[61].  The intrinsic and unstable stacking 
fault energies for the Al potential are somewhat below experiment values as discussed by 
Zimmerman et.al.[61].For each grain boundary, a large set of macroscopically equivalent initial 
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configurations was built and minimized using the conjugate-gradient method in the LAMMPS[62] 
code.  The number of initial configurations depended on the grain boundary, with a simple 
boundary giving roughly 500 to 1000 configurations, and one of the most complex involving 
more than 50,000 minimizations.  The details of the initial starting configuration are discussed 
below.  While conjugate-gradient minimization of multiple starting configurations is not the 
most sophisticated approach to searching for the best energy minimum[63], its relative low cost 
is important to surveying large numbers of boundaries.   The importance of examining multiple 
starting configurations has also been noted by Tschopp and McDowell[42]. 
 
The grain boundary energy calculations were done in a cell with periodic boundary conditions in 
the two directions in the plane of the boundary (y and z).  The lengths of the cell in these 
directions were kept fixed at their lengths in the bulk perfect crystal.  The cell contained one 
grain boundary, and had free surfaces in the direction normal to the boundary.  A block of atoms 
at each surface was constrained to move as a single block, in order to avoid surface relaxation.  
This still permitted the blocks to move in the plane of the boundary to accommodate relative 
translation of the grains, and in the direction perpendicular to the boundary to accommodate 
volume expansion.  The atoms in the constrained blocks were excluded from the energy 
calculation.  The grain boundary energy was computed as the total energy of the free atoms, less 
the bulk energy per atom, divided by the area of the boundary. 
 
The size of the cell was determined by the repeat structure of the grains making up the CSL 
boundary.  We take x as the direction normal to the boundary.  The y and z box lengths were the 
number of repeats required to give a length of at least 10 a0/2 for the Ni boundaries, where a0 is 
the lattice constant, or two repeats, whichever was larger.  The length of each grain in the x-
direction was the number of repeats required to give at least 40 a0/2, or two repeats, whichever 
was larger.   The Al boundaries were built in the same manner, except that the minimum box-
length in the y and z directions was 17 a0/2 (or two repeats if larger.) 
 
To obtain an estimate of the optimal boundary energy, conjugate gradient minimizations were 
performed for a set of initial trial grain boundary structures.  Construction of a set of initial trial 
grain boundary structures for a given bicrystal requires several considerations. For a specific 
choice of the orientations of crystal A and crystal B, translating one of the crystals relative to the 
other by the vectors in a primitive cell of the displacement shift complete (DSC) lattice yields the 
possible non-equivalent configurations of the interpenetrating crystal lattices. Having chosen a 
particular configuration, a grain boundary is formed by choosing a boundary plane (normal to the 
grain boundary normal) and discarding all A atoms to the right of the boundary and all B atoms 
to the left of the boundary. Different choices of where to locate the boundary give different 
configurations. Unlike the choice of the relative translation vector with the DSC primitive cell, 
however, only a finite number of non-equivalent choices exist. In particular, placing the 
boundary anywhere between two adjacent atomic planes gives the same configuration, and 
moving the grain boundary normal to the boundary plane by the distance between lattice planes 
in the CSL lattice gives identical configurations. After the grain boundary has been placed, some 
neighboring A and B atoms may end up too close together. Overlapping atoms must be resolved 
by removing one of the atoms from the system. 
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In this study, the initial configurations for each boundary were based on these three types of 
variations: the choice of offset vector between the two crystals, the placement of the boundary in 
the direction normal to the two crystals, and which overlapping atoms were discarded.  Either 8 
or 27 offset vectors were used, depending on the boundary.  These were uniformly spread in 
three dimensions throughout a primitive cell of the DSC lattice[3].  For the simplest boundaries 
27 offsets were used, while for most of the boundaries 8 were used.  Each possible non-
equivalent placement of the boundary plane in the normal direction was tried.  Depending on the 
boundary and the offset vector this could vary from a single placement, to over 200 placements.  
Atoms that were closer than a (variable) cutoff to an atom in the other crystal were deleted by 
one of three methods.  Atoms were either always deleted from crystal A; always deleted from 
crystal B; or both atoms were deleted and an atom inserted at their average position.  The cutoff 
was varied from one-third of the nearest neighbor distance to 85% of the nearest neighbor 
separation in steps of 0.1 Å.  In some cases, for example if the only atoms being deleted were 
exactly coincident, two or all three of the deletion methods produced the same starting 
configuration, so a few starting configurations for a given boundary may be identical.  In 
summary, the initial configuration is a combination of the offset vector, the boundary placement 
in the normal direction, the deletion method, and the deletion cutoff. This process is similar to 
that used to examine the concept of multiplicity of grain boundary structures[35, 64]; however, 
the focus here is on finding a single, minimum energy structure rather than to examine the range 
of generated structures. 
 
Figure 1 shows two examples of the results of the energy search.  The energy after the conjugate 
gradient minimization is plotted for each of the starting configurations used, sorted by increasing 
energy.  Panel (a) shows the results for a Σ111 boundary.  About half of the configurations 
minimize to essentially the same energy, consistent with the possibility that this is the global 
minimum, at least for the cell size used.  Some of the starting configurations minimized to 
significantly higher energies, demonstrating the need for the search.  In particular note that for 
this case, if a single configuration was considered there is about a 50% chance that one would 
obtain an incorrect high energy and that the error in the energy could be over a factor of two.  
The importance of this observation has been demonstrated by recent studies of grain boundaries 
in silicon in which failure to consider alternative grain boundary structures lead to qualitatively 
incorrect conclusions about boundary properties[63, 65].  Panel (b) shows the results for an 
asymmetric Σ5 boundary with normals of <100><430>.  In this case more than half of the 
configurations give essentially the same energy.  However, a few configurations give slightly 
lower energies.  This case suggests that even with the extensive sampling performed here, some 
boundary energies reported in this study may not be global minima.  Fortunately, the behavior 
shown suggests that the errors in those cases are small.  No search can guarantee to find true 
global minima, but we believe that the substantial care we have taken in this matter has produced 
results that are fully precise enough to support our conclusions. 
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Figure 4-1. Minimized energy of set of initial structures 
The minimized energy of the set of initial structures discussed in the text for (a) a Σ111 grain 
boundary and (b) a asymmetric Σ5 (100)/(430) grain boundary.  The energies are sorted by 
increasing energy in the plot.  Note that in (a) that about half of the initial structures yield the 
same, minimum, boundary energy while in (b) a small number of boundaries have energies 
somewhat below the most common energy. 
 
 

4.4. Results 

 
The computed energies for Ni grain boundaries are shown in Figure 2 as a function of the 
disorientation angle between the two grains.  The corresponding plot for Al is similar.  The 
disorientation angle is the minimum rotation angle in an axis-angle description of the rotation 
between the two crystals.  It is computed by 

, 

where  is the rotation matrix between the two grain orientations and the angle is minimized 
over the symmetry operations of the two crystals.  Note that the disorientation angle is 
independent of the orientation of the grain boundary plane.  The results shown are for the 388 
boundaries described above plus some selected smaller angle boundaries and some boundaries 
closer to the coherent twin (plotted as triangles in Figure 2), selected to fill in gaps in the data 
set. (Note that these extra boundaries were studied using the same methods described above, but 
with a larger computational cell size to accommodate their larger repeat distances. In a few cases 
the search was more restricted than that described above.)   

 



45 

 
Figure 4-2. Grain boundary energy versus disorientation angle 
The computed grain boundary energies for Ni plotted against the disorientation angle between 
the two grains.  The red points correspond to Σ3 misorientations, the cyan points correspond to 
<111> twist grain boundaries, the grey symbols correspond to <100> twist grain boundaries, the 
yellow symbols correspond to <110> symmetric tilt grain boundaries and dark blue symbols 
correspond to all other boundaries. Triangles indicate data for boundaries outside the group of 
388 boundaries defined by  as discussed in the text. 
 
There are several features of note in these results.  First, the lowest energy boundary shown is the 
coherent twin boundary [Σ3 60° (111)] as expected.  While the coherent twin is a Σ3 boundary, it 
is important to note that there are forty-one Σ3 boundaries in this set which all have the same 
misorientation between the grains but different boundary planes.  The energy of these Σ3 
boundaries in the Ni simulations range from the coherent twin with an energy of ~0.06 J/m2 to a 
high energy of about 1.0 J/m2.  This clearly demonstrates that the boundary plane has a crucial 
impact on the boundary properties.  The variation of energy for Σ3 boundaries has been 
discussed previously based on experimental and computational data for Cu [37].  A similar 
conclusion about the importance of the boundary plane has been reached by Randle[66] based on 
analysis of polycrystal data.  Clearly disorientation angle alone is not sufficient to determine 
boundary energy. 
 
The <111> twist boundaries (plotted in cyan in Figure 2) are low in energy across the range of 
disorientation angles. The variation in energy of these boundaries is qualitatively consistent with 
the Read-Shockley[50] dislocation model which predicts that boundary energy is proportional to 
θ – θ ln θ, where θ is the disorientation angle.  The <100> twist boundaries (plotted in grey in 
Figure 2) are also low in energy and qualitatively consistent with the Read-Shockley model.   
 
Note that there is a lone boundary whose energy is close to that of the low energy (111) twist 
boundaries.  This is the Σ11 50.48° <110> symmetric tilt boundary that has boundary plane 
normals of {113}.  The relatively low energy of this boundary had been observed earlier by 
Hasson[21].  This boundary, along with the other <110> symmetric tilt boundaries, is plotted in 
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yellow.  Note that the energies of the other <110> symmetric tilt boundaries do not stand out in 
this plot.   
 
The energies plotted in blue correspond to boundary geometries not mentioned above.  For all 
the boundaries, the energy appears to approach zero as the disorientation decreases, as expected.  
Note also that the general trends in the energy conform to the Read-Shockley model. However, 
higher disorientation angle boundaries (often referred to as general boundaries) show a 
significant spread in energy.   The current results show that while the high angle boundaries have 
similar energies, about 1.2 J/m2 in this case, general boundary energy varies between about 0.8 
and 1.4 J/m2. This degree of variation is sufficient to noticeably alter the microstructure of 
polycrystals from the familiar equiaxed, triconnected ‘normal’ grain structure. For example, 
triple junction angles will differ from 120°, and four-grain junctions may be stable[67]. Thus, 
general grain boundary energy cannot be treated as a single-valued parameter. 
 
Historically, there has been speculation that the energy of a grain boundary can be interpreted in 
terms of its Σ value, which is the inverse of the density of coincident sites of the abutting grain 
lattices.  The argument is that a small value of Σ (high density of coincident sites) suggests the 
lattices mesh together well and so the boundary energy would be lower.  To examine this idea, 
boundary energy in Ni is plotted as a function of Σ in Figure 3.  Note that there is not an apparent 
trend of the energy with Σ with the exception of the low energy of the coherent twin boundary.  
In particular, Σ5 and Σ9 misorientations have boundary energies that are not unusually small.  
The other important observation is that there is a wide variation in boundary energy for any 
given value of Σ.  Recall that the Σ value derives from the relative orientation of the two grains, 
but does not depend on the orientation of the boundary plane.  This large spread of the energy of 
boundaries with the same relative orientation again reflects the significant role that boundary 
plane orientation plays in grain boundary energy. 
 

 
Figure 4-3. Grain boundary energy versus inverse density of coincident sites 
The computed grain boundary energies for Ni plotted against Σ, the inverse density of coincident 
sites.  The symbols are the same as in Figure 2. 
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Another correlation that has been discussed historically is that the grain boundary energy should 
vary with the net expansion of the grain boundary[26, 68, 69].  This idea is examined in Figure 4 
where the grain boundary energy is plotted as a function of the excess volume per unit area (i.e. 
net expansion) of the boundary. The results indicate that there is a rough correlation between the 
grain boundary energy and the boundary expansion.  The coherent twin boundary has both a very 
low energy and very small expansion.  The other boundaries lie in a region which trends upward 
in energy with increasing expansion.  Unfortunately, while there is an overall trend of increasing 
boundary energy with increasing boundary expansion, there is substantial variation about that 
trend such that one could not reliably predict the boundary energy based on the expansion.  
Further, just as there is no general expression for the grain boundary energy in terms of the 
macroscopic degrees of freedom, there is also no such relationship for boundary expansion. 
 

 
Figure 4-4. Grain boundary energy versus excess volume 
The computed grain boundary energies for Ni plotted against the excess volume per unit area of 
the boundary in units of the lattice constant.  The symbols are the same as in Figure 2. 
 
It has been suggested that grain boundaries whose normals are close to (111) in either lattice are 
low in energy[45-47, 70].  This is consistent with the observation discussed above that the (111) 
twist boundaries form a low energy series in Figure 2.  This idea has been challenged by 
Tschopp and McDowell [41].In order to test this assertion more generally, we define a parameter 
1 – cos(a) + 1 – cos(b), where a and b are the angles between the boundary normals and the 
nearest <111> direction. If both normals are (111) the parameter is zero and it increases the 
further the normals deviate from <111> directions.  Grain boundary energy is plotted with 
respect to this parameter in Figure 5.  Overall, this does not appear to form a useful sorting of the 
boundaries either for low- or high-energy boundaries. It should be noted, though, that the density 
of points in our sampling of the five-dimensional grain boundary space does not examine the set 
of boundaries with boundary planes vicinal to (111).  The closest normal to (111) represented in 
the set is (655) which is five degrees from <111>.  
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Figure 4-5. Grain boundary energy versus angle to <111> direction 
The computed grain boundary energy for Ni plotted against 1 - cos(a) + 1 - cos(b), where a and b 
are the angles between the two boundary normals and the nearest <111> direction,  which 
measures the deviation of the two boundary normals from (111). The symbols are the same as in 
Figure 2. 
 
The fact that grain boundary energy cannot be predicted by a simple scalar parameter such as the 
disorientation or Σ value is not surprising and has been concluded previously [23].  Grain 
boundaries exist in a five dimensional, nonlinear space, where two boundaries that share one 
macroscopic descriptor may differ greatly in microscopic structure.  That is not to say that grain 
boundary energy is not predictable.  In fact, grain boundaries that are crystallographically close 
to one another are expected to have similar properties.  This can be understood in the context of 
structural unit models [33].  The interesting and practically important question is how quickly do 
boundary properties vary with the crystallography.  To address this issue, one needs a metric for 
crystallographic proximity that improves upon more traditional approaches [71, 72]. One of us 
has derived such a metric [56], which is described briefly in appendix A. Figure 6 shows the 
difference in energy between pairs of boundaries as a function of their crystallographic 
separation distance.  Boundaries that are crystallographically close have similar energies as 
expected. Boundary pairs in which one boundary is of anomalously low energy (i.e. the coherent 
twin and the low energy Σ11) have a larger energy difference than typical boundary pairs. This is 
at odds with the commonly used Brandon criterion[73], which posits that boundaries that are 
crystallographically close to low energy boundaries (~ 15° Σ-1/2) are also low in energy.  The 
present results suggest that the low-energy region of crystallographic space near a low energy 
boundary is smaller than suggested by the Brandon criteria, and there does not appear to be any 
support for the variation of the size of the low energy region with Σ value.   
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Figure 4-6. Energy difference of grain boundary pairs 
The difference in energy between all pairs of grain boundaries as a function of the 
crystallographic distance between boundaries for boundaries separated by a distance of less than 
1.0.  The cyan points indicate that one of the two boundaries is the coherent twin.  The yellow 
points indicate that one of the two boundaries is the low energy Σ11.   The red line is chosen to 
include 90% of the data points where the distance is less than 0.1 excluding pairs where one of 
the boundaries is the coherent twin or the low energy Σ11.  Above the graph is shown a rough 
conversion of the distance to degrees as described in Appendix A. 
 
The energy difference between nearby boundaries (discounting pairs that include an anomalously 
low energy boundary) is largely bounded by a line proportional to the separation distance for 
small separations. This suggests that one can estimate the energy of a grain boundary from the 
measured energy of a nearby boundary. Many interpolation schemes can be envisioned; one 
simple one is to model the unknown boundary energy as the crystallographically nearest known 
energy, with an uncertainty given by the upper bound in Figure 6. Thus, a data set such as this 
one enables prediction of the energies of arbitrary boundaries; the accuracy of the predicted 
energy increases with the number of measured boundary energies in the data set.  The present 
results provide insight into the accuracy of such interpolations given the separation of points in 
the data set. 
 
An important question about grain boundary properties is the degree to which boundaries with 
the same macroscopic geometrical degrees of freedom in different materials have related 
properties.  In Figure 7, the energies of the grain boundaries computed in Ni are plotted against 
the energies of the boundaries computed in Al for the same macroscopic degrees of freedom.  
Note that while the macroscopic degrees of freedom are the same, the microscopic structure need 
not be the same; each boundary structure is optimized separately in each material.  For most 
boundaries, especially at moderate to high energies, the energies computed in Ni and Al are 
approximately proportional to each other.  This suggests that, apart from a material dependent 
scaling factor, the energy of boundaries in different fcc metals will have about the same variation 
with the macroscopic geometrical degrees of freedom.  While this result is generally assumed, 
this is the first direct confirmation of that assumption.  There are some notable exceptions to this 
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for the low energy boundaries.  The coherent twin boundary energy, while small in both 
materials, does not fall on this line. Instead, it is relatively lower in energy in Ni than in Al, in 
proportion to the stacking fault energy of each material.  Similarly, the <111> twist boundaries 
and the lower energy Σ3 boundaries are relatively lower in energy in Ni.  The low energy 
symmetric Σ11 boundary deviates in the opposite direction; it is relatively lower in energy in Al 
than in Ni.  These results therefore suggest that general boundaries obey this scaling relation but 
that certain low energy boundaries do not.   

 
Figure 4-7. Comparison of the grain boundary energy of Ni and Al 
Scatter plot of the computed grain boundary energies for Ni and Al.  Each point represents the 
same macroscopic degrees of freedom though the microscopic structures may differ in some 
cases.  The line indicates a by-hand linear fit constrained to pass through the origin to the data. 
The symbols are the same as in Figure 2. 

 

It is interesting to explore how the ratio of the grain boundary energies observed for Ni and Al 
relates to the ratio of simple materials properties of these metals.  Table 1 shows the ratio of the 
melting temperatures, sublimation energy (cohesive energy), vacancy formation energy, stacking 
fault energy, low index surface energies, bulk modulus and shear moduli.  In all cases, the values 
are multiplied by the required power of the lattice constant to obtain quantities that have the 
same dimensions as the grain boundary energy, energy per length squared.  Also, the results in 
Table 1 are based on the material property values obtained with the potentials used in the current 
study.  The ratio of the Ni and Al grain boundary energies that best fits the computed values in 
Figure 7 is 2.6.  An obvious possible scaling is that the boundary energies scale with the 
cohesive energy, which sets the energy scale of the interatomic interactions, divided by the 
square of the lattice constant.  This predicts a ratio of 1.7, which is clearly inconsistent with the 
data.  This demonstrates that the ratio of grain boundary energies in different materials reflects 
other aspects of the interatomic interaction.  Certain other of the materials properties listed also 
do not provide reasonable estimates of this ratio; in particular the vacancy formation energy, 
stacking fault energy and bulk modulus do not predict a reasonable scaling.  The melting 
temperature predicts a ratio somewhat below the observed one.  It has been suggested that 
surface energies and grain boundary energies should be related.  The low index surface energies 
predict a ratio of 2.2 – 2.3 which is reasonably close to the ratio of the grain boundary energies.  
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The best correlation is with two shear moduli: the ratio of the Voigt average shear modulus, 
which gives a ratio of 2.4, or C44, which gives a ratio of 2.8.  The relationship between a shear 
modulus and the grain boundary energy can be rationalized by a simple physical argument.  
Grain boundaries can be described as arrays of dislocations[3].  The elastic energy associated 
with a dislocation is proportional to the shear modulus[74]. Thus a direct relationship between 
the shear modulus and the grain boundary energy is plausible. Ni and Al have substantially 
different elastic anisotropies, so the ratio of shear moduli is not unique.  Table 1 lists ratios 
predicted by the two extreme values of the shear modulus, C’ = (C11 – C12)/2 and C44, as well as 
the Voigt average, which falls in between.  C’ does not provide a good prediction of the relative 
energies.Udler and Seidman[75] proposed based on calculations of five boundaries for 7 metals, 
that the relative energies of grain boundaries should be linearly correlated with C44. The 
agreement with the Voigt average shear modulus may be coincidental.  The energies of 
boundaries need to be considered in more metals before a definitive statement can be made about 
which, if any, materials parameters predict relative grain boundary energy. 

 
Table 4-1. Ratios of Ni and Al material properties 

Property 
 

Ratio 

kBTM/a0
2 2.2 

Esub/a0
2 1.7 

Ev
f/a0

2 3.3 
γsf 1.2 
γ(100) 2.2 
γ(110) 2.3 
γ(111) 2.2 
Ba0 1.9 
C’ a0 1.6 
C44 a0 2.8 
µvoighta0 2.4 

 
The ratio of selected materials properties calculated for Ni and Al using the present interatomic 
potentials.  The various properties are scaled by a power of the lattice constant, if needed, to 
obtain quantities with dimensions of energy/area.  The properties listed are the melting 
temperature, sublimation energy, vacancy formation energy, stacking fault energy, free surface 
energies for (100), (110) and (111) faces, bulk modulus, the two extreme shear moduli and the 
Voigt average shear modulus. 
 

4.5. Summary 

We have computed the energies of a large set of grain boundaries using an embedded atom 
method potential for Ni and Al.  This work differs from previous computational surveys of grain 
boundary energy in two ways.  First, a more extensive search for the optimum boundary 
structure has been performed.  Second, a broader range of boundaries, comprised of all 
coincident-site-lattice boundaries that can be constructed within a prescribed computational cell 
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size, has been considered. While this set includes some boundaries studied previously, it also 
includes many boundaries of a more general character than have been considered in prior studies.   
 
Our survey provides the following observations: 
1. Disorientation angle by itself is insufficient to determine the boundary energy. The 
energy of general grain boundaries varies widely, though the boundary energy does tend to zero 
for small disorientations as expected.  
2. Boundaries with the same disorientation angle but different boundary planes may have 
substantially different energies, as typified by the Σ3 boundaries; thus, boundary plane plays a 
critical role in the determination of boundary energy.  
3. <111> twist and <100> twist boundaries are systematically low in energy and follow the 
Read-Shockley model for grain boundary energy. The Σ11 50.48° <110>/{113} symmetric tilt 
boundary is also of low energy.   
4. Grain boundary energy does not correlate with Σ value, and there is a wide variation in 
energy for the same Σ value. 
5. There is a rough correlation between the grain boundary energy and the net expansion 
(i.e. free volume) of the boundary.  Boundaries with smaller net expansions tend to have smaller 
boundary energies; however, this correlation is not sufficiently strong to predict energy from 
expansion. 
6.   While boundaries with perfect (111) normals were low in energy, for the other 
boundaries there was not a clear relationship between energy and the deviation of the boundary 
normals from (111).  This may reflect the fact that the current set does not contain boundaries 
with boundary planes vicinal to (111).   
7. Boundaries that are close to one another in crystallographic space have similar energies, 
with the upper bound on energy difference roughly proportional to the separation distance up to 
about 15°.  
8. The energy of corresponding boundaries in Ni and Al were computed.  Overall, there was 
a strong scaling of boundary energy between the two materials, though low energy boundaries 
tended to deviate from this scaling.  Candidates for simple materials properties that govern this 
behavior were considered.  The most promising are the shear moduli.  Examination of more 
materials is required to clarify this.   
 
Overall, our survey of grain boundaries energies shows no clear correlation between energy and 
the parameters typically associated with energy in the literature.   A similar conclusion was 
reached previously by Sutton and Balluffi [23].  Clearly, a more general model for grain 
boundary energy is called for.   The current results provide an extensive database of grain 
boundary energies that could be used to motivate and/or test a global model for the variation of 
boundary energy over the five-dimensional space of boundary orientations. To facilitate the 
development and testing of such models, a catalogue of the macroscopic boundary geometries 
for these 388 boundaries and the corresponding calculated boundary energies for Ni and Al are 
available as supplementary data to this publication.   In addition, these data could be mined for 
interesting trends using an informatics approach or could be used in an interpolative fashion to 
determine the energy of boundaries not directly modeled.A definition of distance in the five-
dimensional crystallographic space[71] such as that developed by Morawiec[72, 76] or by one of 
the authors[56] is needed to implement such an interpolation approach[71].  
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Future work will consider the energetics of boundaries in additional materials to further clarify 
the issue of the scaling of boundary energies between materials.  In related work, the mobilities 
of these boundaries have been computed using a recently developed synthetic driving force[19]; 
that work will provide a similar survey of  boundary mobility for a portion of this catalog of 
boundary structures[18].   
 

4.6. Appendix A 

 
To define the crystallographic distance between two grain boundaries, a form of the description 
of an individual grain boundary must be chosen.  Consider an initially perfect crystal and a fixed 
dividing plane.  A grain boundary between grains A and B can be described by an ordered pair 
(A,B) where A and B are rotation matrices describing the rotation applied to grains A and B on 
each side of the dividing plane to form the boundary.  Note that this description has six degrees 
of freedom.  The additional degree of freedom occurs because a rotation of both crystals about 
the normal to the dividing plane produces physically equivalent grain boundaries.  The distance 
between two grain boundaries (A,B)  and (C,D) is defined to be 

.  In this expression, Min refers to a minimization over: 
a) rotations around the boundary normal, b) the choice of the assignment of grains A and B, c) 
the symmetry operations of each of the crystals, and d) taking the mirror image of the boundary.  
This metric is from Olmsted [56], which provides a complete description of the metric and a 
discussion of its mathematical properties.  In figure 6 the rough conversion of d to an angle is 
given by .  This agrees with the difference in twist angles of two twist boundaries 

about the same axis, as long as the difference is not so large that one of the rotation symmetries 
comes into play. 
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5. Survey of grain boundary properties in FCC metals II: Grain boundary mobility 

5.1. Abstract 

The absolute grain boundary mobility of 388 nickel grain boundaries described in Part I was 
calculated using a synthetic driving force molecular dynamics method. Over 25% of the 388 
boundaries, including most of the non-Σ3 highest mobility boundaries, moved by a coupled shear 
mechanism. The range of non-shearing boundary mobilities is from 40 to 400 , except 
for Σ3 incoherent twins with mobilities of 200 to 2000 . Some boundaries, including 
all the <111> twist boundaries, are immobile within the resolution of the simulation. Boundary 
mobility is not correlated with scalar parameters such as disorientation angle, Σ value, excess 
volume, or boundary energy. Boundaries less than 15° from each other in five-dimensional 
crystallographic space tend to have similar mobilities. Some boundaries move via a non-
activated motion mechanism, which greatly increases low temperature mobility. Thermal 
roughening of grain boundaries is widely observed, with estimated roughening temperatures 
substantially among boundaries. 

5.2. Introduction 

Microstructure – defined as the distribution of internal interfaces, defects, and phases – governs 
many properties of materials, including strength, toughness, conductivity, magnetic 
susceptibility, etc. Because microstructure is critical to materials performance, materials 
processing focuses on controlling and optimizing it. In polycrystalline materials, grain structure 
is a dominant feature of the microstructure. Since grain structure changes via motion of the grain 
boundaries, grain boundary properties play an important role in microstructural evolution. 
 
Grain boundary motion is generally observed to be a driven process [1], with boundary velocity 
proportional to the product of a mobility and a driving force. In essence, the driving force is the 
reason grain boundaries move; the mobility determines how fast they move. Both the driving 
force and the mobility can be extrinsically manipulated to some extent. For example, second 
phase particles may be added to decrease the interfacial energy driving force via Zener pinning 
[2]; solute species may be added to decrease grain boundary mobility via solute drag [3]. The 
driving force and mobility together control the development of both the grain morphology (grain 
size distribution, abnormal grain growth) and crystallography (texture, boundary character 
distribution). The survey of grain boundary energies in Part I addresses the driving force for 
curvature driven motion as a function of boundary crystallography [4]. Since it is half of the 
equation that governs microstructural evolution, characterizing mobility is equally important to 
understanding material processing and is the subject of this paper. 
 
Understanding the intrinsic grain boundary mobility is complicated by the fact that the mobility 
depends on grain boundary crystallography, which has five degrees of freedom [5]. (A grain 
boundary has three macroscopic degrees of freedom that describe crystallographic misorientation 
– typically a rotation angle and axis of rotation – and two macroscopic degrees of freedom that 
characterize the grain boundary plane.) Grain boundary mobility varies with all five degrees of 
freedom [6], and the differences can be substantial. For example, the <111> coherent twin is far 
less mobile than the <111> incoherent twins [1], despite sharing a common misorientation. 
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The variation in intrinsic grain boundary mobility with crystallography has been widely studied 
and reviewed, c.f. [1, 7]. Early experimental studies on lead bicrystals used a stored energy 
driving force to move a high angle boundary through a dislocation substructure [8, 9]. These 
studies focused on solute effects, but also showed that certain crystallographically special 
boundaries have very different mobility than general boundaries. Only the reduced mobility (the 
mobility-driving force product) could be measured in this way, and the boundary plane could not 
be determined. Later bicrystal studies refined both grain boundary geometry and driving force. 
Examination of bicrystal boundaries moving under a curvature driving force gave reduced 
mobility as a function of misorientation (but not boundary plane) [10, 11]. Other studies 
propelled flat grain boundaries via magnetic [12], shear [13] or stored energy [14] driving forces, 
providing measurements of absolute mobility as a function of full boundary crystallography and 
confirming that mobility is independent of driving force. The range of boundaries studied was 
limited both by the difficulty of the experimental methods and, for magnetic and shear driving 
forces, the fact that only certain boundary geometries permit such a driving force. 
 
Other investigators elected to study large numbers of boundaries in polycrystals, determining 
reduced mobility as a function of scalar parameters such as average disorientation angle [15, 16] 
or boundary complexion [17]. One polycrystal method sought to extract reduced mobility as a 
function of all five boundary degrees of freedom using careful characterization of the geometry 
and crystallography of triple junctions [18]; this method has not yet proved tractable, however. 
 
Atomic-scale computer simulation has offered an alternative method for studying grain boundary 
mobility. Some studies directly parallel experimental efforts, generally sharing the same 
strengths and limitations; examples include the misorientation dependence of reduced mobility in 
curved bicrystal boundaries [10, 19, 20] and absolute mobility of flat boundaries under an elastic 
[21-23] or artificial [24-26] driving force. Other studies take advantage of the length and time 
resolution of atomic simulations to study mobility of flat boundaries in the zero driving force 
limit using fluctuation [27] or random walk [28] theory. To date, all of these studies are limited 
to at most a few tens of grain boundary structures. 
 
Polycrystalline microstructures typically contain a large diversity of grain boundaries. Modeling 
the evolution of such systems requires knowing the mobility of a spectrum of grain boundaries, 
from low to high angle, special to general. The boundary mobility should be the absolute 
mobility given in terms of the full five crystallographic degrees of freedom. To date, none of the 
experimental or computational efforts have succeeded in generating such a dataset.  
 
Our goal for this study is to develop and apply a computational method for determining the 
absolute mobility of a wide range of grain boundaries spanning the five-dimensional space of 
boundary crystallography. To accomplish this efficiently, we require an automated method that 
can operate on flat boundaries using a small system size for short run times. To this end, a 
synthetic driving force method for determining grain boundary mobility was developed [24]. We 
describe the method and its results below. 
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5.3. Method 

5.3.1. The synthetic driving force method 

Grain boundaries move in response to a driving force, which is a free energy decrease per unit 
volume swept out [29]. In normal grain growth, the driving force is the reduction in grain 
boundary free energy and results in motion by curvature. Other driving forces for boundary 
motion may include chemical, magnetic or mechanical free energy contributions. On the atomic 
scale, the precise nature of the driving force should be irrelevant; atomic fluctuations that move 
the boundary are favored if the free energy decreases, regardless of the source of the decrease. 
Thus, in the limit of low driving force, the mobility should be independent of the type of driving 
force. 
 
While atomic scale simulations can model driving forces that arise from physical processes, they 
also offer the opportunity to manipulate driving force directly via the atomic potential energy 
function, creating a ‘synthetic driving force’ for boundary motion. A synthetic driving force can 
overcome some computational challenges posed by physical driving forces. For example, atomic 
scale simulations of boundary motion by curvature require large system sizes and cannot resolve 
boundary plane effects [10, 20]. Simulations of stress- or magnetically-driven boundary motion 
are limited to certain boundary geometries [12, 13]. On the other hand, the synthetic driving 
force may be applied to any boundary configuration, curved or flat. This enables us to examine 
boundary mobility for arbitrary boundary geometries as a function of the five crystallographic 
degrees of freedom. 
 
In previous studies, we compared the mobility produced by a synthetic driving force to that 
occurring from the simulation of a physical driving force (stress anisotropy) [25]. We found that 
the two driving forces gave the same mobility, suggesting that mobility is a physical property of 
a boundary, independent of the nature of the driving force. 
 
The synthetic driving force method for computing grain boundary mobility has been described 
briefly in [24]and will be discussed in more detail here. A similar approach was also proposed by 
another group in [26]. Classical molecular dynamics (MD) is based on a position-dependent 
potential energy function , where N is the number of atoms, and is the 
position of atom i. In order to exert a driving force on the grain boundary, the potential is taken 
as , where is the normal potential describing the material, and is an 

additional potential where depends on the crystallographic environment of each atom. We 
choose ui such that the orientation of one grain is energetically favored over the orientation of the 
other grain.  
 
To compute ui we select one of the grains as the reference crystal, and let  be the 12 fcc 
nearest neighbor vectors in the perfect lattice of the reference grain, scaled to the lattice constant 
at the nominal simulation temperature. For the 12 nearest neighbors of atom i (or all of the 
neighbors within a certain distance, if there are less than 12) we look at where 

, and is chosen from the 12 possible near neighbor vectors to minimize . We 
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define an order parameter for each atom , where is the number of 

neighbors. For atoms in the interior of the reference crystal,  is expected to be small, while for 

atoms in the interior of the other grain we expect , where  

are the nearest neighbor vectors in the other grain. We thus expect to be close to 0 in the 
reference crystal and close to 1 in the other crystal. Because thermal fluctuations cause these 
values to vary, we choose high and low cutoff values, and , and treat all 

atoms with as consistent with the reference grain, and all atoms with as 
consistent with the other grain. In this work we have taken  and .  
 
We normalize the order parameter across the boundary such that 

  (1) 

and define the synthetic potential energy 
  (2) 

where is a constant with dimensions of energy and controls the strength of the driving force. 
This form for  makes it continuous with continuous first derivatives (except in a few rare 
cases), and hence the forces are continuous functions of the positions of the atoms.  
 
If the grain boundary moves a distance x, to a position where its structure is identical to its 
beginning structure, the potential energy will change by , where is the area of the 
boundary and is the volume per atom, assuming that there are no excursions above in the 
reference grain, or below in the other grain. This creates a driving force for grain boundary 
motion. The actual thermodynamic boundary force, however, is the change in free energy, not 
the change in potential energy, and there will in fact be some excursions outside the  and 

 limits. The actual driving force must therefore be determined. 
 
The actual thermodynamic driving force depends on and the boundary misorientation but not 
on the boundary plane. Call the reference crystal A and the other crystal B. The free energy 
difference per atom between crystal A and crystal B, both with the added potential turned on, is 
equal to the free energy difference between crystal A with the added potential turned on and with 
it off, less the same difference for B. The free energy difference between a crystal with the 
potential turned off and turned on can be computed as  

  (3) 
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where denotes the expectation value when the actual potential has , u is the dummy 

integration variable, and in the integral limit is the value for which the free energy difference 
is being calculated, e.g. [30]. In our computations the integrand is well behaved. For crystal B, 
the integrand is always equal to 1.0 to at least five decimal places, and so the free energy per 
atom is almost exactly . For crystal A, however, the integrand is not always small. At 1200K 
the integrand varies from less than 0.01 to more than 0.99, depending primarily on the 
misorientation. The free energy difference between crystal A and crystal B at 1200K varies from 
0.993  down to 0.008  for . Some other synthetic potential simulations 
presumed the potential energy difference and the driving force were equivalent [24, 26]; however 
since mobility is computed as a function of thermodynamic driving force, we must calculate and 
use the actual driving force, i.e. the free energy difference. 
 
It should be noted that the synthetic potential does not conserve linear or angular momentum. For 
angular momentum, this should seem natural. The synthetic potential is trying to rotate grain B 
into the orientation of grain A; rotation is prevented by the boundary conditions parallel to the 
boundaryplane. The failure to conserve linear momentum can lead to an acceleration of the entire 
cell. Any motion of the entire cell is ignored in the analysis. That is to say, the motion of the 
grain boundary is measured with regard to the current position of the cell. 
 
We also note that the synthetic potential method is effective only when the disorientation 
between the two grains is large enough that the difference between the near neighbor vectors in 
the two perfect crystals is greater than the typical differences in near neighbor vectors because of 
thermal fluctuations.  
 
We utilize the synthetic driving force potential to compute grain boundary mobility by 
implementing it as an addition to the interatomic potential in a molecular dynamics code. The 
initial system is an energetically minimized bicrystal (generated as described below). We select 
one grain to be the reference grain A, with potential Φ=Φ0, where Φ0 is an appropriate classical 
potential, i.e. EAM Ni. The other grain B is given synthetic potential Φ=Φ0+Φu. (Note that Φu 
can be positive or negative, thus disfavoring or favoring orientation B; in this study, we use only 
positive Φu.) We then perform a MD simulation via a code such as LAMMPS[31, 32] and observe 
the motion of the boundary. 
 
Since boundary velocity v=Mf where M is the absolute mobility and f is the driving force, we can 
calculate M from the slope of the boundary position versus time plot. To determine boundary 
position, we use an order parameter closely related to that used in the synthetic driving force. For 
each atom we compute the difference between the driving force order parameter with crystal A 
as the reference and with crystal B as the reference. The final order parameter is approximately 1 
in crystal A and -1 in crystal B. At small intervals in the direction of motion, say at position x’, a 
weighted average of the order parameter for all atoms with their x coordinate close to x’ is made, 
with closer atoms getting more weight. The position of the grain boundary is taken as the value 
of x’ for which the average order parameter is zero. For an asymmetric boundary this order 
parameter is not necessarily (anti)symmetric with respect to reversing the x direction, so another 
approach (e.g. fitting a tanh function) might give a different position for the center of the 
boundary. Since our interest is not in finding the center of the boundary, but in determining how 



64 

far it has moved during the simulation, any difference based on the shape of the boundary is 
irrelevant unless the boundary is changing shape.  
 
We note the following features of boundary motion computed by this method: 

• For a given driving force the average boundary velocity is constant over time, giving a 
constant mobility. Some boundaries show stepwise motion; others move continuously. 
Some boundary configurations undergo an initial transient before achieving constant 
velocity. 

• For appropriate driving forces, velocities are well below the speed of sound in the crystal. 
• For rough boundaries, the mobility is independent of the driving force over the range 

tested. For smooth boundaries, the mobility typically tends to zero at low driving force 
and increases with driving force as discussed in [25]. 

• For most boundaries the mobility is independent of which grain is favored; changing the 
direction of motion does not change M. For 4% of our boundaries there appear to be 
different mobilities in the two directions, at least for some temperatures. 

• The mobility does not depend on thermodynamic ensemble [24]. 
• In this study, we use a positive Φu so that the unfavored grain has excess energy relative 

to the baseline potential. We have observed that using a negative Φu can affect boundary 
motion, possibly due to activation barrier effects discussed in [33]. 

5.3.2. Simulation parameters 

In this study, we used the synthetic potential method to determine the mobility of 388 distinct 
grain boundaries, which were constructed as described in Part I [4]. These boundaries represent a 
complete catalog of all boundaries that can be constructed in a periodic cell of size 15a0/2 or 
smaller, where a0 is the lattice parameter. Since the computational cell is periodic in the plane of 
the boundary, all of these boundaries are CSL boundaries, with a maximum Σ of 385; there are 
72 distinct misorientations represented. Boundaries were not of one specific character, but rather 
encompassed tilt, twist, mixed, high angle and low angle types; however, due to the construction 
method these boundaries are not uniformly distributed throughout the five dimensional boundary 
crystallography space. The boundaries were constructed and their energy was minimized using a 
thorough search scheme [4]. 
 
The computational cell was a bicrystal, with the boundary normal to the x direction and one grain 
arbitrarily assigned as the reference (favored) grain. The cell was periodic in the y- and z-
directions, with free surfaces in the x-direction. Using free surfaces in the x-direction permitted a 
smaller cell size than in a fully periodic system and precluded boundary-boundary interactions. 
The total cell size was sufficient to give at least two repeats of the periodic structure in each 
direction [4]. This resulted in system sizes from 7,424 to 44,036 atoms. 
 
Boundary motion was simulated via the synthetic driving force method, using the Foiles-Hoyt 
EAM Ni interatomic potential (which has a melting temperature of 1565K) [27], positive Φu on 
the unfavored grain, and actual driving forces ranging from ~0.04 to 0.35 GPa. The reported 
mobility value is for the largest driving force studied, at 1400K. Boundaries were typically 
driven at 600, 800, 1000, 1200 and 1400K for 160 ps at the largest driving force, with longer run 
times for the smaller driving forces. Simulations were performed using the LAMMPS MD code 
[31, 32]. 
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The short time scale of MD simulations limits the boundary mobility range that can be accessed. 
During a 160 ps simulation, the boundary must move sufficiently to calculate a velocity that is 
not purely noise. We required the boundary to move about 10 angstroms in order to report a 
velocity. The situation is further complicated by the fact that the actual driving force becomes 
very small relative to the applied synthetic potential at small disorientations, as discussed above, 
so boundary velocity decreases proportionately. The limits of MD mobility resolution were 
calculated and are shown explicitly in some of the results below. While boundary mobilities 
below the resolution limit are reported as zero, their actual value may range from zero up to the 
mobility resolution limit. 

5.4. Results and discussion 

5.4.1. Mobility as a function of disorientation 

Figure 1(a) shows grain boundary mobility as a function of disorientation angle at 1400K for a 
driving force generated by u=0.025 eV/atom for the 388 boundaries studied. We observe little, if 
any, correlation between mobility and disorientation. Σ3 60° twin boundaries have a very wide 
range of mobilities, depending on boundary plane, as reported earlier [1, 24], and <111> twist 
boundaries have uniformly low mobility [1] (below the resolution limits of the simulation). Other 
commonly studied boundary types, such as <100> twist and <110> symmetric tilt boundaries, 
show no systematic variation with disorientation. The range of measured mobilities is from 40 to 
2000  (excluding unresolvable boundaries), much larger than is observed 
experimentally. 
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Figure 5-1. Mobility versus disorientation angle 
Mobility as a function of disorientation angle for EAM Ni at 1400K (a)for all 388 
boundaries simulated and (b)for the 285 boundaries with relative shear motion less than 
0.15. Symbols are grain boundary mobilities, colored according to boundary type. The 
solid line is the resolution limit of the MD simulation.  

 
 

5.4.2. Shear coupled motion 

The computational cells in these simulations are bicrystals, unconstrained in the y- and z-
directions. Cahn and Mishin have reported a shear coupled motion mechanism in some 
unconstrained bicrystal systems [34, 35], in which boundary motion in the x-direction is 
accompanied by shear in the x-plane. This shear can be substantial relative to the boundary 
displacement; for example, in the Σ5(310) boundary, the ratio of shear to displacement, or 
relative shear, is 1 at 800K. 
 
When we measured shear during boundary motion at 1400K, we found that over a quarter of our 
388 boundaries underwent significant shear, with 53 boundaries having relative shear greater 
than 0.25 and another 50 with relative shear between 0.15 and 0.25. While the tendency to shear 
is related to boundary structure, we did not find a correlation between shear motion and 
boundary energy, as shown in Figure 2(a). However, shear is strongly related to boundary 
mobility, with most of the non-Σ3, highest mobility boundaries moving by the coupled shear 
mechanism, as shown in Figure 2(b). (It is worth noting that many boundaries with ‘normal’ 
mobility undergo significant shear.) In contrast, the incoherent Σ3 twin boundaries have very 
high mobility and no indication ofcoupled shear. It appears that shear coupled motion is 
correlated with a mechanism for fast boundary motion; however, there is another fast motion 
mechanism available to Σ3 boundaries that involves essentially no shear. 
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(a) 

 
Figure 5-2. Correlation between shear and energy or mobility 

(b) 
Correlation between relative shear and (a)grain boundary energy or (b)grain boundary 
mobility for the 388 boundaries studied. Relative shear is defined as the ratio of shear 
strain to boundary displacement. Mobility data is for Foiles-Hoyt EAM Ni at 1400K and 
an applied potential of 0.025 eV/atom.  Relative shear is an average over all applied 
potentials at 1400K. In (b) red symbols indicate incoherent S3 boundaries. 
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While we have not studied the effects of shear coupling in depth, we tested the effect of 
inhibiting shear motion by re-simulating a number of boundaries using fixed surface boundary 
conditions, where atoms are not permitted to leave the original periodic box. The 19 boundaries 
with relative shear between 0.12 and 0.15 were tested and showed no significant change in 
mobility when shear was inhibited. Five boundaries with relative shear between 0.21 and 0.28 
and mobilities in excess of 400 were also tested with shear motion inhibited. For these 
boundaries the mobility decreased to a value within the ‘normal’ range of 40 to 400 , 
or their mobility was below the limits of our simulations. Presumably, the normal, diffusion-
mediated motion mechanisms are available to all boundaries, but are overshadowed by the faster 
shear mechanism when it is available.  
 
Because constraints prevent shear from occurring during boundary motion in a bulk polycrystal, 
shear coupled boundary motion is likely not seen in most grain growth situations. If we eliminate 
shearing boundaries from our dataset, we find a much smaller range of mobilities, from 40 to 400 

 (excluding unresolvable mobilities and incoherent Σ3 twin boundaries), as shown in 
Figure 1(b). These mobilities are much closer to, though still higher than, experimentally 
observed values and are of the same order of magnitude as seen in other MD studies of fcc grain 
boundaries [21-23, 26-28]. Since these boundaries are impurity-free, and because at the high 
temperatures and driving forces simulated some boundaries will be rough (high mobility) that 
would be smooth (low mobility) at the lower temperatures and driving forces often studied in 
experiments, the remaining discrepancy with experiments seems quite reasonable. Incoherent Σ3 
twin boundaries remain very mobile, with mobilities from 200 to 2000 , 
approximately an order of magnitude faster than ‘normal’ boundaries. Σ 7 and Σ 9 boundaries 
also have a wider mobility range, though far less so than Σ 3. At low disorientation angles 
(below about 20°) mobility increases slightly, with mobilities for boundaries near 15° about three 
times typical mobilities at large angles, in contrast with most experimental results; our dataset 
does not include low angle boundaries below about 10°, however. The increase in mobility at 
small disorientation occurs near the limit of our mobility resolution. Additional tests at longer 
run times and twice the driving force, which decreases the resolvable mobility at 15° by a factor 
or 25, indicate that the mobility increase at low disorientations in not an artifact caused by the 
resolution limit. Overall, when shearing boundaries are not considered, boundary mobilities are 
more uniform, consistent, and physically reasonable. 

5.4.3. Mobility correlations 

Boundary mobility is often presumed to be related to other properties of the boundary. Having 
removed the anomalous shear boundaries, we examined the mobility data for some of these 
correlations. 
 
Since grain boundaries with a low Σ value have a high density of coincident atoms, it has been 
suggested that they have low mobility (due to a small free volume to accommodate diffusive 
processes) or high mobility (due to the availability of diffusionless motion mechanisms). Figure 
3(a) indicates that the mobility is not correlated with Σ value, with the lone exception of the 
generally fast Σ3 boundaries. 
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(b)  
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(c)  
 

(d)  
Figure 5-3. Correlations of mobility with other properties 
Correlation of boundary mobility with (a)sigma value, (b)excess volume, (c)boundary 
energy, and (d)crystallographic distance from the coherent twin. All data are for Foiles-
Hoyt EAM Ni at 1400K, and boundaries with relative shear motion greater than 0.15 are 
excluded. 
 
 
 
A large excess volume (i.e. net expansion) at the grain boundary may decrease the activation 
barrier for diffusive processes (thus increasing M) or hinder boundary motion by eliminating 
multi-atom processes (thus decreasing M). Figure 3(b) shows that the mobility is not correlated 
with excess volume, although the range of observed mobilities increases as excess volume 
decreases, primarily due to the Σ3 boundaries, which are of high mobility and low excess 
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volume. Interestingly, both the highest and the lowest mobility boundaries have small excess 
volume. 
 
Boundary mobility is often assumed to be related to boundary energy, since the structural factors 
that affect energy might also influence kinetic processes at the boundary. Figure 3(c) indicates 
that boundary mobility and energy are not correlated. (This is consistent with our previous 
results that energy is proportional to excess volume [4].) Again, the spread in mobility increases 
as energy decreases, primarily because the high mobility Σ3 boundaries have generally low 
energy. 
 
The Σ3 coherent twin is of exceptionally low mobility, both experimentally and in this study. It 
is reasonable to hypothesize that boundaries that are crystallographically close to the coherent 
twin (perhaps sharing structural elements with it) would be slow as well. Figure 3(d), which plots 
mobility versus distance from the coherent twin using a crystallographic metric developed by 
one of us [36] and described briefly in Appendix A, indicates that boundaries near the coherent 
twin have very low mobility. As a caveat, however, we must note that this dataset does not 
contain any boundaries closer than about 10° to the coherent twin. 
 
Overall, boundary mobility does not appear to be correlated with most of the obvious candidates: 
disorientation angle, Σ value, energy, or excess volume. There is some correlation with twin-like 
character; however, that correlation is valid only for boundaries quite close to the coherent twin 
in crystallographic space. Thus, we cannot predict mobility using these physical properties. Is it 
possible to predict the mobility of boundaries not included in this dataset from the boundaries 
studied here?  
 
Figure 4 shows the difference in boundary mobility between pairs of boundaries as a function of 
the crystallographic distance between them as defined in Appendix A [36]. Boundaries that are 
close to each other in crystallographic space (that is, less than about 15° of separation) tend to 
have similar mobilities. The upper bound on the difference in mobilities is approximately 
proportional to separation distance, although the actual mobility difference may be lower for a 
given pair of boundaries. For boundaries farther apart than 15°, mobility difference is not well 
correlated, and may vary from very small to very large. This implies that the mobility results for 
the 388 boundaries studied here may be used to interpolate the mobility of other boundaries. 
Many interpolation schemes may be envisioned; perhaps the simplest is to approximate an 
unknown mobility as the crystallographically nearest known mobility, with error bars given by 
the upper bound in Figure 4. Thus, given a set of known boundary mobilities, we can determine 
unknown boundary mobilities to a confidence level that increases with the size of the known 
dataset. This is the input necessary for modeling microstructural evolution in a polycrystal 
containing many boundaries of arbitrary crystallography. 

5.4.4. Temperature effects 

To this point, we have considered boundaries at 1400K (~0.9 Tm) only. A full survey of the 
temperature dependence of boundary mobility is beyond the scope of this paper. However, two 
important temperature-dependent phenomena are non-activated boundary motion and the 
boundary roughening transition, which we discussed earlier for a few individual boundaries [25]. 
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5.4.4.1. Non-Activated boundary motion 

For most of the 388 boundaries in our dataset, when we plot mobility against temperature for a 
given driving force, we see evidence of an activated process: Mobility increases with 
temperature in an Arrhenius manner as shown in Figure 5(a). However, for 117 boundaries, we 
find that mobility decreases as temperature increases, at least over some temperature range, 
implying a non-activated motion mechanism. Non-activated boundaries undergo shear motion 
about as often as activated boundaries. 
 

 
Figure 5-4. Difference of mobility between boundary pairs 
The difference between the mobilities of pairs of boundaries as a function of the 
crystallographic distance between the boundaries. Only pairs separated by less than a 
distance of 1.0 are shown. The red line is chosen to include 90% of the data points where 
the distance is less that 0.25 (about 15°). Distance is calculated by a metric described in 
[36] and converted to degrees of separation as noted in Appendix A. All data are for 
Foiles-Hoyt EAM Ni at 1400K, and S3 boundaries, boundaries with relative shear motion 
greater than 0.15, and boundaries with mobility less than the resolution limit are 
excluded. 
 
 
 
 
It is well known that dislocations can move in a barrier-free manner, where phonon damping 
decreases mobility at high temperatures. Since grain boundaries have a dislocation character, it is 
conceivable that they could move by a similar mechanism. In fact, Cahn and Mishin have 
observed diffusionless boundary motion that might be consistent with a non-activated process 
[34, 35]. In such systems, we expect mobility to scale as 1/T.  
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(a)  
 

(b)  
Figure 5-5. Temperature dependence of mobility 
Temperature dependence of boundary mobility at driving forces of 0.025, 0.01, and 0.005 
eV/atom for two representative grain boundaries. (a)Most boundaries in our dataset, 
including this S9 boundary with <5 4 2> and <2 1 0> normals (index number 271 in the 
supplemental data) undergo activated motion, where mobility increases with temperature 
in an Arrhenius manner. The slope of the log(M) versus 1/T curve is the activation 
energy. (b)117 boundaries in our dataset, including this S3 boundary with <11 8 5> 
normals (index number 366 in the supplemental data) undergo non-activated motion, 
characterized by a mobility that decreases as temperature increases. For most of these 
boundaries, mobility is proportional to 1/T, suggesting phonon damped motion. The error 
estimates for mobility are approximate, based on velocity fluctuations during boundary 
motion. 
 
 
 
While we have not examined motion mechanisms in detail, most of the non-activated boundaries 
(about 63 of 117) show mobility linear with 1/T over some temperature range as shown in Figure 



74 

5(b), consitent with phonon-damped motion. (The remaining 54 non-activated boundaries are not 
easily classified, but share the common feature that the mobility is not monotonically increasing 
with temperature.) Many of the non-activated boundaries remain so over the temperature range 
studied; however, about 20 show a transition from non-activated motion at low temperature to 
activated motion at high temperature. The remaining boundaries show other temperature 
dependencies. It is interesting that of 43 boundaries that are non-activated over the full 
temperature range studied, 30 are Σ3 boundaries with high mobility at 1400K. (The remaining 13 
Σ3 boundaries studied show activated motion.) 
 
Some boundaries that have normal, activated mobilities at low driving forces move in a non-
activated manner at high driving force. These ‘dynamically mobile’ boundaries are in addition to 
the 117 non-activated boundaries described above. Since mobility is not correlated with non-
activated motion (i.e. non-activated boundaries may be fast, slow, or in-between), we do not call 
out the non-activated boundaries when reporting mobility. However, this motion mode is distinct 
from the presumptive activated behavior, and deserves recognition and further study. 
 
Whether non-activated, phonon-damped motion can occur in the presence of other motion 
disruptors, such as dislocations, solutes, or triple junctions, is an open question. It is possible that 
this motion mechanism cannot be realized in physical systems. 

5.4.4.2. Boundary roughening transition 

Both faceted and unfaceted boundaries are observed to undergo a transition from a smooth 
configuration to a rough configuration as temperature increases [25]. We previously described 
the characteristics of the ideal roughening transition for activated boundary motion. At low 
temperatures, the boundary is smooth; boundary mobility is low and decreases as the driving 
force tends to zero; and boundary motion is stepwise in units consistent with the atomic repeat 
distance. At the roughening temperature Tr, there is a jump in mobility. Above Tr, the boundary 
is rough; boundary mobility is high and constant with driving force; and boundary motion is 
continuous. We note that among the boundaries we have studied, there are many exceptions to 
this ‘ideal’ roughening behavior, including the non-activated motion described above. 
 
We examined the mobility of our 388 boundaries at several temperatures and driving forces, and 
we identified 259 boundaries that conformed reasonably well to the ‘ideal’ roughening profile. 
(This set excludes the 117 non-activated boundaries, as well as 14 otherwise anomalous 
boundaries.) For each of the well-behaved boundaries we estimated Tr based on both a 
qualitative transition in the mobility versus driving force behavior at Tr. We note that this 
estimate is both subjective (depending where we perceived a change in behavior in a typically 
noisy data set) and approximate (because M was measured in 200K increments). In addition, the 
distribution of roughening temperatures for our boundaries cannot be taken as representative of 
boundaries in general, because our dataset includes a greater than random fraction of high 
symmetry boundaries. Nonetheless, we found a distribution of roughening temperatures for these 
boundaries as shown in Figure 6. Boundaries that have mobility independent of driving force at 
600K are assumed to have roughening transitions below 600K, and boundaries that do not move 
at 1400K are assumed to have roughening transitions above 1400K; both are indicated by open 
symbols in Figure 6.  
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Figure 5-6. Distribution of roughening transition temperature 
Distribution of roughening transition temperature Tr for 259 grain boundaries. 
Boundaries that have mobility independent of driving force at 600K are assumed to have 
roughening transitions below 600K, and boundaries that do not move at 1400K are 
assumed to have roughening transitions above 1400K; both are indicated by open 
symbols. Leaving out the endpoints, the mean roughening temperature is about 900K, 
with a standard deviation of about 200K. Note that the assignment of a roughening 
transition temperature is somewhat subjective and approximate. 
 
 
The distribution of roughening temperatures (excluding endpoints) appears approximately 
symmetric, with a mean Tr of about 900K and a standard deviation of about 200K. Note that only 
about 60% of the boundaries have roughened at 900K (0.58 Tm, a reasonable annealing 
temperature), and about 10% of the boundaries remain smooth (low mobility) at 1400K, or about 
90% of the melting temperature, the temperature of most of the mobility data presented here.  
 
We note that we do not observe any correlation between Tr and disorientation angle or boundary 
energy, but we do find that boundaries that are crystallographically close tend to have similar 
roughening temperatures. This suggests that Tr is a physical property of grain boundaries and not 
just a simulation artifact. 
 
Boundary roughening could have a significant effect on microstructural evolution in 
polycrystals. At typical annealing temperatures, significant fractions of grain boundaries may be 
smooth and have very low mobility. Microstructures that contain fast and slow boundaries can 
evolve very differently from homogeneous systems; microstructural outcomes can include 
abnormal grain growth, pinning, and changes in grain size distribution, c.f. [37]. 
 
In bulk polycrystals, grain boundaries are not flat, as simulated here, but curved. How boundary 
curvature affects the roughening transition is an open question. 
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5.5. Conclusions 

In this study, we used a synthetic driving force method to compute absolute grain boundary 
mobility and applied it to a catalog of 388 grain boundaries in fcc nickel. The method is efficient, 
operating on flat boundaries using small systems and short runs. The result is the largest and 
broadest set of boundary mobility data generated to date. 
 
From these results, we made the following observations: 
 
• Over a quarter of the 388 boundaries moved by a coupled shear mechanism, in which 

boundary motion is accompanied by significant shear parallel to the boundary. 
 
• Most of the highest mobility grain boundaries move by coupled shear. When shear is 

inhibited, mobility decreases to a more moderate level. In contrast, the Σ3 incoherent twins, 
which also have very high mobility, move without significant shear. 

 
• Some boundaries have a non-activated motion mechanism available, which greatly increases 

low temperature mobility. 
 
• Discounting boundaries that move by coupled shear, the range of boundary mobilities is from 

40 to 400 , higher than in experiments but consistent with other MD studies. Some 
boundaries, including all the <111> twist boundaries, are immobile within the resolution of 
the simulation. Σ3 twin boundaries have a wider range of mobilities, from 200 to 2000 

, with the coherent twin essentially immobile. 
 
• Boundary mobility is not correlated with any typical, scalar parameters we have studied, 

including disorientation angle, Σ value, excess volume, or boundary energy. 
 
• Boundaries that are less than 15° apart from each other in five-dimensional crystallographic 

space tend to have similar mobilities, with the upper bound on mobility difference 
approximately proportional to crystallographic separation distance. This permits an unknown 
mobility to be interpolated from a known mobility. The mobilities of boundaries farther than 
15° apart not well correlated. 

 
• Thermal roughening of grain boundaries is widely observed in our boundary catalog. 

Boundaries below their roughening temperature have low mobility, and mobility increases 
sharply above the roughening temperature. The estimated roughening temperatures are 
distributed over a 1000K range, with mean roughening temperature approximately 900K and 
standard deviation about 200K. A few boundaries remain smooth at 90% of the melting 
temperature. 

 
Overall, this study does not suggest a simple, physical model for grain boundary mobility; 
however, it does enable interpolation of unknown mobilities from the calculated values. Further 
investigations in the mobility database may reveal insights toward model development or trends 
via data mining. To that end, the catalog of boundary geometries and their associated mobilities 
are available online as supplementary data to this publication. 
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This study has revealed great complexity in the temperature dependence of grain boundary 
mobility. Further study is clearly required in order to understand both thermal roughening and 
temperature-dependent motion mechanisms that may be important in polycrystalline 
microstructural evolution. 

5.6. Appendix A 

To define the crystallographic distance between two grain boundaries, a form of the description 
of the boundary must be chosen. Consider an initially perfect crystal and a fixed dividing plane. 
A grain boundary can be described by an ordered pair (A,B) where A and B are rotation matrices 
describing the rotation applied to the material on each side of the dividing plane to form the 
boundary. Note that this description has six degrees of freedom. The additional degree of 
freedom occurs because a rotation of both crystals about the normal to the dividing plane 
produces physically equivalent grain boundaries. The distance between two grain boundaries 
(A,B) and (C,D) is defined to be . In this expression, Min 
refers to a minimization over: a) rotations around the boundary normal, b) the choice of the 
assignment of crystals A and B, c) the symmetry operations of each of the crystals, and d) taking 
the mirror image of the boundary. Note that minimization a) can be performed analytically and 
the other minimizations involve a finite number of discreet operations. A rough conversion of d 

to an angle is given by . This agrees with the difference in twist angles of two 

twist boundaries, as long as the difference is not so large that one of the rotation symmetries 
comes into play. A complete description of the metric and a discussion of its mathematical 
properties is presented by Olmsted [36]. 
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6. Competitive Abnormal Grain Growth between Allotropic Phases in Nanocrystalline 

Nickel 

6.1. Abstract 

This article discusses both the presence and the competitive growth of the hexagonal 
close packed phase concurrently with the face centered cubic phase in nanocrystalline nickel thin 
films.  Nickel thin films were produced by pulsed laser deposition and were then annealed at 
several temperatures (523-623K) in vacuum.  Using transmission electron diffraction and 
electron backscattered diffraction, HCP grains were observed to grow within an initially 
nanocrystalline FCC matrix at several different annealing conditions (523-623K) and in 
appreciable fractions.  Both phases exhibit abnormal grain growth in which a sub-population of 
grains grows much larger and more rapidly than the majority of the microstructure.  In addition, 
the defect structures for the abnormal grains are qualitatively different depending upon the 
particular phase of the abnormal grain.  We hypothesize that it is the differences in defect 
energies within the hexagonal and cubic lattices that might make this metastable arrangement 
possible.  
 

6.2. Introduction 

 
 The central driving force for the study of nanoscale materials is the expectation that these 
materials will behave in substantially different ways than in their more traditional, microscale 
counterparts. In particular, a great deal of work has examined the changes in thermodynamic 
phase stability as a function of nanoparticle or nanocrystallite size. [1-6] It has been shown that 
allotropic stability, melting temperature, and lattice parameters all change for particles below a 
certain size.  For example, metals such as chromium and tungsten are observed in the FCC 
structure instead of their normal body-centered cubic (BCC) structure, for particles less than 30 
nm in diameter [2]; similarly zirconium is BCC instead of hexagonal close packed (HCP).   
 When processed through traditional means, the metal nickel is almost always observed 
with the face centered cubic (FCC) crystal structure.  However, there have been reports of the 
unexpected hexagonal close-packed (HCP) phase in nanocrystalline nickel, produced both by 
chemical routes [7, 8], thermal reduction [9]and by pulsed laser deposition (PLD) [10].  In all of 
these examples, the supposition and observation have been that the HCP phase is less stable than 
the FCC phase and that simple annealing of the material would cause a direct phase 
transformation to the more stable form. The work of Vergara and Madurga on nickel thin films 
created by PLD has shown specifically that films with an initially single phase, HCP structure, 
can be systematically transformed as a function of time and temperature to single phase, FCC 
structure. [10] 

We show in this paper the both the presence and the competitive growth of the HCP 
phase concurrently with the FCC phase.  We will discuss the conditions for the HCP phase 
appearance and growth, the qualitative differences between the HCP and FCC phases, and will 
offer an initial hypothesis to explain this suprising metastable state.  
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6.3. Experimental Methods. 

The nickel thin films were produced by pulsed laser deposition and prepared for TEM as 
described in the recent work of Hattar, Follstaedt, et al. [11]. This work also describes the in situ 
TEM heating protocols used for annealing the samples at several temperatures (523-623K).  The 
TEM analyses were performed on a Philips CM20T instrument operated at 200 kV. The average 
initial grain size in these films was measured to be 10 nm with a range of 2-16 nm as determined 
by transmission electron microscopy (TEM). 

  Electron backscattered diffraction (EBSD) experiments were performed on these same 
TEM samples after annealing in the TEM.  The EBSD data was taken on a Zeiss Supra 55 VP-
FEG SEM at 20keV using the HKL Channel 5 system with the Nordlys II CCD camera.  
Individual EBSD patterns were analysed using crystallographic input structures of Ni-FCC, Ni-
HCP, Ni2P, Ni3P, NiO, NiS, NiS2, and Ni3S2.  The EBSD maps were taken with a step size of 
10nm per point with scans of 200x200 steps. 

X-ray diffraction was performed on a Siemens D500 instrument employing a sealed-tube 
Cu-Kα radiation source (40 kV / 30 mA), diffracted-beam graphite monochomator, and 
scintillation detector.  The x-ray diffraction data was collected from an as-deposited film on a 
sodium chloride substrate.  
 

6.4. Results 

Electron backscattered diffraction (EBSD) measurements were able to identify individual 
HCP and FCC grains (Fig. 1).  The indexed grains were those that had grown substantially to 
sizes greater than 20 nm in diameter.  Maps of EBSD data were generated for several annealing 
conditions (Fig. 2) for films with a nominal thickness of 90 nm.  These maps show that HCP 
grains are present for all temperatures examined except for the 623K anneal.  The HCP grains in 
the maps are similar in size and shape to the abnormal FCC grains and show no particular 
crystallographic orientation with respect to the film geometry, which is in contrast to the strong 
<111> fiber texture observed for the FCC phase (Fig. 3).  An anneal at 548K for 17 hours 
produced the greatest amount and largest size of HCP grains, 15% by area and 200 nm average 
diameter, respectively.  The presence of HCP grains less than 20 nm in diameter could not be 
confirmed due to the spatial resolution of the EBSD technique. 
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Figure 6-1. EBSD patterns for HCP nickel 
EBSD patterns and indexed solutions for HCP nickel (Miller index notation).  These patterns 
could not be correctly indexed for the FCC structure or for other possible impurity phases (e.g. 
NiO, NiS2, Ni2P, etc.).     
 

 
Figure 6-2. EBSD phase maps of abnormally grown grains 
EBSD phase maps showing the distribution of the abnormally grown grains for both the FCC 
(red) and HCP (blue) phases.  Annealing conditions were 14 hrs. at 523K, 17 hrs at 548K, 40 
min. at 573K and 10 min. at 623K. 
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Figure 6-3. Pole figures of FCC and HCP grains 
Pole figures generated from EBSD data showing the pronounced <111> fiber texture of the FCC 
abnormal grains in constrast with the lack of texture of the HCP abnormal grains (Miller index 
notation). 
 
 These observations of the HCP nickel phase were corroborated by transmission electron 
microscopy (TEM) images and diffraction patterns.  Several grains in two 50 nm-thick films 
annealed at 548K and 623K were identified as HCP in the TEM by indexing selected area 
diffraction (SAD) patterns and by demonstrating the hexagonal symmetry via tilting experiments 
(Figs. 4a and 4c).  The HCP grains had the scalloped, concave boundary shapes (Fig. 4b) that 
have been previously observed for abnormal grain growth in PLD nickel.  Certain orientations 
also showed streaking along the c-axis of the diffraction pattern (Fig. 4c) with corresponding 
images showing lamella parallel to the [0001] direction in the HCP lattice (Fig. 4d).  This 
layered structure is reminiscent of stacking faults and twins observed in FCC metals as well as 
lamellae observed in the martensitic phase transformation from FCC to HCP observed in cobalt 
and cobalt-nickel alloys. [12, 13] In addition to the HCP pattern, a second set of spots lying along 
the streaks can be indexed to a coherently strained FCC lattice with the following orientation 
relationship with respect to the HCP lattice:  
  (0002)HCP || (111)FCC     (interfacial plane) 

  
 

 
 While the aligned directions are not the orientation relationship found for cobalt, all the 
additional reflections can be accounted for by twinning of this FCC structure and multiple 
diffraction between the two phases.  Additional investigation is needed to understand the 
formation, growth, and collapse of this defect structure, but a transformation from HCP to 
equilibrium FCC is reasonable to expect.  At this point, we also do not know whether all HCP 
grains have this defective structure at all points of their growth or only as they are transformed to 
the FCC structure.   
 



85 

 
Figure 6-4. TEM image and diffraction patterns from a abnormal HCP grain 
TEM images and diffraction patterns from a single, abnormal HCP grain (548K anneal).  A.) 
Indexed selected area diffraction (SAD) pattern from the <11-20> zone axis of the HCP crystal.  
B.)  Bright-field image of the scalloped grain in that orientation.  C.) Indexed SAD pattern from 
the same grain rotated 30º about the c axis to the <1-100> HCP zone axis (indexed in white), 
with proposed strained <01-1> FCC zone axis pattern (black spots and indices).  Other spots 
along the streaks result from FCC twinning and multiple diffraction.  D.) Dark-field image 
showing lamella in the grain in the <1-100> orientation of C) using the streak and reflection 
circled. 
 
 Neither TEM nor x-ray diffraction showed the presence of the HCP phase in as-deposited 
films.  The only visible diffraction rings from TEM selected area diffraction were indexed to the 
FCC phase.  X-ray diffraction on an as-deposited film also showed only signal from the FCC 
phase (Fig. 5).  Despite this observation, simulations of powder x-ray diffraction for the as-
deposited film geometry suggest that small, 10 nm, HCP grains could be present without 
producing enough diffracted signal to be observed with the current experimental conditions.  
Based on these results, it seems probable, but not certain, that the HCP phase is nucleating from 
initially FCC material. 
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Figure 6-5. Powder x-ray diffraction from as-deposited nickel thin film 
Powder x-ray diffraction data from as-deposited nickel thin film on sodium chloride substrate.  
The reflections marked for nickel are for the FCC phase.  No reflections were observed for the 
HCP phase.  
 

6.5. Discussion 

 
There are several important observations that can be made about these complex 

microstructures.  For the abnormal grains observed, there are no two HCP abnormal grains in 
contact, suggesting that HCP grains do not nucleate or grow from other HCP abnormal grains.  
In addition, the HCP abnormal grains are surrounded by many other, presumably FCC, grains 
that are 5-10 times smaller than the HCP grains.  EBSD also showed that while the FCC 
abnormal grains possessed a strong <111> fiber texture or crystalline orientation with respect to 
the substrate, the HCP abnormal grains have seemingly random growth orientations.  This 
observation is true even when abnormal grains of both phases are in contact with one another, as 
seen in the film annealed at 548K.  Thus, the HCP abnormal grains are not templating upon the 
FCC abnormal grains in the microstructure.  Our principal finding is that HCP grains compete 
with FCC grains during abnormal grain growth at these relatively low temperatures.   
 These observations highlight the complexity in nanostructural evolution when the system 
is far from equilibrium.  In the absence of impurities, the Gibbs phase rule denotes that these 
structures are not in equilibrium, as it is not possible to have two phases in the same one-
component (i.e. pure nickel) system.  Compositional measurements such as Rutherford back-
scattering, energy-dispersive x-ray spectroscopy, and electron energy loss spectroscopy 
performed on these films have not shown any significant presence of impurities which correlates 
with FCC and HCP grains (down to the 0.1 wt% level).  Global minimization of the free energy 
of the thin film would drive the growth of FCC grains to reduce grain boundary area and to 
minimize the volume of the HCP phase.  The calculated difference in cohesive energies for the 
FCC and HCP lattices is large enough, 1.83eV/nm3[14], that the reduction in interfacial area alone 
cannot explain the appearance of the HCP phase for all but the smallest, less than 10 nm, grains.  
 Current theories for abnormal grain growth are also not able to explain the existence and 
grain growth of the HCP phase.  Usually, abnormal grain growth is explained by particular grain 
boundaries possessing either a mobility advantage or an energy advantage.  In other cases, 
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abnormal grain growth can be driven by a preferred crystallographic orientation for certain 
grains with respect to the surface.  In these experiments, there was no meaningful difference in 
the size or shape of the HCP and FCC grains, thus casting doubt on the possibility of a 
significant difference in interfacial energy or mobility difference between HCP-FCC interfaces 
and FCC-FCC grain boundaries.  Also, the HCP abnormal grains are randomly oriented thus 
nullifying explanations based on crystallographic orientation with respect to the film surface. 
 The defect structures within these films may provide clues for explaining the metastable 
existence and growth of the HCP phase.  The observations in this letter combined with those in 
the recent work of Hattar et al. show both unusual planar defects, nanometer scale, lamellar 
structures in Figure 3; and point defect clusters, stacking fault tetrahedra, and dislocation loops. 
[11] One of the few differences between the HCP and FCC abnormal grains is the presence of the 
lamellar structures in some of the HCP grains observed, while none were observed in the FCC 
grains.  Conversely, the FCC grains showed stacking fault tetrahedra and other defects that the 
HCP grains did not.  The presence of the stacking fault tetrahedral and dislocation loops indicate 
a vacancy point defect concentration greater than would be expected for the annealing conditions 
examined in this article.  It has been observed that the high angle grain boundaries of 
nanocrystalline metals have a large vacancy concentration. [15] When grains grow and reduce 
grain boundary area, the vacancies from the grain boundaries must be incorporated into the 
lattice or dispersed to a free surface.  It is postulated that the FCC and HCP crystal structures 
incorporate the vacancies differently and so change the total energy of a given grain.  If this 
change in energy is greater than or equal to 1.83eV/nm3, then the growth of an HCP nickel phase 
would be energetically feasible. 
 

6.6. Conclusions 

The principal finding of this work is that HCP grains compete with FCC grains during 
abnormal grain growth in nanocrystalline, nickel thin films, exposed to low temperature anneals.  
This work was not able to definitively determine the origin of the HCP phase, but it suggests that 
the films are initially single phase, FCC structure.  The abnormal HCP grains were similar in size 
and shape to the abnormal FCC grains, but possessed no crystallographic texture, while the 
abnormal FCC grains possessed a pronounced <111> fiber texture.  In addition, some of the HCP 
grains observed exhibited a marked, nanoscale, lamellar defect structure without exhibiting the 
dislocations loops and stacking fault tetrahedra observed in abnormal FCC grains.  The 
energetics that allow the apperance and growth of the HCP phase is currently not understood, but 
it is hypothesized that the difference in defect structures may be an important part of the 
explanation.   
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7. Temperature dependence of grain boundary free energy and elastic constants 

7.1. Abstract 

This work explores the suggestion that the temperature dependence of the grain boundary free 
energy can be estimated from the temperature dependence of the elastic constants.  The 
temperature dependent free energy of a symmetric Σ79 tilt boundary is computed for an 
embedded atom method model of Ni using quasi-harmonic techniques at low temperatures and 
thermodynamic integration at moderate to high temperatures.  The temperature dependent elastic 
constants are also computed for this model of Ni.  It is shown that the grain boundary free energy 
scales with the product of the shear modulus, C’ = C44 times the temperature dependent lattice 
constant for temperatures up to about 0.75 TM.  At higher temperatures, the scaling is seen to 
break down. 

7.2. Introduction 

The distribution of internal interfaces, defects and phases, known as the material microstructure, 
governs many material properties such as strength, toughness, conductivity, magnetic 
susceptibility, etc.  In polycrystalline materials, grain structure is a dominant feature of the 
microstructure and the focus of many aspects of materials processing.  For these reasons the 
properties of grain boundaries, in particular their energies and mobility, are of fundamental 
importance.  Therefore, there have been extensive studies of the energetics of grain boundaries 
from both computational and experimental perspectives[1]. 
 
The vast bulk of the computational studies of grain boundary energy have determined the zero-
temperature excess enthalpy, or simply grain boundary energy, and have focused on the variation 
of the grain boundary energy with the structure and crystallography of the boundary.  However, 
the relevant thermodynamic quantity is the finite-temperature interfacial free energy, γ, that 
represents the interfacial excess of the free energy [2].  This is a much more difficult quantity to 
calculate since free energies cannot be computed directly as an expectation value of an operator 
whereas the enthalpy can.   Thus the determination of free energies requires more involved 
calculations such as thermodynamic integration techniques. There have been very few studies of 
the temperature dependence of the grain boundary free energy.  Foiles[3] computed the 
temperature variation of interfacial free energy for a Σ5 (310)/[001] symmetric tilt boundary in 
Cu and found that γ decreases by about a factor of three as the temperature was increased from 
low temperature to near the melting point. Broughton and Gilmer [4, 5] examined the energy of 
selected tilt boundaries in a Lenard-Jones solid and found similar large decreases in the 
interfacial free energy.  Due to the computational effort required to determine the temperature 
variation of γ, it would be convenient if this variation could be estimated from a more readily 
available quantity.  Such a relationship would also be of value in theoretical modeling of high-
temperature boundary effects such as grain boundary pre-melting[6].  The main point of this 
paper is to suggest such an approach. 
 
Recall that a grain boundary can be treated, as least formally, as a array of dislocations [1].  The 
elastic strain energy of a dislocation is proportional to the shear elastic modulus of the material 
[7].  This suggests that there may be relationship between the energetics of a grain boundary and 
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the shear moduli.  Also, the classic Read-Shockley model [8] indicates that the grain boundary 
energy should be proportional to the shear elastic moduli.  For the case of the zero-temperature 
grain boundary energy, it has been seen that the relative energies of corresponding boundaries in 
different materials are correlated with the shear moduli of the materials [9, 10].  In this paper the 
possibility of determining the temperature variation of the grain boundary free energy from the 
temperature dependence of the shear moduli will be examined.   The temperature dependent γ for 
a symmetric Σ79 grain boundary in a model of Ni is computed and compared to the temperature 
dependence of the elastic moduli times the lattice constant computed for the same model of Ni. 

7.3. Computational Method 

The calculations here all use the same embedded atom method (EAM) [11] potential for Ni 
developed by Foiles and Hoyt [12].  This potential provides a reasonable description of the 
elastic properties, as seen below, and stacking fault energies of Ni.  The computed melting point 
for this model is 1565 K compared to the experimental melting point of 1726 K.  In the 
following, homologous temperatures are based on the melting point of this model.   
 
The grain boundary considered in this study is a symmetric Σ79 (-3 -7 10)/[1 1 1] tilt boundary.  
Due to the low density of coincident sites, this boundary should be a reasonable surrogate for a 
general boundary.  The structure of this boundary was determined in an earlier study [13, 14].  
The boundary structure optimization combined multiple conjugate gradient minimizations of 
different possible initial structures and the consideration of different combinations of atom 
addition and removal to obtain a near optimal structure.   
 
The free energy of the grain boundary as a function of temperature is determined in two 
manners.  For low temperatures, in this case T/TM ≤ 0.25, the free energy is determined via 
quasi-harmonic (QH) approximation calculations[15].  The QH approach is expected to be 
reliable at these temperatures since the atomic displacements are small.  In addition, this 
temperature is near the Debye temperature of the bulk Ni and the QH approach incorporates 
quantum effects that are significant below the Debye temperature.   In these calculations, the 
dynamical matrix of the system is computed and the phonon spectrum of the entire system is 
determined using standard techniques[11, 15].  The free energy of the full system is then 
obtained using the analytic expression for the free energy of a set of harmonic oscillators, 
 

 , 

 
where T is the temperature, h is Planck’s constant, kB is Boltzman’s constant and the  are the 
normal mode frequencies of the oscillators. The structure used is the zero-temperature structure 
uniformly expanded to the finite temperature lattice constant determined by a bulk quasi-
harmonic calculation.  The interfacial free energy is then determined from the difference in free 
energy of the system with the grain boundary and that of a bulk system with the same number of 
atoms.  
 
For higher temperatures, T ≥ 0.25 TM, the free energy is computed via thermodynamic 
integration following the procedure described in detail by Frolov and Mishin[16].  A series of 
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molecular dynamics simulations are performed at differing temperatures with the bulk lattice 
constant chosen to yield zero stress in the bulk.  For each calculation, one calculates the excess 
enthalpy, Uex, and the interfacial stress, τ.  The interfacial free energy can then be obtained by 
integrating the equation 
 

 

 
where A is the interfacial area and e is the strain required to maintain zero bulk stress, σ .  Note 
that one cannot extend this approach to zero-temperature due to the divergence of the integrand. 
 
The last quantity that we need to calculate is the temperature dependent elastic constants.  In this 
work we follow the procedure used by Wolf, Mansour, Lee and Ray[17].  In this approach 
molecular dynamics simulations are performed in the microcanonical ensemble with the internal 
energy and density chosen to yield the desired temperature and zero bulk pressure.  The elastic 
constants are then evaluated from equations (3.4) through (3.8) of reference [17].   It should be 
noted that there is an inconsistency in the method of calculation used at low temperatures 
between the grain boundary free energy calculations and the elastic constant calculations.  The 
grain boundary calculations employ quantum statistics at low temperatures while the elastic 
constant calculations employ classical statistics.  However, at low temperatures, fluctuations 
make only a modest contribution to the elastic constant calculations so it is not expected that the 
difference between the use of classical and quantum descriptions of the fluctuations will alter the 
conclusions of this paper. 

7.4. Results and Discussion 

Figure 1 shows the computed grain boundary free energy, γ, for the symmetric Σ79 grain 
boundary described above as a function of temperature from zero temperature to near the melting 
point.  Similar to the results for a Σ5 boundary determined in a prior study[3], there is a 
substantial variation of γ such that its value at the melting point is about a third of the low 
temperature value.  There is also a point shown at zero temperature on Figure 1.  This is the 
classical zero temperature grain boundary energy computed for this boundary and set of 
potentials.  It differs slightly from the zero temperature value of γ due to the contributions to the 
excess free energy from changes in the quantum zero-point motion in the vicinity of the 
boundary.   
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Figure 7-1. Temperature dependence of grain boundary free energy 
The temperature dependence of the grain boundary free energy for a symmetric Σ79 tilt 
boundary computed as described in the text for a EAM model of Ni.  The point at T=0 is the 
classical zero-temperature excess energy computed for this boundary. 
 
The computed temperature variation of the elastic constants is presented in Figure 2.  In 
particular, the bulk modulus, B, and the two shear moduli, C = C44 and C’ = (C11 – C12)/2 are 
presented.  The experimental values of these elastic constants due to Ledbetter and Reed[18] are 
also shown.  The difference between the low temperature calculated and experimental lattice 
constants reflects the imperfect fit of the interatomic potentials to the elastic constants.  While a 
comparison of the temperature-dependence of the computed and experimental elastic constants is 
not the main point of this work, the reasonable agreement of the variation of the elastic constants 
compared to experiment supports the interatomic potential model used here. 
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Figure 7-2. Temperature dependence of the elastic moduli 
The computed temperature dependence of the elastic moduli for the EAM model of Ni (solid 
lines) along with experimental values (points) of the elastic moduli from Ledbetter and Reed 
[18].  The triangles are the bulk modulus, B, the squares are shear modulus, C, and the diamonds 
are the shear modulus, C’. 
 
The main result of this paper is presented in Figure 3 that compares the variation of γ to the 
variation of the elastic constants.  Note that γ has units of energy per unit area, but elastic 
constants have units of energy per unit volume.  In order compare dimensionally equivalent 
quantities, we choose to compare γ to elastic constants multiplied by the temperature dependent 

lattice constant of the material.  In particular, Figure 3 plots  and similar 

quantities for the other elastic constants, C and C’.   Here the 0.2 represents a reference 
temperature of T = 0.2 TM which is a temperature near room temperature. Note that if the 
temperature dependence of γ is proportional to the temperature dependence of the elastic 
constant times the lattice constant that this ratio will be unity.  It is observed that scaling by the 
bulk modulus does not yield a constant value.  Scaling by the shear elastic moduli provides a 
substantial reduction in the temperature variation over a substantial temperature range.  In 
particular, if the grain boundary free energy is scaled by C*a, this ratio stays within 4% of unity 
for temperatures up to around 0.75 TM.  At higher temperatures, the scaling with the shear elastic 
moduli breaks down.  The scaling predicted based on C’*a is also reasonable though not quite as 
good.  Similar results are obtained if one chooses T = 0 as the reference temperature. 
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Figure 7-3. Scaled temperature dependent grain boundary free energy 
The temperature dependence of the grain boundary free energy divided by the product of various 
elastic moduli times the lattice constant relative to the room temperature, R(T) as described in 
the text.  The selected elastic moduli are the bulk modulus (dashed line), C = C44 (solid line) and 
C’ = (C11 – C12)/2 (dotted line).   
 
 
This result suggests that for temperatures up to about 0.75 TM, the variation of the grain 
boundary free energy can be estimated by scaling with the temperature dependence of C*a.  
Since the temperature dependence of elastic constants is in many cases measured or can be 
computed more easily than the temperature dependence of γ, this provides a convenient way to 
estimate γ at moderate temperatures.  In addition, the idea that grain boundary free energy will 
scale with elastic constants has been incorporated into a recent phase-field model of grain 
boundary premelting [6].   
 
The break down of this scaling relationship at high temperatures is reasonable.  The scaling with 
elastic constants implicitly assumes that the dominant variation is due to the change in the elastic 
strain energy associated with the grain boundary.  However, previous studies [19, 20] have 
shown that the defect formation energy of vacancies, interstitials and other defects at grain 
boundaries is lower than their formation energy in the bulk.  Thus at high temperatures one 
would expect a contribution to the free energy from the thermal creation of such defects.  

7.5. Summary 

The temperature dependence of the grain boundary free energy, γ, has been computed for a 
symmetric Σ79 tilt boundary for an EAM model of Ni.  The calculations were based on quasi-
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harmonic calculations at low temperatures and thermodynamic integration at moderate to high 
temperatures.  In addition, the temperature dependence of the elastic constants of this model was 
computed.  It was shown that variation of the grain boundary free energy with temperature can 
be estimated by scaling with the temperature dependent product of the shear elastic constants 
times the lattice constant up to temperatures of about three-fourths of the melting point.  In this 
case study, C*a represents the scaling somewhat better than C’*a for temperatures T < 0.75 TM.  
This provides a convenient way to estimate the finite temperature grain boundary free energy at 
moderate temperatures.  At higher temperatures, the scaling breaks down which is suggested to 
be due to the creation of thermal defects at the boundaries at high temperatures.   
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8. Direct molecular dynamics simulations of nanocrystalline grain growth 

 

8.1. Introduction 

 
The results of Hattar et al. [1] show that grain growth in nanograined metals has some 
fundamental differences from that observed in conventional scale material especially for the case 
of abnormal grain growth.  In convention materials, abnormal grain growth leads to grains which 
are largely defect free [2].  However, Hattar et al. showed that the annealing of pulsed laser 
deposited Ni thin films leads to abnormal grain growth. However, in this case there is a high 
defect density in the abnormally grown grains including twins, dislocation loops and stack fault 
tetrahedra.   
 
In order to understand these experimental observations, direct molecular dynamics simulations of 
the growth of nanoscale grains have been performed.  Current computer resources allow for the 
simulations of the dynamics of millions of atoms for times of several nanoseconds.  This is 
sufficient to examine the high temperature evolution of a system of hundreds of grains with sizes 
of a few nanometers.  Such simulations have been performed and analyzed to address two 
questions.  First, are the dynamics of grain growth fundamentally different at the nanoscale than 
at conventional scales?  Some prior molecular dynamics simulations by Farkas, Mohanty and 
Monk [3] suggested that grain growth is linear in time for nanoscale systems as opposed growth 
with the square root of time observed in conventional scale materials.  The present results will 
challenge this observation.  Second, the formation of defects during the growth will be examined 
to compare to the qualitative features of the experimental observations. 
 

8.2. Computational Method 

 
The simulation of the grain growth is performed by standard molecular dynamics simulations 
methods.  In these simulations, the interatomic interactions are based on the embedded atom 
method (EAM) [4] potentials developed by Foiles and Hoyt [5] to describe Ni.  In the following, 
temperatures will be presented in terms of homologous temperatures, ie relative to the melting 
point for these potentials.  The melting point for these potentials is 1565 K compared to the 
experimental melting point of 1726 K.  The simulations are performed in an isothermal-isobaric 
ensemble with periodic boundary conditions in all three directions and were performed using the 
LAMMPS [6] molecular dynamics code.   
 
The initial atomic configuration was generated using a Voronoi cell construction.  First, a set of 
points is chosen at random in the 3-dimension periodic cell.  Each point is assigned a set of 
randomly determined Euler angles.  The grains correspond to the Voronoi cells, region of space 
closer to a given point than to any other point, with the Euler angles defining the grain 
orientation.  Atomic coordinates are then produced within each grain based on the FCC lattice 
rotated by the Euler angles.  In the regions of the grain boundary, an atom is eliminated if it had 
an initial neighbor with 2 angstroms.  This produces an initial grain structure.  It should be noted 
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that while this grain structure fill space, it is inherently out of equilibrium since the grain 
boundary network so produced will not have the correct orientations at the triple junctions. 
 
Results for two sizes of simulation cell will be discussed here.  For the larger simulations 
performed here, the periodic cell has an edge length of 110a0 = 38.72 nm at zero temperature.  
There were 800 initial grains in these simulations.  The total number of atoms was 5,103,926.  
This is less than the number that would be present in a single crystal of this volume due to the 
lower density of atoms at the grain boundaries.  For the smaller simulations, the cell edge 
dimension was half this amount and there were 100 initial grains.  The initial average grain size 
is thus the same in the smaller and larger simulations.  The initial configurations were then 
relaxed to a local energy minima before being expanded by the known bulk thermal expansion 
for the desired temperature and then equilibrated for 10 ps.   
 
The analysis of the resulting evolution is a non-trivial portion of the simulation.  The approach 
used here is to examine the nearest neighbor environment of each atom.  First, a coarse 
minimization of the finite temperature structure is performed to eliminate most of the thermal 
displacements of the atoms.  The relative positions of the twelve nearest neighbors of each atom 
are compared to that for the nearest neighbor shell of an FCC lattice.  In doing this, the rotational 
orientation of the reference FCC neighbor positions is optimized to provide the best fit between 
the actual relative neighbor positions and the ideal neighbor positions.  If a satisfactory fit is 
obtained, the atom is considered to be in a FCC crystal and the optimal rotation determines the 
local crystal orientation.   If a satisfactory fit is not obtained, the location of the nearest neighbors 
is compared that of an ideal HCP crystal and a similar optimization of the rotational orientation 
of the ideal HCP lattice is performed.  For this case, it is assumed that the HCP lattice has the 

ideal c/a ratio of  with the lattice constant assume to be such that the volume per atom is 

the same in the FCC and HCP lattice.  Calculations of the equilibrium HCP structure with these 
potentials indicate that this is approximately correct for these potentials. Finally, if there is not 
satisfactory fit to the HCP structure, the atom is then assign to be non-crystalline.  Visualization 
of the resultant assignments (see below) indicates that the vast majority of these atoms are 
located at grain boundaries 
 
There are two common ways that an atom will have a local HCP neighbor environment.  The 
first is in a twin boundary where the local stacking sequence will be ABCBA. In this case, the 
atoms in the central C layer will have a first neighbor shell that corresponds to the HCP lattice 
while atoms in the adjacent layers will have a local FCC environment.  This provides a means of 
identifying twin boundaries.  In a twin boundary, an atom that has an HCP environment and has 
six nearest neighbors that also have an HCP environment will be assumed to be in a twin 
boundary.  In the case of an intrinsic stacking fault, the stacking sequence is ABCABABCAB.  
In this case the atoms in the central B and A layers have local HCP environments.  Thus the HCP 
environment atoms in an intrinsic stacking fault will nine nearest neighbors that also have an 
HCP environment.  This can be used to identify intrinsic stacking faults. 
 
The average grain size can be readily estimated from the above data.  As discussed by Farkas, et 
al. [3], the average grain diameter, d, scales with the system volume, V and grain boundary area, 
A, by the relation .  Since the non-crystalline atoms are dominantly at the grain 
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boundaries, this suggests that .  This provides a computationally efficient way to 

estimate the average grain size at a given time by simle counting the number of non-crystalline 
atoms. 
 
In the following results from simulations at three different temperatures, T/TM = 0.65, 0.75 and 
0.85.  The simulation at T/TM = 0.65 was performed for the smaller system size discussed above 
and was run for 10 ns.  The two higher temperature simulations were performed at the larger 
system size and were continued for 7 ns at T/TM = 0.75 and 2 ns at T/TM = 0.85.   
 

8.3. Results 

 
Figure 1 represents snapshots at a time interval of 1 ns for the simulations at the reduced 
temperature of 0.75.  There are a couple of important qualitative observations that can be made 
based on the examination of the dynamics of all of the slices as a function of time.  The most 
obvious feature is that there are a significant number of twin boundaries in the system.  This is 
consistent with the experimental observation of Hattar, et al. [1] of a high density of twin 
boundaries in annealed pulsed laser deposited nanocrystalline Ni.  Observation of the dynamics 
of the grain growth suggests that the twin boundaries form via a mechanism discussed by 
Mahajan, et al. [7].  In this mechanism, a growth accident occurs in the vicinity of a triple 
junction that forms a short segment of twin boundary.  As the grains continue to grow, the twin 
boundary remains, but the triple junction moves away from the boundary as the grain structure 
coarsens.  This results in a twin boundary that crosses the grain and grows as the overall grain 
grows. 
 
Another qualitative observation is the presence of vacancies in the grains.  An example of a 
vacancy can be seen in the snapshot at 3 ns in Figure 1.  In the large reddish grain near the top of 
the image (and also its periodic image near the bottom), one can see a black shaded point defect.  
These are the non-crystalline atoms located adjacent to a vacancy.  At these elevated 
temperatures, the vacancies are observed to be quite mobile in the visualization of the dynamics 
as one would expect.  The presence of vacancies in the grain interiors is consistent with the 
presence of stacking fault tetrahedra in the experimental observations of Hattar et al. [1].  A 
stacking fault tetrahedra results from the clustering of vacancies [8].  Thus the presence of 
vacancies in the grain interiors in our simulations supports the conecture by Hattar et al. that the 
growth process introduces vacancies which in their case for the stacking fault tetrahedra.  In the 
present simulations, the high temperatures and small grain sizes account for the absence of 
vacancy clusters in the simulation.  For the simulation conditions, the vacancies are most likely 
to be absorbed at grain boundaries rather than form clusters. 
 



100 

 

 

 

 
Figure 8-1. Representative snapshots of MD simulated grain growth 
These are snapshots of a representative slice through the simulation cell for T/TM 
= 0.75 at times of 0 to 5 ns in 1 ns increments.  The black atoms are non-
crystalline atoms, the red atoms have HCP nearest neighbor environments.  The 
other colors have FCC nearest neighbor environments with the shade representing 
the local crystal orientation as discussed in the text.  The image shows a region 
larger than the periodic boundaries of the computational cell. 
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The growth kinetics are presented in Figure 2 which presents the average grain size determined 
using the procedure described above as a function of the square root of time.  It is well known 
that in conventional grain growth the average grain size grows as the square root of time.  In the 
present results, one observes that after an initial transient that the average grain diameter follows 
the conventional square root of time behavior.  The presence of a transient is expected in these 
simulations.  The initial configuration of the grains that is contructed through the Voronoi 
procedure discussed above does not have the correct grain boundary angles at triple junctions.  
Thus the initial dynamics seen here is artificial as the system corrects the triple junction angles.  
After this initial transient, the growth is observed to follow a linear behavior in the square root of 
time for a significant period.  This is consistent with grain growth in conventional scale 
materials.  At later times for the two lower temperatures, the rate of grain growth falls below this 
trend and appears to be stagnating.  We speculate that this behavior is related presence of a 
temperature dependent population of fast and slow boundaries due to the roughening transition 
discussed in an earlier chapter.  This will be discussed more extensively elsewhere. 

 
 
The observation of parabolic grain growth kinetics in these simulations is at odds with the earlier 
results of Farkas, Mohanty and Monk [3] who claim to observe a linear increase in the grain size 
with time.  There are two possible explanations for the disagreement with the earlier results.  
First, the earlier results do not account for the transient required to correct the triple junction 
angles.  Since this transient is due to the arbitrary, somewhat unphysical, initial grain structure it 
is not expected to conform with experiment.  Second, the earlier work uses a system with far 
fewer grains such that artificial system size effects are more likely.  In the current work, the 

 

 
Figure 8-2. Time evolution of grain size 
The average grain size determined as described in the text as a function of the 
square root of time for the three simulation temperatures. 
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simulations are halted well before largest grains com close to their periodic images.  For these 
reasons, we believe that the earlier results are incorrect and that grain growth in the 
nanocrystalline regime follows parabolic kinetics consistent with grain growth in conventional 
scale metals. 
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