

SANDIA REPORT

SAND2009-4494
Unlimited Release
Printed July 2009

Algebraic Connectivity and Graph
Robustness

R. H. Byrne, J. T. Feddema and C. T. Abdallah

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

mailto:reports@adonis.osti.gov�
http://www.osti.gov/bridge�
mailto:orders@ntis.fedworld.gov�
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online�

SAND2009-4494
Unlimited Release
Printed July 2009

Algebraic Connectivity and Graph Robustness

R. H. Byrne, J. T. Feddema
Data Analysis and Data Exploitation Department

C. T. Abdallah
University of New Mexico, ECE Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1243

Abstract

Recent papers have used Fiedler’s definition of algebraic connectivity to show that net-
work robustness, as measured by node-connectivity and edge-connectivity, can be increased
by increasing the algebraic connectivity of the network. By the definition of algebraic con-
nectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the
node-connectivity. In this paper we show that for circular random lattice graphs and mesh
graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic
connectivity actually correspond to a decrease in node-connectivity. This means that the
networks are actually less robust with respect to node-connectivity as the algebraic connec-
tivity increases. However, an increase in algebraic connectivity seems to correlate well with
a decrease in the characteristic path length of these networks - which would result in quicker
communication through the network. Applications of these results are then discussed for
perimeter security.

3

4

Contents

Abstract 3

Table of Contents 5

List of Figures 6

1 Introduction 7

2 Literature Review 8

3 Algebraic Connectivity and Network Robustness 10

4 Physical Security Application 15

5 Summary and Conclusions 17

Acknowledgments 17

References 18

6 Appendix A - MATLAB M-FILES 19

5

List of Figures

1 Graph Example . 7
2 Random ring lattice graph G = C(n, k) with n = 20, k = 4, for p = 0, 0.1, 0.5, 1 9
3 Results for a ring lattice random graph, N=100, k=4 11
4 Regular mesh lattice graph, N=100, Communication radius R=1. 11
5 Results for a Mesh Lattice Graph, N=100, R=1 12
6 Algebraic Connectivity Gain for a Ring Lattice Random Graph, N=100, k=4 13
7 Node-Connectivity Gain for a Ring Lattice Random Graph, N=100, k=4 . . 13
8 Edge-Connectivity Gain for a Ring Lattice Random Graph, N=100, k=4 . . 14
9 Mean Path Length Gain for a Ring Lattice Random Graph, N=100, k=4 . . 14
10 Physical Security Graph Example . 16
11 Physical Security Graph Example, Cross Connections 16
12 Physical Security Graph Example, 2nd Neighbor Connections (G = C(12, 4)

plus control node) . 16

6

��
��
1 ��

��
2 ��

��
3

��
��
4 ��

��
5

Figure 1: Graph Example

1 Introduction

Graph theory is a powerful tool for modeling the structure of different systems. A graph
is represented as G = (V, E) where V is the set of vertices and E is the set of edges [1].
An example of a simple graph is shown in Figure 1. For the graph shown in Figure 1
V = {1, 2, 3, 4, 5} and E = {(1, 2), (2, 3), (2, 4), (3, 5), (4, 5)}. In a graph with no loops the
degree of a vertex is the number of edges adjacent to that vertex. The diagonal degree matrix
D of G is defined as di = |Ni| where di is the degree of node i. The degree matrix D for the
graph shown in Figure 1 is

D =

















1 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

















(1)

The adjacency matrix A of a graph G with n vertices is an n × n matrix with the following
structure

aij =

{

i 6= j the number of edges joining vertex i and vertex j
i = j the number of loops at vertex i

(2)

The adjacency matrix A of a graph G is always a symmetric matrix. A complete graph Kn

is a graph with n vertices with exactly one edge joining every pair of vertices. The adjacency

7

matrix A for the graph shown in Figure 1 is

A =

















0 1 0 0 0
1 0 1 1 0
0 1 0 0 1
0 1 0 0 1
0 0 1 1 0

















(3)

The Laplacian matrix L(G) of a graph G is defined as L = D − A where D is the degree
matrix and A is the adjacency matrix. The Laplacian matrix always has a zero eigenvalue
λ1 = 0. If G is connected, the second smallest eigenvalue λ2 is greater than zero. This
eigenvalue is named the algebraic connectivity of the graph [2] because it serves as a lower
bound on the degree of robustness of the graph to node and edge failures. This follows from
the following inequality [2]

λ2(G) ≤ ν(G) ≤ η(G) (4)

where ν(G) is the node-connectivity and η(G) is the edge-connectivity of a graph. Therefore,
a network with high algebraic connectivity is robust to both node and edge failures.

The edge-connectivity and node-connectivity may also be calculated directly from the
graph. For a graph G = (V, E) and a set of edges denoted by F , the graph G−F represents
the graph obtained from G by deleting all of the edges in F. If a connected graph G becomes
disconnected after removing the set of edges F , the set F is called a disconnecting set.
A graph is k-edge connected if every disconnecting set has at least k edges. The edge-
connectivity number η(G) is the minimum size of the disconnecting set in G. For a complete
graph with N vertices, η(G) = N −1. Node or vertex connectivity is similarly defined. A set
of vertices W in a graph G = (V, E) is defined as a separating set if G − W has more than
one component. The connectivity number ν(G) of a graph G is defined as the minimum size
of the separating set. A graph is k-connected if ν(G) ≥ k. In other words, k is the minimum
number of vertices that must be removed in order to break a connected graph into two or
more components.

The edge-connectivity number η(G) for graph shown in Figure 1 is η(G) = 1. By removing
the edge between nodes 1 and 2 the graph becomes disconnected. The node-connectivity
number ν(G) is ν(G) = 1. By removing node 2 the graph becomes disconnected. The
algebraic connectivity for the same graph is λ2(G) = 0.83, which satisfies the inequality.

2 Literature Review

Graph theory was originally developed by the famous mathematician Leonhard Euler in 1736.
The problem that motivated Euler was whether it was possible to walk a route that crosses
each of the seven bridges in Königsberg, Prussia, exactly once and return to the starting

8

n = 20, k = 4, p = 0 n = 20, k = 4, p = 0.1

n = 20, k = 4, p = 0.5 n = 20, k = 4, p = 1

Figure 2: Random ring lattice graph G = C(n, k) with n = 20, k = 4, for p = 0, 0.1, 0.5, 1

point. Using graph theory, Euler proved that no such path exists. Because graph theory
looks at pairwise relationships between objects in a collection, graph theory is well suited
for modeling and analyzing different types of networks. An overview of complex networks
appears in [3]. A description of the world-wide web’s scale-free characteristics appears in [4].

In [5], Watts and Strogatz look at the phase transitions that occur between regular
and random graphs. They show that the small-world phenomenon (popularly known as six
degrees of separation) can occur in sparse networks with many vertices. They show this effect
by starting with regular ring lattice networks with n vertices and k edges per vertex and then
rewire each edge with probability p. The effects of random rewiring of links for regular ring
lattice networks are shown in Figure 2. Olfati-Saber then showed that it is possible to greatly
increase the algebraic connectivity in regular complex networks without adding new links or
nodes by using the same type of random rewiring [6]. He used this result to show that the
consensus problem can be solved more quickly on certain small-world networks. The paper
also states that “a network with relatively high algebraic connectivity is necessarily robust
to both node-failures and edge-failures” [6]. We show that the contrary is true. While there
is an increase in algebraic connectivity, there is a decrease in node- and edge-connectivity
(but Fiedler’s inequality still holds, it is just a conservative bound). Research has also been
conducted on maximizing the algebraic connectivity for a given graph [7]. A reference on
Laplacian matrices of graphs appears in [8].

A k − separator or k − shredder of a k−node connected graph is defined as the set of k
nodes whose removal results in an unconnected graph. When analyzing network robustness,
it is important to identify the nodes that are most vulnerable to bringing down network

9

connectivity. Papers that discuss algorithms for k − shredders include [9, 10].

3 Algebraic Connectivity and Network Robustness

A graph G that consists of a set V of vertices (or nodes) and a collection of E edges is said
to be connected if and only if there is a path between every pair of vertices in it. The node-
connectivity number ν(G) of a graph G is defined as the minimum size of a separating set,
or in other words the minimum number of nodes that may be removed to separate the graph
into more than one component. Similarly, the edge-connectivity number η(G) is defined as
the minimum number of edges that may be removed to separate the graph into more than
one component. Algebraic connectivity is of great interest because of the following inequality
developed by Fiedler:

λ2(G) ≤ ν(G) ≤ η(G) (5)

which states that the algebraic connectivity of a graph G (defined as the second smallest
eigenvalue λ2(G) of the Laplacian) is less than or equal to the node-connectivity which is less
than or equal to the edge-connectivity [2]. Although increasing the algebraic connectivity
increases the lower bound on node-connectivity our simulation results show that for circular
and mesh lattice graphs an increase in algebraic connectivity often corresponds to a decrease
in node-connectivity and edge-connectivity.

The small-world network introduced by Watts and Strogatz [5] was based on a one-
dimensional lattice on a ring with n nodes where each node is connected to its k nearest
neighbors. They showed that random rewiring of nodes with a small probability p greatly
reduces the characteristic path length resulting in a small-world network. Figure 2 exhibits
the effects of random rewiring for a network with 20 nodes and k = 4. Olfati-Saber showed
that this random re-wiring also results in a large increase in algebraic connectivity for ring
lattices [6].

Unfortunately large increases in algebraic connectivity for certain types of networks often
correspond to a decrease in node-connectivity and edge-connectivity. As an example, the
results for a circular random graph with 100 nodes are shown in Figure 3. For this case,
we start with a ring lattice with n = 100 vertices and k = 4 edges per vertex and then
rewire each edge at random with a probability p. As p increases from 0 to 0.9 there is
a large increase in algebraic connectivity and a decrease in the mean path length of the
network. However, the node-connectivity and edge-connectivity of the network decrease as
the probability p increases. Similar results can be shown for a regular mesh lattice like the
one shown in Figure 4 where there are 100 nodes and each node has a communication radius
R = 1. The results for this mesh lattice are summarized in Figure 5.

Olfati-Saber noted that the algebraic connectivity gain γ2 = λ2(p)/λ2(0) has an S-shape
that remains the same for various network parameters [6]. The algebraic connectivity gain for
our simulation results are shown in Figure 6. These agree with the results in [6]. The more

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

Probability p

Random Graph, n=100, k=4, p=0:0.1:0.9, 10 runs per data point

AC(p=0.9)/AC(p=0) = 29.493058

Algebraic Connectivity

Node Connectivity

Edge Connectivity

Mean Path Length

Figure 3: Results for a ring lattice random graph, N=100, k=4

Regular Mesh Graph, n = 100, Communication radius R = 1.000000

Figure 4: Regular mesh lattice graph, N=100, Communication radius R=1.

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

Probability p

Random Mesh Graph, n=100, R=1, p=0:0.1:0.9, 10 runs per data point

AC(p=0.9)/AC(p=0) = 3.138105

Algebraic Connectivity

Node Connectivity

Edge Connectivity

Mean Path Length

Figure 5: Results for a Mesh Lattice Graph, N=100, R=1

jagged behavior can be attributed to less monte carlo simulations (10 versus 20), a slightly
smaller network (100 versus 200 nodes), and sparser connections (4 nearest neighbors versus
6 nearest neighbors). To look at the decrease in node-connectivity and edge-connectivity the
subsequent figures show the ratios ν(p)/ν(0) and η(p)/η(0). Although the algebraic connec-
tivity gain has increased, Figures 7-8 show how the node-connectivity and edge-connectivity
have decreased significantly as a result of the random rewiring. The mean path length gain
is shown in Figure 9. Random rewiring of the circular lattice improves (decreases) the mean
path length. For larger circular lattices, the improvement will be even more pronounced.

In a system where nodes are redundant or dispensable, improving algebraic connectiv-
ity can improve the overall robustness of the network by reducing the characteristic path
length. However, in systems where each node is critical, concepts like node-connectivity
and edge-connectivity are important parameters for assessing robustness. This highlights
the fact that there are often tradeoffs when assessing robustness to different parameters.
In addition, there are computational tradeoffs. Computing algebraic connectivity is much
quicker than computing node-connectivity or edge-connectivity for large networks. The next
section identifies an application where these tradeoffs are directly applicable.

12

10
−2

10
−1

10
0

0

5

10

15

20

25

30

Probability p

Random Graph, n=100, k=4, 10 runs per data point

Algebraic Connectivity(p)/Algebraic Connectivity(0)

Figure 6: Algebraic Connectivity Gain for a Ring Lattice Random Graph, N=100, k=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

Probability p

Random Graph, n=100, k=4, 10 runs per data point

Node−Connectivity(p)/Node−Connectivity(0)

Figure 7: Node-Connectivity Gain for a Ring Lattice Random Graph, N=100, k=4

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

Probability p

Random Graph, n=100, k=4, 10 runs per data point

Edge−Connectivity(p)/Edge−Connectivity(0)

Figure 8: Edge-Connectivity Gain for a Ring Lattice Random Graph, N=100, k=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability p

Random Graph, n=100, k=4, 10 runs per data point

Mean Path Length(p)/Mean Path Length(0)

Figure 9: Mean Path Length Gain for a Ring Lattice Random Graph, N=100, k=4

14

Figure 10 Figure 11 Figure 12

algebraic connectivity 0.268 1.00 1.27
node-connectivity 2 3 4
edge-connectivity 2 3 4
mean path length 3.00 1.92 1.75

Table 1: Network Parameters, Physical Security Example

4 Physical Security Application

A typical perimeter security application is shown in Figure 10. Here there is a building
that is protected by fixed sensors located around the perimeter. Node 1 is the control
node/response center, while the other nodes represent security sensors. The sensors are
connected in a simple ring topology with two paths back to the control node. There are
several ways to analyze the network. The first approach is to treat all nodes as equal and to
look at parameters like node-connectivity, edge-connectivity, mean path length, and algebraic
connectivity. However, the control node is more critical than the other nodes. Therefore
another approach is to just look at the sensor nodes as a separate network of homogeneous
nodes and then to make sure that the robustness of the links to the control node is adequate.
Using this methodology, if the sensor network is still connected, then there should be a path
back to the control node. If latency is critical, then the mean path length back to the control
node becomes an important parameter.

Three different examples of topologies are presented in Figures 10 - 12. Figure 10 has
a minimal ring topology with two connections to the control node. Figure 11 has the same
topology with cross connects through the network. Figure 12 keeps the ring topology and
adds a third connection to the control node for symmetry. The network parameters for these
three graphs (sensors only) are listed in Table 1.

The cross-connections in Figure 11 reduce the mean path length as expected. In a larger
size network, this effect would be even more pronounced. Because the ring is relatively small,
the network in Figure 12 has the smallest mean path length. An increase in algebraic con-
nectivity corresponds with a decrease in the mean path length of the network. In designing
a large perimeter physical security system, one of the many tradeoffs will involve robustness
(e.g. node and edge-connectivity) and mean path length, which will correspond to latency.
The topology of many perimeter security systems also directly maps to the circular lattice.

15

h1

h2

h3

h4 h5 h6 h7 h8

h9

h10h11h12h13

Control Node

Building

Figure 10: Physical Security Graph Example

h1

h2

h3

h4 h5 h6 h7 h8

h9

h10h11h12h13

Control Node

Building
HHHHHHH

HHHHHHH

@
@

@@

@
@

@@

�
�

��

�
�

��

�������

�������

Figure 11: Physical Security Graph Example, Cross Connections

h1

h2

h3

h4 h5 h6 h7 h8

h9

h10h11h12h13

Control Node

Building

@@

@@

��

��

��

��

@@

@@

Figure 12: Physical Security Graph Example, 2nd Neighbor Connections (G = C(12, 4) plus
control node)

16

5 Summary and Conclusions

This paper has shown that for circular random lattices and mesh lattices an increase in
algebraic connectivity does not necessarily result in an increase in node-connectivity. There-
fore, Fiedler’s definition of algebraic connectivity is a conservative lower bound. In a system
where nodes are redundant or disposable and the speed of the network is important, im-
proving algebraic connectivity can improve the performance of the network by reducing the
characteristic path length. However, in systems where connectivity is critical, concepts like
node-connectivity and edge-connectivity are important parameters for assessing robustness.
In addition, there are computational tradeoffs. Computing algebraic connectivity is much
quicker than computing node-connectivity or edge-connectivity for large networks. The
perimeter security application is an example where all of these parameters are important.
When cost constraints are included which limit the number of nodes or connections, it should
be possible to perform an optimization to arrive at the network configuration which max-
imizes robustness (node/edge-connectivity) and speed (maximizes algebraic connectivity).
This will be an area for further research.

Acknowledgments: This work was supported by the United States Depart-
ment of Energy under Contract DE-AC04-94AL8500. Funding for this research was provided
by the “Design Tools for Complex Dynamic Security Systems” Laboratory Directed Research
and Development (LDRD) effort.

17

References

[1] B. Bollobás, Modern Graph Theory, vol. 184. New York: Springer-Verlag, 1998.

[2] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal,
vol. 23, no. 98, pp. 298–305, 1973.

[3] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, pp. 268–276, March
2001.

[4] A. Barabási, R. Albert, and H. Jeong, “Scale-free characteristics of random networks:
The topology of the world-wide web,” Physica A, vol. 281, pp. 69–77, 2000.

[5] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature,
vol. 393, pp. 440–442, June 1998.

[6] R. Olfati-Saber, “Ultrafast consensus in small world networks,” in Proceedings of the

2005 American Control Conference, (Portland, OR), pp. 2371–2378, June 8-10 2005.

[7] Y. Kim and M. Mesbani, “On maximizing the second smallest eigenvalue of a state-
dependent graph laplacian,” in Proceedings of the 2005 American Control Conference,
(Portland, OR), pp. 99–103, June 8-10 2005.

[8] R. Merris, “Laplacian matrices of graphs: A survey,” Linear Algebra and Its Applica-

tions, vol. 197, no. 198, pp. 143–176, 1994.

[9] J. Cheriyan, “Fast algorithms for k-shredders and k-node connectivity augmentation,”
Journal of Algorithms, vol. 33, pp. 15–50, October 1999.

[10] R. Hegde, “Finding 3-shredders efficiently.” citeseer.ist.psu.edu/hegde02finding.html.

18

6 Appendix A - MATLAB M-FILES

% algebraic_connectivity.m

% Ray Byrne

% August 2, 2005

% function returns the algebraic connectivity of the

% adjacency matrix A

function AC = algebraic_connectivity(A)

EV = eig(degree(A) - A);

EV = sort(EV,’descend’);

N = length(A);

eps = 0.01; % tolerance for 0

if (N >= 2) && (abs(EV(N)) < eps)

AC = EV(N-1);

return;

else

AC = -1;

return;

end % for

return;

19

% edge_connectivity.m

% Ray Byrne

% 7/29/05

% function edge_connectivity(A) returns the edge connectivity of a

% graph G described by the adjacency matrix A

function k_edge = edge_connectivity(A)

N = length(A);

% check 0 connectivity

if (graph_connected(A))

else

k_edge = 0;

return

end % else

% count edges, store edges in I,J

I = [];

J = [];

for i = 2:N % i is row index

for j = 1:(i-1) % j is column index

if (A(i,j) ~= 0) % check neq 0 to allow weighted edges

I = [I; i]; % store list of edges

J = [J; j]; % store list of edges

end % for

end % for

end % for

edge_count = length(I);

for K = 1:edge_count % % check K connectivity

C = nchoosek(1:edge_count, K); % calculate all combinations

num_tests = length(C);

for j = 1:num_tests

del_list = C(j,:); % pull out a row of C

A_temp = A;

for k = 1: length(del_list)

A_temp(I(del_list(k)),J(del_list(k))) = 0; % delete edges

20

A_temp(J(del_list(k)),I(del_list(k))) = 0; % delete edges

end

if (~graph_connected(A_temp))

k_edge = K;

for k = 1: length(del_list) % list out set of edges that breaks connectivity

broken_I = I(del_list(k))

broken_J = J(del_list(k))

end % for

return;

end % if

end % for

end % for

return;

21

% graph_connected.m

% Ray Byrne, July 29, 2005

% 15234

% the function graph_connected(A) checks the adjacency matrix

% to verify that the graph is connected. Uses a Depth-First

% Search Algorithm (DFS) to determine if every node is

% reachable from node 1. Function returns 1 if the graph is

% connected

function [C] = connected_graph (A)

N = length(A);

visited = zeros(1,N); % stores whether the node has been visited (1 == visited)

DFS = zeros(1,N); % store DFS number

DFS_number = 0; % stores the last number assigned

[DFS_number, DFS, visited] = search_graph(1, DFS_number, DFS, visited, A);

if (sum(visited) == N)

C = 1;

%disp(’Graph is Connected’);

else

C = 0;

%disp(’Sorry, Graph is not Connected!’);

end % if

return;

22

% degree.m

% Ray Byrne

% August 2, 2005

% degree.m returns the D matrix where the (i,i) term is

% the degree of the ith node. The input is the adjacency matrix A

function D = degree(A)

degrees = sum(A);

N = length(degrees);

D = eye(N);

for i=1:N

D(i,i) = degrees(i);

end % for

return

23

% gen_mesh.m

% Ray Byrne

% August 1, 2005

% The function mesh.h returns the X,Y locations of an

% m by n mesh with unit spacing of 1

function [X,Y] = gen_mesh(m,n)

X = [];

Y = [];

for i=1:m % number of rows

for j=1:n % number of columns

X = [X; j-1];

Y = [Y; i-1];

end

end

return;

24

% gen_adjacency.m

% Ray Byrne

% August 1, 2005

% generates adjacency matrix for a set of vertices with

% locations [X,Y] that have a communication range of R

function [A] = gen_adjacency(X,Y,R)

N = length(X);

A = zeros(N,N);

for i=1:N,

for j=1:N

distance = sqrt((X(i)-X(j))^2 + (Y(i)-Y(j))^2);

if (distance <= R) && (i ~=j)

A(i,j) = 1;

A(j,i) = 1;

end

end

end

return

25

% dijkstra.m

% Ray Byrne

% August 6, 2005

% Function performs dijkstra’s algorithm on the adjacency matrix A

% from the vertex numbered V. Assumes that for an NxN adjacency

% matrix there are vertices numbered 1-N. Returns V, the start

% vertex, the shortest distance SD where SD(i) is the shortest distance

% from V to vertex i. Also returns the labeled arcs in ARCS that

% constitute a shortest path arborescence rooted at vertex V.

function [V, SD, ARCS] = dijkstra(A,V)

N = length(A);

if V > N

V = -1;

SD = -1;

ARCS = [-1 -1];

return; % case of invalid Vertex number

end

ARCS = []; % store labeled arcs here

P = V

T = [1:(V-1) (V+1):N]

L=inf*ones(1,N);

L_prime = inf*ones(1,length(T));

L_prime_min_vertex = zeros(1,length(T));

L(V) = 0;

for i=1:length(T)

if (A(V,T(i)) ~= 0)

L_prime(i) = A(V,T(i)) % initialize distances from start vertex V

L_prime_min_vertex(i) = V;

end % if

end % for

start_min = 1; %

while length(P) < N

26

%L_prime = L_prime % display

[Y, I] = min(L_prime);

[Z, I] = max(L_prime);

if (Y == 0) && (Z == 0)

return % no finite minimum paths in L_prime, stop

else

minimum = L_prime(1);

index = 1;

if (length(T) > 1)

for i=2:length(T)

if (L_prime(i) < minimum) && (L_prime(i) > 0)

minimum = L_prime(i)

index = i

end % if

end % for

else

% do nothing

end

P = [P, T(index)]; % add shortest path to T

store_T = T(index);

L(T(index)) = minimum; % label vertex

store_length = minimum;

ARCS = [ARCS; L_prime_min_vertex(index) T(index)]; % label arc

T(index) = []; % remove from temporary

L_prime(index) = [];

L_prime_min_vertex(index)=[];

if length(T) > 0

for i=1:length(T)

t1=L_prime(i);

if A(store_T,T(i)) > 0

t2=store_length+A(store_T,T(i));

else

t2 = inf; % no path

end

L_prime(i) = min([t1 t2]);

27

if t2 < t1

L_prime_min_vertex(i) = store_T;

end % if

end % for

end % if

end % if

end

SD = L;

return

28

% vis_SD.m

% Ray Byrne

% helps visualize the number of hops required to reach

% any node in the network from vertex V

function vis_SD(V,SD,X,Y)

if length(SD) ~= length(X)

return

end

clf;

axis([min(X)-1 max(X)+1 min(Y)-1 max(Y)+1]);

for i=1:length(SD)

s = sprintf(’%i’, SD(i));

text(X(i),Y(i),s);

hold on;

end % for

xlabel(’X-Axis’)

ylabel(’Y-Axis’)

s = sprintf(’Shortest Path from Node %i in Hops’, V);

title(s);

return

29

% search_graph.m

% Ray Byrne, 7/29/05

% Dept 15234

% the function search_graph.m is a recursive function

% used in a DFS search of a graph to determine if

% all nodes are connected

function [DFS_number, DFS, visited] = search_graph(I, DFS_number, DFS, visited, A)

DFS_number = DFS_number + 1;

DFS(I) = DFS_number;

visited(I) = 1;

A_row = A(I,:);

N = length(A_row);

for i=1:N

if (A_row(i) > 0) && (visited(i) == 0) % check > 0 to allow weighted connections

[DFS_number, DFS, visited] = search_graph(i,DFS_number, DFS, visited,A);

end % if

end % for

30

% plot_arcs

% Ray Byrne

% August 8

% function plots arcs in ARCS given the X,Y location of the vertices

function plot_arcs(ARCS,X,Y)

axis([min(X)-1 max(X)+1 min(Y)-1 max(Y)+1])

hold on

for i=1:length(ARCS)

plot([X(ARCS(i,1)) X(ARCS(i,2))],[Y(ARCS(i,1)) Y(ARCS(i,2))],’r’)

end

return

31

% plot adjacency.m

% Ray Byrne

% August 8, 2005

% function plots the edges of the adjacency matrix A

function plot_adjacency(A,X,Y)

clf;

N = length(A);

ARCS = [];

for i=1:N,

for j=1:N,

if A(i,j) ~= 0

ARCS = [ARCS; i j];

end % if

end % for

end % for

plot_arcs(ARCS,X,Y);

xlabel(’X-Dimension’);

ylabel(’Y-Dimension’);

return

32

This page intentionally blank.

33

Distribution

1 MS1104 Rush Robinett, 6000
1 MS1003 Barry Spletzer, 6470
1 MS0576 John Feddema, 5535
10 MS1003 Ray Byrne, 5535
1 MS 108 David Wilson, 6332
1 MS1007 Larry Shipers, 6471

1 Chaouki Abdallah
ECE Department
University of New Mexico
Albuquerque, NM 87131

1 MS0899 Technical Library, 9536 (electronic copy)

34

