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Abstract 

In 2001, the National Nuclear Security Administration of the U.S. Department of Energy in conjunction with the 
national security laboratories (i.e, Los Alamos National Laboratory, Lawrence Livermore National Laboratory and 
Sandia National Laboratories) initiated development of a process designated Quantification of Margins and Uncer-
tainty (QMU) for the use of risk assessment methodologies in the certification of the reliability and safety of the 
nation’s nuclear weapons stockpile. This presentation discusses and illustrates the conceptual and computational 
basis of QMU in analyses that use computational models to predict the behavior of complex systems. Topics consid-
ered include (i) the role of aleatory and epistemic uncertainty in QMU, (ii) the representation of uncertainty with 
probability, (iii) the probabilistic representation of uncertainty in QMU analyses involving only epistemic uncer-
tainty, (iv) the probabilistic representation of uncertainty in QMU analyses involving aleatory and epistemic uncer-
tainty, (v) procedures for sampling-based uncertainty and sensitivity analysis, (vi) the representation of uncertainty 
with alternatives to probability such as interval analysis, possibility theory and evidence theory, (vii) the representa-
tion of uncertainty with alternatives to probability in QMU analyses involving only epistemic uncertainty, and  (viii) 
the representation of uncertainty with alternatives to probability in QMU analyses involving aleatory and epistemic 
uncertainty. Concepts and computational procedures are illustrated with both notional examples and examples from 
reactor safety and radioactive waste disposal.   
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1 Introduction 

In 2001, the National Nuclear Security Administra-
tion (NNSA) of the U.S. Department of Energy (DOE) 
in conjunction with the national security laboratories 
(i.e, Los Alamos National Laboratory, Lawrence Liv-
ermore National Laboratory and Sandia National Labo-
ratories) initiated development of a process designated 
Quantification of Margins and Uncertainty (QMU) for 
the use of risk assessment methodologies in the certifi-
cation of the reliability and safety of the nation’s nu-
clear weapons stockpile [1-6]. Specifically, the follow-
ing requirements have been proposed [7]: 

Design agency assessments shall incor-
porate QMU methodologies as an essential 
part of the framework necessary for the 
evaluation of the performance of warhead 
and warhead components. QMU can be used 
as one of the tools for identification and pri-
oritization of actions required for a compo-
nent or system.  Issues that require immedi-
ate attention must be raised to the NNSA 
Office of Stockpile Assessments and Certi-
fication.  The design agency laboratories 
shall develop site-appropriate QMU imple-
mentation plans.  (NNSA-1) 

Certification, qualification, and signifi-
cant finding investigations closure plans shall 
include QMU methodologies where applica-
ble.  Results of assessments using QMU shall 
be included in warhead certification docu-
ments, component qualification documents, 
annual assessment reports (AARs) and Sig-
nificant Finding Investigation (SFI) closure 
documentation.  (NNSA-2) 

As indicated by the preceding statements, the 
NNSA intends for QMU to be an integral component of 
the assessment process for the nation’s nuclear weapons 
stockpile. However, the preceding statements give no 
indication of what the NNSA envisions as the concep-
tual and computational basis for QMU. In this regard, 
some additional information with respect to the 
NNSA’s intent for QMU is provided by the following 
definitions supplied in conjunction with the preceding 
statements [7]: 

Quantification of Margins and Uncer-
tainties is a scientific methodology that iden-
tifies relevant nuclear-warhead parameters 
and quantifies, using available experimental 
and computational tools, the margin of that 
parameter relative to its failure point and the 

uncertainties associated with the parameter 
and the failure point. An assessment of the 
relationship between the margin and uncer-
tainties facilitates stockpile management de-
cisions, resource allocation prioritization, 
and informed judgments on the safety, reli-
ability and performance of nuclear war-
heads.  (NNSA-3) 

Uncertainty is a best estimate of the 
range of a particular metric which may de-
rive from one or two broad sources.  Uncer-
tainties that reflect a lack of knowledge 
about the appropriate value to use for a 
quantity that is assumed to have (missing 
modifier: a fixed?) value in the context of a 
particular analysis are termed epistemic.  
Uncertainties that arise from an inherent 
randomness in the behavior of the system 
under study are termed aleatoric.  (NNSA-4) 

Although designated as definitions, the statements 
in Quotes (NNSA-3) and (NNSA-4) are at a high level 
and lack specifics. For example, QMU is defined in 
Quote (NNSA-3) as a “scientific methodology” but no 
details are given with respect to what the conceptual 
basis and resultant computational implementation of 
this methodology should be. This lack of specificity is 
consistent with the requirement in Quote (NNSA-1) 
that “site-appropriate QMU implementation plans” 
should be developed and has the advantage of allowing 
QMU to be developed and implemented in manners 
appropriate for specific analysis contexts. However, this 
lack of specificity does not exempt individual analyses 
from a requirement to clearly define their conceptual 
basis and associated computational implementation. 
Such definitions are essential if a specific use of QMU 
is to be considered a “scientific methodology.” 

What is unambiguous from Quote (NNSA-3) is 
that the appropriate treatment of uncertainty is to be an 
integral part of any implementation of QMU. The na-
ture of uncertainty and the division of uncertainty into 
epistemic and aleatory components is elaborated on in 
Quote (NNSA-4). This is an important distinction that 
can have significant effects on the conceptual basis and 
computational design of an analysis and also on the 
interpretation of the results of the analysis. 

When viewed at a high level, the application of 
QMU can be divided into two distinct cases: (i) com-
parison of experimental results against a requirement 
without the use of a mathematical model to transform 
the experimental results, and (ii) comparison of predic-
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tions from a mathematical model against a requirement. 
This presentation is restricted to the second case, and as 
a result, the presented concepts, computational proce-
dures and discussions should be viewed in the context 
of comparing model (i.e., computer) predictions with a 
requirement. In particular, the strictly statistical issues 
associated with the direct comparison of experimental 
results with a requirement are not considered. 

Although the descriptor “risk assessment” does not 
appear in Quotes (NNSA-1) – (NNSA-4), the QMU 
process being described in these quotes is clearly a 
form of risk assessment in that it involves the determi-
nation of consequences (i.e., analysis outcomes and 
associated margins), likelihoods (i.e., the effects of 
aleatory uncertainties), and state of knowledge uncer-
tainties (i.e., epistemic uncertainties). Such determina-
tions are the essence of a risk assessment. As a result, 
the NNSA’s mandate for QMU is a continuation of the 
extensive and ongoing use of risk assessment in many 
different areas. As indicated in the following three pa-
ragraphs, there is an extensive body of prior studies and 
techniques that are relevant to the NNSA’s mandated 
use of QMU. 

Risk assessment for complex systems has a long 
history and many examples relevant to QMU exist, in-
cluding (i) early studies of missile reliability (Ref. [8], 
Sect. 3.2), (ii) the U.S. Nuclear Regulatory Commis-
sion’s (NRC’s) assessment of the risk from commercial 
nuclear power plants, which is  known as WASH-1400 
after a report number [9], (iii) the NRC’s reassessment 
of the risk from commercial nuclear power plants, 
which is known as NUREG-1150 after a report number 
[10; 11], (iv) the NRC’s study of margins in reactor 
safety [12-18], (v) the NRC’s analysis of the LaSalle 
Nuclear Power Station as part of its Risk Methods In-
vestigation and Evaluation Program [19], (vi) the 
DOE’s performance assessment for the Waste Isolation 
Pilot Plant (WIPP) in support of a successful Compli-
ance Certification Application to the U.S. Environ-
mental Protection Agency (EPA) [20; 21], and (vii) the 
DOE’s performance assessment for the proposed re-
pository for high level radioactive waste at Yucca 
Mountain, Nevada, carried out in support of a licensing 
application to the NRC [22].  

The NRC’s WASH-1400 analysis is rightfully con-
sidered to be the seminal study in the analysis of com-
plex systems. After its completion, the NRC commis-
sioned a review of the WASH-1400 analysis known as 
the Lewis Committee Report after the chairman of the 
review committee [23]. This review was highly com-
plimentary with respect to the overall WASH-1400 

analysis but noted that the analysis had inadequately 
represented the (epistemic) uncertainty in its results. 
This led to an extensive interest in the appropriate in-
corporation of epistemic uncertainty into analyses for 
complex systems and significantly influenced the 
NRC’s program to develop a risk assessment method-
ology to assess the geologic disposal of high-level ra-
dioactive waste [24-26], the NRC’s development of the 
MELCOR code system for the analysis of nuclear reac-
tor accidents [27-29], and the design and implementa-
tion of the analyses indicated in (iii) − (vii) above. 
Similarly to the analyses in (iii) − (vii), NNSA’s man-
date for QMU is effectively one more descendent of the 
WASH-1400 analyses and the associated Lewis Com-
mittee Report.  

Additional information on the development of risk 
assessment methods for complex systems is available in 
the excellent review by Rechard [8], which is repro-
duced in App. A. The recent review by Zio is also a 
valuable source of background and perspectives on risk 
and reliability analysis for complex systems [30]. Fur-
ther, the book by Bernstein is highly recommended for 
a broader perspective on the evolution of the ideas un-
derlying the assessment of risk [31].  

The QMU process also quite naturally falls into a 
broad area of study known as uncertainty and sensitiv-
ity analysis, where uncertainty analysis refers to the 
determination of the uncertainty in analysis results that 
derives from uncertainty in analysis inputs and sensitiv-
ity analysis refers to the determination of the contribu-
tions of the uncertainty in individual analysis inputs to 
the uncertainty in analysis results. The uncertainty be-
ing referred to in the preceding sentence is usually of an 
epistemic nature. Clearly, uncertainty analysis is a fun-
damental component of QMU; indeed, when viewed 
broadly, QMU is simply a call for uncertainty analyses 
focused on margins (i.e., differences between required 
performance and obtainable performance) associated 
with the assessment of nuclear weapon reliability and 
performance. However, sensitivity analysis is also a 
fundamental part of QMU as indicated by reference to 
“identification and prioritization of actions” in Quote 
(NNSA-1) and “assessment of the relationship between 
margin and uncertainties” in Quote (NNSA-3). Specifi-
cally, the indicated actions require a sensitivity analysis 
to determine the effects of the uncertainty in individual 
analysis inputs on the uncertainty in analysis results of 
interest (e.g., margins). 

As a result of its fundamental importance in analy-
ses of complex systems, a number of approaches to 
uncertainty and sensitivity analysis have been devel-
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oped, including differential analysis [32-37], response 
surface methodology [38-44], Monte Carlo analysis 
[29; 45-56], and variance decomposition procedures 
[57-61]. Overviews of these approaches are available in 
several reviews [62-71]. Of the indicated approaches to 
uncertainty and sensitivity analysis, sampling-based 
(i.e., Monte Carlo) approaches are likely to be the most 
generally useful in QMU analyses. As an introduction 
to analyses of this type, the review by Helton et al. [56] 

is reproduced in App. B. This review provides back-
ground and additional references on many of the ideas 
introduced in this presentation.  

A number of presentations discussing the QMU 
process are available [2; 72-77]. Of particular impor-
tance is the recently published National Academy of 
Science/National Research Council (NAS/NRC) report, 
which provides an overview of, and a broad perspective 
on, QMU at the national security laboratories [77]. 
However, these presentations tend to be written at a 
high level and, as a result, lack detail on the conceptual 
basis and computational organization that must underlie 
a real QMU analysis if that analysis is to be a manifes-
tation of a “scientific methodology” as indicated in 
Quote (NNSA-3).  

The purpose of this presentation is to describe the 
conceptual basis and computational organization of 
QMU analyses that use models to produce results that 
are then compared with requirements. The basic idea is 
that a QMU analysis must start with a clear understand-
ing of the conceptual (i.e., mathematical) model used to 
represent uncertainty. In turn, this model leads to (i) the 
manner in which the uncertainty in individual analysis 
inputs is characterized, (ii) the procedures that are used 

to propagate uncertainty through the analysis, (iii) the 
procedures that are available for sensitivity analysis, 
and (iv) the interpretations and representations that are 
available for analysis results of interest (e.g., margins). 
It is important to recognize that in most real analyses 
there will probably be many results of interest in addi-
tion to a single margin that is the outcome of comparing 
a single calculated result with a single requirement. 

The presentation is organized as follows. First, the 
important concepts of aleatory and epistemic uncer-
tainty are discussed (Sect. 2). Next, the use of probabil-
ity in the representation of uncertainty is described and 
two example problems are introduced that will be used 
to illustrate different potential QMU analyses (Sect. 3). 
Specifically, the first example problem involves only 
epistemic uncertainty and is used to illustrate QMU 
analyses that involve only epistemic uncertainty (Sect. 
4). The second example problem involves both aleatory 
and epistemic uncertainty and is used to illustrate QMU 
analyses that involve both aleatory and epistemic uncer-
tainty (Sect. 5).  For added perspective, the presence of 
QMU-type margin analyses in several real, complex 
and computationally-demanding analyses are also de-
scribed (Sect. 6); further, additional details on these 
analyses are presented in three appendices (Apps. C, D 
and E).  A description of uncertainty and sensitivity 
analysis procedures that underlie sampling-based QMU 
analyses is then provided (Sect. 7). Next, alternative 
mathematical structures for the representation of uncer-
tainty are described (Sect. 8) and then illustrated with 
notional QMU analyses involving only epistemic uncer-
tainty (Sect. 9) and both aleatory and epistemic uncer-
tainty (Sect. 10). The presentation then ends with a 
summary discussion (Sect. 11).  
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2 Types of Uncertainty 

In the design and implementation of analyses for 
complex systems, it is useful to distinguish between 
two types of uncertainty:  aleatory uncertainty and epis-
temic uncertainty [78-90]. The importance of this dis-
tinction is recognized by the NNSA in Quote (NNSA-4) 
and also emphasized in the NAS/NRC report on QMU 
(Finding 1-3, pp. 22-23, Ref. [77]). 

Aleatory uncertainty arises from an inherent ran-
domness in the properties or behavior of the system 
under study.  For example, the weather conditions at the 
time of a reactor accident are inherently random with 
respect to our ability to predict the future. Other exam-
ples include the variability in the properties of a popula-
tion of weapon components and the variability in the 
possible future environmental conditions that a weapon 
component could be exposed to. Alternative designa-
tions for aleatory uncertainty include variability, sto-
chastic, irreducible and type A. 

Epistemic uncertainty derives from a lack of know-
ledge about the appropriate value to use for a quantity 
that is assumed to have a fixed value in the context of a 
particular analysis.  For example, the pressure at which 
a given reactor containment would fail for a specified 
set of pressurization conditions is fixed but not amena-
ble to being unambiguously defined. Other examples 
include minimum voltage required for the operation of 
a system and the maximum temperature that a system 
can withstand before failing. Alternative designations 
for epistemic uncertainty include state of knowledge, 
subjective, reducible and type B. 

The appropriate separation of aleatory and epis-
temic uncertainty is an important component of the 
design and computational implementation of an analy-
sis of a complex system and also of the decisions that 
are made on the basis of this analysis. This point can be 
made with a simple notional example. Suppose an 
analysis concludes that the probability of a particular 
component failing to operate correctly is 0.01. Without 
the specification of additional information, there are 
two possible interpretations to the indicated probability. 
The first interpretation, which is inherently aleatoric, is 
that 1 in every 100 components of this type will fail to 
operate properly; or, put another way, there is a prob-
ability of 0.99 that a randomly selected component will 

operate properly and a probability of 0.01 that a ran-
domly selected component will not operate properly. 
The second interpretation, which is inherently epis-
temic, is that there is a probability of 0.99 that all com-
ponents of this type will operate properly and a prob-
ability of 0.01 that no components of this type will op-
erate properly. Clearly, the implications of the two in-
terpretations of the indicated probability are very dif-
ferent, and as a consequence, any resultant decisions 
about the system under study can also be expected to be 
very different. 

The analysis of a complex system typically in-
volves answering the following three questions about 
the system: 

 What can happen? (Q1) 

 How likely is it to happen? (Q2) 

 What are the consequences if it happens? (Q3) 

and one additional question about the analysis itself: 

How much confidence exists in the answers  
to the first three questions? (Q4) 

The answers to Questions (Q1) and (Q2) involve the 
characterization of aleatory uncertainty, and the answer 
to Question (Q4) involves the characterization of epis-
temic uncertainty.  The answer to Question (Q3) typi-
cally involves numerical modeling of the system condi-
tional on specific realizations of aleatory and epistemic 
uncertainty. The posing and answering of Questions 
(Q1) − (Q3) gives rise to what is often referred to as the 
Kaplan-Garrick ordered triple representation for risk 
[89], which is discussed in more detail in Sect. 3.7. 

The use of probability to characterize both aleatory 
uncertainty and epistemic uncertainty is described and 
illustrated in Sects. 3 − 6 and can be traced back to at 
least the beginning of the formal development of prob-
ability theory in the late seventeenth century [31; 91; 
92].  However, as discussed in Sect. 8 and illustrated in 
Sects. 9 and 10, several alternative mathematical struc-
tures for the representation of epistemic uncertainty 
have been developed in the last several decades.  It is 
possible that some of these alternative structures may 
be more appropriate than probability in certain contexts 
for the representation of epistemic uncertainty. 
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3 Representation of Uncertainty with 
Probability 

The following topics related to the representation of 
uncertainty with probability are now introduced: prob-
ability spaces, cumulative distribution functions and 
complementary cumulative distribution functions (Sect. 
3.1), the basic entities that underlie an analysis that in-
volves a representation of uncertainty (Sect. 3.2), analy-
sis in the presence of only epistemic uncertainty (Sect. 
3.3), an example analysis in the presence of only epis-
temic uncertainty (Sect. 3.4), analysis in the presence of 
aleatory and epistemic uncertainty (Sect. 3.5), an exam-
ple analysis in the presence of aleatory and epistemic 
uncertainty (Sect. 3.6), the Kaplan-Garrick ordered triple 
representation for risk (Sect. 3.7), verification and valida-
tion (Sect. 3.8), and an admonition about the importance 
of a clear specification of concepts in the representation 
of uncertainty (Sect. 3.9).  

The NAS/NRC report on QMU emphasizes the 
importance of formal uncertainty quantification (Find-
ing 1-2, p. 20, Ref. [77]). The concepts and mathemati-
cal structures introduced in this section are fundamental 
to such quantification. 

3.1 Probability Spaces, Cumulative 
Distribution Functions and 
Complementary Cumulative 
Distribution Functions 

Probability provides the mathematical structure 
traditionally used to represent both aleatory uncertainty 
and epistemic uncertainty [78; 80; 83; 86; 87]. For-
mally, a probabilistic characterization of the uncertainty 
associated with a quantity x is provided by a probability 
space (X, X, pX), where (i) X is the set of all possible 
values for x, (ii) X is a suitably restricted set of subsets 
of X for which probability is defined, and (iii) pX is a 
function that defines probability for individual elements 
of X (i.e., if U ∈ X, then pX(U) is the probability of U) 
(Sect. IV.4, Ref. [93]).  Additional discussion of prob-
ability spaces is provided in Sect. 8.4. 

In practice, a probability space (X, X, pX) is often 
represented by a density function dX(x), where 

( ) ( )dX Xp d U= ∫ � x
U

U  (3.1) 

for U ∈ X. Integrals of the form appearing in Eq. (3.1)
are usually taken to be Lebesgue integrals in formal 
developments of probability theory (e.g., [93; 94]).  
However, for the purposes of this presentation, all pre-

sented integrals can be intuitively thought of as corre-
sponding to the Riemann integral of elementary calcu-
lus. In computational practice, high-dimensional inte-
grals involving probability spaces are usually evaluated 
with sampling-based (i.e., Monte Carlo) procedures. 

When x corresponds to a scalar x rather than a vec-
tor, a probability space (X, X, pX) can be summarized 
with a cumulative distribution function (CDF) or a com-
plementary cumulative distribution function (CCDF).  
Specifically, the CDF and CCDF for x are defined by 
plots of the points 

( ) ( ),  and , ,c
X x X xx p x p⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

U U  (3.2) 

respectively, for x ∈ X, where 

 xU  = { }:  and ,x x x x∈ ≤� � �X  
 ( )X xp U  =  probability of Ux (i.e., of a value �x ≤ x) 
  = ( ) d∫ � �X

x
d x x

U
 

  = ( ) ( ) d ,δ∫ � � �x Xx d x x
X

 

 ( )c
X xp U  =  probability of c

xU  (i.e., of a value �x > x) 
  = ( ) d∫ � �c X

x
d x x

U
 

  = ( ) ( ) d ,δ∫ � � �x Xx d x x
X

 

 ( )δ �x x  = 
1 if 
0 otherwise

≤⎧
⎨
⎩

�x x
 

and 

 ( )δ �x x  = ( ) 1 if 
1

0 otherwise.x
x x

xδ
>⎧

− = ⎨
⎩

�
�  

Further, it is usually assumed for plotting purposes that 
(i) pX(Ux) = 1 and ( ) 0c

X xp =U  for x > sup (X) and (ii) 
pX(Ux) = 0 and ( ) 1c

X xp =U  for x < inf(X).  

The results of risk assessments are often summa-
rized with CCDFs because CCDFs provide an answer 
to the question “How likely is it to be this large or lar-
ger?”, which is typically the type of question that risk 
assessments are intended to answer. In contrast, CDFs 
answer the question “How likely is it to be this small or 
smaller?”, which is likely to be the question of primary 
interest in a margin analysis. 

As an example, the CDF and CCDF for x with a 
loguniform distribution on [2, 10] is presented in Fig. 
3.1.  For this example, 
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Fig. 3.1. Example CDF and CCDF for variable x with 

(i) a loguniform distribution on [2, 10] and 
(ii) pX( �x ≤ x) and pX(x < �x) used as mnemon-
ics for the probabilities pX(Ux) and ( )c

X xp U  
defined in conjunction with Eq. (3.2). 

( ) ( ) ( )1 ln 10 2 1 ln 5 , 2 10,⎡ ⎤ ⎡ ⎤= = ≤ ≤⎣ ⎦ ⎣ ⎦Xd x x x x
(3.3)

 

is the corresponding density function, and the probabili-
ties pX(Ux) and ( )c

X xp U  that define the CDF and 
CCDF are given by 

( ) ( ){ } ( ) ( )2
1 ln 5 d ln 2 ln 5

x
X xp x x x⎡ ⎤= =⎣ ⎦∫ � �U  (3.4) 

and 

( ) ( ){ } ( ) ( )10
1 ln 5 d ln 10 ln 5 ,c

X x x
p x x x⎡ ⎤= =⎣ ⎦∫ � �U  (3.5) 

respectively, for 2 ≤ x ≤ 10. In practice, most probabil-
ity spaces and their associated density functions are too 
complex to permit simple closed form representations 
as shown in Eqs. (3.4) and (3.5); rather, CDFs and 
CCDFs must be determined through the use of various 
numerical procedures. 

Other summary measures for the distribution of x 
(i.e., for the probability space (X, X, pE)) include the 
expected value EX(x) for x, the variance VX(x) for x, and 
the q quantile QXq(x) for x, where 

( ) ( ) d ,X XE x x d x x= ∫ � � �
X

 (3.6) 

( ) ( ) ( )2
d ,X X XV x x E x d x x⎡ ⎤= −⎣ ⎦∫ � � �

X
 (3.7) 

and QXq(x) corresponds to the value of x for which 

( ) ( ) ( )d .X x x Xq p x d x xδ= = ∫ � � �
X

U  (3.8) 

Conceptually, the q quantile QXq(x) corresponds to the 
value of x obtained by (i) starting at q on the ordinate of 
the CDF for x, (ii) drawing a horizontal line to the CDF, 
and (iii) then drawing a vertical line down to the ab-
scissa.  The value for x at the point where the indicated 
vertical line intersects the abscissa corresponds to the q 
quantile QXq(x) for x (Fig. 3.1). 

In most analyses, the result of interest is a function 

( )=y xf  (3.9) 

of uncertain analysis inputs.  If x is uncertain as quanti-
fied by a probability space (X, X, pX), then y is also 
uncertain, with this uncertainty quantified by a prob-
ability space (Y, Y, pY) that derives from the function 
f(x) and the probability space (X, X, pX) for x.  In con-
cept, it is possible to derive the probability space (Y, Y, 
pY).  In practice, (Y, Y, pY) is usually approximated 
with sampling-based procedures (see Sects. 7.2 − 7.4 
and additional discussion in Refs. [55; 56]). 

If y corresponds to a scalar y or y is a component 
of the vector y, then the uncertainty in y that derives 
from the uncertainty in x is usually represented by a 
CDF or a CCDF that summarizes the corresponding 
probability space (Y, Y, pY) for y. Specifically, the CDF 
and CCDF for y are defined by plots of the points 

( ) ( ),  and , ,c
Y y Y yy p y p⎡ ⎤⎡ ⎤

⎢ ⎥⎣ ⎦ ⎣ ⎦
U U  (3.10) 

respectively, for y ∈ Y, where 

 yU  = { }:  and ,∈ ≤� � �y y y yY  
( )Y yp U  = probability of Uy (i.e., of a value �y  ≤ y) 

  = ( ) ( )dδ ⎡ ⎤⎣ ⎦∫ x xy Xf d X
X  

  ≅ ( )
1

δ
=

⎡ ⎤⎣ ⎦∑ x
nSX

y i
i

f nSX
 

  = ( )ˆ ,Y yp U
 

( )c
Y yp U  = probability of c

yU  (i.e., of a value �y  > y) 

  = ( ) ( )dδ ⎡ ⎤⎣ ⎦∫ x xy Xf d X
X
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Fig. 3.2. Example CDF and CCDF for y = f(x) = 2

1x  + 
2x1x2 + 2

2x  generated with (i) a random sam-
ple xi = [xi1, xi2], i = 1, 2, …, 100, from uni-
form distributions on [0, 2] for x1 and x2 and 
(ii) ˆ Xp [f(x) ≤ y] and ˆ Xp [y < f(x)] used as 
mnemonics for the estimated probabilities 
ˆ ( )Y yp U  and ˆ ( )c

Y yp U  defined in conjunction 
with Eq. (3.10) to emphasize the dependence 
of pY(Uy) and ( )c

Y yp U  on the probability 
space (X, X, pX). 

  ≅ ( )
1

δ
=

⎡ ⎤⎣ ⎦∑ x
nSX

y i
i

f nSX
 

  = ( )ˆ ,c
Y yp U  

δ y and δ y are defined analogously to δ x and δx in con-
junction with Eq. (3.2), and xi, i = 1, 2, …, nSX, is a 
sample from X generated in a manner consistent with the 
probability space (X, X, pX). The sampling-based (i.e., 
Monte Carlo) approximations to pY(Uy) and ( )c

Y yp U  are 
introduced because, in general, the defining integrals for 
pY(Uy) and ( )c

Y yp U  will be high-dimensional and thus 
too complex for a closed-form or quadrature-based eval-
uation. 

As an example, approximations to the CDF and 
CCDF for 

( ) 2 2
1 1 2 22= = + +xy f x x x x  (3.11) 

generated with a random sample 

1 2, , 1, 2, , 100,= = =⎡ ⎤⎣ ⎦x …i i ix x i nSX  (3.12) 

from uniform distributions on [0, 2] for x1 and x2 are 
shown in Fig. 3.2. 

Similarly to the summary measures for x in Eqs. 
(3.6) – (3.8), additional summary measures for the dis-
tribution of y = f(x) (i.e., for the probability space (Y, 
Y, pY) include the expected value EY(y) for y, the vari-
ance VY(y) for y,and the q quantile QYq(y) for y, where 

( ) ( )
( ) ( ) d ,

Y X

X

E y E f

f d X

= ⎡ ⎤⎣ ⎦

= ∫ � �
X

x

x x
 (3.13) 

( ) ( )

( ) ( ){ } ( )2
d ,

Y X

X X

V y V f

f E f d X

= ⎡ ⎤⎣ ⎦

= − ⎡ ⎤⎣ ⎦∫ � �
X

x

x x x
 (3.14) 

and QYq(y) = QXq[f(x)] corresponds to the value of y for 
which 

( ) ( ) ( )d .Y y y Xq p f d Xδ ⎡ ⎤= = ⎣ ⎦∫ � �x x
X

U  (3.15) 

In practice, QYq(y) is usually approximated by the value 
y such that 

( ) ( )
1

,δ
=

⎡ ⎤= ≅ ⎣ ⎦∑ x
nSX

Y y y i
i

q p f nSXU  (3.16) 

where xi, i = 1, 2, …, nSX, is a sample from X gener-
ated in a manner consistent with the probability space 
(X, X, pX) as illustrated in Fig. 3.2. Further, EY(y) and 
VY(y) can be approximated in a similar manner with the 
indicated sample. 

3.2 Basic Entities Underlying an Analysis 

The posing and answering of Questions (Q1) – 
(Q4) introduced in Sect. 2 gives rise to an analysis pre-
dicated on three basic entities [95; 96]: 

A probabilistic characterization of  
aleatory uncertainty,  (EN1) 

A model that predicts system behavior,  (EN2) 

and 

A probabilistic characterization of  
epistemic uncertainty. (EN3) 

Formally, (EN1) corresponds to a probability space (A, 
A, pA) for aleatory uncertainty and provides the an-
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swers to Questions (Q1) and (Q2):  “What can hap-
pen?” and “How likely is it to happen?”; (EN2) corre-
sponds to a function f (e.g., the solution of a system of 
differential or partial differential equations) that deter-
mines analysis outcomes of interest and provides the 
answer to Question (Q3):  “What are the consequences 
if it does happen?”; and (EN3) corresponds to a prob-
ability space (E, E, pE) for epistemic uncertainty and 
provides the basis for answering Question (Q4):  “How 
much confidence exists in the answers to the first three 
questions?” 

The sample space A for the probability space (A, 
A, pA) for aleatory uncertainty is a set of the form 

{ }1 2: , , , ,= = ⎡ ⎤⎣ ⎦a a … nAa a aA  (3.17) 

where each vector a contains the defining properties 
(e.g., time, size, location, …) for a single random oc-
currence associated with the system under study.  In 
practice, (A, A, pA) is usually defined by specifying 
probability distributions that characterize the occur-
rence of the individual components of a and hence the 
occurrence of the individual elements of A.  Further, 
the value of nA (i.e., the dimension of a) may change 
for different elements of A.  For example, the elements 
of A might be of the form 

1 1 2 2, , , , , , , ,= ⎡ ⎤⎣ ⎦a p p p… n nn t t t  (3.18) 

where n is the number of occurrences of a Poisson 
process over a specified period of time, ti is the time of 
the ith occurrence, and pi is a vector of properties asso-
ciated with the ith occurrence.  When needed, the den-
sity function associated with the probability space (A, 
A, pA) is represented by dA(a). 

Similarly, the sample space E for the probability 
space (E, E, pE) for epistemic uncertainty is a set of the 
form 

{ }1 2: , , , ,= = ⎡ ⎤⎣ ⎦e e … nEe e eE  (3.19) 

where each vector e contains possible values for the nE 
epistemically uncertain variables under consideration. 
When needed, the density function associated with the 
probability space (E, E, pE) is represented by dE(e). 

In practice, (E, E, pE) is usually defined by specify-
ing probability distributions that characterize the epis-
temic uncertainty associated with the individual com-
ponents of e. Specifically, the distributions for the ele-

ments of e are providing a quantitative characterization 
of degrees of belief based on all available information 
with respect to where appropriate values of these ele-
ments are located for use in the analysis under consid-
eration. The development of these distributions often 
involves an extensive expert review process [97-103]. 
The importance of expert review and judgment in the 
characterization of epistemic uncertainty is specifically 
recognized in the NAS/NRC report on QMU (Finding 
1-5, p. 30, Ref. [77]).  

In many analyses, e has the form 

[ ], ,=e e eA M  (3.20) 

where  

1 2 ,, , ,⎡ ⎤= ⎣ ⎦e e e e…A A A A nEA  

is a vector of nEA epistemically uncertain quantities 
used in the characterization of aleatory uncertainty 
(e.g., an imprecisely known rate λ that defines a Pois-
son process) and  

1 2 ,, , ,⎡ ⎤= ⎣ ⎦e e e e…M M M M nEM  

is a vector of nEM epistemically uncertain quantities 
used in the modeling of one or more physical processes 
(e.g., an imprecisely known thermal conductivity).  

In some situations involving margin analyses, it 
may be appropriate to further decompose eM into 

[ ], ,M R P=e e e  (3.21) 

where eR is a vector of epistemically uncertain quanti-
ties used in the definition of the requirements that un-
derlie the margins under consideration and eP is a vec-
tor of epistemically uncertain quantities that correspond 
to model parameters. The possible presence of epis-
temic uncertainty in the definition of requirements is 
specifically recognized by the NNSA is Quote (NNSA-
3). Also, the NAS/NRC report on QMU recognizes the 
possibility of epistemic uncertainty in a requirement in 
a notional example involving the determination of a 
margin (pp. 25-26, Ref. [77]). 

When e has the form e = [eA, eM] indicated in Eq. 
(3.20), the analysis in effect has two probability spaces 
for epistemic uncertainty:  a probability space (EA, EA, 
pEA) that characterizes the uncertainty in eA, and a 
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probability space (EM, EM, pEM) that characterizes the 
uncertainty in eM.  In turn, 

= ×E EA EM� (3.22) 

is the sample space for the probability space (E, E, pE).  
In practice, the probability spaces (EA, EA, pEA) and 
(EM, EM, pEM) are defined by assigning distributions 
to the components of eA and eM, respectively, which in 
effect also defines the probability space (E, E, pE).  
Although the probability spaces (EA, EA, pEA) and 
(EM, EM, pEM) are incorporated into the probability 
space (E, E, pE), it is often convenient to maintain their 
separate identities for conceptual and notational pur-
poses.  When needed, the density functions associated 
with (EA, EA, pEA) and (EM, EM, pEM) are repre-
sented by dEA(eA) and dEM(eM), respectively. As a re-
minder, a different probability space (A, A, pA) for 
aleatory uncertainty with corresponding density func-
tion dA(a|eA) results for each element eA of EA.  

As previously indicated, the probability spaces (A, 
A, pA) and (E, E, pE) correspond to the Entities (EN1) 
and (EN3).  In turn, Entity (EN2) corresponds to a func-
tion of the form 

 

( )
( ) ( ) ( )

( )
1 2

,

, , , , , ,

, ,

M

M M nY M

M

t

y t y t y t

t

⎡ ⎤= ⎣ ⎦

=

…

y a e

a e a e a e

f a e

 

 (3.23) 

where a ∈ A, E = EA × EM as indicated in Eq. (3.22), 
eM ∈ EM, t corresponds to time with the assumption 
that time-dependent results are under consideration, and 
the vertical line in y(t|a, eM) is used to indicate the 
concept of “conditional on”.   Further, in a QMU analy-
sis, one or more elements of y(t|a, eM) will either be 
margins or analysis results used in the definition of 
margins.  In most real analyses, the number of results 
under consideration (i.e., nY) is likely to be very large.  
However, for notational simplicity, a real-valued result 

( ) ( ), ,=a e a aM My t f t  (3.24) 

is assumed to be under consideration. 

The uncertainty associated with y(t|a, eM) is often 
studied in one of two contexts.  In the first context, a is 
assumed to be fixed, and the uncertainty in y(t|a, eM) 
that derives from the epistemic uncertainty associated 
with eM is analyzed.  In essence, this context involves 

only the Entity (EN2) corresponding to the function 
y(t|a, eM) and the Entity (EN3) corresponding to the 
probability space (EM, EM, pEM) that characterizes the 
epistemic uncertainty associated with eM.  The Entity 
(EN1) corresponding to the probability space (A, A, 
pA) that characterizes the aleatory uncertainty associ-
ated with a does not enter into the analysis as a result of 
fixing a at a specific value. 

In the second context, a is not assumed to be fixed, 
and the distributions of y(t|a, eM) that derive from the 
aleatory uncertainty associated with a characterized by 
probability spaces (A, A, pA) conditional on specific 
values for e = [eA, eM] are central to the analysis.  In 
this context, all three entities are present, with the anal-
ysis involving distributions that derive from epistemic 
uncertainty for (i) CDFs and CCDFs that derive from 
aleatory uncertainty or (ii) summary quantities (e.g., 
expected values, quantiles) for CDFs and CCDFs that 
derive from aleatory uncertainty.  Specifically, each 
CDF and each CCDF indicated in the preceding sen-
tence derives from aleatory uncertainty conditional on a 
specific value for e = [eA, eM]; in turn, the epistemic 
uncertainty associated with e and characterized by the 
probability space (E, E, pE) results in distributions of 
these CDFs and CCDFs and also in distributions of 
quantities such as means and variances that summarize 
these CDFs and CCDFs.  The preceding distributions 
that derive from epistemic uncertainty are the focus of 
study in this second analysis context. 

The two indicated analysis contexts are discussed in 
the next four sections (Sects. 3.3 − 3.6).  However, most 
large analyses that involve both aleatory uncertainty and 
epistemic uncertainty will have various subanalyses that 
involve each of these analysis contexts. Specifically, 
some subanalyses will be carried out conditional on spe-
cific realizations of aleatory uncertainty (i.e., analyses in 
the sense of the first context as discussed in Sects. 3.3 
and 3.4) and some subanalyses will be carried out that 
address the epistemic uncertainty associated with results 
that derive from aleatory uncertainty (i.e., analyses in the 
sense of the second context as discussed in Sects. 3.5 and 
3.6). 

3.3 Analysis in the Presence of Only 
Epistemic Uncertainty 

This section presents a formal description of the 
representation of uncertainty in an analysis that in-
volves only epistemic uncertainty. The following sec-
tion (Sect. 3.4) then presents a simple example illustrat-
ing the formal concepts presented in the present section. 
If desired, Sect. 3.4 can be read before Sect. 3.3, with 
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Sect. 3.3 being referred to only when a more technical 
description of the results in Sect. 3.4 is desired. The 
importance of the quantification of the epistemic uncer-
tainty in analysis results that derives from epistemic 
uncertainty in analysis inputs is emphasized in the 
NAS/NRC report on QMU (Recommendation 1-2, p. 
22, Ref. [77]). 

The CDF and CCDF introduced in the first analysis 
context at the end of the preceding section and condi-
tional on specific values for t and a are defined as indi-
cated in Eq. (3.10). Specifically, the CDF and CCDF 
for y(t|a, eM) that derive from the different possible 
values for eM are defined by plots of the points 

( ){ } ( ){ },  and , ,c
EM y EM yy p t y p t⎡ ⎤⎡ ⎤

⎣ ⎦ ⎣ ⎦U Ua a  (3.25) 

respectively, for  y ∈ Y (t|a), where 

 ( )atY  = ( ){ }: ,  for ,= ∈a e eM My y y t EM  

 ( )ay tU  = ( ){ }:  and y y ,∈ ≤a� � �y y tY  

( )⎡ ⎤
⎣ ⎦aEM yp t� U  = probability of ( )ay tU  (i.e., of a 
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δ y and δ y  are defined analogously to xδ and δx in con-
junction with Eq. (3.2), and eMi, i = 1, 2, …, nSE, is a 
sample from EM generated in a manner consistent with 
the probability space (EM, EM, pEM) and its associated 
density function dEM(eM).  The result is a CDF and 
CCDF of the form shown in Fig. 3.2 that summarize the 

epistemic uncertainty in y(t|a, eM) that derives from the 
epistemic uncertainty in eM characterized by the prob-
ability space (EM, EM, pEM).  

The CDF and CCDF defined in Eq. (3.25) can also 
be summarized with various real-valued quantities, in-
cluding an expected value EEM[y(t|a, eM)], a variance 
VEM[y(t|a, eM), and selected quantiles QEMq[y(t|a, 
eM)].  As described in Eqs. (3.13) –  (3.16), 

( ) ( ) ( )
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nSE
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⎡ ⎤ =⎣ ⎦

≅

∫
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a e a e e

a e
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 ( )ˆ , ,EM ME y t⎡ ⎤= ⎣ ⎦a e   (3.26) 
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 (3.27)  

and QEMq[y(t|a, eM) corresponds to the value y such 
that 

( )
( ) ( )
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a e e

a e

EM
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 (3.28) 

where eMi, i = 1, 2, …, nSE, is the sample indicated in 
conjunction with Eq. (3.25). 

As discussed in Sect. 7 and in greater detail in Ref. 
[56], the sample eMi, i = 1, 2, …, nSE, also provides the 
basis for the implementation of a variety of sensitivity 
analysis procedures. The use of such procedures is a 
natural and important part of any sampling-based un-
certainty analysis. The importance and usefulness of 
appropriate sensitivity analyses is emphasized in the 
NAS/NRC report on QMU (pp. 14-15, Ref. [77]). 

3.4 Example Analysis in the Presence of 
Only Epistemic Uncertainty 

A simple example is now presented to illustrate the 
concepts introduced in Sect.3.3.  This example will also 
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Fig. 3.3. Solution Q(t) shown in Eq. (3.31) to differen-

tial equation in Eq. (3.29) obtained with L = 1 
henry, R = 100 ohms, C = 10−4 farads, E0 = 
1000 volts, and λ = 0.1 s−1. 

be used in Sects. 4 and 9 to illustrate potential QMU 
analyses involving only epistemic uncertainty. 

The example is based on a closed electrical circuit 
that is under consideration for some unstated realization 
a of aleatory uncertainty.  For example, a might simply 
correspond to nominal (i.e., unperturbed) conditions for 
the system under study.  Specifically, the behavior of 
this circuit is described by a differential equation 

( )
( ) ( )

2 2
0d d d d exp

      0 0, d 0 d 0,

λ+ + = −

= =

L Q t R Q t Q C E t

Q Q t
 (3.29) 

where 

 Q(t) = electrical charge (coulombs) at time t 
(s), 

 L = inductance (henrys), 
 R = resistance (ohms), 
 C = capacitance (farads), 
 E0exp(−λt) = electromotive force (volts), 
 dQ/dt = current (amperes). 

For this example, it is also assumed that R, L and C 
have values such that the inequality 

2 4 0− <R L C  (3.30) 

holds.  

The significance of the preceding inequality is that 
it results in Q(t) displaying a damped, oscillatory be-
havior.  In particular, the closed form solution to Eq. 
(3.29) when the inequality in Eq. (3.30) holds is 

( ) ( ) 2
1exp 2 cos 4 2Q t R L t c R L C L t

⎧ ⎡ ⎤⎪ ⎛ ⎞⎡ ⎤= − −⎨ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎪ ⎣ ⎦⎩
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2 sin 4 2c R L C L t
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( )1 expc tλ− −  (3.31) 

with 
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As an example, Q(t) is illustrated in Fig. 3.3 with L = 1 
henry, R = 100 ohms, C = 10−4 farads, E0 = 1000 volts, 
and λ = 0.1 s−1. 

For the examples of this section, the vector eM of 
epistemically uncertain analysis inputs for the model 
defined in Eqs. (3.29) – (3.31) is 

1 2 3 4 5 0, , , , , , , , ,λ= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦eM M M M M Me e e e e L R C E  
 (3.32) 

with eM1, eM2, …, eM5 used in place of L, R, …, λ to 
represent the elements of e when notationally conven-
ient. Incorporation of a and eM into the notation for 
Q(t) results in the representation Q(t|a, eM), with Q(t|a, 
eM) corresponding to the generic representation y(t|a, 
eM) in Eq. (3.24). 

The appropriate values for L, R, C, E0 and λ are as-
sumed to be contained in the intervals 

{ }
{ }

1 :

      : 0.8 1.2 henrys ,
mn mxL L L L

L L

= ≤ ≤

= ≤ ≤

EM
 (3.33) 

 
{ }
{ }

2 :

      : 50 100 ohms ,

= ≤ ≤

= ≤ ≤
mn mxR R R R

R R

EM
 (3.34) 



 

 28

0 1 2 3 4 5 6 7 8

εi4:

εi1:

εi2:
εi3:

 
Fig. 3.4. Illustration of sets Ei1, Ei2, Ei3 and Ei4 defined 

in Eqs. (3.38) – (3.41) with the interval [a, b] 
normalized to the interval [0, 8] for represen-
tational simplicity. 

{ }

{ }
3

4 4

:

        : 0.9 10 1.1 10  farads ,− −

= ≤ ≤

= × ≤ ≤ ×

mn mxC C C C

C C

EM
 (3.35) 

{ }
{ }

4 0 0

0 0

:

        : 900 1100 volts ,

= ≤ ≤

= ≤ ≤
mn mxE E E E

E E

EM
 (3.36) 

and 

{ }

{ }
5

1

:

        : 0.4 0.8 s ,

λ λ λ λ

λ λ −

= ≤ ≤

= ≤ ≤

mn mxEM
 (3.37) 

respectively. 

A probabilistic characterization of the epistemic 
uncertainty associated with L, R, …, λ is provided by a 
probability distribution defined on each of the preced-
ing intervals.  Specifically, four subintervals are con-
sidered for each of the intervals EMi, i = 1, 2, …, 5, 
defined in Eqs. (3.33) – (3.37): 

( )1 , 4 ,⎡ ⎤= − −⎣ ⎦i a b b aE  (3.38) 

( )2 4 , ,i a b a b⎡ ⎤= + −⎣ ⎦E  (3.39) 

( ) ( )3 8, 3 8 ,⎡ ⎤= + − − −⎣ ⎦i a b a b b aE  (3.40) 

( ) ( )4 3 8, 8 ,⎡ ⎤= + − − −⎣ ⎦i a b a b b aE  (3.41) 

where [a, b] corresponds to [Lmn, Lmx], [Rmn, Rmx], 
[Cmn, Cmx], [Emn, Emx] and [λmn, λmx] for i = 1, 2, 3, 4 
and 5, respectively (Fig. 3.4). For example and for a 
given element eMi of  eM, each of the preceding intevals 
could have been indicated by a different source as con-

taining the correct value to use for eMi in the analysis 
under consideration. 

In turn, the corresponding density function di(eMi) 
for the set EMi is given by  

( ) ( ) ( ) ( )
4

1
4 max mini Mi ij Mi ij ij

j
d e eδ

=

⎡ ⎤= −⎣ ⎦∑ E E  (3.42) 

under the assumption that the four sources that provided 
the intervals in Eqs. (3.38) − (3.41) for an element eMi 
of eM are equally credible, where 

( )
1 if 

0 otherwise.
δ

∈⎧⎪= ⎨
⎪⎩

Mi ij
ij Mi

e
e

E
 

The preceding specification for di(eMi) corresponds to 
defining a uniform distribution on each interval Eij and 
then weighting each distribution equally. The equal 
weighting derives from an assumption of equal credi-
bilty for the four sources of the intervals in Eqs. (3.38) 
− (3.41). The definition of the density functions di(eMi) 
in Eq. (3.42) results in the assignment of more probabil-
ity where the inervals supplied by the four sources 
overlap and less probability where the intervals do not 
overlap. The density functions di(eMi) in essence define 
probability spaces (EMi, EMi, pEM,i) for the variables 
eMi , i = 1, 2, …, 5. 

The set EM of possible values for eM  is given by 

1 2 3 4 5,= × × × ×EM EM EM EM EM EM  (3.43) 

where EM1, EM2, ..., EM5 are defined in Eqs. (3.33)  –
(3.37). In turn, EM has a probabilistic structure that de-
rives from the distributions characterizing the uncertainty 
in eMi, eM2, …, eM5.  Formally, this structure corresponds 
to a probability space (EM, EM, pEM) that, in effect, is 
defined by the density functions introduced in Eq. 
(3.42). 

The epistemic uncertainty associated with Q(t|a, 
eM) that derives from the probability space (EM, EM, 
pEM) is now considered.  As indicated in Eqs. (3.25) –
(3.28), this uncertainty can be characterized by various 
quantities defined by integrals over EM.  However, 
such integrals are difficult to determine in closed form 
(i.e., by use of antiderivatives in conjunction with the 
Fundamental Theorem of Calculus) because of the high 
dimensionality of eM and the complexity of the func 
tion being integrated. Instead, sampling-based methods 
are used in most analyses to determine these quantities. 
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Fig. 3.5. Solutions Q(t|a, eMi) to differential equation 

in Eq. (3.29) obtained with the first 50 ele-
ments of the LHS in Eq. (3.44) (i.e., with eMi  
for i = 1, 2, …, 50). 
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Fig. 3.6. Estimated CDF and CCDF for Q(0.1|a, eMi) (i) 

obtained with the LHS of size 200 in Eq. (3.44) 
generated from EM in consistency with the de-
fining density functions for the probability 
space (EM, EM, pEM) and (ii) presented with 
ˆEMp [Q(0.1|a, eM) ≤ Q] and ˆEMp [Q < Q(0.1|a, 
eM)] used as mnemonics for estimated prob-
abilities of the form ˆEMp [Uy(0.1|a)] and 
ˆEMp [ c

yU (0.1|a)] defined in conjunction with 
Eq. (3.25). 

Consistent with this approach, the present example 
uses a Latin hypercube sample (LHS) 

1 2 5, , , , 1, 2, , ,Mi Mi Mi Mie e e i nSE= =⎡ ⎤⎣ ⎦… …e  (3.44) 

of size nSE = 200 generated from EM in consistency 
with the probability space (EM, EM, pEM) (i.e., in con-
sistency with the distributions associated with the den-
sity functions defined in Eq. (3.42)). As discussed in 
Sect. 7 and in more detail in Refs. [45; 55; 56], Latin 
hypercube sampling is widely used in sampling-based 
uncertainty and sensitivity analyses involving computa-
tionally demanding models because of its efficient stra-
tification properties. In addition, this sampling-based 
approach also provides the basis for the application of a 
variety of sensitivity analysis procedures (see Sect. 7 
and Ref. [56]). 

The sample in Eq. (3.44) results in nSE = 200 time-
dependent results:  Q(t|a, eMi), i = 1, 2, … 200 (Fig. 
3.5).  The spread of the curves in Fig. 3.5 provides a 
nonquantitative indication of the epistemic uncertainty 
associated with Q(t|a, eM) that derives from the uncer-
tainty in eM as quantified by the probability space 
(EM, EM, pEM). Only 50 of the 200 time-dependent 
results for Q(t|a, eMi) are presented in Fig. 3.5 as pres-
entation of all 200 curves results in an almost solid 
band of overlapping curves that obscures the shape of 
the individual curves.   

A quantitative summary of the epistemic uncer-
tainty in Q(t|a, eM) that derives from the epistemic un-
certainty in eM is provided by the CDFs and CCDFs for 
Q(t|a, eM) at selected points in time.  As an example, 
approximations to the CDF and CCDF at t = 0.1 s ob-
tained with use of the sample in Eq. (3.44) are shown in 
Fig. 3.6.  Specifically, the CDF and CCDF in Fig. 3.6 
are constructed from the values for Q(0.1|a, eMi) asso-
ciated with the vertical line in Fig. 3.5 as described in 
conjunction with Eq. (3.25).  With respect to notation, 
the expressions ˆEMp [Q(0.1|a, eM) ≤ Q] and ˆEMp [Q < 
Q(0.1|a, eM)] on the ordinate of Fig. 3.6 correspond to the 
defining probabilities for the CDF and CCDF, respec-
tively, for Q(0.1|a, eM). Specifically, ˆEMp [Q(0.1|a, eM) ≤ 
Q] is the estimated probability that Q(0.1|a, eM) is less 
than or equal to a value Q on the abscissa, and ˆEMp [Q < 
Q(0.1|a, eM)] is the estimated probability that Q(0.1|a, eM) 
is greater than a value Q on the abscissa. The indicated 
probabilities are characterizing epistemic uncertainty and 
thus are indicating degrees of belief with respect to where 
the correct value for Q(0.1|a, eM) is located. Thus, for 
example, there is a “degree of belief” probability of 0.9 
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Fig. 3.7. Estimated time-dependent expected value and 

quantile curves for Q(t|a, eM) obtained with 
the LHS of size 200 in Eq. (3.44) generated 
from EM in consistency with the defining 
density functions for the probability space 
(EM, EM, pEM). 

that Q(0.1|a, eM) is located between the 0.05 and 0.95 
quantiles in Fig. 3.6. Further, the expected value and 
quantile values indicated in Fig. 3.6 are obtained as 
described in Eqs. (3.26) and (3.28), respectively. In this 
example, the expected value and median value are very 
close together; this is often not the case in analyses that 
involve substantial epistemic uncertainties. 

The presentation of CDFs and CCDFs of the form 
shown in Fig. 3.6 for multiple values of t is cumber-
some.  An effective alternative is to plot expected val-
ues and quantiles as functions of time (Fig. 3.7).  With 
this presentation format, expected values and quantiles 
as indicated in Fig. 3.6 are determined for a sequence of 
values for t and then plotted above these values to ob-
tain the expected value and quantile curves in Fig. 3.7.  
Specifically, the expected value curve in Fig. 3.7 is a 
plot of the points 

( )( )ˆ, , ,EM Mt E y t⎡ ⎤
⎣ ⎦a e  0 ≤ t ≤ 0.20, (3.45) 

with ˆ E ME [y(t|a, eM)] defined as indicated in Eq. (3.26), 
and the quantile curves in Fig. 3.7 are plots of points 

  
( )( )ˆ, , ,EMq Mt Q y t⎡ ⎤

⎣ ⎦a e  0 ≤ t ≤ 0.20, (3.46) 

for q = 0.05, 0.5 and 0.95 with ˆ
EMqQ [y(t|a, eM)] defined 

as indicated in Eq. (3.28). In this example, the expected 
value and median value (i.e., 0.5 quantile) curves al-
most exactly overlap. 

3.5 Analysis in the Presence of Aleatory 
and Epistemic Uncertainty 

This section presents a formal description of the 
representation of uncertainty in an analysis that in-
volves both aleatory and epistemic uncertainty. The 
following section (Sect. 3.6) then presents a simple 
example illustrating the formal concepts presented in 
the present section. If desired, Sect. 3.6 can be read 
before Sect. 3.5, with Sect. 3.5 being referred to only 
when a more technical description of the results in Sect. 
3.6 is desired.  

The analyses described in Sects. 3.5 and 3.6 in-
volve what the NAS/NRC report on QMU refers to as 
the “probability of frequency approach” and recom-
mends for use in QMU analyses (Recommendation 1-7, 
p. 33, and App. A, Ref. [77]). Specifically, the descrip-
tor “probability of frequency approach” designates an 
analysis in which a careful distinction and separation is 
maintained between the effects and implications of 
aleatory uncertainty and the effects and implications of 
epistemic uncertainty.   

The CDF and CCDF introduced in the second 
analysis context described in Sect. 3.2 and conditional 
on specific values for t and e = [eA, eM] are also de-
fined as indicated in Eq. (3.10). Specifically, the CDF 
and CCDF for y(t|a, eM) that derive from the different 
possible values for a are defined by the plots of the 
points 

( ){ } ( ){ },  and , ,⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦e e e ec

A y A A y Ay p t y p tU U  

  (3.47) 

respectively, for y ∈ Y(t|e), where 
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  = ( ) ( ), dδ ⎡ ⎤
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δ y and δ y are defined analogously to δx and δx in con-
junction with Eq. (3.2), and aj, j = 1, 2, …, nSA, is a 
sample from A generated in a manner consistent with 
the probability space (A, A, pA) and its associated den-
sity function dA(a|eA).  The result is a CDF and CCDF 
of the form shown in Fig. 3.2 that summarize the alea-
tory uncertainty in y(t|a, eM) that derives from the alea-
tory uncertainty in a characterized by the probability 
space (A, A, pA).  

In general, the set A could be, and often is, a func-
tion of elements of eA. In this case, the sets A and A  
would appropriately be represented by A(eA) and 
A(eA). Then, the representation for the probability 
space (A, A, pA) conditional on an element e = [eA, 
eM] of E would be [A(eA), A(eA), pA(U|eA)]. To reduce 
notational clutter, this fully general representation for 
(A, A, pA) is not used. Instead, the possible dependence 
of (A, A, pA) on the elements of eA is indicated through 
the use of the notations pA(U|eA) and dA(a|eA).   

Similarly to the CDF and CCDF defined in Eq. 
(3.10), the CDF and CCDF defined in Eq. (3.47) can 
also be summarized with various real-valued quantities, 
including an expected value EA[y(t|a, eM)|eA], a vari-
ance VA[y(t|a, eM)|eA] and selected quantiles QAq[y(t|a, 
eM)|eA].  The definitions of EA[y(t|a, eM)|eA], VA[y(t|a, 
eM)|eA] and QAq[y(t|a, eM)|eA] are effectively the same 
as the definitions for EEM[y(t|a, eM)], VEM[y(t|a, eM)] 
and QEMq[y(t|a, eM)] in Eqs. (3.26) – (3.28) with the 
only difference being that integrations are performed 
with respect to the probability space (A, A, pA) and its 
associated density function dA(a|eA) rather than with 
respect to the probability space (EM, EM, pEM) and its 
associated density function dEM(eM).  Specifically, 

( ) ( ) ( )

( )
1

, ,  d

,
=
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≅

∫

∑

a e e a e a e

a e
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and QAq[y(t|a, eM)|eA] and its approximation ˆ
AqQ [y(t|a, 

eM)|eA] correspond to the value y such that 
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where aj, j = 1, 2, …, nSA, is the sample indicated in 
conjunction with Eq. (3.47). 

Distributions of CDFs and CCDFs result from the 
different possible values for e = [eA, eM].  As indicated 
in conjunction with Eq. (3.47), each value for e results 
in a different CDF and associated CCDF that summa-
rize the effects of aleatory uncertainty.  In turn, these 
CDFs, CCDFs and their associated summary measures 
have distributions that characterize epistemic uncer-
tainty and derive from the epistemic uncertainty in e 
characterized by the probability space (E, E, pE). 

In general, the probability space (E, E, pE) will re-
sult in infinitely many CDFs and CCDFs of the form 
defined in conjunction with Eq. (3.47). Thus, some way 
of summarizing these CDFs and CCDFs is necessary.  
As illustrated in Sect. 3.6, this summary is provided by 
expected value curves and quantile curves (e.g., q = 
0.05, 0.5, 0.95) 
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for distributions of CDFs and CCDFs, respectively, 
where 
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[ , ],i Ai Mi=e e e  i = 1, 2, …, nSE, is a sample from E 
generated in a manner consistent with the probability 
space (E, E, pE) and its associated density function, and 
aij, j = 1, 2, …, nSA, is a sample from A generated in a 
manner consistent with the probability space (A, A, pA) 
and its associated density function dA(a|eAi) for each ei. 

Although not incorporated into the notation in use, the 
sample size nSA could change for each ei.   

An alternative summary is provided by reducing 
each CDF to its corresponding expected value EA[y |a, 
eM)|eA] as indicated in Eq. (3.48) and then presenting 
the CDF and CCDF for EA[y|a, eM)|eA]that result from 
the epistemic uncertainty associated with e = [eA, eM].  
Similarly to the results presented in conjunction with 
Eq. (3.10), the CDF and CCDF for [ ( , ) ]A M AE y t a e e  
are defined by plots of the points 
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and the samples ei = [eAi, eMi], i = 1, 2, …, nSE, and 
aij, j = 1, 2, …, nSA, are defined the same as indicated 
in conjunction with Eqs. (3.51) and (3.52). 

If desired, the reduction indicated in the preceding 
paragraph can be carried further by reducing the ex-
pected value EA[y(t|a, eM)|eA] over aleatory uncertainty 
defined in Eq. (3.48) to an expected value EE{EA[y(t |a, 
eM)|eA]} over aleatory and epistemic uncertainty de-
fined by 
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where the samples ei = [eAi, eMi], i = 1, 2, …, nSE, and 
aij,  j = 1, 2, …, nSA, are again defined the same as in 
conjunction with Eqs. (3.51) and (3.52). The expected 
value { [ ( , ) ]}E A M AE E y t a e e  is the result of reducing 
all the information associated with the probability space 
(E, E, pE) for epistemic uncertainty, the probability 
space (A, A, pa) for aleatory uncertainty and the func-
tion y(t|a, eM) to a single number. 

3.6 Example Analysis in the Presence of 
Aleatory and Epistemic Uncertainty 

A simple, randomly perturbed system is now pre-
sented to illustrate the concepts introduced in Sect. 3.5.  
This example will also be used in Sects. 5 and 10 to 
illustrate potential QMU analyses involving aleatory 
and epistemic uncertainty.  Further, the results from real 
analyses presented in Sect. 6 are of the form described 
in the present section. 

The system is assumed to receive random perturba-
tions in time whose occurrence is characterized as a 
stationary Poisson process with a rate λ (s–1).  The am-
plitudes (i.e., magnitudes) for the individual perturba-
tions are assumed to vary randomly and to undergo 
exponential decay in a manner characterized by a rate 
constant r (s–1).  In concept, any of a large variety of 
systems could be under consideration, with the result 
that the perturbation might involve a mechanical force, 
an electrical impulse, a radiation impulse, a heat im-
pulse, the injection of a material, or some additional 
possibility.  For notational convenience, the initial per-
turbations will be represented by A0 and assumed to 
have units of force (kg m/s2).  As a result of the indi-
cated exponential decay, 

( ) ( )0 0expA t A r t t⎡ ⎤= − −⎣ ⎦  (3.55) 

is the amplitude at time t of a perturbation of size A0 
that occurs at time t0.  Further, the amplitudes of the 
individual perturbations are assumed to be character-

ized by a triangular distribution defined on an interval 
[a, b] with a mode of m. 

This example involves both aleatory and epistemic 
uncertainty.  For a given time interval (e.g., [0, 10 s]), 
the different possible realizations of aleatory uncer-
tainty correspond to vectors of the form 

[ ]1 01 2 02 0, , , , , , , ,n nn t A t A t A= …a  (3.56) 

where (i) n is the number of perturbations that occur in 
the time interval, (ii) t1 < t2 < … < tn are the times at 
which the individual perturbations occur, and (ii) A01, 
A02, …, A0n are the initial amplitudes for the individual 
perturbations.  In turn, 

[ ]{ }1 01 2 02 0: , , , , , , ,n nn t A t A t A= = …a aA  (3.57) 

is the sample space for aleatory uncertainty, and the 
probabilistic structure required to formally complete the 
definition of the corresponding probability space (A, A, 
pA) derives from λ and the probability distribution for A0. 

For a given element a of A and a given value for r, 
the resultant amplitude A(t|a) at time t is given by 
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where ñ = max{ : }kk t t≤ . 

For this example, λ, a, m, b and r are assumed to 
be uncertain in an epistemic sense.  As a result, 

[ ] [ ] [ ]1 2 3 4 5, , , , , , , , ,λ= = =e e eA M e e e e e a m b r  (3.59) 

is the vector of epistemically uncertain variables under 
consideration, with eA = [λ, a, m, b] and eM = [r].  Spe-
cifically, λ, a, m and b are involved in the definition of 
probability distributions that characterize aleatory un-
certainty, and r relates to the physical processes in-
volved in the decay of an initial perturbation A0. 

The appropriate values for λ, a, m, b and r are as-
sumed to be contained in the intervals 
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Fig. 3.8. Estimated CDF and CCDF for amplitude 

A(10|a, 0.7) with eA = [1.0, 1.5, 3.0, 4.5] and 
eM = [0.7] (i) determined with a sample of size 
nSA = 10,000 from the set A of possible values 
for a conditional on e = [eA, eM] = [1.0, 1.5, 
3.0, 4.5, 0.7] and (ii) presented with ˆ Ap [A(10|a, 
0.7) ≤ A|eA] and ˆ Ap [A < A(10|a, 0.7)|eA] used 
as mnemonics for estimated probabilities of the 
form ˆ Ap [Uy(10|e)|eA] and ˆ Ap [ c

yU (10|e)|eA] de-
fined in conjunction with Eq. (3.47). 
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respectively.   

The resultant sample space for the vector e of epis-
temically uncertain variables is 

1 2 3 4 1= × × × ×E EA EA EA EA EM  (3.65) 

with EA1, EA2, …, EM1 defined in Eqs.  (3.60) – 
(3.64). Further, associated probability spaces (EAi, EAi, 
pEA,i), i = 1, 2, 3, 4, and (EM1, EM1, pEM,1) for the 
individual elements of e (i.e., λ, a, m, b and r) and also 
the probability space (E, E, pE) for e are defined in the 
same manner as for the elements of e = [L, R, C, E0, λ] 
in Eqs. (3.38) –  (3.42). 

For a given value for e = [λ, a, m, b, r], a distribu-
tion for A(t|a, eM) = A(t|a, r) over the possible values 
for a results for each time t as indicated in conjunction 
with Eq. (3.47). As an example, the CDF and CCDF for 
A(t|a, r) at t = 10 s conditional on e = [1.0, 1.5, 3.0, 4.5, 
0.7] (i.e., for A(10|a, 0.7)) is illustrated in Fig. 3.8.  The 
results in Fig. 3.8 were generated with a random sample 

aj, j = 1, 2, …, nSA, (3.66) 

of size nSA = 10,000 from A obtained in consistency 
with the distributions for perturbation time t and pertur-
bation magnitude A0 that derive from λ = 1.0 s–1, a = 
1.5 kg m/s2, m = 3.0 kg m/s2, and b = 4.5 kg m/s2 (i.e., 
from eA = [1.0, 1.5, 3.0, 4.5]).  In addition, estimates 
for the expected value EA[A(10|a, 0.7)|eA] and the q = 
0.9 quantile QA,0.9[A(10|a, 0.7)|eA] for A(10|a, 0.7) 
obtained with the preceding sample as indicated in Eqs. 
(3.48) and (3.50) are also shown in Fig. 3.8. 

A subset of the results used in the generation of 
Fig. 3.8 is shown in Fig. 3.9.  Each of the curves in Fig. 
3.9 is a plot of A(t|aj, 0.7) for 0 ≤ t ≤ 20 s and a specific 
element aj of the sample indicated in Eq. (3.66). Spe-
cifically, a plot of A(t|a1, 0.7)  is shown in Fig. 3.9a, 
and plots of A(t|aj, 0.7) for j = 1, 2, …, 5 are shown in 
Fig. 3.9b. The CDF and CCDF in Fig. 3.8 summarize 
the aleatory uncertainty (i.e., intrinsic variability) in the 
values for A(10|a, 0.7) associated with the vertical line 
originating at t = 10 s in Fig. 3.9 for all elements of the 
sample in Eq. (3.66). 

The CCDF in Fig. 3.8 summarizes the aleatory un-
certainty in A(t|a, 0.7) at t = 10 s as indicated by the 
vertical line in Fig. 3.9.  Corresponding summaries are 
possible for each value of t in the interval under consid-
eration.  However, presentation of such summaries for a 
large number of values for t is cumbersome.  A more 
compact summary is to present the expected value for 
A(t|a, 0.7) and selected quantiles for A(t|a, 0.7) (e.g., 
0.05, 0.25, 0.5, 0.75, 0.95) as functions of time (Fig. 
3.10). This format presents the primary uncertainty in-
formation for A(t|a, 0.7) as a function of time in a 
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Fig. 3.9. Illustration of time-dependent amplitudes A(t|aj, 0.7) used in generation of CDF and CCDF in Fig. 3.8 for 

aleatory uncertainty in amplitude at t = 10 s conditional on e = [1.0, 1.5, 3.0, 4.5, 0.7]: (a) A(t|aj, 0.7) for j 
= 1, and (b) A(t|aj, 0.7) for j = 1, 2, …, 5.   
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Fig. 3.10. Estimated expected value and quantile 

curves for aleatory uncertainty in amplitude 
A(t|a, 0.7) as a function of time conditional 
on e = [1.0, 1.5, 3.0, 4.5, 0.7]. 

single plot.  The expected values and quantiles in Fig. 
3.10 are obtained from the sample in Eq. (3.66) as de-
scribed in Eqs. (3.51) and (3.52) and illustrated in Fig. 
3.8. 

If e = [λ, a, m, b, r] was precisely known, then re-
sults of the form shown in Figs. 3.8 and 3.10 would be 
the unique outcomes of the analysis.  However, e is not 
precisely known and has many possible values.  As a 
result, there are many possible values for the results in 

Figs. 3.8 and 3.10.  For example, there are many possi-
ble values for the CDF and CCDF in Fig. 3.8 (Fig. 
3.11), with each possible CDF and CCDF deriving from 
a different element e = [λ, a, m, b, r] of the set E de-
fined in Eq. (3.65). 

Specifically, the results in Fig. 3.11 were generated 
with an LHS 

,

, , , , , 1, 2, , ,λ

= ⎡ ⎤⎣ ⎦
= =⎡ ⎤⎣ ⎦

e e e

…
i Ai Mi

i i i i ia m b r i nSE
 (3.67) 

of size nSE = 200 from the set E in consistency with the 
distributions that define the probability space (E, E, pE) 
for epistemic uncertainty.  In turn, a different CDF and 
associated CCDF results for each sample element ei.  
Further, the individual CDFs and CCDFs were esti-
mated with random samples 

1 0 1 2 0 2 0, , , , , , , ,

1, 2, , ,

⎡ ⎤= ⎢ ⎥⎣ ⎦
=

a …

…

j j j j j j jn jnj jn t A t A t A

j nSA
 (3.68) 

of size nSA = 10,000 from A generated in consistency 
with eAi = [λi, ai, mi, bi] and the corresponding prob-
ability space (A, A, pA) for aleatory uncertainty and its 
associated density function dA(a|eAi).  Although not 
explicitly incorporated into the notation in use, the set 
A changes for each eAi as a result of the effect of the 
interval [ai, bi] on the set of possible values for the size 
of the perturbation associated with each occurrence of 
the Poisson process under consideration. 
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Fig. 3.11. Estimated CDFs and CCDFs for amplitude A(10|a, r) obtained for the first 50 elements of the LHS in Eq. 
(3.67) and estimated with the random samples of size nSA = 10,000 in Eq. (3.68) from the corresponding 
sets A of possible values for a:  (a) CDFs, and (b) CCDFs. 
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Fig. 3.12. Estimated CCDFs plotted with log-transformed exceedance probabilities for amplitude A(10|a, r) ob-

tained for individual elements of the LHS in Eq. (3.67) and estimated with the random samples of size 
nSA = 10,000 in Eq.(3.68) from the corresponding sets A of possible values for a:  (a) individual CCDFs 
for 50 elements in the LHS , and (b) summary statistics for the distribution of CCDFs. 

When small exceedance probabilities arising from 
aleatory uncertainty are the analysis outcomes of interest, 
CCDFs are usually plotted with log-transformed values 
on the ordinate (Fig. 3.12a). Use of log-transformed val-
ues allows small exceedance probabilities to be dis-
played; in contrast, small exceedance probabilities are 
difficult, and sometimes impossible, to determine from 
plotted results when a linear scale is used on the ordinate 

(e.g., compare the CCDFs in Figs. 3.11b and 3.12a). In 
many QMU analyses, it is likely that small exceedance 
probabilities will be the analysis outcomes of greatest 
interest. 

Distributions of CDFs and CCDFs can be summa-
rized with expected value and quantile curves as indi-
cated in conjunction with Eqs. (3.51) and (3.52). As an 
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Fig. 3.13. Estimated CDF and CCDF (i) for expected 
values EA[A(10|a, ri)|eAi], i = 1, 2, …, nSE = 
200, associated with CDFs and CCDFs in 
Figs. 3.11 and 3.12 and (ii) with 
ˆEp {EA[A(10|a, r)|eA] ≤ A} and ˆEp {A < 

EA[A(10|a, r)|eA]} used as mnemonics for es-
timated probabilities of the form ˆ [ (10)]E yp U  
and ˆ [ (10)]c

E yp U  defined in conjunction with 
Eq. (3.53). 

example, a summary of this form is presented in Fig. 
3.12b for CCDFs with log-transformed exceedance 
probabilities. 

As indicated in conjunction with Eq. (3.53), distri- 
butions of CDFs and CCDFs can also be summarized 
by reducing each CDF and corresponding CCDF to an 
expected value and then presenting the CDF and CCDF 
for the resultant expected values (Fig. 3.13).  Specifi-
cally, Fig. 3.13 shows the CDF and CCDF for the ex-
pected values associated with the individual CDFs and 
CCDFs in Figs. 3.11 and 3.12.  Each expected value 
ˆ

AE [A(10|a, ri)|eAi] is calculated as indicated in Eq. 
(3.48), and the resultant CDF and CCDF are calculated 
as indicated in conjunction with Eq. (3.53). In consis-
tency with the results in Figs. 3.11 and 3.12, the preced-
ing calculations use the samples indicated in Eqs. (3.67) 
and (3.68). 

The estimated expected value ˆ
EE { AE [A(10|a, 

r)|eA]} over aleatory and epistemic uncertainty is also 
shown in Fig. 3.13 and corresponds to the estimated ex-
pected value ˆ { [ ( , ) ]}E A M AE E y t a e e  defined in Eq. 
(3.54). The quantity ˆ { [ (10 , ) ]}E A AE E A ra e  is the out-

come of reducing all the information in Figs. 3.11 and 
3.12 to a single number. 

3.7 Kaplan-Garrick Ordered Triple 
Representation for Risk 

The Kaplan-Garrick ordered triple representation 
for risk is introduced in conjunction with Questions 
(Q1), (Q2) and (Q3) in Sect. 2 as a way of intuitively 
describing risk. More formally, this representation cha-
racterizes risk as an ordered triple of the form 

( ), , , 1, 2,..., ,j j jpS j nS=cSS  (3.69) 

where Sj is a set of similar occurrences, pSj is the prob-
ability of the set Sj, cSj is a vector of consequences asso-
ciated with Sj, the sets Sj are disjoint (i.e., Si∩Sj = ∅ for 
i ≠ j), and the set ∪Sj contains all risk significant occur-
rences in the particular universe under consideration. 

The representation in Eq. (3.69) is simply a way to 
describe the components of approximations to integrals 
of the form appearing in Eq. (3.48) obtained with strati-
fied sampling from the sample space A for aleatory 
uncertainty. With stratified sampling, the expected val-
ue EA[y(t|a, eM)|eA] and its defining integral in Eq. 
(3.48) are approximated by 

( ) ( ) ( )

( ) ( )
1

, ,  d

, ,

A M A M A A

nSA

j M A j A
j

E y t y t d A

y t p
=

⎡ ⎤ =⎣ ⎦

≅

∫

∑

a e e a e a e

a e e

A

A

 
 (3.70) 

where the Aj are disjoint subsets of A with ∪Aj = A, 
pA (Aj|eA) is the probability of Aj, and aj is a represen-
tative element of Aj. With respect to the representation 
in Eq. (3.69), Aj corresponds to Sj, pA(Aj|eA) corre-
sponds to pSj,  y(t|aj, eM) corresponds to an element of  
cSj, and nSA corresponds to nS. 

In turn, the defining probabilities for CDFs and 
CCDFs are given by 

( )

( ) ( )
1

,

,

A M A

nSA

y j M A j A
j

p y t y

y t pδ
=

⎡ ⎤≤⎣ ⎦

⎡ ⎤≅ ⎣ ⎦∑

a e e

a e eA
 (3.71) 

and 
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( )

( ) ( )
1

,

, ,

A M A

nSA

y j M A j A
j

p y y t

y t pδ
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⎡ ⎤
⎣ ⎦

⎡ ⎤≅ ⎣ ⎦∑

a e e

a e eA

<

 (3.72) 

respectively. 

In summary, the Kaplan-Garrick ordered triple rep-
resentation for risk provides a simple and intuitive de-
scription of the basic components of a risk assessment. 
Specifically, this representation provides a display of the 
answers to the first three basic questions that underlie a 
risk assessment: (i) “What can happen?”, (ii) “How like-
ly is it to happen?”, and (iii) “What are the consequences 
if it does happen?”. However, it is important to recognize 
that this representation is simply a way of decomposing 
approximations to integrals involving aleatory uncer-
tainty into their basic components as indicated in Eqs. 
(3.70) - (3.72). Use of the Kaplan-Garrick ordered triple 
representation for risk is suggested in App. A of the 
NAS/NRC report on QMU [77]. 

3.8 Verification and Validation 

Verification and validation are two very important 
components of a QMU analysis that are intimately con-
nected with the assessment and representation of uncer-
tainty,  where (i) verification is the process of determin-
ing that a model implementation accurately represents 
the developers’ conceptual description of the model and 
the solution to the model, and (ii) validation is the proc-
ess of determining the degree to which a model is an 
accurate representation of the real world from the per-
spective of the intended uses of the model (p. 3, [104]; 
[105-110]).  

Sampling-based sensitivity analysis as described in 
Sect. 7 and illustrated in Sects. 4 and 5 is a powerful 
tool for checking for analysis errors and thus is an im-
portant component of analysis verification. Further, 
model validation is an important contributor to the in-
sights that ultimately lead to the definition of the prob-
ability space that characterizes epistemic uncertainty.  

Techniques for verification and validation are not 
the focus of this presentation but are necessary compo-
nents of a credible QMU analysis. The importance of 
verification and validation is emphasized in the 
NAS/NRC report on QMU (p. 22, Ref. [77]). 

3.9 An Admonition 

As the reader has undoubtedly observed, this sec-
tion essentially presents the same calculation over again 
and over again as different expected values and prob-
abilities are calculated.  As a reminder, the probabilities 
that define CDFs and CCDFs are actually themselves 
expected values; specifically, these probabilities are 
expected values for indicator functions (i.e., functions 
of the form ( )δ �x x  and ( )δ �x x  as defined in conjunction 
with Eq. (3.2)).  What is changing in the calculations is 
the sample space under consideration (e.g., EA, EM, E 
= EA × EM, A, …), the probability space associated 
with the sample space (e.g., (EA, EA, pEA), (EM, EM, 
pEM), (E, E, pE), (A, A, pA), …), and the function being 
integrated (e.g., y(t|a, eM), δ y[y(t|a, eM)], δ y[y(t|a, 
eM)], EA[y(t|a, eM)|eA], ….).  However, at a conceptual 
level, the basic calculation remains the same.  The cal-
culations are repeated to be explicit about the sample 
space, probability space and function involved rather 
than because of inherent conceptual differences in the 
probabilistic basis of the calculation. 

Now for the admonition.  When confronted with a 
probability or a calculation involving probability, the 
first two questions to ask are “What is the sample 
space?” and “What subset of the sample space is under 
consideration?”.  If you do not know the answers to 
these two questions, then you do not know enough to 
meaningfully assess the probability or calculated result 
under consideration. Further, if the source of the prob-
ability or calculated result cannot supply precise an-
swers to these two questions, then there is reason to be 
cautious with respect to the meaning and correctness of 
such results.  Basically, having a probability without 
knowing the associated sample space and the subset of 
that sample space for which the probability is defined is 
analogous to knowing the answer to a question without 
knowing what the question is. 

For the preceding reason, this section has been very 
explicit in stating the sample space and the relevant 
subsets of that sample as different quantities have been 
introduced and defined.  This results in some repetition 
at a conceptual level but has the positive effect of un-
ambiguously defining the individual quantities under 
consideration. 
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4 QMU with Epistemic Uncertainty:  
Characterization with Probability 

The use of probability to represent the epistemic 
uncertainty associated with results of the form 

( ) ( ), ,M My t f t=a e a e  (4.1) 

is extensively discussed in Sect. 3.3, where y(t|a, eM) is 
a generic real-valued quantity conditional on a specific 
realization a of aleatory uncertainty and eM is a vector 
of epistemically uncertain analysis inputs.  The result 
y(t|a, eM) is epistemically uncertain as a consequence 
of the epistemic uncertainty associated with the ele-
ments of eM.  Given that the realization a of aleatory 
uncertainty is fixed, analyses related to y(t|a, eM) in-
volve two of the three basic analysis components dis-
cussed in Sect. 3.2:  (i) (EN2), a model that predicts 
system behavior (i.e., a function f(t|a, eM)), and (ii) 
(EN3), a probabilistic characterization of epistemic 
uncertainty (i.e., a probability space (EM, EM, pEM) 
that characterizes the epistemic uncertainty associated 
with the elements of eM).   

Margins can be defined for y(t|a, eM) in a variety of 
ways, and in turn, the epistemic uncertainty associated 
with eM results in uncertainty in y(t|a, eM) and the mar-
gins that derive from y(t|a, eM). At an intuitive level, a 
margin corresponds to a difference between a required 
level of performance and an estimated level of perform-
ance, with a positive margin indicating that the required 
level of performance is met and a negative margin indi-
cating that the required level of performance is not met. 
Multiple examples of how margins could be defined are 
introduced in this section and in Sects. 5 and 6.  

This section uses the function Q(t|a, eM) intro-
duced in Sect. 3.4 to illustrate a variety of ways in 
which QMU analyses could arise and be carried out in 
the context of analyses that involve a generic result 
y(t|a, eM) of the form indicated in Eqs. (3.24) and (4.1). 
Further, 

1 2 3 4 5 0, , , , , , , ,M M M M M Me e e e e L R C E λ= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦e  
 (4.2) 

has the properties defined in conjunction with Eq. 
(3.32), and the corresponding probability space (EM, 
EM, pEM) that characterizes the epistemic uncertainty 
associated with eM is defined in conjunction with Eqs. 
(3.33) – (3.43). The time-dependent behavior of Q(t|a, 
eM) is illustrated in Fig. 3.5. 

The examples presented in this section use an LHS 

1 2 5

0

, , ,

, , , , , 1, 2, , 200,
Mi Mi Mi Mi

i i i i i

e e e

L R C E i nSEλ

= ⎡ ⎤⎣ ⎦
= = =⎡ ⎤⎣ ⎦

…

…

e
 (4.3) 

from EM generated in consistency with the distribu-
tions that define the probability space (EM, EM, pEM).  
In turn, evaluation of Q(t|a, eMi) for elements of the 
preceding sample produces a mapping 

( ), , , 1, 2, , 200,Mi MiQ t i nSE⎡ ⎤ = =⎣ ⎦ …e a e  (4.4) 

from uncertain analysis inputs to analysis results that is 
used in the generation of the example results presented 
in this section. 

The following topics related to QMU in the presence 
of only epistemic uncertainty are considered in this sec-
tion: epistemic uncertainty with a specified bound (Sect. 
4.1), epistemic uncertainty with a specified bounding 
interval (Sect. 4.2), epistemic uncertainty with a speci-
fied bounding interval over time (Sect. 4.3), epistemic 
uncertainty with an uncertain bound (Sect. 4.4), and in-
formation loss associated with a “margin/uncertainty” 
ratio (Sect. 4.5). The bounds considered in Sects. 4.1 − 
4.4 correspond to the requirements that give rise to mar-
gins (i.e., the differences between required system per-
formance and predicted system performance). 

As indicated at the beginning of Sect. 3.3, the 
NAS/NRC report on QMU emphasizes the importance 
of the quantification of the epistemic uncertainty in 
analysis results that derives from epistemic uncertainty 
in analysis inputs (Recommendation 1-2, p. 22, Ref. 
[77]). The results presented in Sects. 4.1 − 4.2 illustrate 
analyses of this type. 

4.1 Epistemic Uncertainty with a 
Specified Bound 

For this example, a fixed bound is assumed to exist 
with respect to the value for Q(0.1|a, eM).  Possibilities 
include lower bounds on Q(0.1|a, eM) (e.g., Qb1 = 
0.075 and Qb2 = 0.09 in Fig. 4.1a) and upper bounds on 
Q(0.1|a, eM) (e.g., Qb3 = 0.105 and Qb4 = 0.125 in Fig. 
4.1b).  Consistent with the nature of the bounds being 
illustrated, the distribution of possible values for 
Q(0.1|a, eM) in Fig. 4.1a is summarized with a CDF, 
and the distribution of possible values for Q(0.1|a, eM) 
in Fig. 4.1b is summarized with a CCDF.  Specifically, 
the CDF in Fig. 4.1a displays the probability of being 
less than a specific bound, which is the probability of
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Fig. 4.1. Example bounds on Q(0.1|a, eM):  (a) Lower bounds Qb1 = 0.075 and Qb2 = 0.09 and estimated CDF for 

Q(0.1|a, eM), and (b) Upper bounds Qb3 = 0.105 and Qb4 = 0.125 and estimated CCDF for Q(0.1|a, eM). 

interest for the lower bounds Qb1 and Qb2, and the 
CCDF in Fig. 4.1b displays the probability of being 
greater than a specified bound, which is the probability 
of interest for the upper bounds Qb3 and Qb4.  The CDF 
and CCDF in Fig. 4.1 were generated with the sample 
and associated mapping in Eqs. (4.3) and (4.4) as de-
scribed in conjunction with Eq. (3.25). 

For notational simplicity, the ordinates in Figs. 4.1a 
and 4.1b are assigned the labels “Cumulative Probabil-
ity” and “Complementary Cumulative Probability” rather 
than the more explicit but also more complex labeling 
used with CDFs and CCDFs in Sect. 3. This labeling 
convention is also used with other similar figures. 

All sampled values for Q(0.1|a, eMi) are above the 
bound Qb1.  However, this is not the case for Qb2, with the 
CDF in Fig. 4.1a indicating that the probability of Q(0.1|a, 
eM) being below Qb2 = 0.09 is approximately 0.200. 

All sampled values for Q(0.1|a, eMi) are below the 
bound Qb4.  However, this is not the case for Qb3, with 
the CCDF in Fig. 4.1b indicating that the probability of 
Q(0.1|a, eM) being above Qb3 = 0.105 is approximately 
0.155. 

The margins between Q(0.1|a, eM) and the bounds 
Qbk, k = 1, 2, 3, 4, indicated in Fig. 4.1 are defined by 

( )
( )

( )
0.1 , for 1, 2

0.1 ,
0.1 , for 3, 4,

M bk
mk M

bk M

Q Q k
Q

Q Q k

⎧ − =⎪= ⎨
− =⎪⎩

a e
a e

a e
  

  (4.5) 

with Qmk(0.1|a, eM) > 0 indicating that a specific bound 
is satisfied and Qmk(0.1|a, eM) < 0 indicating that a 
specified bound is not satisfied (i.e., a positive margin 
is good and a negative margin is bad).  As a result of 
Q(0.1|a, eM) being epistemically uncertain, the corre-
sponding margins Qmk(0.1|a, eM), k = 1, 2, 3, 4, are also 
epistemically uncertain and have an uncertainty struc-
ture that derives from the uncertainty structure assumed 
for eM (Fig. 4.2).  Representations of the form shown in 
Fig. 4.2 provide a complete display of the uncertainty 
associated with the margins Qmk(0.1|a, eM), k = 1, 2, 3, 
4, and thus a complete QMU representation of margin 
uncertainty. 

An alternative format involves the use of normal-
ized margins defined by 

( ) ( )
( )

( )

0.1 , 0.1 ,

0.1 , for 1, 2
    =

0.1 , for 3, 4,

nk M mk M bk

M bk bk

bk bk M bk

Q Q Q

Q Q Q k

Q Q Q k

=

⎧⎡ ⎤− =⎪⎣ ⎦
⎨

⎡ ⎤− =⎪⎣ ⎦⎩

a e a e

a e

a e

 (4.6) 

which expresses margin as a fraction of the correspond-
ing bounding value (Fig. 4.3).  This format has the ad-
vantage in that it presents margin as a multiple of the 
bounding value, which is a presentation format thatsome 
individuals prefer. However, it has the disadvan tage that 
it does not present the actual size of the margin. 
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Fig. 4.2. Estimated CDFs for margins Qmk(0.1|a, eM) associated with bounds Qbk for k = 1, 2, 3, 4:  (a) Qm1(0.1|a, 

eM) for Qb1 = 0.075, (b) Qm2(0.1|a, eM) for Qb2 = 0.09, (c) Qm3(0.1|a, eM) for Qb3 = 0.105, and (d) 
Qm4(0.1|a, eM) for Qb4 = 0.125. 

It is sometimes stated the QMU corresponds to the 
determination of the ratio “margin/uncertainty.”  Unfor-
tunately, it is not always apparent how this imagined 
concept translates into quantities that are mathemati-
cally defined and conceptually useful.  In contrast, mar-
gin results of the form illustrated in Fig. 4.2 are mathe-
matically well-defined, computationally practicable, 
and meaningful in a decision context as all available 
information about margins and their associated uncer-
tainty is presented. 

Two possible definitions of “margin/uncertainty” 
for an arbitrary margin Qm(t|a, eM) (e.g., Qmk(0.1|a, 
eM) for k = 1, 2, 3 or 4) are 

( ) ( )
( ) ( )

,0.5

,0.5 ,0.05

,
,

, ,
m M

m u M
m M m M

Q t
Q t

Q t Q t
=
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a e
a e

a e a e
 

  (4.7) 
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Fig. 4.3. Estimated CDFs for normalized margins Qnk(0.1|a, eM) associated with bounds Qbk for k = 1, 2, 3, 4: (a) 

Qn1(0.1|a, eM) for Qb1 = 0.075, (b) Qn2(0.1|a, eM) for Qb2 = 0.09, (c) Qn3(0.1|a, eM) for Qb3 = 0.105, and 
(d) Qn4(0.1|a, eM) for Qb4 = 0.125. 

and 
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Q t Q t
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a e
a e
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  (4.8) 

where 

 ( ),0.5 ,m MQ t a e  = median (i.e., q = 0.5 quantile) for 
Qm(t |a, eM), 

 ( ),0.05 ,m MQ t a e  = 0.05 quantile for Qm(t|a, eM), 
 ( ),m MQ t a e  = expected value for Qm(t|a, eM). 

As illustrated in Fig. 4.2, quantities such as Qm,0.5(t|a, 
eM), Qm,0.05(t|a, eM) and mQ (t|a, eM) are typically esi-
timated with sampling based procedures. With respect 
to the more detailed notation used in Sects. 3.3 and 3.4, 
Qm,0.5(t|a, eM) and Qm,0.05(t|a, eM) correspond to 
QEMq[Qm(t|a, eM)] for q = 0.5 and 0.05, respectively, 
and mQ (t|a, eM) corresponds to EEM[Qm(t|a, eM)]. 

The quantities Qm/u(t|a, eM) and /m uQ (t|a, eM) de-
fined in Eqs. (4.7) and (4.8) are based on using the me-
dian and mean margins Qm,0.5(t|a, eM) and mQ (t|a, eM) 
as best estimates for an uncertain margin and then de-
fining uncertainty as the difference between this best 
estimate and a low quantile (e.g., q =  0.05) of the un-
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certainty distribution for margin.  In general, large posi-
tive margins are good and small or negative margins are 
bad; in turn, margins associated with small quantiles 
correspond to small differences between required 
bounds and predicted system behavior and thus are less 
desirable than margins associated with larger quantiles. 
As a result, the differences in the denominators in Eqs. 
(4.7) and (4.8) provides a measure of the epistemic un-
certainty present in the determination of the margin 
under consideration.  

At least notionally, values for Qm/u(t|a, eM) and 
/m uQ (t|a, eM) significantly larger than 1 are good be-

cause this situation results when Qm,0.5(t|a, eM) and 
mQ (t|a, eM) are close to Qm,0.05(t|a, eM) in value, 

which in turn implies that there is little epistemic uncer-
tainty present in the estimation of the margin under 
consideration. However, values for Qm/u(t|a, eM) and 

/m uQ (t|a, eM) significantly greater than 1 do not ex-
clude the undesirable situation in which the estimated 
margins are very close to 0. Values for Qm/u(t|a, eM) 
and /m uQ (t|a, eM) equal to or only slightly larger than 1 
are undesirable because this situation results when 
Qm,0.05(t|a, eM) is equal to or only slightly larger than 
0, and values for Qm/u(t|a, eM) and /m uQ (t|a, eM) less 
than 1 are bad because this situation results when 
Qm,0.05(t|a, eM) is negative. It is important to recognize 
that very different distributions for Qm(t|a, eM) can 
result in similar values for Qm/u(t|a, eM) and also for  

/m uQ (t|a, eM). As a result, consideration of only sum-
mary values such as Qm/u(t|a, eM) and /m uQ (t|a, eM) 
can result in an incomplete and potentially misleading 
assessment of the implications of the uncertainty asso-
ciated with the margin Qm(t|a, eM). Additional discus-
sion of the nature of “margin/uncertainty” results is 
provided in Sect. 4.5. 

For the example margins under consideration in 
this section (Fig. 4.2) and the normalization defined in 
Eq. (4.7), the values for Qm/u(0.1|a, eM) are 

( ) ( ),1 0.1 , 0.022 / 0.022 0.009

1.7,
m u MQ = −

=

a e
 (4.9) 

( ) ( ),2 0.1 , 0.0070 / 0.0070 0.0056

0.56,
m u MQ ⎡ ⎤= − −⎣ ⎦

=

a e
(4.10) 

( ) ( ),3 0.1 , 0.0080 / 0.0080 0.0068

0.54,
m u MQ ⎡ ⎤= − −⎣ ⎦

=

a e
(4.11) 

and 

( ) ( ),4 0.1 , 0.028 / 0.028 0.013

1.9.
m u MQ = −

=

a e
 (4.12) 

The values for , (0.1 | , )m u k MQ a e  are essentially the 
same as the values for Qm/u,k(0.1|a, eM) in Eqs. (4.9) − 
(4.12) because of the similarity of the mean and median 
values for Qm(0.1|a, eM) (see Fig. 4.2). However, such 
similarity will not exist in many analyses.  

As discussed in Sect. 4.5, “margin/uncertainty” ra-
tios of the form defined in Eqs. (4.7) and (4.8) and illus-
trated in Eqs. (4.9) − (4.12) are in (i) the interval [1, +∞) 
if the best margin estimate (e.g., the mean or median) is 
positive and the lower margin estimate (e.g., the 0.05 
quantile) is nonnegative, (ii) the interval [0, 1) if the best 
margin estimate is nonnegative and the lower margin 
estimate is negative, and (iii) the interval (−∞, 0) if the 
best margin estimate and the lower margin estimate are 
both negative. With respect to the preceding statements, 
it is tacitly assumed that the best margin estimate is 
greater than the lower margin estimate. Further, the indi-
cated ratio (i) equals 1 only when the best estimate is 
positive and the lower estimate is 0, (ii) equals 0 only 
when the best estimate is 0 and the lower estimate is neg-
ative, and (iii) is undefined when the best estimate and 
the lower estimate are equal. Consistent with the indi-
cated relationships, the “margin/uncertainty” ratios 
Qm/u,1(0.1|a, eM) = 1.7 and Qm/u,4(0.1|a, eM) = 1.9 in 
Eqs. (4.9) and (4.12) are greater than 1 because both the 
best and lower margin estimates are nonnegative, and the 
“margin/uncertainty” ratios Qm/u,2(0.1|a, eM) = 0.56 and 
Qm/u,3(0.1|a, eM) = 0.54 in Eqs. (4.10) and (4.11) are in 
the interval (0, 1) because the best and lower margin 
estimates are positive and negative, respectively.  

The “margin/uncertainty” results defined in Eqs. 
(4.7) and (4.8) and illustrated in Eqs. (4.9) – (4.12) re-
duce the individual CDFs in Fig. 4.2 to single numbers.  
As a result, a large amount of information is lost in this 
reduction. Further, as discussed and illustrated in Sect. 
4.5, a “margin/uncertainty” ratio provides no informa-
tion on the actual values for the best and lower margin 
values used in the determination of this ratio. Thus, for 
example, there is no way to use the results in Eqs. (4.9) 
− (4.12) to retrieve the margin values used in the de-
termination of these results. Simply put, all the informa-
tion in Figs. 4.1 and 4.2 has been lost. 

At their most extreme, Qm/u (t|a, eM) and /m uQ (t|a, 
eM) have the forms 
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( ) ( )
( ) ( )

,0.5

,0.5 ,0.00

,
,

, ,
m M

m u M
m M m M

Q t
Q t

Q t Q t
=

−

a e
a e

a e a e
 

  (4.13) 

and 

( ) ( )
( ) ( ),0.00

,
, ,

, ,
m M

m u M
m M m M

Q t
Q t

Q t Q t
=

−

a e
a e

a e a e
 

 (4.14) 

where 

( ) ( )
( ){ }

,0.00 , 0.00 quantile for ,

inf , : .

m M m M

m M M

Q t Q t

Q t

=

= ∈

a e a e

a e e E
 

In words, Qm,0.00(t|a, eM) is the smallest possible value 
for the margin Qm(t|a, eM). As a result of the inequality 

( ) ( ),0.00 ,0.05, , ,m M m MQ t Q t≤a e a e   (4.15) 

use of Qm,0.00(t|a, eM) in the definition of Qm/u(t|a, eM) 
and /m uQ (t|a, eM) results in smaller values for these 
quantities than the use of Qm,0.05(t|a, eM). 

For the example margins under consideration in 
this section, the values for Qm/u(0.1|a, eM) obtained 
with Qm,0.00(0.1|a, eM) as indicated in Eq. (4.13) are 

( ) ( ),1 0.1 , 0.022 / 0.022 0.004

1.2,
m u MQ = −

=

a e
 (4.16) 

( ) ( ),2 0.1 , 0.0070 / 0.0070 0.0106

0.40,
m u MQ ⎡ ⎤= − −⎣ ⎦

=

a e
(4.17) 

( ) ( ),3 0.1 , 0.0080 / 0.0080 0.0153

0.34,
m u MQ ⎡ ⎤= − −⎣ ⎦

=

a e
(4.18) 

and 

( ) ( ),4 0.1 , 0.028 / 0.028 0.005

1.2.
m u MQ = −

=

a e
 (4.19) 

Again, the values for , (0.1 | , )m u k MQ a e defined in Eq. 
(4.14) are very similar to the values for Qm/u(0.1|a, eM) 
defined in Eq. (4.13) because of the similarity of the 
mean and median values for Qm(0.1|a, eM). As noted in 
conjunction with the inequality in Eq. (4.15), “margin/- 

uncertainty” ratios obtained with Qm,0.00(0.1|a, eM) are 
smaller than the ratios obtained with Qm,0.05(0.1|a, eM) 
(i.e., compare results in Eqs. (4.9) − (4.12) with results 
in Eqs. (4.16) − (4.19)). 

The importance of sensitivity analysis is recog-
nized in the NAS/NRC report on QMU (pp. 14-15, Ref. 
[77]). Indeed, sensitivity analysis should be an integral 
part of any QMU analysis. As an example, a sensitivity 
analysis for Q(0.1|a, eM) based on stepwise regression 
analysis is presented in Table 4.1. Specifically, stepwise 
regression analysis is used to explore the mapping 

( ), 0.1 | , , 1, 2,..., 200,Mi MiQ i nSE⎡ ⎤ = =⎣ ⎦e a e  (4.20) 

used to generate the uncertainty results in Figs. 4.1 
− 4.3. With this procedure, variable importance is indi-
cated by the order in which variables are selected in the 
stepwise process, the incremental changes in R2 values 
with the entry of individual variables into the regression 
model, and the sizes and signs of the standardized re-
gression coefficients (SRCs) in the final regression 
model (see Sect. 7 and Ref. [56] for additional discus-
sion of regression-based sensitivity analysis). 

As examination of Table 4.1 shows, the dominant 
variables affecting the uncertainty in Q(0.1|a, eM) are 
E0 and C. Specifically, the positive SRCs associated 
with E0  and C indicate that  Q(0.1|a, eM) tends to in-
crease in value as each of these variables increases. In 
addition, small negative effects are indicated for R and 
λ, and a small positive effect is indicated for L.  

The examination of scatterplots is also an informa-
tive part of sampling-based sensitivity analysis. For 
example, the scatterplots in Fig. 4.4 clearly reveal the 
positive effects of E0 and C on Q(0.1|a, eM) and the 
resultant outcomes that negative or small positive mar-
gins associated with requirements Qb1 and Qb2 occur 
for small values of E0  and C and that negative or small 
positive margins associated with requirements Qb3 and 
Qb4 occur for large values of E0  and C.  

Regression-based sensitivity analysis could also be 
carried out for the margins Qmk(0.1|a, eM), k = 1, 2, 3, 
4, defined in Eq. (4.5) and illustrated in Fig. 4.2. How-
ever, given that the margins are simply affine transfor-
mations (i.e., linear scalings plus constant shifts) of 
Q(0.1|a, eM) defined by the bounds Qbk, k = 1, 2, 3, 4, 
the resultant regression analyses for Qmk(0.1|a, eM), k = 
1, 2, would be the same as presented in Table 4.1 as a 
result of the defining transformation 
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Fig. 4.4. Scatterplots for Q(0.1|a, eM): (a) [E0i, Q(0.1|a, eMi)], i = 1,2, …, nSE = 200, and (b) [Ci, Q(0.1|a, eMi)], i 

= 1,2, …, nSE = 200.  

Table 4.1. Stepwise Regression Analysis to Identify 
Uncertain Variables Affecting Q(0.1|a, eM) 

Stepa Variableb SRCc R2d 
1 E0 0.70 0.51 
2 C 0.63 0.91 
3 R −0.22 0.96 
4 λ −0.12 0.98 
5 L 0.06 0.98 

a Steps in stepwise regression analysis with an α-value of  0.01 
or less required for a variable to enter a regression model. 

b Variables listed in the order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression 

model. 

 

( ) ( )0.1| , 0.1| ,mk M M bkQ Q Q= −a e a e   (4.21) 

for k = 1, 2, and  the resultant regression analyses for 
Qmk(0.1|a, eM), k = 3, 4, would also be the same as 
presented in Table 4.1 except for a reversal in the signs 
of the SRCs as a result of the defining transformation 

( ) ( )0.1| , 0.1| ,mk M bk MQ Q Q= −a e a e   (4.22) 

for k = 3, 4. Similarly, the scatterplots for the margins 
Qmk(0.1|a, eM), k = 1, 2, 3, 4, would effectively convey 
the same information as the scatterplots for Q(0.1|a, 
eM) in Fig. 4.4.  

4.2 Epistemic Uncertainty with a 
Specified Bounding Interval 

A QMU problem involving a bounding interval ra-
ther than simply an upper or lower bound is now con-
sidered.  Specifically, the problem involves a specified 
interval within which the quantity of interest is required 
to be located.  For the quantity Q(0.1|a, eM), this in-
volves the specification of an interval [ , ]b bQ Q  such 
that the inequalities 

( )0.1 ,b M bQ Q Q≤ ≤a e  (4.23) 

hold (Fig. 4.5).  For illustration, [ , ]b bQ Q  is assumed to 
equal [0.08, 0.12] as indicated in Fig. 4.5. This example 
corresponds to consideration of what is called a “gate” 
in some discussions of QMU [1; 4]. 

There are several ways in which the epistemic un-
certainty associated with compliance with the specified 
bounds can be represented.  The easiest is simply to 
consider whether or not Q(0.1|a, eM) falls within the 
specified bounds.  This involves consideration of the 
indicator function 

 ( ) ( )1 if 0.1 ,
0.1 ,

0 otherwise
b M b

M
Q Q Q

Qδ
⎧ ≤ ≤⎪⎡ ⎤ = ⎨⎣ ⎦ ⎪⎩

a e
a e  

 (4.24) 
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Fig. 4.6. Estimated CDF summarizing uncertainty in 

margin Qm(0.1|a, eM) defined in Eq. (4.29)
for bounding interval [ , ]b bQ Q  = [0.08, 0.12]. 

and the associated sets 

( ){ }:  and 0.1 , 1M M MQδ+ ⎡ ⎤= ∈ =⎣ ⎦e e a eX EM  

 (4.25) 

and 

( ){ }:  and 0.1 , 0 .M M MQδ− ⎡ ⎤= ∈ =⎣ ⎦e e a eX EM   

  (4.26) 

Then, the probabilities of compliance and noncompli-
ance are given by 

( ) ( )
1

0.1 , 0.985
nSE

EM Mi
i

p Q nSEδ+

=

⎡ ⎤≅ =⎣ ⎦∑ a eX (4.27) 

and 

( ) ( )1 1 0.985 0.015,EM EMp p− += − ≅ − =X X  (4.28) 

respectively. 

The representation in the preceding paragraph 
summarizes the uncertainty in whether or not the speci-
fied interval bound will be satisfied.  However, the un-
certainty in the location of Q(0.1|a, eM) relative to the 
ends of the bounding interval [ , ]b bQ Q  is not indicated.  
The consideration of this uncertainty requires the de-
termination of margins and the uncertainty associated 
with these margins. Specifically, a margin associated 
with the containment of Q(0.1|a, eM) in the interval 
[ , ]b bQ Q  can be defined by 

( )
( )

( )
0.1 ,

0.1 , min
0.1 , ,

M b
m M

b M

Q Q
Q

Q Q

⎧ −⎪= ⎨
−⎪⎩

a e
a e

a e
 (4.29) 

with the result that (i) Qm(0.1|a, eM) is nonnegative if 
Q(0.1|a, eM) falls within the interval [ , ]b bQ Q , and (ii) 
Qm(0.1|a, eM) is negative if Q(0.1|a, eM) falls outside 
the interval [ , ]b bQ Q . In turn, Qm(0.1|a, eM) has an 
uncertainty structure that derives from the uncertainty 
structure imposed on eM (Fig. 4.6). The probability 
pEM(X−) = 0.015 in Eq. (4.28) corresponds to the cumu-
lative probability associated with Qm(0.1|a, eM) = 0 in 
Fig. 4.6. 

An alternate representation is to use normalized 
margins.  Specifically, the margin Qm(0.1|a, eM) de-
fined in Eq. (4.29) can be replaced by a normalized 
margin Qn(0.1|a, eM) defined by 

( )
( )

( )
0.1 ,

0.1 , min
0.1 , ,

  

M b b
n M

b M b

Q Q Q
Q

Q Q Q

⎧ ⎡ ⎤−⎪ ⎣ ⎦= ⎨
⎡ ⎤−⎪⎣ ⎦⎩

a e
a e

a e (4.30) 

which expresses margin as a fraction of the bounding 
value from which Q(0.1|a, eM) has the smallest frac-
tional deviation (Fig. 4.7). 
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Fig. 4.7. Estimated CDF summarizing uncertainty in 

normalized margin Qn(0.1|a, eM) defined in 
Eq. (4.30) for bounding interval [ , ]b bQ Q  = 
[0.08, 0.12]. 

If desired, “margin/uncertainty” summary meas-
ures of the form defined in Eqs. (4.7), (4.8), (4.13) and 
(4.14) can be defined for the distribution of Qm(0.1|a, 
eM) in Fig. 4.6. Specifically,  

( ) ( )
( ) ( )

( )
( )

,0.5

,0.5 ,

,
,

, ,

0.013 0.013 0.003 =1.30 for 0.05     

0.013 0.013 0.001 =0.93 for 0.00

m M
m u M

m M m q M

Q t
Q t

Q t Q t

q

q

=
−

⎧ − =⎪= ⎨ ⎡ ⎤− − =⎪ ⎣ ⎦⎩

a e
a e

a e a e

 
  (4.31) 

for t = 0.1 s, and 

( ) ( )
( ) ( ),

,
,

, ,
m M

m u M
m M m q M

Q t
Q t

Q t Q t
=

−

a e
a e

a e a e
 

 (4.32) 

effectively has the same values as Qm/u(t|a, eM) for t = 
0.1 s because of the similarity of the mean and median 
values for Qm(0.1|a, eM) (see Fig. 4.6). However, as 
previously discussed in Sect. 4.1, a significant amount 
of information is lost when the results in Figs. Fig. 4.5 
and Fig. 4.6 are reduced to a single number (see Sect. 
4.5 for additional discussion). 

The results of a sensitivity analysis for Q(0.1|a, 
eM) are presented in Table 4.1 and Fig. 4.4. Because 

Qm(0.1|a, eM) as defined in Eq. (4.29) for bounding 
interval [ , ]b bQ Q  = [0.08, 0.12] is not an affine trans-
formation of Q(0.1|a, eM), these analyses do not reveal 
the full effects of the elements of eM on Qm(0.1|a, eM). 
To determine these effects, a stepwise regression analy-
sis (Table 4.2) is initially performed for the mapping 

( ), 0.1 | , , 1, 2,..., 200,Mi m MiQ i nSE⎡ ⎤ = =⎣ ⎦e a e  (4.33) 

and then followed by an examination of scatterplots. 

The regression analysis in Table 4.2 for 
Qm(0.1|a, eM) is very poor, with the final regression 
model containing E0 and C having an R2  value of only 
0.16. As a reminder, E0 and C are the dominant vari-
ables affecting the uncertainty in Q(0.1|a, eM) (see 
Table 4.1 and Fig. 4.4). Given the effects of E0 and C 
on Q(0.1|a, eM), a natural next step is to examine the 
scatterplots for E0, C and Qm(0.1|a, eM) (Fig. 4.8). Spe-
cifically, the scatterplots in Fig. 4.8 show that small 
values for Qm(0.1|a, eM) are associated with both small 
and large values for E0 and C. This is consistent with 
the monotonic effects of E0 and C on Q(0.1|a, eM) 
shown in the scatterplots in Fig. 4.4 and the dependence 
of the margin Qm(0.1|a, eM) on both small and large 
values for Q(0.1|a, eM) (see definition of Qm(0.1|a, eM) 
in Eq. (4.29)). Given the monotonic effects of E0 and C 
on Q(0.1|a, eM) and the definition of Qm(0.1|a, eM), 
small values for Qm(0.1|a, eM) will tend to occur when 
either (i) both E0 and C are at the lower ends of their 
ranges or (ii) both E0 and C are at the upper ends of 
their ranges. 

The regression analysis for Qm(0.1|a, eM) in Table 
4.2 fails beause of the nonmonotonic relationships in-
volving E0, C and Qm(0.1|a, eM)  shown in Fig. 4.8.  
Given the complexity of the relationships involving E0, 
C and Qm(0.1|a, eM), a successful regression-based 
sensitivity analysis for Qm(0.1|a, eM) would require the 
use of nonparametric regression procedures [111; 112]. 

As indicated by this example, sensitivity analyses 
associated with margins defined for bounding intervals 
(i.e., gates) can be challenging. This can happen for at 
least two reasons. First, different subranges of a vari-
able can affect compliance with upper and lower 
bounds. Second, different variables can affect compli-
ance with upper and lower bounds. The outcome of 
these two effects can be complex relational patterns 
between margins and uncertain analysis inputs whose 
identification requires sophisticated sensivity analysis 
procedures (e.g., [111; 112]). 
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Fig. 4.8. Scatterplots for margin Qm(0.1|a, eM) defined in Eq. (4.29): (a) [E0i,Qm(0.1|a, eMi)], i = 1,2, …, nSE = 

200, and (b) [Ci, Qm(0.1|a, eMi)], i = 1,2, …, nSE = 200.  

Table 4.2. Stepwise Regression Analysis to Identify 
Uncertain Variables Affecting the Margin 
Qm(0.1|a, eM) defined in Eq. (4.29)  

Stepa Variableb SRCc R2d 
1 E0 0.28 0.08 
2 C 0.27 0.16 

a Steps in stepwise regression analysis with an α-value of  0.01 or 
less required for a variable to enter a regression model. 

b Variables listed in the order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression 

model. 

 

4.3 Epistemic Uncertainty with a 
Specified Bounding Interval over 
Time 

A QMU problem involving a bounding interval at a 
fixed point in time is considered in Sect. 4.2. This prob-
lem is now increased in complexity by considering a 
situation in which a bounding interval [ , ]b bQ Q  is spe-
cified for a quantity such as Q(t|a, eM) that takes on 
values over a time interval [tmn, tmx] (Fig. 4.9).  Spe-
cifically, the requirement is that the values for Q(t|a, 
eM) stay within the bounding interval[ , ]b bQ Q  for tmn 
≤ t ≤ tmx (e.g., [ , ]b bQ Q  = [0.07, 0.14], tmn = 0.02 s and 
tmx = 0.18 s in Fig. 4.9). Formally stated, the require-
ment is that the inequalities 

( ),b M bQ Q t Q≤ ≤a e  (4.34) 

be satisfied for eM ∈ EM and tmn ≤ t ≤ tmx. 

Uncertainty in compliance with the indicated re-
quirement can be represented with use of the indicator 
function 

( )
( )

, :

1 if ,  for 
       =

0 otherwise

M mn mx

b M b mn mx

Q t t t t

Q Q t Q t t t

δ ⎡ ⎤≤ ≤⎣ ⎦
⎧ ≤ ≤ ≤ ≤⎪
⎨
⎪⎩

a e

a e  

 (4.35) 

and the associated sets 

( )
:  and 

, : 1
M M

M mn mxQ t t t tδ
+

∈⎧ ⎫⎪ ⎪= ⎨ ⎬⎡ ⎤≤ ≤ =⎪ ⎪⎣ ⎦⎩ ⎭

e e

a e

EM
X  (4.36) 

and 

( )
:  and 

.
, : 0

M M

M mn mxQ t t t tδ
−

∈⎧ ⎫⎪ ⎪= ⎨ ⎬⎡ ⎤≤ ≤ =⎪ ⎪⎣ ⎦⎩ ⎭

e e

a e

EM
X  (4.37) 

Then, the probabilities of compliance and noncompli-
ance are given by 

( ) ( )
1

, :

0.82

nSE

EM Mi mn mx
i

p Q t t t t nSEδ+

=

⎡ ⎤≅ ≤ ≤⎣ ⎦

=

∑ a eX

 
 (4.38) 
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Fig. 4.9. Example bounding interval [ , ]b bQ Q  = [0.07, 

0.14] over the time interval [tmn, tmx] = [0.02, 
0.18 s] for Q(t|a, eM). 
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Fig. 4.10. Estimated CDF summarizing uncertainty in 

margin Qm(t|a, eM, [tmn, tmx]) defined in Eq. 
(4.40) for bounding interval [ , ]b bQ Q  = [0.07, 
0.14] and time interval [tmn, tmx] = [0.02, 
0.18 s]. 

and 

( ) ( )1 1 0.82 0.18,EM EMp p− += − ≅ − =X X  (4.39) 

respectively. 

The preceding representation summarizes the un-
certainty in whether or not compliance with the speci-

fied bounding interval over time will be satisfied.  
However, this representation does not display the asso-
ciated margins.  These margins can be defined by 

[ ]( )
[ ]( )

[ ]( )

, , ,

, , ,
min

, , , ,

m M mn mx
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 (4.40) 

where 

[ ]( )
( ){ }

, , ,

            = min , :

mn M mn mx

M mn mx
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and 

[ ]( )
( ){ }

, , ,

           = max , : .

mx M mn mx

M mn mx

Q t t t

Q t t t t≤ ≤

a e

a e
 

In turn, Qm(t|a, eM, [tmn, tmx]) has an uncertainty struc-
ture that derives from the uncertainty structure imposed 
on eM (Fig. 4.10). The probability pEM(X−) = 0.18 in Eq. 
(4.39) corresponds to the cumulative probability associ-
ated with Qm(0.1|a, eM, [tmn, tmx]) = 0 in Fig. 4.10. 

An alternative representation is to use normalized 
margins. Specifically, the margin Qm(t|a, eM, [tmn, tmx]) 
defined in Eq. (4.40) can be replaced by a normalized 
margin Qn(t|a, eM, [tmn, tmx]) defined by 

[ ]( )
[ ]( )

[ ]( )

, , ,

, , ,

             = min
, , ,

,

n M mn mx
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b

b mx M mn mx
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Q

Q Q t t t
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a e

a e

a e

 (4.41) 

which expresses margin as a fraction of the bounding 
value from which Q(t| a, eM) has the smallest fractional 
deviation (Fig. 4.11). 

If desired, “margin/uncertainty” summary meas-
ures of the form defined in Eqs. (4.7), (4.8), (4.13) and 
(4.14) can be defined for the distribution of Q(0.1|a, 
eM, [tmn, tmx]) in Fig. 4.10. Specifically,  
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Fig. 4.11. Estimated CDF summarizing uncertainty in 

normalized margin Qn(t|a, eM, [tmn, tmx]) de-
fined in Eq. (4.41) for bounding interval 
[ , ]b bQ Q  = [0.07, 0.14] and time interval [tmn, 
tmx] = [0.02, 0.18 s]. 
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and 
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  (4.43) 

However, as is always the case, a significant amount of 
information is lost when the results in Figs. 4.9 and 
4.10 are reduced to a single number (see Sect. 4.5 for 
additional discussion). 

Sensitivity analysis can also be performed for Q(t|a, 
eM) and the results summarized by Qm(t|a, eM, [tmn, 
tmx]). A natural starting point is to investigate the vari-
ables affecting Q(t|a, eM) over the time interval [tmn, tmx] 

(Fig. 4.12). To this end, partial correlation coefficients 
(PCCs) and SRCs for Q(t|a, eM) and  the elements of eM 
are presented in Fig. 4.12.  

Related, but not identical information is provided 
by PCCs and SRCs.  Specifically, a PCC provides a 
measure of the strength of the linear relationship be-
tween two variables after the linear effects of all other 
variables have been removed, and a SRC provides a 
measure of the fraction of the uncertainty in a depend-
ent variable that can be accounted for by the independ-
ent variable under consideration (see Refs. [53; 56] for 
additional discussion of PCCs and SRCs). Although 
their numeric values differ, the absolute values of PCCs 
and SRCs provide the same orderings of variable im-
portance when no correlations between the independent 
variables (i.e., the elements of eM) are present. For 
comparison, both PCCs and SRCs are presented in Fig. 
4.12. For presentation purposes, PCCs can be preferable 
to SRCs because PCCs tend to be more spread out in 
the interval [−1, 1] than SRCs, with the result that a 
single plot frame containing multiple time-dependent 
PCCs is easier to read than a single plot frame contain-
ing multiple time-dependent SRCs. 

As examination of Fig. 4.12 shows, the effects of the 
elements of eM tend to swing from positive to negative 
prior to approximately 0.1 s. This effect results because of 
the oscillatory behavior of Q(t|a, eM) that can be seen in 
Fig. 4.9 and derives from the sine and cosine terms in the 
closed form representation for Q(t|a, eM) shown in Eq. 
(3.31). During this early time period, all variables except λ 
have appreciable effects on Q(t|a, eM). After approxi-
mately 0.1 s, the oscillatory behavior of Q(t|a, eM) has 
significantly decayed, and the uncertainty in Q(t|a, eM) is 
dominated by C and E. As indicated by its PCCs and 
SRCs, λ has a strong negative partial correlation with 
Q(t|a, eM) beginning at about 0.1 s but the actual size of 
this effect on the uncertainty in Q(t|a, eM) is rather small.  

In this example, the margin Qm(t|a, eM, [tmn, tmx]) is 
not an affine transformation of the underlying analysis 
result Q(t|a, eM). As a consequence, sensitivity analysis 
results for Q(t|a, eM) cannot be expected to be the same 
as sensitivity analysis results for Qm(t|a, eM, [tmn, tmx]). 
For this reason, a sensitivity analysis for Qm(t|a, eM, 
[tmn, tmx]) with stepwise regression analysis is presented 
in Table 4.3. This analysis indicates that R is the domi-
nant variable affecting the uncertainty in Qm(t|a, eM, 
[tmn, tmx]), with Qm(t|a, eM, [tmn, tmx]) tending to in-
crease as R  increases. After R, smaller effects on Qm(t|a, 
eM, [tmn, tmx]) are indicated for E0, C and L, with Qm(t|a, 
eM, [tmn, tmx]) tending to decrease as each of these vari-
ables increases. 
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Fig. 4.12. Sensitivity analysis for Q(t|a, eM) for 0 < t < 0.2 s with PCCs (left column) and SRCs (right column).  

Additional insights on the effects of R, E0, C and L 
on Qm(t|a, eM, [tmn, tmx]) can be obtained by examining 
the scatterplots involving these variables and Qm(t|a, 
eM, [tmn, tmx]) (Fig. 4.13). Specifically, the strong posi-
tive effect of R on Qm(t|a, eM, [tmn, tmx]) can be clearly 
seen, with negative values for Qm(t|a, eM, [tmn, tmx]) 
occurring for small values for R. Further, the negative 
but less strong effects of E0, C and L  on Qm(t|a, eM, 
[tmn, tmx]) can also be seen, with negative values for 
Qm(t|a, eM, [tmn, tmx]) tending to be associated with 
large values for E0, C and L. 

Although not particularly high, the final R2 value 
of 0.62 in Table 4.3 is significantly better than the al-
most meaningless final R2 value of 0.16 in Table 4.2. 

This difference results because the margins associated 
with the problem in Sect. 4.3 have relationships with 
the elements of eM that have a monotonic character 
while the margins in Sect. 4.2 and their relationships 
with the elements of eM do not have this character (i.e., 
compare the scatterplots in Figs. 4.8 and 4.13). 

4.4 Epistemic Uncertainty with an 
Uncertain Bound 

The QMU results presented in Sects. 4.1 – 4.3 in-
volve uniquely specified bounds.  However, it is likely 
that this will not always be the case in QMU analyses.  
For example, a requirement might be that a certain sys-
tem operates but the conditions that define when the
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Fig. 4.13. Scatterplots for margin Qm(t|a, eM, [tmn, tmx]) defined in Eq. (4.40): (a) [Ri, Qm(t|a, eMi, [tmn, tmx]), i = 

1,2, …, nSE = 200,  (b) [E0i, Qm(t|a, eMi, [tmn, tmx]), i = 1,2, …, nSE = 200, (c) [Ci, Qm(t|a, eMi, [tmn, 
tmx]), i = 1,2, …, nSE = 200, and (d) [Li, Qm(t|a, eMi, [tmn, tmx]), i = 1,2, …, nSE = 200.  

system does and does not operate appropriately may not 
be specified. Then, it is the responsibility of the individu-
als (i.e., analysts) charged with carrying out the analysis 
to specify the conditions under which the system oper-
ates in the manner desired.  However, there may be un-
certainty with respect to exactly what conditions are nec-
essary for the appropriate operation of the system.  Then, 
in this situation, there is epistemic uncertainty as to the 
conditions must be specified to define what constitutes 
appropriate operation of the system. 

The example presented in Sect. 4.3 can be modi-
fied to illustrate this situation.  As originally stated, the 
example in Sect. 4.3 involves a bounding interval 

[ , ]b bQ Q  for Q(t|a, eM) over the time interval [tmn, tmx].  
For the example of this section, it is assumed that the 
specified requirement is that the system be operational 
over the time interval [tmn, tmx] but the requirement 
does not specify what conditions are necessary for the 
system to be operational.  For purposes of illustration, it 
is assumed that the analysts involved conclude that the 
system being operational over [tmn, tmx] corresponds to 
Q(t| a, eM) being within a bounding interval [ bQ , bQ ].  
However, they are uncertain with respect to the appro-
priate value for this bounding interval.  Thus, there is 
epistemic uncertainty with respect to the values to use 
for bQ  and bQ .  As a result, the vector eM of epistemi-
cally uncertain inputs to the analysis now has the form
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Table 4.3.  Stepwise Regression Analysis to Identify Un-
certain Variables Affecting Margin Qm(t|a, 
eM, [tmn, tmx]) Defined in Eq. (4.40)  

Stepa Variableb SRCc R2d 
1 R 0.67 0.45 
2 E0 −0.26 0.53 
3 C −0.23 0.58 
4 L −0.20 0.62 

a Steps in stepwise regression analysis with an α-value of 0.01 or 
less required for a variable to enter a regression model. 

b Variables listed in the order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression 

model. 
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Fig. 4.14. Example uncertain bounding interval [ , ]b bQ Q  

with 0.06 ≤ bQ  ≤ 0.08 and 0.14 ≤ bQ  ≤ 0.16 
over the time interval [tmn, tmx] = [0.02, 0.18 s] 
for Q(t|a, eM). 

[ ] 0, , , , , , , ,M R P b bQ Q L R C E λ⎡ ⎤= = ⎣ ⎦e e e
 (4.44) 

where [ , ]R b bQ Q=e and eP = [L, R, C, E0, λ] as indi-
cated in Eq. (3.21). 

For purposes of illustration, it is assumed that the 
analysts conclude that (i) bQ  is contained in the interval 
[0.06, 0.08], (ii) bQ  is contained in the interval [0.14, 
0.16], (iii) bQ  and bQ  have the same uncertainty structure 
specified for L, R0, C, E and λ (see Eqs. (3.38) – (3.43) 
and associated discussion), and (iv) no dependency or 
correlation exists between bQ  and bQ  (Fig. 4.14). 

This problem can now be analyzed exactly as in 
Sect. 4.3.  The only difference is that eM now contains 7 

rather than 5 elements, with two of these elements being 
bQ  and bQ .  Specifically, δ [Q(t|a, eM): tmn ≤ t ≤ tmx], X+ 

and X– are defined as indicated in Eqs. (4.35) –(4.37) 
with the understanding that the indicator function δ [~] is 
now a function of bQ  and bQ .  Given the dependency of 
δ [~] on bQ  and bQ , a more complete but rather cumber-
some notation for δ [~] is δ [~,( bQ , bQ )], which will be 
used below to make the dependence of δ [~] on bQ  and 

bQ  explicit.  In turn, the probabilities of compliance and 
noncompliance are given by 

( )
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EM
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Q t a t t t Q Q
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(4.45) 

and 

( ) ( )1 1 0.895 0.105,EM EMp p− +≅ − = − =X X   (4.46) 

respectively, where 

0, , , , , , , 1, 2, , ,Mi bi bi i i i i iQ Q L R C E i nSEλ⎡ ⎤= =⎣ ⎦ …e  

is now an LHS of size nSE = 200 from vectors of the 
form defined in Eq. (4.44). 

Margin analysis results Qm(t|a, eM, [tmn, tmx]) and 
normalized margin analysis results Qn(t| a, eM, [tmn, 
tmx]) of the form defined in Eqs. (4.40) and (4.41), re-
spectively, can also be obtained (Figs. 4.15 4.16). 

Similarly to the results in Eqs. (4.42) and (4.43), 
“margin/uncertainty” ratios Qm/u(t|a, eM, [tmn, tmx]) and 
Q m/u(t|a, eM, [tmn, tmx]) can be used to summarize the 
distribution for Qm(t|a, eM, [tmn, tmx]) in Fig. 4.15. Spe-
cifically,   

( )
( )
( )

, , ,

0.011 0.011 0.005 = 0.69 for 0.05  

0.011 0.011 0.021 = 0.34 for 0.00,  

m u M mn mxQ t t t

q

q

⎡ ⎤⎣ ⎦

⎧ ⎡ ⎤− − =⎪ ⎣ ⎦= ⎨
⎡ ⎤− − =⎪ ⎣ ⎦⎩

a e

 
 (4.47) 

and similar values are obtained for Q m/u(t|a, eM, [tmn, 
tmx]) as a consequence of the similarity of the mean and 
median values for Q(t|a, eM, [tmn, tmx]) (see Fig. 4.15). 
However, as is always the case, a significant amount of 
information is lost when the results in Figs. 4.14 and 4.15
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Fig. 4.15. Estimated CDF summarizing uncertainty in 

margin Qm(t|a, eM, [tmn, tmx]) defined in Eq. 
(4.40) for time interval [tmn, tmx] = [0.02, 0.18 
s] and uncertain bounding interval [ bQ , bQ ] 
with 0.06 ≤ bQ  ≤ 0.08 and 0.14 ≤ bQ  ≤ 0.16. 
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Fig. 4.16. Estimated CDF summarizing uncertainty in 

normalized margin Qn(t|a, eM, [tmn, tmx]) de-
fined in Eq. (4.41) for time interval [tmn, tmx] = 
[0.02, 0.18 s] and uncertain bounding interval 
[ bQ , bQ ] with 0.06 ≤ bQ  ≤ 0.08 and 0.14 ≤ bQ  
≤ 0.16. 

are reduced to a single number (see Sect. 4.5 for addi-
tional discussion). 

A sensitivity analysis for Qm(t|a, eM, [tmn, tmx]) 
based on stepwise regression analysis is presented in 
Table 4.4. The two most important variables affecting the 

Table 4.4. Stepwise Regression Analysis to Identify Un-
certain Variables Affecting Margin Qm(t|a, 
eM, [tmn, tmx]) Defined in Eq. (4.40) for Time 
Interval [tmn, tmx] = [0.02, 0.18 s] and Uncer-
tain Bounding Interval [ bQ , bQ ] with 0.06 ≤ 

bQ  ≤ 0.08 and 0.14 ≤ bQ  ≤ 0.16.  

Stepa Variableb SRCc R2d 
1 R 0.53 0.28 
2 bQ  −0.40 0.43 
3 L −0.32 0.54 
4 bQ  0.23 0.59 
5 E0 0.13 0.61 

a Steps in stepwise regression analysis with an α-value of 0.01 or 
less required for a variable to enter a regression model. 

b Variables listed in the order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression 

model. 
 

uncertainty in Qm(t|a, eM, [tmn, tmx]) are R and bQ , with 
Qm(t|a, eM, [tmn, tmx]) tending to increase as R increases 
and tending to decrease as bQ  increases. In addition, a 
negative effect is indicated for L and positive effects are 
indicated for bQ  and E0. 

The effects of R, bQ  and bQ  on Qm(t|a, eM, [tmn, tmx]) 
can be seen in the scatterplots in Fig. 4.17. In particular, 
negative values for Qm(t|a, eM, [tmn, tmx]) tend to be asso-
ciated with small values for R that occur in conjunction 
with a large value for bQ   and a small value for bQ . 

4.5 Information Loss in a “Margin/ 
Uncertainty” Ratio  

As already emphasized several times, results of the 
form “margin/uncertainty” involve a significant loss of 
information. This loss is particularly acute because the 
actual magnitudes of the margins involved in the de-
termination of “margin/uncertainty” are suppressed and 
cannot be determined from this ratio. Specifically, 
many different pairings of “margin” and “uncertainty” 
can result in the same “margin/uncertainty” ratio. In 
particular, it is impossible to determine from a “mar-
gin/uncertainty” ratio whether the underlying margins 
are large or small. Generally, large margins are prefer-
able to small margins but insights into whether the mar-
gins underlying a “margin/uncertainty” ratio are large 
or small are not directly obtainable from this ratio. 
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Fig. 4.17. Scatterplots for margin Qm(t|a, eM, [tmn, tmx]) defined in Eq. (4.40) for time interval [tmn, tmx] = [0.02, 

0.18 s] and uncertain bounding interval [ bQ , bQ ] with 0.06 ≤ bQ  ≤ 0.08 and 0.14 ≤ bQ  ≤ 0.16: (a) [Ri, 
Qm(t|a, eMi, [tmn, tmx]), i = 1,2, …, nSE = 200, (b) [ biQ , Qm(t|a, eMi, [tmn, tmx]), i = 1,2, …, nSE = 200, and 
(c) [ biQ , Qm(t|a, eMi, [tmn, tmx]), i = 1,2, …, nSE = 200.  

The ambiguity of a “margin/uncertainty” ratio can 
be illustrated with a simple plot involving the ratio 

( )/ ,b b lk m m m= −  (4.48) 

where mb is the best estimate for a margin (e.g., the 
mean or median of the epistemic uncertainty distribu-
tion for the margin under consideration), ml is the lower 
estimate for a margin (e.g., the 0.05 or 0.00 quantile of 
the epistemic uncertainty distribution for the margin 
under consideration), and the difference mb − ml defines 
the “uncertainty” in the margin under consideration. 
Then, as shown in Fig. 4.18, infinitely many pairs (mb, 

ml) of margin estimates result in the same “mar-
gin/uncertainty” ratio k. Specifically, each line segment 
in Fig. 4.18 defines pairs (mb, ml) of margin estimates 
that result in the same “margin/uncertainty” ratio k. As 
a consequence, knowledge of the “margin/uncertainty” 
ratio k provides no information on whether the underly-
ing margins involved in the definition of k are large or 
small. 

Some additional properties of the “margin/uncer-
tainty” ratio k are also illustrated by Fig. 4.18.  Specifi-
cally, (i) 1 ≤ k < ∞ results for 0 ≤ ml < mb with k ap-
proaching ∞ as ml approaches mb and k approaching 1 
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Fig. 4.18. Relationship of best estimate margin mb and lower estimate margin ml to “margin/uncertainty” ratio k de-

fined by k = mb/(mb − ml). 

as ml approaches 0, (ii) 0 < k < 1 results for ml < 0 < mb 
with k approaching 1 as ml approaches 0 and k ap-
proaching 0 as ml approaches −∞, and (iii) −∞ < k < 0 
results for ml < mb < 0 with k approaching 0 as ml ap-
proaches −∞ and k approaching −∞ as ml approaches 
mb. However, as already discussed, knowledge of k 
provides no information on the underlying margins mb 
and ml. Presumably, the half plane to the left of the line 
mb = ml in Fig. 4.18 is not of interest as the pairs (mb, 

ml) in this region correspond to the best estimate mar-
gin mb being less than the lower margin estimate ml. 
Also, the “margin/uncertainty” ratio k is not defined for 
points on the straight line mb = ml as this situation in-
volves an undefined division by mb− ml = 0. 

Significant reservations about the use of “uncer-
tainty/margin” ratios are also expressed in the NAS/NRC 
report on QMU (e.g., Finding 1-4, p. 25, Ref. [77]). 
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5 QMU with Aleatory and Epistemic 
Uncertainty:  Characterization with 
Probability 

The use of probability to represent epistemic uncer-
tainty in analyses that involve only epistemic uncer-
tainty is discussed and illustrated in Sects. 3.3, 3.4 and 
4.  Specifically, the formal discussion in Sect. 3.3 in-
volves a generic real-valued quantity 

( ) ( ), ,M My t f t=a e a e  (5.1) 

conditional on a specific realization a of aleatory uncer-
tainty.  The vector eM contains epistemically uncertain 
analysis inputs, with the uncertainty in these inputs cha-
racterized by a probability space (EM, EM, pEM). 

As discussed in Sect. 3.5, an increase in complexity 
is to include the aleatory uncertainty associated with a in 
the analysis.  Then, in addition to the probability space 
(EM, EM, pEM) that characterizes the epistemic uncer-
tainty associated with eM, there is also a probability 
space (A, A, pA) that characterizes the aleatory uncer-
tainty associated with a.  Further, there can be, and often 
is, epistemic uncertainty with respect to a vector eA of 
quantities used in the definition of the probability space 
(A, A, pA).  As a result, there is also a probability space 
(EA, EA, pEA) that characterizes the epistemic uncer-
tainty associated with eA.  The vector e = [eA, eM] then 
contains the epistemically uncertain inputs to the analy-
sis, with the uncertainty in e characterized by a probabil-
ity space (E, E, pE) that derives from the probability 
spaces (EA, EA, pEA) and (EM, EM, pEM).  Conceptu-
ally, the resultant analysis involves the three basic analy-
sis components discussed in Sect. 3.2:  (i) (EN1), a prob-
abilistic characterization of aleatory uncertainty (i.e., a 
probability space (A, A, pA) that characterizes the alea-
tory uncertainty associated with the elements of a), (ii) 
(EN2), a model that predicts system behavior (i.e., a 
function f(t|a, eM)), and (iii) (EN3), a probabilistic char-
acterization of epistemic uncertainty (i.e., a probability 
space (E, E, pE) that characterizes the epistemic uncer-
tainty associated with the elements of e = [eA, eM]). 

The results of analyses involving aleatory and epis-
temic uncertainty are usually summarized with CDFs 
and CCDFs that display the effects of aleatory uncer-
tainty conditional on specific realizations of epistemic 
uncertainty and also with various quantities derived 
from such CDFs and CCDFs (e.g., quantiles and ex-
pected values).  In turn, margins can be defined in a 
variety of ways for CDFs, CCDFs and associated de-
rived quantities, and the presence of epistemic uncer-

tainty results in a corresponding epistemic uncertainty 
in the resulting margins. 

This section uses the function A(t|a, eM) introduced 
in Sect. 3.6 to illustrate two ways in which QMU analy-
ses could arise and be carried out in the context of 
analyses that involve a generic result y(t|a, eM) of the 
form indicated in Eqs. (3.24) and (5.1). Further, 

[ ]

[ ]
1 2 3 4 5

,

, , , ,

, , , , ,

A M

e e e e e

a m b rλ

=

= ⎡ ⎤⎣ ⎦
=

e e e

 (5.2) 

where (i) eA = [λ, a, m, b] and eM = [r] have the prop-
erties defined in conjunction with Eq. (3.59) and (ii) the 
corresponding probability space (E, E, pE) that charac-
terizes the epistemic uncertainty associated with e is 
defined in conjunction with Eqs. (3.60) – (3.65).  

The time-dependent behavior of A(t|a, eM) = A(t|a, 
r) is illustrated in Figs. 3.9 and 3.10, and the CDFs and 
CCDFs for A(10|a, eM) = A(10|a, r) that result for dif-
ferent values of e are illustrated in Figs. 3.11 and 3.12 
and are defined by the probabilities pA[A(10|a, r) ≤ A 
|eA] and  pA[A < A(10|a, r)|eA], respectively. As indi-
cated by the vertical line “ | ”, the value of A(t|a, r) is 
conditional on a and r. As a result, eA does not affect 
the value of A(t|a, r) but does affect the distribution of 
A(t|a, r) arising from the distribution of possible values 
for a. In contrast, probabilities of the form pA[A(t|a, r) 
≤ A |eA] and  pA[A < A(t|a, r)|eA] are conditional on eA 
and hence on the probability space (A, A, pA) with as-
sociated density function dA (a|eA). 

The examples presented in this section use an LHS 

1 2 5

,

, , ,

, , , , , 1, 2, , 200,

i Ai Mi

i i i

i i i i i

e e e

a m b r i nSEλ

= ⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦
= = =⎡ ⎤⎣ ⎦

…

…

e e e

 (5.3) 

from E generated in consistency with the distributions 
that define the probability space (E, E, pE).  Further, 
results conditional on individual sample elements ei are 
generated with a random sample 

aj,  j = 1, 2, …, nSA, = 10,000, (5.4) 

from A consistent with the probability space (A, A, 
pA).  As a result of the values associated with eAi = [λi, 
ai, mi, bi], the sample space (A, A, pA) underlying the 
generation of the sample in Eq. (5.4) changes for each 
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Eq. (5.3) shown with a vertical line indicating exceedance probabilities pA[20 < A(10|a, r)|eA], and (b) Es-
timated CCDF for pA[20 < A(10|a, r)|eA]. 

sample element ei = [eAi, eMi] = [eAi, ri]. Evaluation of 
A(t|aj, ri) and results such as pA[A < A(t|a, ri)|eA] for 
elements of the preceding samples generates mappings 
of the form 

( ), , ,

  1, 2, , 200, 1, 2, , 10,000

i j ir A t r

i nSE j nSA

⎡ ⎤
⎣ ⎦

= = = =… …

a
(5.5) 

and 

( ){ }, , ,

1, 2, , 200,

i A i Aip A A t r

i nSE

⎡ ⎤<⎣ ⎦
= =…

e a e
 (5.6) 

that are used in the generation of the example results 
presented in this section.  

The following topics related to QMU in the pres-
ence of aleatory and epistemic uncertainty are consid-
ered in this section: epistemic uncertainty in margins 
associated with a specified bound on a quantile deriving 
from aleatory uncertainty (Sect. 5.1), and epistemic 
uncertainty in margins associated with a specified 
bound on an expected value deriving from aleatory un-
certainty (Sect. 5.2). 

As indicated at the beginning of Sect. 3.5, the 
NAS/NRC report on QMU recommends the use of what 
it describes as the “probability of frequency approach” 

in QMU analyses (Recommendation 1-7, p. 33, and 
App. A, Ref. [77]). The examples presented in Sects. 
5.1 and 5.2 involve what the NAS/NRC report de-
scribes as the “probability of frequency approach” (i.e., 
an analysis that involves an explicit separation of alea-
tory and epistemic uncertainty). 

5.1 Epistemic Uncertainty with a 
Specified Bound on a Quantile 

For this example, it is assumed that pA[20 < 
A(10|a, r)|eA] is required to be less than a bound (e.g., 
the possible bounds pb1 = 0.05 and pb2  = 0.1 in Fig. 
5.1b).  Specifically, the values for pA[20 < A(10|a, 
r)|eA] in Fig. 5.1b correspond to the exceedance prob-
abilities associated with the vertical line in Fig. 5.1a, 
and the corresponding distribution of these probabilities 
and the associated bounds pb1 and pb2 are shown in Fig. 
5.1b. In particular, the probabilities that pA[20 < A(10|a, 
r)|eA] will exceed pb1 = 0.05 and pb2  = 0.1 are 0.055 
and 0.025, respectively. The indicated exceedance 
probabilities of 0.055 and 0.025 derive from epistemic 
uncertainty and thus characterize degrees of belief that 
pA[20 < A(10|a, r)|eA] will exceed pb1 and pb2,  respec-
tively.  

In turn, the margins between pA[20 < A(10|a, r)|eA] 
and the bounds pbk, k = 1, 2, indicated in Fig. 5.1b can 
be defined in the same manner as the margins in Eq. 
(4.5). Specifically, the margin pmk(10|e) is defined by 
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Fig. 5.2. Estimated CDFs for margins pmk(10|e) associated with bounds pbk for k = 1, 2: (a) pm1(10|e) for pb1 = 

0.05, and (b) pm2(10|e) for pb2 = 0.1. 

( ) ( )10 20 10 , ,mk bk A Ap p p A r⎡ ⎤= − <⎣ ⎦e a e
 

(5.7) 

with pmk(10|e) > 0 indicating that bound pbk is satisfied 
and pmk(10|e) < 0 indicating that bound pbk is not satis-
fied.  As a result of pA[20 < A(10|a, r)|eA] being epis-
temically uncertain, the corresponding margins 
pmk(10|e) are also epistemically uncertain and have an 
uncertainty structure that derives from the correspond-
ing uncertainty structure assumed for e (Fig. 5.2). 

As discussed in conjunction with Eq. (4.6), an al-
ternative presentation involves the use of normalized 
margins.  For the present example, normalized margins 
are defined by 

( ) ( )10 10nk mk bkp p p=e e  (5.8) 

for k = 1, 2 and express margin as a fraction of the cor-
responding bounding value (Fig. 5.3). 

If desired, the CDFs for margin in Fig. 5.2 can be 
converted into summary “margin/uncertainty” results as 
indicated in Eqs. (4.7) and (4.8) by the normalizations 

,0.5 ,0.5(10) (10) (10) (10)m u m m mqp p p p⎡ ⎤= −⎣ ⎦  (5.9) 

and 

(10) (10) (10) (10) ,m u m m mqp p p p⎡ ⎤= −⎣ ⎦  (5.10) 

where pmq(10) is the q quantile (e.g., q = 0.0, 0.05 or 
0.5) for the margin pm(10|e) corresponding to pm1(10|e) 
in Fig. 5.2a or pm2(10|e) in Fig. 5.2b and (10)mp is the 
expected value for pm(10|e). In turn,  

[ ]
[ ]

,1(10)

0.050 0.050 ( 0.007) 0.88 for 0.05
0.050 0.050 ( 0.313) 0.14 for 0.00

m up

q
q

⎧ − − = =⎪= ⎨ − − = =⎪⎩  
 (5.11) 

and 

[ ]
[ ]

,1(10)

0.041 0.041 ( 0.007) 0.85 for 0.05
0.041 0.041 ( 0.313) 0.12 for 0.00

m up

q
q

⎧ − − = =⎪= ⎨ − − = =⎪⎩  
 (5.12) 

for pm1(10|e) in Fig. 5.2a , and 

 

[ ]

,2 (10)

0.100 (0.100 0.043) 1.75 for 0.05     
0.100 0.100 ( 0.263) 0.28 for 0.00

m up

q
q
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 (5.13) 

and 

[ ]
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q
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 (5.14) 
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Fig. 5.3. Estimated CDFs for normalized margins pnk(10|e) associated with bounds pbk for k = 1, 2: (a) pn1(10|e) 

for pb1 = 0.05, and (b) pn2(10|e) for pb2 = 0.1 

for pm1(10|e) in Fig. 5.2b. The normalizations in Eqs. 
(5.11) and (5.12) are the outcomes of converting all the 
information in Figs. 5.1 and 5.2a into single numbers. 
Similarly, the normalizations in Eqs. (5.13) and (5.14)are 
the outcomes of converting all the information in Figs. 
5.1 and 5.2b into single numbers. Because of the pres-
ence of both aleatory and epistemic uncertainty, the con-
version of analysis results into a single “mar-
gin/uncertainty” ratios illustrated in this section involves 
a greater loss of information than is the case when only 
epistemic uncertainty is present (see Sect. 4.5 for addi-
tional discussion). 

Additional insights with respect to the uncertainty 
associated with the margins pm1(10|e) and pm2(10|e) in 
Fig. 5.2 can be obtained by performing a sensitivity 
analysis on the values for pA[20 < A(10|a, r)|eA] sum-
marized in Fig. 5.1 and used in the generation of 
pm1(10|e) and pm2(10|e) as indicated in Eq. (5.7). Be-
cause pm1(10|e) and pm2(10|e) are obtained from an 
affine transformation of pA[20 < A(10|a, r)|eA], the 
analysis of pA[20 < A(10|a, r)|eA] produces effectively 
the same results as an analysis of pm1(10|e) and 
pm2(10|e). The only difference is that the effects of in-
dividual variables are reversed owing to the subtraction 
of pA[20 < A(10|a, r)|eA] in the definition of pm1(10|e) 
and pm2(10|e) in Eq. (5.7). 

An initial sensitivity analysis for pA[20 < A(10|a, 
r)|eA] based on stepwise regression analysis is pre-
sented in Table 5.1. This analysis is basically a failure 

as it produces a regression model containing the vari-
ables r and λ that has an R2 value of only 0.19. As a 
result, this regression model provides little information 
on the variables that are affecting the uncertainty in 
pA[20 < A(10|a, r)|eA]. 

The natural next step at this point is to examine 
scatterplots involving pA[20 < A(10|a, r)|eA] and the 
elements of e (Fig. 5.4). A clearer picture of the effects 
of r and λ on pA[20 < A(10|a, r)|eA] emerges from an 
examination of these plots. Specifically, pA[20 < 
A(10|a, r)|eA] decreases as r increases and is almost 
always zero when r exceeds approximately 0.75. Fur-
ther, zero values for pA[20 < A(10|a, r)|eA] show a 
strong tendency to be associated with values for λ that 
are less than approximately 1.0.  

The failure of the regression analysis in Table 5.1 
results because the large number of zero values for pA[20 
< A(10|a, r)|eA] results in patterns that the linear regres-
sion model in use cannot match. In such situations, there 
are a number of additional techniques for sampling-based 
sensitivity analysis that can be tried. The examination of 
scatterplots as illustrated is certainly the simplest of these 
techniques. Other possibilities include rank regression, 
tests for patterns based on gridding, nonparametric re-
gression, tests for patterns based on distance measures, 
tree-based searches, the two-dimensional Kolmogorov-
Smirnov test, and the squared differences of ranks test 
(see Sect. 7.5 and Refs. [53; 54; 56]). 
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Fig. 5.5. Example bound bA  = 13 on EA[A(10|a, r)|eA]. 

Table 5.1. Stepwise Regression Analysis to Identify Un-
certain Variables Affecting Exceedance Prob-
ability pA[20 < A(10|a, r)|eA]   

Stepa Variableb SRCc R2d 
1 r −0.36 0.14 
2 λ 0.24 0.19 

a Steps in stepwise regression analysis with an α-value of  0.01 or 
less required for a variable to enter a regression model. 

b Variables listed in the order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression model. 

5.2 Epistemic Uncertainty with a 
Specified Bound on an Expected 
Value 

For this example, it is assmed that the expected 
value EA[A(10|a, r)|eA] summarized in Fig. 3.13 is re-
quired to be less than a bound (e.g., the bound bA  = 13 
in Fig. 5.5). At a conceptual level, this example is es-
sentially the same as the example in Sect. 5.1 as the 
only difference is that (i) each CCDF in Sect. 5.1 is 
being reduced to an exceedance probability pA[20 < 
A(10|a, r)|eA] associated with A(10|a, r) = 20 and (ii) 
each CCDF in the present section is being reduced to an 
expected value EA[A(10|a, r)|eA]. In both cases, CCDFs 
summarizing aleatory uncertainty are being reduced to a 
single number. However, it is easy to envision that each 
of these cases could arise in QMU analyses. Specifically, 
the results in Sect. 5.1 involve a situation in which a 
bound is being placed on the likelihood of extreme out-
comes arising from aleatory uncertainty, and the results 
in the present section involve a situation in which a 
bound is being placed on the expected value of outcomes 
arising from aleatory uncertainty. 

Margins and normalized margins for EA[A(10|a, 
r)|eA] are defined by  

(10 | ) [ (10 | , ) | ]m b A AA A E A r= −e a e   (5.15) 

and 

(10 | ) (10 | ) ,n m bA A A=e e   (5.16) 
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Fig. 5.6. Margins and normalized margins for EA[A(10|a, r)|eA]: (a) (10 | )mA e , and (b) (10 | )nA e . 

Table 5.2. Stepwise Regression Analysis to Identify Un-
certain Variables Affecting EA[A(10|a, r)|eA] 

Stepa Variableb SRCc R2d 
1 r −0.76 0.61 
2 λ 0.47 0.82 
3 m 0.13 0.84 
4 a 0.08 0.85 

a Steps in stepwise regression analysis with an α-value of 
0.01 or less required for a variable to enter a regression 
model. 

b Variables listed in the order of selection in regression anal-
ysis. 

c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into re-

gression model. 

 

respectively, and summarized in Fig. 5.6. 

Similarly to the results in Eqs. (5.9) and (5.10), the 
CDF for margin in Fig. 5.6a can be converted into 
summary “margin/uncertainty” results by the normali-
zations 

[ ]

,0.5 ,0.5(10) (10) (10) (10)

8.7 (8.7 0.6) 1.1 for 0.05     
8.7 8.7 ( 5.3) 0.6 for 0.00

m u m m mqA A A A

q
q

⎡ ⎤= −⎣ ⎦
− = =⎧⎪= ⎨ − − = =⎪⎩

 (5.17) 

and 

[ ]

(10) (10) (10) (10)

7.8 (7.8 0.6) 1.1 for 0.05      
7.8 7.8 ( 5.3) 0.6 for 0.00,

m u m m mqA A A A

q
q

⎡ ⎤= −⎢ ⎥⎣ ⎦
− = =⎧⎪= ⎨ − − = =⎪⎩

  (5.18) 

where (10)mqA  is the q quantile for the margin 
(10 | )mA e  and (10)mA  is the expected value for 
(10 | )mA e . The preceding normalizations are the out-

comes of converting all the information in Figs. 3.11, 
3.12, 5.5 and 5.6a into single numbers (see Sect. 4.5 for 
additional discussion).  

A sensitivity analysis for EA[A(10|a, r)|eA] based on 
stepwise regression analysis is presented in Table 5.2. 
As indicated, the uncertainty in EA[A(10|a, r)|eA] is 
dominated by r and λ, with smaller effects indicated for 
m and a. Specifically, EA[A(10|a, r)|eA] tends to de-
crease as r increases and tends to increase as each of λ, m 
and a increases. The final regression model has an R2 

value of 0.85, which indicates that most of the uncer-
tainty in EA[A(10|a, r)|eA] is being captured by the re-
gression model. A regression-based sensitivity analysis 
for (10 | )mA e  would produce the same results as shown 
in Table 5.2 with the exception that the signs on the 
SRCs would be reversed as a result of the subtraction of 
EA[A(10|a, r)|eA] in the definition of (10 | )mA e in Eq. 
(5.15). 

For perspective, the scatterplots for the two domi-
nant variables affecting the uncertainty in EA[A(10|a, 
r)|eA] identified in the regression analysis in Table 5.2 
are shown in Fig. 5.7. Specifically, the negative effect 
of r and the positive effect of λ are easily seen in the 
two scatterplots in Fig. 5.7. 
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Fig. 5.7. Scatterplots for EA[A(10|a, r)|eA]: (a) (ri, EA[A(10|a, ri)| eAi]), i = 1,2, …, nSE = 200, and (b) (λi, 

EA[A(10|a, ri)| eAi)]), i = 1,2, …, nSE = 200. 
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6 Example QMU Analyses 

Notional QMU analyses are presented in Sects. 4 
and 5. Examples are now presented from three real ana-
lyses involving both aleatory and epistemic uncertainty 
in the assessment of compliance with requirements ana-
logous to what could be encountered in real QMU ana-
lyses. Specifically, examples are presented involving 
compliance with the NRC’s nuclear reactor accident 
safety goals (Sect. 6.1), the EPA’s regulatory require-
ments for the Waste Isolation Pilot Plalnt (Sect. 6.2), 
and the NRC’s regulatory requirements for the pro-
posed high-level radioactive waste repository at Yucca 
Mountain, Nevada (Sect. 6.3). 

As observed in the NAS/NRC report on QMU, past 
analyses of the type illustrated in this section can pro-
vide valuable insights and techniques for future QMU 
analyses (Finding 1-7, pp. 31-32, Ref. [77]). Consistent 
with this observation, the three example analyses in-
volve (i) the “probability of frequency approach” entail-
ing an explicit separation of aleatory and epistemic un-
certainty (Finding 1-3, pp. 22-23, Recommendation 1-7, 
p. 33, and App. A, Ref. [77]), (ii) efficient sampling 
from high-dimensional input spaces (Recommendation 
1-4, p. 29, Ref. [77]), (iii) extensive sensitivity analyses 
(pp. 14-15, Ref. [77]), (iv) extensive use of expert re-
view and judgment (Recommendation 1-5, p. 30, Ref. 
[77]), and (v) a full presentation of analysis results ra-
ther than a limited number of one-dimensional sum-
mary results (Finding 1-4, p. 25, Ref. [77]). 

6.1 Nuclear Reactor Accident Safety 
Goals 

In the 1980’s and into the 1990’s, the NRC consid-
ered the implementation of safety goals for the opera-
tion of commercial nuclear power plants [113-116]. The 
proposed safety goals and their quantitative evaluation 
have aspects that are very similar to what might be ex-
pected in a QMU analysis of weapon system perform-
ance that involves the incorporation and representation 
of the implications of both aleatory and epistemic un-
certainty.  As a result, the proposed safety goals and 
analyses carried out in their support provide an excel-
lent example of the ideas and challenges that are likely 
to be encountered in a nontrivial application of QMU in 
stockpile performance. Specifically, results from a 
probabilistic risk assessment (PRA) for the Surry Nu-
clear Power Station [117] carried out in support of the 
NRC’s reassessment of the risk from commercial nu-
clear plants [10] are used to illustrate what a QMU 
analysis involving both aleatory and epistemic uncer-
tainty is likely to involve. 

An article summarizing this analysis [118] is re-
produced in App. C and will be referred to in the fol-
lowing discussion as a convenient and accessible source 
of additional information on this analysis.  Inclusion of 
this article in App. C makes it possible to have an ac-
cessible description of the analysis as part of this report.  
More detailed analysis descriptions are available in a 
detailed technical report [117], in a sequence of journal 
articles [11; 119-121], and in detailed technical reports 
cited in the preceding references.  In addition, further 
discussions of the NRC’s safety goals are also available 
[11; 122-132]. 

Specifically, the NRC considered two safety goals 
for individual fatality risk and three quantitative risk 
goals for accident frequency.  These goals have the 
following form: 

• Individual early fatality risk:  The expected 
value for average individual early fatality 
risk in the region between the plant site 
boundary and 1609.3 m (1 mi) beyond this 
boundary will be less than 5 × 10−7 yr−1. (SG1) 

• Individual latent cancer fatality risk:  The 
expected value for average individual latent 
cancer fatality risk in the region between the 
plant site boundary and 16,093 m (10 mi) 
beyond this boundary will be less than 2 × 
10−6 yr−1. (SG2) 

• Severe accident frequency:  The expected 
value for the frequency of a severe accident 
will be less than 1 × 10−4 yr−1. (QRG1) 

• Conditional probability of containment fail-
ure:  The expected value for the probability 
of containment failure given the occurrence 
of a severe accident will be less than 0.1. (QRG2) 

• Large release frequency:  The expected val-
ue for the frequency of a large release will 
be less than 1 × 10−6 yr−1. (QRG3) 

The two safety goals stated in (SG1) and (SG2) and 
the three quantitative risk goals stated in (QRG1) – 
(QRG3) involve requirements and analyses similar to 
requirements and analyses that will be encountered in 
QMU applications for weapons systems.  Specifically, 
each goal specifies a desired bound on a specific quan-
tity.  Further, the analysis for each goal involves both 
aleatory uncertainty and epistemic uncertainty, with 
aleatory uncertainty arising from the many possible 
accidents that could, but probably will not, occur at a 
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particular nuclear power plant and epistemic uncer-
tainty arising from the many imprecisely known quanti-
ties required in a PRA for a nuclear power plant. 

Because the goals in (SG1) – (QRG3) involve both 
aleatory uncertainty and epistemic uncertainty, their 
evaluation is underlain by two probability spaces:  a 
probability space (A, A, pA) for aleatory uncertainty 
and a probability space (E, E, pE) for epistemic uncer-
tainty. 

The probability space (E, E, pE) for epistemic un-
certainty involves nE = 130 variables (Ref. [117], Ta-
bles 2.2-9, 2.2-10, 2.3-2 and 3.2-1).  Thus, each element 
e of E is a vector of the form 

1 2 1 2 130, , , , , , .nEe e e e e e= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦… …e  (6.1) 

Examples of variables that constitute elements of e are 
presented in Table 8 of Ref. [118].  With respect to no-
tation, the set E corresponds to the set Ω in Ref. [118], 
and the vector e = [e1, e2, …, enE] corresponds to the 
vector X = [X1, X2, …, XnV] in Ref. [118]. 

The probability space (E, E, pE) was developed 
through an extensive expert review process that con-
structed a distribution Di, i = 1, 2, …, nE = 130, for 
each element ei of e [97; 133-140]. The review process 
used to define the distributions D1, D2, …, D130 and 
thus the probability space (E, E, pE) provides an exam-
ple and model of how the characterization of epistemic 
uncertainty could be carried out in support of QMU. 

The probability space (A, A, pA) characterizes the 
universe of possible accidents at the nuclear power sta-
tion under consideration.  When viewed at a high level, 
each element a of A is a vector of the form 

[ ], , , , , ,IE AS PDS APB STG WT=a  (6.2) 

where 

 IE = designator for initiating event (see Eq. 
(17), Table 1, and associated discussion in 
Sect. 3 of Ref. [118]), 

 AS = designator for accident sequence (see Eq. 
(18), Table 3, and associated discussion in 
Sect. 3 of Ref. [118]), 

 PDS = designator for plant damage  state (see Eq. 
(33), Tables 4 and 5, and associated dis-
cussion in Sect. 4 of Ref. [118]), 

 APB = designator for accident progression bin 
(see Eqs. (37) and (38), Table 6, and asso-
ciated discussion in Sect. 4 of Ref. [118]), 

 STG = designator for source term group (see Eq. 
(53) and associated discussion in Ref. 
[118]), 

 WT = designator for weather type (see discus-
sion in Sect. 6 of Ref. [118]). 

The analysis reported in Ref. [118] involves (i) nIE = 
11 initiating events (Table 1, Ref. [118]), (ii) nAS = 28 
accident sequences (Table 3, Ref. [118]), (iii) nPDS = 
25 plant damage states that were then reduced to nPDS 
= 7 plant damage states for the final analysis (Tables 4 
and 5, Ref. [118]), (iv) nAPB = 54 to nAPB = 157 acci-
dent progression bins, with the exact number depending 
on values assigned to epistemically uncertain quantities 
and a total of 1906 unique accident progression bins 
considered in the entire analysis (Table 6, Ref. [118]), 
(v) nSTG = 54 source term groups (Sect. 5, Ref. [118]), 
and (vi) nWT = 2560 weather types (Sect. 6, Ref. 
[118]).  However, not all combinations of initiating 
event, accident sequence, plant damage state, accident 
progression bin, source term group, and weather type 
are possible. 

As summarized in Ref. [118] and presented in 
more detail in the reports cited in Ref. [11], extensive 
use of fault trees, event trees, and other analysis proce-
dures are used to arrive at the actual combinations of 
the elements of a that are meaningful and also to de-
termine their probabilities.  Formally, the analysis can 
be represented by a sequence of matrix multiplications 
but it is important to realize that a large amount of 
analysis and modeling underlies the determination of 
the transition probabilities that constitute the elements 
of the matrices involved in the indicated multiplica-
tions. The results presented in this section provide an 
example of an actual implementation of the analysis 
approach summarized in App. A of Ref. [77].  

The analysis documentation summarized in Ref. 
[118] never specifically refers to a probability space for 
aleatory uncertainty.  However, such a probability 
space is clearly being defined by the specification of 
frequencies for initiating events and then conditional 
probabilities for transitions from initiating events to 
accident sequences to plant damage states to accident 
progression bins to source term groups to weather con-
ditions.  In essence, these transition probabilities define 
probabilities for vectors of the form indicated in Eq. 
(6.2) and thus provide a discretized approximation to 
the probability space (A, A, pA).  Technically, the vec-
tors in Eq. (6.2) are actually designators for sets of 
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similar accidents rather than descriptions for single 
unique accidents; this point is made because a single 
accident described in full and complete detail would 
have a probability of zero.  A purist would point out 
that the analysis is starting with frequencies rather than 
probabilities for initiating events; however, the conver-
sion from frequencies to probabilities is straightforward 
and, for practical purposes, there is no meaningful dif-
ference between a small annual frequency and a small 
annual probability.   

The safety goals indicated in (SG1) – QRG3) can 
be represented by the vector 

[ ]
7 1 6 1

4 1 6 1

1, 2, 1, 2, 3

5 10 yr , 2 10 yr ,

   1 10 yr , 0.1, 1 10 yr .

SG SG QRG QRG QRG
− − − −

− − − −

=

⎡= × ×⎣
⎤× × ⎦

G

 (6.3) 

Similarly, the estimated performance of a nuclear pow-
er station can be represented by the vector 

[ ]1, 2, 1, 2, 3 ,pSG pSG pQRG pQRG pQRG=P  (6.4) 

where pSG1, pSG2, pQRG1, pQRG2 and pQRG3 are 
the performance values calculated for comparison with 
the corresponding elements of G.  The quantities pSG1, 
pSG2, pQRG1 and pQRG3 are frequencies that derive 
from aleatory uncertainty, and the quantity pQRG2 is a 
conditional probability that derives from aleatory uncer-
tainty.  As a result, the determination of pSG1, pSG2, 
pQRG1, pQRG2 and pQRG3 involves the evaluation of 
integrals involving the probability space (A, A, pA) for 
aleatory uncertainty.  The evaluation of these integrals 
is a complex process and in most PRAs is performed 
with algorithms that rely heavily on fault trees, event 
trees, selective mechanistic modeling of physical proc-
esses, and extensive use of interpolation procedures to 
estimate the behavior of unmodeled physical condi-
tions.  For the Surry analysis, the process used to arrive 
at values for the elements of P is summarized in Ref. 
[118] and described in more detail in the technical re-
ports cited in Ref. [11]. 

If the probability space (A, A, pA) was known pre-
cisely and all additional quantities required in the eval-
uation of P were also known precisely, then the associ-
ated vector M of margins would be unambiguously de-
fined by 

[ ]1, 2, 1, 2, 3 ,mSG mSG mQRG mQRG mQRG
= −

=

M G P
 (6.5) 

where 

 mSG1 = 5 × 10−7 yr−1 − pSG1, 
 mSG2 = 2 × 10−7 yr−1 − pSG2, 
 mQRG1 = 1 × 10−4 yr−1 − pQRG1, 
 mQRG2 = 0.1 − pQRG2, 
 mQRG3 = 1 × 10−6 yr−1 − pQRG3. 

However, (A, A, pA) and additional quantities required 
in the evaluation of P are not known precisely in the 
example under consideration nor are they likely to be 
known precisely in any real analysis of a complex sys-
tem.  Rather, P is actually a function 

( ) ( ) ( ) ( )
( ) ( )

1 , 2 , 1 ,

    2 , 3

pSG pSG pQRG

pQRG pQRG

⎡= ⎣
⎤⎦

P e e e e

e e
 (6.6) 

of vectors e ∈ E, where (E, E, pE) is the probability 
space for epistemic uncertainty.  As a result, the vector 
M of margins has the form 

( ) ( )
( ) ( ) ( )

( ) ( )
1 , 2 , 1 ,

    2 , 3

mSG mSG mQRG

mQRG mQRG

= −

⎡= ⎣
⎤⎦

M e G P e

e e e

e e

 (6.7) 

and is thus epistemically uncertain with its elements 
having distributions that derive from the probability 
space (E, E, pE) for epistemic uncertainty. 

As stated, the safety goals in (SG1) – (QRG3) in-
volve comparisons with expected results, where the 
indicated expectations are over epistemic uncertainty.  
Specifically, note where the modifier “expected” ap-
pears in (SG1) – (QRG3).  Thus, a literal reading of 
(SG1) – (QRG3) implies that 

( ){ } ( ){ } ( ){ }
( ){ } ( ){ }
( ){ }

1 , 2 ,

                      1 , 2

                     3

E E E

E E

E

E E pSG E pSG

E pQRG E pQRG

E pQRG

⎡= ⎣

⎤
⎦

P e e e

e e

e

 (6.8) 

is to be used in comparisons with the specified goals, 
where 

( ){ } ( ) ( )1 1 d ,E EE pSG pSG d E= ∫e e e
E  
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dE(e) is the density function associated with the prob-
ability space (E, E, pE) for epistemic uncertainty, and 
the remaining elements of { ( )}EE P e  are defined simi-
larly to { 1( )}EE pSG e .  In the example of Ref. [118], 

( ){ } 8 1 9 1

5 1 7 1

1.6 10 yr , 1.7 10 yr ,

   4.1 10 yr , 0.19, 1.5 10 yr ,

EE − − − −

− − − −

⎡≅ × ×⎣
⎤× × ⎦

P e
 (6.9)

 

and, in turn, the resultant margins are 

( ){ } 7 1 6 1

5 1 7 1

4.8 10 yr , 2.0 10 yr ,

   5.9 10 yr , 0.09, 8.5 10 yr .

EE − − − −

− − − −

⎡− ≅ × ×⎣
⎤× − × ⎦

G P e
(6.10) 

However, this approach is not consistent with the basic 
premises of QMU as the epistemic uncertainty in the 
margins is suppressed in the calculation of expected 
values. 

Fortunately, the analyses presented in Ref. [118] 
use a sampling-based approach to the propagation of 
epistemic uncertainty.  Specifically, an LHS 

1 2 ,, , , , 1, 2, , ,i i i i nEe e e i nLHS⎡ ⎤= =⎣ ⎦… …e  (6.11) 

of size nLHS = 200 from the nE = 130 uncertain vari-
ables under consideration is used in the generation of 
the expected results in Eq. (6.8). This procedure re-
sulted in the estimation of 

( ) ( ) ( ) ( )
( ) ( )

1 , 2 , 1 ,

                2 , 3

i i i i

i i

pSG pSG pQRG

pQRG pQRG

⎡= ⎣
⎤⎦

P e e e e

e e
 (6.12) 

for i = 1, 2, …, nLHS = 200, and in turn allows estima-
tion of the margins 

( ) ( )
( ) ( ) ( )

( ) ( )
1 , 2 , 1 ,

    2 , 3

i i

i i i

i i

mSG mSG mQRG

mQRG mQRG

= −

⎡= ⎣
⎤⎦

M e G P e

e e e

e e

 (6.13) 

for i = 1, 2, …, nLHS = 200. As a result, the informa-
tion needed for a QMU-type analysis of margins is pre-
sent.  

A sample of size nLHS = 200 from nE = 130 un-
certain variables may seem too small to be effective. 
However, replicated sampling was used to establish that 
this sample size was adequate to obtain stable uncer-

tainty and sensitivity results in the Surry analysis [141]. 
In general, there is a tendency to overestimate the sam-
ple size needed to obtain an adequate representation and 
assessment of the implications of epistemic uncertainty 
[54; 141-143].   

The individual requirements specified in (SG1) – 
(QRG3) and the uncertainty in the margins associated 
with these goals are now considered. 

Safety Goal SG1.  Safety goal SG1 specifies that 
individual early fatality risk in the region between the 
plant site boundary and 1609.3 m (1 mi) beyond this 
boundary will be less than SG1 = 5 × 10−7 yr−1.  Indi-
vidual early fatality risk is obtained by first calculating 
an exceedance frequency curve for early fatality prob-
ability for each of the nLHS = 200 LHS elements (Fig. 
6.1). In turn, each exceedance frequency curve is re-
duced to an estimate pSG1(ei) for early fatality risk 
(Fig. 6.2).  

Conceptually although not in direct computational 
implementation, the individual exceedance frequency 
curves in Fig. 6.1 and the early fatality risk results in 
Fig. 6.2 are defined by integrals involving the probabil-
ity space (A, A, pA) for aleatory uncertainty, with (A, 
A, pA) and other epistemically uncertain quantities 
changing for each LHS element ei (see Sect. 3.5). In 
effect, each CCDF in Fig. 6.1 is reduced to an expected 
value (i.e., pSG1(ei)), with the resultant 200 expected 
values and their associated epistemic uncertainty sum-
marized in Fig. 6.2. The values for pSG1(ei) in Fig. 6.2 
are summarized with a CCDF rather than a CDF be-
cause use of a CCDF permits a direct reading from the 
ordinate of the exceedance probabilities for large values 
for pSG1, which are the results of greatest interest in 
comparisons with safety goal SG1. 

Margins associated with safety goal SG1 are now 
given by 

( ) ( )
( )7 1

1 1 1

5 10 yr 1

i i

i

mSG SG pSG

pSG− −

= −

= × −

e e

e
 (6.14) 

for i = 1, 2, …, nLHS = 200 (Fig. 6.3a).  Similarly, nor-
malized margins for safety goal SG1 are given by 

( ) ( )

( )7 1 7 1

1 1 1 1

5 10 yr 1 5 10 yr

i i

i

nSG SG pSG SG

pSG− − − −

⎡ ⎤= −⎣ ⎦
⎡ ⎤= × − ×⎣ ⎦

e e

e
 

  (6.15) 
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Fig. 6.1. Exceedance frequency curves for individual 

early fatality probability within 1609.3 m (1 
mi) of the site boundary due to accidents re-
sulting from internal initiators at Surry (Ref. 
[117], Fig. D.5). Each curve corresponds to 
one sample element. 

Early Fatality Risk (0-1mi) (yr-1)

C
om

pl
em

en
ta

ry
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

10-1410-1310-1210-1110-10 10-9 10-8 10-7 10-6 10-5

10-3

10-2

10-1

100

pSG1mn = 1.63 x 10-8 yr-1

SG1 = 5 x 10-7 yr-1

pSG10.5 = 8.64 x 10-10 yr-1

pSG10.95 = 3.89 x 10-8 yr-1

0

 
Fig. 6.2. Estimated CCDF for annual individual early 

fatality risk within 1 mile of the site boundary 
due to accidents resulting from internal initia-
tors at Surry. 

for i = 1, 2, …, nLHS = 200 (Fig. 6.3b).  The values for 
the margins in Fig. 6.3 are summarized with CDFs rather 
than CCDFs because use of a CDF permits a direct read-
ing from the ordinate of the probabilities associated with 
small margins, which are the margin results of greater 
interest in comparisons with safety goal SG1. 

As indicated in Eqs. (6.14) and (6.15), the margin 
results in Fig. 6.3 are obtained by simple translations 
and normalizations of the values for pSG1(ei) in Fig. 
6.2.  Thus, Figs. 6.2 and 6.3 effectively contain the 
same information.  Specifically, given the value for 
SG1, the results in any one of the three plot frames in 
Figs. 6.2 and 6.3 can be used to generate the results in 
the other two plot frames.  The results in Fig. 6.3 pro-
vide a direct representation of the uncertainty in the 
margin associated with safety goal SG1.  However, in 
the view of the author, the summary in Fig. 6.2 pro-
vides a more readily interpretable representation for the 
relationships involved in assessing compliance with 
safety goal SG1 than the margin plots in Fig. 6.3.  Spe-
cifically, inspection of Fig. 6.2 provides immediate 
information on the uncertainty in pSG1, the relationship 
of pSG1 to SG1, and the differences (i.e., margins) be-
tween SG1 and pSG1.  In contrast, the actual values for 
SG1 and pSG1 are not readily apparent in the margin 
results in Fig. 6.3; as a consequence, the results in Fig. 
6.2 are more informative with respect to system per-
formance than the results in Fig. 6.3. 

The CDF in Fig. 6.2 provides a complete summary 
of the uncertainty in the margin associated with safety 
goal SG1 under the assumption that the analysis was 
performed without serious implementation or sampling 
errors (see discussion of verification and validation in 
Sect. 3.8).  If desired, single number summaries of the 
results in Figs. 6.2 and 6.3 in the spirit of “mar-
gin/uncertainty” can be defined.  Examples include 

( )

( )
0.05

7 7 7

1 1 1

4.84 10 4.84 10 4.61 10

21.0,

mn mnmSG mSG mSG
− − −

−

= × × − ×

=

 (6.16) 

( )

( )
0.5 0.5 0.05

7 7 7

1 1 1

4.99 10 4.99 10 4.61 10

13.1,

mSG mSG mSG
− − −

−

= × × − ×

=

 (6.17) 

( )

( )7 7 7

1 1 1

4.84 10 4.84 10 1.50 10

0.76,

mn mn minmSG mSG mSG

− − −

−

⎡ ⎤= × × − − ×⎢ ⎥⎣ ⎦
=

 (6.18)

 

and 

( )

( )
0.5 0.5

7 7 7

1 1 1

4.99 10 4.99 10 1.50 10

0.77,

minmSG mSG mSG

− − −

−

⎡ ⎤= × × − − ×⎢ ⎥⎣ ⎦
=

 (6.19)
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Fig. 6.3. Estimated CDFs for margins associated with safety goal SG1 for annual individual early fatality risk with-

in 1 mile of the site boundary due to accidents resulting from internal initiators at Surry:  (a) margin mSG1 
(see Eq. (6.14)), and (b) normalized margin nSG1 (see Eq. (6.15)). 

where 

 mSG1mn = mean value for mSG1(e) estimated from 
CCDF in Fig. 6.3a, 

 mSG1q = quantile for q = 0.00, 0.05 and 0.5 for 
mSG1(e) estimated from CDF in Fig. 
6.3a, 

 mSG1min = minimum value for mSG1(e) in Fig. 6.3a 
(i.e., mSG1q for q = 0.00). 

However, a significant amount of information is lost in 
“margin/uncertainty” summaries of the form shown in 
Eqs. (6.16) – (6.19). Specifically, the single number 
summaries in Eqs. (6.16) – (6.19) are the result of re-
ducing all the information in Fig. 6.1 to one number 
(see Sect. 4.5 for additional discussion). 

As displayed, the “margin/uncertainty” results in 
Eqs. (6.16) – (6.19) are calculated directly from the mar-
gin results displayed in Fig. 6.3a.  The same results can 
also be calculated directly from the results displayed in 
Fig. 6.2.  Specifically, 

( )
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  (6.20) 
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 (6.21) 
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0.76,=  (6.22) 

and 
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where 
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Latent Cancer Fatality Probability (0-10mi)
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Fig. 6.4. Exceedance frequency curves for individual 

latent cancer fatality probability within 10 mi 
= 16, 903 m of the site boundary due to acci-
dents resulting from internal initiators at Sur-
ry (Ref. [117], Fig. D.6). Each curve corre-
sponds to one sample element. 

Latent Cancer Fatality Risk (0-10mi) (yr-1)

C
om

pl
em

en
ta

ry
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

10-11 10-10 10-9 10-8 10-7 10-6 10-5

10-3

10-2

10-1

100 pSG20.5 = 4.91 x 10-10 yr-1

pSG2mn = 1.74 x 10-9 yr-1

SG2 = 2 x 10-6 yr-1

pSG20.95 = 7.88 x 10-9 yr-1

0

 
Fig. 6.5. Estimated CCDF for annual individual latent 

cancer fatality risk within 10 miles of the site 
boundary due to accidents resulting from in-
ternal initiators at Surry. 

 pSG1mn = mean value for pSG1(e) estimated from 
CCDF in Fig. 6.2, 

 pSG1q = quantile for q = 0.5, 0.95 and 1.00 for 
pSG1(e) estimated from CCDF in Fig. 
6.2, 

 pSG1mx = maximum value for pSG1(e) in Fig. 6.2 
(i.e., pSG1q for q = 1.00),  

and the remaining symbols in Eqs. (6.20) – (6.23) are 
defined the same as in conjunction with Eqs. (6.16) 
− (6.19). As a reminder, the quantiles pSG1q for q = 
0.5, 0.95 and 1.00 correspond to exceedance probabili-
ties of 0.5, 0.05 and 0.00 for pSG1(e) in Fig. 6.2.  

Safety Goal SG2.  Safety goal SG2 specifies that 
individual latent cancer fatality risk in the region be-
tween the plant site boundary and 16,093 m (10 mi) 
beyond this boundary will be less than SG2 = 2 × 10−6 
yr−1.  Similarly to individual early risk, individual la-
tent cancer fatality risk is obtained by first calculating 
an exceedance frequency curve for latent cancer fatality 
probability for each of the nLHS = 200 LHS elements 
(Fig. 6.4) and then reducing each exceedance frequency 
to an estimate pSG2(ei) for latent cancer fatality risk 
(Fig. 6.5). 

Margins and normalized margins associated with 
safety goal SG2 are now given by 

( ) ( )
( )6 1

2 2 2

2 10 yr 2

i i

i

mSG SG pSG

pSG− −

= −

= × −

e e

e
 (6.24)

 

and 
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2 2 2 2
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i i
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nSG SG pSG SG

pSG− − − −

⎡ ⎤= −⎣ ⎦
⎡ ⎤= × − ×⎣ ⎦

e e

e
 

 (6.25) 

respectively, for i = 1, 2, …, nLHS = 200 (Fig. 6.6). 

As discussed in conjunction with Eqs. (6.16) − 
(6.23), the results in Figs. 6.5 and 6.6 can be reduced to 
single number summaries of the “margin/uncertainty” 
form. As for safety goal SG1, examples include  
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Latent Cancer Fatality Risk Margin (0-10mi) (yr-1)
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Fig. 6.6. Estimated CDFs for margins associated with safety goal SG2 for individual latent cancer fatality risk with-

in 10 miles of the site boundary due to accidents resulting from internal initiators at Surry:  (a) margin 
mSG2 (see Eq. (6.24)) and (b) normalized margin nSG2 (see Eq. (6.25)). 

Severe Accident Frequency (yr-1)
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Fig. 6.7. Estimated CCDF for annual severe accident 

frequency due to accidents resulting from in-
ternal initiators at Surry. 
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and 

( )

( )
0.5 0.5

6 6 6

2 2 2

1.9995 10 1.9995 10 1.9521 10

42.18,
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with mSG2mn, mSG2q and mSG2min defined similarly to 
mSG1mn, mSG1q and mSG1mn in conjunction with Eqs. 
(6.16) – (6.19). 

Quantitative Risk Goal QRG1.  Quantitative risk 
goal QRG1 specifies that the frequency of a severe ac-
cident will be less than 10−4 yr−1.  For this example, a 
severe accident is assumed to be an accident that results 
in core damage.  Each of the nLHS = 200 LHS elements 
results in an estimate pQRG1(ei) for the frequency of a 
severe accident (Fig. 6.7).  As for safety goals SG1 and 
SG2, the severe accident frequencies summarized in 
Fig. 6.7 are defined in concept, although not in direct 
computational implementation, by integrals involving 
the probability space (A, A, pA) for aleatory uncer-
tainty, with (A, A, pA) and other epistemically uncer-
tain quantities changing for each LHS element ei. 

Margins and normalized margins associated with 
QRG1 are now given by 

( ) ( )
( )4 1

1 1 1

= 10 yr 1
i i
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−

e e
e

 (6.30)
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Fig. 6.8. Estimated CDFs for margins associated with quantitative risk goal QRG1 for accidents resulting from 

internal initiators at Surry:  (a) margin mQRG1 (see Eq. (6.26)), and (b) normalized margin nQRG1 (see 
Eq. (6.27)). 
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  (6.31) 

respectively, for i = 1, 2, …, nLHS = 200 (Fig. 6.8). 

As discussed in conjunction with Eqs. (6.16) – 
(6.23), the results in Figs. 6.7 and 6.8 can be reduced to 
single number summaries of the “margin/uncertainty” 
form.  As for safety goal SG1, examples include 
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and 
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with mQRG1mn, mQRG1q and mQRG1min defined simi-
lary to mSG1mn, mSG1q and mSG1mn in conjunction 
with Eqs. (6.16) –  (6.19). 

Quantitative Risk Goal QRG2.  Quantitative risk 
goal QRG2 specifies that the probability of containment 
failure given the occurrence of a severe accident will be 
less than 0.1.  For this risk goal, an exact definition for 
containment failure has not been specified.  Thus, it is 
the responsibility of the individuals (i.e., analysts) 
charged with carrying out the analysis to formulate this 
definition.  This is certainly a situation that could occur 
in QMU analyses for weapons systems when all aspects 
of a requirement have not been fully and unambigu-
ously specified.  Further, given that risk goal QRG2 
places a bound on the conditional probability of an un-
desirable event given a particular type of accident, this 
goal is identical in concept to the Walske criterion 
[144] for accidents involving nuclear weapons (i.e., the 
requirement that the probability of inadvertent detona-
tion conditional on the occurrence of a credible accident 
is to be less than 10−6). 
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Conditional Probability
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Fig. 6.9. Estimated CCDFs for conditional probability 

of containment failure given a severe accident 
resulting from internal initiators at Surry (see 
Eqs.  (6.39) and (6.40)). 

For the analyses presented in Ref. [118], three pos-
sible sets of accidents are proposed for use in the 
evaluation of quantitative risk goal QRG2: 

1 { :  involves core damage and the
         containment fails (by a leak, rupture
         or catastrophic rupture) or a contain-
         ment bypass occurs or a steam
         generator tube rupture 

=S a a

occurs}.

 (6.36) 

2 { :  involves core damage and the
         containment fails by rupture or
         catastrophic rupture}.

=S a a
 (6.37) 

and 

3 { :  involves vessel failure and the containment
         fails by rupture or catastrophic rupture}.

=S a a
 

 (6.38) 

The following ordering exists:  S3 ⊂ S2 ⊂ S1.  Further, 
in the Surry analysis in use as an example, the equality 
S3 = S2 was found to exist (i.e., rupture and catastro-
phic rupture of the containment only occurred in con-
junction with vessel failure). 

Given the preceding sets involving core damage 
and containment failure, possible definitions for the 
conditional probabilities specified in risk goal QRG2 
are 

( ) ( )2k A k ApQRG p p= S S  (6.39) 

for k = 1, 2, 3, where 

{ }:  involves core damage .=S a a  

In practice, the sets S1, S2, S3, S and also their prob-
abilities depend on values for uncertain variables con-
tained in e.  As a result, the equality in Eq. (6.39) is 
more appropriately written as 

( ) ( ) ( )2k A k ApQRG p p= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦e e eS S  (6.40) 

to emphasize the dependence on e.  In concept, pA[Sk 
(e)] and pA[S(e)] are defined by complex integrals in-
volving the probability space (A, A, pA) for aleatory 
uncertainty and a large amount of underlying analysis.  
In the analysis being used as example, the discretization 
procedure summarized in conjunction with Eq. (43) of 
Ref. [118] is used in the evaluation of pA[Sk(e)] and 
hence pQRG2k(e). 

Each of the nLHS = 200 LHS elements results in 
estimates pQRG2k(ei), k = 1, 2, 3, for the conditional 
probability of containment failure given core damage 
(Fig. 6.9). 

In turn, margins and normalized margins associated 
with QRG2 are given by 

( ) ( )
( )

2 2 2

0.1 2
k i k i

k i

mQRG QRG pQRG

pQRG

= −

= −

e e
e

 (6.41)
 

and 
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2 2 2 2
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k i

nQRG QRG pQRG QRG

pQRG

⎡ ⎤= −⎣ ⎦
⎡ ⎤= −⎣ ⎦

e e

e (6.42) 

respectively, for i = 1, 2, …, nLHS = 200 (Fig. 6.10). 

As discussed in Ref. [118], an alternate and possi-
bly more appropriate definition for the conditional 
probability associated with QRG2 is 

( ) ( ) ( )2 ,k A k ApQRG p p= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦e e eSC SC  (6.43) 

where 

( ) { }:  involves vessel breach=SC e a a  

and 

( ) ( ) ( )k k= ∩SC S SCe e e  
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Conditional Probability Margin
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Fig. 6.10. Estimated CDFs for margins associated with quantitative risk goal QRG2 for accidents resulting from 

internal initiators at Surry:  (a) margins mQRG2k, k = 1, 2, 3 (see Eq. (6.41)), and (b) normalized margins 
nQRG2k, k = 1, 2, 3 (see Eq.(6.42)). 
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Fig. 6.11. Estimated CCDFs for conditional probability 

of containment failure given a severe accident 
with vessel breach resulting from internal ini-
tiators at Surry (see Eq. (6.43)). 

for k = 1, 2, 3.  This results in QRG2 being a more de-
manding requirement because the required probability 
is now conditional on a more severe accident (i.e., an 
accident involving vessel breach rather than core dam-
age), which in turn tends to raise the value for this 
probability.  In the analysis being used as an example, 
the discretization procedure summarized in conjunction 
with Eq. (48) of Ref. [118] is used in the evaluation of 
pA[SCk(e)], pA[SC(e)] and hence pQRG2k(e) as defined 

in Eq. (6.43). The resultant conditional probabilities and 
margins for the nLHS = 200 LHS elements are summa-
rized in Figs. 6.11 and 6.12, respectively. 

Although not presented, various results in the form 
of “margin/uncertainty” can also be calculated for the 
indicated variants of quantitative risk goal QRG2 as 
shown in Eqs. (6.16) –  (6.23). 

Note: The results in Figs. 6.9 − 6.12 were calcu-
lated from original Surry results saved in Ref. [145]. 
The results in Figs. 6.9 and 6.11 differ from what 
should be corresponding results in Figs. 6 and 7 of Ref. 
[118]. Checking has not revealed any errors in the gen-
eration of Figs. 6.9 and 6.11; unfortunately, the pro-
gram used to generate Figs. 6 and 7 of Ref. [118] is no 
longer available. Given that all other figures Sect. 6.1 
were also generated directly from original results con-
tained in Ref. [145] and are the same as corresponding 
results contained in Ref. [118], it is felt that the results 
in Figs. 6.9 and 6.11 are correct.   

Quantitative Risk Goal QRG3.  Quantitative risk 
goal QRG3 specifies that the frequency of a large re-
lease will be less than 10−6 yr−1.  The guidance associ-
ated with risk goal QRG3 defines a large release as a 
release that has the potential to cause an early fatality, 
although the word “potential” is not defined.  Thus, a 
decision must be made as to exactly what constitutes 
the potential to cause an early fatality.  The analysis 
reported in Ref. [118] considers exceedance frequencies 
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Fig. 6.12. Estimated CDFs for margins associated with quantitative risk goal QRG2 conditional on vessel breach for 

accidents resulting from internal initiators at Surry:  (a) margins mQRG2k, k = 1, 2, 3 (see Eq. (6.41) with 
pQRG2k(e) defined in Eq. (6.43)), and (b) normalized margins nQRG2k, k = 1, 2, 3 (see Eq. (6.42) with 
pQRG2k(e) defined in Eq. (6.43)). 
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Fig. 6.13. Exceedance frequency curves for early fatali-

ties due to accidents resulting from internal 
initiators at Surry (Ref. [117], Fig. D.1). Each 
curve corresponds to one sample element. 

(i.e., annual probabilities of exceeding) for three num-
bers of early fatalities as possible threshold levels for 
“potential” to cause an early fatality.  These early fatal-
ity members are 0.01, 0.1 and 1.  Values less than 1 early 
fatality result because low levels of radiation have a 
probability of causing an early fatality that is considera-
bly less than 1 and also because most of the potentially-
exposed population (i.e., 99.5%) is assumed to evacuate. 

The initial step in obtaining results for comparison 
with risk goal QRG3 is to determine the exceedance 
frequency curves for number of early fatalities, with 
one exceedance frequency curve resulting for each of 
the nLHS = 200 LHS sample elements ei.  The result of 
this calculation is summarized in Fig. 6.13. Specifi-
cally, each curve in Fig. 6.13 is conditional on the value 
for epistemically uncertain variables contained in an 
LHS element ei and defines the frequencies of exceed-
ing different numbers of early fatalities.  The construc-
tion of the exceedance frequency curves in Fig. 6.13 is 
summarized in Ref. [118]. 

Early fatality levels of 0.01, 0.1 and 1 have been 
posited as possibly appropriate values for correspon-
dence with “potential” to cause an early fatality.  In the 
following, pQRG31(e), pQRG32(e) and pQRG33(e) are 
used to represent the frequency (yr−1) of exceeding ear-
ly fatality values of 0.01, 0.1 and 1, respectively, condi-
tional on the values for epistemically uncertain analysis 
inputs contained in e.  For the LHS of size nLHS = 200 
under consideration, each LHS element ei results in 
values for pQRG31(ei), pQRG32(ei) and pQRG33(ei). 
These values correspond to the exceedance frequencies 
on the ordinate of Fig. 6.13 associated with the vertical 
lines originating at 0.01, 0.1 and 1 on the abscissa.  The 
resultant estimated CCDFs for pQRG3k(e), k = 1, 2, 3, 
are presented in Fig. 6.14. 
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Fig. 6.14. Estimated CCDFs of large release frequency 

for accidents resulting from internal initiators 
at Surry. 

In turn, margins associated with the three possible 
definitions of “potential” to cause an early fatality in 
QRG3 are given by 

( ) ( )
( )6 1

3 3 3

10 yr 3

k i k i

k i

mQRG QRG pQRG

pQRG− −

= −

= −

e e

e
 (6.44) 

and 

( ) ( )

( )6 1 6 1

3 3 3 3

10 yr 3 10 yr ,

k i k i

k i

nQRG QRG pQRG QRG

pQRG− − − −

⎡ ⎤= −⎣ ⎦
⎡ ⎤= −⎣ ⎦

e e

e
 

  (6.45) 

respectively, for i = 1, 2, …, nLHS = 200 (Fig. 6.15). 

Although not shown, various results in the form of 
“margin/uncertainty” can also be calculated for the in-
dicated variants of risk goal QRG3 as shown in Eqs. 
(6.16) – (6.23). 

6.2 Regulatory Requirements for Waste 
Isolation Pilot Plant (WIPP) 

The Waste Isolation Pilot Plant (WIPP) in South-
eastern New Mexico has been developed by the DOE 
for the geologic disposal of transuranic (TRU) waste 
generated at government defense installations in the 
United States.  For the WIPP to be certified for opera-
tion, the DOE had to establish that the WIPP met regu-
latory standards promulgated by the EPA.  Like the 

NRC’s safety goals for nuclear power stations dis-
cussed in Sect. 6.1, the EPA’s standards for the WIPP 
have aspects that are very similar to what might be ex-
pected in a QMU analysis that involves the incorpora-
tion and representation of the effects of aleatory and 
epistemic uncertainty.  As a result, the EPA’s standards 
for the WIPP provide another example of the ideas and 
challenges that are likely to be encountered in a non-
trivial application of QMU.  Specifically, results from 
the performance assessment (PA) that supported the 
successful Compliance Certification Application (CCA) 
for WIPP to the EPA [20] are used as another example 
to illustrate what a QMU analysis involving both alea-
tory and epistemic uncertainty is likely to involve. 

An article summarizing the PA that supported the 
CCA for WIPP [146] is reproduced in App. D and will 
be referred to in the following discussion as a conven-
ient and accessible source of additional information on 
this analysis.  Inclusion of this article in App. D makes 
it possible to have a moderately detailed description of 
the analysis under consideration as part of this report.  
More detailed analysis descriptions are available in 
Refs. [20; 21] and in a number of additional detailed 
technical reports cited in the two preceding references. 

The conceptual structure of the 1996 WIPP PA ul-
timately derives from the regulatory requirements im-
posed on this facility [147; 148].  The primary regula-
tion determining this structure is the EPA’s standard for 
the geologic disposal of radioactive waste (40 CFR 
191) [148; 149], which is divided into three parts.  Sub-
part A applies to a disposal facility prior to decommis-
sioning and limits annual radiation doses to members of 
the public from waste management and storage opera-
tions.  Subpart B applies after decommissioning and 
sets probabilistic limits on cumulative releases of ra-
dionuclides to the accessible environment for 10,000 
years (40 CFR 191.13) and assurance requirements to 
provide confidence that 40 CFR 191.13 will be met (40 
CFR 191.14).  Subpart B also sets limits on radiation 
doses to members of the public in the accessible envi-
ronment for 10,000 years of undisturbed performance 
(40 CFR 191.15).  Subpart C limits radioactive con-
tamination of certain sources of groundwater for 10,000 
years after disposal (40 CFR 191.24).  Subparts A, B 
and C all have requirements that could be used as illus-
trations of QMU-type analyses.  This presentation uses 
the Subpart B release requirements for illustration ow-
ing to the fundamental role that these requirements 
played in the design and implementation of the analyses 
that supported the WIPP’s CCA. 



 

 80

Large Release Frequency Margin (yr-1)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

10-3

10-2

10-1

100

0.01

0.1

1.0

mQRG30.05

mQRG30.5

mQRG3mn

-1 x 10 0-5

0

Frame 6.15a

 Normalized Large Release Frequency Margin

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

-10 -5 0

10-3

10-2

10-1

100

0.01

0.1

1.0

0

Frame 6.15b nQRG30.5

nQRG3mn

nQRG30.05

 
Fig. 6.15. Estimated CDFs for margins associated with quantitative risk goal QRG3 for accidents resulting from 

internal initiators at Surry:  (a) margins mQRG3k, k = 1, 2, 3 (see Eq. (6.44)) and (b) normalized margins 
nQRG3k, k = 1, 2, 3 (see Eq. (6.45)). 

The following is the central requirement in 40 CFR 
191, Subpart B, and the primary determinant of the 
conceptual structure of the 1996 WIPP PA (Ref. [150], 
p. 38086): 

§ 191.13 Containment requirements: 
(a) Disposal systems for spent nuclear fuel 

or high-level or transuranic radioactive wastes 
shall be designed to provide a reasonable 
expectation, based upon performance assess-
ments, that cumulative releases of radionu-
clides to the accessible environment for 10,000 
years after disposal from all significant 
processes and events that may affect the 
disposal system shall: (1) Have a likelihood of 
less than one chance in 10 of exceeding the 
quantities calculated according to Table 1 
(Appendix A); and (2) Have a likelihood of 
less than one chance in 1,000 of exceeding ten 
times the quantities calculated according to 
Table 1 (Appendix A). 

(b) Performance assessments need not 
provide complete assurance that the 
requirements of 191.13(a) will be met. 
Because of the long time period involved and 
the nature of the events and processes of 
interest, there will inevitably be substantial 
uncertainties in projecting disposal system 
performance. Proof of the future performance 
of a disposal system is not to be had in the 
ordinary sense of the word in situations that 
deal with much shorter time frames.  Instead, 
what is required is a reasonable expectation, 
on the basis of the record before the 

implementing agency, that compliance with 
191.13(a) will be achieved. 

Containment Requirement 191.13(a) refers to 
“quantities calculated according to Table 1 (App. A),” 
which means a normalized radionuclide release to the 
accessible environment based on the type of waste be-
ing disposed of, the initial waste inventory, and the re-
lease that takes place (Ref. [150], Appendix A).  The 
indicated table specifies allowable releases (i.e., release 
limits) for individual radionuclides and is reproduced as 
Table I of Ref. [146].  The WIPP is intended for TRU 
waste, which is defined to be “waste containing more 
than 100 nanocuries of alpha-emitting transuranic iso-
topes, with half-lives greater than twenty years, per 
gram of waste” (Ref. [150], p. 38084).  The normalized 
release R for transuranic waste is defined by 

( )( )61 10 Ci ,i i
i

R Q L C= ×∑  (6.46) 

where Qi is the cumulative release of radionuclide i to 
the accessible environment during the 10,000-year pe-
riod following closure of the repository (Ci), Li is the 
release limit for a radionuclide i given in Table I of Ref. 
[146] (Ci), 1 × 106 Ci is a normalization term, and C is 
the amount of transuranic waste emplaced in the reposi-
tory (Ci).  The normalized release R is unitless as a re-
sult of the release limit being scaled by the inventory of 
the repository; for convenience, R will be referred to as 
being in “EPA units.”  In the 1996 WIPP PA, C = 3.44 
× 106 Ci [151]. 
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A full reading of the explanatory material associ-
ated with “Table 1 (Appendix A)” of Ref. [150] estab-
lishes that the intent of the containment requirement in 
191.13(a) is that the normalized release R defined in 
Eq. (6.46) is to have a probability of less than 0.1 of 
exceeding 1 and a probability of less than 10−3 of ex-
ceeding 10.  Specifically, this component of the regula-
tory requirements placed on the WIPP can be summa-
rized as follows: 

The probability of exceeding a normalized 
release of size RL1 = 1 over 104 years must 
be less than RP1 = 0.1 (RL1) 

The probability of exceeding a normalized 
release of size RL2 = 10 over 104 years must 
be less than RP2 = 10−3. (RL2) 

The EPA also promulgated 40 CFR 194 [152], 
where the following elaboration on the intent of 40 
CFR 191.13 is given (Ref. [152], pp. 5242-5243): 

§ 194.34 Results of performance assessments. 
(a) The results of performance assessments 
shall be assembled into “complementary, 
cumulative distribution functions” (CCDFs) 
that represent the probability of exceeding 
various levels of cumulative release caused by 
all significant processes and events. (b) 
Probability distributions for uncertain disposal 
system parameter values used in performance 
assessments shall be developed and 
documented in any compliance application. (c) 
Computational techniques, which draw 
random samples from across the entire range 
of the probability distributions developed 
pursuant to paragraph (b) of this section, shall 
be used in generating CCDFs and shall be 
documented in any compliance application. (d) 
The number of CCDFs generated shall be 
large enough such that, at cumulative releases 
of 1 and 10, the maximum CCDF generated 
exceeds the 99th percentile of the population of 
CCDFs with at least a 0.95 probability. (e) 
Any compliance application shall display the 
full range of CCDFs generated. (f) Any 
compliance application shall provide informa-
tion which demonstrates that there is at least a 
95 percent level of statistical confidence that 
the mean of the population of CCDFs meet the 
containment requirements of § 191.13 of this 
chapter. 

The requirements placed on PAs for the WIPP in 
the quoted material from 191.13 and 194.34 clearly 

indicate an analysis that involves the three basic entities 
indicated in Sect. 3.2: EN1, a probability space (A, A, 
pA) for aleatory uncertainty; EN2, a model for predict-
ing system behavior; and EN3, a probability space (E, 
E, pE) for epistemic uncertainty.  The CCDFs indicated 
in 194.34 derive from aleatory uncertainty and define 
the exceedance probabilities associated with normalized 
releases of 1 and 10 in the containment requirements in 
191.13(a).  The determination of the releases them-
selves requires the extensive use of models for reposi-
tory behavior and the movement of radionuclides away 
from the repository and ultimately to the accessible 
environment.  Statements in both 191.13(b) and 194.34 
indicate the importance of an adequate treatment of 
epistemic uncertainty.  In particular, the statements in 
194.34(b) – (f) all relate to various aspects of the treat-
ment of epistemic uncertainty in a PA for the WIPP.  
With respect to terminology, the WIPP PA used the 
terms stochastic and subjective for the now more wide-
ly used terms aleatory and epistemic, respectively. 

An overview of the definition of the probability 
space (A, A, pA) for aleatory uncertainty is given in 
Sect. 4 of Ref. [146].  Specifically, the sample space A 
is defined by 

{ :  is a possible 10,000 year sequence
        of occurrences at the WIPP}.

=A a a  (6.47) 

The development process for the WIPP PA identified 
drilling for natural resources as the only disruption with 
sufficient likelihood and consequence for inclusion in 
the definition of EN1 (Ref. [146], Sect. 3; Ref. [20], 
Appendix SCR).  In addition, 40 CFR 194 specifies that 
the possible occurrence of mining within the land with-
drawal boundary must be included in the analysis.  The 
preceding considerations led to the elements a of A 
being vectors of the form 

[

]

1 1 1 1 1 1 2 2 2 2 2 2
2nd intrusion1st intrusion

th intrusion

, , , , , , , , , , , ,

, , , , , , , ,n n n n n n min
n

t l e b p t l e b p

t l e b p t

= ����	���
����	���


… ����	���


a a a

a
 (6.48) 

where n is the number of drilling intrusions, ti is the 
time (years) of the ith intrusion, li designates the loca-
tion of the ith intrusion, ei designates the penetration of 
an excavated or nonexcavated area by the ith intrusion, 
bi designates whether or not the ith intrusion penetrates 
pressurized brine in the Castile Formation, pi designates 
the plugging procedure used with the ith intrusion, ai 
designates the type of waste penetrated by the ith intru-
sion, and tmin is the time at which potash mining occurs 
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within the land withdrawal boundary.  Additional in-
formation on the elements of a and their probabilistic 
characterization is given in Table III of Ref. [146] and 
in Ref. [153]. 

The WIPP PA used a variety of mathematical 
models and techniques in the determination of radionu-
clide releases to the accessible environment.  A sum-
mary of these models and techniques is given in Sect. 5 
of Ref. [146].  Additional information is available in 
individual articles in a special journal issue devoted to 
the WIPP PA in support of the CCA [21]. 

An overview of the definition of the probability 
space (E, E, pE) for epistemic uncertainty is given in 
Sect. 6 of Ref. [146].  Specifically, the sample space E 
is defined by  

{ :  is possibly the correct vector
        of parameter values to use in the WIPP
        PA models}.

=E e e
 (6.49) 

The elements e of E are vectors of the form 

[ ] [ ]1 2 1 2 57, , , , , , ,nEe e e e e e= =… …e  (6.50) 

where each of the nE = 57 elements of e is an epistemi-
cally uncertain input of the WIPP PA.  Examples of the 
elements of e are given in Table V of Ref. [146].  A full 
listing of the elements of e and description of their 
probabilistic characterization is given in Ref. [154].  In 
the WIPP PA, all elements of e are quantities used in 
models for physical processes.  Thus, technically, (E, E, 
pE) as defined for the WIPP PA corresponds to the pro-
bability space (EM, EM, pEM) introduced in Sect. 3.2. 

The regulatory requirements summarized in (RL1) 
and (RL2) can be represented by the vector 

[ ] [ ]1, 2 1,10 ,RL RL= =R  (6.51) 

where RL1 and RL2 are the maximum acceptable nor-
malized releases over 104 years with exceedance prob-
abilities of 0.1 and 10−3, respectively.  Similarly, the 
estimated performance of the WIPP can be represented 
by the vector 

[ ]1, 2 ,pRL pRL=P  (6.52) 

where pRL1 and pRL2 are the performance values cal-
culated for comparison with the corresponding elements 
of R.  The quantities pRL1 and pRL2 are quantile val-
ues that derive from aleatory uncertainty.  Specifically, 

pRL1 is the normalized release associated with an ex-
ceedance probability of 0.1 and thus corresponds to the 
0.9 quantile of the distribution of normalized releases, 
and pRL2 is the normalized release associated with an 
exceedance probability of 10−3 and thus corresponds to 
the 0.999 quantile of the distribution of normalized re-
leases.  The determination of pRL1 and pRL2 in effect 
requires the solution of integral equations to determine 
quantiles (see Sect. 3.5).  As summarized in Sect. 9 of 
Ref. [146] and described in more detail in Refs. [96; 
153; 155-157], the WIPP PA uses a Monte Carlo pro-
cedure to construct the CCDF for normalized release 
and thus, in effect, solve the integral equations that de-
fine pRL1 and pRL2. 

If the probability space (A, A, pA) was known pre-
cisely and all additional quantities required in the eval-
uation of P were also known precisely, then the vector 
M of margins would be unambiguously defined by 

[ ]1, 2 ,mRL mRL=M  (6.53) 

where 

 mRL1 = RL1 − pRL1 = 1 − pRL1 

 mRL2 = RL2 − pRL2 = 10 − pRL2. 

The WIPP PA did not consider any uncertainty in the 
definition of the probability space (A, A, pA) for alea-
tory uncertainty but did consider the uncertainty associ-
ated with the modeling physical process in the determi-
nation of pRL1 and pRL2 (see Eq. (6.50)).  As a result, 
P is actually a function 

( ) ( ) ( )1 , 2pRL pRL= ⎡ ⎤⎣ ⎦P e e e  (6.54) 

of vectors e ∈ E, where (E, E, pE) is the probability 
space for epistemic uncertainty.  As a result the vector 
M of margins has the form 

( ) ( )
( ) ( )

( ) ( )
1 1 , 10 2

1 , 2

pRL pRL

mRL mRL

= −

= − −⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦

M e R P e

e e

e e

 (6.55) 

and is thus epistemically uncertain with mRL1(e) and 
mRL2(e) having distributions that derive from the 
probability space (E, E, pE) for epistemic uncertainty. 
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Fig. 6.16. Estimated CCDFs for normalized release 

over 104 years generated for an LHS of size 
nLHS = 100 from nE = 57 epistemically un-
certain analysis inputs and samples of size 
10,000 from the sample space A for aleatory 
uncertainty. 
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Fig. 6.17. Estimated CCDFs for normalized releases 

associated with exceedance probabilities of 
0.1 and 10−3 in Fig. 6.16.   

The WIPP PA used a sampling-based approach to 
the propagation of epistemic uncertainty.  Specifically, 
an LHS  

1 2 ,57, , , , 1, 2, , ,i i i ie e e i nLHS⎡ ⎤= =⎣ ⎦… …e  (6.56) 

of size nLHS = 100 from the nE = 57 uncertain vari-
ables under consideration was used in the generation of 

CCDFs for normalized release.  Further, the CCDF for 
each sample element ei was generated with a random 
sample of size 10,000 from the sample space A for 
aleatory uncertainty.  The result is the 100 CCDFs for 
normalized release in Fig. 6.16.   

To establish compliance with all the conditions 
specified in 194.34, the WIPP PA actually used three 
replicated (i.e., independently generated) LHSs of size 
nLHS = 100, which resulted in a total sample size of 
300 (see [158] and Sects. 6 and 7 of Ref. [154] for dis-
cussion). The indicated replicated samples were used to 
establish the adequacy of an LHS of size 100 for the 
generation of uncertainty and sensitivity analysis results 
in the WIPP PA.  The results used for illustration in this 
presentation are for the first of the three replicated sam-
ples (i.e., the replicate designated R1 in the WIPP PA). 

The normalized releases pRL1(ei) and pRL2(ei) that 
result for the LHS in Eq. (6.56) correspond to the nor-
malized releases on the abscissa of Fig. 6.16 associated 
with the locations where the individual CCDFs are 
crossed by the two indicated horizontal lines (Fig. 6.17).   

In turn, the corresponding margins mRL1(ei) and 
mRL2(ei) are defined as indicated in Eq. (6.55) (Fig. 
6.18). Normalized margins of the form  

( ) ( ) ( )1 1 1 1 1i i inRL mRL RL mRL= =e e e   (6.57) 

and 

( ) ( ) ( )2 2 2 2 10i i inRL mRL RL mRL= =e e e  (6.58) 

can also be defined but effectively replicate the results 
in Fig. 6.18 as nRL1(ei) = mRL1(ei) and nRL2(ei) = 
mRL1(ei)/10.  

The estimated CCDFs and CDFs in Figs. 6.17 and 
6.18 summarize all available information about the un-
certainty in margins associated with compliance with 
the release requirements RL1 and RL2. Various results 
in the form of “margin/uncertainty” can also be calcu-
lated for requirements RL1 and RL2 as indicated in 
Eqs. (6.16) − (6.23). For example, the following results 
can be calculated for requirement RL1: 

( )
( )

0.051 1 1

0.9458 0.9458 0.8741
13.2,

mn mnmRL mRL mRL−

= −

=

  (6.59) 
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Fig. 6.18. Estimated CDFs for margins associated with normalized releases with exceedance probabilities of 0.1 and 

10−3 in Fig. 6.16:  (a) CDF for margin mRL1(e) for exceedance probability of 0.1, and (b) CDF for margin 
mRL2(e) for exceedance probability of 10−3. 

( )
( )

0.5 0.5 0.051 1 1

0.9553 0.9553 0.8741
11.8,

mRL mRL mRL−

= −

=

 (6.60) 

( )
( )

1 1 1

0.9458 0.9458 0.8005
6.5,

mn mn minmRL mRL mRL−

= −

=

 (6.61) 

and 

( )
( )

0.5 0.51 1 1

0.9553 0.9553 0.8005
6.2.

minmRL mRL mRL−

= −

=

 (6.62) 

Similar results can also be obtained for requirement RL2. 
However, information is lost in calculations of this type 
as they in effect reduce all the information in Fig. 6.16 to 
single numbers (see Sect. 4.5 for additional discussion). 

If desired, the regulatory requirements RL1 and 
RL2 can also be represented by the vector 

[ ] 31, 2 0.1,10 ,RP RP −⎡ ⎤= = ⎣ ⎦R  (6.63) 

where RP1 and RP2 are the maximum acceptable prob-
abilities for exceeding normalized releases of size 1 and 
10, respectively.  Similarly, the corresponding perform-
ance of the WIPP would be 

[ ]1, 2 ,pRP pRP=P  (6.64) 

where pRP1 and pRP2 are the performance values cal-
culated for comparison with the corresponding elements 
of R.  Specifically pRP1 and pRP2 would be the ex-
ceedance probabilities deriving from aleatory uncer-
tainty for normalized releases of size 1 and 10, respec-
tively.  Corresponding margins would then be defined 
by R − P.  However, as essentially all values for pRP1 
and pRP2 are zero in the present analysis as can be seen 
from Fig. 6.16, this formulation of margins does not 
result in a very interesting example. 

The requirements in (RL1) and (RL2) in essence 
specify a boundary line beneath which the CCDF for 
normalized release is required to fall (Fig. 6.16).  This 
corresponds to what is known as the Farmer limit line 
approach to the definition of acceptable risk [159-161].  
This approach defines decreasing acceptable probabili-
ties of occurrence for undesired consequences of in-
creasing size.  It is easy to envision that requirements of 
this type could be present in future QMU analyses. 

6.3 Regulatory Requirements for Yucca 
Mountain Repository 

The Yucca Mountain (YM) repository is under de-
velopment by the DOE for the geologic disposal of 
high-level radioactive waste.  For the YM repository to 
be licensed for operation, the DOE must establish that 
regulatory standards promulgated by the NRC are met.  
Like the NRC’s safety goals for nuclear power stations 
discussed in Sect. 6.1 and the EPA’s standards for the 
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WIPP discussed in Sect. 6.2, the NRC’s standards for 
the YM repository have aspects that are very similar to 
what might be expected in a QMU analysis.  As a re-
sult, the NRC’s standards for the YM repository pro-
vide another example of the ideas and challenges that 
are likely to be encountered in a nontrivial application 
of QMU.  Specifically, results from the PA that sup-
ported the 2008 license application to the NRC for the 
YM repository [22] are used as an additional example 
to illustrate a QMU analysis involving both aleatory 
and epistemic uncertainty. 

Three articles summarizing the PA that supported 
the 2008 license application for the YM repository 
[162-164] are reproduced in App. E and will be referred 
to in the following discussion as convenient and acces-
sible sources of additional information on this analysis.  
Inclusion of these articles in App. E makes it possible 
to have a moderately detailed description of the analysis 
under consideration as part of this report.  More de-
tailed analysis descriptions are available in Ref. [22] 
and in a number of additional detailed technical reports 
cited in this reference. 

The regulations that relate to the YM repository are 
complex and specify a number of requirements that 
must be met for the repository to be licensed [165; 
166]. This presentation will use one aspect of these reg-
ulations as an example:  the maximum expected dose 
(mrem/yr) over 104 years to the reasonably maximally 
exposed individual (RMEI).  The RMEI is a hypotheti-
cal individual with well-defined and time-invariant cha-
racteristics who is assumed to be exposed to potential 
radionuclide releases from the YM repository.  For the 
purposes of this presentation, the indicated expected 
dose is assumed to be an expectation over aleatory un-
certainty at individual points in time.  As such, this ex-
pected dose is a surrogate for cancer risk as multiplica-
tion by an appropriate scalar converts expected dose to 
cancer risk. 

The regulatory wording that defines the require-
ments with respect to expected dose to the RMEI is 
spread over multiple locations (e.g., see Refs. [163; 
167] and a more detailed discussion in App. J of Ref. 
[22]).  At the time of this writing, the most current NRC 
requiements for the YM repository are given in Ref. 
[168]. The following statement summarizes the re-
quirement on expected dose to the RMEI for the initial 
104 year period after repository closure as interpreted 
and implemented in the PA supporting the 2008 license 
application for the YM repository: 

The maximum expected dose to the RMEI 
over the first 104 years following repository 
closure shall be less than 15 mrem/yr. (YM1) 

Further, a number of statements made by the NRC 
stress the importance of an appropriate representation 
of epistemic uncertainty in analyses supporting a li-
cense application for the YM repository (e.g., see Refs. 
[163; 167] and a more detailed discussion in App. J of 
Ref. [22]). 

The NRC has specified an expected dose require-
ment for the time interval following the 104 year time 
period after repository closure and extending through 
the period of geologic stability, with the period of geo-
logic stability assumed to end 106 years after repository 
closure [168]. This requirement can be summarized as 
follows: 

The maximum expected dose to the RMEI 
over the time interval [104, 106 yr] following 
repository closure shall be less than 100 
mrem/yr. (YM2) 

However, as noted above, the emphasis of this presenta-
tion is on the 104 year requirement.  

As in the examples in Sects. 6.1 and 6.2, an analy-
sis is under consideration that involves the three basic 
entities indicated in Sect. 3.2:  EN1, a probability space 
(A, A, pA) for aleatory uncertainty; EN2, a model for 
predicting dose to the RMEI; and EN3, a probability 
space (E, E, pE) for epistemic uncertainty. 

As already indicated, the expected dose to the 
RMEI is an expectation over aleatory uncertainty.  
Thus, there must be a probability space (A, A, pA) for 
aleatory uncertainty.  An overview of the definition of 
(A, A, pA) is given in Sect. III of Ref. [163].  Concep-
tually, the sample space A for this probability space is 

{ :   is a possible 10,000 year sequence of
         occurrences at the YM repository}

=A a a  (6.65) 

when occurrences over the time interval [0, 104 yr] are 
under consideration.  Because of interest in results oc-
curring both before and after 104 years, the sample 
space used in the 2008 YM PA to assess compliance 
with the requirement in (YM1) was defined for the time 
interval [0, 2 × 104 yr]; however, compliance with 
(YM1) was assessed for the time interval [0, 104 yr] as 
required. 
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After an extensive review and selection process   
[22], the following conditions/occurrences related to 
aleatory uncertainty were identified for inclusion in the 
2008 YM PA:  nominal (i.e., undisturbed) conditions, 
early waste package (WP) failure, early drip shield 
(DS) failure, igneous intrusive events, igneous eruptive 
events, seismic ground motion events, and seismic fault 
displacement events.  Consistent with this, each alea-
tory future a can be represented by 

[
]

, , , , , ,

       , , , , ,

=a
a a a a a aEW ED II IE SG SF

nEW nED nII nIE nSG nSF
 (6.66) 

where, for the time interval [0, 2 × 104 yr], 

 nEW = number of early WP failures, 
 nED = number of early DS failures, 
 nII = number of igneous intrusive events, 
 nIE = number of igneous eruptive events, 
 nSG = number of seismic ground motion events, 
 nSF = number of seismic fault displacement 

events, 
 aEW = vector defining the nEW early WP fail-

ures, 
 aED = vector defining the nED early DS failures, 
 aII = vector defining the nII igneous intrusive 

events, 
 aIE = vector defining the nIE igneous eruptive 

events, 
 aSG = vector defining the nSG seismic ground 

motion events, 
 aSF = vector defining the nSF fault displacement 

events. 

In turn, the vectors aEW, aED, aII, aIE, aSG and aSF are 
of the form 

,1 ,2 ,, , , ,EW EW EW EW nEW⎡ ⎤= ⎣ ⎦…a a a a  (6.67) 

,1 ,2 ,, , , ,ED ED ED ED nED⎡ ⎤= ⎣ ⎦…a a a a  (6.68) 

,1 ,2 ,, , , ,II II II II nII⎡ ⎤= ⎣ ⎦…a a a a  (6.69) 

,1 ,2 ,, , , ,IE IE IE IE nIE⎡ ⎤= ⎣ ⎦…a a a a  (6.70) 

,1 ,2 ,, , , ,SG SG SG SG nSG⎡ ⎤= ⎣ ⎦…a a a a  (6.71) 

and 

,1 ,2 ,, , , ,SF SF SF SF nSF⎡ ⎤= ⎣ ⎦…a a a a  (6.72) 

where 

 aEW,j = vector defining early WP failure j for j = 
1, 2, …, nEW, 

 aED,j = vector defining early DS failure j for j = 1, 
2, …, nED, 

 aII,j = vector defining igneous intrusive event j 
for j = 1, 2, …, nII, 

 aIE,j = vector defining igneous eruptive event j 
for j = 1, 2, …, nIE, 

 aSG,j = vector defining seismic ground motion 
event j for j = 1, 2, …, nSG, 

 aSF,j = vector defining seismic fault displacement 
event j for j = 1, 2, …, nSF. 

Definitions of the vectors aEW,j, aED,j, aII,j, aIE,j, aSG,j 
and aSF,j and their associated probabilistic characteriza-
tions are given in App. J of Ref. [22]. These definitions 
and probabilistic characterizations underlie the com-
plete, though never fully stated, definition of the prob-
ability space (A, A, pA) for aleatory uncertainty. 

Determination of dose to the RMEI requires a 
function D(τ |a) such that 

D(τ |a) = dose to RMEI (mrem/yr) at time  
τ (yr) conditional on the occurrence  
of the future represented by the  
element a of A. (6.73) 

Technically, D(τ |a) is the committed 50-yr dose to the 
RMEI that results from radiation exposure incurred in a 
single year.  The function D(τ |a) is the result of com-
bining mathematical models for a number of complex 
processes, including fluid flow, heat flow, waste pack-
age degradation, chemical reactions, radionuclide 
transport by flowing groundwater in dual porosity me-
diums, radionuclide transport in the surface environ-
ment, and human exposure to radionuclides as a result 
of a variety of transport processes and exposure modes.  
A careful description of D(τ |a) is outside the intended 
scope of this presentation.  Overviews of the individual 
models that are assembled to produce D(τ |a) are pro-
vided in Refs. [169-171]. A more detailed description 
of these models and a source of additional references is 
Chapt. 6 of Ref. [22]. 

It is also important to recognize that D(τ |a) corre-
sponds to only one of hundreds of time-dependent re-
sults produced in the 2008 YM PA.  This is typical of 
large system analyses where many individual results are 
produced.  Results such as D(τ |a) are the final out-
comes of a long and involved sequence of calculations.  
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To understand a result such as D(τ |a) and also to check 
its correctness, it is necessary to examine the intermedi-
ate results that underlie its production.  A subset of the 
results that underlie the determination of D(τ |a) are 
presented in Refs. [162; 164]. More extensive presenta-
tion and discussion of results that underlie D(τ |a) are 
given in Apps. J and K of Ref. [22]. 

The probability space (E, E, pE) for epistemic un-
certainty involves nE = 392 variables (Ref. [22], Tables 
K3-1, K3-2 and K3-3).  Specifically, each element e of 
E is a vector of the form 

[ ]

[ ]
1 2 , 1 2 ,

1 2

,

, , , , , , ,

, , ,

A M

A A A nEA M M m nEM

nE

e e e e e e

e e e

=

⎡ ⎤= ⎣ ⎦
=

… …

…

e e e

 

 

  [ ]1 2 392, , , ,e e e= …   (6.74) 

where 

1 2 ,, , ,A A A A nEAe e e⎡ ⎤= ⎣ ⎦…e
 

is a vector of epistemically uncertain variables used in 
the definition of the probability space (A, A, pA), 

1 2 ,, , ,M M M M nEMe e e⎡ ⎤= ⎣ ⎦…e
 

is a vector of epistemically uncertain variables required 
in the evaluation of D(τ |a), and 

nE = nEA + nEM = 392. 

The probability space (E, E, pE) was defined by devel-
oping a distribution Di for each element ei of e.  These 
distributions provide a probabilistic characterization of 
the available knowledge with respect to where the ap-
propriate value to use for each variable is located.  Ex-
tensive references describing the nature of each variable 
ei in e and the development of its distribution Di are 
given in Table K3-3 of Ref. [22]. 

With the introduction of the probability space (E, 
E, pE) for epistemic uncertainty and the associated ele-
ments e = [eA, eM] of E, the dose function D(τ |a) is 
now more appropriately represented by D(τ |a, eM) to 
explicitly indicate the dependence of dose on the values 
for epistemically uncertain analysis inputs contained in 
eM.  Further, the epistemic uncertainty associated with 
the definition of the probability space (A, A, pA) for 
aleatory uncertainty can be formally recognized by us-

ing dA(a|eA) to represent the density function associated 
with (A, A, pA) that derives from eA. 

The expected dose specified in (YM1) is formally 
defined by 

( ) ( ) ( ), d .M A AD D d Aτ τ= ∫Ae a e a e  (6.75) 

In words, D(τ |e) is the expected value for dose to the 
RMEI at time τ conditional on the values for epistemi-
cally uncertain analysis inputs contained in e = [eA, 
eM].  As indicated in Ref. [163] and described in detail 
in App. J of Ref. [22], a complex sequence of calcula-
tions is involved in the evaluation of the integral that 
defines D(τ |e). 

The regulatory requirement summarized in (YM1) 
requires that the inequality 

( ) 15 mrem/yrmx bD D≤ =e  (6.76) 

hold, where 

( ) ( ){ }4max : 0 10  yrmxD D τ τ= ≤ ≤e e  (6.77) 

is the maximum value for D(τ |e) over the time interval 
[0, 104 yr] and bD  = 15 mrem/yr is the bound specified 
in (YM1).  In turn, the associated margin MXmD (e) is 
defined by 

( ) ( )
( )15 mrem/yr .

mx b mx

mx

mD D D

D

= −

= −

e e
e

 (6.78) 

If e was known with certainty, then mxD (e) and 
mxmD (e) would also be known with certainty.  How-

ever, both mxD (e) and mxmD (e) are uncertain because 
of the epistemic uncertainty associated with e and char-
acterized by the probability space (E, E, pE). 

In the 2008 YM PA, an LHS 

[ ]
1 2 ,

,

, , , , 1, 2, , ,
Ai Mi

i i i nEe e e i nLHS

=

⎡ ⎤= =⎣ ⎦… …

e e e
 (6.79) 

of size nLHS = 300 from the nE = 392 uncertain vari-
ables under consideration is used in the propagation of 
epistemic uncertainty. The adequacy of this sample size 
was established with replicated sampling (see App. J, 
Ref. [22]).   
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Fig. 6.19. Expected dose curves [τ, D(τ |ei)], 0 ≤ τ ≤ 2 × 

104 yr, and associated mean and quantile 
curves obtained with an LHS of size 300 from 
the sample space E associated with epistemic 
uncertainty. 
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Fig. 6.20. Estimated CCDF for maximum expected 

dose mxD (e) (see Eq.(6.77)). 

The indicated sample results in 300 expected dose 
curves [τ, D(τ |ei)] (Fig. 6.19).  In addition to the indi-
vidual curves corresponding to [τ, D(τ |ei)], Fig. 6.19 
also shows mean and quantile results that derive from 
epistemic uncertainty; specifically, these results corre-
spond to quantities of the form defined in Eqs. (3.26)
and (3.28) and discussed in conjunction with Fig. 1 of 
Ref. [163]. 

Corresponding to each dose curve [τ, D(τ |ei)] in 
Fig. 6.19 is a maximum dose mxD (ei) for the time in-
terval [0, 104 yr] defined as indicated in conjunction 
with Eq. (6.77).  Specifically, 300 values for mxD (ei) 
are obtained and provide the basis for an estimated 
CCDF that summarizes the epistemic uncertainty asso-
ciated with mxD (e) (Fig. 6.20). Because the individual 
expected dose curves [τ, D(τ |ei)] in Fig. 6.19 are effec-

tively monotonically increasing, the equality mxD (ei) = 
D(104 |ei) is assumed to hold.  

In turn, 300 values for the margin 

( ) ( )
( )15 mrem/yr

mx i b mx i

mx i

mD D D

D

= −

= −

e e
e

 (6.80) 

and also for the corresponding normalized margin 

( ) ( )
( )15 mrem/yr 15 mrem/yr

mx i b mx i b

mx i

nD D D D

D

⎡ ⎤= −⎣ ⎦
⎡ ⎤= −⎣ ⎦

e e

e
 

 (6.81) 

are obtained and provide the basis for estimated CDFs 
that summarize the epistemic uncertainty associated 
with mxmD (e) and mxnD (e) (Fig. 6.21). 

As discussed in conjunction with Eqs. (6.16) –
(6.23), the results in Figs. 6.20 and 6.21 can be reduced 
to single-valued “margin/uncertainty” summary statis-
tics by the following calculations: 

( ) ( )0.05 14.76 14.76 14.29

31.40,
mn mnmD mD mD− = −

=
(6.82) 

( ) ( )0.5 0.5 0.05 14.88 14.88 14.29

25.22,

mD mD mD− = −

=
  (6.83) 

( ) ( )14.76 14.76 11.49

4.51,
mn mn minmD mD mD− = −

=
  (6.84) 

and 

( ) ( )0.5 0.5 14.88 14.88 11.49

4.39,
minmD mD mD− = −

=
 (6.85) 

where 

( )
1

nLHS

mn mx i
i

mD mD nLHS
=

= ∑ e  

is an approximation to the expected value of mxmD (e) 
over epistemic uncertainty,  qmD  is the estimated q-
quantile for mxmD (e), and minmD  = 0.00mD . However, as 
previously discussed, significant information is lost in 
the preceding reductions of the information in Figs. 
6.20 and 6.21a and ultimately Fig. 6.19 to single num-
bers (see Sect. 4.5 for additional discussion).  
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Fig. 6.21. Estimated CDFs for margin associated with maximum expected dose:  (a) margin mxmD (e) for maximum 

expected dose (see Eq. (6.80)), and (b) normalized margin mxnD (e) for maximum expected dose (see Eq. 
(6.81)). 

Note: In its regulations, the NRC implies, but never 
explicitly states, that the bounds in (YM1) and (YM2) 
are to apply to results of the form 

( ) ( ){ }
( )

1

max | d :

max | :

mn E

nLHS

i
i

D D d E a b

D nLHS a b

τ τ

τ τ
=

= ≤ ≤

⎧ ⎫⎪ ⎪≅ ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

∫

∑

e e

e

E
 (6.86) 

with 

( ) ( ) ( )| | , | dM A AD D d Aτ τ= ∫e a e a e
A

 

and [a, b] equal to [0, 104 yr] and [104, 106 yr], respec-
tively. In effect, this places the bounds of 15 mrem/yr 
and 100 mrem/yr in (YM1) and (YM2) on quantities 
defined on the basis of expected values over both alea-
tory and epistemic uncertainty (i.e., on the curve labeled 
“mean” in Fig. 6.19). Because of the expectations over 
both aleatory and epistemic uncertainty, there is no un-
certainty in the central regulatory quantity mnD  once the 
probability spaces (A, A, pA) and (E, E, pE) and the 
dose function D(τ |a, eM) have been specified.  How-
ever, the NRC is also very explicit in stating that the 

uncertainty in results used in assessing compliance with 
the requirements in (YM1) and (YM2) is to be shown 
(see discussion in Ref. [167]).  In the 2008 YM PA, this 
potentially contradictory situation was handled by first 
calculating D(τ |ei) conditional on individual LHS ele-
ments ei and then calculating mnD  from the expecta-
tions D(τ |ei) over aleatory uncertainty.  Specifically, 
the individual expected dose curves [τ, D(τ |ei)] in Fig. 
6.19 provide both the desired representation of the epis-
temic uncertainty in the estimation of expected dose 
and the basis for estimatimng the central regulatory 
quantity mnD . This provides an example of a situation 
that also underlies the examples presented in Sects. 6.1 
and 6.2 and is likely to be encountered in QMU analy-
ses. Namely, a situation in which the descriptions of 
required results are not complete or possibly fully con-
sistent and thus require some level of interpretation 
and/or elaboration by the analysts involved in actually 
defining, planning, and implementing the calculations 
necessary to assess compliance with an incompletely 
specified requirement. At the core of this process is the 
determination of how to convert what maybe less than 
fully precise verbal and numeric specifications into a 
well-defined mathematical structure that facilitates the 
planning, implementation and documentation of the 
analysis to be performed.   
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7 Uncertainty and Sensitivity Analysis for 
Models of Complex Systems 

Uncertainty analysis and sensitivity analysis are es-
sential parts of analyses for complex systems [2; 172-
182].  Specifically, uncertainty analysis refers to the 
determination of the uncertainty in analysis results that 
derives from uncertainty in analysis inputs, and sensi-
tivity analysis refers to the determination of the contri-
butions of individual uncertain analysis inputs to the 
uncertainty in analysis results.  The uncertainty under 
consideration here is often referred to as epistemic un-
certainty as previously discussed in Sect. 2; alternate 
designations for this form of uncertainty include state of 
knowledge, subjective, reducible, and type B [78-81; 
83; 85-89].  Epistemic uncertainty derives from a lack 
of knowledge about the appropriate value to use for a 
quantity that is assumed to have a fixed value in the 
context of a particular analysis.  In the conceptual and 
computational organization of an analysis, epistemic 
uncertainty is generally considered to be distinct from 
aleatory uncertainty, which arises from an inherent ran-
domness in the behavior of the system under study [78-
81; 83; 85-89].  Alternative designations for aleatory 
uncertainty include variability, stochastic, irreducible, 
and type A. The importnance of uncertainty and sensi-
tivity analysis is specifically recognized in the 
NAS/NRC report on QMU (pp. 14-15, Ref. [77]).   

A number of approaches to uncertainty and sensi-
tivity analysis have been developed, including differen-
tial analysis [32-37], response surface methodology 
[38-44], Monte Carlo analysis [29; 45-56], and variance 
decomposition procedures[57-61].  Overviews of these 
approaches are available in several reviews [62-70]. 

The focus of this section is on Monte Carlo (i.e., 
sampling-based) approaches to uncertainty and sensitiv-
ity analysis.  Sampling-based approaches to uncertainty 
and sensitivity analysis are both effective and widely 
used [29; 51; 53; 55; 56; 64; 65].  Analyses of this type 
involve the generation and exploration of a mapping 
from uncertain analysis inputs to uncertain analysis re-
sults.  The underlying idea is that analysis results y(x) = 
[y1(x), y2(x), …, ynY(x)] are functions of uncertain anal-
ysis inputs x = [x1, x2, …, xnX].  In turn, uncertainty in x 
results in a corresponding uncertainty in y(x).  This leads 
to two questions:  (i) What is the uncertainty in y(x) giv-
en the uncertainty in x?, and (ii) How important are the 
individual elements of x with respect to the uncertainty 
in y(x)?  The goal of uncertainty analysis is to answer the 
first question, and the goal of sensitivity analysis is to 
answer the second question.  In practice, the implementa-
tion of an uncertainty analysis and the implementation of 

a sensitivity analysis are closely connected on both a 
conceptual and a computational level. 

The following sections summarize the five basic 
components that underlie the implementation of a sam-
pling-based uncertainty and sensitivity analysis:  (i) 
Definition of distributions D1, D2, …, DnX that charac-
terize the epistemic uncertainty in the components x1, 
x2, …, xnX of x (Sect. 7.1), (ii) Generation of a sample 
x1, x2, …, xnS from the x’s in consistency with the dis-
tributions D1, D2, …, DnX (Sect. 7.2), (iii) Propagation 
of the sample through the analysis to produce a map-
ping [xi, y(xi)], i = 1, 2, …, nS, from analysis inputs to 
analysis results (Sect. 7.3), (iv) Presentation of uncer-
tainty analysis results (i.e., approximations to the distri-
butions of the elements of y constructed from the corre-
sponding elements of y(xi), i = 1, 2, …, nS) (Sect. 7.4), 
and (v) Determination of sensitivity analysis results 
(i.e., exploration of the mapping [xi, y(xi)], i = 1, 2, …, 
nS) (Sect. 7.5). 

Space limitations in this presentation preclude the 
presentation of detailed examples of the indicated anal-
ysis components; however, extensive examples can be 
found in the published descriptions of uncertainty and 
sensitivity analyses carried out for the Waste Isolation 
Pilot Plant (e.g., Refs. [21; 146; 183]) and the proposed 
Yucca Mountain repository for high-level radioactive 
waste (e.g., Refs. [162-164] and Apps. J and K of Ref. 
[22]). These two analyses have been previously intro-
duced in Sects. 6.2 and 6.3.  

Only probabilistic characterizations of uncertainty 
are considered in this presentation.  Alternative uncer-
tainty representations (e.g., interval analysis, possibility 
theory, evidence theory) are an active area of research 
[184-190] and are discussed in Sects. 8 – 10. 

This presentation is a lightly edited version of two 
prior workshop presentations [191; 192] and is intended 
to introduce the reader to sampling-based procedures for 
uncertainty and sensitivity analysis.  More extensive in-
formation on these procedures is available in five techni-
cal reports [193-197] and a number of additional presen-
tations derived from these reports [52-55; 111; 112]. 

7.1 Characterization of Uncertainty 

Definition of the distributions D1, D2, …, DnX that 
characterize the epistemic uncertainty in the compo-
nents x1, x2, …, xnX of x is the most important part of a 
sampling-based uncertainty and sensitivity analysis as 
these distributions determine both the uncertainty in y 
and the sensitivity of the elements of y to the elements 
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of x. To the extent possible, the indicated distributions 
should be defined on the basis of results obtained from 
relevant and appropriately designed experimants. Un-
fortunately, such experimental results do not always 
exist. As a result, the distributions D1, D2, …, DnX of-
ten need to be developed, at least in part, through an 
expert review process [97-103]. Further, this develop-
ment can constitute a major analysis cost. 

It is important to recognize that the purpose of the 
indicated expert review process for a given element of 
x is not to replace experimental results with personnel 
opinion. Rather, the purpose is to assess information 
from what could potentially be a variety of sources of 
different levels of relevance and credibility and then to 
summarize this information with a probability distribu-
tion. In turn, the development of the indicated distribu-
tions allows the assessed epistemic uncertainty in anal-
ysis inputs to used in determining the epistemic uncer-
tainty in analysis results.   

A possible analysis strategy is to perform an initial 
exploratory analysis with rather crude definitions for D1, 
D2, …, DnX and use sensitivity analysis to identify the 
most important analysis inputs; then, resources can be 
concentrated on characterizing the uncertainty in these 
inputs and a second presentation or decision-aiding anal-
ysis can be carried out with these improved uncertainty 
characterizations. For example, additional experimental 
work might be performed to reduce the epistemic uncer-
tainty present with respect to the correct values for the 
variables whose uncertainty most influences the uncer-
tainty in analysis results of interest.  This strategy is par-
ticularly appropriate for analyses that involve a large 
number of epistemically uncertain inputs.  

The scope of an expert review process can vary 
widely depending on the purpose of the analysis, the 
size of the analysis, and the resources available to carry 
out the analysis.  At one extreme is a relatively small 
study in which a single analyst both develops the uncer-
tainty characterizations (e.g., on the basis of personal 
knowledge or a cursory literature review).  At the other 
extreme, is a large analysis on which important deci-
sions will be based and for which uncertainty charac-
terizations are carried out for a large number of vari-
ables by teams of outside experts who support the ana-
lysts actually performing the analysis.  

Appropriate documentation of the information con-
sidered and how this information was used in develop-
ing distributions to characterize epistemic uncertainty is 
an essential part of an expert review process. Without 

such documentation, distributions developed through an 
expert review process will hve little credibility.   

Given the breadth of analysis possibilities, it is be-
yond the scope of this presentation to provide an ex-
haustive review of how the distributions D1, D2, …, 
DnX might be developed.  However, as general guid-
ance, it is best to avoid trying to obtain these distribu-
tions by specifying the defining parameters (e.g., mean 
and standard deviation) for a particular distribution 
type.  Rather, distributions can be defined by specifying 
selected quantiles (e.g., 0.0, 0.1, 0.25, …, 0.9, 1.0) of 
the corresponding cumulative distribution function 
(CDF), which should keep the individual supplying the 
information in closer contact with the original sources 
of information or insight than is the case when a par-
ticular named distribution is specified (Fig. 7.1a).  Dis-
tributions from multiple experts can be aggregated by 
averaging (Fig. 7.1b). 

7.2 Generation of Sample 

Several sampling strategies are available, including 
random sampling, importance sampling, and Latin hy-
percube sampling [45; 55].  Latin hypercube sampling 
is very popular for use with computationally demanding 
models because its efficient stratification properties 
allow for the extraction of a large amount of uncertainty 
and sensitivity information with a relatively small sam-
ple size [141-143]. 

Latin hypercube sampling operates in the following 
manner to generate a sample of size nS from the distribu-
tions D1, D2, …, DnX associated with the elements of x = 
[x1, x2, …, xnX].  The range of each xj is exhaustively di-
vided into nS disjoint intervals of equal probability and 
one value xij is randomly selected from each interval.  The 
nS values for x1 are randomly paired without replacement 
with the nS values for x2 to produce nS pairs.  These pairs 
are then randomly combined without replacement with the 
nS values for x3 to produce nS triples.  This process is con-
tinued until a set of nS nX-tuples xi = [xi1, xi2, …, xi,nX], i = 
1, 2, …, nS, is obtained, with this set constituting the Latin 
hypercube sample (LHS) (Fig. 7.2).  

Latin hypercube sampling is a good choice for a 
sampling procedure when computationally demanding 
models are being studied.  The popularity of Latin hyper-
cube sampling recently led to the original article being 
designated a Technometrics classic in experimental de-
sign [198].  When the model is not computationally de-
manding, many model evaluations can be performed and 
random sampling works as well as Latin hypercube sam-
pling. 
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Frame 7.1a Frame 7.1b

 
Fig. 7.1. Characterization of epistemic uncertainty:  (a) Construction of CDF from specified quantile values (Fig. 4.1, Ref. 

[194]), and (b) Construction of mean CDF by vertical averaging of CDFs defined by individual experts with 
equal weight (i.e., 1/nE = 1/3, where nE = 3 is the number of experts) given to each expert (Fig. 4.2, Ref. [194]). 

Control of correlations is an important aspect of 
sample generation.  Specifically, correlated variables 
should have correlations close to their specified values, 
and uncorrelated variables should have correlations 
close to zero.  In general, the imposition of complex 
correlation structures is not easy.  However, Iman and 
Conover have developed a broadly applicable proce-
dure to impose rank correlations on sampled values that 
(i) is distribution free (i.e., does not depend  on the as-
sumed marginal distributions for the sampled vari-
ables), (ii) can impose complex correlation structures 
involving multiple variables, (iii) works with both ran-
dom and Latin hypercube sampling, and (iv) preserves 
the intervals used in Latin hypercube sampling [199; 
200].  Details on the implementation of the procedure 
are available in the original reference [199]; illustrative 
results are provided in Fig. 7.3. 

Unlike simple random sampling, the size of an 
LHS cannot be increased by simply adding one sample 
element at a time.  However, recently developed tech-
niques provide a means to retain the elements of an 
initial LHS in an expanded LHS [201; 202].  This can 
be important in a computationally demanding analysis 
in which it is desired both to increase the size of an 
LHS and also to retain already performed calculations 
in the analysis.  Further, the stability of results obtained 
with Latin hypercube sampling for a given sample size 
can be assessed with a replicated sampling technique 
developed by R.L. Iman [154; 203]. 

7.3 Propagation of Sample Through the 
Analysis 

Propagation of the sample through the analysis to 
produce the mapping [xi, y(xi))], i = 1, 2, …, nS, from 
analysis inputs to analysis results is often the most 
computationally demanding part of a sampling-based 
uncertainty and sensitivity analysis.  The details of this 
propagation are analysis specific and can range from 
very simple for analyses that involve a single model to 
very complicated for large analyses that involve com-
plex systems of linked models [11; 21]. 

When a single model is under consideration, this 
part of the analysis can involve little more than putting 
a DO loop around the model that (i) supplies the sam-
pled input to the model, (ii) runs the model, and (iii) 
stores model results for later analysis.  When more 
complex analyses with multiple models are involved, 
considerable sophistication may be required in this part 
of the analysis.  Implementation of such analyses can 
involve (i) development of simplified models to ap-
proximate more complex models, (ii) clustering of re-
sults at model interfaces (i.e., at analysis pinchpoints), 
(iii) reuse of model results through interpolation or li-
nearity properties, and (iv) complex procedures for the 
storage and retrieval of analysis results. 
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Frame 
7.2a

Frame 
7.2b

Frame 7.2c Frame 7.2d

 
Fig. 7.2. Example of Latin hypercube sampling to generate a sample of size nS = 5 from x = [U, V] with U normal on 

[−1, 1] (mean = 0.0; 0.01 quantile = −1; 0.99 quantile = 1) and V triangular on [0, 4] (mode = 1):  (a) Upper 
frames illustrate sampling of values for U and V, and (b) Lower frames illustrate two different pairings of the 
sampled values of U and V in the construction of a Latin hypercube sample (Fig. 5.3, Ref. [194]). 

7.4 Presentation of Uncertainty Analysis 
Results 

Presentation of uncertainty analysis results is gen-
erally straightforward and involves little more than dis-
playing the results associated with the already calcu-
lated mapping [xi, y(xi)], i = 1, 2, …, nS.  Presentation 
possibilities include means and standard deviations, 

density functions, cumulative distribution function 
(CDFs), complementary cumulative distribution func-
tions (CCDFs), and box plots [55; 64].  Presentation 
formats such as CDFs (Fig. 7.4a), CCDFs (Fig. 7.4a) 
and box plots (Fig. 7.4b) are preferable to means and 
standard deviations because of the large amount of un-
certainty information that is lost in the calculation of
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Fig. 7.3. Examples of rank correlations of 0.00, 0.25, 0.50, 0.75, 0.90 and 0.99 imposed with the Iman/Conover 

restricted pairing technique for an LHS of size nS = 1000 (Fig. 5.1, Ref. [195]). 

means and standard deviations.  For this reason, analy-
sis summaries based on presenting only means and 
standard deviations should be avoided. Owing to their 
flattened shape, box plots are particularly useful when it 
is desired to the display and compare the uncertainty in 
a number of related variables. 

The representational challenge is more complex 
when the analysis outcome of interest is a function ra-
ther than a scalar.  For example, a system property that 
is a function of time is a common analysis outcome.  As 
another example, a CCDF that summarizes the effects 
of aleatory uncertainty is a standard analysis outcome in 
risk assessments.  An effective display format for such 
analysis outcomes is to use two plot frames, with the 
first frame displaying the analysis results for the indi-
vidual sample elements and the second frame display-
ing summary results for the outcomes in the first frame 
(e.g., quantiles and means) (Fig. 7.5). 

7.5 Determination of Sensitivity Analysis 
Results 

Determination of sensitivity analysis results is usu-
ally more demanding than the presentation of uncer-
tainty analysis results due to the need to actually ex-
plore the mapping [xi, y(xi)], i = 1, 2, …, nS, to assess 
the effects of individual components of x on the com-
ponents of y.  A number of approaches to sensitivity 
analysis that can be used in conjunction with a sam-
pling-based uncertainty analysis are listed and briefly 
summarized below.  In this summary, (i) xj is an ele-
ment of x = [x1, x2, …, xnX], (ii) yk is an element of 
y(x) = [y1(x), y2(x), …, ynY(x)], (iii) xi = [xi1, xi2, …, 
xi,nX], i = 1, 2, …, nS, is a random or Latin hypercube 
sample from the possible values for x generated in con-
sistency with the joint distribution assigned to the xj, 
(iv) yi = y(xi) for i = 1, 2, …, nS, and (v) xij and yik are 
elements of xi and yi, respectively. 
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Frame 7.4a Frame 7.4b

 
Fig. 7.4. Representation of uncertainty in scalar-valued analysis results:  (a) CDFs and CCDFs (Fig. 7.2, Ref. 

[194]) and (b) box plots (Fig. 7.4, Ref. [194]). 

Scatterplots.  Scatterplots are plots of the points 
[xij, yik] for i = 1, 2, …, nS and can reveal nonlinear or 
other unexpected relationships (Fig. 7.6).  In many ana-
lyses, scatterplots provide all the information that is 
needed to identify the sensitivity of analysis results to 
the uncertainty in analysis inputs.  Further, scatterplots 
constitute a natural starting point in a complex analysis 
that can help in the development of a sensitivity analy-
sis strategy using one or more additional techniques.  
Additional information:  Sect. 6.6.1, Ref. [53]; Sect. 
6.1, Ref. [56]. 

Cobweb Plots.  Cobweb plots are plots of the points 
[xi, yik] = [xi1, xi2, …, xi,nX, yik] for i = 1, 2, …, nS and 
provide a two-dimensional representation for [xi, yik], 
which is a nX + 1 dimensional quantity.  Specifically, 
values for the yik and also for the elements xij of xi ap-
pear on the ordinate of a cobweb plot and the variables 
themselves are designated by fixed locations on the ab-
scissa.  Then, the values yik, i = 1, 2, .., nS, for yk and the 
values xij, i = 1, 2, …, nS, for each xj are plotted above 
the locations for yk and xj on the abscissa and each nX + 
1 dimensional point [xi, yik] is represented by a line con-
necting the values for the individual components of [xi, 
yik].  Cobweb plots provide more information in a single 
plot frame than a scatterplot but are harder to read.  Ad-
ditional information:  Sect. 11.7, Ref. [204]. 

Correlation.  A correlation coefficient (CC) pro-
vides a measure of the strength of the linear relationship 
between xj and yk. The CC between xj and yk has a val-
ue in the interval [−1, 1], with (i) a positive value indi-
cating that xj and yk tend to increase and decrease to-
gether, (ii) a negative value indicating that xj and yk 
tend to increase and decrease in opposite directions, and 
(iii) the absolute value of the CC indicating the strength 
of the linear relationship between xj and yk. The CC 
between xj and yk is equal to the standardized regression 
coefficient (SRC) in a linear regression relating yk to xj 
and is also equal in absolute value to the square root of 
the R2 value associated with the indicated regression.  
When calculated with raw (i.e., untransformed) data, 
the CC is often referred to as the Pearson CC.  Addi-
tional information:  Sect. 6.6.4, Ref. [53]; Sect. 6.2, 
Ref. [56]. 

Regression Analysis.  Regression analysis pro-
vides an algebraic representation of the relationships 
between yk and one or more xj’s.  Regression analysis is 
usually performed in a stepwise fashion, with initial 
inclusion of the most important xj, then the two most 
important xj’s, and so on until no more xj’s that signifi-
cantly affect yk can be identified.  Variable importance 
is indicated by order of selection in the stepwise proc-
ess, changes in R2 values as additional variables are 
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Frame 7.5a Frame 7.5b

Frame 7.5c Frame 7.5d

 
Fig. 7.5. Representation of uncertainty in analysis results that are functions:  (a, b) Pressure as a function of time 

(Figs. 7.5, 7.9, Ref. [194]), and (c, d) Effects of aleatory uncertainty summarized as a CCDF (Fig. 10.5, 
Ref. [194]). 

added to the regression model, and SRCs for the xj’s in 
the final regression model (Table 7.1).  A display of re-
gression results in the form shown in Table 7.1 is very 
unwieldy when results at a sequence of times are under 
consideration.  In this situation, a more compact display 
of regression results is provided by plotting time-
dependent SRCs (Fig. 7.7a).  Additional information:  
Sects. 6.6.2, 6.6.3, 6.6.5, Ref. [53]; Sect. 6.3, Ref. [56]. 

Partial Correlation.  A partial correlation coeffi-
cient (PCC) provides a measure of the strength of the 
linear relationship between yk and xj after the linear 
effects of all other elements of x have been removed.  
Similarly to SRCs, PCCs can be determined as a func-
tion of time for time-dependent analysis results (Fig. 
7.7b).  Additional information:  Sect. 6.6.4, Ref. [53]; 
Sect. 6.4, Ref. [56]. 
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Frame 7.6a Frame 7.6b

 
Fig. 7.6. Examples of scatterplots obtained in a sampling-based uncertainty/sensitivity analysis (Figs. 8.1, 8.2, Ref. 

[194]). 

Table 7.1. Example of Stepwise Regression Analysis to 
Identify Uncertain Variables Affecting the 
Uncertainty in Pressure at 10,000 yr in Fig. 
7.5a (Table 8.6, Ref. [194]) 

Stepa Variableb SRCc R2d 
1 WMICDFLG 0.718 0.508 
2 HALPOR 0.466 0.732 
3 WGRCOR 0.246 0.792 
4 ANHPRM 0.129 0.809 
5 SHRGSSAT 0.070 0.814 
6 SALPRES 0.063 0.818 

a Steps in stepwise regression analysis. 
b Variables listed in the order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression 

model. 
 

Rank Transformations.  A rank transformation 
replaces values for yk and xj with their corresponding 
ranks. Specifically, the smallest value for a variable is 
assigned a rank of 1; next largest value is assigned a 
rank of 2; tied values are assigned their average rank; 
and so on up to the largest value, which is assigned a 
rank of nS.  Use of the rank transformation converts a 
nonlinear but monotonic relationship between yk and xj 
to a linear relationship and produces rank (i.e., Spear-
man) correlations, rank regressions, standardized rank 
regression coefficients (SRRCs) and partial rank corre-

lation coefficients (PRCCs).  In the presence of nonlin-
ear but monotonic relationships between the xj and yk, 
the use of the rank transform can substantially improve 
the resolution of sensitivity analysis results (Table 7.2). 
Additional information:  Sect. 6.6.6, Ref. [53]; Sect. 
6.6, Ref. [56]; Ref. [205]. 

Tests for Patterns Based on Gridding.  Analyses on 
raw and rank-transformed data can fail when the under-
lying relationships between the xj and yk are nonlinear 
and nonmonotonic (Fig. 7.8).  The scatterplot in Fig. 
7.6b is for the pressure at 10,000 yr in Fig. 7.8a versus 
the uncertain variable BHPRM.  The analyses with 
PRCCs summarized in Fig. 7.8b fail at later times be-
cause the pattern appearing in Fig. 7.6b is too complex 
to be captured with a regression analysis based on raw 
or rank-transformed data.  An alternative analysis strat-
egy for situations of this type is to place grids on the 
scatterplot for yk and xj and then perform various statis-
tical tests to determine if the distribution of points 
across the grid cells appears to be nonrandom.  Appear-
ance of a nonrandom pattern indicates that xj has an 
effect on yk.  Possibilities include (i) tests for common 
means and common distributions for values of yk based 
on partitioning the range of xj (Fig. 7.9a) and (ii) tests 
for common medians and no influence based on parti-
tioning the ranges of xj and yk (Figs. 7.9a,b). Additional 
information:  Ref. [52]; Sects. 6.6.8 and 6.6.9, Ref. 
[53]; Sects. 6.6 and 6.7, Ref. [56]. 
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Frame 7.7a Frame 7.7b

 
Fig. 7.7. Time-dependent sensitivity analysis results for uncertain pressure curves in Fig. 7.5a:  (a) SRCs as a func-

tion of time, and (b) PCCs as a function of time (Fig. 8.3, Ref. [194]). 

Table 7.2 Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for Variable 
BRAALIC in Fig. 7.4b (Table 8.8, Ref. [194]) 

Raw Data Rank-Transformed Data 
Stepa 

Variableb SRCc R2d Variableb SRRCe R2d 
1 ANHPRM 0.562 0.320 WMICDFLG −0.656 0.425 
2 WMICDFLG −0.309 0.423 ANHPRM 0.593 0.766 
3 WGRCOR −0.164 0.449 HALPOR −0.155 0.802 
4 WASTWICK −0.145 0.471 WGRCOR −0.152 0.824 
5 ANHBCEXP −0.120 0.486 HALPRM 0.143 0.845 
6 HALPOR −0.101 0.496 SALPRES 0.120 0.860 
7    WASTWICK −0.010 0.869 

a Steps in stepwise regression analysis. 
b Variables listed in order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression model. 
e SRRCs for variables in final regression model. 

 

Nonparametric Regression.  Nonparametric re-
gression seeks more general models than those obtained 
by least squares regression and can succeed in situa-
tions such as the one illustrated in Fig. 7.8 where re-
gression and correlation analysis based on raw and 
rank-transformed data fail.  Nonparametric regression 
attempts to find models that are local in the approxima-
tion to the relationship between yk and multiple xj’s, 

and, as a result, are better at capturing complex nonlin-
ear relationships than models obtained with traditional 
regression or rank regression.  Nonparametric regres-
sion models can be constructed in a stepwise manner 
with incremental changes in R2 values with the addition 
of successive variables to the model providing an indi-
cation of variable importance.  Additional information:  
Sect. 6.8, Ref. [56]; Refs. [111; 112; 197; 206-208]. 
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Frame 7.8a

Frame 7.8b

 
Fig. 7.8. Illustration of failure of a sensitivity analysis based on rank-transformed data:  (a) Pressures as a function 

of time and (b) PRCCs as a function of time (Fig. 8.7, Ref. [194]). 

Frame 7.9a Frame 7.9b

 
Fig. 7.9. Grids used to test for nonrandom patterns:  (a) Partitioning of range of xj for tests based on common means 

and common distributions and ranges of xj and yk for test based on, common medians, and common distri-
butions (Fig. 8.8, Ref. [194]), and (b) Partitioning of ranges of xj and yk for tests of no influence (Fig. 8.9, 
Ref. [194]). 

Tests for Patterns Based on Distance Measures.  
Tests based on distance measures consider relationships 
within the scatterplot for yk and xj such as the distribu-
tion of distances between nearest neighbors and provide 
a way to identify nonrandom relationships between yk 
and xj.  A positive feature of these tests is the avoidance 
of the problem of defining an appropriate grid as is the 
case with grid-based methods.  Additional information:  
Sect. 6.11, Ref. [56]; Refs. [209-212]. 

Trees.  Tree-based sensitivity analyses search for 
relationships between yk and multiple xj’s by succes-
sively subdividing the sample elements xi on the basis 
of observed effects of individual xj’s on yk.  Additional 
information:  Refs. [213; 214]. 

Two-Dimensional Kolmogorov-Smirnov Test.  
The two-dimensional Kolmogorov-Smirnov test pro-
vides a way to test for nonrandom patterns in the scat-
terplot for yk and xj that does not require the imposition 
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of a grid.  Additional information:  Sect. 6.10, Ref. 
[56]; Refs. [215-217]. 

Squared Differences of Ranks.  The squared dif-
ference of ranks procedure seeks to identify the pres-
ence of nonlinear relationship between yk and xj and is 
based on squared differences of consecutive ranks of yk 
when the values of yk have been ordered by the corre-
sponding values of xj.  Additional information:  Sect. 
6.9, Ref. [56]; Ref. [218]. 

Top-Down Concordance with Replicated Sam-
ples.  This procedure uses the top-down coefficient of 
concordance and replicated (i.e., independently gener-
ated) samples.  Sensitivity analysis with some appropri-
ate technique to rank variable importance for each sam-
ple.  The top-down coefficient is then used to identify 
important variables by seeking variables with similar 
rankings across all replicates.  Additional information:  
Sect. 6.12, Ref. [56]; Refs. [143; 219]. 

Variance Decomposition.  The variance decom-
position procedure proposed by Sobol’ and others is 
formally defined by high-dimensional integrals involv-
ing the xj and yk(x).  This procedure provides a decom-
position of the variance V(yk) of yk in terms of the con-
tributions Vj of individual xj’s to V(yk) and also the con-
tributions of various interactions between the xj to 
V(yk).  In practice, the indicated decomposition is ob-
tained with sampling-based methods.  Two samples 
from x of size nS are required to estimate all Vj; nX + 2 
samples of size nS are required to estimate all Vj and 
also the contributions of each of the xj’s and its interac-
tions with other elements of x to V(yk).  This procedure 
is very appealing but can be computationally demand-
ing as more samples and probably larger samples are 
required than with other sampling-based approaches to 
sensitivity analysis.  Software for sampling-based vari-
ance decomposition is available as part of the SIMLAB 
package [220].  Additional information:  Sect. 6.13, 
Ref. [56]; Refs. [57-61; 220]. 
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8 Alternative Representations of 
Uncertainty 

This section provides a brief overview of the fol-
lowing mathematical structures that can be used in the 
representation of uncertainty:  interval analysis (Sect. 
8.1), possibility theory (Sect. 8.2), evidence theory 
(Sect. 8.3), and probability theory (Sect. 8.4).  For each 
structure, the following topics are considered:  (i) the 
representation of uncertainty in a single variable xi, (ii) 
the representation of uncertainty in a vector x = [x1, x2, 
…, xnX] of uncertain variables, and (iii) the representa-
tion of the uncertainty in a variable y defined by 

( ) [ ]1 2, , , , ,nXy F x x x= = …x x  (8.1) 

where F is a function of the vector x of uncertain vari-
ables x1, x2, …, xnX.  For this overview, no distinction 
is made between aleatory uncertainty and epistemic 
uncertainty.  Then, the section concludes with a discus-
sion of the use of sampling-based (i.e., Monte Carlo) 
procedures in the propagation of different structures for 
the representation of uncertainty (Sect. 8.5).  The con-
tent of this section is a lightly edited adaptation of the 
material contained in Sect. 2 of Ref. [221]. 

A brief rationale for the use of each uncertainty re-
presentation is given. Of these representations, interval 
analysis and probability theory are the most widely 
used. The introduction of other uncertainty representa-
tions such as possibility theory and evidence theory has 
been accompanied by an extensive discussion of their 
potential use as alternatives to probability theory for the 
characterization of uncertainty, with some individuals 
maintaining that the use of these alternative representa-
tions is essential to an adequate representation of uncer-
tainty in situations involving limited information and 
other individuals maintaining that probability provides 
the only appropriate structure for the representation of 
uncertainty [222-230]. For perspective, several com-
parative discussions of these different approaches to the 
representation of uncertainty are available [184; 188; 
189; 231-236]. The view of the author is that interval 
analysis and probability theory will remain the domi-
nant structures used in the representation of uncertainty 
but there will be analysis situations involving limited 
information where other representations for uncertainty, 
especially evidence theory, could be appropriate and 
beneficial. 

It is important to recognize that, at least at an intui-
tive level, the need for alternatives to probability theory 
for the representation of epistemic uncertainty has al-

ready been introduced into the discussion of QMU. In 
particular, the following statement appears on p. 47 of 
Ref. [2]: “we require positive evidence that a nuclear 
weapon will work; absence of evidence that it will not 
work is not sufficient.”. The preceding quote is an in-
formal expression of the uncertainty information that 
evidence theory is intended to formally capture and 
communicate. As discussed in Sect. 8.3, evidence the-
ory provides two measures of uncertainty: belief and 
plausibility. In the context of the preceding quote, belief 
provides a measure of the amount of “positive evi-
dence” that supports the truth of a proposition, and 
plausibility provides a measure of the “absence of evi-
dence” that refutes the truth of a proposition. Related 
concepts of necessity and possibility are present in pos-
sibility theory as discussed in Sect. 8.2. Thus, it should 
not be assumed that probability provides the only pos-
sible mathematical structure for the representation of 
uncertainty in QMU analyses. The possible use of al-
ternatives to probability for the characterization of epis-
temic uncertainty is recognized in the NAS/NRC report 
on QMU (p. 29, Ref. [77]).   

8.1 Interval Analysis 

Interval analysis [237-242] is based on the assump-
tion that a set Xi of possible values for a variable xi is 
known but with no specified uncertainty structure with-
in the set Xi.  Thus, all that is assumed to be known 
about xi is that its value is contained within the set Xi.  
Usually, but not necessarily, Xi is defined by 

{ }: ,i i i i ix a x b= ≤ ≤X  (8.2) 

where [ai, bi] is an interval that contains the possible 
values for xi. 

For a vector x = [x1, x2, …, xnX] of variables 
known only to be contained in the sets X1, X 2, …, XnX, 
the set X of possible values for x is given by 

1 2 .= × × ×… nXX X X X  (8.3) 

Given that there is no specified uncertainty structure for 
the sets X1, X 2, …, X nX, there is also no uncertainty 
structure for the set X of possible values for x.  Further, 
the preceding representation for X is predicated on the 
assumption that no restrictions exist that preclude spe-
cific combinations of values for the individual variables 
contained in x. 

Propagation of the individual values of x contained 
in X through the function F results in the set 
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( ){ }:  and y y F= ∈ =Xx xY  (8.4) 

of possible values for y.  Given that there is no uncer-
tainty structure for the set X, there is also no uncer-
tainty structure for the set Y. 

In most applications, the indicated propagation to 
produce the set Y  is based on using algebraic procedures 
implemented with appropriate software.  However, an 
interval analysis can also be thought of as an optimiza-
tion process in which it is desired to find the minimum 
and maximum of the function F on the set X.  Alterna-
tively, the uncertainty propagation associated with an 
interval analysis can be approximated with a sampling-
based (i.e., Monte Carlo) procedure (see Sect. 8.5). 

8.2 Possibility Theory 

Possibility theory [243-247] provides a representa-
tion for uncertainty that permits the specification of 
more structure than interval analysis and is based on the 
specification of a pair (Xi, ri) for a variable xi, where (i) 
Xi is the set of possible values for xi and (ii) ri is a func-
tion defined on Xi such that 0 ≤ ri(xi) ≤ 1 for xi ∈ Xi 
and sup{ ( ) : }i i ir x x ∈X  = 1.  The function ri provides a 
measure of the amount of “likelihood” or “confidence” 
that is assigned to each element of Xi and is referred to 
as the possibility distribution function for xi.  The pair 
(Xi, ri) defines a possibility space for the variable xi. 

A value of r(xi) = 1 indicates that there is no known 
information that refutes the “occurrence” or “appropri-
ateness” of a specific value xi contained in Xi, and a 
value of r(xi) = 0 indicates that known information 
completely refutes the “occurrence” or “appropriate-
ness” of xi.  Further, increasing values for r(xi) between 
0 and 1 indicate an increasing absence of information 
that refutes the “occurrence” or “appropriateness” of xi.  
Intuitively, r(xi) = 1 signifies that xi is entirely possible 
in the sense that nothing is known that contradicts the 
possibility of xi; 0 < r(xi) < 1 signifies that xi is possible 
but with the amount of information indicating that xi is 
not possible increasing as r(xi) approaches 0; and r(xi) = 
0 signifies that xi is known to be impossible. 

Possibility theory provides two measures of likeli-
hood for subsets of Xi:  possibility and necessity.  Spe-
cifically, possibility and necessity for a subset U of Xi 
are defined by 

( ) ( ){ }sup :i i i i iPos r x x= ∈U U  (8.5) 

and 

( ) ( ) ( ){ }1 1 sup : ,c c
i i i i iNec Pos r x x= − = − ∈U U U   

  (8.6) 

respectively.  In consistency with the properties of the 
possibility distribution function ri, Posi(U) provides a 
measure of the amount of information that does not 
contradict the proposition that U contains the appropri-
ate value for xi, and Neci(U) provides a measure of the 
amount of uncontradicted information that supports the 
proposition that U contains the appropriate value for xi. 

Relationships satisfied by possibility and necessity 
for the possibility space (Xi, ri) include 

( ) ( )1 ,c
i iNec Pos= +U U  (8.7) 

( ) ( ) ,i iNec Pos≤U U  (8.8) 

( ) ( )1 ,c
i iPos Pos≤ +U U  (8.9) 

( ) ( )1 ,c
i iNec Nec≥ +U U  (8.10) 

( ) ( ){ }1 max , ,c
i iPos Pos= U U  (8.11) 

( ) ( ){ }0 min , ,c
i iNec Nec= U U  (8.12) 

( ) ( )1 0,i iPos Nec< ⇒ =U U  (8.13) 

and 

( ) ( )0 1i iNec Pos> ⇒ =U U  (8.14) 

for subsets U of Xi (see Ref. [190], p. 34). 

Convenient graphical summaries of possibility 
spaces are provided by cumulative necessity functions 
(CNFs), complementary cumulative necessity functions 
(CCNFs), cumulative possibility functions (CPoFs), 
and complementary cumulative possibility functions 
(CCPoFs), which are analogs of CDFs and CCDFs pre-
viously introduced as summaries for probability distri-
butions (Sect. 3.1). Specifically, the CNF, CCNF, CPoF 
and CCPoF for the possibility space (Xi, ri) are defined 
by the sets 
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Fig. 8.1. Plots of CNF, CCNF, CPoF and CCPoF for possibility space (X, r) with (i) X = { :1 10},x x≤ ≤  (ii) r(x) = 

i/4 for i ≤ x ≤ i + 1 and i = 1, 2, 3, 4, and (iii) r(x) = (10 – i)/10 for i ≤ x ≤ i + 1 and i = 5, 6, 7, 8, 9. 

( ){ }, : ,i i x ix Nec x⎡ ⎤= ∈⎣ ⎦CNF U X  (8.15) 

( ){ }, : ,c
i i x ix Nec x⎡ ⎤= ∈⎢ ⎥⎣ ⎦

CCNF U X  (8.16) 

( ){ }, : ,i i x ix Pos x⎡ ⎤= ∈⎣ ⎦CPOF U X  (8.17) 

( ){ }, : ,c
i i x ix Pos x⎡ ⎤= ∈⎢ ⎥⎣ ⎦

CCPOF U X  (8.18) 

where 

{ }:  and .x ix x x x= ∈ ≤� � �U X  

Plots of the curves defined by the points associated with 
CNFi, CCNFi, CPOFi and CCPOFi yield the CNF, 
CCNF, CPoF, and CCPoF for the possibility space (Xi, 
ri) (Fig. 8.1). 

If the variables x1, x2, …, xnX have associated pos-
sibility spaces (X1, r1), (X2, r2), …, (XnX, rnX), then the 
vector x = [x1, x2, …, xnX] also has an associated possi-
bility space (X, rX), where X is defined the same as in 
Eq. (8.3) and 

( ) ( ) ( ) ( ){ }1 1 2 2min , , , .X nX nXr r x r x r x= …x  (8.19) 

The indicated definitions for X and rX are predicated on 
the assumption that no restrictions involving possible 
combinations of values for the xi’s exist.  If such restric-
tions exist, then the definition of rX is more complex. 

Once the possibility space (X, rX) for x is defined, 
possibility PosX(U) and necessity NecX(U) for subsets U 
of X are defined as indicated in Eqs. (8.5) and (8.6). 
Further, the relationships indicated in Eqs. (8.7) – 
(8.14) also hold. 

Propagation of the individual values of x contained 
in X through the function F indicated in Eq. (8.1) re-
sults in a set Y of possible values for y of the form 
shown in Eq. (8.4). Given that a possibility space (X, 
rX) exists for x, a resultant possibility space (Y, rY) also 
exists for the values of y.  Specifically, the possibility 
distribution function rY is defined by 

( ) ( ) ( ){ }
( ){ }1

sup :  and Y

X

r y r y F

Pos F y−

= ∈ =

=

x x xX
 (8.20) 

for y ∈ Y, where F–1(y) represents the set 

( ) ( ){ }1 :  and .F y y F− = ∈ =x x xX  

In turn, the possibility PosY(U) and necessity NecY(U) 
for subsets U of Y can be defined as indicated in Eqs. 
(8.5) and (8.6); further, the relationships indicated in 
Eqs. (8.7) – (8.14) also hold. 

Provided y is real valued, the possibility space (Y, 
rY) can be summarized by presentation of the corre-
sponding CNF, CCNF, CPoF and CCPoF as discussed 
in conjunction with Eqs. (8.15) – (8.18). Specifically, 
the CNF, CCNF, CPoF and CCPoF for y are defined by 
the sets 
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( ){ }
( ){ }1

, :

, : ,

Y y

X y

y Nec y

y Nec F y−

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤⎡ ⎤= ∈⎣ ⎦⎢ ⎥⎣ ⎦

CNF U Y

U Y
 (8.21) 

( ){ }
( ){ }1

, :

, : ,

c
Y y

c
X y

y Nec y

y Nec F y−

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= ∈⎢ ⎥⎣ ⎦⎣ ⎦

CCNF U Y

U Y
 (8.22) 

( ){ }
( ){ }1

, :

, : ,

Y y

X y

y Pos y

y Pos F y−

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤⎡ ⎤= ∈⎣ ⎦⎢ ⎥⎣ ⎦

CPOF U Y

U Y
 (8.23) 

( ){ }
( ){ }1

, :

, : ,

c
Y y

c
X y

y Pos y

y Pos F y−

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= ∈⎢ ⎥⎣ ⎦⎣ ⎦

CCPOF U Y

U Y
 (8.24) 

where 

{ }:  and .y y y y y= ∈ ≤� � �U Y
 

Plots of the curves defined by CNF, CCNF, CPOF and 
CCPOF produce a figure identical in concept to Fig. 
8.1 and provide a visual representation of the uncer-
tainty associated with y in terms of necessity and possi-
bility. 

8.3 Evidence Theory 

Evidence theory [248-255], which is also known as 
Dempster-Shafer theory in recognition of the initial work 
done by these two individuals, provides a representation 
for uncertainty that permits the specification of more 
structure than possibility theory.  Evidence theory is 
based on the specification of a triple (Xi, Xi, mi) for a 
variable xi, where (i) Xi is the set of possible values for 
xi, (ii) Xi is a countable collection of subsets of Xi, and 
(iii) mi is a function defined for subsets U of Xi such that 
mi(U) > 0 if U ∈ Xi, mi(U) = 0 if U ∉ Xi, and 

( ) 1.ii
m∈ =∑ XU U  (8.25) 

In the terminology of evidence theory, (i) Xi is the sam-
ple space or universal set, (ii) Xi is the set of focal ele-
ments for Xi and mi, and (iii) mi(U) is the basic prob-
ability assignment associated with a subset U of Xi.  In 
concept, the basic probability assignment mi(U) pro-
vides a measure of the amount of information (or credi-
bility or probability) that can be associated with a sub-

set U of Xi but which cannot be further decomposed 
over subsets of U. 

Evidence theory provides two measures of likeli-
hood for subsets of Xi:  plausibility and belief.  Specifi-
cally, the plausibility and belief for a subset U of Xi are 
defined by 

( ) ( )i iPl m
∩ ≠∅

= ∑
V U

U V  (8.26) 

and 

( ) ( ),i iBel m
⊂

= ∑
V U

U V  (8.27) 

respectively.  As a result of the intersection requirement 
(i.e., V ∩ U ≠ ∅ in Eq. (8.26)), Pli(U) provides a meas-
ure of the amount of information that could possibly be 
associated with U.  Similarly as a result of the subset 
requirement (i.e., V ⊂ U in Eq. (8.27)), Beli(U) provides 
a measure of the amount of information that is known 
to be associated with U. In the context of the quote from 
Ref. [2] given at the beginning of Sect. 8, Pli(U) is a 
measure of the  “absence of evidence” that refutes the 
membership of xi in U, and Beli(U) is a measure of the 
“positive evidence” that supports the membership of xi 
in U. 

Relationships satisfied by plausibility and belief for 
the evidence space (Xi, Xi, mi) include 

( ) ( ) 1,c
i iBel Pl+ =U U  (8.28) 

( ) ( ) ,i iBel Pl≤U U  (8.29) 

( ) ( ) 1c
i iPl Pl+ ≥U U  (8.30) 

and 

( ) ( ) 1c
i iBel Bel+ ≤U U  (8.31) 

for subsets U of Xi. 

Convenient graphical summaries of evidence spaces 
are provided by cumulative belief functions (CBFs), 
complementary cumulative belief functions (CCBFs), 
cumulative plausibility functions (CPFs), and comple-
mentary cumulative plausibility functions (CCPFs).  
Specifically, the CBF, CCBF, CPF and CCPF for the 
evidence space (Xi, Xi, mi) are defined by the sets 
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Fig. 8.2. Plots of CBF, CCBF, CPF and CCPF for evidence space (X, X, m) with (i) X = { :1 10}x x≤ ≤ , (ii) X = 

1 2 10{ ,  ,  ,  }…U U U  with Ui = [i, 2i] for i = 1, 2, 3, 4, 5 and Ui = [i − 1, i] for i = 6, 7, 8, 9, 10, and (iii) m(U) 
= 1/10 if U ∈ X and m(U) = 0 otherwise. 

( ){ }, : ,i i x ix Bel x⎡ ⎤= ∈⎣ ⎦CBF U X  (8.32) 

( ){ }, : ,c
i i x ix Bel x⎡ ⎤= ∈⎢ ⎥⎣ ⎦

CCBF U X  (8.33) 

( ){ }, : ,i i x ix Pl x⎡ ⎤= ∈⎣ ⎦CPF U X  (8.34) 

and 

( ){ }, : ,c
i i x ix Pl x⎡ ⎤= ∈⎢ ⎥⎣ ⎦

CCPF U X  (8.35) 

where Ux is defined the same as in conjunction with 
Eqs. (8.15) – (8.18).  Plots of the curves defined by the 
points associated with CBFi, CCBFi, CPFi and CCPFi 
yield the CBF, CCBF, CPF and CCPF for the evidence 
space (Xi, Xi, mi) (Fig. 8.2). 

If the variables x1, x2, …, xnX have associated evi-
dence spaces (X1, X1, m1), (X2, X2, m2), …, (XnX, XnX, 
mnX), then the vector x = [x1, x2, …, xnX] also has an 
associated evidence space (X, X, mX), where (i) X is de-
fined the same as in Eq. (8.3), (ii) U ∈ X if, and only if, 

1 2 nX= × × ×…U U U U  (8.36) 

with Ui ∈ Xi for i = 1, 2, …, nX, and (iii) 

( ) ( )
1

nX

X i i
i

m m
=

= ∏U U  (8.37) 

if U = U1 × U2 × … × U nX ∈ X and mX(U) = 0 other-
wise.  The preceding definition for (X, X, mX) is predi-
cated on the assumption that no restrictions involving 
possible combinations of values for the xi exist.  If such 
restrictions exist, then the definition of (X, X, mX) is 
more complex. 

Once the evidence space (X, X, mX) for x is de-
fined, the plausibility PlX(U) and belief BelX(U) for sub-
sets U of X are defined as indicated in Eqs. (8.26) and 
(8.27). Further, the relationships indicated in Eqs. 
(8.28) – (8.31) also hold. 

Propagation of the individual values of x contained 
in X through the function F indicated in Eq. (8.1) re-
sults in a set Y of possible values for y of the form 
shown in Eq. (8.4). Given that an evidence space (X, X, 
mX) exists for x, a resultant evidence space (Y, Y, mY) 
also exists for the value of y.  Specifically, (i) 

( ) ( ){ }1 2, ,F F= …V VY  (8.38) 

where V1, V 2, … correspond to the elements of X, (ii) 

( ) ( )
( )

Y k
k

m m
∈

= ∑
UI

U V  (8.39) 

for U ∈ Y with k ∈ I(U) if, and only if, U = F(Vk), and 
(iii) mY(U) = 0 if U ∉ Y.  The summation over k in the 
definition of mY(U) in Eq. (8.39) is necessary to appro-
priately incorporate the possibility that U = F(Vk) for 
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more than one element Vk of X.  In turn, the plausibility 
PlY(U) and belief BelY(U) for subsets U of Y can be de-
fined as indicated in Eqs. (8.26) – (8.27); further, the 
relationships indicated in Eqs. (8.28) – (8.31) also hold. 

Provided y is real valued, the evidence space (Y, Y, 
mY) can be summarized by presentation of the corre-
sponding CBF, CCBF, CPF and CCPF as discussed in 
conjunction with Eqs. (8.32) – (8.35).  Specifically, the 
CBF, CCBF, CPF and CCPF for y are defined by the sets 

( ){ }
( ){ }1

, :

, : ,

Y y

X y

y Bel y

y Bel F y−

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤⎡ ⎤= ∈⎣ ⎦⎢ ⎥⎣ ⎦

CBF U Y

U Y
 (8.40) 

( ){ }
( )1

, :

, : ,

c
Y y

c
X y

y Bel y

y Bel F y−

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤⎡ ⎤= ∈⎨ ⎬⎢ ⎥⎣ ⎦⎣ ⎦⎩ ⎭

CCBF U Y

U Y
 (8.41) 

( ){ }
( ){ }1

, :

, : ,

Y y

X y

y Pl y

y Pl F y−

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤⎡ ⎤= ∈⎣ ⎦⎢ ⎥⎣ ⎦

CPF U Y

UU
 (8.42) 

and 

( ){ }
( )1

, :

, : ,

c
Y y

c
X y

y Pl y

y Pl F y−

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤⎡ ⎤= ∈⎨ ⎬⎢ ⎥⎣ ⎦⎣ ⎦⎩ ⎭

CCPF U Y

U Y
 (8.43) 

where Uy is defined the same as in conjunction with 
Eqs. (8.21) – (8.24).  Plots of the curves defined by the 
points associated with CBF, CCBF, CPF and CCPF 
produce a figure identical in concept to Fig. 8.2 and 
provide a visual representation of the uncertainty asso-
ciated with y in terms of belief and plausibility. 

Possibility theory and evidence theory differ with 
respect to the basic unit on which “likelihood” is char-
acterized. In possibility theory, “likelihood” at its most 
basic level is defined for individual elements x of a 
sample space X by a possibility distribution function r 
(i.e., r(x) is the amount of “likelihood” or “credence” 
that can be assigned to the element x of X). In contrast, 
“likelihood” at its most basic level is defined in evi-
dence theory for subsets U of a sample space X by a 
function mX  (i.e., mX(U) is the basic probability as-
signment for the subset U of X and corresponds to the 
amount of “likelihood” or “credence” that can be as-
signed to U but cannot be further partitioned over sub-

sets of U). Thus, possibility theory is predicated on the 
premise that it is both reasonable and possible to assign 
a measure of “likelihood” to each element of the sample 
space under consideration. Differently, evidence theory 
is predicated on the premise that, at best, it is possible 
to assign a nonzero measure of “likelihood” to a count-
able (actually, finite in most situations) collection of 
subsets of the sample space under consideration. As a 
consequence, possibility theory characterizes uncer-
tainty at the level of individual elements of a sample 
space, and evidence theory characterizes uncertainty at 
the level of individual subsets of a sample space.  

Possibility theory and evidence theory can also be 
viewed in the context of fuzzy set theory and probabil-
ity theory, respectively. For possibility theory, the value 
r(x) of the possibility distribution function can be 
thought of as characterizing the extent to which the 
quantity x is believed to belong to the set X. When 
viewed in this manner, possibility theory is simply part 
of fuzzy set theory [247; 256]. For evidence theory, the 
basic probility assignment mX(U) can be viewed as the 
amount  of probability that can be assigned to the set 
U but cannot be further partitioned over subsets of 
U. When viewed in this manner, evidence theory is 
simply part of probability theory. Specifically, one in-
terpretation of an evidence space (X, X, mX) is that it is 
an incompletely defined probability space [253-255]. 

8.4 Probability Theory 

Probability theory [83; 87; 91; 93; 94; 257-263] 
provides a representation for uncertainty that involves 
the specification of more structure than evidence the-
ory.  Similarly to evidence theory, probability theory is 
based on the specification of a triple (Xi, Xi, pi) for a 
variable xi, where (i) Xi is the set of possible values for 
xi, (ii) Xi is a suitably restricted collection of subsets of 
Xi (i.e., if U ∈ Xi, then Uc ∈ Xi, and if U1, U2, … is a 
countable sequence of elements of Xi, then ∪kUk ∈ Xi 
and ∩kUk ∈ Xi),and (iii) and pi defines probability for 
elements of Xi (i.e., 0 ≤ pi(U) ≤ 1 if U ∈ Xi, pi(Xi) = 1, 
and pi (∪kUk) = ∑kpi(Uk) if U1, U2, … is a countable 
sequence of nonintersecting elements of Xi).  However, 
in contrast to an evidence space (Xi, Xi, mi), a probabil-
ity space (Xi, Xi, pi) involves the imposition of more 
structure on Xi and pi than is the case for Xi and mi for 
an evidence space.  In the terminology of probability 
theory, (i) Xi is the sample space, (ii) the elements of Xi 
are events and collectively constitute what is known as 
a σ-algebra, and (iii) pi is a probability measure (Sects. 
IV.3 and IV.4, Ref. [93]).  For notational and computa-
tional convenience, a probability space (Xi, Xi, pi) is 
often summarized with a density function di, where 
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Fig. 8.3. Plots of (a) CBF, CCBF, CPF and CCPF for evidence space (X, X, m) with (i) X = { :1 10}x x≤ ≤ , (ii) X 

= 1 2 10{ ,  ,  ,  }…U U U  with Ui = [i, 2i] for i = 1, 2, 3, 4, 5 and Ui = [i − 1, i] for i = 6, 7, 8, 9, 10, and (iii) 
m(U) = 1/10 if U ∈ X and m(U) = 0 otherwise (see Fig. 8.2), and (b) CDF and CCDF for probability space 
(X, X, p) with density function d defined as indicated in Eq. (8.49). 

( ) ( )di i i ip d x x= ∫UU  (8.44) 

for U ∈ Xi. 

Unlike possibility theory and evidence theory, 
which provide two measures of likelihood (i.e., possi-
bility and necessity in possibility theory and plausibility 
and belief in evidence theory), probability theory pro-
vides only one measure of likelihood:  probability.  The 
probabilities of a set and its complement are related by 

( ) ( ) 1c
i ip p+ =U U  (8.45) 

for U ∈ Xi, which is a more restrictive requirement than 
shown in Eqs. (8.9) and (8.10) for possibility and ne-
cessity and in Eqs. (8.30) and (8.31) for plausibility and 
belief. 

Convenient graphical summaries of probability 
spaces are provided by cumulative distribution functions 
(CDFs) and complementary cumulative distribution 
functions (CCDFs).  Specifically, the CDF and CCDF 
for the probability space (Xi, Xi, pi) with the correspond-
ing density function di are defined by the sets 

( ){ }
( )

, :

, d :

i i x i

i i
x

x p x

x d x x x

⎡ ⎤= ∈⎣ ⎦

⎧ ⎫⎡ ⎤= ∈⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭∫U

CDF U X

X
 (8.46) 

and 

( ){ }
( )

, :

, d : ,

c
i i x i

c i i
x

x p x

x d x x x

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤⎪ ⎪= ∈⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∫U

CCDF U X

X
 (8.47) 

where Ux is defined the same as in conjunction with Eqs. 
(8.15) – (8.18). Plots of the curves defined by the points 
associated with CDFi and CCDFi yield the CDF and 
CCDF for the probability space (Xi, Xi, pi) (Fig. 8.3). 

One interpretation of an evidence space (X, X, m) 
is that it is a characterization of a partially defined 
probability space.  In general, there are many possible 
probability spaces (X, X, p) that are consistent with a 
given evidence space (X, X, m) in the sense that, if U ⊂ 
X (i.e., technically, an element of the set X associated 
with (X, X, p)), then 

( ) ( ) ( ).Bel p Pl≤ ≤U U U  (8.48) 

As a result of the preceding inequality, if a probability 
space (X, X, p) is consistent with an evidence space (X, 
X, m), then the CDF associated with (X, X, p) falls be-
tween the CBF and CPF associated with (X, X, m) and 
similarly the CCDF falls between the CCBF and CCPF. 

For example, if X corresponds to a bounded inter-
val I = [a, b] and each focal element Uk associated with 
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the evidence space (X, X, m) is a subinterval Ik = [ak, 
bk] of I, then a probability space (X, X, p) consistent 
with the evidence space (X, X, m) is defined by the 
density function 

( ) ( ) ( ) ( ) ,k k k kkd x x m b aδ= −∑ U  (8.49) 

where 

( ) 1 if 
0 otherwise.

k
k

x
xδ

∈⎧
= ⎨

⎩

U
 

As a result, the CDF for (X, X, p) falls between the 
CBF and CPF for (X, X, m), and similarly, the CCDF 
for (X, X, p) falls between the CCBF and CCPF for (X, 
X, m) (Fig. 8.3). 

If the variables x1, x2, …, xnX have associated 
probability spaces (X1, X1, p1), (X2, X2, p2), …, (XnX, 
XnX, pnX), then the vector x = [x1, x2, …, xnX] also has 
an associated probability space (X, X, pX), where (i) X 
is defined the same as in Eq. (8.3), (ii) X is developed 
from the sets contained in  

{ }1 2 1 2: nX nX= = × × × ∈ × × ×" …U U U U UC X X X  
 (8.50) 

(see Sect. IV.6, Ref. [93], and Sect. 2.6, Ref. [94]), and 
(iii) pX is developed from the properties of p1, p2, …, 
pnX.  Specifically, if the xi are independent (i.e., if the 
occurrence of one xi has no implications for the occur-
rence of the remaining xj, j ≠ i), then 

( )
1

nX

X i i
i

p p
=

= ⎡ ⎤⎣ ⎦∏U U  (8.51) 

for U = U 1 × U 2 × … × U nX ∈ C and, more generally, 

( ) ( )dX Xp d X= ∫ x
U

U  (8.52) 

for U ∈ X, where 

( ) ( )
nX

X i i
i i

d d x
=

= ∏x  

is the density function associated with (X, X, pX) and di 
is the density function associated with (Xi, Xi, pi) for i 
= 1, 2, …, nX.  The definition of pX and dX are more 
complex when the xi are not independent and will not 
be considered here. 

Propagation of the individual values of x contained 
in X through the function F indicated in Eq. (8.1) re-
sults in a set Y of possible values for y of the form 
shown in Eq. (8.4).  Given that a probability space (X, 
X, pX) exists for x, a resultant probability space (Y, Y, 
pY) also exists for y.  In concept, the probability pY(U) 
for a subset U of Y is given by 

( ) ( )1 .Y Xp p F −⎡ ⎤= ⎣ ⎦U U  (8.53) 

A formal development of Y and pY would focus on the 
properties that F must possess to actually produce the 
probability space (Y, Y, pY) (see Sect. IV.4, Ref. [93], 
and Sects. 4.6 and 4.7, Ref. [94]); such details are out-
side the scope of this presentation. 

Provided y is real valued, the probability space (Y, 
Y, pY) can be summarized by the presentation of the 
corresponding CDF and CCDF.  Specifically, the CDF 
and CCDF for y are defined by the sets 

( ){ }
( ){ }1

, :

, :

Y y

X y

y p y

y p F y−

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤⎡ ⎤= ∈⎣ ⎦⎢ ⎥⎣ ⎦

CDF U Y

U Y
 (8.54) 

and 

( ){ }
( )1

, :

, : ,

c
Y y

c
X y

y p y

y p F y−

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤⎡ ⎤= ∈⎨ ⎬⎢ ⎥⎣ ⎦⎣ ⎦⎩ ⎭

CCDF U Y

U Y
 (8.55) 

where Uy is defined the same as in conjunction with 
Eqs. (8.21) – (8.24).  Plots of the curves defined by the 
points associated with CDF and CCDF produce a CDF 
and CCDF identical in concept to the CDF and CCDF 
in Fig. 8.3 and provide a visual representation of a 
probabilistic characterization of the uncertainty associ-
ated with y. 

8.5 Sampling-Based Uncertainty 
Propagation 

An analysis outcome y = F(x) of the form indicated 
in Eq. (8.1) will have an uncertainty structure that de-
rives from the uncertainty structure associated with x.  
In particular, the uncertainty associated with y will have 
an interval representation, a possibility theory represen-
tation, an evidence theory representation or a probabil-
istic representation in consistency with an interval rep-
resentation (Sect. 8.1), a possibility theory representa-
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tion (Sect. 8.2), an evidence theory representation (Sect. 
8.3) or a probabilistic representation (Sect. 8.4) for the 
uncertainty associated with x.  For reasons of numerical 
difficulty, an exact determination of the uncertainty 
structure associated with y that results from the uncer-
tianty structure associated with x is usually not possible 
in a real analysis.  However, the indicated uncertainty 
structures for y can be approximated with sampling-
based procedures.   

As indicated by the name, sampling-based (Monte 
Carlo) procedures involve the use of a sample 

1 2 ,, , , , 1, 2, , ,i i i i nXx x x i nS⎡ ⎤= =⎣ ⎦… …x  (8.56) 

from the set X of possible values of x in the estimation 
of the uncertainty structure associated with y = F(x) 
that derives from the uncertainty structure associated 
with x [29; 45; 55; 264-268].  For uncertainty propaga-
tions involving interval analysis, possibility theory and 
evidence theory, it is important that the sample provide 
an “adequate” coverage of X but there are no require-
ments for a specific structure for this sample.  Of 
course, what constitutes adequate coverage of X de-
pends on properties of X and the function F(x).  In the 
case of an evidence theory representation of the uncer-
tainty associated with x, adequate coverage of x corre-
sponds to a sample that provides a reasonable estimate 
of the minimum and maximum value of F(x) for each 
focal element in the evidence space defined for X.  
However, for a probabilistic representation of the un-
certainty associated with x, the sample in Eq. (8.56) 
must be generated in consistency with the probability 
distribution defined for x. 

Once an appropriate sample of the form indicated 
in Eq. (8.56) is generated, an interval representation for 
the uncertainty associated with y is given by 

[ ] ( ) ( )
{ }
{ }

, inf , sup

min : 1, 2, , ,

max : 1, 2, , ,

mn mx

i

i

y y

y i nS

y i nS

= ⎡ ⎤⎣ ⎦
⎡≅ =⎣

⎤= ⎦

…

…

Y Y

 (8.57) 

where Y is the set of possible values for y defined in 
Eq. (8.4) and yi = y(xi) for i = 1, 2, …, nS.  The preced-
ing procedure will not be the most computationally 
efficient method for estimating [ymn, ymx] in many ana-
lyses.  However, it is presented here for consistency 
with the sampling-based procedures described below 
for use in conjunction with possibility theory, evidence 
theory and probability theory representations of the 
epistemic uncertainty in x and hence in y. 

If the epistemic uncertainty associated with x is 
characterized by a possibility space (X, rX), then the 
corresponding possibility space (Y, rY) for y can be 
summarized by its associated CNF, CCNF, CPoF and 
CCPoF (see Eqs. (8.21) – (8.24)).  Specifically, the 
CNF, CCNF, CPoF and CCPoF associated with (Y, rY) 
can be approximated with use of the sample in Eq. 
(8.56) through the relationships 
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Y y
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  (8.58) 
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 (8.59) 
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 (8.60) 

and 
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{ }( ){ }
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⎡ ⎤≅ ≤ ≤ > ∈⎣ ⎦x

CCPOF U Y

Y

  (8.61) 

as indicated in conjunction with Table 2 of Ref. [188], 
where Uy denotes a subset of Y of the form defined in 
conjunction with Eqs. (8.21) – (8.24). As the sample 
values for x become increasingly dense in X, the ap-
proximations in Eqs. (8.58) –  (8.61) will approach the 
CNF, CCNF, CPoF and CCPoF for y. 

If the epistemic uncertainty associated with x is 
characterized by an evidence space (X, X, mX), then the 
corresponding evidence space (Y, Y, mY) for y can be 
summarized by its associated CBF, CCBF, CPF and 
CCPF (see Eqs. (8.32) – (8.35)).  Specifically, the CBF, 
CCBF, CPF and CCPF associated with (Y, Y, mY) can 
be approximated with use of the sample in Eq. (8.56)
through the relationships 
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 (8.63) 
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and 
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as indicated in conjunction with Table 1 of Ref. [188], 
where Uy is defined the same as in Eqs. (8.58) – (8.61). 
As the sample values for x become increasingly dense 
in X and, in particular, approach the values at which F 
has its minimum and maximum values for the individ-
ual focal elements in X, the approximations in Eq. 
(8.62) – (8.65) will approach the CBF, CCBF, CPF and 
CCPF for y. 

If the epistemic uncertainty associated with x is 
characterized by a probability space (X, X, pX), then the 
corresponding probability space (Y, Y, pY) for y can be 

summarized by its associated CDF and CCDF (see Eqs. 
(8.54) – (8.55)).  If the sample in Eq. (8.56) is generated 
in consistency with the distribution for x defined by the 
probability space (X, X, pX), then the CCDF and CDF 
associated with (Y, Y, pY) can be approximated through 
the standard sampling-based relationships 
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and 
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where (i) Uy is defined the same as in Eqs. (8.58) – 
(8.61), (ii) C designates set cardinality (i.e., the number 
of elements in a set), and (iii) the indicator functions yδ  
and yδ are defined by 

( ) ( )1 if 1 if 
and   

0 otherwise 0 otherwise,y y
y y y y

y yδ δ
≤ <⎧ ⎧

= =⎨ ⎨
⎩ ⎩

� �
� �  

respectively. As the sample size increases, the ap-
proximations in Eqs. (8.66) and (8.67) will approach 
the CDF and CCDF for y. 
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9 QMU with Epistemic Uncertainty:  
Characterization with Alternative 
Uncertainty Representations  

Examples illustrating the use of the alternative un-
certainty representations introduced in Sect. 8 are now 
presented for QMU problems involving only epistemic 
uncertainty.  Specifically, the example problem in Sect. 
3.4 is expanded to include the alternative uncertainty 
representations in Sect. 8 (Sect. 9.1). Then, the follow-
ing topics are considered: epistemic uncertainty without 
a specified bound (Sect. 9.2), epistemic uncertainty 
with a specified bound (Sect. 9.3), epistemic uncer-
tainty with a specified bounding interval (Sect. 9.4), 
epistemic uncertainty with a specified bounding interval 
over time (Sect. 9.5), and epistemic uncertainty with an 
uncertain bound (Sect. 9.6). 

9.1 Electrical Circuit Used for Illustration 

As an example, this section uses the closed electri-
cal circuit defined in Eqs. (3.29) – (3.31) and previously 
used in the illustration of QMU analyses with probabil-
ity-based representations of epistemic uncertainty in 
Sect. 4.  As defined in Eq. (3.32) and previously used in 
Sect. 4, the vector eM of epistemically uncertain analy-
sis inputs is 

1 2 3 4 5

0

, , , ,

, , , , ,

M M M M M Me e e e e

L R C E λ

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

e
 (9.1) 

with eM1, eM2, …, eM5 used instead of L, R, …, λ to 
represent the elements of eM when notationally conven-
ient.  Definitions for L, R, C, E0 and λ are given in con-
junction with Eq. (3.29).   

To provide the examples presented in this section, 
uncertainty structures are specified for L, R, C, E0 and λ 
based on interval analysis, possibility theory, evidence 
theory and probability theory.  Then, the resultant un-
certainty structures for Q and related quantities are pre-
sented. 

For interval analysis, the appropriate values for L, R, 
C, E0 and λ are assumed to be contained in the intervals 

{ }

{ }

1 :

: 0.8 1.2 henrys

mn mxL L L L

L L

= ≤ ≤

= ≤ ≤

EM
 (9.2) 

{ }

{ }

2 :

: 50 100 ohms

mn mxR R R R

R R

= ≤ ≤

= ≤ ≤

EM
 (9.3) 

{ }

{ }
3

4 4
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: 0.9 10 1.1 10  farads

mn mxC C C C

C C− −

= ≤ ≤

= × ≤ ≤ ×

EM
 (9.4) 

{ }
{ }

4 0 0

0 0

:

: 900 1100 volts
mn mxE E E E

E E

= ≤ ≤

= ≤ ≤

EM
 (9.5) 

and 

{ }

{ }
5

1

:

: 0.4 0.8 s ,

mn mxλ λ λ λ

λ λ −

= ≤ ≤

= ≤ ≤

EM
 (9.6) 

respectively.  No additional information about the loca-
tion of the appropriate values for L, R, C, E and λ is 
assumed to be known.  These are the same intervals 
defined in Eqs. (3.33) – (3.37). 

For possibility theory, four subintervals are consid-
ered for each of the intervals EMi, i = 1, 2, …, 5, de-
fined in Eqs. (9.2) – (9.6): 

( )1 , 4 ,i a b b a= − −⎡ ⎤⎣ ⎦E  (9.7) 

( )2 4, ,i a b a b= + −⎡ ⎤⎣ ⎦E  (9.8) 

( ) ( )3 8, 3 8 ,i a b a b b a= + − − −⎡ ⎤⎣ ⎦E  (9.9) 

and 

( ) ( )4 3 8, 8 ,i a b a b b a= + − − −⎡ ⎤⎣ ⎦E  (9.10) 

where [a, b] corresponds to [Lmn, Lmx], [Rmn, Rmx], 
[Cmn, Cmx], [Emn, Emx] and [λmn, λmx] for i equal 1, 2, 
3, 4 and 5, respectively (Fig. 3.4).  The preceding inter-
vals are the same intervals defined in Eqs. (3.38) – 
(3.41). In turn, the corresponding possibility distribu-
tion function rEM,i(eMi) for the set Ei is given by 

( ) ( )
4

,
1

4,EM i Mi ij Mi
j

r e eδ
=

= ∑  (9.11) 

where 
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( )
1 if 

0 otherwise.
Mi ij

ij Mi
e

eδ
∈⎧⎪= ⎨

⎪⎩

E
 

For example, if each of the intervals Ei1, Ei2, Ei3 and Ei4 
of possible values for eMi was obtained from a different 
source, then rEM,i(eMi) is the fraction of sources that 
provided an interval that contains eMi.  The result is a 
possibility distribution (EMi, rEM,i) for each element 
eMi of eM. 

The same sets EMi, i = 1, 2, …, 5, and subsets Eij, 
j = 1, 2, 3, 4, considered for possibility theory can also 
be used to obtain an evidence theory representation 
(EMi, EMi, mEM,i) for each eMi.  Specifically, the set 
EMi of focal elements is given by 

{ }1 2 3 4, , ,i i i i i= E E E EEM  (9.12) 

and the BPA mEM,i is given by 

( ) 1 2 3 4
,

1 4 if , , or
0 otherwise.

i i i i
EM im

=⎧
= ⎨

⎩

U E E E E
U  (9.13) 

The preceding corresponds to defining the basic prob-
ability assignment for a subset U of EMi to be the frac-
tion of sources that indicated U contained the appropri-
ate, but unknown, value for eMi. 

By use of the Laplacian concept of insufficient rea-
son (pp. 52-55, Ref. [258]), the sets EMi, i = 1, 2, …, 
5, and subsets Eij, j = 1, 2, 3, 4 can also be used to ob-
tain a probability theory representation (EMi, EMi, 
pEM,i) for each eMi.  In this example, as is usually the 
case, it is easier and more useful to obtain the corre-
sponding density function dEM,i(eMi) for eMi rather than 
to develop the σ-algebra EMi of subsets of EMi and 
the associated probability measure pEM,i.  Specifically, 

( ) ( ) ( ) ( )
4

,
1

4 max min ,EM i Mi ij Mi ij ij
j

d e eδ
=

⎡ ⎤= −⎣ ⎦∑ E E

 
 (9.14) 

where δij(eMi) is defined in conjunction with Eq. (9.11).  
The preceding specification for dEM,i(eMi) corresponds 
to defining a uniform distribution on each interval Eij 
and then weighting each distribution by the fraction of 
sources that indicated the corresponding interval con-
tained the appropriate, but unknown, value to use for 
eMi.  The preceding definition for dEM,i(eMi) is the same 
as given in Eq. (3.42), with the result that the probabil-
istic uncertainty characterization used for eM in the 

examples of this section is the same as used for eM in 
the examples of Sect. 4. 

The set EM of possible values for eM is given by 

1 2 3 4 5 ,= × × × ×EM EM EM EM EM EM  (9.15) 

where EM1, EM2, ..., EM5 are defined in Eqs. (9.2) –
(9.6). From an interval analysis perspective, all that is 
known about eM is that its appropriate value is contained 
somewhere in EM.  In turn, the uncertainty structures 
defined by the possibility spaces (EMi, rEM,i), i = 1, 2, 
…, 5, the evidence spaces (EMi, EMi, mEM,i), i = 1, 2, 
…, 5, and the probability spaces (EMi, EMi, pEM,i), i = 
1, 2, …, 5, imply increasing levels of resolution with 
respect to where the appropriate value for eM is located 
in EM.  As discussed in Sect. 8, the indicated possibility 
spaces lead to a possibility space (EM, rEM) for eM; the 
indicated evidence spaces lead to an evidence space 
(EM, EM, mEM) for eM; and the indicated probability 
spaces lead to a probability space (EM, EM, pEM) for 
eM.  The set of possible values for the solution Q(t) of 
the differential equation in Eq. (3.29) is the same for all 
four uncertainty structures defined on EM (Fig. 3.5).  
However, the properties of the uncertainty structure ex-
isting for these solutions are different for each of the un-
certainty structures assumed for EM. 

The results presented in this section are constructed 
as described in Sect. 8.5.  Specifically, a random sample 

[ ]
1, 2, 5,

5
0

, , ,

, , , , , 1, 2, , 10 ,

Mi M i M i M i

i i i i i

e e e

L R C E i nSEλ

⎡ ⎤= ⎣ ⎦

= = =

…

…

e
 (9.16) 

from EM generated in consistency with the distribu-
tions that define the probability space (EM, EM, pEM) 
is used.  Evaluation of Q(t |a, eMi) for the elements of 
the preceding sample results in the mapping 

( ) 5, , , 1, 2, , 10 ,Mi MiQ t i nSE⎡ ⎤ = =⎣ ⎦ …e a e  (9.17) 

that is used in the generation of the example results 
presented in this section. 

The use of a large sample (i.e., nSE = 105) is possi-
ble in this example analysis because the function Q(t |a, 
eM) is inexpensive to evaluate.  When computationally 
demanding models are under consideration, the analysis 
must be planned very carefully to hold computational 
costs to an acceptable level.  Often, this will involve the 
use of an initial sampling to construct a surrogate mod-
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el, which is then used in a subsequent and larger sam-
pling to produce uncertainty results. 

Techniques for sensitivity analysis in conjunction 
with alternative representations for epistemic uncer-
tainty are not as well developed as is the case for prob-
abilistic representations for epistemic uncertainty. How-
ever, possible techniques for sensitivity analysis in con-
junction with evidence theory representations for epis-
temic uncertainty are presented in Refs. [269; 270]. 

9.2 Epistemic Uncertainty without a 
Specified Bound 

As an example, the uncertainty in the possible val-
ues for Q(0.1|a, eM) is considered.  These are the values 
associated with the vertical line in Fig. 3.5.  More for-
mally, the set 

( ) [ ]{ }00.1 , : , , , ,M MQ L R C E λ= = ∈EMQ a e e  

  (9.18) 

is under consideration, where a is a fixed but unspeci-
fied realization of aleatory uncertainty. In turn, Q has 
an uncertainty structure that derives from the uncer-
tainty structure imposed on EM.  Thus, the uncertainty 
associated with Q(0.1|a, eM) is characterized by an in-
terval (i.e., [inf(Q), sup(Q)], a possibility space (Q, rQ), 
an evidence space (Q, Q, mQ) or a probability space 
(Q, Q, pQ) depending on which characterization is as-
sumed for X (Fig. 9.1). 

The CPoF, CNF, CCPoF and CCNF for Q(0.1|a, eM) 
in Fig. 9.1 have step sizes of 0.25 because the underlying 
possibility distribution function for Q(0.1|a, eM) assumes 
only the values of k/4 for k = 1,2,3,4 as a result of con-
structing the possibility space associated with the set 
EM by assigning these same possibility distribution val-
ues to the potential values for the elements eMi of eM  (see 
Eqs. (9.11) and (8.19)). In concept, the CPF, CBF, CCPF 
and CCBF for Q(0.1|a, eM) in Fig. 9.1 have step sizes of 
approximately 1/45  = 1/1024, which results from con-
structing the evidence space associated with EM from 5 
variables each of which has 4 focal elements with basic 
probability assignments of 1/4 (see Eqs. (9.13) and (8.37)). 
There is some variation from this small step size in Fig. 
9.1 because of approximation and plotting effects. In con-
cept, the CDF and CCDF for Q(0.1|a, eM) in Fig. 9.1 
should be continuous as a result of defining the probability 
space associated with E from 5 variables each of which has 
a piecewise constant density function (see Eqs. (9.14) and 
(8.52)). Because of the use of a sample of size 105 from 
the distributions that define the probability space associ-

ated with EM (see Eq. (9.16)), the CDF and CCDF for 
Q(0.1|a, eM) are approximated with a step size of 10−5, 
which is below the resolution at which Fig. 9.1 is plotted. 

The potential value of 0.09 for Q(0.1|a, eM) is used 
as an example (see vertical lines in Figs. 9.1a and 9.1b).  
In the context of the interval analysis results, all that is 
known about 0.09 is that it is a potential value for 
Q(0.1|a, eM) (i.e., 0.09 is contained in the interval 
[inf(Q), sup(Q)] = [0.077, 0.121], which corresponds to 
the set Q), with nothing else known about 0.09 or levels 
of credence that can be given to other potential values for 
Q(0.1|a, eM) on the basis of their location relative to 
0.09. For example, no information is provided on wheth-
er more credence should be given to the possibility that 
the inequality Q(0.1|a, eM) ≤ 0.09 is true or to the possi-
bility that the inequality Q(0.1|a, eM) > 0.09 is true. 

The additional information about the potential val-
ue of 0.09 for Q(0.1|a, eM) available in the context of 
possibility theory, evidence theory and probability the-
ory is now considered.  Initially, measures of the cre-
dence that exist for potential values of Q(0.1|a, eM) that 
are less than or equal to 0.09 are considered.  Specifi-
cally, measures of credence that exist for the set 

{ }0.09 :  and 0.09Q Q Q= ∈ ≤� � �Q Q  (9.19) 

are under consideration (see analogous definition of Uy 
in conjunction with Eqs. (8.21) – (8.24)).  These meas-
ures are given by 

( ) ( ) [ ]0.09 0.09, 0.0, 0.75 ,Q QNec Pos⎡ ⎤ =⎣ ⎦Q Q  (9.20) 

( ) ( ) [ ]0.09 0.09, 0.0, 0.959Q QBel Pl⎡ ⎤ =⎣ ⎦Q Q  (9.21) 

and 

( )0.09 0.133Qp =Q  (9.22) 

for possibility theory, evidence theory and probability 
theory, respectively, and correspond to the locations where 
the vertical line in Fig. 9.1a crosses for the CNF, CPoF, 
CBF, CPF and CDF for NecQ(Q0.09), PosQ(Q0.09), 
BelQ(Q0.09), PlQ(Q0.09) and pQ(Q0.09), respectively. 

As shown, possibility theory provides two meas-
ures, NecQ(Q0.09) and PosQ(Q0.09), of the amount of 
credence associated with the set Q0.09 with 

( ) ( )0.09 0.090.0 0.75.Q QNec Pos= < =Q Q  (9.23) 
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Fig. 9.1. Uncertainty associated with Q(0.1|a, eM) characterized by (i) an interval (i.e., [inf(Q), sup(Q)]), (ii) a pos-

sibility space (Q, rQ) summarized with a CCPoF, CCNF, CPoF and CNF, (iii) an evidence space (Q, Q, 
mQ) summarized with a CCPF, CCBF, CPF and CBF, and (iv) a probability space (Q, Q, pA) summarized 
with a CCDF and CDF:  (a) Cumulative results, and (b) Complementary cumulative results. 

Specifically, and in the context of the possibility theory 
formulation of this example, NecQ(Q0.09) provides a 
measure of the amount of uncontradicted information 
that supports the proposition that the appropriate value 
for Q(0.1|a, eM) is contained in Q0.09, and PosQ(Q0.09) 
provides a measure of the amount of information that 
does not refute the proposition that the appropriate val-
ue for Q(0.1|a, eM) is contained in Q0.09.  Similarly, 
evidence theory provides two measures, BelQ(Q0.09) 
and PlQ(Q0.09), of the amount of credence associated 
with the set Q0.09 with 

( ) ( )0.09 0.090.0 0.959.Q QBel Pl= < =Q Q  (9.24) 

Specifically, and in the context of the evidence theory 
formulation of this example, BelQ(Q0.09) provides a 
measure of the amount of uncontradicted information 
that supports the proposition that the appropriate value 
for Q(0.1) is contained in Q0.09, and PlQ(Q0.09) pro-
vides a measure of the amount of information that does 
not refute the proposition that the appropriate value for 
Q(0.1|a, eM) is contained in Q0.09.  In contrast, prob-
ability theory provides only one measure, pQ(Q0.09) = 
0.126, of the amount of credence associated with the set 
Q0.09. 

Measures of the credence that exist for potential val-
ues for Q(0.1|a, eM) that are greater than 0.09 are now 
considered.  Specifically, measures of credence for the set 

{ }0.09 :  and 0.09c Q Q Q= ∈ <� � �Q Q  (9.25) 

are now considered.  These measures are given by 

( ) ( ) [ ]0.09 0.09, 0.25, 1.0c c
Q QNec Pos⎡ ⎤ =⎢ ⎥⎣ ⎦

Q Q  (9.26) 

( ) ( ) [ ]0.09 0.09, 0.041, 1.0c c
Q QBel Pl⎡ ⎤ =⎢ ⎥⎣ ⎦

Q Q  (9.27) 

and 

( )0.09 0.874c
Qp =Q  (9.28) 

for possibility theory, evidence theory and probability 
theory, respectively, and correspond to the locations 
where the vertical line in Fig. 9.1b crosses the CCNF, 
CCPoF, CCBF, CCPF and CCDF for 0.09( )c

QNec Q , 
0.09( )c

QPos Q , 0.09( )c
QBel Q , 0.09( )c

QPl Q  and 0.09( )c
Qp Q , 

respectively. 

As previously discussed for the measures of cre-
dence associated with Q0.09, the quantities 0.09( )c

QNec Q  



 

 117

= 0.25 and 0.09( )c
QBel Q  = 0.041 provide measures in 

the context of possibility theory and evidence theory, 
respectively, of the amount of uncontradicted informa-
tion that supports the proposition that the appropriate 
value for Q(0.1|a, eM) is contained in 0.09

cQ .  Similarly, 
0.09( )c

QPos Q  = 1.0 and 0.09( )c
QPl Q  = 1.0 provide meas-

ures in the context of possibility theory and evidence 
theory, respectively, of the amount of information that 
does not refute the proposition that the appropriate val-
ue for Q(0.1|a, eM) is contained in 0.09

cQ .  In contrast, 
probability theory provides a single measure, 0.09( )c

Qp Q  
= 0.874, of the amount of credence associated with the 
set 0.09

cQ . 

The equalities 

( ) ( )0.09 0.091 0.0 1.0c
Q QNec Pos= + = +Q Q  (9.29) 

( ) ( )0.09 0.091 0.25 0.75c
Q QNec Pos= + = +Q Q  (9.30) 

( ) ( )0.09 0.091 0.0 1.0c
Q QBel Pl= + = +Q Q  (9.31) 

( ) ( )0.09 0.091 0.041 0.959c
Q QBel Pl= + = +Q Q  (9.32) 

and 

( ) ( )0.09 0.091 0.126 0.874c
Q Qp p= + = +Q Q  (9.33) 

hold as indicated in Eqs. (8.7), (8.28) and (8.45) and 
indicate the relationships that exist between a measure 
of the credence for a potential result and a measure of 
the credence for its complement.  

Additional relationships also hold for possibility 
theory and evidence theory as indicated in Eqs. (8.8) –
(8.14) and (8.29) – (8.31).  Overall, possibility theory 
and evidence theory allow a more nuanced representa-
tion of epistemic uncertainty than is possible with prob-
ability theory because they permit a distinction between 
information that supports a proposition and information 
that does not refute a proposition. 

Thus far, measures of credence have been consid-
ered for the proposition that Q(0.1|a, eM) is less than or 
equal to 0.09 (i.e., for the set Q0.09) and the proposition 
that Q(0.1|a, eM) is greater than 0.09 (i.e., for the set 

0.09
cQ ).  It is also possible to consider the proposition 

that Q(0.1|a, eM) = 0.09.  In this case, 

{ }( ) { }( ) [ ]0.09 , 0.09 0.0, 1.0c
Q QNec Pos⎡ ⎤ =⎢ ⎥⎣ ⎦

 (9.34) 

{ }( ) { }( ) [ ]0.09 , 0.09 0.25, 0.75c
Q QNec Pos⎡ ⎤ =⎢ ⎥⎣ ⎦

 (9.35) 

{ }( ) { }( ) [ ]0.09 , 0.09 0.0, 1.0c
Q QBel Pl⎡ ⎤ =⎢ ⎥⎣ ⎦

 (9.36) 

{ }( ) { }( ) [ ]0.09 , 0.09 0.041, 0.959c
Q QBel Pl⎡ ⎤ =⎢ ⎥⎣ ⎦

 (9.37) 

and 

{ }( ) { }( ) [ ]0.09 , 0.09 0.0,1.0 ,c
Q Qp p⎡ ⎤ =⎢ ⎥⎣ ⎦

 (9.38) 

where {0.09} denotes the subset of Q that contains 0.09 
as its only element. 

The results in Fig. 9.1 and other similar results pre-
sented in this section are approximations obtained with 
the sampling-based procedures described in Sect. 8.5 and 
the sample in Eq. (9.16). The results in Eqs. (9.35) and 
(9.37) require the estimation of PosQ({0.09}) and 
PlQ({0.09}) for a set that contains a single number (i.e., 
the set {0.09}). Because EM has an uncountably infinite 
number of elements, PosQ({0.09}) and PlQ({0.09}) can-
not be estimated directly with sampling-based methods 
as the chance of sampling values for eM that result in the 
equality Q(0.1|a, eM) = 0.09 is effectively nonexistent. 
Therefore, PosQ({0.09}) and PlQ({0.09}) were estimated 
by PosQ({0.09}) ≅ PosQ(U) and PlQ({0.09}) ≅ PlQ(U), 
where 

( ){
( ) }

: 0.1 | , , ,  and 

0.08999999 0.1 | , 0.09000001

M M

M

Q Q Q

Q

= = ∈

≤ ≤

U� EMa e e

a e
 (9.39) 

is a very small interval containing 0.09. The values for 
PosQ(U) and PlQ(U) were estimated with a random sam-
ple of size 108 from EM, which resulted in 412 values 
for Q(0.1|a, eM) that satisfied the defining inequalities 
for the set U. The similarity of the results in Eqs. (9.29) − 
(9.32) with the results in Eqs. (9.34) − (9.37) is a prop-
erty of this analysis and does not hold in general. 

9.3 Epistemic Uncertainty with a Specified 
Bound 

A QMU problem is now considered.  Specifically, 
a fixed bound is assumed to exist with respect to the 
value for Q(0.1|a, eM).  Possibilities include bounds
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Fig. 9.2. Example bounds on Q(0.1|a, eM):  (a) Qb1 = 0.075 and Qb2 = 0.09, and (b) Qb3 = 0.105 and Qb4 = 0.125. 

that bound Q(0.1|a, eM) from below (e.g., Qb1 = 0.075 
and Qb2 = 0.09 in Fig. 9.2a) and bounds that bound 
Q(0.1|a, eM) from above (e.g., Qb3 = 0.105 and Qb4 = 
0.125 in Fig. 9.2b). 

All values for Q(0.1|a, eM) are above the bound 
Qb1.  However, this is not the case for the bound Qb2.  
In particular, the possibility and necessity of falling 
below Qb2 are 0.75 and 0, respectively; the plausibility 
and belief of falling below Qb2 are 0.959 and 0, respec-
tively; and the probability of falling below Qb2 is 0.126. 

Similarly, all values for Q(0.1|a, eM) are below the 
bound Qb4.  However, this is not the case for the bound 
Qb3.  In particular, the possibility and necessity of ex-
ceeding Qb3 are 0.75 and 0, respectively; the plausibil-
ity and belief of exceeding Qb3 are 0.953 and 0, respec-
tively; and the probability of exceeding Qb3 is 0.108. 

As previously presented in Eq. (4.5), the margins 
between Q(0.1|a, eM) and the bounds Qbk, k = 1, 2, 3, 4, 
indicated in Fig. 9.2 are defined by 

( ) ( )
( )

0.1 , for 1,2
0.1 ,

0.1 , for 3, 4,
bk M

mk M
M bk

Q Q k
Q

Q Q k

⎧ − =⎪= ⎨
− =⎪⎩

a e
a e

a e
 

 (9.40) 

with Qmk(0.1|a, eM) > 0 indicating that a specified 
bound is satisfied and Qmk(0.1|a, eM) < 0 indicating 
that a specified bound is not satisfied (i.e., a positive 
margin is good and a negative margin is bad).  As a 
result of Q(0.1|a, eM) being uncertain, the correspond-

ing margins Qmk(0.1|a, eM), k = 1, 2, 3, 4, are also un-
certain and have an uncertainty structure that derives 
from the uncertainty structure assumed for eM (Fig. 
9.3).  Representations of the form shown in Fig. 9.3 
provide a complete representation of the uncertainty 
associated with the margins Qmk(0.1|a, eM), k = 1, 2, 3, 
4, and thus a complete QMU representation. 

An alternative presentation format previously in-
troduced in Eq. (4.6) involves the use of normalized 
margins defined by 

( ) ( )
( )

( )

0.1 , 0.1 ,

0.1 , for 1,2

0.1 , for 3,4,

nk M mk M bi

M bk bk

bk M bk

Q Q Q

Q Q Q k

Q Q Q k

=

⎧⎡ ⎤− =⎪⎣ ⎦= ⎨
⎡ ⎤− =⎪⎣ ⎦⎩

a e a e

a e

a e

(9.41) 

which expresses margin as a fraction of the correspond-
ing bounding value (Fig. 9.4).  This format has the ad-
vantage in that it presents margin as a multiple of the 
bounding value, which is a presentation format that 
some individuals like.  It has the disadvantage that it 
does not present the actual size of the margin. 

It is sometimes stated that QMU corresponds to the 
determination of the ratio “margin/uncertainty.”  Possi-
ble definitions of “margin/uncertainty” are indicated in 
Eqs. (4.7) and (4.8) that can be used with probability-
based representations for epistemic uncertainty. The 
appropriate definition of corresponding quantities for 
analyses based on interval analysis, possibility theory or 
evidence theory is not apparent.  However, a significant 
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Fig. 9.3. Uncertainty associated with margins Qmk(0.1|a, eM), k = 1, 2, 3, 4, defined in Eq. (9.40) characterized by 

(i) intervals, (ii) possibility spaces summarized with CPoFs and CNFs, (iii) evidence spaces summarized 
with CPFs and CBFs, and (iv) probability spaces summarized with CDFs:  (a) Qm1(0.1|a, eM) for Qb1 = 
0.075, (b) Qm2(0.1|a, eM) for Qb2 = 0.09, (c) Qm3(0.1|a, eM) for Qb3 = 0.105, and (d) Qm4(0.1|a, eM) for 
Qb4 = 0.125. 

amount of important information is lost any time an 
attempt is made to reduce a complex analysis to a 
single number (see Sect. 4.5 for additional discus-
sion). 

9.4 Epistemic Uncertainty with a  
Specified Bounding Interval 

A QMU problem involving a bounding interval 
rather than simply an upper or lower bound is now 
considered.  Specifically, the problem involves a spe-
cified interval within which the quantity of interest is 
required to be located.  For the quantity
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Fig. 9.4. Uncertainty associated with normalized margins Qnk(0.1| a, eM), k = 1, 2, 3, 4, defined in Eq.  (9.41) char-

acterized by (i) intervals, (ii) possibility spaces summarized with CPoFs and CNFs, (iii) evidence spaces 
summarized with CPFs and CBFs, and (iv) probability spaces summarized with CDFs:  (a) Qn1(0.1|a, eM) 
for Qb1 = 0.075, (b) Qn2(0.1|a, eM) for Qb2 = 0.09, (c) Qn3(0.1|a, eM) for Qb3 = 0.105, and (d) Qn4(0.1|a, 
eM) for Qb4 = 0.125. 

Q(0.1|a, eM), this involves the specification of an inter-
val [ bQ , bQ ] such that the inequalities 

( )0.1 ,b M bQ Q Q≤ ≤a e  (9.42) 

hold (Fig. 9.5).  For illustration [ bQ , bQ ] is assumed to 
equal [0.08, 0.12] as indicated in Fig. 9.5. 

There are several ways in which the epistemic un-
certainty associated with compliance with the specified 
bounds can be represented.  The simplest is to consider 
whether or not Q(0.1|a, eM) falls within the specified 
bounds.  This involves consideration of the indicator 
function 
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Fig. 9.5. Example bounding interval [ bQ , bQ ] = 0.08, 

0.12] for Q(0.1|a, eM). 

( ) ( )1 if 0.1 ,
0.1

0 otherwise
b M b

M
Q Q Q

Qδ
⎧ ≤ ≤⎪⎡ ⎤ = ⎨⎣ ⎦ ⎪⎩

a e
e (9.43) 

and the associated sets 

( ){ }:  and 0.1 , 1M M MQδ+ ⎡ ⎤= ∈ =⎣ ⎦X EMe e a e  

 (9.44) 

and 

( ){ }:  and 0.1 , 0M M MQδ− ⎡ ⎤= ∈ =⎣ ⎦e e a eX EM  

 (9.45) 

as previously indicated in Eqs. (4.23) – (4.26). 

For interval analysis, compliance is an “either/or” 
concept, with compliance with the specified bounding 
interval existing only if X + = EM (i.e., if Q(0.1|a, eM) 
falls inside the interval [ bQ , bQ ] = [0.08, 0.12] for all 
values of eM), which is not the case in this example.  
For possibility theory, evidence theory and probability 
theory, the uncertainty in compliance with the specified 
bounds is given by 

( ) ( )0.75,   1.00,EM EMNec Pos+ += =X X  (9.46) 

( ) ( )0.85,   1.00,EM EMBel Pl+ += =X X  (9.47) 

and 

( ) 0.99945,   EMp + =X  (9.48) 

respectively.  The results in Eqs. (9.46) – (9.48) were 
obtained with the sampling-based procedures described 
in Sect. 8.5. 

Similarly, the uncertainty in noncompliance with 
the specified bounds is given by 

( ) ( )0.00,   0.25,EM EMNec Pos− −= =X X  (9.49) 

( ) ( )0.00,   0.15,EM EMBel Pl− −= =X X  (9.50) 

and 

( ) 0.00055EMp − =X  (9.51) 

for possibility theory, evidence theory, and probability 
theory, respectively. 

The representations in the preceding two para-
graphs summarize the uncertainty in whether or not the 
specified bound will be satisfied.  However, these rep-
resentations do not indicate the uncertainty in the loca-
tion of Q(0.1|a, eM) relative to the ends of the bounding 
interval [ bQ , bQ ].  The consideration of this uncertainty 
requires the determination of margins and the uncer-
tainty associated with these margins.  Specifically, a 
margin associated with the containment of Q(0.1|a, eM) 
in the interval [ bQ , bQ ] can be defined by 

( ) ( )
( )

0.1 ,
0.1 , min

0.1 ,
M b

m M
b M

Q Q
Q

Q Q

⎧ −⎪= ⎨
−⎪⎩

a e
a e

a e
 (9.52) 

as previously indicated in Eq. (4.29), with the result that 
(i) Qm(0.1|a, eM) is nonnegative if Q(0.1|a, eM) falls 
within the interval [ bQ , bQ ], (ii) Qm(0.1| a, eM) is nega-
tive if Q(0.1|a, eM) falls outside the interval [ bQ , bQ ], 
and (iii) |Qm(0.1|a, eM)| characterizes the maximum de-
viation of Q(0.1|a, eM) from the ends of the interval [ bQ , 

bQ ].  In turn, Qm(0.1|a, eM) has an uncertainty structure 
that derives from the uncertainty structure imposed on 
eM (Fig. 9.6). 

The compliance results in Eqs. (9.46) − (9.51) can 
be obtained directly from the uncertainty results for 
Qm(0.1|a, eM) in Fig. 9.6. Specifically, the values Ne-
cEM( −X ), PosEM( −X ) , BelEM( −X ) , PlEM( −X ) and 
pEM ( −X ) associated with −X in Eqs. (9.49) − (9.51) 
correspond to the cumulative values in Fig. 9.6 
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associated with Qm(0.1|a, eM) = 0.00. In turn, the values 
NecEM ( +X ), PosEM ( +X ) , BelEM ( +X ) , PlEM ( +X ) 
and pEM ( +X ) associated with +X in Eqs. (9.46) 
− (9.48) can be obtained from the relationships in Eqs. 
(8.7), (8.28) and (8.45). Specifically, NecEM( +X ) = 
1− PosEM ( −X ), PosEM( +X ) = 1− NecEM ( −X ), BelEM 
( +X ) = 1− PlEM ( −X ), PlEM( +X ) = 1−BelEM ( −X ), 
and pEM ( +X ) = 1−pEM ( −X ).    

An alternate representation is to use normalized 
margins as previously indicated in Eq. (4.30).  Specifi-
cally, the margin Qm(0.1|a, eM) defined in Eq. (9.52) 
can be replaced by a normalized margin Qn(0.1|a, eM) 
defined by 

( )
( )

( )
0.1 ,

0.1 , min
0.1 , ,

M b b
n M

b M b

Q Q Q
Q

Q Q Q

⎧ ⎡ ⎤−⎪ ⎣ ⎦= ⎨
⎡ ⎤−⎪⎣ ⎦⎩

a e
a e

a e
 

 (9.53) 

which expresses margin as a fraction of the bounding 
value from which Q(0.1|a, eM) has the smallest frac-
tional deviation (Fig. 9.7). 

9.5 Epistemic Uncertainty with a Specified 
Bounding Interval Over Time 

A QMU problem involving a bounding interval at a 
fixed point in time is considered in Sect. 9.4.  This 
problem is now increased in complexity by considering 
a problem in which a bounding interval [ bQ , bQ ] is spe-
cified for a quantity such as Q(t|a, eM) that takes on 
values over a time interval [tmn, tmx] (Fig. 4.9).  Spe-
cifically, the requirement is that the values for 
Q(t|a, eM) stay within the bounding interval [ bQ , bQ ] 
for tmn ≤ t ≤ tmx (e.g., [ bQ , bQ ] = [0.07, 0.14 C], tmn = 
0.02 s and tmx = 0.18 s in Fig. 4.9).  Formally stated, the 
requirement is that the inequality 

( ),b M bQ Q t Q≤ ≤a e  (9.54) 

be satisfied for eM ∈ EM and tmn ≤ t ≤ tmx. 

Uncertainty in compliance with the indicated re-
quirement can be represented with use of the indicator 
function 

( )
( )

, :

1 if ,  for 
=

0 otherwise

M mn mx

b M b mn mx

Q t t t t

Q Q t Q t t t

δ ⎡ ⎤≤ ≤⎣ ⎦
⎧ ≤ ≤ ≤ ≤⎪
⎨
⎪⎩

a e

a e

 
 (9.55)
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Fig. 9.8. Uncertainty associated with margin Qm(t|a, 

eM, [tmn, tmx]) defined in Eq. (9.64) charac-
terized by (i) an interval, (ii) a possibility 
space summarized with a CPoF and a CNF, 
(iii) an evidence space summarized with a 
CPF and a CBF, and (iv) a probability space 
summarized with a CDF. 

and the associated sets 

{
( ) }
:  and 

          , : 1

M M

M mn mxQ t t t tδ

+ = ∈

⎡ ⎤≤ ≤ =⎣ ⎦

e e

a e

X EM
 (9.56) 

and 

{
( ) }
:  and 

          , : 0 .

M M

M mn mxQ t t t tδ

− = ∈

⎡ ⎤≤ ≤ =⎣ ⎦

e e

a e

X EM
 (9.57) 

as previously indicated in Eqs. (4.34) – (4.37). 

For interval analysis, compliance with the require-
ment is indicated if X + = EM.  For possibility theory, 
evidence theory, and probability theory, the uncertainty 
in compliance with the specified bounding interval over 
time is given by 

( ) ( )0.25,   1.00,EM EMNec Pos+ += =X X  (9.58) 

( ) ( )0.034,   1.00,EM EMBel Pl+ += =X X  (9.59) 

and 

( ) 0.897,EMp + =X  (9.60) 

respectively. 

Similarly, the uncertainty in noncompliance is giv-
en by 

( ) ( )0.00,   0.75,EM EMNec Pos− −= =X X  (9.61) 

( ) ( )0.00,   0.966,EM EMBel Pl− −= =X X  (9.62) 

and 

( ) 0.103EMp − =X  (9.63) 

for possibility theory, evidence theory, and probability 
theory, respectively. 

The preceding representations summarize the un-
certainty in whether or not compliance with the speci-
fied bounding interval over time will be satisfied.  
However, these representations do not display the asso-
ciated margins.  As previously indicated in Eq. (4.40), 
these margins can be defined by 

[ ]( )
[ ]( )

[ ]( )

, , ,

, , ,
min

, , , ,

m M mn mx

mn M mn mx b

b mx M mn mx

Q t t t

Q t t t Q

Q Q t t t

⎧ −⎪= ⎨
−⎪⎩

a e

a e
a e

 (9.64) 

where 

[ ]( )
( ){ }

, , ,

min , :

mn M mn mx

M mn mx

Q t t t

Q t t t t= ≤ ≤

a e

a e
 

and 

[ ]( )
( ){ }

, , ,

max , : .

mx M mn mx

M mn mx

Q t t t

Q t t t t= ≤ ≤

a e

a e
 

In turn, Qm(t|a, eM, [tmn, tmx]) has an uncertainty struc-
ture that derives from the uncertainty structure imposed 
on eM (Fig. 9.8). 

As discussed in conjunction with the margin results 
in Fig. 9.6, the compliance results in Eqs. (9.58) − 
(9.63) can be obtained from the cumulative results in 
Fig. 9.8 associated with Qm(t|a, eM, [tmn, tmx]) = 0.00.   
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gin Qn(t|a, eM, [tmn, tmx]) defined in Eq. 
(9.65) characterized by (i) an interval, (ii) a 
possibility space summarized with a CPoF 
and a CNF, (iii) an evidence space summa-
rized with a CPF and a CBF, and (iv) a prob-
ability space summarized with a CDF. 

An alternate representation is to use normalized mar-
gins as previously indicated in Eq. (4.41).  Specifically, the 
margin Qm(t|a, eM, [tmn, tmx]) defined in Eq. (9.64) can be 
replaced by a normalized margin Qn(t|a, eM, [tmn, tmx]) 
defined by 

[ ]( )
[ ]( )

[ ]( )

, , ,

, , ,
min

, , , ,

   

n M mn mx

mn M mn mx b b

b mx M mn mx b

Q t t t

Q t t t Q Q

Q Q t t t Q

⎧ ⎡ ⎤−⎪ ⎣ ⎦= ⎨
⎡ ⎤−⎪⎣ ⎦⎩

a e

a e

a e
(9.65) 

which expresses margin as a fraction of the bounding 
value from which Q(t|a, eM) has the smallest fractional 
deviation (Fig. 9.9). 

9.6 Epistemic Uncertainty with an  
Uncertain Bound 

The QMU results presented in Sects. 9.3 – 9.5 in-
volve uniquely specified bounds.  However, it is likely 
that this will not always be the case in QMU analyses.  
For example, a requirement might be that a certain sys-
tem operates but the conditions that define when the 
system does and does not operate appropriately may not 
be specified.  Then, it is the analysts’ responsibility to 

specify the conditions under which the system operates 
in the manner desired.  However, there may be uncer-
tainty with respect to exactly what conditions are neces-
sary for the appropriate operation of the system.  Then, 
in this situation, there is epistemic uncertainty as to the 
conditions must be specified to define what constitutes 
appropriate operation of the system. 

The example presented in Sect. 9.5 can be modi-
fied to illustrate this situation.  As originally stated, the 
example in Sect. 9.5 involves a bounding interval [ bQ , 

bQ ] for Q(t|a, eM) over the time interval [tmn, tmx].  For 
the example of this section, it is assumed that the speci-
fied requirement is that the system be operational over 
the time interval [tmn, tmx] but the requirement does not 
specify what conditions are necessary for the system to 
be operational.  For purposes of illustration, it is as-
sumed that the analysts involved conclude that the sys-
tem being operational over [tmn, tmx] corresponds to 
Q(t|a, eM) being within a bounding interval [ bQ , bQ ].  
However, they are uncertain with respect to the appro-
priate value for this bounding interval.  Thus, there is 
epistemic uncertainty with respect to the values to use 
for bQ  and bQ .  As a result, the vector eM of epistemi-
cally uncertain inputs to the analysis now has the form 

0, , , , , , .M b bQ Q L R C E λ⎡ ⎤= ⎣ ⎦e  (9.66) 

For purposes of illustration, it is assumed that the ana-
lysts conclude that (i) bQ  is contained in the interval 
[0.06, 0.08 C], (ii) bQ  is contained in the interval [0.14, 
0.16 C], (iii) bQ  and bQ  have the same uncertainty struc-
ture specified for L, R0, C, E and λ (see Eqs. (9.7) – 
(9.15) and associated discussion), and (iv) no depend-
ency or correlation exists between bQ  and bQ  (Fig. 4.14). 

This problem can now be analyzed exactly as in 
Sect. 9.5.  The only difference is that eM now contains 
7 rather than 5 elements, with two of these elements 
being bQ  and bQ .  Specifically, δ [Q(t|a, eM): tmn ≤ t ≤ 
tmx], X + and X – are defined as indicated in Eqs. (9.54) 
– (9.57). In turn, the resultant uncertainty representa-
tions with possibility theory, evidence theory and prob-
ability theory are 

( ) ( )0.25, 1.00,EM EMNec Pos+ += =X X  (9.67) 

( ) ( )0.00, 0.75,EM EMNec Pos− −= =X X  (9.68) 
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( ) ( )0.078, 1.00,EM EMBel Pl+ += =X X  (9.69) 

( ) ( )0.00, 0.922,EM EMBel Pl− −= =X X  (9.70) 

and 

( ) ( )0.966, 0.034,EM EMp p+ −= =X X  (9.71) 

respectively, and include the uncertainty associated 
with the imperfectly known values for bQ  and bQ . 

Margin analysis results Qm(t|a, eM, [tmn, tmx]) and 
normalized margin analysis results Qn(t|a, eM, [tmn, 
tmx]) of the form defined in Eqs. (9.64) and (9.65), re-
spectively, can also be obtained (Figs. 9.10 and 9.11). 
As discussed in conjunction with the margin results in 
Fig. 9.6, the compliance results in Eqs. (9.67) − (9.71)
can be obtained from the cumulative results in Fig. 9.10 
associated with Qm(t|a, eM, [tmn, tmx]) = 0.00. 

Results analogous to those presented in this section 
involving uncertain bounds can also be obtained for a 
single bound as discussed in Sect. 9.3 and a bounding 
interval at a fixed point in time as discussed in Sect. 9.4. 



 

 126

This page intentionally left blank



 

 127

10 QMU with Aleatory and Epistemic 
Uncertainty: Characterization with 
Alternative Uncertainty Representations 

Examples illustrating the use of the alternative uncer-
tainty representations introduced in Sect. 8 are now pre-
sented for QMU problems involving aleatory and epis-
temic uncertainty.  Specifically, the example problem in 
Sect. 3.6 is expanded to include the alternative uncertainty 
representations in Sect. 8 (Sect. 10.1). Then, the following 
topics are considered: epistemic uncertainty in an ex-
ceedance probability deriving from aleatory uncertainty 
(Sect. 10.2), epistemic uncertainty in margins associated 
with a specified bound on a quantile deriving from alea-
tory uncertainty (Sect. 10.3), and epistemic uncertainty in 
margins associated with a specified bound on an expected 
value deriving from aleatory uncertainty (Sect. 10.4). 

10.1 Randomly Perturbed System Used 
for Illustration 

As an example, this section uses the randomly per-
turbed system defined in Eqs. (3.55) – (3.58) and previ-
ously used in Sect. 5 in the illustration of QMU analy-
ses involving aleatory and epistemic uncertainty with 
probability-based representations of epistemic uncer-
tainty.  The probability space (A, A, pA) characterizing 
aleatory associated with this example is defined in con-
junction with Eqs. (3.56) and (3.57).  Further, the ex-
ample involves the vector 

[ ]
[ ]
[ ]

1 2 3 4 5

,

, , , ,

, , , ,

A M

M M M M Me e e e e

a m b rλ

=

=

=

e e e
 (10.1) 

of epistemically uncertain variables defined in conjunc-
tion with Eq. (3.59) with eA = [λ, a, m, b] and eM = [r].  
Specifically, λ, a, m and b are involved in the definition 
of probability distributions that characterize aleatory 
uncertainty, and r relates to the physical processes in-
volved in the decay of an initial perturbation A0. 

For interval analysis, the appropriate values for λ, a, 
m, b and r are assumed to be contained in the intervals 

{ }

{ }
1

1

:

: 0.5 1.5 s ,

mn mxλ λ λ λ

λ λ −

= ≤ ≤

= ≤ ≤

EA
 (10.2) 

{ }

{ }
2

2

:

:1.0 2.0 kg m/s ,

mn mxa a a a

a a

= ≤ ≤

= ≤ ≤

EA
 (10.3) 

{ }

{ }
3

2

:

: 2.0 4.0 kg m/s ,

mn mxm m m m

m m

= ≤ ≤

= ≤ ≤

EA
 (10.4) 

{ }

{ }
4

2

:

: 4.0 5.0 kg m/s ,

mn mxb b b b

b b

= ≤ ≤

= ≤ ≤

EA
 (10.5) 

and 

{ }

{ }
1

1

:

: 0.2 1.2 s ,

mn mxr r r r

r r −

= ≤ ≤

= ≤ ≤

EM
 (10.6) 

respectively.  No additional information about the loca-
tion of the appropriate values for λ, a, m, b and r is as-
sumed to be known.  These are the same intervals de-
fined in Eqs. (3.60) – (3.64). 

For possibility theory, evidence theory and prob-
ability theory, the resultant sample space for the vector 
e of epistemically uncertain variables is 

1 2 3 4 1= × × × ×E EA EA EA EA EM  (10.7) 

with EA1, EA2, …, EM1 defined in Eqs. (10.2) – (10.6).  
Further, associated possibility spaces, evidence spaces and 
probability spaces for the individual elements of e (i.e., λ, 
a, m, b and r) are defined in exactly the same manner as 
for the elements of eM = [L, R, C, E0, λ] in Eqs. (9.7) – 
(9.15).  For convenience, the resultant possibility space, 
evidence space and probability space for e will be denoted 
(E, rE), (E, E, mE) and (E, E, pE), respectively. 

The examples presented in this section are con-
structed from samples obtained as described in conjunc-
tion with Eqs. (5.3) – (5.6).  The only difference is that 
a random sample of size nSE = 105 from E is used ra-
ther than an LHS of size nSE = 200 as indicated in Eq. 
(5.3). Specifically, the indicated random sample of size 
nSE = 105 is generated in consistency with the probabil-
ity space (E, E, pE). A large sample from E is needed in 
order to adequately cover the focal elements associated 
with the evidence space (E, E, mE) (see Refs. [188; 270] 
for additional discussion).  

10.2 Epistemic Uncertainty Without a 
Specified Bound 

As an example, the uncertainty in the possible val-
ues for the probability pA[20 < A(10|a, r)|eA] is consid-
ered.  Specifically, the uncertainty associated with the 
exceedance probabilities corresponding to the vertical 
line in Fig. 5.1a are under consideration.  In this 
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Fig. 10.1. Uncertainty associated with pA[20 < A(10|a, r)|eA] characterized by (i) an interval (i.e., [inf(P), sup(P)]), 

(ii) a possibility space (P, rP) summarized with a CCPoF, CCNF, CPoF and CNF, (iii) an evidence space 
(P, P, mP) summarized with a CCPF, CCBF, CPF and CBF, and (iv) a probability space (P, P, pP) sum-
marized with a CCDF and CDF:  (a) Cumulative results, and (b) Complementary cumulative results. 

example, the probabilities pA[20 < A(10|a, r)|eA] derive 
from aleatory uncertainty (i.e., from the probability 
space (A, A, pA)) but the uncertainty in the possible 
values for these probabilities derives from epistemic 
uncertainty (i.e., from the possible values for e in the 
set E and the associated spaces (E, rE), (E, E, mE) and 
(E, E, pE) as appropriate). 

More formally, the set 

( ) [ ]{ }20 10 , : ,A A A Mp A r⎡ ⎤= < = ∈⎣ ⎦a e e e eP E  

 (10.8) 

is under consideration. In turn, P has an uncertainty 
structure that derives from the uncertainty structure im-
posed on E.  Thus, the uncertainty associated with pA[20 
< A(10|a, r)|eA] is characterized by an interval [inf(P), 
sup(P)], a possibility space (P, rP), an evidence space 
(P, P, mP) or a probability space (P, P, pP) depending on 
which characterization is assumed for E (Fig. 10.1). Spe-
cifically, cumulative and complementary results are 
shown in Figs. 10.1a and 10.1b, respectively.   

Some individuals are uncomfortable with the con-
cept of uncertain probabilities as illustrated in Fig. 10.1.  
However, in the context of epistemic uncertainty, there 
is no conceptual difference between the uncertainty 
results shown in Fig. 9.1 for electric charge and the 
uncertainty results shown in Fig. 10.1 for exceedance 

probability.  In both cases, an analysis outcome is being 
calculated with quantities that are uncertain in an epis-
temic sense, with the result that the analysis outcome 
under consideration is also uncertain in an epistemic 
sense.  When viewed abstractly, both cases involve a 
model (i.e., a function) that takes a vector e of inputs 
and produces a result.  For Fig. 9.1, the model involves 
the solution of an ordinary differential equation and 
produces an electric charge; for Fig. 10.1, the model 
involves the evaluation of an integral and produces an 
exceedance probability. When viewed as “black boxes,” 
both models are simply functions that produce a nu-
meric result. 

10.3 Epistemic Uncertainty with a Specified 
Bound on a Quantile 

A QMU problem is now considered.  For this ex-
ample, it is assumed that pA[20 < A(10|a, r)|eA] is re-
quired to be less than a bound (e.g., pb1 = 0.05 and pb2 
= 0.1 in Fig. 10.2). In particular, the possibility and 
necessity of exceeding pb1 are 0.5 and 0.0, respectively; 
the plausibility and belief of exceeding pb1 are 0.396 
and 0.0, respectively; and the probability of exceeding 
pb1 is 0.0144. The preceding uncertainty characteriza-
tions relate to epistemic uncertainty and thus provide 
degree of belief characterizations with different mathe-
matical structures of the “likelihood” or “confidence” 
that pA[20 < A(10|a, r)|eA] will be greater than pb1. 
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Fig. 10.2. Uncertainty associated with pA[20 < A(10|a, 

r)|eA] characterized by (i) an interval, (ii) a 
possibility space summarized with a CCPoF 
and CCNF, (iii) an evidence space summa-
rized with a CCPF and CCBF, and (iv) a 
probability space summarized with a CCDF. 

Similarly, the corresponding values for pb2 can also be 
read from Fig. 10.2. 

In turn, the margins between pA[20 < A(10|a, r)|eA] 
and the bounds pbk, k = 1, 2, indicated in Fig. 10.2 can 
be defined in the same manner as in the margins in Eq. 
(5.7).  Specifically, the margin pmk(10|e) is defined by 

( ) ( )10 20 10 , ,mk mk A Ap p p A r⎡ ⎤= − <⎣ ⎦e a e  (10.9) 

with pmk(10|e) > 0 indicating that bound pbk is satisfied 
and pmk(10|e) < 0 indicating that bound pbk is not satis-
fied.  As a result of pA[20 < A(10|a, r)|eA] being uncer-
tain, the corresponding margins pmk(10|e) are also un-
certain and have an uncertainty structure that derives 
from the corresponding uncertainty structure assumed 
for e (Fig. 10.3). 

An alternative presentation involves the use of 
normalized margins.  As previously presented in Eq. 
(5.8), normalized margins can be defined by 

( ) ( )10 10nk mk bkp p p=e e  (10.10) 

for k = 1, 2 and express margin as a fraction of the cor-
responding bounding value (Fig. 10.4). 

10.4 Epistemic Uncertainty with a 
Specified Bound on an Expected 
Value 

For this example, it is assumed that the expected 
value EA[A(10|a, r)|eA] previously summarized in Fig. 
3.13 for a probabilistic representation of epistemic un-
certainty is required to be less than a bound (e.g., the 
bound bA  = 13 in Fig. 5.5). In particular, the possibility 
and necessity of exceeding bA  are 0.25 and 0.0, respec-
tively; the plausibility and belief of exceeding bA  are 
0.318 and 0.0, respectively; and the probability of ex-
ceeding bA  is 0.00867 (Fig. 10.5).   

In turn, margins (10 | )mA e and normalized margins 
(10 | )nA e can be defined as indicated in Eqs. (5.15) and 

(5.16) (Fig. 10.6). 
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Fig. 10.3. Uncertainty associated with margins pmk(10|e), k = 1, 2, defined in Eq. (10.9) characterized by (i) inter-

vals, (ii) possibility spaces summarized with CPoFs and CNFs, (iii) evidence spaces summarized with 
CPFs and CBFs and (iv) probability spaces summarized with CDFs: (a) pm1(10|e), and (b) pm2(10|e). 
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Fig. 10.5. Uncertainty associated with EA[A(10|a, r)|eA] characterized by (i) an interval, (ii) a possibility space 

summarized with a CCPoF and CCNF, (iii) an evidence space summarized with a CCPF and CCBF, and 
(iv) a probability space summarized with a CCDF. 
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Fig. 10.6. Margins and normalized margins for EA[A(10|a, r)|eA] characterized by (i) intervals, (ii) possibility spaces 

summarized with CPoFs and CNFs, (iii) evidence spaces summarized with CPFs and CBFs and (iv) prob-
ability spaces summarized with CDFs: (a) (10 | )mA e , and (b) (10 | )nA e . 
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11 Summary Discussion 

As indicated by the name, QMU involves three 
concepts:  quantification, margin and uncertainty. These 
concepts are discussed in the following sections: Mar-
gins (Sect. 11.1), uncertainty (Sect. 11.2), and quantifi-
cation (Sect. 11.3). Then, the presentation of QMU re-
sults is discussed (Sect. 11.4). 

11.1 Margins in QMU 

Intuitively, a margin M is a measure of the differ-
ence between a requirement R placed on the perform-
ance of a system and the predicted performance P of the 
system, with M ≥ 0 indicating that the requirement is 
met and M < 0 indicating that the requirement is not 
met.  More explicitly, M is a function M(R, P) of R and 
P with the properties that 

( ), 0  compliance of performance 
                           with requirement 
M R P P

R
≥ ⇒

 (11.1) 

and 

( ), 0  noncompliance of performance 
                           with requirement .
M R P P

R
< ⇒

 

 (11.2) 

If R and P are single numerical values, then the defini-
tion of M(R, P) could be as simple as 

( ),M R P R P= −  (11.3) 

if P is required to be less than or equal to R and 

( ),M R P P R= −  (11.4) 

if P is required to be greater than or equal to R. Margins 
of this type are extensively discussed and illustrated in 
Sects. 4, 5, 9 and 10. 

In many real analyses, it is unlikely that R and P 
will be single numbers.  Rather, greater complexity in 
the definition of R and P is likely to be the case.  For 
example, R might correspond to requirements on sev-
eral subsystems of a larger system, and P, in turn, 
would correspond to the performance of these subsys-
tems.  As another example, R and P might be functions 
or vectors of functions.  For this reason, the require-
ment R and performance P are more appropriately rep-
resented as the vectors R and P. The analyses presented 
in Sect. 6 are of this type with multiple requirements 

placed on system performance.  Then, M is a function 
M(R, P) with the properties that 

( ), 0  compliance of performance 
                           with requirement 
M ≥ ⇒R P P

R
 (11.5) 

and 

( ), 0  noncompliance of performance 
                           with requirement .
M < ⇒R P P

R
  

  (11.6) 

In this situation, the evaluation of M(R, P) involves a 
more complex calculation than the simple subtractions 
indicated in Eqs. (11.3) and (11.4). 

In practice, it is also possible for M(R, P) itself to 
be a vector and thus appropriately denoted by M(R, P).  
For example, if 

[ ]1 2, , , ,nRR R R= …R  (11.7) 

[ ]1 2, , , nRP P P= …P  (11.8) 

and 

( ),r r r r rM R P R P= −  (11.9) 

is the margin associated with requirement Rr for r = 1, 
2, …, nR, then M(R, P) might be defined by 

( )
( ) ( ) ( )

[ ]
1 1 1 2 2 2

1 1 2 2

,

, , , , , ,

, , , .
nR nR nR

nR nR

M R P M R P M R P

R P R P R P

⎡ ⎤= ⎣ ⎦
= − − −

M R P

…

…  
 (11.10) 

In a situation of this type, one possibility is to consider 
each of the margins Mr(Rr, Pr) separately, which corre-
sponds to defining M(R, P) to be the minimum of the 
values for Mr(Rr, Pr). This is the situation illustrated in 
Sects. 4.2 – 4.4 and 9.4 – 9.6 and also appears to be the 
intent of the regulatory requirements and associated 
margins illustrated in Sect. 6. Another possibility is the 
use of some type of weighted average to reduce the 
margins Mr(Rr, Pr) to a single number. In general, the 
reduction of M(R, P) to a single real-valued margin 

( ) ( ), ,M f= ⎡ ⎤⎣ ⎦R P M R P  (11.11) 
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through the application of a suitable function f is likely 
to be analysis specific and outside the scope of this dis-
cussion.   

11.2 Uncertainty in QMU 

If R and P were known with complete certainty 
and the function M(R, P) that defined the margin asso-
ciated with R and P was unambiguously defined, then 
there is no uncertainty and the margin M(R, P) is uni-
quely defined.  Unfortunately, this is unlikely to be the 
case in a real analysis.  In the analyses of most systems, 
there is likely to be significant uncertainties associated 
with the determination of P, and uncertainty with re-
spect to the appropriate definition of R is also possible.  
However, this discussion assumes there is no uncer-
tainty in the definition of the function M(R, P) that con-
verts R and P into a margin M. The examples in Sect. 6 
illustrate analyses of real systems that involve signifi-
cant uncertainties in the modeling of system perform-
ance P. Further, the notional analyses in Sects. 4.4 and 
9.6 involve uncertainty in both R and P. The possibility 
of uncertainty in both R and P is recognized by the 
NNSA in Quote (NNSA-3).  

The presence of uncertainty in the determination of 
M(R, P) can be acknowledged through the introduction 
of a vector 

1 2 ,, , ,M M M M nEMe e e⎡ ⎤= ⎣ ⎦e …  (11.12) 

of uncertain analysis inputs required in the evaluation 
of M(R, P). With this introduction, M(R, P) is appro-
priately represented by 

( ), MM =R P e
 
margin determined with value for P 
and possibly the value for R 
conditional on the values for  
eM1, eM2, …, eM,nE contained  
in eM. (11.13) 

More specifically, 

( ) ( ), ,M MM M= ⎡ ⎤⎣ ⎦R P e R P e  (11.14) 

if only P depends on eM; 

( ) ( ) ( ), ,M M MM M= ⎡ ⎤⎣ ⎦R P e R e P e  (11.15) 

if R and P depend on eM; and 

( ) ( ) ( ) [ ], , , , ,M R P M R PM M= =⎡ ⎤⎣ ⎦R P e R e P e e e e  
  (11.16) 

if eM can be decomposed into a vector eR that contains 
only variables affecting R and a vector eP that contains 
only variables affecting P. Sects. 4.4 and 9.6 illustrate 
analyses in which eM can be decomposed into a vector 
eR and a vector  eP; specifically, eR and eP correspond 
to [ , ]b bQ Q and 0[ , , , , ]L R C E λ , respectively, in these 
sections. 

The values for the variables contained in eM are as-
sumed to be uncertain in the sense that the analysis 
leading to M(R, P) has been designed on the assump-
tion that the appropriate value for M(R, P) will be ob-
tained if the appropriate values for the elements of eM 
are used.  Unfortunately, the appropriate value to use 
for eM is not, and cannot be in most analyses, known 
with certainty.  Rather, there is uncertainty with respect 
to the appropriate value to use for each element of eM.  
Uncertainty with respect to the value of a fixed, but 
poorly known, quantity is usually referred to as epis-
temic uncertainty, which is why eM is used as the des-
ignator for the vector of uncertain quantities in Eq. 
(11.12).  Alternative descriptors used for epistemic un-
certainty include subjective uncertainty, state of knowl-
edge uncertainty, and reducible uncertainty (see Sect. 2 
for additional discussion). 

The epistemic uncertainty associated with the ele-
ments of eM is usually characterized with probability; 
however, alternative mathematical structures for the 
characterization of epistemic uncertainty such as possi-
bility theory and evidence theory also exist (see Sects. 8 
− 10). With the use of probability to characterize epis-
temic uncertainty, the uncertainty associated with e is 
defined by a sequence of distributions 

D1, D2, …, DnEM, (11.17) 

where the distribution Dr associated with element eMr 
of eM provides a mathematical characterization of the 
available information with respect to where the appro-
priate value for eMr is located for use in evaluation 
M(R, P).  Correlations and other restrictions involving 
relationships between individual elements of e may 
also be present.  Distributions of the form indicated in 
Eq. (11.17) are often developed, at least in part, through 
an expert review process (see discussion in Sect. 7.1).  
In turn, the distribution for eM that results from the dis-
tributions in Eq. (11.17) and any associated restrictions 
leads to a resultant distribution of values for M(R, P| 
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eM) that characterizes the (epistemic) uncertainty with 
respect to the appropriate value for the margin M(R, P). 

The distributions D1, D2, …, DnEM indicated in Eq. 
(11.17) are, in essence, defining a probability space 
(EM, EM, pEM) for epistemic uncertainty, where EM 
is the set of possible values for eM, EM is a suitably 
restricted set of subsets of EM, and pEM defines the 
probabilities for individual sets contained in EM.  In 
practice, the individual distributions Dr in Eq. (11.17)
are usually defined by CDFs or CCDFs that, in effect, 
define EM, EM, pEM and an associated density func-
tion dEM (eM) defined on EM.  Although EM, EM, 
pEM and dEM(eM) are notationally useful and can be 
formally defined, actual calculations involving the 
probability space (EM, EM, pEM) are usually carried 
out with direct use of the distributions D1, D2, …, DnEM 
and any associated restrictions involving these distribu-
tions (e.g., by using random or Latin hypercube sam-
pling to generate values for eM consistent with the dis-
tributions D1, D2, …, DnEM). 

Once the distributions D1, D2, …, DnEM in Eq. 
(11.17) are defined, and hence the probability space 
(EM, EM, pEM) is also defined, the uncertainty in the 
margin M(R, P| eM) can be formally represented by a 
CDF or a CCDF.  Specifically, the CDF and CCDF for 
M(R, P| eM) are formally defined by 

( )
( ) ( )

,

, d

EM M

M M EM M

p M M

M d EMδ

⎡ ⎤≤⎣ ⎦
⎡ ⎤= ⎣ ⎦∫EM

R P e

R P e e
(11.18) 

and 

( )
( ) ( )

,

, d ,

EM M

M M EM M

p M M

M d EMδ

⎡ ⎤<⎣ ⎦
⎡ ⎤= ⎣ ⎦∫

R P e

R P e e
E

 (11.19) 

respectively, where pEM denotes epistemic probability, 
dEM represents an increment of volume from EM, and 
the indicator functions Mδ (~) and Mδ (~) are defined by 

( ) ( )1 if ,
,

0 otherwise
M

M M
M M

Mδ
⎧ ≤⎪⎡ ⎤ = ⎨⎣ ⎦ ⎪⎩

R P e
R P e  

and  

( ) ( )1 if ,
,

0 otherwise.
M

M M
M M

Mδ
⎧ >⎪⎡ ⎤ = ⎨⎣ ⎦ ⎪⎩

R P e
R P e  

In practice, the indicated probabilities are usually ap-
proximated by 

( ) ( )
1

, ,
nS

EM M M Mi
i

p M M M nSδ
=

⎡ ⎤ ⎡ ⎤≤ ≅⎣ ⎦ ⎣ ⎦∑R P e R P e  

 (11.20) 

and 

( ) ( )
1

, , ,
nS

EM M M Mi
i

p M M M nSδ
=

⎡ ⎤ ⎡ ⎤< ≅⎣ ⎦ ⎣ ⎦∑R P e R P e

  
  (11.21) 

where eMi, i = 1, 2, …, nS, is a random or Latin hyper-
cube sample of size nS generated from EM in consis-
tency with the distributions D1, D2, …, DnEM and any 
associated restrictions. Calculations of this type are dis-
cussed in Sect. 3.3 and illustrated in Sects. 3.4, 4 and 9. 

To this point, only the effects of epistemic uncer-
tainty on the margin M(R, P) have been considered.  
Specifically, M(R, P) has been assumed to be a func-
tion M(R, P| eM) of a vector eM of epistemically uncer-
tain analysis inputs.  However, many analyses involve 
an additional class of uncertainty known as aleatory 
uncertainty (Sect. 2). Specifically, aleatory uncertainty 
corresponds to some form of random variability associ-
ated with the system under study. As examples, such 
variability might correspond to (i) variability in a popu-
lation of manufactured devices, (ii) variability in the 
effects of aging processes, (iii) variability in the condi-
tions associated with a particular class of accidents, or 
(iv) variability over time in the environmental condi-
tions that a single device or a population of devices is 
subjected to.  Alternative descriptors used for aleatory 
uncertainty include variability, stochastic uncertainty, 
and irreducible uncertainty. 

Many analyses use probability to represent both 
aleatory uncertainty and epistemic uncertainty.  The 
mathematics of probability is the same for both uncer-
tainty representations; however, the concepts being 
represented are very different.  The distinction between 
aleatory uncertainty and epistemic uncertainty is al-
ready present in the formal development of probability 
that began in the late sixteen hundreds. The distinction 
between aleatory uncertainty and epistemic uncertainty 
is fundamental to the design, implementation and inter-
pretation of analyses for many complex systems.   

If an analysis incorporates the effects of aleatory 
uncertainty, then underlying the analysis there must be 
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a probability space (A, A, pA) for aleatory uncertainty.  
Each element a of A is a vector 

[ ]1 2, ,a a= …a  (11.22) 

that characterizes one possible state of the system.  For 
example, if the failures in a population of devices over 
a specified time interval [u, v] are under consideration, 
then a might have the form 

[ ]1 2, , , , ,nn t t t= …a  (11.23) 

where 

 n = number of failed devices in time interval [u, v], 
 ti = time of failure i with u ≤ t1 ≤ t2 ≤ … ≤ tn ≤ v. 

A step up in complexity is for a to have the form 

[ ]1 1 2 2, , , , , , , ,n nn t t t= …a p p p  (11.24) 

where each pi is a vector of random properties associ-
ated with the failure at time ti.  In an actual analysis for 
a real system, the definition of a, and hence the associ-
ated probability space (A, A, pA), can be very compli-
cated. Notional analyses involving aleatory uncertainty 
are presented in Sects. 3.6, 5 and 10, and three analyses 
for real systems involving aleatory uncertainty are pre-
sented in Sect. 6.  

Similarly to the probability space (EM, EM, pEM) 
for epistemic uncertainty, the probability space (A, A, 
pA) for aleatory uncertainty is usually defined by speci-
fying conditions that define distributions for the ele-
ments of a.  For example, the probability space associ-
ated with vectors a of the form indicated in Eq. (11.23) 
might be arrived at through the assumption that device 
failures are consistent with a Poisson process defined 
by a rate λ (yr−1).  Further, the probability space associ-
ated with vectors a of the form indicated in Eq. (11.24) 
might be arrived at through the assumption again that 
device failures are consistent with a Poisson process 
defined by a rate λ and the additional specification of a 
joint probability distribution for the elements of the 
property vector p conditional on the occurrence of a 
failure at a specific time t. 

In practice, the probability space (A, A, pA) for 
aleatory uncertainty is unlikely to be precisely known.  
Specifically, many of the quantities employed in the 
definition of (A, A, pA) are likely to be uncertain in an 
epistemic sense.  For example, the occurrence of a cer-
tain type of event might be assumed to follow a Poisson 

process with a rate λ that is imprecisely known.  This 
lack of knowledge about λ is epistemic uncertainty and 
leads to uncertainty with respect to the appropriate val-
ues for probabilities that derive from λ.  The very im-
portant point being made here is that there can be, and 
usually is, epistemic uncertainty present in the charac-
terization of quantities used in the definition of the 
probability space (A, A, pA) for aleatory uncertainty.  
For notational purposes, these quantities can be repre-
sented by a vector eA in analogy to the vectors eR and 
eP introduced in conjunction with Eq. (11.16).  With 
the introduction of eA, there is now a probability space 
(EA, EA, pEA) that characterizes the uncertainty in eA 
and is developed in a manner to similar to that previ-
ously described for the probability space (EM, EM, 
pEM) associated with eM. For notational convenience, 
the effects of eA on (A, A, pA) can be indicated by rep-
resenting the density function associated with (A, A, 
pA) by dA(a|eA).  In general, eA can affect the definition 
of the sample space A but, for notational simplicity, 
this potential effect is typically not indicated  

The vector of epistemically uncertain analysis in-
puts now has the form 

[ ] [ ], , , ,A R P A M= =e e e e e e  (11.25) 

and the corresponding probability space (E, E, pE) de-
rives from the properties of the probability spaces (EA, 
EA, pEA) and (EM, EM, pEM).    

The consideration of the uncertainty in margins is 
now returned to.  In concept, each possible realization a 
of aleatory uncertainty could lead to a different per-
formance of the system under consideration.  Notation-
ally, this performance can be represented by a vector 

( ) ( ) ( ) ( )1 2 ,, , , ,A P A P A P A nO PP P P⎡ ⎤= ⎣ ⎦…P a e a e a e a e
 (11.26) 

where PAj(a|eP), j = 1, 2, …, nO, are outcomes of an 
analysis given realization a of aleatory uncertainty (i.e., 
a ∈ A) and conditional on realization eP of epistemic 
uncertainty (i.e., e = [eA, eR, eP] ∈ E).  As an example 
from reactor risk assessment, PA1(a|eP) could be the 
number of early fatalities, PA2(a|eP) could be the num-
ber of latent cancer fatalities, and PA3(a|eP) could be 
the economic cost for a reactor accident with properties 
defined by the vector a and conditional on the values 
for the epistemically uncertain analysis inputs contained 
in eP. In the examples of Sects. 6.1 and 6.2, nO equals 
5 and 2, respectively.  
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In practice, performance measures used in com-
parisons with requirements are likely to be based on the 
distributions for the individual elements PAj(a|eP) of 
PA(a|eP) that derive from aleatory uncertainty.  In this 
situation, the performance measures used in compari-
sons with requirements are defined by a functional rela-
tionship of the form 

( )
( ) ( ) ( )1 2, , , , , , ,

A P A

P A P A nR P AP P

⎡ ⎤
⎣ ⎦
= ⎡ ⎤⎣ ⎦…

P P a e e

e e e e P e e
(11.27) 

where the conditionality on eA in P[PA(a|eP)|eA] (i.e., 
“|eA”) indicates that operations on the elements 
PAj(a|eP), j = 1, 2, …, nO, of PA(a|eP) to obtain the 
elements Pj(eP,eA), j = 1, 2, …, nR, of P[PA(a|eP)|eA] 
are conditional on the probability space (A, A, pA) as-
sociated with eA. 

Three examples of possible definitions for Pj(eP, 
eA) follow.  First, Pj(eP, eA) might be the expected 
value for PAj(a|eP) associated with the probability 
space (A, A, pA) that derives from eA.  In this case, 

( ) ( ) ( ), d .j P A Aj P A AP P d A= ∫e e a e a e
A

 (11.28) 

Second, Pj(eP, eA) might be the q quantile (e.g., q = 
0.05, 0.5, 0.95) of the distribution of PAj(a|eP) associated 
with the probability space (A, A, pA) that derives from 
eA.  In this case, Pj(eP, eA) is the value of P such that 

( ) ( ) d .P Aj P A Aq P d Aδ ⎡ ⎤= ⎣ ⎦∫A a e a e  (11.29) 

Third, Pj(eP, eA) might be the CCDF for PAj(a|eP) that 
derives from the probability space (A, A, pA) associated 
with eA.  In this case, Pj(eP, eA) is a function defined 
by the points 

( ) ( ), d ,P Aj P A AP P d Aδ⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫ a e a e
A

 (11.30) 

with problem specific knowledge used to limit the 
range of P.  The expressions in Eqs. (11.28) – (11.30)
may seem complicated, but expressions of this type are 
routinely approximated in risk assessments for complex 
systems (e.g., see  analyses in Sect. 6).  In practice, the 
definitions of the elements Pj(eP, eA) of P[PA(a|eP)-
|eA] could be more or less complex than indicated in 
Eqs. (11.28) – (11.30). 

The determination of uncertainty in margins is now 
returned to.  Once the determination P[PA(a|eP)|eA] is 

completed, the determination and representation of the 
uncertainty in margins is the same as previously dis-
cussed in conjunction with Eqs. (11.13) – (11.16).  Spe-
cifically, margin is defined by a function M(R, P|e), 
which now has the form 

( ) ( ) ( ){ }
[ ]

, , ,

, , ,

R A P A

A R P

M M ⎡ ⎤= ⎣ ⎦
=

R P e R e P P a e e

e e e e
 (11.31) 

when stated in complete generality. In turn, the uncer-
tainty in the margin M(R, P|e) is defined as indicated in 
Eqs. (11.18) and (11.19) and, in practice, is usually 
approximated as indicated in Eqs. (11.20) and (11.21). 
Examples of the uncertainty in margin results that de-
rive from aleatory uncertainty are presented in Sects. 5 
and 10 for notional analyses and in Sect. 6 for three real 
analyses.  

As noted in conjunction with Eqs. (11.7) – (11.11), 
the meaning and analysis of margin is more complex 
when M(R, P|e) is a vector rather than a scalar.  Also, it 
is anticipated that eR will not be present in most analy-
ses. 

11.3 Quantification in QMU 

Quantification in the context of QMU is now con-
sidered.  Such quantification has two distinct and im-
portant parts.  The first part is the definition of the ma-
thematical components that underlie QMU in a particu-
lar analysis.  The second part is the actual performance 
of the necessary calculations with these components to 
obtain a numerical representation for the uncertainty 
associated with the margin or margins of interest.  Two 
cases are considered:  (i) Analyses involving only epis-
temic uncertainty, and (ii) Analyses involving both 
aleatory and epistemic uncertainty. 

Case 1.  The case involving only epistemic uncer-
tainty is considered first.  For full generality, the vec-
tors eR and eP of epistemically uncertain quantities are 
assumed to be present in the analysis under considera-
tion, although this may not be the case for a specific 
analysis. In particular, eR is likely to be absent from 
many analyses, with the result that requirements placed 
on the system would be characterized by a single vector 
R rather than by a vector function R(eR). 

For this case, the first part of the quantification 
process entails the definition (i.e., mathematical charac-
terization) of four analysis components:  (i) a function 
R(eR) that defines the requirements that are to be met 
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conditional on realization eR of epistemic uncertainty, 
(ii) a function P(eP) that defines system performance 
conditional on realization eP of epistemic uncertainty, 
(iii) a probability space (EM, EM, pEM) that character-
izes the epistemic uncertainty associated with eM = [eR, 
eP], and (iv) a function M(R, P|e) = M[R(eR), P(eP)] 
that defines the margin associated with R(eR) and 
P(eP).  In many analyses, R(eR) and P(eP) may be one 
dimensional (i.e., scalars); (EM, EM, pEM) will proba-
bly be defined by specifying distributions for the indi-
vidual elements of eM; and P(eP) is likely to be a com-
plex mathematical structure (e.g., a system of nonlinear 
partial differential equations) that requires a sophisti-
cated computer program for evaluation.  If the preced-
ing quantities are not clearly defined, then the analysis 
is inadequately documented and, as a consequence, it is 
difficult to know what any QMU results obtained from 
the analysis really mean. 

The second part of quantification in this case in-
volves carrying out the calculations required to obtain 
an approximation to the distribution of M[R(eR), 
P(eP)] that results from the epistemic uncertainty asso-
ciated with eM = [eR, eP] and characterized by the 
probability space (EM, EM, pEM).  For most analyses, 
it is anticipated that a sampling-based approach of the 
form indicated in conjunction with Eqs. (11.18) – 
(11.21) will be used to numerically approximate the 
distribution that characterizes the uncertainty in the 
margin M(R, P|e) = M[R(eR), P(eP)].  The major com-
putational cost in this quantification will most likely be 
the numerical evaluation of P(ePi) in the sums indi-
cated in Eqs. (11.20) and (11.21) as the evaluation of 
R(eRi) and M[R(eRi), P(ePi)] are unlikely to be nu-
merically demanding. However, it is important to rec-
ognize that human cost rather than computational cost 
will dominate the cost of most analyses. 

Case 2.  The case involving both aleatory uncer-
tainty and epistemic uncertainty is now considered.  For 
full generality, the vectors eA, eR, and eP of epistemi-
cally uncertain quantities are assumed to be present in 
the analysis under consideration, although this may not 
be the situation for a specific analysis.  As for Case 1, 
eR is likely to be absent from many analyses, with the 
result that the requirements placed on the system would 
be characterized by a single vector R rather than by a 
vector function R(eR). 

For this case, the first part of the quantification 
process entails the definition (i.e., mathematical charac-
terization) of six analysis components:  (i) a function 
R(eR) that defines the requirements that are to be met 
conditional on realization eR of epistemic uncertainty, 

(ii) a function PA(a|eP) the defines system performance 
given realization a of aleatory uncertainty and condi-
tional on realization eP of epistemic uncertainty (see 
Eq. (11.26)), (iii) a probability space (A, A, pA) that 
characterizes aleatory uncertainty conditional on reali-
zation eA of epistemic uncertainty (see Eqs. (11.22) –
(11.24)), (iv) a probability space (E, E, pE) that charac-
terizes the epistemic uncertainty associated with e = 
[eA, eR, eP] (see Eq. (11.25)), (v) a function 
P[PA(a|eP)|eA] that determines summary measures of 
system behavior that derive from aleatory uncertainty 
for comparison with the requirements contained in 
R(eR) conditional on realizations eP and eA of epis-
temic uncertainty (see Eqs. (11.27) – (11.30)), and (vi) 
a function { ( ),RM R e  [ ( ) | ]}A P AP P a e e  that defines 
a margin based on requirement R(eR) and performance 
P[PA(a|eP)|eA] conditional on realization e = [eA, eR, 
eP] of epistemic uncertainty (see Eq. (11.31)). 

The second part of quantification for Case 2 in-
volves carrying out the calculations required to obtain an 
approximation to the distribution of M(R, P|e) = 
M{R(eR), [ ( ) ]}A P AP P a e e  that results from the epis-
temic uncertainty associated with e = [eA, eR, eP] and 
characterized by the probability space (E, E, pE).  As for 
Case 1, it is anticipated that most analyses will use a 
sampling-based approach of the form indicated in con-
junction with Eqs. (11.18) – (11.21) to numerically ap-
proximate the distribution that characterizes the uncer-
tainty in the margin M(R, P|e). Interior to this calcula-
tion for a given sample element ei = [eAi, eRi, ePi] of the 
form indicated in conjunction with Eqs. (11.20) and 
(11.21), it is necessary to estimate (i) R(eRi), (ii) 
P[PA(a|ePi)|eAi] and (iii) M{R(eRi), P[PA(a|ePi)|eAi]}.  
The estimation or, most likely, exact determination of the 
quantities in (i) and (iii) is anticipated to be straightfor-
ward in most analyses.  In contrast, the determination of 
P[PA(a|ePi)|eAi] could be a major computational chal-
lenge.  This challenge exists because the determination of 
P[PA(a|ePi)|eAi] must be preceded by an estimation of 
the distribution of PA(a|ePi) conditional on the probabil-
ity space (A, A, pA) for aleatory uncertainty associated 
with eAi.  In most large analyses, the major computa-
tional complexity and cost is associated with the deter-
mination of the distribution of PA(a|ePi) for each pair 
[eAi, ePi] of sampled values for eP and eA.  In many 
large analyses (e.g., probabilistic risk assessments for 
nuclear power plants; see Sect. 6.1), extensive use is 
made of fault trees and event trees in this determination.  
In addition, extensive modeling of physical processes is 
usually required.  

As is the case for the example analyses in Sect. 6, a 
great deal of careful planning and computational or-
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ganization is required to successfully carry out an 
analysis for a complex system that involves a separation 
of aleatory and epistemic uncertainty. However, with-
out this separation, the results of the analysis are likely 
to provide limited and possibly misleading insights into 
the potential behavior of the system and extent of our 
knowledge with respect to this behavior. 

11.4 Presentation of QMU Results 

Excessive simplification in the presentation of 
QMU results should be avoided. For analyses that in-
volve only epistemic uncertainty, the best presentation 
format is provided by cumulative or complementary 
cumulative summaries of the uncertainty in analysis 
results of interest (i.e., by CDFs or CCDFs if probabil-
ity is used to characterize epistemic uncertainty) with a 
vertical line used to indicate the specified requirement 
on system performance (e.g., see Fig. 4.1 and more 
generally Fig. 9.2). Specifically, cumulative summaries 
are appropriate when system performance has a speci-
fied lower bound (Figs. 4.1a and 9.2a), and complemen-
tary cumulative summaries are appropriate when sys-
tem performance has a specified upper bound (Figs. 
4.1b and 9.2b). This presentation format clearly shows 
the actual values for the performance measure of inter-
est, the uncertainty in this measure, the specified bound 
on this measure, and the implications of uncertainty 
with respect to compliance with the specified bound. 

A less informative presentation is provided by a 
cumulative summary of the uncertainty in the margin 
for the system performance measure and associated 
requirement under consideration (e.g., see Figs. 4.2 and 
9.3). Cumulative summaries are appropriate for margins 
because small margins and, in particular, negative mar-
gins are undesirable. Margin summaries (Figs. 4.2 and 
9.3) are less informative than performance summaries 
(Figs. 4.1 and 9.2) because they obscure the actual val-
ue of the performance measure and the relationship of 
this measure to its associated requirement. Of course, 
given the numerical value of the requirement, it is ma-
thematically possible to convert from margin values to 
the values for the performance measure. However, this 
is not as easy as simply directly looking at the summary 
of the actual values for the performance measure and its 
associated requirement as illustrated in Figs. 4.1 and 
9.2. If it is desired to show margin results as illustrated 
in Figs. 4.2 and 9.3, it is recommended that actual per-
formance results as illustrated in Figs. 4.1 and 9.2 also 
be shown as this will help the reader recognize the na-
ture of the performance results that give rise to the pre-
sented margins. 

When margins arise from complex requirements 
(e.g., upper and lower bounds on performance over a 
time interval as illustrated in Sects. 4.3 and 9.5), the 
display of the actual performance is more complex than 
simply showing a cumulative or complementary cumu-
lative summary for a single result. However, some way 
of showing the actual performance of the system should 
be sought. For the example system and associated re-
quirements in Sects. 4.3 and 9.5, this is accomplished 
by displaying the time-dependent behavior of the sys-
tem with associated the required bounds on this behav-
ior (Fig. 4.9) in addition to cumulative margin results  
(Figs. 4.10 and 9.8). In general, the exact form of such 
displays will be analysis specific.  

The statement is often made that the final outcome 
of a QMU analysis should be a summary measure of the 
form “margin/uncertainty”. For purposes of illustration, 
summary measures of this form are extensively pre-
sented in Sects. 4, 5 and 6. However, these “mar-
gin/uncertainty” results provide a very poor representa-
tion of the outcome of a QMU analysis as too much 
meaningful information is lost when the results of a 
complex analysis are reduced to a single number. After 
all, the fundamental motivation for performing an un-
certainty analysis derives from the recognition that it is 
not possible to use a single number to represent the 
existing knowledge about the behavior of the system. 
For example, the “margin/uncertainty” results in Eqs. 
(4.42) and (4.43) do not adequately capture the more 
detailed results in Figs. 4.9 and 4.10 that they are de-
rived from and are intended to summarize. This same 
pattern of lost information with “margin/uncertainty” 
summaries for QMU analyses is repeated for all exam-
ples presented in Sects. 4, 5 and 6. Bluntly put, “mar-
gin/uncertainty” results do not contain enough informa-
tion to provide a basis for appropriately informed deci-
sions (see Sect. 4.5 for additional discussion).  

For analyses that involve aleatory and epistemic 
uncertainty, presentations of analysis results should 
include displays that clearly show the separate effects 
of aleatory uncertainty and epistemic uncertainty. As an 
example, the analyses presented in Sects. 5.1 and 10.3 
involve aleatory and epistemic uncertainty, with (i) the 
the effects of aleatory uncertainty conditional on spe-
cific realizations of epistemic uncertainty shown in Fig. 
5.1a, (ii) the effects of epistemic uncertainty on the per-
formance quantity of interest shown in Figs. 5.1b and 
10.2, and (iii) the effects of epistemic uncertainty on 
margin shown in Figs. 5.2 and 10.3. This presentation 
format provides a more informative transfer of informa-
tion than the “margin/uncertainty” results shown in Eqs. 
(5.11) − (5.14) and intended to summarize the informa-
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tion contained in Figs. 5.1a and 5.1b. For complex ana-
lyses involving aleatory and epistemic uncertainty of 
the form illustrated in Sect. 6, single “mar-
gin/uncertainty” summaries simply cannot capture the 
information provided by the analysis about system be-
havior and the uncertainty present in our ability to pre-
dict this behavior. 

In addition to uncertainty results, a QMU analysis 
should also present sensitivity analysis results (Sect. 7). 
Such results play a fundamental role in analyses of 
complex systems by providing (i) insights on system 
behavior, (ii) guidance on how to invest resources to 
reduce uncertainty in the assessment of system behav-
ior, and (iii) a powerful tool for analysis verification. 

An uncertainty analysis without an associated sensitiv-
ity analysis is incomplete.  

A fundamental part of the presentation of any 
QMU analysis should be quality documentation. Unfor-
tunately, many large analyses are not well documented. 
This is probably due in part to a tendency to underesti-
mate the time and resources required to produce quality 
documentation for a large analysis. The reality is that it 
can never be expected that everyone will agree with the 
manner in which a large analysis is conducted and con-
sequently with the results of that analysis. However, 
everyone should be able to know exactly what was as-
sumed and done in the analysis. The indicated knowl-
edge can only result through quality documentation. 
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Historical Relationship Between Performance Assessment 
for Radioactive Waste Disposal and Other Types of 
Risk Assessment 

Rob P. Rechard’ 

This article describes the evolution of the process for assessing the hazards of a geologic 
disposal system for radioactive waste and, similarly, nuclear power reactors, and the relation- 
ship of this process with other assessments of risk, particularly assessments of hazards from 
manufactured carcinogenic chemicals during use and disposal. This perspective reviews the 
common history of scientific concepts for risk assessment developed until the 1950s. Computa- 
tional tools and techniques developed in the late 1950s and early 1960s to analyze the 
reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic 
risk assessment of nuclear power reactors, a technology for which behavior was unknown. 
In turn, these analyses became an important foundation for performance assessment of 
nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the 
environment from chemical hazards is built on methods for assessing the dose response of 
radionuclides in the 1950s. Despite a shared background, however, societal events, often in 
the form of legislation, have affected the development path for risk assessment for human 
health, producing dissimilarities between these risk assessments and those for nuclear facili- 
ties. An important difference is the regulator’s interest in accounting for uncertainty. 

KEY WORDS Risk assessment; probabilistic risk assessment; performance assessment; policy analysis; 
history of technology. 

1. INTRODUCTION article compiles and summarizes events leading up 
to and following this EPA-mandated assessment in 
40 CFR 191 (Title 40, Code of Federal Regulations, 
Part 191) that have influenced risk assessments of 
geologic disposal. 

Fear of harm ought to be proportional not merely to 
the gravity of the harm, but also to the probability of 
the event. . . . 

So wrote Antoine Arnauld and others residing in 
the Port Royal Monastery, France, in about 1660.(12) 
More than 300 years later, the U.S. Environmental 
Protection Agency (EPA) mandated an examination 
of the relationship between the “gravity of harm” 
and the “probability of the event” in the regulatory 
standard for disposal of radioactive wastes. This 

I Performance Assessment Department (6849), Sandia National 

1.1. Selection of Historical Material 

This article is intended to provide a historical 
context for the issues presented on disposal of radio- 
active waste in this special issue of Risk Analysis by 
compiling and summaking i n f ~ ~ a t i o n  concerning 
historical events that have influenced risk assess- Laboratories, Albuquerque, NM 87185-0779. 
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ments of geologic disposal. This compendium focuses 
heavily on events at Sandia National Laboratories 
(Sandia or SNL) because of its extensive role in risk 
assessments for nuclear facilities, with significant in- 
ternational events presented in some cases. To 
broaden this context, however, events and their ef- 
fects on other large-scale policy analyses of risk, par- 
ticularly chemical carcinogens, are also presented. 
For example, legislation and select judicial decisions 
that have helped to mold risk assessments for hazard- 
ous chemicals are included. Although policy analysis 
in general and risk assessment in particular have re- 
ceived, and continue to receive, criticism, the histori- 
cal aspects of the criticism are not included in this 
article. Ewing et al. (this issue) discusses current criti- 
cisms of performance assessments (PAS). Herein, risk 
assessment is presumed to be an important contribu- 
tor to risk management decisions, but only one of 
several possible inputs. 

The material is presented chronologically, within 
five sections that cover four major time periods. Sec- 
tion 2 of this article reviews risk management re- 
sponses of ancient civilizations to hazards and the 
development of risk concepts (antiquity-1940, e.g., 
probability theory). Computational methods, along 
with limited application of reliability techniques, are 
discussed in Section 3 (1940-1970). Section 4 focuses 
on risk assessment for nuclear power reactors and its 
rudimentary application to geologic disposal systems 
(1970-1985); Section 5 focuses on the many differing 
legislative and judicial events that have influenced 
the use of risk assessments for hazardous chemicals 
(1970-present). During this period, government pol- 
icy decisions based on risk assessments have been 
encouraged, and many diverse applications of risk 
assessment on different physical systems have been 
implemented. Section 6 serves as an introduction to 
this special issue by providing the historical context 
for the risk assessments of two prominent radioactive 
waste disposal programs in the United States, the 
Waste Isolation Pilot Plant (WIPP) for transuranic 
waste, and the Yucca Mountain Project (YMP), pri- 
marily for commercial spent nuclear fuel. 

1.2. Risk Assessment Process 

Although risk has several connotations (if not 
denotations) inside and outside the profession of risk 
analysis, risk is generally used in this article to express 
some measure that combines “the gravity of harm” 
to something valued by society and “the probability 

of the event.” Frequently, within the risk profession, 
the measure of risk is the expected value of the conse- 
quence (e.g., probability times consequence based on 
average values) as used in simple annuity analysis as 
far back as 1660. For financial investments, where the 
word “risk” was used as early as 1776, the measure is 
often the variance of the return on investment. For 
situations with large uncertainty, such as disposal of 
radioactive wastes, the measure of risk is the entire 
distribution of the possible consequences as required 
by the EPA in 1985 in 40 CFR 191. 

Similar to its use by the National Academy of 
Sciences (NAS) in 1983j3)risk management is used to 
describe any means whereby an individual or society 
attempts to decide whether an activity is safe and, if 
not, how to reduce the risks of that activity, select 
options, and prioritize among options. It is an activity 
that has been performed for thousands of years. Safe 
is used herein as defined by Lowrance in 1976, that 
is, having risks that are judged acceptable by an indi- 
vidual or a society (through a political process in the 
latter case).(45) As used in this journal since 1980, risk 
analysis describes all facets of the risk topic such as 
management and risk assessment. 

In the late 1970s and early 198Os, risk assess- 
ments that “quantified” risk through the use of math- 
ematical models were called quantitative risk assess- 
ments, but the term is not often used now because 
modeling is so pervasive. Instead, risk assessment is 
used here to denote all systematic processes that esti- 
mate a measure of risk. Risk assessment is not a 
distinct branch of science.@) Instead, it is a type of 
policy analysis of what can go wrong in human affairs, 
a “hybrid discipline,”(’) in which the current state 
of scientific and technological knowledge is made 
accessible to society as input to risk management 
decisions, with time and resource constraints speci- 
fied by the policy decision makers (or tolerated by 
society). Important components of risk assessment 
were not performed until after the late 1950s, yet 
the development of ideas and tools within several 
branches of science before and after this time fur- 
thered risk assessment as a tool for decision making 
(Fig. 1). 

Because of a common foundation with system 
analysis, the process of assessing the risk from various 
hazards is similar. Indeed, the founders of the Society 
for Risk Analysis recognized these shared ideas and 
brought practitioners together in 1980 to encourage 
and enhance the usefulness of risk concepts to soci- 
ety. In general, risk assessment is comprised of up to 
seven stepsc9): (0) identify appropriate measures of 
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Fig. 1. Developments from various branches of science that contribute to risk assessments of nuclear facilities and hazardous 
chemical use and disposal. 
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risk and corresponding risk limits; (1) define and 
characterize the system and agents acting on the sys- 
tem; (2) identify sources of hazards and, if desired, 
form scenarios; (3) quantify uncertainty of factors or 
parameters and evaluate probability of scenarios (if 
formed); (4) evaluate the consequences by determin- 
ing the response to exposure and, possibly, the path- 
way to exposure; ( 5 )  combine the evaluated conse- 
quences and probabilities and compare them with 
risk limits; and (6) evaluate sensitivity of results to 
changes in parameters to gain further understanding. 
As defined here, these steps include the four steps 
proposed by Lowrance in 1976(3.4) and refined by the 
NAS in 1983J3) 

The seven steps provide answers to three funda- 
mental questions of risk assessment by Kaplan and 
Garrick in 1981(9-12): What hazards can occur? What 
is the probability of these hazards? What are the 
consequences potentially caused by these hazards? 
As with any scientific modeling or policy process, 
the boundaries between steps may overlap. More 
important, an analyst may need to cycle through sev- 
eral during an activity such as model building 
or defining risk goals, for example. Hence, the steps 
are not always truly sequential. 

Although the general process of performing a 
risk assessment for hazards is similar, societal and 
legislative events during the mid-1970s produced dis- 
similarities in the emphasis and use of these concepts. 
In the assessment process, these dissimilarities are 
reflected in the use of specific terms used in this 
article. For risk assessments of nuclear facilities, two 
specific terms are used: probabilistic risk assessment 
(PRA) and performance assessment (PA). 

Probabilistic risk assessment (PRA)  denotes a 
risk assessment that specifically evaluates the uncer- 
tainty of knowledge from various sources in the anal- 
ysis. Although not limited to such usage in this article, 
the term also frequently connotes (based on the use 
in the Reactor Safety Study in 1975(14)) a risk assess- 
ment of risk to health over a human lifetime from 
an engineered system such as a nuclear power plant, 
where failures are short-term events (in relation to 
the life of the system). 

In 1991, the Nuclear Energy Agency of the Euro- 
pean Organisation for Economic Co-operation and 
Development (OECD/NEA) defined performance 
assessmenf (PA) as “an analysis to predict the perfor- 
mance of a system or subsystem, followed by a com- 
parison of the results of such analysis with appro- 
priate standards and Given this definition 
and assuming the performance criteria are risk based 

and uncertainties are evaluated, PA and PRA are 
synonymous within the United States. (A possible 
exception is the implied comparison with established 
criteria.) However, outside the United States, PA 
does not always imply an evaluation of uncertain- 
ties(’? hence, a distinction between PA and PRA is 
maintained. Herein, a PA is used during discussions 
of a risk assessment, with or without inclusion of 
uncertainties, to illustrate possible behavior over geo- 
logic time scales of a radioactive waste disposal sys- 
tem composed of both engineered and natural com- 
ponents and including a comparison of the results to 
regulatory criteria (e.g., 40 CFR 191). In such a sys- 
tem, the natural components evolve rather than 
“fail,” as in a nuclear power plant. 

Risk assessment is used generically during discus- 
sions of risk assessment of hazardous chemicals, de- 
spite a subtle difference between risk assessments for 
hazardous chemicals and those of nuclear facilities in 
that assessments for hazardous chemicals have a less 
intimate connection to systems (engineering) analysis 
(Fig. 1). However, a distinct and important branch of 
risk assessment of hazardous chemicals identified 
since 1976 by the EPA is carcinogenic risk assessment 
(Fig. l),  as noted in Volume 41 of the Federal Register, 
page 21402 (41 FR 21402). Carcinogenic risk assess- 
ment is conditional on the occurrence of external ex- 
posure to the carcinogen (i.e., the assessment omits 
the pathway analysis of exposure external to the hu- 
man and the probability of exposure occurring). This 
type of assessment has also frequently omitted analy- 
sis of uncertainty in model parameters, uncertainty 
from alternative conceptual models, and parameter 
sensitivity. Because the assessment focuses on the re- 
sponse of the human receptor, carcinogenic risk as- 
sessment is termed a dose-response assessment 
herein to avoid confusion during discussion of other 
risk assessments for chemical disposal or ecological 
evaluations that encompass more steps. 

2. CONTRIBUTORS TO RISK CONCEPTS 

2.1. Rudimentary Hazard Identification and 
Risk Management 

Occasional, rudimentary risk management was 
applied by society prior to 1600, as noted by several 
 author^.(^^'^-^^) In these cases, society identified a haz- 
ard (step 2 of a risk assessment) and then pragmati- 
cally adopted risk management controls (i.e., insur- 
ance or government controls). Hazard identification, 
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directly followed by risk management controls, is still 
in use today. 

An early response to a hazard was to spread risk 
among several social groups by issuing insurance, 
such as bottomry contracts in the Mediterranean in 
the 1600s BC. This method had been formalized by 
Hammurabi, King of Babylon, in 1758 BC, whereby 
risk of maritime loss was borne by money lenders in 
exchange for interest. Also, by AD 230, the Romans 
had rudimentary life insurance through societies (col- 
legia) formed to pay burial expenses of its mem- 
b e r ~ ( ~ . ' ~ )  (Fig. 2). 

Government intervention to control risk was an- 
other technique adopted by ancient civilizations. In 
1758 BC, Hammurabi mandated dam maintenance 
with strict liability for property destroyed when the 
owner failed to maintain his dam.(21) The enforcement 
of strict liability presumably encouraged wise build- 
ing practices, which have continued throughout the 
centuries and been reinforced by canons of ethics. For 
example, engineers in the 1930s and 1940s developed 
procedures for determining plausible upper bounds 
on floods (plausible maximum flood) for the emer- 
gency spillway design on dams. 

In the United States, an early attempt at risk 
management of new technology was performed via 
the mandated tests and inspections by U.S. Congress 
to prevent deaths from boiler explosions on steam- 
boats in 1838. Although this legislation failed to 
reduce explosions because no data or experience 
existed on necessary tests and useful inspections, a 
report prepared at personal expense by Guthrie, 
an Illinois engineer, provided the knowledge for 
Congress to pass a more effective law in 1852 and 
establish a regulatory agency, with Guthrie as its first 
adrninistrator.(lg) 

These risk management controls were govern- 
ment intervention after the fact. Government inter- 
vention before an incident, which required the ability 
to recognize and differentiate among certain types 
of behavior or actions as hazardous and nonhazard- 
ous, and an ability to predict consequences, was not 
practiced until the 20th century. As described later 
in this article, it was employed first in the early 1900s 
for health hazards causing immediate harm, and then 
in the mid-1900s for hazards causing harm over the 
long term. 

2.2. Probability Foundation and Application 
to Annuities 

Probability theory, of which a rudimentary form 
had emerged by 1660, spread relatively quickly as its 

9ooo BC - Use of interest rates In Mesopotamia for 
coping with risks. 
1758 BC - King of Babylon. Hammurabi. (1) formalizes 
concept of bottomry Insurance with interest contracts 
on maritime vessai developed; (2) sets building 
code on houses that decrees builder loses his life if 
house collapses and kills occupants; and (3) sets 
maintenance code on dams that decrees owner sold 
as slave to pay for damages if dam is not maintained 
and it fails. 

230 - Romans construct life expectancy table for sell- 
ing 'annuities' for burbl expenses. Average life expect- 
ancy 20-30 yr. 

1654 - Pascal and Fermat correspond on splitting a 
wager on an unfinished game; solution requires 
probability concepts. 

ability theory. 

when arguing the existence of God. 

aspects of unceitainty: aleatoric (chance) and 
epistemic (degrees of belief or extent of knowledge). 
Authors of Port Royal Logic argue 'Fear of harm ought 
to be proportional not merely lo the gravity of the harm, 
but also the probability of the event. . .' Graunt 
publishes his famous life expectancy tables based on 
London mortality recorded in parish records. 

0 1666 - Great London fire destroys 3 4  of city, prompts 
London to develop fire insurance and form municipal 
fire deparlments to reduce risks. 

use 0 1687 - Edward Lloyd opens coffee house that serves 
as headguaners for marine underwriters to issue 
insurance to cope with mariiime risk. 

London's Royal Society. 

1657 - Huygens publishes widely read work on prob- 

0 1858 - Pascal develops aspects of decision theory 

1662 - Probability concepts widely known include dual 

0 1893 - Halley publishes impfoved life tables for 

1754 Baves' lhaorem 

1816 Gauss discovers 

1733 - de Moivre derives normal probability density 
function (PDF) based on two parameters. mean of 
samples and dispersion or variance of samples. 

0 1738 - Daniel Bernoulli introduces concept of utility to 
express usefulness or human satisfaction for decision 
analysis. 

1754 - English minister. Bayes, states theorem on how 
to modify a priir probability estimate as new information 
on the probability becmes available. 

averages of a series of samples will approach a normal 
density fmctm regardless of the underlying popuia- 
tion distribution as the number of samples increases. 

0 1809 - Laplace states central limit theorem. i.e.. the 

meatumment 

to n:Ed emslmllar 1816- Gauss discovers distribution of measurement 
error approximated by normal distnbution 

1838 Baler explosions on 1831) - US. Congress passes act requiring boiler 
testing and Inspection because of deaths from 
steamboat explosions First U S. regulation 
of a technology 

0 1852 - Because boiler expioslons had conbnued, Con- 
gress passes strlcter act on boiler testing and creates 

& 

regdtory ww 

Fig. 2. Early events prompting mitigation and development of 
probability theory (antiquity to 1940). 

usefulness was recognized.") For example, the Dutch 
government benefited from this theory because, un- 
like the Romans of early times, the Dutch often lost 
money when selling life annuities to finance public 
works. The use of probability theory, as well 
as tracking frequencies of disaster and death 
(e.g., Graunt's tables of life expectancy in 1662 for 
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London(22)) eventually placed life annuities on a firm 
foundation.(’2) 

A rudimentary application of probability theory 
was determining the minimum premium to charge 
for a death benefit in relation to the expected cost: 
frequency of death for a person of a certain age or 
older multiplied by the expected benefit (i.e., “aver- 
age” cost or consequence to insurance company). 
Thus, the concept of risk as the expected (mean) 
consequence was rapidly developed and applied to 
insurance.2 However, the steps for performing a for- 
mal risk assessment were far from fully developed, 
and determining the distribution of the consequence, 
as a more complete characterization of risk, would 
not occur until the 20th century. 

23. Assessing Human Health 

Health and Hazardous Substances 

As early as 500 BC, a relationship was observed 
between swamps and diseases such as malaria. In 
his writings, Hippocrates (460-377 BC) advised that 
rainwater should be strained and boiled to maintain 
health$=) The Romans noted health hazards from 
mining (beyond those incurred by a mine collapse) 
and metal use, as did German physicians in the 1400s 
at two mines in S a x ~ n y . ~  With the increased concen- 
tration of people in towns during the Industrial Revo- 
lution in the 1700s and 18OOs, relationships between 
occupations, personal habits, living conditions, and 
overall health were more widely observed. Examples 
include observations by Dr. John Snow who, in 1854, 
graphically linked cholera outbreaks to contaminated 
water from one well by means of a map of central 
London (Fig. 3).(=J6) 

Hazard identification followed by increased san- 
itation, better working conditions, and improved 
medical services had increased life expectancy in the 
United States to approximately 50 years by 1900, 
a doubling of the life expectancy of the Romans; 

*The close association of the word “risk” with “insurance” is 
possible because the word “risk” entered the English language 
around 1660, just as probability theory emerged, from the French 
word “risque,” which means to expose to hazard.’=) The Oxford 
English Dictionary noted a usage apart from insurance or uncer- 
tainty, beginning in the 1900s. in relation to finances (“whether 
the capital owned . . . was not in risk . . .r’).(24) 

’The cause of the high death rates in German mines was later 
discovered to be from silicosis, tuberculosis, and lung cancer 
caused by high concentrations of radon gas.(m) 

however, the leading cause of death was still infec- 
tious diseases (e.g., pneumonia, influenza, tubercu- 
losis). 

Control of Health Risks 

From observations about relationships between 
living conditions and health came efforts to protect 
the public from impure or untested chemicals in food 
and drugs. An early attempt to mitigate health risks 
was an English law, Assize of Bread, passed in 1263, 
making it unlawful to sell food “unwholesome to 
man’s body.”(I7J7) The first large-scale attempt to miti- 
gate health risks of society in the United States oc- 
curred in 1813, when Congress passed the Federal 
Vaccine Act (2 Stat. 806) to test the smallpox vaccine 
developed by E. Jenner, a British physician in 1796.(”) 
Prior to this time, some private doctors had inocu- 
lated individuals at their request (e.g., Thomas Jeffer- 
son in 1766) using pus from smallpox victims in the 
hope of causing a “light” case of smallpox. The value 
of this procedure, which carried a moderate probabil- 
ity of inducing a deadly case of smallpox, was exam- 
ined by Laplace in 1792.(19) Further attempts to con- 
trol health risks included the 1906 passage of the Pure 
Food and Drug Act (Public Law 59-384 [34 Stat. 
768]), whose main impetus was widespread fraud in 
packaging, and the more stringent Federal Food, 
Drug, and Cosmetic Act in 1938 (Public Law 75-717 
[52 Stat. 10401). 

By 1940, life expectancy in the United States 
had increased to 63 years. Knowledge of the sources 
of infectious diseases (Pasteur in 1864), and introduc- 
tion of coagulation (1884), filtration (1892), and chlo- 
rination (1908) of water supplies,(=) had so greatly 
reduced incidence of deadly infections that degenera- 
tive diseases, such as heart disease and cancer, be- 
came the leading cause of death. 

Dose- Response Assessment 

The opinion that effects of a chemical substance 
could range from beneficial to harmful, based on 
dose, was expressed as early as 1567.(1727) Similar 
observations in this century engendered the field 
of public health and the need to evaluate a safe 
level of exposure to such Initially, this 
was accomplished by assessing the threshold dose 
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0 500 BC ca - RelaUonship between m p a  and malaria 
noted. 

0 400 BC ca - Hippocratae admonlahea that rain water 
should be boiled and drained to malnlab health. 

0 100 BC - Romans note exgosure to bad fumes injures 
health. 

0 1283 - ~nglioh pass taw. Assize of had, making k un- 
iawiul to sell focd ’unwhobwme for man’a body.’ 

0 1900 ca - Edward I h s  use of ‘sea coar and requires 
use of wood In kilns around London. 

13W ca - Richard II sleeks to restrlct use of coal In 
London through taxation. 

0 1472 - German book l  tells goldmithr how to awM 
poisoning by lead and mercury. 

0 1500 a- Wood around London depleted and use of 
coal a necessily. 

0 1556 - German minerakgist. AgrWa, describes miner 
health probletna in Saxony. 

1587 - Physkm-alchemist Paracebus wRes: ’All 
substances are polsms. There ia none which is not a 
poison. The right dose dflerenWtes a poison from a 
remedy.’ 
1861 - In London. smoke from coal fires is liked to 
acute and chronic respiratory problems. 
1718 -Lady Monlagu of Britain proposes inoculation 
with pus from victims of smallpox to get ‘IigM. case of 
smallpox. 

1775 - Data suggests jwenib chiiney sweeps 
susceptible to scrota1 carmer at puberty. 

1781 - Tobacco mff l iked to 
pa-ge. 
1792 - Laplace examhe8 the probability of dealh with 
and withoul mal l  pox Inooulatkn. 

boy with cowpox pus from hand d milk maid to 
vaccinate against human amallpox - human experiment 
successful. 
1708 - The United Slalea begins health setvice for 
merchant salalkrs. 
1800’. - Von Bortkbvicz estimates avamge number 
of Prussbn soldiers killed from horse k k h  barred 
on Poissm distribution and compares with aha1 
deaths. 

of na(iel 

1798 - BRIsh phpichn E. JenW hoculoted By Old 

0 1813 -US. Conpress passes Federal Vaccine Act to 

0 1822 -Cancer llnked to occupational and medicinal 

0 1842 -Chadwick reports on link between health 

last smallpox vacche. 

exposures of arsenic. 

problems and lack of nutrition and sanitation in English 
slums. 

contaminated water. 

link between micmbes and infectious disease. 

merchant sailors. 

1854 - Dr. John Snow links cholera outbreaks to 

0 1864 - Pasteur Invents pasteurization and establishes 

0 1870 - US. Congress fonns Marine Hospital Service for 

0 1 0 1  - ChemicaCcoagulation filtration patented. 

0 1890 - Ohio slarts regulating coal-fired industrial 
boilers. 

0 1892 - German professor observes the value of sand 
Rhrath in prdectlon against cholera bacteria when 
cunparing Hamburg lo Atone, Germany. 

0 1894 - Phvsicians observe that skin cancer is only on 
exposed &in. 

1900- LHe expeclancy 50 yr and leading cause of 
death in the United States is infectious disease 
(pneumonia, influenza. and tuberculosis). 

0 1908 - Jun: Prompted by public concern from press 
reports of harmful substances In food and drugs in late 
1800’s. U.S. Congress passes Pure Food and Drugs 
Act to curb fraud. 

lwo Death tlmslJy from 
pneumonk inbenra 
and luberrulmls 

0 1908 - Chlorination of water supply adopted at Jersey 

1012 - U.S. Congress establihes public health service 

0 1990 - Jun: U.S. Congress passes stronger Food. 

0 1940 - Me elcpe*ancy 63 yr and leading cause of 

Clty. NJ. 

from Marlne Hospltal Service. 

Drug. and Cosmetic Act of 1938 lo replace law of 1906. 

daath h U.S. are degenerative diseases: heart disease 
and cancer. 

0 1954 -The U.S. Food and Drug Administration (FDA) 
adopts a ’factor of safely of loo’ lor Me threshold 
measured in lhe laboratory for hazardous chemicals (no 
&sewed adverse effects level [NOAEL]) - faclor of 10 
for variability In humans and factor of 10 for variability 
betweenspecies. 

Fig. 3. Early observations of ill health and subsequent risk management (antiquity to 1950). 

below which no ill effects could be observed (no 
observed adverse effects level [NOAEL]). The Food 
and Drug Administration (FDA)-formed through 
1938 legislation (Public Law 75-717 [52 Stat. 
1040])-established in 1954 a factor of safety (“un- 
certainty” factoP) or factor of protection(29)) of 100 
to determine the allowable daily intake (ADI). That 
is, the safe dose (ADI) used the estimated threshold 
of a chemical substance obtained from an animal 
study that used “small doses” over “long-times” 
divided by 100: a factor of 10 for variability in 
humans and another factor of 10 for variability 
between humans and the species with which the 
chemical response was measured (i.e., AD1 = 
NOAEL/lOO).(”JB) 

2.4. Radiation Health Effects and Development of 
Consequence Evaluation 

Health Effects of Radiation 

Within a year of the discovery of X rays in 1895, 
X-ray “burns” were reported in the medical litera- 
ture. By 1910, it was known that radioactive material 
such as radium (discovered by the Curies in 1898) 
could produce similar burns.(30) Furthermore, cancers 
of the jaw bone reported in the 1920s in watch dial 
painters who used luminous paint containing radium 
revealed the hazard of internal ingestion of alpha- 
emitting radium@“) (Fig. 1). In 1927, Muller discov- 
ered that X rays could damage chromosomes in fruit 
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Consequently, in 1928, the International 
X-Ray and Radium Protection Commission (later 
named the International Commission on Radiation 
Protection [ICRP]) was created to set criteria to pro- 
tect humans from radium and X rays. In setting up the 
commission, the International Congress of Radiology 
recommended that each nation form a national advi- 
sory commission. Furthermore, medical risks associ- 
ated with radioactive elements became of interest 
with the availability of manufactured isotopes in the 
late 1920s. Hence, in 1929, the U.S. radiological socie- 
ties voluntarily established the U.S. Advisory Com- 
mittee on X-Ray and Radium Protection, which was 
the predecessor of the National Council of Radiation 
Protection (NCRP) chartered by Congress in 1964 
(Public Law 88-376). The NCRP Advisory Commit- 
tee initially recommended an occupational “toler- 
ance dose” of -25 rem/yr (actually expressed as 0.2 
roentgedday) for X rays and gamma rays (Fig. 4).(”) 
The tolerance dose was similar in concept to AD1 
for hazardous chemicals. 

As the United States prepared for World War 
11, the U.S. Navy asked the NCRP to develop stan- 
dards for radium to avoid the problems experienced 
by the young female dial painters in World War I. 
In May 1941, based on studies of 27 dial painters 
and radon exposure of numerous German miners 
in Saxony, a fruitful collaboration of a physicist (R. 
Evans), a chemist (Gettler), and physicians (Mart- 
land and Hoffman) was able to set the maximum 
allowable activity within the body4 at 0.1 pCi for 
radium and a maximum allowable gas concentration 
of 10 pCi/liter in the work place for radon, the latter 
standard being set for the insurance industry.(20) The 
allowable dose was about a factor of 10 below the 
lowest value of 1.2 pCi residual body burden where 
effects had been observed. Because this low value at 
1.2 pCi was residual body burden and the initial dose 
was between 10 and 100 times greater, the limit also 
had an additional factor of 10 to 100 protection.(33) 
In an interesting cross-over between carcinogenic and 
noncarcinogenic dose work, a study that compared 
bone sarcoma in rats that had ingested radium and 
surmised doses in the female dial painters of World 
War I was eventually used to justify 100 as a factor 
of protection for evaluating noncarcinogenic 
d o ~ e s . ( ~ j ~ )  

The concept of a maximum allowable body burden, which was 
adopted in 1959b3’) was modified by the ICRP in 1979”*) to a 
scheme weighting organ dose to obtain an effective dose equiv- 
alent. 

The first atmospheric test near Alamogordo, 
New Mexico, in 1945, generated scientific interest 
and monitoring of fallout and effects on nearby cattle. 
Experiments were performed on effects of radiation 
on Columbia River fish near Hanford, Washington, 
and monitoring of weapons production facilities be- 
gan in the late 1940s.(”) Results of the experiments 
and epidemiological observations in the 1950s led to 
the hypothesis of potential harm from chronic expo- 
sure to low levels of radiation (e.g., radiation-induced 
leukemia).(35) As a result of this possibility, the NCRP 
lowered the maximum permissible dose from -25 
rem/yr to 15 rem/yr (40% reduction) in 1948 and 
recommended the adoption of a policy of limiting 
radiation doses to as low as reasonably achievable 
(ALARA). (ALARA was introduced in the general 
Environmental Impact Statement [EIS] for light wa- 
ter reactors 25 years later, becoming official U.S. 
policy in 1975 [40 FR 194421.) In 1956, the NAS 
recommended a maximum dose of 10 rem/yr with 5 
rem/yr be allocated to medical diagnosis procedures. 
In 1959, the ICRP recommended that the maximum 
occupational dose be lowered to 5 rem/yr (a reduc- 
tion by a factor of 3) and suggested a maximum dose 
to the public of 0.5 rem/yr (an order of magnitude 
lower).(20*M) In 1960, the first Biologic Effects of 
Atomic Radiation (BEAR) panel was convened by 
the NAS to estimate the relationship of radiation 
dose to observed cancer. The BEAR panel reported 
on a notable epidemiological study of the incidence 
of cancer in Japanese survivors of the atomic bomb(”) 
in developing a model of the response of the biologi- 
cal organism to the input stressor. 

Exposure Pathway Assessment 

Several events engendered a need for developing 
exposure pathway model external to the receptor. In 
1954, fallout from an atmospheric test on Bikini Atoll 
in the Pacific contaminated 43 Marshall Islanders and 
14 Japanese fishermen aboard the Lucky Dragon, 
which prompted a public outcry to stop atmospheric 
tests.(203) In 1957, the fire in the Windscale graphite 
reactor in the United Kingdom released 13’1, and milk 
consumption was temporarily In 1961, 
the Atomic Energy Commission (AEC) used the 
bedded salt in southwestern New Mexico (Project 
Gnome) to evaluate the peaceful uses of nuclear ex- 
plosives (Plowshare Pr~gram).(~~.~’) Hence, by the 
1960s, Oak Ridge National Laboratory (ORNL) be- 
gan predicting the movement and attendant health 
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0 1789 - Klaprolh isdates U isolates U20a in pitchblende. 

0 1841 - Peiigot isolates uranium element. 
0 1895 - Rulherford shows radiation from uranium k d t s  

like helium nucleus (alpha partide and beta partw). 

0 1 896 - French physiciit Becquerel demonstrates rado- 
activity of uranium. Along with bo(h Curies, he will re- 
ceive Nobel Prize in physlcs for We discovery in 1903. 
'X-ray bums' reported In medical literature. 

0 1898 - Mark and Pierre Curle d k c w r  poknium and 
radium in pitchblende (Marie recehres N c b i  Prke in 
chemistry in 191 1 for study of chemical propertles of 
radium). 

0 1910 - 'Bums' from radioactive material reported in 
medical lterature (e.g.. on watch dial pabaers using 
radium). 
1917 - During WWI, young women empbyed to paint 
dal numerals on military instruments using luninous 
paint containing radium. After war. many do& 
factories employ young women for dial painting using 
luminous paint with radium. 

1924 - Blum, dentist in New Yolk. nolked an Intractable 
case of osteomyentls in We jaw of a girl workhg in a 
dial painting factory. 

wbspread. Mirller discovers X-rays can damage 
chromosomes in fruit flies. 

mission created at Second IntemaUonal Congress of 
Radbtogy In Sweden to set criteria to protect humans 

0 1928 - international X-ray and Radium Protection Com- 

from radium and X-rays (name changed to Intemation- 
a1 Commisslon of Radiation Protection [ICRP] in 1950). 

1927 X-rays wdely 
used for diagnosis 

1928 lntemational 

(ICRP) set up 

0 1927 - Use of X-rays in dagnostic medicine !I 
1929 National Council 01 0 1929 - US. Radiological Society sets up US. Advisory 

(NCRP) committee on X-ray and radium proteclion @redecessor 
ywnmends . ~~~ -*' c%yr of National Council of Radiation Protection lNCRPl set 

up in 1948 and chartered by congress in 1 &4) to . 
present viewpoints to ICRP. NCRP recommends 

lglg Radium d l a l ~ ~ ~ &  level [NOEAL] f&hazardow chemicals) of - 25 r m y r  
for X-rays and radiath from radium. Numerous cases -... "". 

bona 
cancer 

01 jaw sarcomas in m e n  d U  painters begin to appear 
and llnkaga to radium shown. Subsequeot studies of 
internal doses to -800 dial palnters provide so l i  
knowledge on long-term effeds of alpha emHthg 
radium in humans. 

1W1 - May: Because d request by US. Navy, NCRP 
sets maximum body burden of radium at 0 . 1 ~  Ci to 
avoid p r o b h a  that occurred In WWI lo dhi painters as 
military prepares for war; NCRP also set madmum air 
concentraton of radiation of 10 p CVI established at 
request of insurance company for lactortes making 
lantern metals. 

1942 Manhanan 
m&mm&@j& reaction. Manhanan Engimnng DiMct begins 

toxialy studies 

1W2 - Fermi produces first alriRcial nudear chain 

exlensive study of radbbotope toxicityuranium first 
radoisotope first sludled. 

1945 
Atomic 
test In NM 

1W5 -Atomic bomb test at Trinity Site near Alamogor- 
do, New Mexico monitored. Some monitoring of radio- 
active fallout occurs at Trinity test in Alamogordo, New 
Mexico; Manhallan Engineering District asks University 
of Washington to start experiments on radioactive ef- 
feds on Columbia River fish near Hanford. 

1948 SIUW of radia-0 1W8 - NCRP lowers maximum permissible cccupation- 
lion conservaUvdy al dose to -15 r d y r  (40% reduction) recognizing any 
suggesUon abservable radatlon eqsure might represent a health risk. Sug- 
lhreshdd end thus geab a w i n g  'as low as reasonably achievable' 

risk at bw NCRP (AIARA) policy for radiation exposure. 

0 1- -Winds at hi& allnude carry fallout from at- 
mospheric tests and wntaminates inhabitants of 
Marshall Islands and Lucky Dragon Japanese fisher- 
man: creates need for assessments and outcry to stop 
tests. 

overview8 hazards of radioisotopes. Atoms for Peace 
programs stimulate nuclear medicine. 

induced leukemia shows no or very low threshold dose 
response. 

0 1955 - First Atoms for Peace conference in Geneva 

0 l % 7  -Epidemiological observations of radiation- 

0 1958 - Seumd Atoms for Peace Conference. 

0 l K 9  - NCRP and ICRP lower maximum occupational 
dose to 5 remfyr (factor of 3 lower) suggests 0.5 remlyr 
for peneral population. 

0 1080 - First of series of NAS reports on biological 
effects of atomic radiation (BEAR reports). 

0 1965 - ICRP sets permissiMe average dose lor public to 
0.17 rmnlyr (max still 0.5 remlyr); and specifies limits on 
occupational dose. 

0 1966 -Colorado public health discovers that uranium 
mill tails had been used as fill dirt around new homes in 
Grand Junction and Durango. Because 01 concern of 
radon. Federal government pays to remove tailings. 

0 1967 -Oak Ridge studies radiological hazards from 
nuclear explosives if used lor new canal in Panama 
(part of Plowshare Program); results not favorable. 

0 1970 - NAS forms committee on biological effects 01 
bnWng radiation (BEIR committee) funded by EPA. 

0 1972 - Light-water reactor EIS uses ALARA principle #...c. 
1975 NRC 

ALARA pdiw 
0 1975 - NRC adopts ALARA policy for limiting radiation 

*...a 

1976 EPAsel 
4 m m r  
radO4SOlOps 
limit lor 
drlnklng water 

0 1976 - EPA seta limits on radioisotopes when imple- 
menting Safe Drinking Water Act of 1974 (SDWA) to 
equivalent of -4 mremtyr (40 times less than ICRP and 
NCRP suggested limits) because 'single pathway'. 
S t r h ~ ~ ~ t  level generates lots of discussion since radi- 
um levels in several parts of country exceeded this 
level. 

0 1#77 - ICRP changes from critical organ concept to 
wei@ted whole body concept lor calculation dose; 
equated doses to risk (5 rem/yr similar to hazardous 
occupations 0.5 rem/yr similar to safe industries; 0.17 
rem/vr similar to W/lifetimes). 

Fig. 4. Studies and guidance on health effects of radiation. 

risks of radionuclides that might enter either the atmo- 
sphere or the groundwater: The use of different mod- 
els internal and external to the receptor remains. How- 
ever, the strict use of conservative assumptions for the 
response model of humans5 has remained, whereas 

probabilistic models have since been used in PRA and 
PA exposure pathway models. 

3. ~ U E N C E  OF COMPUTATIONAL 
TOOLS AND RELIABILITY ANALYSIS ' Occasionally, average response models may be used for other 

receptors in ecolo&cal risk assessments (61 FR 47552; 63 FR 
26846). Recent evaluations of human dose-response uncertainty 
are noted in Section 5.2. 

The lack of experience with new technologies 
and their mode of failure, along with the potential 
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for physical harm and economic loss from such fail- 
ures (or “accidents”), motivated reliability and sys- 
tem analysis in the 20th century. 

3.1. Development and Application of Reliability 
Analysis to Aircraft 

With the development of commercial aviation 
in the 1930s, the ability to predict the reliability of 
equipment was increasingly emphasized. Although 
the aircraft industry primarily relied on a build-and- 
test learning process, it began to explore ways to 
improve reliability beyond those gained from direct 
experience. In 1939, regulations in England specified 
99.999% reliability (i.e., probability of success at 
0.99999) for 1 hour of flying time for commercial 
aircraft(38) (Fig. 1). Although the regulation was rela- 
tively lenient in that it meant that the probability of 
failure could be as high as 10-5/hr, it is possibly the 
world’s first probabilistic regulation. This type of reg- 
ulation required that the entire aircraft system be 
examined, along with the influence of its components 
on reliability. The regulation resulted in the develop- 
ment of safe but slow aircraft (1 million miles for the 
British Handley-Page biplane without a fatality). 

3.2. Application of Reliability Analysis to Missiles 

During the 194Os, the advent of computers al- 
lowed new problem-solving techniques to address is- 
sues of nuclear weapon design. An important practi- 
cal tool developed at this time-Monte Carlo 
simulation-was used by the Manhattan Project for 
its work on the physics of weapons, specifically diffu- 
sion of neutrons through fissile material, as first re- 
ported in 1949.(39) Computers and Monte Carlo con- 
tributed to the design of the fusion nuclear bomb, 
which was detonated in a 1952 atmospheric test in 
the Marshall Islands at the Pacific Ocean proving 
grounds. 

Development of a fusion explosive made feasi- 
ble the delivery of a nuclear weapon by missiles-its 
size was small enough to fit into a missile warhead, 
whereas the explosive energy was large enough to 
compensate for the missile’s inaccuracy at that time. 
In 1957, when the Soviet Union launched Sputnik, 
Congress allowed the Air Force to accelerate missile 
development.(40) But several missile failures during 
fueling in 1960 prompted the military to seriously 
examine reliability problems. The United States 

adopted reliability analysis, as practiced by the 
Germans in World War I1 to improve the reliability 
of their V-1 rockets, and greatly expanded the use 
of practical tools to improve the reliability of missiles 
(Fig. 5).(38940) An important starting point of determin- 
ing the reliability of a missile was examining the sys- 
tem as a whole, which engendered the field of systems 
engineeringJ4’) 

Reliability analysis used block diagrams to de- 
scribe how components in a large system were con- 
nected. From these block diagrams, Watson at Bell 
Laboratories developed the fault-tree technique, 
which he applied to the Minuteman Missile launch 
control system, and which Boeing later adopted and 
also computerized.(38A2) Reliability analysis required 
the first three steps of risk assessment: (1) character- 
ization of the system, (2) evaluation of potential 
pathways to failure (i.e., hazard identification and 
scenario development), and (3) evaluation of the 
probability of failure through the measurement of 
component failure rates. 

3.3. Development of Related Techniques in 
Policy Analysis 

Cost-Benefit Analysis 

A noteworthy attempt at large-scale policy anal- 
ysis of a government project or action before initia- 
tion of the project occurred in 1936, when Congress 
mandated that the benefits and costs of flood control 
projects would be assessed prior to construction 
(Public Law 74-738). In response, the U.S. Army 
Corps of Engineers developed procedures for a cost- 
benefit analysis, which were later required for all 
water resource projects and some transportation 
projects. Only financial costs and benefits were as- 
sessed-not health risks-but the concept of collect- 
ing and analyzing data to assist in general policy anal- 
ysis was developed and accepted. Furthermore, the 
cost-benefit analysis grew to include sociological fac- 
tors in the 1960s. In the 1980s, both ecological and 
sociological risks were taken into account, although 
they could not always be clearly defined and quanti- 
fied. Prompted by the requirements of National Envi- 
ronment Policy Act (NEPA; Public Law 91-190 [83 
Stat. 852]), federal agencies began to include health 
risks in their analysis, as discussed in Section 4.2. 
Policy analysis and, specifically, risk-cost-benefit 
analyses can be abused when used to substantiate a 
preconceived view or justify actions already taken,(43) 
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0 1926 - von Neumann publies theory of games. 

la* UK 
reliability 
for 1 hr. 

99.9se%0 1938 - UK reguires mmercisl aircraft have a reliability 
of W.W% for 1 hr of filght. 

1941 Germans amhl 0 1941 - Rellabillh, of a s t e m  in series shown to be 
mliabil product of reliability of Cwch component; first applied to 

G e m  V-1 rocket. to v-t 

Monte cafl,$m 0 1W7 - Monte Carlo methods developed to wlve 
msics neutron dhsion in atomic bombs; one of first problems 

is run on digdal computers Invented by von Neuman. 
Axioms for individual decisions are developed. 

0 1952 - Future Nobel laureate Markowitz uses stock 
price varmce as a measure of risk and demonstrates 
value of diversity u1 a stock portfolio with this 
measure. Nov: The United States explodes 
thermonuclear bomb; the reduced size but high yleld 
makes missile delivery practical and prompts missile 
development. 

0 1953 - MorgeMtem and wn Neumann publish boolc 
(wrinen in 1944) on Theory of Games and Economic 
Behavior, based on concept of utility. U.S. Department 
of Defense fhda cDst of repairing unreliable electronic 
eoui~ment $2hrr for everv dollar of eauioment durino . .  

1855 War Simulation sir an war. . 
0 1955 - Game theory applied to simulation of war (i.e.. 

war games) using Monte Carlo methods to teach con- 
sequences of decisions. 

0 1957 - Soviet Union launches Sputnik, 1st artificial sat- 
ellite, into space. Air Form accelerates development of 
Atias and T i n  ballistic missibs. 

lBS0 - M u :  Atias missile explodes while loading 
propellant at Vandenberg Air Force Base. This and 
other missile failures from acceleration of hiiiai 
development, prompts military to serbusly examine 
reliability problems. Reliability and systems 
engineering matures to point that sewel text books are 
available and symposia are organized. Decislon 
analysis used to explore declslons made by oil and gas 
drillers. 

0 1961 - Watson at 6ell hboratories dedops fault-tree 
methodology from reliability block diagrams for Minute- 
man launch control system h wder to synthesize 
reliability of entire system; B&g computerizes 
methodology. 

missiles systems. 

capital investments of a business. 

fault trees. 

Space Administration (NASA) abandons fault-tree anal- 
ysis because estimates of failure are elther too hlgh or 
too low. NASA resorts to rigorous testing of purls but 
retains hazard identification through Failure ModeEf-  
fects Analysis. 

0 1973 - Arab oil embargo because of US. support for 
Israel causes energy uisls. Severe b a r  market for 
stocks prompts financial risk assassments. 

0 1974 - Jun: Cycbhexane vapor from ruptured make 
shift bypass pipe explodes in Flixborough, England. 
killing 28 workers; prompts kglslatkn for rlsk studies of 
British chemical plants. 

,..a 1 W  -Chemical Plant in Bhopal. India, leaka paisonous 
gas killing 3000 and disabling 10,wO. 2 years after 
Union Carbide relinquishes oversight of safety to local 
workers. 

1908 -Though warned not to, NASA launches Chal- 
!mwr when engineers' arguments not convlndng; 
explodes because O-rings on so lM booster are brinle 
from cold; subsequent revlew suggests. a&pthg risk 
assessment. 

0 1BM -Offshore oil well platform explosion h Now Sea 
rlo ex@* (Piper Acpua) prompts United Kingdom to require rlsk 

1861 Faul 

systems 
EbT1 

0 1962 - Air Form mandates safety analysls for all new 

ST. 0 1B64 - Risk assessment is dane for deeish analysis of 

0 1965 - Boeing holds symposium on safety, hghliiting 

0 1908 - Apollo Prcgram at National Aeronautics and 

(964 Risk 

capital investments 01 '7 

in *a assessments in oil industry. 
TRl-6342-5817-1 

but evaluating uncertainty, peer review, full docu- 
mentation, and open debate can all promote diligent 
and honest analysis.(13) Furthermore, in 1985, a philo- 
sophical evaluation of risk-cost-benefit analysis un- 
covered no fundamental ethical flaw with risk-cost- 
benefit analysis as input to decisions.('8) 

Development of Decision Theory and 
Its Applications 

Risk assessment, cost-benefit analysis, and deci- 
sion theory share a similar early history and a similar 
purpose (i.e., aid in decision making). However, deci- 
sion theory focuses on using the quantification of 
risk, along with other information, for management 
decisions, such as risk management. In 1738, Daniel 
Bernoulli introduced the concept of utility to express 
personal usefulness or satisfaction as an important 
concept of decision analysis. Other axioms for indi- 
vidual decisions were informally developed along 
with probability theory (Fig. 2). However, a more 
formal development occurred in the 195Os.m In 1953, 
economist Morgenstern and mathematician Von 
Neumann published the Theory of Games and Eco- 
nomic Behavior, which incorporated Bernoulli's util- 
ity concept.''") Later, in the 1950s, decision theory 
benefited from Monte Carlo methods; for example, 
these methods appear in the game theory, especially 
the simulation of war, to teach the consequences of 
decisions.@') 

By 1964, a financial risk assessment was demon- 
strated to businesses for decision analysis of capital 
investment,(45) and textbooks were available by 
1968.(46) In 1976, methods were proposed for making 
decisions with multiple, often conflicting, objec- 
tive~,(~') and then applied a year later to determine the 
best location for nuclear reactors in Washington.ca) In 
1986, this method was also applied to developing a 
portfolio of potential radioactive waste disposal sites 
for characterization.(49) Decision theory now includes 
concepts that attempt to logically resolve difficulties 
in making the optimal choice among options when 
(1) consequences of options are uncertain; (2) the 
decision has multiple, often conflicting, objectives; 
(3) multiple participants are involved in making the 
decision; and (4) there are intangible concerns. After 
the large stock market decline in 1973 and 1974, due 
in part to the Arab oil embargo, financial risk assess- 
ment began to gain more favor with investment firms. 
At that time investment firms began to seriously ex- 
amine the academic work on portfolio selection (i.e., 

Fig. 5. Diverse applications of reliability analysis and risk assess- 
ment. 
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Markowitz's work in 1952 [Fig. 51) to reduce invest- 
ment risk, which in the investment world is associated 
with the second moment of the distribution of the 
returns or investments (variances): The 1970s saw a 
dramatic increase in managing risk in mutual fund 
portfolios.'2) 

4. EARLY RISK STUDIES FOR 
NUCLEAR FACILITIES 

The application of reliability analysis to several 
components in nuclear facilities in the late 1960s led 
to large-scale, probabilistic risk studies for entire nu- 
clear power plants in the 1970s. During this same 
period, the federal government began to investigate 
possibilities for disposal of nuclear wastes. 

4.1. Adaptation of Reliability 
to Nuclear Power Plants 

Analysis Techniques 

Through passage of the Atomic Energy Act of 
1954 (Public Law 83-703 [68 Stat. 919]), Congress 
encouraged peaceful uses of atomic energy, specifi- 
cally, electrical power production. An impediment to 
this development, however, was the inability to ob- 
tain liability insurance for public utilities, and so 
Congress agreed in the Price-Anderson amendments 
of 1957 to indemnify public utilities (Public Law 85- 
256). To do so, Congress and the AEC, which had 
been created by an earlier version of the Atomic 
Energy Act in 1946 (Public Law 79-585 [60 Stat. 755]), 
needed to know not only the reliability of a nuclear 
reactor but also the consequences of various types 
of failure. This need motivated the development of 
techniques for consequence evaluation, the fourth 
step in a risk assessment. As a result, in 1956, Pacific 
Northwest Laboratory (PNL) described semiquanti- 
tative effects of a major reactor accident and, in 1957, 
Brookhaven National Laboratory conducted a deter- 
ministic assessment of the financial risk to the federal 

' Variance as a measure of risk, rather than the expected value, 
corresponds to the oldest usage of risk noted by The Oxford 
English Dictionary (i.e., in 1776, Adam Smith in Wealth of Nations 
associated risk with financial uncertainty) (high variance that 
includes potential for loss) and the source of an entrepreneur's 
profit; safety was associated with certainty.(241 Both usages are 
still common.'29' 

government as part of the indemnification of the nu- 
clear power industry(2050) (Fig. 6). 

Computational tools developed for reliability 
analysis were applied to assessments of nuclear reac- 
tors during the late 1960s. Specifically, in 1967, fault 
trees were applied to various nuclear reactor compo- 
nents and, in 1968, event trees were employed in 
the siting of those Although neither fault 
trees nor event trees are an essential feature of risk 
assessment, they played an important role in improv- 
ing the consistency of analyzing failure modes for 
nuclear reactors, similar to the block diagram's role 
in improving general reliability analysis. In 1969, 
C. Starr brought many aspects together in a risk- 
cost-benefit analysis to evaluate the social benefits 
and technological risks of nuclear power plants.(52) 

4.2. Influence of National Environmental 
Policy Act 

The National Environmental Policy Act of 1969 
(NEPA; Public Law 91-190 [83 Stat. 8521) required 
federal agencies to consider the environmental conse- 
quences of any major action (such as decisions on 
development) and evaluate other options in an EIS. 
After passage of NEPA, the AEC prepared hearing 
rules for an EIS on the Calvert Cliffs reactor that 
limited the discussion of environmental impacts, but 
was quickly sued by the citizen group opposed to the 
reactor. In 1971, the U.S. Court of Appeals, District 
of Columbia Circuit, stated that environmental im- 
pacts must be given equal weight to economic and 
technical considerations in the EIS (449 F. 2d 1109). 
This and other court rulings established a large reser- 
voir of case law that more clearly defined specific 
requirements based on the general policy statements 
in the legislation.(53) During the required hearings and 
written comment period, individual and special inter- 
est groups were able to express concerns with the 
adverse effects of large technological systems and a 
desire for more stringent analysis of all associated 
short- and long-term hazards to the physical environ- 
ment and human health. These requests in turn stimu- 
lated many general and specific ecological studies and 
modeling advances. For the general EIS on lightwater 
reactors and especially for proposed nuclear facilities, 
NEPA indirectly stimulated the use by AEC of de- 
tailed mathematical modeling to predict the transport 
of radioisotopes in the environment, resulting popu- 
lation doses, and, ultimately, the risk consequences 



Fig. 6. Events influencing early t 

0 1946 - Atomc Energy Ad (AEA) of 1946: - creates Atomic Energy CMmisslon - establishes government monopoly on atomic 
weapons and nuclear materiel (and aventualiy 
expectation to dispose of waste) 

0 1948 - Construction begun on nuclear reactor for Navy. 

0 1951 - D.c: Experimental Breeder Reactor produces 
electricity. 

1954 -Jan: First nuclear submarlne, NaWIus, launched. 
Aug: In AEA of 1954, Congress seeks peaceful uses of 
atomic energy; thus allows privata but rqulated atomic 
energy development. 

major reactor accident. 
0 1956 - Hanford reports on semkquantitathre affects of 

isk anaiyss 0 1951 - Windscale graphite reactor fire burns for 42 hr in 
tr;C'' 10 United Kingdom (UK) and releases milk consump- 

risk to tion curtailed. Brookhaven N a t i i l  Laboratory (BNL) 
government worst-case, deterministic risk assessment using expert 

opinion, is done to determine indamnifcation of nu- 
clear industry (study similar to typical safely analysis) 
Ock lntematmal Atomic Energy Agency (IAEA) 
formed to promote peaceful uses 01 nuclear energy. 
Doc: First large US. nuclear power plant operates at 
Shippingport. PA. To further encourage atomk energy 
use. Atomic Energy Damages Ad rPrw-Anderson 
Act') sets up 2-tler Insurance system for lability from 
amdents. First Wr insurance purchased by each indi- 
vldual facility from private companles second tier in- 
surance funded by premium on all facilities. (If claims 
exceed second tier then U.S. Congress would pay from 
public funds). 

nuclear reactors. 

reactors. Decison anaiysls advances such that 
text books availabis. 

power plant estimated. Starr notes 1ooO-lold difference 
between voluntary and Involuntary risks is accepted by 
the publc and that voluntary risk is about equal to 
disease nsk. Natlonal Envlronmental Policy Ad 
(NEPA): 
- requires federal agencies to consider envim 
mental consequencas ot any ma)or adion thrw 
an envlrmental impan s l a t m t  (EIS) 

~ m l e  Impetus for passage WBJ proposed catvert 
Cllffs reactor - requires puMc comment - avenue for dt*en 
groups to push lor stnngmt regulations for nudear 
power - leads to cnizens v o w  expecklion thet govern- 
ment should praed against all bnpterm 
technO!qpcal hazards (not jwt food and drug) 
leads to assessing social benafits versus risks 
01 technology 

1971 -Appeals court requires AEC to look at a// 

0 1967 - Faun trees applied to varlous m p e n t s  of 

0 1966 - Event traas applled to s i S q  of nuclear 

1967 Fault tree 

applied clear reams to nu- 8 2  e 196.9 Event tree 
applied to 
nuclear 
reactors 

0 1969 - Social benefits and techndqical risk of nuclear 
nsk from nuclear 
power plant and 
other technologes 

impacts in EIS on Cahrert Clilfs reactor. 

iistic risk assessment (PRA) of severe accidents in 
nuclear reactors. 

chlesinger asks for a probabk 

cooled reactor is published 

0 1974 -Congress splns AEC into Nuclear Regulatory 
Commissbn and Energy Research and Development 
Agency (ERDA). Aug: Draft of flrst major PRA 
published on hw plants (Slurry and Peach Boltom) by 
60-member team led by Raemwsen. MIT professor. for 
the Nuclear Regulatory Cunmlsoon (NRC) (Reactor 
Safery Studyh method uses fault trees and event trees 
to synthesize probability of total system failure fmm 
estimates of component failure rates. American 
Physical Socbly (AfJS) begins review. 

0 1975 - Mar: Eleclrklan clets cables m tire when uslng 
candle to check for air leaks bebw control room of 
Browns Ferry reactor in Alabama. Apr: Lewis publlsh- 
es review of Reactor Safety Stkhiy draft for NRC criti- 
cizes treatment of multiple fsllures, cntkizes treatment 
of epistamic (degree of knowledge) uncertainties, but 
general approach applauded. oct: Fhal of Reaclor 
Safely Study released: probabillty of accidents (aleato- 
ric uncertainty) 

1975 
1st PRA 
on nuclear 
reactors 

isk studies for nuclear reactors. 
0 1975 (con?) - higher than initially thoughl. consequenc- 

es of accidents lower than initially thought, and sug- 
gests human errors could cause accident (Three Mile 
Island accident). APS review calls for more study of 
unknomu to correct potentiai errors in consequences 
and their probability and requests NRC to promulgate 
safety goals for reactors based on risk. Jul: Conover at 
Texas Tech devems Latin Hypercube Sampling (LHS) 
scheme for reactor pipsbreak code at Los Alamos 
National Laboratory (helps make detailed modeling in 
stochastic simulations feasible). 

0 1976 - NRC funds Sandia National Laboratories to a p  
ply event tree method to more plants (Calvert Cliffs-'2, 
Grand Gun-1. Seqwyan-1. and Oconae-3) but omits 
funding for new consequence modeling (Reactor Safe- 
ly Study Method Application Program). SNL cmnecls 
events from both loss-of-coolant and transient trees. 

0 1977 -Decision analysis applied to siting nuclear power 
plants in Washington state. NRC funds SNL to 
evaluate risks of transporting nuclear waste - SNL 
develops radioactive material transportation model 
(RADTRAN) using event trees. 

0 1979 -Mar: Accident at Three-Miie Island Reactor 
occurs and partially melts fuel rods when valves fail 
(similar to fallures in other reactors) and poorly trained 
operators mlslntarpret conditions on poorly designed 
readouts. In response to Three-Mile Island. NRC funds 
SNL to improve treatment of human actions in event 
trees and more detailed logic models for five plants 
(Crystal River-3, Browns Ferry-1, Arkansas Nuclear 
Onsl. Cahrert Clii-1. and Millstone-1) (Interim Reli- 
ability Evaluation Report). SNL finds support systems 
both contribute to and milgate accidents. SNL issues 
RADTRAN II, generalized version for transportation 
risks of nuclear waste. 

0 1980 - NRC begins to develop safety goals for nuclear 
power plants. 

0 19111 -Zion Station probabilistic risk assessment includes 
external seismic and fire events. and site-specific meteor- 
ology, terrain. and evaluation routes. Kaplan and 
Gartick define risk using three components: scenarios, 
probebiliiy. and consequence (R = {S,P,C )). 

reactor. 

sabotage, cost/benelit analysis in PRA. 

reactor occurs during shut-down test; however. many 
emergency umtrds turned off by poorly trained opera- 
tors. Aug: NRC promulgates safety goals lor nuclear 
reactors similar to 40 CFR 191: - risk of prompt facilities < 0.1% of other accidents - risk of Cancer death < 0.1% of other cancer 

- suggests frequency of large release of radio- 

- requires inclusion of uncertainty 
State of New Hampshire funds PRA for Seabrook 
Station. SNL Issues RADTRAN Ill with several model 
changes to improve calculation of transportation risks. 

1979 Th 
Mile lslan 
reactor 
acddent 

0 1982 - State of New York funds PRA for Indian Point 

0 1903 - NRC asks SNL to add external events. 

0 19116 - Apr. Major accident at Soviel's Chernobyl 

deaths 

nuclides c lO*/yr 

0 1987 - NRC funds new study (NUAEG-1150) to repeat 
and improve Reactor Safefy Sfudy 'PRA'. 

0 1Q86 - Sop: U.S. Congress amended AEA to set up 
Defense Nuclear Facilities Safety Board to evaluate 
safety of DOE defense facilities. 

route-speck Informalion. 
0 1W9 - SNL issues RADTRAN IV, which uses 

0 1990 - NRC wmpletes new reactor risk study - adds detail event tree lor containment - Improves consequence analysis - improves analysis of uncertainties 

lD00 NRC 
completes new 
ream tisk 
study 

NRC funds SNL for LaSalle reactor PRA to get more 
detailed lcgic models and wnsistent treatmen1 of 
uncertainties. 

0 1994 - NRC funds SNL for detailed study of risks from 
low wwerlshutdorm for Grand Gulf Reactor. 

1995 NRC 0 1995 - Aug: NRC adopts use of PRA for setting 
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of these activities, along with economic costs and 
benefits. 

4.3. Application of Risk Assessment to Nuclear 
Power Plants 

Reactor Safety Study 

The new atmosphere created by NEPA encour- 
aged AEC Chairman Schlesinger, a former econo- 
mist at the Rand Corporation, to request, in 1972, a 
detailed analysis to evaluate risks from severe acci- 
dents at commercial nuclear reactors. By August 
1974, a 60-member team led by N. Rasmussen, an 
MIT professor, drafted a report that defined hazards, 
estimated associated probabilities, and evaluated 
consequences’ on the Surrey and Peach Bottom 
plants for the Nuclear Regulatory Commission* 
(NRC).(14) The Reactor Safety Study (or “WASH- 
1400” report) was significant because it was the first 
detailed, comprehensive, quantitative, probabilistic 
look at the health risks from a large, complex facility 
(Fig. 1). An early review of the draft in April 1975, 
however, did suggest that besides uncertainty in be- 
havior of the system (i.e., uncertainty associated with 
event and feature conditions), which had been evalu- 
ated through event and fault trees, uncertainty associ- 
ated with estimates for parameter values should be 
included.(”) A second review of the Reactor Safety 
Study by the American Physical Societyon called for 
more study of uncertainties to correct potential errors 
in consequences and their probabilities and also re- 
quested that the NRC promulgate safety goals for 
reactors based on risk. 

The final version of the Reactor Safety Study, 
released in October 1975, revealed that although the 
probability of accidents was higher than initially be- 
lieved, the consequences of accidents were actually 
lower than first believed. The PRA used scenario 
classes rather than attempting to itemize every possi- 
ble future and discovered an important scenario class 

The 1975 Reactor Safety Study quantitatively defined risk as risk 
{consequenceltime} = frequency {eventskime} X magnitude 
{consequencelevent}, from which evolved the notion within the 
risk profession (but not necessarily outside the profession) of 
risk as “probability times consequence” (i.e., expected adverse 
health effects per year). 

* In 1974, the Energy Reorganization Act (Public Law 93-438) split 
the Atomic Energy Commission (AEC) into the Energy Research 
and Development Agency (ERDA) and the Nuclear Regulatory 
Commission (NRC). 

for nuclear power plant operation-the potential for 
human error to transform a critical but controllable 
situation into a severe accident.(%) The Reactor Safety 
Study set a standard for risk assessments of nuclear 
reactors for the next 20 years. Two aspects of risk 
assessment for nuclear facilities were evident: (1) 
large multidisciplinary teams were needed to ade- 
quately explore all facets of the system and to present 
sufficient diversity of opinion to adequately capture 
uncertainty, and (2) the size of the resulting study 
required a dedicated multidisciplinary team of re- 
viewers. 

Because users of the PRA methodology were 
immediately compelled to consider uncertainties in 
parameters, efforts were begun to incorporate pa- 
rameter uncertainty into the analysis. The Monte 
Carlo method was adopted for propagating uncer- 
tainty of parameters in a detailed code, and the LHS 
(Latin Hypercube Sampling) scheme was developed 
in 1975 to increase efficiency of samples.(57) 

Although the move to assess probability and 
consequences of nuclear power plant accidents was 
a natural progression from the earlier analysis of sys- 
tem components, it also generated, and is still gener- 
ating, considerable controversy, which is beyond the 
scope of this article. Opponents of the PRA ques- 
tioned the ability of the analysis to meaningfully as- 
sess risk, much as opponents of cost-benefit analysis 
have challenged its capability to provide a worthwhile 
assessment of benefits and costs.(I8) 

Influence of Reactor Accident at Three Mile Island 

On March 28, 1979, at 4 A.M., a clogged pipe in 
the second unit of the Three Mile Island Reactor 
initiated events that opened a pressure relief valve 
and inserted control rods that shut down the reactor 
to relieve pressure. Human errors and organizational 
failures compounded the problems caused by the 
clogged pipe, causing an accident severe enough to 
melt the fuel. Cleanup costs exceeded $1 billion.(558) 

Although the exact sequence of events that 
caused the accident at the Three Mile Island Reactor 
was not in the Reactor Safety Study,9 proponents of 
PRA emphasized that human error in combination 
with a loss-of-cooling event was indeed represented 

Those dealing with risk perceptions also like to use the various 
interpretations of the severe accident at the Three Mile Island 
Reactor as an example of how little individual perceptions change 
once formed and how new data are interpreted through these 
formed 



History of PA and Risk Assessment 777 

in the scenario classes. Initially, the NRC had been 
concerned about using a PRA to support passage of 
regulations, but the incident at Three Mile Island 
eventually prompted the NRC to endorse the PRA 
method.(") Specifically, in 1986, the NRC promul- 
gated three safety goals for a nuclear reactor: (1) the 
probability of nuclear accidents must be less than 
0.1% of all other types of accidents, (2) the annual 
expected value of cancer death within a 10-mile ra- 
dius must be less than 0.1% of other types of cancer 
deaths (or -3 X yr-' assuming normal cancer 
mortality of -3 X yr-I), (3) the frequency of 
large release of radionuclides must be less than 
10?yr. Also, uncertainty was to be included in the 
estimates (51 FR 28044). Thus, 11 years after the 
American Physical Society had made the suggestion 
in its review of the Reactor Safety Study,(") general 
safety goals based on risk were adopted. In 1990, the 
NRC concluded its update of the PRA for nuclear 
rea~tors (~* ,~~)  and, 4 years later, proposed extensive 
use of PRAs for setting policies within the NRC on 
all types of nuclear facilities (59 FR 63389; i.e., PRA 
was endorsed for policy analysis); the proposal was 
accepted in 1995 (60 FR 42622) and explicitly equated 
PRA with PA in the United States. 

4.4. Other Assessments of Engineered Systems 

The first applications of PRA and PA in other 
fields and industries were usually initiated as the re- 
sult of accidents (see Fig. 5). 

Assessments in Response to Accidents at 
Chemical Plants 

In 1974, a make-shift bypass pipe ruptured in 
a chemical plant, killing 28 workers and releasing 
cyclohexane vapor into the town of Flixborough, 
England. The incident prompted the British to re- 
quire risk analysis for chemical plants.@') By 1980, an 
extensive risk analysis on the further expansion of 
the Canvey Island petrochemical complex near 
London had occurred. Eight years later, in 1988, an 
explosion on the Piper Acpua, an offshore oil well 
platform in the North Sea, prompted the British to 
require risk assessments in the oil exploration indus- 
try as well. Although assessments of risk at chemical 
plants had occurred within the United States, more 
extensive risk assessments within the chemical indus- 
try were encouraged as the result of a disaster in 1984 

that killed 3,000 and disabled 10,000 near a Union 
Carbide chemical plant in Bhopal, India.(5-65) 

Reevaluation of Risk Assessment After 
Challenger Accident 

The explosion of the Challenger space shuttle 
in 1986 caused a reevaluation of risk assessment at 
the National Aeronautical and Space Administration 
(NASA). Similar to the missile program, NASA had 
adopted hazard identification through qualitative 
Failure Mode/Effects Analysis for the human space 
program in the 1960s. However, in 1966, the Apollo 
Program at NASA abandoned fault-tree techniques 
because estimates of failure were both too high and 
too low.(66) Thus, NASA abandoned risk analysis be- 
cause of its imprecision, rather than continuing to 
refine estimates, but continued rigorous testing of 
components. As seen later with the Challenger explo- 
sion in 1986, the decision to abandon risk assessment 
allowed an unwarranted belief in the high reliability 
and safety of rockets for human space flight to 
evolve.(67) Consequently, when engineers intuitively 
sensed a dangerous situation €or the Challenger dur- 
ing the launch at cold temperatures, their inability 
to quickly quantify and substantiate their intuition 
proved disastrous.(*'J The subsequent review of the 
Challenger space shuttle accident suggested adopting 
risk as~essment.( '~~~-~) 

4.5. Application of Probabilistic Risk Assessment 
to Nuclear Waste Repositories 

Early History of Radioactive Waste Disposal 

Initial disposal of radioactive waste by the Man- 
hattan Engineering District in 1945 included burying 
solid nuclear waste in shallow trenches and augured 
holes at Los Alamos National Laboratory, New 
Mexico, and Hanford Reservation, Wa~hington . (~~.~~)  
Although the newly formed AEC continued these 
practices, it tentatively explored more permanent so- 
lutions, beginning in 1955, when the AEC asked the 
NAS to examine the disposal issue. The 1957 NAS 
report(71) indicated that disposal in salt beds was the 
most promising method to explore, which it reaf- 
firmed in 1961, 1966, and 1970.(70*72) 

After tentatively selecting an abandoned salt 
mine near Lyons, Kansas, as a repository in 1970 
(Fig. 7),(73) the AEC discovered the presence of drill 
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0 IS43 - Plutonium separation operations and disposal of 
nuclear waste in trenches begins at Oak RMge Natlonai 
Laboratory (ORNL). 

0 1944 - Disposal of nuclear waste begins at Los Alamos 
National Laboratory (IANL) (using trenches, ponds. au- 
gered holes), and Hanford Reservation (using reilroad 
cars, trenches, ponds. underground caissons). 

0 IS46 - Atomic Energy Commission (AEC) continues 
practice (started by Manhaltan Project) of burying 
soliiified nuclear waste in trenches. Started storing 
liquid wastes in tanks. 

0 IS62 - Radioactive Waste Management Complex 
(RWMC) for storing and burying waste is completed at 
Idaho National Engineering and Environmental 
Laboratory (INEEL). 

0 1953 -Savannah River Plant begins waste storage and 
disposal on site at 'Old Burlal GrouM. 

0 IS54 - Aug: Rocky Flats. Colorado. bepis shipping 
transurank (TFIU) waste to INEEL for dlsposal at 
RWMC. 

0 1955 - AEC asks Nat i ia l  Academy of Sciences (NAS) 
to examine issue of permanent disposal of radioactive 
waste. First Atoms for Peace Conference to evaluate 
peaceful uses of nuclear explosives. 

1857 NAS 0 1 9 s  - NAS suggests radioactive waste disposal in salt 
as most promising method. z%%.-p@ disposal In 1959 - NAS commission on oceanography reports on 

san beds coastal disposal of low-level radioactive waste. 

1963 0 1963 - ORNL begins Project Sail Vault. a large-scale 
ORNL fleid test in which electric heaters are placed in 
Pmject existing salt mine at Lyons, Kansas, to study near-field 

effects. san Vault 

0 1966 - NAS reaflirms use of saltbeds lor nuclear waste 
deposal and severely criticizes current practices of 
AEC. 

0 1968 - AEC again asks NAS to examine issw of 
radioactive waste disposal. NAS creates m m m w  
on radioactive waste management; later permanent 
'Board'. 

0 1970 - Disposition study for Gnome site Is conducted 
for Atomic Energy Canmissh. Jun: AEC IenIatively 
selects mlne in Lyons. KS. as repository. AEC states 
commercial high-level waste (HLWJ must be sol i i fkd 
within 5 yr and sent to federal repository wlthin 10 yr; 
retrievable concept applied to defense TRU wasta. 

1970 NAS axlcludes 
bedded sail dlsposal 
safest chdm 
now available 

1972 L y m  
site j w d  

Board of Radioactive Waste MMapefIIent 01 National 
Academy of Sciences issues report concluding bedded 
saw satisfactory and best choica now available for 
nuclear waste disposal. 

solution mining near Lyons, KS. Congress directs AEC 
to stop Lyons project. 

0 1972 - May: AEC abandons Lyons project. AEC an- 
nounces plans for retrievaMa surlace storage facility. 

0 1973 - EPA prohibits disposal of HLW. SNF. TRU in 
oceans and sets criteria lor disposal of other radioac- 
live waste (40 CFR 220). 

0 1971 - After AEC d i v e r s  many drill holes and 

1976 - ERDA funds conference on modeling of geolcg- 
lc disposal systems to bring engineers and earth scien- 
tists together to explore predicting geological features, 
events. and precesses. President Ford orders EPA to 
develop standards for permanent disposal of nuclear 
waste. Oct Ford orders major expansion of ERDA pro- 
gram to demonstrate permanent disposal for nuclear 
waste by 1985 and orders EPA to develop standards, 
based on recommendations of interagency task force. 
Dlc: NRC funds ccwrference to develop generic list 01 
potential hazards for repositories. 

0 1977 - Geohydrology is important aspecr of geologic 
isolatbn; henca. mathematical modeling of ground- 
water flow is required. hb In response to Ford's 
directive, EPA conducts 1 sl workshop to understand 
public concerns and technical issues of waste 
disposal. 

0 1978 - NRC funds SNL to work on probabilistic PA and 
apply to hyph t i ca l  bedded salt repository (resulting 
method abandons fault trees and usas simple event 
trees). DOE funds SNL to work with Canadians. Brit- 
ish, and other Nuclear Energy Agency (NEA) countries 
to analyze deep, subseabed disposal option. Nw: 
EPA publishes 'Criteria for Radioactive Wastes' as 
guidance and seeks comments. U.S. Congress pass- 
es Uranium Mill Tailings Radiation Control Act to clean 
up mill tailhgs (60% federal funding) and Control future 
use and disposal. 

0 1980 - LHS is app l i i  to sensitivity anabis for an 
assessment of the performance of a hypc4hetical 
geologic repcsitory in bedded salt. Congress passes 
Low-Level Radioactive Waste Policy Act (LLRWPA) to 
allow states to f m  compacts to build several Low 
Level Waste (LLW) disposal sites. 
1981 - Drall of final report to NRC on performance 
assessment (PA) is applied to hypothetical bedded salt 
repository readily available- uses a set of loosely 
connected codes. precursors to SWlFTJl (fluid flow 
code). and NEFTRAN (network transport code). Mar: 
Developing generic disposal criteria for radioactive 
wastes diiffiult, thus EPA starts developing standards 
for each waste type. 

0 1982- EPA drafts 40 CFR 191. defines PA, suggests 
use of complementary cumulative distribution function 
(CCDF) to show results. 

0 1981 - F&c EPA's Science Advisory Board endorses 
probabilistic approach in 40 CFR 191 but states criteria 
too restrictive. 

SNF, HLW, and TRU waste: 

populetion health risk 

1BM) LHS 
applied to PA 
sensiuvlty 

1985 EPA 

;z%%i2E 
crltetia In 
40 CFR 191 

0 1985 - EPA promulgates 40 CFR 191 for disposal of 

- probabilistic criteria indirectly based on 

- desires inclusion of all uncertainty in CCDF 
US. Congress amends LLRWPA to allow more time 
lor states to form compacts and build LLW disposal 
sites. 

hypothetical basalt repository for NRC. Subseabed 
team reports on use of local and regional embedded 
detailed models for simulating Ocean currents for 
subseabed disposal (concept used for WlPP PA). 

0 1988 - SNL exlends probabilistic PA method to 

Fig. 7. Early risk studies for nuclear waste repositories to develop an assessment methodology. 

holes and solution mining. The project was officially 
abandoned in 1972, and the AEC then announced 
plans for a Retrievable Surface Storage Facility. The 
EPA, formed in 1970, and antinuclear groups claimed. 
in comments on the EIS that the retrievable storage 
facility was de facto permanent disposal, which Nuclear Waste Repositories 
prompted the AEC to continue to search for a suit- 
able disposal site. Soon after, the AEC, ORNL, and 
U.S. Geological Survey (USGS) recommended the 

large salt beds of southeastern New which 
would eventually host the Waste Isolation Pilot Plant 
(WIPP) discussed in Section 6. 

Development of Risk Assessment Methods for  

As discussed here, the method that was con- 
ceived and accepted by the engineering community 
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in the United States, and by the EPA and NRC as 
regulators for evaluating the acceptability of a dis- 
posal system, was a probabilistic PA. In this respect, 
PAS in the United States remained similar to “Level 
3” PRAs for nuclear reactors in which offsite health 
risks are e v a l ~ a t e d . ( ~ ~ “ ~ # ~ ~ )  The PA method was first 
described in a 1981 draft report submitted to the NRC 
(final report, 1987)(75,76) for a hypothetical bedded salt 
repository. The method was somewhat similar to an 
all-encompassing total system approach that had 
been proposed earlier by geoscientists at PNL.(”) 
What follows in this section are concepts specifically 
developed by the NRC at that time. Applications are 
discussed in Section 6 and in Helton et al. (this issue). 

System Defnition/Characterization. In 1976, the 
ERDA (Energy, Research, and Development Ad- 
ministration, a precursor to the DOE) sponsored two 
conferences to bring together two groups of profes- 
sionals: nuclear engineers familiar with the recently 
developed PRA methodology for reactors and earth 
scientists familiar with the uncertainties of geologic 
investigations(78) (Fig. 1). At the time, other countries 
were also addressing the need for nuclear waste dis- 
posal and, in 1977, the International Atomic Energy 
Agency (IAEA) recommended site selection crite- 
ria.(79) The ERDA conferences provided an opportu- 
nity to exchange viewpoints among representatives 
from various disciplines and produced ideas about 
how to perform an assessment for a geologic disposal 
system, which were examined in the following years 
by the NRC.(77) In general, the proposed method 
sought answers in the form of system engineering 
analysis, rather than a conceptual analog model, by 
developing a mathematical model, C( * ), and an ap- 
propriate parameter space, x = {xI ,  x2, . . . xnP}, where 
nP is total number of parameters. Because of the 
inclusion of natural components (components that 
do not “fail” but rather evolve) and the need to 
evaluate the interaction of the natural component 
with engineered components, earth scientists pointed 
out that the mathematical model had to analyze basic 
natural phenomena over long periods.(”) The blend- 
ing of the disciplines to produce a performance as- 
sessment has not been without tension. Ewing et al.@‘) 
continue the dialog among various disciplines in this 
special issue. 

Hazard Zdentification and Scenario Development. 
For hazard identification (or risk identification as it 
was called by Rowe@l)), an initial, generic list of fea- 
tures, events, and processes (FEPs) (i.e., “universe”) 
is defined for consideration in the assessment. Al- 
though hazard identification is a part of all risk assess- 

ments, the formality with which FEPs are selected for 
inclusion in modeling is distinctive of PAS and PRAs. 

In a companion draft report to the NRC also 
available in 1981 (final report published in 1990), 
Cranwell et U L . ( ~ ~ )  proposed a method to screen out 
unreasonable FEPs, and form a limited number of 
scenarios based on only discrete events and features, 
not processes. Other early efforts included the gener- 
ation of a starting list of FEPs that was developed 
by a panel of scientists and engineers supporting the 
NRC in 1976-1977(76@); an international effort on 
hazards by the IAEA in 1981@S; and development of 
scenarios for a hypothetical repository in basalt in 
1983.(&2) In developing scenarios, the parameter space 
was conceptually divided into two subsets, x = 
[xs, xpl, although not described in those terms at the 
time. One subset included the parameters that de- 
fined certain conditions for a scenario, Sj C xs, that 
an analyst may want to highlight in the analysis (or 
because the Monte Carlo integration to evaluate the 
uncertainty was easy to perform separately for this 
subset). For example, for the WIPP, discussed in Sec- 
tion 6 and Helton et al. (this issue), S, defined condi- 
tions for human intrusion and location of a brine 
reservoir, respecti~ely.(~~~~) The second subset con- 
tained the remaining parameters. 

Probability Evaluation. For parameter uncer- 
tainty, ideally, a joint probability density function is 
defined, D(xP), but D(xP) is usually represented by D1 
(xp) * D2(x$) . . . - DnU(x;J, where the individual pa- 
rameter density functions are assumed independent 
and nU is the number of uncertain parameters. To 
propagate parameter uncertainty through the analy- 
sis, the LHS technique was proposed in 1978.(75.76.s6.87) 

At first, the NRC insisted that Sandia, as contrac- 
tor to the NRC, directly apply the techniques of the 
Reactor Safety Study(14) with only minor modification 
to calculate the probability of the scenarios, P,{Sj},  
mentioned here. However, discretization of a geo- 
logic disposal system by means of event and fault 
trees was not a simple task for the highly coupled 
system, as experienced by the WIPP Project(88) (see 
also Section 6). Eventually, it became clear that calcu- 
lating probabilities of scenarios of a geologic system 
from fault trees was not practical.(89) In the late 1970s 
and early 1980s, an ad hoc assignment of probabilities 
of parameters and scenarios was used because ini- 
tially only hypothetical sites were studied. 

Consequence Evaluation. The consequence 
modeling for the hypothetical salt repository pro- 
posed in 1981(75) consisted of an exposure pathway 
assessment using a model comprised of loosely con- 
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nected series of codes (precursors to the finite-differ- 
ence flow code, SWIFT 11, and the network transport 
code, NEFTRAN(75)) specifically designed for the 
task. The study simulated a steady-state groundwater 
flow field, evaluated a particle pathway, and then 
calculated radioisotope transport along this pathway 
from a simple source. Because the implementation 
of a numerical solution for the partial differential 
equations describing radioisotope transport was dif- 
ficult in practice, a single pathway or network trans- 
port code was used. A similar consequence evalua- 
tion was also completed in 1988 for a hypothetical 
disposal site in basalt.cg0) 

Sensitivity/Uncertainty Analysis. A feature that 
was adopted early in PAS of hypothetical reposito- 
rie~‘’~.’~) was the inclusion of a sensitivity analysis. 
This type of analysis explored the individual parame- 
ters, x,, and model forms (e.g., fa( * )) that most influ- 
ence the regulatory criteria discussed as follows. 

Regulatory Criteria 

Society’s definition of acceptable risk from geo- 
logic disposal (i.e., society’s “utility”) was evaluated 
over the same period as various analysis tools for the 
PA process were being developed. In 1977, the EPA 
conducted several public meetings to develop societal 
consensus on regulatory criteria (41 FR 53363; 43 FR 
2223). Initially, the EPA proposed generic criteria 
on all radioactive waste in 1978 (43 FR 53262), but 
after receiving generally unfavorable responses, they 
withdrew the proposed regulations in March 1981, 
and began developing standards for individual cate- 
gories of radioactive waste. 

In 1982, in response to a requirement in the 
Nuclear Waste Policy Act of 1982 (Public Law 97- 
425), the EPA published a draft of the nuclear waste 
disposal regulation in Title 40 of the Code of Federal 
Regulations Part 191 (40 CFR 191; 47 FR 58196), 
which had already undergone more than 20 revisions. 
The EPA did not promulgate the final version of 40 
CFR 191 until 1985 (50 FR 38066), 3 years after 
submitting the proposed regulation, and then only 
after drawing a lawsuit to hasten its promulgation.1° 

lo Changes in the 1985 final version of 40 CFR 191, primarily the 
Individual and Groundwater Protection Requirements, led to a 
lawsuit by the same group, the Natural Resources Defense Coun- 
cil, that had sued earlier to accelerate promulgation. The courts 
remanded the regulation shortly thereafter (as reported in Vol. 
824 of Federal Reporter, second series [824 F.2d. 12581). but the 
EPA repromulgated the standard in 1993 for the WIPP without 
changes to the most influential section, the Containment Re- 
quirements (58 FR 66398). 

The 40 CFR 191 Standard established criteria for the 
disposal system as a whole and specified PA as the 
type of calculations to be used to show compliance 
with this regulation.” 

The analysis conducted in support of regulatory 
standards for deep geologic disposaP) convinced the 
EPA that the risks to society from such a disposal 
method were low. Furthermore, the EPA argued that 
very stringent requirements could be placed on the 
disposal system without adding substantially to the 
initial cost (50 FR 38066; i.e., the EPA indirectly 
adopted an ALARA policy). Thus, the EPA consid- 
ered maintaining equity of risks and benefits between 
generations over a very long regulatory period 
(l0,OOO years) with regard to radioactive waste dis- 
posal, even though other potentially hazardous activi- 
ties, such as disposal of hazardous chemicals or coal 
fly ash from utilities, could not sustain such an expen- 
sive program. Even considering the proposition of 
intergenerational equity, however, the EPA’s Science 
Advisory Board (SAB) claimed in their review of 
the analysis that the release limits were an order of 
magnitude too stringent.(g1) Furthermore, the regula- 
tions assumed a static society (i.e., using current tech- 
nology during the 10,000-year period), which added 
another level of conservatism. (This is a conservative 
assumption provided one accepts the proposition that 
the waste is most hazardous to a society living under 
current conditions rather than one with a lesser or 
greater degree of technological prowess.) A compila- 
tion (Okrent, this issue) of the reviews and philosoph- 
ical discussions held during the development of 40 
CFR 191 gives the reader more background on the 
regulatory spirit of 40 CFR 191. 

The need to model natural components over 
long time periods encouraged development of proba- 
bilistic performance criteria in 40 CFR 191 to account 
for uncertainty in characterization knowledge. For a 
mixture of radioisotopes, the EPA required the sum 
of all releases C(xp),  where each radioisotope ( i )  is 
normalized with respect to its radioisotope limit (LJ,  
should have less than 1 chance in 10 of exceeding 1 
and less than 1 chance in 1,000 of exceeding 10 (50 

‘I Specifically, PA was defined as an “analysis that (1) identifies 
the processes and events that might affect the disposal system; 
(2) examines the effects of these processes and events on the 
performance of the disposal system; and (3) estimates the cumu- 
lative release of radioisotopes, considering the associated uncer- 
tainties caused by all the significant processes and events. These 
estimates shall be incorporated into an overall probability distri- 
bution of cumulative release to the extent practicable” (50 
FR 38066). 
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FR 38067; 58 FR 66398; Fig. 8). The EPA specified 
radioisotope limits (Li) so that only an exposure path- 
way assessment was needed for the consequence 
analysis. Adhering to tradition, the dose-response 
assessment performed by the EPA to determine Li 
depended on bounding-type dose evaluations‘”); 
thus, a PA in the United States is not entirely proba- 
bilistic. Moreover, they specified an evaluation of 
cumulative releases of radioisotopes (Qi), which re- 
quired the EPA regulator to convert through crude 
calculations from dose, which depends on rate of 
release, to obtain the allowable Li.(M) The EPA re- 
jected dose as the primary requirement because its 
use might encourage disposal near large bodies of 
water to allow for dilution (47 FR 58196) or disposal 
in numerous small repositories. A dose criterion was 
also believed to encourage expensive engineered 
containers, a situation that has indeed occurred at the 
potential Yucca Mountain repository, as discussed in 
Section 6.2.(”lE) For comparison to limits in 40 CFR 
191, uncertainty in the cumulative normalized release 
was displayed as a complementary cumulative distri- 
bution function (CCDF) (Fig. 8). Thus, the risk mea- 
sure was not the first moment of the distribution (the 
expected value of the results) or the second moment 
of the distribution (the variance of the results, as in 
risk analysis of stock portfolios).(*) Instead, the entire 
distribution of the results was used.(” 

5. RISK ASSESSMENT FOR HAZARDOUS 
CHEMICAL EXPOSURE AND DISPOSAL 

Assessments of health and environmental issues 
show great variability in their comprehensiveness and 
use of the general steps of a risk assessment. The 
desires of Congress, and its responses to several im- 

CCDF = 1 - CDF 
1 chance in 10 of 
C(X) exceeding 1 

1 chance in 

exceeding 10 

10-I loo 10’ 
Summed, 

Normalized Release C(X) 

Fig. 8. In the United States, the uncertainty in a PA is expressed 
as a CCDF and compared with the limits in 40 CFR 191. 

portant environmental issues, have influenced the 
comprehensiveness of such assessments. Further- 
more, the focus of many assessments is on only one 
of the general steps (i.e., evaluating the dose response 
of a receptor to a chemical agent). For example, in 
1993, the National Academy of Public Administra- 
tion (NAPA) reported that 7,579 risk assessments 
had been conducted by the EPA. Most (6,166 assess- 
ments) were small 2-day assessments to screen poten- 
tial chemical carcinogens; only a few of the assess- 
ments were extensive, requiring 1 or 2 years to 
complete and costing more than 1 million each.‘”) 

With such a large and diverse population of risk 
assessments for health and environmental issues, this 
article does not attempt a direct comparison between 
assessment techniques, but rather, juxtaposed health 
and environmental issues, including chemical carcin- 
ogens in foods, air pollution, hazardous waste dis- 
posal, and pesticides, and of the varying legislative 
and regulatory responses with issues of nuclear facili- 
ties. In contrast to nuclear facilities, risk assessment 
has not been consistently accepted as valuable input 
to policy decisions or regulatory control for other 
types of hazards. Furthermore, there has been no 
mandate to include uncertainty in the analysis, and 
thus these risk assessments have evolved outside the 
traditions of reliability analysis (Fig. 1). Instead, these 
assessments have generally used plausible upper 
bounds for parameter values.(74) 

5.1. Dose-Response Assessments by the FDA 

At about the same time as evidence accumulated 
about X-ray and radium exposure, some scientists 
hypothesized that no threshold might also apply to 
chemical carcinogens.(17) The FDA initially adopted 
safety factors of 2,000 and then 5,000, but in 1950 it 
banned two artificial sweeteners when animal tests 
demonstrated car~inogenicity.(*~) Then, the FDA pro- 
posed to allow use of a carcinogenic pesticide “Ara- 
mite” (see 968 F. 2d 985). Congressional response to 
this chemical carcinogen hazard was the passage of 
the Food Additive Amendment in 1958, which con- 
tained a “Delaney Clause” that prohibited the inten- 
tional addition of additives to processed foods that 
induced cancer in animals or humans” (Public Law 
85-929). A similar provision was added concerning 
food coloring in 1960 (Public Law 86-618; Fig. 9). 
In essence, Congress stated that no exposure to a 
carcinogen through processed food was safe, and thus 
only hazard identification was required. However, 
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1958 - Sap: US. Congress passes Food Addlive 
Amendment containing ‘Delaney Clause’ prohibiting 
human-made additives in processed food that induce 
cancer in animals or humans. 

0 1959 - NOV: U.S. Dept 01 Heaith and Human Services 
secretary. Flemming, tells people not to buy cranberries 
because aminotriazole pesticide residue might remain, 
might cause cancer. and was prohibited under 
‘Delaney Clause.’ Fanners lose $40 million. 

common chemicals for carcinogenicity. 

General report links smoking with numerous heaiih 
problems especially lung cancer. 

0 1970 - Based on US. Food and Drug Administration 
(FDA) studies and World Health Organization (WHO) 
findings. National Academy of Sciences proposes 
limiting saccharin consumption to lglday. 

0 1971 - FDA calls lor gradual removal 01 saccharin from 
Ioods. 

1973 FDA ProPo= risk 0 1973 - FDA proposes risk assessment 1 chance in 100 
assessment forevaluating mill in as de minimis lor cancer risk of drugs given to 
de minimis cancer risk food anima~s, 

0 1974. Israeli psychologists report on the irrational 
behavior 01 humans when managing risk and 
uncertainty: lraming decisions as losses or galns 
changes risk adversion (adversion to losses); individual 
experiince very small sample size; humans ignortng 
a prion’probabilities; humans adverse to amblguity. 
etc. Based on new studies. NAS reports saccharin 
neither highly hazardous nor entirely sale. 

0 1960- National Cancer Institute (NCI) begins testing of 

0 1964 -Center for Disease Control (CDC) Surge00 

1976 EPA pub- 
lishes risk assess- 
men1 guidelines 

0 1976 - EPA publishes first guidelines on carcinogenic 
risk assessment. 

1977 FDA attempts to i i  0 1977 - Joint CanadianUS. study on saccharin re- 
tOdcanCer risk as cut-off leased showing some bladder tumors in male rats. 

Canada bans saccharin but US. Congress passes 
moratorium on removing saccharin from foods. FDA 
promulgates but regulation remanded de minimis 
cancer risk to 1 in 1 million. 

Services starts National Toxicology Program (NTP) to 
coordinate all chemical tests lor carcinogenicity in 
animal studies. 

0 1976 - US. Department of Health and Human 

0 1979 - FDA again proposed to use a de minimis cancer 
risk of 1 in 1 million and use a no threshold. linear ex- 
trapolator lo develop a dosoresponse curve for poten- 
tial carcinogens. Interagency Regulatory Laison Group, 
formed by major agencies to coordinate identification 01 
carcinogens and estimate risk, recommends procedure 
on risk assessments (Regan abolished before draft 
could be revised in response to public comments). 

1BM) Supreme Carrt rules 0 1960 - International Society lor Risk Analysis formed. 
OSHA must use rlsk mess- 013: Supreme Court rules that the Occupational Safety 

and HeaRh Administration must use risk assessment 
before regulating workplace hazards such as benzene; 
also states 10J risks of concern but to4 risk of no 
concern. 

0 1983 - Mar: NAS publishes repon that endorses four 
steps of risk assessment and issues summary on 
chemical carcinogenic risk assessment lor setting 
federal policy lor FDA. 

0 1986 - Sep: EPA completes guidelines for evaluating 
the dose-response 01 carcinogens (carcinogen risk 
assessments) that calls lor characterizing uncertainty. 

0 1987 - P. Slovic has public and experts separately rank 
30 activities for perceived risk. Public ranks nuclear 
power 1st; experts rank 20th. Both rank cars. smok- 
ing, alcohol, and handguns as risky. Dec: FDA prom- 
ulgates rules for a risk level at lo4 01 straight line 
extrapolation when making dose assessments for 
potentially Carcinogenic food additive for cattle, etc. 

0 1989 - Feb: NAS publishes book on ways to improve 
dialogue on risk. 

0 1990- Mechanistic models show carcinogens thal do 
not interact with deoxyribonucleic acid (DNA) may have 
nonlinear or threshold dose response. 

carcinogen, thus Times Beach evacuation may have 
been unnecessary. 

0 1994 - As required by CAAA of 1990. NAS cmmittee 
on air pollutants publishes summary on scientific judg- 
ment in risk assessments and concludes EPA risk as- 
sessment approach sound but uncertainty estimates 
not calculated. EPA releases dose-response assess- 
ment on dioxin suggesting a spectrum of possible ef- 
fects. some observed in cells at low doses. 

0 1996 - Apr: EPA proposes revisions to the guidelines 
for evaluating the dose-response 01 carcinogens 
(‘carcinogen risk assessment‘) based on comments by 
1994 NAS report. 

‘red book’ on 
chemical risk 
assessments 

1986 EPArev 
carcinogenic ri 
assessment 
guidelines 

0 1991 - CDC studies on dioxin indicate very weak 

1998 EPA awi 
canlnogenk cls 
assessment 
gulMines 

Fig. 9. Events influencing evaluation of chemical carcinogens at FDA and risk communication. 

the requirement specification that no potentially car- 
cinogenic, human-produced chemical could be inten- 
tionally added to processed food created gross incon- 
sistencies in policy because different legal treatment 
of carcinogenic and noncarcinogenic chemicals was 
mandated.(”) 

By the 1970s, an evaluation of consequences 
from chemical carcinogens, in addition to identifying 
the potential hazard, was considered necessary in 
some cases, although a risk assessment could still 
only highlight-not correct-the discrepancy in pol- 
icy. In 1976, Lowrance described four steps of 
risk assessment that emphasized the dose-response 
aspect of chemical hazards (1) define the conditions 
of exposure, (2) identify the adverse effects, (3) 

relate exposure to effect, and (4) estimate over- 
all r i ~ k . ( ~ ) ’ ~  

In the 1980s, the use of risk assessment as a 
decision-making tool received Congressional sup- 
port. In 1981, Congress directed the FDA to contract 

l2 Lowrance also defined the concept of “safe” as used herein, “a 
thing is safe if its risks are judged to be acceptable.” This was 
somewhat similar to the relationship of safety and risk introduced 
in the 1925 Standard Methods for the Examination of Water and 
Sewage, 7th ed., by the American Water Works Association,’zs’ 
which commented that “to state that a water supply is ‘safe’ does 
not necessarily signify that absolutely no risk is ever incurred in 
drinking it . . . but the total incidence of diseases has been so 
low that. . . the risk of infection through them is still very small 
compared to the ordinary hazards of everyday life.” 
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with the NAS to study risk assessment in the federal 
government. The purpose of the study was to assess 
the merits of separating the analytical functions of 
risk assessment from the regulatory functions, con- 
sider the feasibility of a single agency performing all 
federal risk assessments, and consider the feasibility 
of developing uniform guidelines for all federal risk 
assessments. In March 1983, the NAS committee re- 
ported on its findings concerning risk assessment for 
cancer from toxic substances; the committee only 
indirectly considered risk assessment for other types 
of hazards. The report defined the risk assessment 
process using the four basic steps that the FDA (and 
the EPA) still use for their carcinogenic assess- 
ment~(~):  (1) hazard identification, (2) dose-response 
assessment, (3) exposure assessment, and (4) risk 
characterization. Sensitivity analysis was not dis- 
cussed. Interestingly, the assessment of probabilities 
(either of various events or parameters) was also 
omitted, although probability was indirectly refer- 
enced with regard to dose response for carcinogens. 
The NAS recommended developing uniform guide- 
lines for risk assessments and risk management func- 
tions, making a clear distinction between the two 
functions. By this time, a shift in terminology had 
occurred. Ten years earlier, Otway (1973)(94) defined 
risk assessment in a manner similar to the current 
definition of risk analysis. In Otway’s definition, a 
risk assessment consisted of both risk estimation (the 
NAS definition of risk assessment) and risk evalua- 
tion (the NAS definition of risk management). 

The FDA had been struggling to define guide- 
lines for assumptions for dose-response assessment 
and the meaning of significant risk in one particular 
area for more than a decade. In 1962, Congress 
amended the Food, Drug, and Cosmetic Act to allow 
use of potentially carcinogenic drugs in feed or injec- 
tions for food animals provided no residue could be 
detected in the edible tissue, “the diethylstilbestrol 
(DES) proviso” (Public Law 87-781). Between 1962 
and 1973, the FDA tested for potentially carcinogenic 
chemicals using a variety of analytical techniques on 
a case-by-case basis. However, during the 196Os, the 
analytical detection methods dramatically improved 
such that, by 1972, evidence of most drugs adminis- 
tered to animals could be found in edible tissue 
through radioactive tracer studiedz7) (44 FR 17070). 
Hence, in July 1973, the FDA proposed using risk 
as a guideline rather than specifying a particular ana- 
lytical technique to detect residues. The first pro- 
posed regulation used a probit-log transformation to 
establish a dose-response curve as a default inference 

that may or may not have had a threshold and defined 
significant risk as a chance of cancer greater than 

over a lifetime using this curve(95) (38 FR 19226). 
This was the first proposed regulatory use of low- 
dose extrapolation, even though it had been in aca- 
demic use since 1960.(z7) In February 1977, the FDA 
promulgated this guidance but changed the risk limit 
to over a lifetime (42 FR 10412). Because the 
cost of testing was a contentious the FDA was 
sued by the Animal Health Institute. The regulations 
were remanded by the U.S. District Court in the 
District of Columbia in February 1978, and revoked 
by the FDA in May (43 FR 22675). In March 1979, 
the FDA proposed similar regulations; however, the 
FDA changed to straight-line extrapolation as the 
default method for developing the dose-response 
curve (44 FR 17070). A risk limit of and straight- 
line extrapolation were finally adopted in December 
1987 (52 FR 49586; 21 CFR 500, Subpart E). 

Also during the 1970s, the FDA was confronted 
with two other notable carcinogens: the artificial 
sweetener, saccharin, and aflatoxin, found in peanut 
butter. In both instances, the FDA evaluated a dose- 
response curve and compared it with its risk limit 
to help explain the decisions to ban saccharin in 1977 
(42 FR 19996), while continuing to permit contamina- 
tion of peanut products with aflatoxin in 1974 and 
1978 (39 FR 42748). 

5.2. Risk Assessment for Health Issues at EPA 

Formation of the EPA 

Congress formed the EPA in 1970, transferring 
to it responsibilities of research, monitoring, stan- 
dard setting, permitting, and enforcement activities 
related to the environment (40 CFR 1). The role 
of standard setting somewhat differentiated the 
EPA from other “permitting” agencies, such as the 
NRC. Also, Congress greatly expanded the public’s 
ability (later enlarged by the courts) to influence 
the process of setting standards. Lawsuits about 
EPA standards were permitted by citizens or special 
interest groups, with legal expenses paid by the 
federal government if the suit was successful, and 
EPA regulations were made purposely accessible 
to the public through numerous avenues such as 
comment periods. As pointed out by political scien- 
tists,(%) the increase in public participation broad- 
ened the arguments, but also accentuated the diffi- 
culty of making decisions. Hence, procedures for 
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setting standards became important and risk assess- 
ment, with its well-defined process, was gradually 
adopted for determining risks when setting stan- 
dards and policy and as input for decisions. 

Yet, even with these general motivating factors, 
the movement to use risk assessments as input to 
decisions was not uniform or consistent within the 
EPA (or across other government agencies). Al- 
though the administration of environmental law 
rested with one agency after 1970, Congress contin- 
ued the practice of creating legislation that dealt with 
only one medium at a time (e.g., air, water, or soil). 
Hence, the EPA’s management structure and pro- 
grams remained fragmented, and risk assessments 
would often be narrowly focused without considering 
overall risk.(93) Furthermore, environmental laws 
were prescriptive, requiring a command-and-control 
approach,(43) so that the EPA had little flexibility in 
what could or could not be considered when setting 
environmental goals. 

Controlling Pesticide Use 

Congress had exercised some control of pesticide 
use since the 1900s (e.g., Insecticide Act of 1910; 
Publication 48 in U.S. Statutes, Public Law 6-152 [36 
Stat. 331]), but pesticides were not used extensively 
in the early 1900s and so the enforcement of the law 
was lax.(53) The development and use of manufactured 
chemicals during World War I1 jump-started their 
proliferation in the late 1940s. The widespread use 
encouraged Congress to pass the Federal Insecticide, 
Fungicide, and Rodenticide Act (FIFRA) in 1947 
(Public Law 104 [62 Stat. 1631) for registration and 
management of the chemicals, but the new law was 
still largely ineffecti~e.‘~~) 

Significant public concern for the effects of long- 
term chemical use occurred after the 1962 publication 
of Silent Spring by Rachel Carson,@’) which con- 
demned pesticides such as DDT and argued for 
strong government control. This desire for regulation 
of pesticides was a major impetus in the formation 
of the EPA.(53*98) DDT, a pesticide with low toxicity 
to most mammals, had a remarkable ability (because 
it was both effective and inexpensive) to control mos- 
quitoes and thereby malaria, and its synthesis in 1939 
had earned its creator, Muller, a Nobel Prize in medi- 
cine. However, the discovery of biomagnification in 
1960 for persistent chemicals such as DDT,(4.99) the 
discovery of eggshell thinning in raptors in England 

in 1967 from DDT, and the synthesis of other more 
expensive but less persistent pesticides, led EPA’s 
first administrator, W. D. Ruckelshaus, to overturn 
an administration hearing’s conclusion and ban DDT 
in the United States in 1972 (37 FR 13369). Also, in 
1972, Congress rewrote FIFRA, which strengthened 
the EPA’s control of pesticides. However, FIFRA 
required economic and social benefits to be consid- 
ered as well as environmental and health risks. By 
1975, the use of two other major pesticides, aldrin/ 
dieldrin and chlordane/heptachlor, was suspended, 
based primarily on qualitative arguments of health 
versus social benefits. Scientific information was gath- 
ered only during adversarial hearings.(%) 

Dose-Response Assessment Guidance for 
Carcinogens by EPA 

In the summary of the administrative hearings 
on suspended pesticides (e.g., DDT), the attorneys 
for the EPA implied that only a total ban of 
useful but potentially carcinogenic pesticides was 
permissible. These “cancer principles,” as they were 
called, were widely Partly in response 
to the broad criticism of the cancer principles,(’@’) 
the EPA produced its first guidelines on assessments 
in May 1976 for evaluating the carcinogenic poten- 
tial of a chemical; the EPA termed the evaluation 
a carcinogenic risk assessment (41 FR 21402). These 
guidelines were used to evaluate toxic air pollutants, 
toxic water pollutants, hazardous waste chemicals, 
and pesticides under the following acts: Clean Air 
Act (CAA); Federal Water Pollution Control Act 
(FWPCA); the FIFRA; the Resource Conservation 
and Recovery Act (RCRA); and the Compre- 
hensive Environmental Response Compensation 
and Liability Act (CERCLA), discussed later in 
this article. 

The 1976 guidelines proposed a two-step pro- 
cess: hazard identification, followed by risk manage- 
ment to decide whether and how to mitigate hazards. 
The two steps mirror the concept contained in the 
“Delaney Clause” that any exposure to carcinogens 
is unsafe. However, the guidelines stated that risk 
assessment was part of the second step. Hence, an 
important transition occurred with regard to recog- 
nizing the impracticality of enforcing zero risk from 
useful chemicals. Yet, by 1983, the transition was not 
complete nor was tension dispelled over the concept 
of an “ample margin of safety” (as specified in the 
Clean Air Act Amendments of 1970 [Public Law 91- 
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6041, discussed in the next section) and risk assess- 
ment.(%) Furthermore, the EPA was embroiled in 
concerns about asbestos in schools(lol) and the high 
rate of potential cancer deaths that had been pur- 
ported in a draft epidemiology study in 1978, which 
indicated that 17% of all future cancer deaths would 
be caused by asbestos.(*) Hence, in June 1983, just 1 
month after taking over as EPA administrator for a 
second time, W. D. Ruckelshaus strongly encouraged 
the EPA to increase its use of risk assessment in 
its policy decisions, as endorsed by the March NAS 
rep~rt,’~) and to include a discussion of uncertainty(’) 
(Fig. 1). 

In 1986, the EPA extensively revised the carcino- 
genic risk assessment guidelines (51 FR 33992), pro- 
viding guidance on default inferences to use when 
bridging gaps in knowledge and data for evaluating 
the carcinogenic potential of a chemical or estimating 
the dose response, as recommended by the NAS in 
1983.(” In contrast to the FDA’s method, the EPA 
suggested a slightly more complex, linear, multistep 
model for extrapolating responses to low doses that 
had been used by the EPA since 1980.(98*102) Similar 
to straight-line extrapolation, the model was believed 
to provide a plausible upper bound to dose response 
in humans. In 1996, the EPA again revised the carcin- 
ogenic risk assessment procedures in response to sug- 
gestions by the NAPo3) and as mandated by the Clean 
Air Act Amendments of 1990. The scheme for 
weighting evidence indicating whether a chemical 
was a carcinogen was modified, descriptors for cate- 
gories of potential carcinogens were changed, and 
the method of developing the dose-response curve 
was altered so that it included a simple linear extrapo- 
lation as a default option, similar to the FDA’s 
method. Despite the EPA Administrator having en- 
couraged an increased use of uncertainty on risk as- 
sessments in 1983;’) the NAS committee on Hazard- 
ous Air Pollutants concluded more than 10 years later 
that uncertainty estimates were still not calculated 
routinely in EPA risk as~essments . (~~*~~~)  Hence, the 
1996 guidance attempted to explicitly require at least 
a qualitative description of uncertainty in the assess- 
ment. However, in May 1997 the EPA explicitly re- 
quires bounding estimates when evaluating human 
dose response.(103a) Although the report is still in draft, 
also in 1997, the EPA explored evaluating the uncer- 
tainty in the human dose response for radiation and 
radioisotopes, for which much data have been col- 
lected (see Section 2.4; 62 FR 55249; 63 FR 36677). 
This effort was similar to the uncertainty evaluation 
also done by the NCRP in 1997. 

Factors of Protection for Noncarcinogens 

In 1977, in a study mandated by the Safe Drink- 
ing Water Act of 1974, NAS recommended an ap- 
proach for noncarcinogens similar to that adopted 
by the FDA in 1954, by suggesting a factor of protec- 
tion of 100 when estimating ADIs for contaminants 
in drinking water. Furthermore, they added another 
factor of 10 when the contaminant threshold was 
estimated from short-term nonchronic animal stud- 
ies. In 1980, the EPA adopted this NAS recommen- 
dation and added an additional factor between 1 and 
10 when only a LOAEL (lowest observed adverse 
effects level) was known for setting an AD1 (45 
FR 79347). 

In 1984, Rodericks (1984)(’”) proposed a sensible 
but controversial approach for relating ADIs for non- 
carcinogens to a unit cancer risk (UCR) for carcino- 
g e n ~ ~ ~ ;  in this approach, the AD1 for a noncarcinogen 
was assumed to represent between 
chance of adverse effects. The approach was ex- 
tended to radioisotopes and applied in an exploratory 
study using risk to rank chemical and radioisotope 
hazards at mixed waste sites at U.S. Department of 
Energy (DOE) facilities.(105) In general, however, 
studies of noncancerous chemicals are still only haz- 
ard assessments combined with a calculation of an 
allowable threshold dose, which is considered safe 
by means of standardized factors of protection, with- 
out any explicit mention of risk. 

and 

Air Pollution Laws 

The earliest laws related to the environment con- 
cerned air pollution. For example, about 1300, 
Edward I forbade the use of “sea coal” in London. 
Only when wood was depleted by 1500 did coal be- 
come tolerated(’”); by 1661, ill health from smoke 
around London was observed (Fig. 3). In the United 
States, Ohio attempted to regulate air emissions from 
coal-fired industrial boilers as early as 1890. Much 
later, in 1947, California passed the first comprehen- 
sive air pollution Shortly thereafter, Con- 
gress encouraged more state control: the Air Pollu- 
tion Control Act in 1955 (Public Law 84-150, July 
14,1955, ch. 360 [69 Stat. 3221) to fund research by 
the states; the Clean Air Act in 1963 (Public Law 88- 

l 3  In the 1980s. the EPA began using the term “reference dose” 
(IUD) for AD1 and “carcinogenic potency factors” (CPF) for 
UCR. 
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206) to help states establish their own air pollution 
control agencies; and an Air Quality Act in 1967 
(Public Law 90-148 [81 Stat. 4851) to set air pollution 
standards to be enforced by the states. Also, in 1965, 
Congress passed the Motor Vehicle Air Pollution 
Control Act (amendments to National Emissions 
Standards Act; Public Law 89-272), which required 
the federal government to set emission  standard^.'^ 
Many consumers were reluctant to support such stan- 
dards when fuel efficiency dropped precipitously 
after the standards were first applied in 1968.(43) 

In December 1970, Congress passed the Clean 
Air Act Amendments (Public Law 91-604), which 
authorized the recently formed EPA to set and en- 
force federal (rather than state) air quality standards, 
specifically, the National Ambient Air Quality Stan- 
dards (NAAQS) for pollutants. Section 112 of the 
act also required standards be promulgated within 
the short time of 90 days for toxic pollutants to pro- 
vide “an ample margin of safety to protect the public 
health.” That is, human health was the sole basis 
of regulation and “risk” was not rnentioned.(l0’) In 
response, the EPA listed arsenic, asbestos, mercury, 
beryllium, radioisotopes, benzene, and vinyl chloride. 
The EPA circumvented the impossible dictum of 
“ample margin of safety” for carcinogens by adopting 
a regulatory requirement for industry to use the “best 
available technology,”(lO’) which was more stringent 
than the 1972 amendments to the Federal Water Pol- 
lution Control Act that specified use of the “best 
practicable technology” (Public Law 89-234). In the 
Clean Air Act Amendments in August 1977 (Public 
Law 95-95), Congress mentioned risk for the first 
time when requiring risk assessments for setting the 
NAAQS for common air pollutants. The amended 
act also included a technology standard that required 
scrubbers on new coal-fired power plants, regardless 
of sulfur output,’93) to protect coal mining jobs in 

l4 In the United States, similar types of laws on a similar timeline 
were passed to control water pollution. For example, New Mex- 
ico territory passed water pollution laws between 1860 and 1900, 
and Congress passed a law in 1899 requiring permits from the 
Army Corps of Engineers to discharge refuse in navigable rivers 
(March 3, 1899, ch. 425 [30 Stat. 11521). The Federal Water 
Pollution Control Act (FWPCA) in 1948 (June 30,1948, ch. 758 
[62 Stat. 11551) and 1956 (July 9, 1956, ch. 518 [70 Stat. 4981) 
helped states to build wastewater treatment plants; the Water 
Quality Act in 1965 (Public Law 89-234) required states to set 
their own water quality standards. In 1972, Congress completely 
revamped the FWPCA; in the 1977 amendment (Public Law 95- 
217), Congress renamed the act “the Clean Water Act” and 
specified 65 priority toxic pollutants that required standards to 
be set and were to be monitored. 

the East. This technology standard limited the risk 
management techniques that EPA could allow an 
industry to use for solving air pollution.(”) 

In 1990, Congress passed the Clean Air Act 
Amendments (Public Law 101-549) that, besides 
phasing out the use of pollutants affecting strato- 
spheric ozone, expanded the hazardous pollutants for 
which the EPA was required to set technological 
standards from 8 to 189, rather than use risk assess- 
ment (Fig. 10). However, in a limited endorsement 
of risk assessments, the Clean Air Act Amendments 
of 1990 required the NAS to evaluate the use of risk 
assessments (as noted previously) and the EPA to 
evaluate residual risks from hazardous pollutants 6 
years after enactment. 

Stratospheric Ozone Assessment by NAS 

In 1975, the NAS studied the impact of the Su- 
personic Transport on stratospheric ozone. The NAS 
repeated the analysis of ozone depletion in 1976, this 
time including other sources of chemicals, such as 
chlorofluorocarbons (CFCs), which catalyzed the 
conversion of the protective layer of ozone to oxygen. 
The 1976 study also roughly approximated the influ- 
ence of uncertainty in seven reaction rates believed 
to control ozone concentrations. In another iteration 
of the stratospheric ozone depletion analysis in 1979, 
under the chairmanship of statistician, John Tukey, 
uncertainties in parameters were formally described 
with probability distributions and then propagated 
through the models using the Monte Carlo technique 
to arrive at a distribution of the results. This 1979 
analysis represented an early application, outside 
studies for nuclear facilities, of the Monte Carlo tech- 
nique for evaluating the uncertainty of consequence 
predictions. The ozone depletion program also chose 
to periodically conduct the analysis as more informa- 
tion became available.(’” 

Control of Hazardous Chemicals 

In developing ways to manage chemical waste at 
active disposal sites, Congress has been slow to accept 
risk assessment. In 1976, Congress substantially 
amended the Solid Waste Disposal Act of 1965 (Public 
Law 89-272) in its passage of the Resource Conserva- 
tion and Recovery Act (RCRA; Public Law 94-580), 
which sought to reduce or eliminate hazardous waste 
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0 1939 - MOller synthesizes dichbrodiphenyltrlchlor- 
oethane (DDT) and discoven its value as insecticide 
with low toxlciy to mammals. 

0 1942 - Hooker Chemical Company obtains permission 
from the State of New York to dispose of waste in clay- 
lined abandoned Love Canal. 

0 1947 - U.S. Congress pa- the Federal Insecticide, 
Fungicide, Rodenticide Ad (FIFFIA) because Wwll had 
stimulated use of pesticides, but statute largely 
inefldve. State of Callfomla passes air pollution 
ststute. 

0 1948 - MGller awarded Nobel Prlze In medicine for wn- 
tribuUon of DDT to conWlhg disease. DDT prices 
drop and DDT becomes widely used throughout world: 
use roughly correlates with populatatiOn declines of some 
raptors due to eggshell thinning. 

0 1952 - D.c: Temperature inversian trapa pollution in 
London fog for 5 days; death rate increases 5 fold. 

1953 - Niagara Falls Board of Education demands 
Love Canal land and builds school. thus disrupting clay 
covering disposal site; city develops neighborhood 
around canal. 

0 1955 - Jul: U.S. Congress passes Air Pollution Control 
Act to fund research by states. 

1960 - Discovery of biomagnMcatlcn of DDD (chlorinat- 
ed hydrocarbon similar to DDT) pesticide used to kill 
gnats occurs at Clear Lake. Califomla. where fish con- 
centrate pesticide and the Westem Grebes birds die 
when consuming fish. 

1962 Carson publishes 0 1962 - R. Carson publishes book Sibant Spring that 
condemns use of pesticides, especially DDT and 
Dieldrin. 

0 1963 - Doc: Congress passea Clean Air Ad to set up 
state air pollution control agencies for stationary 
sources and allow Department of Health. Education I 
Welfare (HEW) to set nonmandatory federal air quality 
standards. 

Pollution Control Act to set emisssion standards for m e  
bile sources. 

1966 - Air pollution trapped kr temperature inversion in 
New York Cky kills 80. 

0 1967 - Ratcl l  discovers eggshell thinning in rapton 
throughout Britain and hypothesizes DDT is to 
blame. Congress passes Air QUalHy Act to set criteria 
to regulate air pollution by states. 

when ailernate pesticide is not effective against pine 
weevil and spruce budworm. 

EPA 1970 - US. Congress forms the US. Environmental 
Protection Agency (EPA) and transfers to il responsibili 
ties of research (conducted at 56 laboratories). monitor- 
ing, standard selling, and from 6 agencies enforcement 
activities related to environment; eventually becomes 
the agency producing or requiring the mosl Ask assess- 
ments. US. Congress forms Occupational Safety and 
Health Administration (OSHA) to regulate work place 
hazards. Also, becomes agency to use risk assess- 
ments. Doc: Because of dissatisfaction with results 
from Air Quality Act, U.S. Congress passes Clean Air 
Amendments of 1970 authorizing EPA role in setting 
and enforcing air quality standards; to provide 'ample 
margin of safety for public health' sets timetable for re- 
ducing auto emissions; makes human health sole basis 
of regulations does not mention 'risk'. Acl also requires 
the €PA to set National Ambient Air Quality Standards 
(NAAQS) for pollutants within 90 days; EPA lists S@, 
CO. 0,. NOx, particulates. Act also requires standards 
for toxic pollutants; EPA llsts As. asbestos, Hg, 8, 
radioiootopes, benzene, and vinyl chloride. In imp!+ 
mentlng the act. EPA requlres use of 'best available 
technology'. Canada restricts use of DDT. 

I971 Bliss s reads PCBS 0 1971 - Northeeslem Pharmaceutical and Chemical 
Company (NEPACO) asks Bliss, a wasteoil hauler, to 
remove waste in tanks mtamlnated with dioxin from 
rz;y:,~wt Orange witen plant om& ty 

0 1965 - Oct: U.S. Congress passes Motor Vehicle Air 

1969 - Sweden bans DDT, but lifts in speclsl case, 

1970 C 

Times and Beach oP o w  

0 1971 - (COn't) Bliss mixes waste with used oil. and 
sells as heating oil and dust suppressant on dirt roads 
and horse arenas. Horses die and 4 children severely 
injured when playing in stable dirt. Bliss continues to 
spread waste wer dirt roads in Times Beach, Missouri, 
through 1876 and throughout Missouri unlil 1980. 

0 1972 - Jun: US. Congress rewriies FlFRA to strength- 
en EPA wntrol of pesticides. but requires EPA factor in 
m a n i c  and social benefits. in addition to environ. 
mental hazards. Ruckelshaus of EPA overturns edmin- 
IStratlVe hearlng Rndings and totally bans DDT in the 
Unlted States. 

cause of animal deaths and children's injuries in horse 
stables In Missouri. Jun 6 Sop: Scientists report that 
chiordluorocarboos (CFCs) put chlorine into 
stratosphere and that catalyze conversion of ozone to 
oxygen. 

knpact of Super Sonic Transport (SST) on stratospheric 
ozone. 

1976 - U.S. Congress passes Resource Conservation 
and Recovery Act (RCRA). which seeks to reduce haz- 
ardous waste generation; prescriptive approach to haz- 
ards without any risk assessment beyond hazard identi- 
fhtlon. trouMes wkh dioxin at Times Beach, Missouri, 
provides impetus. Alter 5y r  high rainfall, Love Canal 
overflows banks. In response to citizen complaints. 
New York Environmental Department investigates and 
finds low levels of 82 chemicals in storm sewers. U.S. 
Court of Appeals upholds €PA decision to reduce lead 
in gasoline using risk assessment based on 'specula- 
tive scientifc estimates.' NAS continues study of thin- 
ning stratospheric ozone; reported predictions ranged 
between 2% (tolerable) to 20% (intolerable). 

0 1974 - CDC discovers 31.000 ppb dioxin in soil as 

1975 - National Academy of Sciences (NAS) studies 

1977 - Aug: Congress amends Clean Air Act; requires 
risk assement for setting NAAQS for common air pol- 
lutants, but still prohibits consideration of costs; does in- 
clude technology standard requiring scrubbers regard- 
less of sulfur output on new coal fired plants (to protect 
coal miner jobs in east). 

1978 - Alar tests on rats and mice show signs of 
causing cancer. EPA bans CFCs as propellants in 
aerosol cans based on predictions of ozone destruction 
from models. Health Education and Welfare secretary 
warns of asbestos hazard in schools and cites risk that 
17% of future cancer deaths would be from asbestos. 
Although study questioned. extreme risk management 
option to remove all asbestos in schools. was 
eventually adopted. 

1979 - NAS mtinues to iterate analysis of ozone 
depleliar more carefully, Including uncertainty on the 
results through Monte Carlo Analysis. 

1980 - Congress passed Acid Precipitation Act of 1980 
to create NatlOnal Acid Precipilalion Assessment pro- 
gram (NAPAP) inventory problem calabg mitigation 
strategies. Doc: US. Congress passes Superfund Act 
for emergency response to spills and remediation of 
inactive chemical waste sites (paid through tax on 
chemicals) not covered by other environmental laws. 
Impetus for passage provided by fires at waste sites at 
Chester, Pennsylvania. and Elizabeth. New York: 
groundwater mtamination at Rocky MI. arsenal near 
Denver, Colorado; EPA survey of Love Canal and Ihou- 
sands of abandoned waste sites. 

0 1982- NAS continues to iterate ozone depletion analy- 
sis. EPA presents use of Hazard Ranking Scheme 
(HRS) for listing sites on National Priorities List (NPL) 
under Superlund. Dec: Missouri Department of Health 
discourages Times Beach residents from returning after 
flooding because of 100 ppb dioxin along roads as 
measured by Center for Disease Control (CDC) of pub- 
lic health service and EPA. 

Fig. 10. Events influencing environmental laws and indirectly risk assessment. 
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1983 hckelshaus 
e-WW i n d u h  
01 uncertainly 
lor EPA risk 
assessment 

0 1983 - Reagan creates task force on Times Beach that 
recommends buying affected homes. Jun: A h h .  
Ruckalshaus announces EPA intent to use risk assess- 
ment more and include uncertaintims rather than report 
single value. Congress passes Hazardous 
and Solid Waste Amendments (HSWA) (amends 
RCRA): 
. bans hazardous waste disposal in land fills with- 
out accepted pretreatment, unless disposal site 
has petitioned successfully lor a ‘no-migration’ 
variance. 
-prescriptive approach to hazards regardless of 
health riik 

I 
0 19115 - EPA promulgates 40 CFR 300 listing procedures 

lor site cleanup under Superfund A d  that indudes 
detailed rlsk evaluation phase and CWurlderaUon of 
cleanup costs. EPA decides to accelerate phasing out 
leaded gasoline based on assessment of leaes nm-ca 
ncerous health effects. Sop: After reviewing EPA data 
and arguments of Uniroyal. EPA Scientlfk Advtsory 
Board (SAB) wncludes proposed ban on Alar not 
justified by current tests. 

0 1986 -Jan: EPA announces it will not h n  Alar, based 
on SAB conclusion; however, apple processors refuse 
to buy Alar treated apples. Prompted by Ruckelshaur 
inPiative in lSW. EPA publishes Supeiiund public 
health evaluation manual giving carcinogenic potency 
factofs for many chemicals. U.S. Congress reauthodz- 
es Superfund Act (SARA); permits citizens to petition 
EPA for risk assessments of any site. requires rav is i i  
of HRS. requires public comment period on proposed 
remedial plans, and starts research on radon gas. 

1987 - NAS recommends that €PA not apply ‘Delaney 
Clause’ to carcinogenic pest ic i i  residues in lood and 
use risk assessment instead. EPA senior managers 
rank and compare environmental problems in four cats 
wries in Unfln1.h.d Buslmss. Sop: Based 
on atmospheric modeis. Montreal Protocol signed by 
60 United Nations (UN) members to reduce use of 
CFCs; agreement calls for p e r i i  review. 

0 1988 - EPA adopts NAS recommendation of using risk 
assessment for determining ailowable amounts of 
carcinogenic pesticide residues in or on food. limit set 
of 1V cancer risk. EPA publishes guidance on risk 
assessments for Superfund sites. Oct: NRDC hires 
Fenton Communications to publiiize soon-to-be 
released risk assessment on Alar through television, 
popular magazines, etc. 

1987 EPA r m b  
environmental 
proMem based 
on risk 

0 1989 - Fob 1: Based on preliminary toxicity studies 
EPA required Uniroyal to conduct in 1986 - 1987. EPA 
publishes decision to stop ail use of Alar on food, but 
allows use for 18 months because added risk from 
extension fen insignificant. Fob 26 CBS ‘60 Minutes’ 
uses NRDC information and causes panic about Alar in 
apple juice while alleging EPAs dereliiion. Feb 27 
NRDC releases risk assessment deploring Alar resi- 
dues in children’s food. Jun: Uniroyal stops selling 
Alar In the United States. EPA publishes guideline on 
safety factors to apply in dose response assessment. 

0 1990 - Jan: Scientists questioned need for the drastic 
asbestos abatement programs for schools. EPA 
Science Advlsory Board (SAB) reviews Unflnlshed 
Budmss and produces own ranking of environmental 
Pmbhm In Rduc lng  Rlsk. SAB also recommends 
ecological rkks be assessed (a topic EPA had been 
exploring in various regions since 1986). Doc: 
Congress passes Clean Air Act Amendments (CAAA) 
of lSe0 that includes phasing out use of pollutants 
affecting stratospheric ozone and requires EPA to set 
technology Standards (versus risk standards) for 189 
hazardous pollutants to speed up process and requires 
EPA to conduct risk assessments 6 yrs after enactment 
for ‘residual risks’ and ambient air risks (risks must be 
reduced to below lo*). Act also allows utilities to buy 
and sell pollution credits for Sq poilutants. Act also 
requires cost benefit analysis of reducing acid rain, and 
sets goal of reducing S& emissions by 10’ ton from 
1980 levels. ‘London Revisioo’ to Montreal Protocol 
calls for total ban on CFCs by Zoo0 in developed 
countries and 2010 in other countries based on great 
m c e m  raised by revised atmospheric models. 

0 1991 - UN panel of experts concludes Alar safe lor use 
on apples throughout world. 

0 1992 - Onice of Management and Budget (OMB) finds 
EPA spending vast sums on low risks at toxic waste 
sites while relatively little on high risks such as lead 
poisoning. After suit filed by NRDC, U.S. Court 01 
Appeals rules that EPA must strictly apply ‘Deianey 
Clause’ for carcinogenic pesticide residues and cannot 
use risk assessment and a de minirnis risk policy. EPA 
issues Exposure Assessments Guidelines stating 
importance of adequately characterizing uncertainty. 
MOntreal Protocol again amended to ban CFCs by 1996 
in developed countries and 2006 in olher countries. 

0 1993 - Study finds that cost effectiveness of federal 
regulations for averting premature death varies from 
$1 x lob to $5.7 x 10”. 

0 1996 - Based on exploratory studies since 1986, EPA 
publishes proposed guidelines lor assessing risks lo 
entire ecosystem. 

0 1998 - Ape EPA finalizes gu’deiines lor ecological risk 
assessment stathg ‘risk assessment explicitly evaluate 
uncertainly‘. 

Fig. 10. (Continued.) 

generation and control hazardous waste disposal at ac- 
tive sites. Its overall purpose was to minimize present 
and future threats to human health and the environ- 
ment through control of hazardous chemicals from 
“cradle to grave.” An important impetus for RCRA 
was the environmental problem that was caused by the 
actions of a used oil hauler, Bliss, which had been 
asked to remove and dispose of hazardous wastes in 
1974. The wastes were from a former manufacturing 
plant for the herbicide, Agent Orange, often contami- 
nated with dioxins. Bliss inappropriately mixed the 
waste with used oil and sold it as a heating oil and dust 

suppressant on dirt roads and horse arenas in Missouri 
through 1980, thus creating the problem at Times 
Beach (Fig. lo).(%) 

RCRA is fairly prescriptive in its manner of con- 
trolling chemical hazards. Hazard identification is the 
only risk assessment component specified, and risk 
management practices are strictly defined. This pre- 
scriptive approach was even more pronounced in the 
1984 Hazardous and Solid Waste Amendments 
(HWSA; Public Law 98-616) to RCRA, which banned 
nearly all hazardous waste disposal in landfills without 
pretreatment. In EPA’s implementing regulations 40 



History of PA and Risk Assessment 789 

CFR Parts 260 through 281, a specific technology was 
prescribed to treat waste before disposal, regardless 
of any risk assessment. 

problem of using uranium tailings in Grand Junc- 
tion, Colorado. 

Remediation of Abandoned Chemical 
Disposal Sites 

5.3. Court Rulings on Use of Risk Assessment 
In December 1980, Congress passed the Com- 

prehensive Environmental Response Compensation 
and Liability Act (CERCLA) or “Superfund” (Pub- 
lic Law 96-510) for emergency response to spills and 
remediation of inactive chemical waste sites not cov- 
ered by other environmental laws (e.g., RCRA). The 
impetus for passage was provided by fires at waste 
sites in Pennsylvania and New York; groundwater 
contamination at the Rocky Mountain Arsenal near 
Denver, Colorado; an EPA survey of thousands of 
abandoned waste sites; and the well-publicized prob- 
lems at Love Canal in New York. 

CERCLA did not completely embrace the no- 
tion of risk assessment, but in contrast to RCRA’s 
prescriptive approach, CERCLA did allow the EPA 
more latitude in determining the emergency response 
for an inactive chemical waste site. The EPA’s 1982 
Hazard Ranking Scheme (HRS) for listing sites on 
the National Priorities List under CERCLA lacked 
a sound relation either to risk assessment or the use 
of underlying consequence models.(10s) However, the 
EPA chose to conduct a detailed site characterization 
and a feasibility study of various remediation options 
for those same sites in 1985, accompanied by an as- 
sessment of associated risks and cleanup costs (Fig. 
10). Because the mining and smelting industry ex- 
pressed concern that HRS was the real assessment 
and that the purpose of any risk assessment during 
the feasibility study would be only to justify the re- 
sults of HRS (or other decisions already made), Con- 
gress asked for a reevaluation of HRS in the 1986 
Superfund Amendment and Reauthorization Act 
(SARA; Public Law 99-499 [100 Stat. 16131) to elimi- 
nate the potential for disparate results from HRS 
and later risk assessments for the feasibility study. 
(SARA allowed any citizen to petition for a risk 
assessment of a disposal site.) Unfortunately, a sub- 
stantial change in HRS might have required a reeval- 
uation of past work or already settled lawsuits under 
CERCLA, and thus the opportunity for change was 
minimal. SARA also required research on the 
risks of radon gas in homes, a rediscovered hazard 
prevalent in many areas because of better sealed and 
insulated homes. The impetus was the publicized 

In 1976, the U.S. Court of Appeals upheld a 
decision by the EPA to reduce lead in gasoline using 
risk assessment based on “speculative scientific esti- 
mate~.”(’~) In 1980, the U.S. Supreme Court ruled in 
favor of the American Petroleum Institute and the 
American Industrial Health Council, and against the 
AFL-CIO labor union and environmental groups, 
when it stated that the Occupational Safety and 
Health Association (OSHA) must use risk assess- 
ment before regulating workplace hazards (as re- 
ported in vol. 100 of the Supreme Court Reporter, 
page 2844 [100 S. Ct. 28441). The court also suggested 
that an individual’s chance of hazard of per year 
was of concern but that a chance of per year 
was not, thus bracketing the health risk cutoff 
that had first been proposed by the FDA in 1977(3) 
(42 FR 10412), as mentioned earlier. An advantage of 
risk assessment was its ability to provide a meaningful 
method to organize scientific information and docu- 
ment administrative decisions and thus facilitate judi- 
cial review. 

Even with this important Supreme Court ruling, 
in 1985, Professor of Law R. Merrill noted that the 
“courts are schizophrenic” concerning the use of risk 
assessment.(’”’) Although the situation is somewhat 
different in the 199Os, in that the courts expect to see 
arguments posed in terms of risk, they do not always 
agree that risk is germane to the case. For example, 
this support for risk assessments did not translate into 
moderation with regard to the “Delaney Clause.” In 
1987, the NAS recommended that the EPA not apply 
the “Delaney Clause” to carcinogenic pesticide resi- 
dues in food; instead, the EPA should use risk assess- 
ment.(’@) One year later, the EPA adopted the NAS 
recommendation and set residue limits on food for 
four pesticides at a chance of 10-60f inducing cancer 
per year.(93) However, in a 1992 suit filed by several 
petitioners that included the National Resources 
Defense Council, the U.S. Court of Appeals, Ninth 
Circuit, ruled that the EPA must strictly apply the 
“Delaney Clause’’ and could not use risk assessment 
and a de minimis risk policy until Congress enacted 
such a change (968 F. 2d 985). 
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6. PERFORMANCE ASSESSMENT 
APPLICATIONS 

The EPA 40 CFR 191 Standard (50 FR 38066) 
established criteria for radioactive waste disposal but 
acknowledged that “the procedures for determining 
compliance with subpart B have not been formulated 
and tested yet.” These procedures were not com- 
pletely formulated until they were applied to actual 
sites. Two applications are presented here as back- 
ground for specific topics discussed in this special 
issue. The first application is the PA conducted for 
the WIPP in the late 1980s and early 1 9 9 0 ~ . ( ’ ~ - ~ ~ ~ )  
The second application conducted by the YMP has 
somewhat different practical details. 

6.1. Application of Performance Assessment to 
Waste Isolation Pilot Plant 

Legal Setting and Compliance Assessment 

In 1979, Congress established the purpose of 
the WIPP as a research and development facility for 
storage and disposal of only transuranic waste gener- 
ated by defense programs (Public Law 96-164). Yet, 
the actual compliance process was not defined until 
1992, when Congress transferred ownership of the 
WIPP site to the DOE and designated the EPA as 
the regulator of the WIPP (Public Law 102-579). In 
1996, the EPA promulgated 40 CFR 194 (61 FR 
5224), a regulation to implement its 40 CFR 191 stan- 
dard, which imposed several new requirements and 
interpretations on the modeling style for the WIPP 
PA. Basically, however, 40 CFR 194 adopted the risk 
process, as outlined here, that Sandia had imple- 
mented (Fig. 11).(11.12.los.115.116) 

Site Selection and Characterization 

With the tacit approval of New Mexico’s gover- 
nor, the AEC, the USGS, and ORNL examined and 
identified a potential site in the Delaware Basin in 
southeastern New Mexico in 1973, based on physical 
geologic criteria such as thick salt beds of high purity, 
little evidence of dissolution, tectonic stability, public 
support, low population density, and absence of land 
use conflicts. The first large-scale field test was the 
drilling of two wells in March 1974.(69*7u) In January 
1975, Sandia became the lead laboratory to draft 
an EIS,(Il7) initiate scientific studies on nuclear waste 

disposal in bedded salt, develop the conceptual de- 
sign,(118) and select and characterize a site. The prelim- 
inary design for the repository was developed in 
1977(II8) and included two levels: one for TRU waste 
and one for other radioactive waste. The basic con- 
cept remained largely unchanged in the final design, 
as reported in 1986, with the exception of the removal 
of the level for other radioactive waste in the 1980 
Final EIS(l17) and some modifications to drift dimen- 
sions and storage volumes. Site characterization ac- 
tivities before 1989 were undertaken primarily (1) to 
satisfy needs for EISs in 1978 and 1989, (2) to satisfy 
negotiated agreements with the state of New Mexico 
in 1981, and (3) to develop a general understanding of 
selected natural phenomena associated with nuclear 
waste disposal. Thereafter, site characterization stud- 
ies were gradually directed toward data needs for the 
four preliminary PAS, conducted between 1989 and 
1992, and the PA for certification in 1996. 

Hazard Identification and Scenario Development 

In 1974, ORNL conducted the first scenario de- 
velopment and deterministic scoping analysis for the 
possible repository location.(72) For the Draft EIS in 
1979, Sandia developed three scenario categories 
(diffusive migration of radioisotopes through salt, 
transport of radioisotopes to an overlying aquifer 
through a borehole, and direct exposure during dril- 
ling).@) This initial work became the foundation for 
scenarios later used for the PAS. For preliminary 
PA calculations in 1989,(110v119) features such as the 
presence of a brine reservoir under the repository, 
events such as exploratory drilling into the repository 
and potash mining above the repository, and pro- 
cesses such as climate change influencing flow in the 
brine aquifer overlying the repository, were included 
as features and events. These basic scenarios were 
studied in the 1990, 1991, and 1992  PAS.(^^.^^.^'^-^'^^^^^) 
For the final Compliance Certification Application 
(CCA) on the WIPP,(Iz1) submitted to the EPA in 
October 1996, a formal screening process was con- 
ducted that fully documented the reasons for omitting 
or retaining specific features, events, and pro- 
cesses.(lu) Although the hazard identification relied 
heavily on the 1980 EIS,(88*117-119,125) the screening pro- 
cess was similar to that initially proposed by Cranwell 
et al. (1990)(82) in the 1980s based on scenario proba- 
bility, consequence, or regulatory criteria. 
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1961 

:;;me 

- 0 1861 - Dlc: Project Plowshare detonates nuclear 1000 CAMCON Introduced 0 1990 - Dec: SNL completes 2nd PA (1st full PA) on 
explosive (Gnome test) in bedded salt near Carlsbad. 
New Mexico). 

lw WlPP PA 
%I¶ 

WlPP hlghliihliig use of CAMCON for modeling total- 
svatem mrformance - PA includes both scenario and 
pkameier uncertainty; out of 39 parameters, solubility, 
Intrusion time. and borehde permeability again 
imporlcvlt: Wings  from direct drilling important release i%' pathway. 

0 1973 - Encouraged by New Mexico political leaders. 
locabon chosen AEC recwnmends southeast New Mexico for nuclear 

waste repository in the Unled States. 
1974 Release scenarios 
and consequences 
1st evaluated lor 
WlPP repoSltOry 
in NM 

0 1974 - Firs; scenario development and deterministic 
consequence analysis is conducted for Wasle Isolation 
Pilot Plant (WIPP) in southeastem New Mexico. 
1975 -Jan: SNL begins to oversee investigation at 
WIPP. SNL asked to: (a) seltrct and characterize 
WIPP. (b) deveiop conceplual design, (c) draft EIS, and 
(d) iniliate scientific studies. 

0 1978 - SNL completes geokgic Characterization report 
supporting Draft EIS on WIPP hydrologic and radioiso- 
tope transporf modeling for EIS is primarily regional and 
extends 250.000 yr (-10 half lives of V u ) .  As part of 
EIS process SNL completes development 01 scenarios. 

0 1984 - Appeals cwrt rules in Lrzgal Environmental As- 
sistance Fund (LEAF) vs. Hodei that WE must apply 
both technical and procedural requirements of RCRA 
even though AEA exempled DOE from many environ- 
mental and human hnsilh lam). $R 1986 SNL 0 1988 - SNL accepts task of assessing prfonnance of 
WlPP against 40 CFR 191 criteria. EPA states m W  
waste (radioactive waste also meeting hazardous waste 
definition) is subject to RCRA. 

0 1088 - SNL begins work on CAMCON tool to link 
detailed consequence models in probabiliiic PA. 

1989 - SNL completes documentation supporting Draft 
Supplemental EIS; repod Identnies gemfation of gas 
as containers and waste comion as bsue. SNL 
performs 1s; annual probabilistic PAM WIPP outlining 
process for future PAS; no r e k w s  without human 
intrusion: out of 28 parameters, solubility. intrusion time, 
and borehob penneaMllly most important for flow 
release pathway; cutting from direct drilling act of 3 
drums of waste. 

1978 SNL publishes EIS 

ac$lF PA d ., 
, ~. 

1989 Demo 

0 1991 - Dlc: SNLcwnpletes 3rd PA on WlPP highlight 
in0 major components of the PA process and docu- 
ments (e.g.. rigorous use of scenarios and gWSlatis- 
tics for transmbsivlly fields) 46 parameters sampled, 
cutlings most important release pathway SNL ex- 
plores development of system to perform sensitivity 
analysis of individual codes 

0 1992 - Doc: SNL performs 4th PA on WlPP refining 
detalled models and data (e g , improved transmissivity 
fields): 49 parameters sampled, cuttings mod important 
pathway. 

1993 - Lbc: EPA repromulgates 40 CFR 191 

1995 - SNL begins formal process of screening 
features, events, and processes for WlPP OA of 
analysis and data begins in earnest 

1006 SNL complelm PA 0 1996 - Hb: EPA promulgates final 40 CFR 194. 
for WIPP. ~ W V ~  directs DOE to conslder addittonal critena in assessing 

system performance. Sap: Congress amends WlPP 
LWA and relieves WlPP of need to comply wth land 
dlsposal restrictions of RCRA, but other requirements of 
RCRA still apply. Oct: SNL completes PA for Com- 
plmce Certificatlon Application (CCA) of WIPP. excepl 
for few veclors. releases only from drill cuaings Nov: 
NAS reports that WlPP sde 'excellent choice' geologi- 
cally. Dlc: EPA begins detailed evaluation of CCA 
records at SNL and elsewhere on PA analysis, audit 
lasts until April 1997; an important aspect is the parame- 
ter revew team. 

0 1997 - May: As part of EPA evaluation of CCA, SNL 
runs PA cakuhtms using EPA-selected parameters 
and EPA-selected model assumptions. Oct: EPA 
publishes draft rules to approve WlPP 

0 1998 -my: €PA certifies WlPP Jul: NM A0 sues 
EPA albging Insufficient time to comment on CCA 

0 1999- Mu: AHer favorable rulings on lawsuits. WlPP 
begins cperatms mthin 4 days. 

Fig. 11. Application of performance assessment at the WIPP. 

Probability Evaluation 

For the WIPP, as in the method proposed for 
the NRC in 1981,(75976) the distribution of the results 
was estimated using Monte Carlo techniques. Fur- 
thermore, the Monte Carlo integration was eventu- 
ally performed in two stages to facilitate flexibility. 
The first stage was concerned with parameter uncer- 
tainty, xp, and the second stage, with scenario uncer- 
tainty, xs. That is, the deterministic model, C( . ), was 
run using nK realizations of the parameter vector, 
x p ,  which yielded a sequence of nK results of the 
form C(xa)(xg) . . . , (x;~) for each scenario, Sj, which 
were used to approximate the CCDF (Fig. 8). 

Although the theory for probabilistic model sim- 
ulation is not difficult, the practical aspects of per- 
forming the calculations are daunting for a complex 
system such as geologic disposal. Developing distri- 
butions for the uncertain parameters, D,(x$), and 

appropriate values for the fixed parameters in a man- 
ner sufficiently traceable for regulatory review is par- 
ticularly challenging. Hence, traceable procedures for 
the WIPP were developed in the early 1990~,"~)  
which matured into an extensive quality assurance 
program by 1996. In addition, an important practical 
problem for parameter uncertainty was determining 
the appropriate number of uncertain parameters to 
propagate. Out of -1,560 parameters, the number 
of uncertain parameters studied for the WIPP grew 
from 28 in 1989(110J1') to 57 in 1996.(69) 

Consequence Evaluation 

The major role of modeling in a PA made com- 
puter software fundamental to the 

Development of Computational Tools. A practi- 
cal problem for a geologic disposal system is the need 
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to model several scales (e.g., the source term, reposi- 
tory, local transport, and regional fluid flow). Hence, 
for the WIPP PA, the exposure pathway model was 
a concatenation of many s~bmodels (~~)  (designated 
by a, p, y), C( - ) = f.(fs[ f,( )I}. Additional practical 
problems for analyzing a disposal system are de- 
termining the appropriate level of detail for the indi- 
vidual submodels so that the calculation is tractable 
and linking the models together, so that they are 
sufficiently traceable and repeatable for regulatory 
review. 

Between 1988 and 1990, Sandia devised a 
scheme to link together through a controller, CAM- 
CON, any number of complicated numerical or sim- 
ple analytical codes for the WIPP.(109.’20) As built, 
CAMCON allowed the analyst the flexibility to 
choose several variations of one model type (desig- 
nated by a); i.e., fk, ff, . . . f:M, where nM is the 
number of models that perform a similar function) 
to directly make use of the existing submodel codes 
and select the code with the appropriate level of 
detail. The latter option allowed the analysts to use 
CAMCON for both detailed examination of system 
components as well as overall disposal system perfor- 
mance. 

Detailed Modeling Style. Sandia’s contribution to 
the Draft EIS, issued in 1978, relied heavily on mathe- 
matical modeling using the SWIFT code to examine 
the potential for movement of radioisotopes by 
groundwater.(lZ) By the second iteration of the WIPP 
PA in 1990,(111J12J20) analysts had again chosen a model- 
ing approach that included phenomenological detail, 
offered multiple dimensions in the model, and avoided 
conservative models and parameter values wherever 
possible.(’23) Encouraging comments regarding de- 
tailed modeling were received from the EPA(l12)on the 
first iteration of the WIPP PA. In addition, a detailed 
modeling style was generally accepted in the United 
States because of its earlier use in the 1975 Reactor 
Safety Study(’4) and its 1990 ~ p d a t e , ( ~ ~ ” ~ )  and the pro- 
posal for extensive use of PRAs in the 1995 PRA Pol- 
icy Statement (60 FR 42622). 

The principal advantage of a detailed modeling 
approach was that it incorporated a sufficient level 
of realism to (1) provide or demonstrate general sci- 
entific understanding, (2) explore potential sources 
of uncertainty, and (3) tie any lack of understanding 
or sources of uncertainty directly to measurable data. 
Note, however, that the WIPP PA continued to con- 
tain some conservative assumptions and bounding 
models. For example, a few conservative assumptions 
were built into the analysis (e.g., a stationary future 

and a conservative dose-response model) and others 
were adopted during the analysis (e.g., insufficient 
information was available on shear strength of cor- 
roded waste during human intrusion). Hence, the 
probabilistic analysis was conditional on these con- 
servative assumptions. 

Iteration of Calculations. In 1989, the WIPP PA 
analysts adopted the idea of conducting sequential 
PAS (i.e., conducting an initial PA with simple or 
incomplete complicated models and preliminary 
data), followed by other PAS with better data and 
more detailed computational models.(lW) Sandia con- 
ducted four preliminary PAS from 1989 through 1992, 
with each building on the preceding PAS.” In October 
1996, the certification PA for the CCA was com- 
pleted. In May 1998, after receiving accepting com- 
ments on the proposed rule published in October 
1997 (62 FR 58792), the EPA approved operation of 
the WIPP (63 FR 27354). Operations began in March 
1999, after favorable rulings on lawsuits. Although 
the results are voluminous, the application of past 
PAS for the WIPP has been presented by Helton et al., 
in several journal articles.(1%128) In addition, Helton 
et al. present a summary of the certification PA in 
this issue.(’*’) 

Sensitivity Analysis 

Sensitivity analysis was an important feature in 
early PAS of hypothetical r e p o s i t ~ r i e s ( ~ ~ ~ . ~ )  and was 
quickly adopted for the WIPP evaluation. Because 
Monte Carlo techniques had been used to propagate 
uncertainty in the WIPP analysis, sensitivity of the 
results to changes in parameter values could be easily 
estimated by scatterplots, or developing a statistical 
regression model and comparing the size of the stan- 
dardized regression  coefficient^.('^^.^'^.^^^.^^) Sensitivity 
analysis of alternative conceptual models was also 
conducted in 1989 and 1991 .(111J27) Other techniques 
for sensitivity analysis, such as developing surrogate 
analytical expressions for the results (“response sur- 
face development”) or differential analysis of nor- 
malized partial derivative of parameters (“adjoint 
procedure”), were also proposed in the 1980~.(’~~) 
However, these were never used routinely for a large- 
scale sensitivity analysis such as the WIPP disposal 

Is Using the terminology of the 1996 EPA ecological risk guidelines 
(61 FR 47552; 63 FR 26846), these repetitions were a “tiered 
assessment” because they were planned repetitions rather than 
“iterations,” which EPA describes as unplanned repetitions. 
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system that included linked several complicated 
models. 

Sensitivity analysis, in combination with multiple 
PA iterations, provided guidance to managers on how 
to direct experimental resources, especially after the 
1992 PA. Other purposes of the sensitivity ana1ysis(lu) 
were to gain understanding and insight about the 
system, verify the correctness of the calculations, and 
evaluate the influence of various engineering design 
options. Garrick and Kaplan describe the impact that 
a PA can have on waste disposal decisions in this 
special issue.(l’) 

In the 1989 and 1990 WIPP PAS, the most impor- 
tant parameters were those associated with the sce- 
narios for inadvertent human intrusion from explor- 
atory drilling for oil and gas: solubility of 
radioisotopes, the time of intrusion into the reposi- 
tory, and the assumed permeability of the resulting 
but abandoned borehole. In the 1991 and 1992 WIPP 
PAS, direct release of cuttings to the surface from 
inadvertent human intrusion again dominated total 
radioisotope release. The three most important pa- 
rameters were the rate constant in the Poisson model 
for time and number of intrusions, borehole perme- 
ability, and solubility of  radioisotope^.'"^) Thus, by 
1992, it was evident that regulatory mandated as- 
sumptions with regard to human intrusion were 
dominating the results. Continued evaluation of the 
characteristics of the disposal system was not consid- 
ered to be warranted, except for specific areas such 
as an evaluation of radioisotope solubilities in the 
repository, retardation distribution coefficients, and 
alternative conceptual models for transport in an 
overlying brine aquifer in the Culebra Dolomite. 

6.2. Application of Performance Assessment for 
Yucca Mountain Project 

Most of the issues associated with disposal of 
defense and commercial wastes are the same, but the 
congressional policy and administrative histories are 
different in the United States. Consequently, the ap- 
proach between projects has varied for each of the 
risk assessment steps, as discussed here. 

Legal Setting and Compliance Assessment 

Three laws are significant to setting national pol- 
icy on radioactive waste disposal from commercial 
nuclear power reactors: the Nuclear Waste Policy 

Act of 1982, the 1987 amendment to this act, and the 
Energy Policy Act of 1992 (Public Law 102-486 [lo6 
Stat. 27761). These laws not only establish the policy 
that the current generation must bear the costs of 
developing a permanent disposal option, but they 
also define steps to achieve this goal. However, each 
act changes the emphasis of the various steps. 

The Nuclear Waste Policy Act of 1982 (Public 
Law 97-425) set up a mechanism to select a site and 
fund its selection and operation, and assigned respon- 
sibility for the construction and operation of the po- 
tential repository to a new office within the DOE, the 
Office of Civilian Radioactive Waste Management 
(OCRWM), which absorbed many of the functions 
for commercial waste disposal performed by the Na- 
tional Waste Terminal Storage Program established 
in 1976. The act formed a large trust, funded by utili- 
ties owning nuclear reactors, to pay for the reposi- 
tory; required the DOE to identify two repositories 
for commercial spent fuel; assigned responsibility to 
the DOE to select, build, and operate one repository; 
established a strict timetable for operating the first 
repository; suggested placing defense high-level 
waste in the commercial repository; and suggested 
building a monitored retrievable storage facility. The 
amendment of 1987 (Public Law 100-203) selected 
Yucca Mountain in Nevada as the first site to charac- 
terize, extended the opening date to 2010, and de- 
layed consideration of a monitored retrievable stor- 
age facility and a second repository. 

The Energy Policy Act of 1992 (Public Law 102- 
486) set new policy that generated substantial 
changes in the regulatory setting. The act required 
the EPA to seek advice from the NAS and to promul- 
gate a site-specific standard for the potential nuclear 
waste repository at Yucca Mountain and the revision 
of the NRC implementing regulation, 10 CFR 60, to 
agree with the new EPA standard. The act strongly 
suggested prescribing the maximum allowable annual 
effective dose equivalent to individuals near the re- 
pository (possibly because of Congressional criticism 
of the derived limits in 40 CFR 191 when applied to 
gaseous release of 14C along an air pathway). In 1995, 
NAS recommended(’”) three changes from previous 
regulatory practice: (1) use a maximum individual 
risk evaluated from an annual effective dose equiva- 
lent as the criterion for protecting public health, (2) 
evaluate the maximum annual effective dose equiva- 
lent during a 1 million-year period, and (3) eliminate 
evaluating the probability of inadvertent human in- 
trusion and instead evaluate only potential conse- 
quences of a few selected situations. 
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0 1972 - Winograd proposes use of unsaturated zone 
alluvium for HLW disposal. 

1978 - ERDA Office of Nuclear Waste Isolation (ONWI) 
sets up National Waste Terminal Storage (NWTS) 
program to develop technology and faclliies for storage 
and disposal of HLW and SNF from both commercial 
and defense sources. 
1977 - Apr: Carter declares United States will stop all 
reprocessing Spent Nuclear Fuel (SNF) from 
commercial reactors and dispose SNF directly. 

0 1980 - Dac DOE search for disposal site for commer- 
cial and defense spent nuclear tuel and high-level 
waste; because of prior land use by federal govern 
men4 basalt at Hanford and volcanic tuff at Yucca MI. 
on Nevada Test Site (NTS) hno of several sites select- 
ed. Also, sites throughout the United Slates wkh large 
formations of salt or granlte were examined. 

0 1981 - Winograd again proposes use of thick unsaturat- 
ed alluvium in lhe desert for HLW disposal. Leads to 
use of unsaturated zone by Yucca MI. Project and dii- 
posal of TRU waste at Greater Confinement D i m  
(GCD) facility at NTS. 

(NWPA): (a) requires DOE to identify two repository 
sites (unstated agreement was one in west and one 
elsewhere), (b) sets up trust fund, funded by utilities. to 
pay for SNF and HLW disposal, (c) establishes office 
within DOE responsible for designing. building, and 
operating one of two repositories idenlied. (d) sug- 
gests 1Mx) deathd10.000 yr criterion. (e) sets sviu 
timetable opening 1st repository for commercial and 
defense spent nuclear fuel (SNF) and HLW. and (I) 
suggests Monitored Relriivable Storage (MRS). Dac 
NRC promulgates shallow land disposal requlrements 
for low-level waste (10 CFR 61). 

1982 - Congress passes Nuclear Waste Policy Act 

s"\ 1983 NRC low- NRC promulgates technical critetia in 
pmNII les 10 CFR 60 : (a) includes by reference the yet-to-be 

Dromulaated 40 CFR 191 and (b) sets deterministic 6w j locFF% 

criteria& sub~ystems of dip&& system. ~ b :  
Parts of ONWI become office of Civilian Radiiadlve 
Waste Manapement (OCRWM) of DOE as mandated 
by NWPA of 1982; pogram formally identifies 9 sites. 

1984 - Dac: DOE recommends tianford. Washington, 
Yucca Mt., Nevada, and Deaf Smith. Texas. as poten- 
tial sites in draft EIS. Ensuing controversy calk for 
another evaluation. SNL mducts scoping calculation 
of YMP repository showing 'DTc. 9, and ='Np are im- 
portant radioisotopes for evaluating compliance. 

0 1886 - Jun: DOE issues environmental assessment of 
each of five potential shes for commercial spent nuclear 
fuel. Basalt at Hanford reservation, volcanic tuff at 
Nevada, and bedded salt in Texas and Utah for further 
characterization. Jul: NRC proposes to explicitly 
Incorporate 40 CFR 191 requirements directly into 
10 CFR 60-never adopted because of court remand of 
40CFR 191. 

\*....# 

1987 - Jan: Multi-anribute utility decision analysis 
applied to selecling nuclear waste disposal sites 
and applied to concept of lowering program risk with a 
'portfolio' of sHes; same 3 sites as recommended by 
DOE in 1984. Dec: US. Congress passes Nuclear 
Waste P o l i i  Amendments Act (NWPM): (a) selects 
Yucca Mt. for first site to be characterized for potential 
SNF and HLW disposal, @) revises time table for 
openh~ first site, and (c) preatly restricts MRS (can't 
construct until repository being constructed). 

0 1988 - SNL publishes Site Characteriition Plan (SCP) 
of Yucca MI. -several aspects of PA described (e.9.. 
scenario development); repository placed in unsaturat- 
ed m. 

0 1990- Oct Electrical Power Research Institute (EPRI). 

1W8 Site 
charaderlzaUon 
p b m p l e b  8 

representing nuclear utilities, completes 1st PA of 
Yucca Mt. repositw. 

0 1991 - Collection of analyses (PACE-80) shows link 
radioisotope movement in unsaturated zone over 10' yr 
when infiltration 0.01 mdyr. 

0 1992 - May: EPRl completes 2nd PA of Yucca Mt. 
Congress asks NAS to recanmend to EPA and NRC 
disposal criteria for Yucca MI. strongly suggesting 
maximum individual dose. Jul: SNL completes 1st PA 
on Yucca MI. (TSPA-91) manually connecting two 
alternative, 1-d. Huid-flow codes in the unsaturated 
zone. NRC completes own PA of Yucca MI. repository. 

0 1993 - SNL perlorms PA on DOEormed SNF dis- 
posed in salt and granite to help with decisions on 
treatment. SNL performs 1st PA on greater than class- 
C waste disposal at GCD facility at NTS using readily 
available data. 

0 19B4 - Apr: SNL completes 2nd PA on commercial 
Yucca MI. SNF disposal at Yucca MI. using better data set (some 
PA distributions develop& through PA group consensus). 
completed and improments in the source-term model (e.g.. 

inclusion of corrosion and thermal effects) (TSPA-93). (7spA-w) < SNL ' 

Disposal (GCD) repository, located at NTS, alter 
collecting site specific data. 

0 1995 - Mar: SNL performs PA on DOEowned SNF 
disposed in tuff to help with decision on direct disposal 
and concern with critical condfiions. NAS recommends 
guidance on developing regulation for potential reposi- 
tory at Yucca MI. that includes risk calculation based on 
dose over 1 0  yr period. Nov: YMP M O  completes 
3rd PA of Yucca MI. using simplified codes and linkage 
system (RIP) (TSPA-95); SNF closely Dacked to drive 
water from repository in 1st 1 d yr. 

0 1998 - Doc: EPRl completes PA on Yucca MI. reposi- 
tory using a lcgic tree approach. 

0 1998 - Nov: YMP MBO completes 4h major PA 
-@ad (TSPA-VA') (TSPA-VA) of transport of radioisotopes to wells in the 

Amargosa Valley 20 km from the potential site over - uz 1O yr perid. PA includes Influence of zircalloy 
I , 1 sz cladding reduced Np solubility, increased infiltration 

(7 mmlyr current average, 40 mmlyr. long-term 
average), and greatly reduced dispersion in saturated 
zone. V c  mosl important radioisotope at 10' yr. z'7Np 
at lo5 yr. EPRl completes 4th PA of YMP. 

performs ' 2nd PA on Greater Confinement 

lmad + 
1998 4th yucca M t  

Fig. U. Application of performance assessment at the YMP. 

In the United States, the NRC is responsible 
for ensuring that a disposal system for commercial- 
generated spent nuclear fuel meets the requirements 
of EPA's standards for commercial nuclear waste, 
such as 40 CFR 191. In 1983, prior to final promulga- 
tion of 40 CFR 191, but cognizant of its likely con- 
tents, the NRC promulgated 10 CFR60 (46 FR 13971; 
48 FR 28194; 10 CFR 60) that incorporated the EPA 
standard by reference but also set deterministic tech- 

nical criteria on subsystems of the waste disposal 
system (Fig. 12). In 10 CFR 60, the technical criteria 
established stringent minimum requirements for dis- 
posal subsystems: 1,000-year groundwater travel re- 
quirement on the geologic barrier 300-year container 
life without substantial failure, and a maximum re- 
lease rate from the container after initial failure. 
These criteria were not probabilistic, despite the 
NRC's support of PRAs in the late 1970s (see Section 
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4.2). In 1986, the NRC proposed to explicitly incorpo- 
rate the requirements of the EPA standard, 40 CFR 
191, into 10 CFR 60 but the changes were never 
adopted (51 FR 22288) because 40 CFR 191 was 
remanded by the courts (824 F. 2d. 1258). The NRC 
proposed 10 CFR 63 in February 1999 (64 FR 8640) 
for the repository at Yucca Mountain, again cogni- 
zant of the likely contents of the EPA Standard, 40 
CFR 197 recently proposed in August 1999 (64 FR 
46977). The NRC regulation proposes a dose limit 
of 25 mrem/yr during a 10,000-year period from 
drinking water and consumption of vegetables, given 
a small community well about 20-kilometer downgra- 
dient from the site. The NRC eliminated all subsys- 
tem requirements since they could cause expensive 
suboptimal designs (64 FR 8640). 

System Characterization 

Although salt was an appealing disposal medium 
for commercially generated nuclear waste, the DOE 
began an intensive search in 1976 for repositories in 
several types of rock in 36 states. By 1980, the DOE’S 
Nuclear Waste Terminal Storage Program had settled 
on nine sites, including volcanic tuff at Yucca Moun- 
tain near the Nevada Test Site.(%) DOE ownership 
of the land, the adsorptive capability of the tuff (espe- 
cially the zeolitized portions), the belief at that time 
that spent nuclear fuel could be easily retrieved from 
tunnels for reuse or disposal elsewhere, and the ex- 
tremely dry climate were important reasons for con- 
sideration of this site.(xJ32) As with the WIPP, a PA 
was not used directly in site selection. Rather, a com- 
prehensive study was published in 1986. (Although 
it caused confusion, the study was called an Environ- 
mental Assessment [EA] but was not related to the 
EA defined in 40 CFR 1501 regulations promulgated 
in 1979 to implement NEPA.) Under 10 CFR 60, the 
NRC required the DOE to prepare a site character- 
ization plan (SCP) (46 FR 13971; 48 FR 28194; 10 
CFR 60), which was completed in 1988.(133) The mas- 
sive SCP described almost every experiment or study 
that might be required to characterize the highly frac- 
tured tuff and generate mathematical models of waste 
dissolution and movement of radioisotopes in 
groundwater. As with most aspects of the YMP, the 
characterization studies were conducted by several 
research organizations in addition to Sandia, includ- 
ing the USGS, Los Alamos National Laboratory, 
Lawrence Livermore National Laboratory, Law- 
rence Berkeley National Laboratory, Argonne Na- 

tional Laboratory, PNL, and contracting organiza- 
tions such as SAIC, Inc.; Raytheon, Inc.; Reynolds, 
Inc.; and later TRW, Inc. 

The design of the repository at Yucca Mountain 
has varied considerably over the life of the project. 
Initially, the repository was placed in the saturated 
zone, but arguments in 1981 for disposal of high- 
level waste in unsaturated alluvium derived from tuff 
deposits(’”) prompted consideration of the unsatu- 
rated zone at Yucca Mountain. By 1988, the SCP 
envisioned a repository in the unsaturated zone. Even 
though construction of the repository was far off, 
DOE awarded a management and operations (M& 
0) contract in 1993. Shortly afterwards, the design 
was modified to include large disposal containers em- 
placed directly in the drifts to reduce mining and 
operating costs. Also, by 1995, the project seriously 
considered closely packing the wastes such that the 
heat would dry out the unsaturated zone for -1,000 
years,”35) instead of keeping temperatures low such 
that perturbations to the geologic environment would 
be small, as envisioned by the NAS in 1957.(’l) Al- 
though tunneling costs were reduced, acquiring suf- 
ficient understanding of the geologic environment to 
confidently predict the benefits of drying out the host 
tuff effects in turn necessitated gathering more char- 
acterization data, an expensive undertaking. The 
most recent design envisions closely spaced contain- 
ers to dry out the tunnel, but widely spaced tunnels 
to keep the area between tunnels cool, and thereby 
allowing water drainage. 

Hazard Zdentifcation and Scenario Development 

As with the WIPP, hazard identification for 
YMP examined what features, events, or processes 
could negate the initially perceived advantages of the 
site. The hazard identification and scenario develop- 
ment process for this and later PAS generally recog- 
nized volcanism, seismicity, and human intrusion as 
important events and climate change as an important 
process to consider. Elaborate event trees with many 
changes in physical processes in addition to basic 
events(l36) were developed in 1995 to promote a 
qualitative understanding of the issues and were simi- 
lar to the event trees developed for the 1979 Draft 
EIS on the WIPP. However, the event trees were 
not used directly in simulations. Rather, only small 
portions of the trees were considered. Kessler and 
McGuire report on more extensive use of logic trees 
for a PA of the Yucca Mountain repository in this 
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special issue.(’37) Currently, the YMP has adopted a 
hazard identification and scenario development pro- 
cedure identical to that used by the WIPP Project in 
the 19%, which in turn had been proposed to the 
NRC in 1981.@**’zJ3) 

Consequence Analysis 

Simple analytical calculations to determine the 
relative importance of various phenomena present 
at Yucca Mountain were conducted in 1984 (which 
identified T c ,  Iz9I, and u7Np as important radioiso- 
topes for evaluating compliance)(i39) and 1988 (per- 
formed in conjunction with the SCP).(’33) The first 
large-scale analysis of fluid movement through the 
unsaturated zone occurred in 1990.(’“Q Shortly there- 
after, a series of deterministic calculations using best 
estimates for model parameters were run by several 
organizations-Sandia, PNL, and Los Alamos Na- 
tional Laboratory-to simulate the expected perfor- 
mance of the disposal system in the unsaturated zone. 
Percolation was set at 0.01 mm/yr and four radio- 
isotopes were transported through a 19-layer one- 
dimensional model of the mountain. No radioiso- 
topes reached the underlying aquifer -300 meters 
below the 

Initial Performance Assessments. In 1992 (16 
years after a search was begun and 11 years after site 
selection), the YMP completed the first probabilistic 
PAI6 of the Yucca Mountain disposal system that 
evaluated releases to a 5-kilometer boundary (TSPA- 
91),(’4z) generally following the process outlined in 
the 1988 SCP.(’a For fluid flow in TSPA-91, Sandia 
used a one-dimensional model and PNL a two- 
dimensional model. For the first time, gaseous flow 
of I4C and a probability distribution (exponential dis- 
tribution with mean of 1 mm/yr) for percolation that 
was believed to incorporate future climatic changes 
were included. 

The second PA (TSPA-93)(I4” included an im- 
proved source-term model and a saturated zone 
model. The analysis also greatly expanded the data 

l6 The YMP calls its PAS “total system PAS (TSPA)” to emphasize 
that the assessment includes all the major subsystems and compo- 
nents of the disposal system. Because of the definition of PA 
used within this report, the term is unnecessary here. However, 
the term “total system” does serve to explicitly connect perfor- 
mance assessment to systems engineering, a connection that was 
recognized in the 1970s (e.g., Rowe’s book, Anatomy ofRbk,(*’) 
was part of the engineering systems analysis series of Wiley-Inter- 
science). 

used for defining distributions for hydrologic and 
geochemical parameters. Percolation was divided 
into two distributions: one for the current dry climate 
(exponential distribution with mean of 0.5 mm/yr) 
and one for a hypothetical wet climate (exponential 
distribution with mean of 10 mmlyr). 

Also, the Electric Power Research Institute 
(EPRI) conducted two early PAS in 1990(’”) and 
1992,(’45) and PNL conducted a PA that used detailed 
multidimensional models of flow and transport, but 
evaluated consequences for only a limited number 
of different model parameters. In 1996, EPRI com- 
pleted a third iteration of their PA,(’%) described fur- 
ther in this special issue.(’37) Similar to some interna- 
tional regulatory agencies,(’47) the NRC has developed 
an independent capability to perform a PA.(’48) The 
NRC completed their initial PA in 1992(’49) and a 
second in 1995.(I5O) 

Studies for Design Options. Between 1992 and 
1995, the YMP reported each year on a fairly simple 
modeling system (Repository Integration Program 
[RIP](15’)) originally intended to rapidly simulate the 
behavior of the disposal system to evaluate design 
systems. The system used a variety of techniques such 
as curve fits to previous results and selection of distri- 
butions for particular data (e.g., percolation fluxes) 
to incorporate previous That is, RIP used 
simplified model types, fa(. ), for most of the neces- 
sary components (designated by a) of the exposure 
pathway model, C( a ) .  For instance, in the unsatu- 
rated zone in 1992 and 1994, a one-dimensional phe- 
nomenological model was used and, in 1995, analysts 
developed steady-state velocity fields and percolation 
flux distributions, from a few simulations using phe- 
nomenological models. This simplified modeling 
style, called “abstraction,” had been originally pro- 
posed in the 1988 SCP(133) as the culmination of sensi- 
tivity analysis on process models. A purported advan- 
tage of this approach is that it allows for rapid 
calculations and thus potentially helped managers 
allocate resources for further characterization stud- 
ies. The analyses using RIP were the only PAS per- 
formed by the YMP from 1995 to 1997.(’35J53J54) Dur- 
ing this time, the choice of corrosion-resistant 
material for the disposal container shifted from In- 
cone1 625 to Incoloy 825 to Hastelloy C-22. Further- 
more, the 100-mm layer of carbon steel, which was 
to serve as corrosion-allowance, has been replaced 
with 50-mm layer of stainless steel, which is to serve 
primarily for structural strength. 

Licensing Studies. In 1997, Congress mandated 
in its energy appropriation bill that the YMP evaluate 
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the likelihood that the potential Yucca Mountain dis- 
posal system would meet EPA and NRC require- 
ments (Public Law 104-206). A viability PA (TSPA- 
VA) was thus initiated using anticipated new NRC 
regulatory criteria (10 CFR 63); TSPA-VA was com- 
pleted in November 1998.(155) Although TSPA-VA 
used RIP, numerous changes and additions were 
made to the TSPA-95 models, including the addition 
of more phenomenological models. Some of these 
changes included the influence of the zircaloy clad- 
ding on commercial spent nuclear fuel, evaluation 
and inclusion of geochemistry changes near the waste 
package, colloid formation and transport, and a fac- 
tor of 100 reduction in solubility of Np. Numerical 
dispersion in codes modeling the saturated zone was 
avoided by using six stream tubes; the infiltration of 
moisture was increased a factor of 10 to a current 
mean of 7 mm/yr and a long-term average of -40 
mm/yr; and a new risk measure, dose to a 100-mem- 
ber farming community 20 kilometers from the site, 
was calculated. Similar to past analyses, the TSPA- 
VA found that the amount of seepage and the distri- 
bution of this seepage were the most important 
aspects determining failure of waste packages and 
releases of radioisotopes. EPRI also produced a 
fourth iteration of their PA.(156) Future licensing anal- 
yses currently planned include (1) a Draft EIS to 
be completed by the end of July 1999, (2) a site 
recommendation PA (TSPA-SR) to be submitted to 
the president by July 2001, and (3) the license applica- 
tion to be submitted to the NRC by March 2002. 

Probability Evaluation 

In its first probabilistic assessment of the poten- 
tial Yucca Mountain disposal system as reported in 
1992 (TSPA-91),(142) the YMP was at a relatively early 
stage in conceptual model development. Thus, 
TSPA-91 was similar in formality to the 1989 WIPP 
PA with regard to assigning probability distributions 
to the uncertain parameters or probabilities for spe- 
cific scenarios. The probability of human intrusion 
was evaluated with the Poisson distribution, and the 
probability of volcanism was based on consensus of 
analysts within the YMP PA group. Parameter values 
and distributions were determined primarily by indi- 
vidual PA analysts. The formality increased when 
uncertain parameters were evaluated in YMP's sec- 
ond PA (TSPA-93), reported on in 1994,(143) in that 
distributions for many more parameters were devel- 
oped and were more often based on the consensus 

of several PA analysts, accompanied by input from 
site characterization scientists. The basic information 
on parameter distributions reported in TSPA-93 was 
then used for subsequent simplified PAS in 1995, 
1996, and 1997,(135.153-154) although values were some- 
times changed for parametric sensitivity analysis. Im- 
proved data for a few parameters (e.g., solubility of 
neptunium) were incorporated into the TSPA-VA. 
However, many parameter values that were esti- 
mated in the early 1990s have not yet been confirmed. 
However, the requirement to conduct the TSPA-VA 
spurred the process of developing an analysis that 
could withstand regulatory scrutiny, and have gener- 
ated numerous quality assurance (QA) procedures 
were applied. 

6.3. Other Assessments for Repositories 

Other Performance Assessments in the United States 

Besides PAS conducted specifically for the WIPP 
and the YMP, other PAS were conducted by the 
United States. Three projects in the United States 
that benefited from PA were (1) a reexamination of 
deep seabed disposal of nuclear waste in 1977 that 
concluded in 1988 and that applied some techniques, 
such as embedded models, that were later adopted 
for the WIPP Project(15'); (2) an exploration of the 
feasibility of demonstrating compliance for greater- 
than-class C low-level waste (e.g., tritium) and other 
transuranic waste, which was disposed of at the Ne- 
vada Test Site in 1981(l5&lS9); and (3) analyses in 1993 
and 1995 of the behavior of DOE-owned spent nu- 
clear fuel to test the viability of direct disposal of 
the waste in salt, granite, and tuff that used tools 
developed for the WIPP(9.1") (Fig. 11). 

International Assessments 

In contrast to the United States, most countries 
have anticipated relatively long-term surface storage 
of spent nuclear fuel and high-level waste, so there 
has been less motivation to follow a strict timetable 
for permanent disposal.(161) The Canadians and 
British support probabilistic assessments, but most 
other international PAS tend to be deterministic. 
Other differences include the omission or inclusion 
of future human intrusion and the length of the regu- 
latory period. For example, Germany does not con- 
sider human intrusion in its assessments nor specify 
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a regulatory time period. Also, countries other than 
the United States sometimes place greater emphasis 
on analog models in addition to mathematical models 
for predictions of future behavior(lsJ6) and use a dose 
(or individual risk) rather than a cumulative release 
limit. Figure 13 is a summary depiction of analysis 
and disposal criteria in several international assess- 
ments of nuclear waste disposal. B.G.J. Thompson 
reports on various regulatory issues addressed in the 
international community in this special issue.(14') 

0 1967 - West Germany begin experiments for 
radioactive waste disposal in abandoned Asse 
SalVpotash mine. 

1975 - Oct: International Nuclear Energy Agency (NEA) 
forms Radioactive Waste Management Committee to 
foster exchange of information on nuclear waste 
disposal. 

mine. IAEA recommends site selection criteria for 
geologic disposal sites. 

0 1978 -Canada announces Atomic Energy of Canads, 
Ltd. (AECL). given task of developing nuclear waste 
disposal concept. West Germany starts suitability study 
of abandoned Konrad iron ore mlne for disposing of 
radioactive waste wnh no heat (primarily low and 
intermediate level waste [LLW h ILW). Sandia WlPP 
project begins technical exchange with German salt 
disposal project at Asse salt mine. 

waste disposal in salt dome at GorWn,  near East-W 
861 boarder. 

0 1980 - Swedes reject nuclear power in national referen- 
dum, must find source for 50% of e W c  power needs 
by 2010. Swillerland regutor (HSK) sets max indvid- 
ual dose at 0.1 mSv/yr for HLW without time limit 

1981 - Apr: East Germans start disposing low and 
intermediate alpha-emining radioactive waste in 
Monleben. abandoned mine in domal salt. near 
Gorleben under 5 yr license. Canada announces no 
sne seleclii until after €IS on dlsposal concept. 
Canadians proponents (AECL) develop SWAC-1, 
single set of primarily anatytii models for totaksystem 
geologic and subseabed disposal (concept expanded 
on by CAMCON). IAEA r m m e n d s  procedure lor PA 
and potential list for scenarios. 

0 1982- U.K.'s regulator (HMIP) adapts SWAC-1 for 
use in low-. inter- mediate-. and high-level waste 
disposal. Germans complete suitability study of Konrad 
and start developing license application. 

0 1983 - Commission of European Communities (CEC) 
develops LISA PA code. To continue developing 
nuclear power. Swedes publih PA of disposal of HLW 
in fractured granite using copper canister and bentonite 
backfill. German regulator ( M U )  promulgate 
radioactive standards. mostly qualitative except for 
maximum dose limit of 0.3 mSv/yr without time limit. 

0 1984 - NEA sels up group from various countries to 
exchange ideas on PA. NEA su~gests maximum 
individual human health rlsk of 1od cancers per year 
from HLW. Swiss begin field tests in fractured granite 
in Swiss Alps at Grimsel. 

0 1085 - Canadians complete second interim assessment 
on conceptual design using SWAC-2 and begin 
underground research at Lac du Bonnet, Winnipeg. 
Swiss proponents (NAGRA) publish P r o k t  Gewahr 
PA of vitrified HLW in a 1200-m deep repository in 
granite. Spain's nuclear safety council publlshes safety 
criteria.. Sweden nuclear waste studies at Aspa 
Laboratory. 

0 1977 - Sweden begins underground research at Stripa 

0 1079 - West Germans start investigating high-level 

syvAc-l 

7. SUMMARY 

7.1. Common Foundations and Comparisons 
Between Risk Assessments 

Risk assessment has evolved from hazard identi- 
fication for relatively straightforward problems to 
methods that incorporate probability and uncertainty 
of knowledge for more complex situations, when soci- 
ety is unsure about how to either interpret or respond 

0 1088 - East Germans grant Morsleben permanent 
disposal license. West Germany @ins construction of 
2 shahs in Gorleban salt dome. Swedish Nuclear 
Power Inspactorate (SKI) starts 'Project-W to examine 
hypcthetical granite repository with 100-mm thick 
copper canister. U.K. simulates glacial climate changes 
in PA. 

0 1087 - Canada sets maximum individual risk at 
lod& for 1Vyr  for HLW disposal. 

0 1988 - Canada's proponent AECL announces disposal 
concept ready for EIS review. 

0 1989 - U. K develop VANDAL, combination 01 SYVAC 
and precursor of NEFTRAN. as PA tool. NEA holds 
major symposium on state-of-the-art nuclear waste 
disposal. 

0 loo0 - Sweden's regulator complete Project 90 (deter- 
ministic PA on 'what il' conditions). 

0 1991 -Swedish propon%nts publish assessment 
focusing on role of geosphere ('SKB-91'). Finland sets 
maximum individual dose at 0.1 mSv/yr for normal and 
5 mSv/yr lor accident conditions without time 
limit. Administrative count issues preliminary injunction 
to stop waste emplacement at Morsleben. 

0 1992 -Canada's Minister of Natural Resources issues 
guidelines for €IS on disposal concept to AECL. 
Fhland publlshes deterministic PA of disposal concept 
('TVO-92'). U.K.'s regulator (HMIP) canpletes 'Dry 
Run 3' -full probabilistic PA including long-term 
glaciation of site using VANDAL, a network simulation 
code. First integrated PA of HLW disposal is performed 
in Japan. 

0 1993 - U.K.'s regulator (HMIP) sets 10d/yr for individual 
risk or 0.1 mSv/yr dose without time limit. 

lffl- Canada's proponent AECL publishes EIS lor 
disposal concept recommending siting phase. 
Netherlands publishes probabilistic PA of disposal of 
vilriiied HLW in salt domes. Swiss proponents 
(NAGRA) update their 1985 PA In Krislallin I. German 
court lilts injunction and waste emplacement begins 
again at Morsleben. 

0 100s - Sweden's regulator completes SITE 94 (large 
study of features. events, and processes) for a 
hypothetical repository with geologic characterislics 
derived from the Aspa laboratory. 

0 1998 - Jun: Final signatory of Konrad license applica- 
tion refuses to sign license until aner German elec- 
tions. !%p: Superior Administrative Court orders 
emplacement of waste to stop at Morsleben's 'eastern 
field' however, all emplacement stopped voluntarily. 
Dee: Germans elect socialist Green coalition to power 
that vows to stop reliance on all nuclear power over 
next 4 yr (33% of energy use. plants represent 61 bil- 
lion in assets); want all waste disposal to stop until 
reevaluation of sites and one site selected. 

lee1 Sweden 
complete 
major PA 

1992 U.K. 
complete 'Dry 
Run 3' PA 

concept 

Fig. 13. Standards and assessments in the international community for nuclear waste disposal. 
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to an identified hazard for which there is only limited 
experience. Furthermore, risk management decisions 
often are constrained to use (through regulations) 
different kinds of risk information and, thereby, en- 
compass varying degrees of detail. 

Definition of Risk Criteria 

Until a regulatory environment has been estab- 
lished, any risk assessment must deal with defining 
risk criteria and goals. Initially, Congress decreed 
zero probability of cancer from food additives in the 
“Delaney clause” in 1958 (Figs. 1 and 9). However, 
in the 1970s and 198Os, several technological and 
environmental risk goals were defined. In 1973, the 
FDA proposed evaluating cancer risks (Figs. 1 and 
9), and in 1977, the FDA proposed a probability of 
less than cancers per year as a risk goal (42 
FR 10412; 52 FR 49572), assuming dose-response 
models with plausible upper bounds. (That is, the 
risk criteria are dependent on the methods used to 
assess the risk.) The Supreme Court endorsed a simi- 
lar risk goal for OSHA in 1980 (100 S. Ct. 2844). 
From 1977 to 1985, the radiation program within the 
EPA set about establishing risk limits for radioactive 
waste repositories to promulgate 40 CFR 191 (50 FR 
38066). The EPA is currently establishing site-specific 
risk limits for a potential site at Yucca Mountain in 
40 CFR 197 (64 FR 46976). 

Characterization of System 

In antiquity through the 1930s, system definition 
and characterization was relatively informal and pri- 
marily based on experience with an activity or tech- 
nology. System characterization is necessary for any 
scientific modeling of a natural system, whether its 
purpose is to gain insight or illustrate possible future 
behavior. Hence, even before safety goals and a com- 
pliance process were established for radioactive 
waste disposal, characterization of the WIPP near 
Carlsbad, New Mexico, was undertaken for the EIS 
in the late 1970s (Figs. 1 and 11). 

Identification of Hazards and Development 
of Scenarios 

Many practical risk management techniques 
have been rapidly and inexpensively deployed to re- 

duce risks by means of a hazard assessment. Simple 
hazard identification and appropriate risk manage- 
ment, such as linking cholera to contaminated well 
water (Figs. 1 and 3) and later purified water sup- 
plies/2S) improved sanitation, and medical services, 
were responsible for the dramatic rise in human lon- 
gevity from about 25 years at the time of the Roman 
Empire to about 63 years in 1940. Applied risk man- 
agement, such as improved medical services, in turn 
lead to identifying new hazards (e.g., radium paint; 
Figs. 1 and 4).(19) Although, NASA abandoned tools 
of probability and consequence assessments for the 
Apollo Program in the 1970s, it retained hazard as- 
sessment through Failure Mode/Effects Analysis.(66) 
The initial assessment of an abandoned chemical 
waste site for emergency response under CERCLA 
is a hazard assessment. 

Evaluation o f  Probability 

From its inception around 1660, probability the- 
ory has been intimately involved with individual and 
societal decisions about actions that can be taken 
today, such as inswing life or property (e.g., the 
Dutch), to mitigate possible unwanted future out- 
comes (Figs. 1 and 2).(l) Reliability/system analysis 
became important during development of aircraft 
technology in the 1930s and missile technology in the 
1940s and 1950s (Figs. 1 and 5).(40) For these technolo- 
gies, a trial-and-error, design-and-construction ap- 
proach was insufficient. 

A major difference among types of risk assess- 
ments is whether uncertainties in knowledge of pa- 
rameters and model forms are included. For a deter- 
ministic evaluation, the risk assessment displays only 
a conditional result C(x), where x are expected or 
best estimate values of parameters or, more often, 
plausible upper bounds. Unless the system under 
study is linear, the use of expected parameter values 
in models will not necessarily result in expected val- 
ues of the consequence-a measure of risk promoted 
in the early 1980s (e.g., Ref. 162). The use of plausible 
upper-bound parameter values can present addi- 
tional problems because the location of the conserva- 
tive result with regard to distribution is not known 
and the degree of conservatism in risk from different 
hazards can differ greatly, as pointed out as early as 
1985.(74) Furthermore, comparison of mean benefits to 
conservative risks for various options is problematic 
when making  decision^.('^*'^) Even though encouraged 
in the early 1980s (Figs. 1 and lo), the absence of a 
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mandate to include uncertainty in risk assessments 
for hazardous waste disposal contributed to the in- 
consistent use of uncertainty analysis into the mid- 
199os.(”) 

A PRA displays the entire distribution function 
and avoids the dilemma in which events of low proba- 
bility and high consequence are equated to events 
of high probability and low consequence, although 
conservative models and parameters are still incorpo- 
rated, as in the dose-response assessment and condi- 
tions of future society. Until uncertainty is included 
in the risk assessment, the risk measure will likely 
diverge from a common historical meaning of the 
word risk, associated with variance, and thus contrib- 
ute to misunderstanding. Requiring explicit, quanti- 
tative inclusion of uncertainty by the EPA in 40 CFR 
191 was a natural progression from the 1975 Reactor 
Safety Study (which, in turn, had progressed from 
smaller studies in the late 1960s; Fig. 1). The stochas- 
tic analyses for nuclear facilities have yielded (and 
continue to yield) by far the largest analysis of uncer- 
tainty in mathematical modeling. 

Evaluation of Consequence 

A consequence evaluation determines the ef- 
fects of realizing a hazard through a dose-response 
assessment and an exposure pathway assessment. Ini- 
tially, in the early 1900s, scientists assumed a model 
of human dose response with a threshold below which 
there was zero risk of toxicity. By the 1940s, however, 
observed effects of radiation and radioisotope toxic- 
ity studies (Figs. 1 and 4) brought into question 
whether a practical threshold existed for radia- 
t i ~ n ( ’ ~ $ ~ )  and, in 1948, the NCRP recommended an 
ALARA policy for radiation. By the mid-l970s, 
the FDA and EPA were adopting non-threshold 
guidelines for developing bounding dose-response 
curves as risk analysis was introduced for carcino- 
genic chemicals (Figs. 1 and 10). According to current 
EPA guidelines, PA and PRA included, the dose- 
response assessment (i.e., modeling internal to the 
human body) uses plausible upper bounds for param- 
eter values, but uncertainty in radiogenic dose- 
response has been explored (62 FR 55249; 63 FR 
36677). 

The prediction of consequences along exposure 
pathways external to humans became important as 
society grew concerned about the consequences of 
technologies or activities of which little was known. 
Soon after passage of the Atomic Energy Act of 1954 
(Public Law 83-703 [68 Stat. 919]), the financial risk to 

the federal government from a calamity at a nuclear 
power plant motivated an examination of conse- 
quences in the late 1950s.(2050) The Reactor Safety 
Study in 1975 investigated risks from the nuclear 
power plant by combining concepts of reliability anal- 
ysis, exposure pathway analysis, and radiation phar- 
macology, thus inaugurating the concept of a PRA 
on a grand scale. This study was later updated in 
1990 (Figs. 1 and 6). 

In assessing the safety of a geologic disposal sys- 
tem for the’ first time in the mid 1970s (Figs. 1 and 
7), a new challenge was understanding long-term be- 
havior of system components (e.g., waste containers 
and their interaction with the host rock environ- 
ment). Especially in the United States, a PA became 
intimately tied to the process of building a mathemat- 
ical model of the system. The passage of stringent 
risk criteria required a more realistic, rather than a 
highly conservative but simple, analysis. In turn, the 
realistic analysis required evaluating the uncertainty 
associated with stylized situations for regulatory anal- 
ysis. Monte Carlo analysis, originally developed and 
applied in 1947 for nuclear weapon design on the 
first computers (Figs. 1 and 5). LHS has been fre- 
quently used for sensitivity and uncertainty analysis 
of several linked models in the United 
The LHS technique, a simple scheme developed in 
197SS7) to judiciously sample the parameter domain 
in Monte Carlo Analysis, was used to gain insight 
about the pipe ruptures in nuclear power plants in 
197SS7) and important parameters of a geologic dis- 
posal system in 1978 in PAS and PRAs.(~J?”?’ 

Evaluation of Risk Measure and Comparison with 
Risk Goals 

A significant difference between a PA for radio- 
active disposal and other policy analyses is that the 
PA (by definition), is designed to test compliance to 
a set of standards rather than just elucidate under- 
standing. Certainly, PA can be used to enhance un- 
derstanding through sensitivity analysis; however, the 
assessment for radioactive waste disposal is essential 
to determine whether the selected risk management 
technique, deep geologic disposal of nuclear waste, 
is likely to meet the selected risk limits using stylized 
circumstances selected by the regulator. Although 
the disposal assessment does not represent a com- 
plete examination of intergenerational equity, it is 
unique among regulations in the United States in at 
least indirectly acknowledging the issue (40 CFR 191; 
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50 FR 58196).(=) Building on the work conducted 
at Sandia in the late 1970s and 1980s,(62~63;75-n*157) the 
assessment for the WIPP in 1996 consisted of a PA 
that included many quantifiable uncertainties (Figs. 1 
and 11). The distribution of cumulative radioisotope 
release results, expressed as a CCDF, was compared 
with probabilistic regulatory 

In contrast, for an active hazardous waste dis- 
posal site, specified methods for treatment and dis- 
posal of the waste at a site with specific engineered 
features, such as plastic liners as required by regula- 
tions implementing RCRA (40 CFR Parts 260-281), 
are used to determine compliance. Furthermore, be- 
cause a ready funding source is available from the 
DOE or users of electrical power generated by reac- 
tors, the resources that are marshaled and the costs 
incurred for evaluating consequences, incorporating 
uncertainty into the analysis, and demonstrating com- 
pliance with nuclear waste disposal regulations are 
one or two orders of magnitude greater than might 
be expected for clean up of an abandoned Superfund 
site (using the WIPP Project as an example).(70) 
Hence, several other aspects also differentiate chemi- 
cal and nuclear waste risk assessments. More exten- 
sive site-specific information is produced for a nuclear 
waste site than for a chemical site(”); the inventory 
of radionuclides is fairly well determined(”’); the fea- 
ture, event, and process screening and scenario devel- 
opment are more detailed(72@J19J2); the exposure 
pathway assessment uses more detailed phenomeno- 
logical modeling assumptions are 
more consistent because of the use of database and 
computer control of the analysis(109J20); several itera- 
tions of the analysis are performed and sensitivity 
analysis is extensive.(126J28) When evaluating mixed 
waste problems and disposal sites, analysts have had 
to resolve some of the differences in assessment as- 
sumpt ion~, (~~~)  but much more could be done. 

7.2. Influence of Risk Assessments 

The first two steps of a risk assessment, basically 
hazard assessment have clearly led to improvements 
in general human welfare since ancient times. Yet, 
the addition of consequence and probabilistic evalua- 
tion steps have also produced some valuable input 
for documenting administrative decisions for contro- 
versial projects likely to be reviewed by a court.(17) 
Basic risk evaluations have been used at OSHA since 
the U.S. Supreme Court ruled that a risk assessment 
was required before OSHA could promulgate an oc- 

cupational exposure regulation (100 S. Ct. 2844). The 
FDA has used risk assessment to reach more rea- 
soned decisions such as in 1980, when the FDA suc- 
cessfully argued that the risks from lead acetate, a 
possible carcinogen, were reasonable when used in 
hair coloring (45 FR 72112). 

Sophisticated risk assessments, such as the PAS 
for the WIPP, blend information from multiple disci- 
plines and thus multiple viewpoints, which can be a 
strength when dealing with large uncertainties, rather 
than relying on only one discipline, such as ge01ogy.l~ 
The NRC eventually became a staunch supporter 
of PRAs in managing risks at nuclear reactors and 
adopted them as the main tool for setting policies 
in 1995. Similarly, the EPA became convinced of 
the benefits of a PA for radioactive waste disposal. 
Nevertheless, except for PA and PRA for nuclear 
facilities and policy setting at OSHA and FDA, risk 
assessment has not been uniformly recognized as a 
valuable input to policy decisions, regulatory control 
of other environmental concerns within the EPA, 
possibly because of the inconsistent mandate pro- 
vided by Congress and the courts. 

Risk assessment has also been used to influence 
other types of policy decisions. For example, the fed- 
eral government has used risk assessment results to 
examine dollars spent on risk management in propor- 
tion to potential lives ~ a v e d . ( ’ ~ * ~ )  Yet, just as conclu- 
sions of cost-benefit analysis are dependent on the 
assumed future interest rate or the value of a human 
life, the results from risk assessments can become 
dependent on basic assumptions about the conditions 
under investigation (e.g., assumptions concerning fu- 
ture human activities; such as exploratory drilling) 
and land use (such as a housing development). At 
the WIPP, this dependency was acknowledged when 
information about the geologic disposal site was 
deemed sufficient because assumptions on inadver- 
tent human intrusion continued to dominate the risk 
results at the later stages of disposal characterization. 
Not acknowledging such a dependency can be detri- 
mental if the decision makers assume that the assess- 
ment calculates an absolute risk such that compari- 
sons of risks from different hazards and activities are 
valid. The latter situation could occur when compar- 
ing calculated risk from radioactive hazardous and 
waste disposal, even though the time frames of the 
analyses are very different and the assessment as- 

’’ However, adequate documentation and competent peer review 
are required lest the risk assessment become less than the sum 
of the disciplines (“parts”). 
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sumptions include the potential for human intrusion 
in one case but not in the other. 

Although many have urged inclusion of uncer- 
tainty when quantifying risks, not all elements of 
uncertainty can properly or easily enter the assess- 
ment, and thus other factors must enter into a risk 
management decision. For example, the PA for dis- 
posal of radioactive waste at the WIPP, which in- 
cluded more than 80,000 pages of documentation, 
has not by itself produced a change in the public’s 
basic beliefs about radioactive waste disposal in New 
Mexico that is politically signifi~ant.(~,’~~,l~) That is, 
the assessment has not been considered by the public 
as a complete measure of the uncertainty of the re- 
pository. Rather, the public has used factors such as 
knowledge of the type of waste to be stored at the 
WIPP, its perception of risk associated with trans- 
porting the waste, and, as part of the overall uncer- 
tainty, its trust of public officials’ personal acceptance 
or resistance to the WIPP repository. (The concept 
is similar to a banker’s “risk premium” on interest 
rates.) 

Furthermore, risk assessment cannot always lead 
to the desired understanding of the issues or to more 
reasoned decisions.(”) In some cases, risk assessments 
have inadvertently increased the public’s concern 
over safety. For example, the initial assessment of 
risks at Times Beach, Missouri, overestimated risks, 
confirmed public fears, and contributed to the deci- 
sion to evacuate residents. Subsequent studies by the 
Centers for Disease Control and Prevention, includ- 
ing a revised risk assessment in 1991, suggested that 
the first assessment exaggerated the risks and that a 
less drastic risk management choice such as paving 
dirt roads may have made the evacuation unneces- 
sary.(99) Similarly, a questionable study of the cancer 
risk from asbestos in 1978(%) eventually led to the 
extreme risk management decision to remove all as- 
bestos insulation in schools. A more moderate risk 
management approach, which left undisturbed asbes- 
tos insulation in good condition, was not instituted 
until the 1990s, and then only after prodding by scien- 
tists(16) and after billions had been spent. Finally, in 
1989, the Natural Resources Defense Council 
(NRDC) used a risk assessment to challenge EPA’s 
decision to phase out during an 18-month period the 
use of Alar (a growth stimulant regulated as a pesti- 
cide). The news story, which had started with results 
from the NRDC assessment, caused unnecessary 
public avoidance of apples and contributed to eco- 
nomic ruin of several small apple farmers.(166) There- 
fore, we should not as a profession expect too much 

of a “simple paper study” in its ability to further 
acceptance of a particular activity nor hastily con- 
clude that a “simple paper study” cannot contribute 
to unintended harm. 
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Abstract

Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (i) definition of

probability distributions to characterize epistemic uncertainty in analysis inputs, (ii) generation of samples from uncertain analysis

inputs, (iii) propagation of sampled inputs through an analysis, (iv) presentation of uncertainty analysis results, and (v) determination of

sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and

illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial

correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding,

nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two-dimensional Kolmogorov–Smirnov

test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Uncertainty analysis and sensitivity analysis are essential
parts of analyses for complex systems [1–14]. Specifically,
uncertainty analysis refers to the determination of the
uncertainty in analysis results that derives from uncertainty
in analysis inputs, and sensitivity analysis refers to the
determination of the contributions of individual uncertain
analysis inputs to the uncertainty in analysis results. The
uncertainty under consideration here is often referred to as
epistemic uncertainty; alternative designations for this
form of uncertainty include state of knowledge, subjective,
reducible, and type B [15–24]. Epistemic uncertainty
derives from a lack of knowledge about the appropriate
value to use for a quantity that is assumed to have a fixed
value in the context of a particular analysis. In the
atter r 2005 Elsevier Ltd. All rights reserved.
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conceptual and computational organization of an analysis,
epistemic uncertainty is generally considered to be distinct
from aleatory uncertainty, which arises from an inherent
randomness in the behavior of the system under study
[15–24]. Alternative designations for aleatory uncertainty
include variability, stochastic, irreducible, and type A.
A number of approaches to uncertainty and sensitivity

analysis have been developed, including differential analy-
sis [25–33], response surface methodology [34–43], Monte
Carlo analysis [44–55], and variance decomposition proce-
dures [56–60]. Overviews of these approaches are available
in several reviews [61–68].
The focus of this presentation is on Monte Carlo (i.e.,

sampling-based) approaches to uncertainty and sensitivity
analysis. Sampling-based approaches to uncertainty and
sensitivity analysis are both effective and widely used
[69–83]. Analyses of this type involve the generation and
exploration of a mapping from uncertain analysis inputs to
uncertain analysis results. The underlying idea is that
analysis results yðxÞ ¼ ½y1ðxÞ; y2ðxÞ; . . . ; ynY ðxÞ� are func-
tions of uncertain analysis inputs x ¼ ½x1;x2; . . . ;xnX �. In

www.elsevier.com/locate/ress
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turn, uncertainty in x results in a corresponding uncer-
tainty in y(x). This leads to two questions: (i) what is the
uncertainty in y(x) given the uncertainty in x? and (ii) how
important are the individual elements of x with respect to
the uncertainty in y(x)? The goal of uncertainty analysis is
to answer the first question, and the goal of sensitivity
analysis is to answer the second question. In practice, the
implementation of an uncertainty analysis and the im-
plementation of a sensitivity analysis are very closely
connected on both a conceptual and a computational level.

The following sections summarize and illustrate the five
basic components that underlie the implementation of a
sampling-based uncertainty and sensitivity analysis: (i)
definition of distributions D1, D2,y,DnX that characterize
the epistemic uncertainty in the elements x1, x2,y,xnX of x
(Section 2), (ii) generation of a sample x1, x2,y,xnS from
the x’s in consistency with the distributions D1, D2,y,DnX

(Section 3), (iii) propagation of the sample through the
analysis to produce a mapping [xi, y(xi)], i ¼ 1; 2; . . . ; nS,
from analysis inputs to analysis results (Section 4), (iv)
presentation of uncertainty analysis results (i.e., approx-
imations to the distributions of the elements of y

constructed from the corresponding elements of y(xi),
i ¼ 1; 2; . . . ; nS) (Section 5), and (v) determination of
sensitivity analysis results (i.e., exploration of the mapping
[xi, y(xi)], i ¼ 1; 2; . . . ; nS) (Section 6). The presentation
then ends with a concluding summary (Section 7).

Only probabilistic characterizations of uncertainty are
considered in this presentation. Alternative uncertainty
representations (e.g., evidence theory, possibility theory,
fuzzy set theory, interval analysis) are active areas of
research [84–92] but are outside the intended scope of this
presentation.

2. Characterization of uncertainty

Definition of the distributions D1, D2,y,DnX that
characterize the epistemic uncertainty in the elements x1,
x2,y,xnX of x is the most important part of a sampling-
based uncertainty and sensitivity analysis as these distribu-
tions determine both the uncertainty in y and the sensitivity
of the elements of y to the elements of x. The distributions
D1, D2,y,DnX are typically defined through an expert
review process [93–100], and their development can
constitute a major analysis cost. A possible analysis
strategy is to perform an initial exploratory analysis
with rather crude definitions for D1, D2,y,DnX and use
sensitivity analysis to identify the most important analysis
inputs; then, resources can be concentrated on characteriz-
ing the uncertainty in these inputs and a second presenta-
tion or decision-aiding analysis can be carried out with
these improved uncertainty characterizations.

The scope of an expert review process can vary widely
depending on the purpose of the analysis, the size of the
analysis, and the resources available to carry out the
analysis. At one extreme is a relatively small study in which
a single analyst both develops the uncertainty character-
izations (e.g., on the basis of personal knowledge or a
cursory literature review) and carries out the analysis. At
the other extreme, is a large analysis on which important
societal decisions will be based and for which uncertainty
characterizations are carried out for a large number of
variables by teams of outside experts who support the
analysts actually performing the analysis.
Given the breadth of analysis possibilities, it is beyond

the scope of this presentation to provide an exhaustive
review of how the distributions D1, D2,y,DnX might be
developed. However, as general guidance, it is best to avoid
trying to obtain these distributions by specifying the
defining parameters (e.g., mean and standard deviation)
for a particular distribution type. Rather, distributions can
be defined by specifying selected quantiles (e.g., 0.0, 0.1,
0.25,y,0.9, 1.0) of the corresponding cumulative distribu-
tion functions (CDFs), which should keep the individual
supplying the information in closer contact with the
original sources of information or insight than is the case
when a particular named distribution is specified (Fig. 1a).
Distributions from multiple experts can be aggregated by
averaging (Fig. 1b) [101].
This presentation draws most of its examples from an

uncertainty and sensitivity analysis carried out for a two
phase flow model (implemented in the BRAGFLO
program) [102–104] in support of the 1996 Compliance
Certification Application for the Waste Isolation Pilot
Plant [105–107]. The uncertain variables considered in the
example results (i.e., x1, x2,y,xnX with nX ¼ 31) and their
associated distributions (i.e., D1, D2,y,D31) are summar-
ized in Table 1. Additional information on the use of
these variables in the two phase flow model and on the
development of the associated uncertainty distributions is
available in the original analysis documentation [102,108].
Additional information: Section 6.2, Refs. [46,

93–100,109–119]. As an example, Ref. [100] describes the
approach used in the extensive expert review process that
supported the US Nuclear Regulatory Commission’s
(NRC’s) reassessment of the risk from commercial nuclear
power plants (i.e., NUREG-1150; see Refs. [82,120–124]).

3. Generation of sample

Several sampling strategies are available, including
random sampling, importance sampling, and Latin hyper-
cube sampling [44,55] Latin hypercube sampling is very
popular for use with computationally demanding models
because its efficient stratification properties allow for the
extraction of a large amount of uncertainty and sensitivity
information with a relatively small sample size.
Latin hypercube sampling operates in the following

manner to generate a sample of size nS from the
distributions D1, D2,y,DnX associated with the elements
of x ¼ ½x1;x2; . . . ;xnX �. The range of each xj is exhaustively
divided into nS disjoint intervals of equal probability and
one value xij is randomly selected from each interval. The
nS values for x1 are randomly paired without replacement
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Fig. 1. Characterization of epistemic uncertainty: (a) construction of CDF

from specified quantile values (Ref. [101, Fig. 4.1]), and (b) construction of

mean CDF by vertical averaging of CDFs defined by individual experts

with equal weight (i.e., 1=nE ¼ 1=3, where nE ¼ 3 is the number of

experts) given to each expert (Ref. [101, Fig. 4.2]).
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with the nS value for x2 to produce nS pairs. These
pairs are then randomly combined without replacement
with the nS values for x3 to produce nS triples. This
process is continued until a set of nS nX-tuples xi ¼

½xi1;xi2; . . . ;xi;nX �, i ¼ 1, 2,y,nS, is obtained, with this set
constituting the Latin hypercube sample (Fig. 2).

Latin hypercube sampling is a good choice for a
sampling procedure when computationally demanding
models are being studied. The popularity of Latin
hypercube sampling recently led to the original article
being designated a Technometrics classic in experimental
design [125]. When the model is not computationally
demanding, many model evaluations can be performed and
random sampling works as well as Latin hypercube
sampling.
If large sample sizes are required to provide appropriate

coverage of low probability/high consequence subsets of
values for x, then importance sampling may be a more
effective sampling procedure than either random or Latin
hypercube sampling [126–134]. However, importance
sampling complicates sensitivity analysis (Section 6) as
the individual sample elements do not have equal weight
(i.e., likelihood of occurrence). Often, some type of
importance sampling is used to sample from aleatory
uncertainty (e.g., possibly implemented through the use of
event trees as is typically the case in probabilistic risk
assessments for complex engineered facilities such as
nuclear plants) and Latin hypercube sampling is used to
sample from epistemic uncertainty. The NUREG-1150
analyses (see Refs. [82,120–124]) are an example of this
approach to the propagation of uncertainty.
Control of correlations is an important aspect of sample

generation. Specifically, correlated variables should have
correlations close to their specified values, and uncorre-
lated variables should have correlations close to zero. In
general, the imposition of complex correlation structures is
not easy. However, Iman and Conover have developed a
broadly applicable procedure to impose rank correlations
on sampled values that (i) is distribution free (i.e., does
not depend on the assumed marginal distributions for
the sampled variables), (ii) can impose complex correla-
tion structures involving multiple variables, (iii) works
with both random and Latin hypercube sampling, and
(iv) preserves the intervals used in Latin hypercube
sampling [135,136]. Details on the implementation of the
procedure are available in the original reference; [135]
illustrative results are provided in Fig. 3 [137].
The analysis involving the variables in Table 1 used three

independently generated (i.e., replicated) Latin hypercube
samples of size nS ¼ 100 each. The purpose of the
replication was to provide a basis for testing the stability
of uncertainty and sensitivity analysis results obtained with
Latin hypercube sampling (Ref. [108, Sections 7 and 8]).
The Iman/Conover restricted pairing technique indicated
in the preceding paragraph was used to control correlations
within the individual samples. The analyses with the three
replicated samples were sufficiently similar that each
analysis would have independently lead to the same
insights with respect to model behavior [138]. However,
to make full use of all model evaluations, final presentation
results [103,104] were calculated with the three replicated
samples pooled together to produce a single sample of size
nS ¼ 300.
Additional information: Ref. [46, Section 6.3],

Refs. [44,50,54,55,139].

4. Propagation of sample through the analysis

Propagation of the sample through the analysis to
produce the mapping [xi, y(xi)], i ¼ 1; 2; . . . ; nS, from
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Table 1

Uncertain variables x1, x2, y, x31 and associated uncertainty distributions D1, D2, y, D31 used in illustration of uncertainty and sensitivity analysis

procedures for two phase flow model (Ref. [138, Table 1])

ANHBCEXP—Brooks–Corey pore distribution parameter for anhydrite (dimensionless). Distribution: Student’s with 5 degree of freedom. Range:

0.491–0.842. Mean, median: 0.644.

ANHBCVGP—Pointer variable for selection of relative permeability model for use in anhydrite. Distribution: Discrete with 60% 0, 40% 1. Value of 0

implies Brooks–Corey model; value of 1 implies van Genuchten–Parker model.

ANHCOMP—Bulk compressibility of anhydrite (PA�1). Distribution: Student’s with 3 degrees of freedom. Range: 1.09� 10�11–2.75� 10�10 Pa�1. Mean,

median: 8.26� 10�11 Pa�1. Correlation: �0.99 rank correlation [23] with ANHPRM. Variable 21 in LHS.

ANHPRM—Logarithm of anhydrite permeability (m2). Distribution: Student’s with 5 degrees of freedom. Range:�21.0–�17.1 (i.e., permeability range is

1� 10�21–1� 10�17.1m2). Mean, median: �18.9. Correlation: �0.99 rank correlation with ANHCOMP.

ANRBRSAT—Residual brine saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of freedom. Range: 7.85� 10�3–1.74� 10�1.

Mean, median: 8.36� 10�2.

ANRGSSAT—Residual gas saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of freedom. Range 1.39� 10�2–1.79� 10�1.

Mean, median: 7.71� 10�2.

BHPRM—Logarithm of borehole permeability (m2). Distribution: Uniform. Range: �14 to �11 (i.e., permeability range is 1� 10�14–1� 10�11m2).

Mean, median: �12.5.

BPCOMP—Logarithm of bulk compressibility of brine pocket (Pa�1). Distribution: triangular. Range: �11.3 to �8.00 (i.e., bulk compressibility range is

1� 10�11.3–1� 10�8 Pa�1). Mean, mode: �9.80, �10.0. Correlation: �0.75 rank correlation with BPPRM.

BPINTPRS—Initial pressure in brine pocket (Pa). Distribution: triangular. Range: 1.11� 107–1.70� 107 Pa. Mean, mode: 1.36� 107, 1.27� 107 Pa.

BPPRM—Logarithm of intrinsic brine pocket permeability (m2). Distribution: triangular. Range: �14.7 to �9.80 (i.e., permeability range is 1� 10�14.7

–1� 10�9.80m2). Mean, mode: �12.1, �11.8. Correlation: �0.75 rank correlation with BPCOMP.

BPVOL–Pointer variable for selection of brine pocket volume. Distribution: discrete, with integer values 1, 2, y, 32 equally likely.

HALCOMP—Bulk compressibility of halite (Pa�1). Distribution: Uniform. Range: 2.94� 10�12–1.92� 10�10 Pa�1. Mean, median: 9.75� 10�11 Pa�1,

9.75� 10�11 Pa�1. Correlation: �0.99 rank correlation with HALPRM.

HALPOR—Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0� 10�3–3� 10�2. Mean, median: 1.28� 10�2, 1.00� 10�2.

HALPRM–Logarithm of halite permeability (m2). Distribution: Uniform. Range: �24 to�21 (i.e., permeability range is 1� 10�24 to 1� 10�21m2). Mean,

median: �22.5, �22.5. Correlation: �0.99 rank correlation with HALCOMP.

SALPRES–Initial brine pressure, without the repository being present, at a reference point located in the center of the combined shafts at the elevation of

the midpoint of MB 139 (Pa). Distribution: Uniform. Range: 1.104� 107–1.389� 107 Pa. 1.247� 107 Pa.

SHBCEXP—Brooke-Corey pore distribution parameter for shaft (dimensionless). Distribution: Piecewise uniform. Range: 0.11–8.10. Mean, median:

2.52, 0.94.

SHPRMASP—Logarithm of permeability (m2) of asphalt component of shaft seal (m2). Distribution: Triangular. Range: �21–�18 (i.e., permeability

range is 1� 10�21–1� 10�18m2). Mean, mode: �19.7, �20.0.

SHPRMCLY—Logarithm of permeability (m2) for clay components of shaft. Distribution: Triangular. Range: �21–�17.3 (i.e., permeability range is

1� 10�21–1� 10�17.3m2). Mean, mode: �18.9, �18.3.

SHPRMCON—Same as SHPRMASP but for concrete component of shaft seal for 0 � 400 yr.Distribution: Triangular. Range: �17.0–�14.0 (i.e.,

permeability range is 1� 10�17–1� 10�14m2). Mean, mode: �15.3, �15.0.

SHPRMDRZ–Logarithm of permeability (m2) of DRZ surrounding shaft. Distribution: Triangular. Range: �17.0–�14.0 (i.e., permeability range is

1� 10�17–1� 10�14m2). Mean, mode: �15.3, �15.0.

SHPRMHAL–Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft seal at different times. Distribution:

Uniform. Range: 0–1. Mean, mode: 0.5, 0.5. A distribution of permeability (m2) in the crushed salt component of the shaft seal is defined for each of the

following time intervals: [0, 10 yr], [10,25 yr], [25,50 yr], [50,100 yr], [100,200 yr], [200,10,000 yr]10,200. SHPRMHAL is used to select a permeability value

from the cumulative distribution function for permeability for each of the preceding time intervals with result that a rank correlation of 1 exists between

the permeabilities used for the individual time intervals.

SHRBRSAT—Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: 0–0.4. Mean, median: 0.2, 0.2.

SHRGSSAT—Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: 0–0.4. Mean, median: 0.2, 0.2.

WASTWICK—Increase in brine saturation of waste owing to capillary forces (dimensionless). Distribution: Uniform: Range: 0–1. Mean, median: 0.5, 0.5.

WFBETCEL—Scale factor used in definition of stoichiometric coefficient for microbial gas generation (dimensionless). Distribution: Uniform. Range:

0–1. Mean, median: 0.5, 0.5.

WGRCOR–Corrosion rate for steel under inundated conditions in the absence of CO2 (m/s). Distribution: Uniform. Range: 0–1.58� 10�14m/s. Mean,

median: 7.94� 10�15m/s, 7.94� 10�15m/s.

WGRMICH—Microbial degradation rate for cellulose under humid conditions (mol/kg s). Distribution: Uniform. Range: 0–1.27� 10�9mol/kg s. Mean,

median: 6.34� 10�10mol/kg s, 6.34� 10�10mol/kg s.

WGRMICI—Microbial degradation rate for cellulose under inundated conditions (mol/kg s). Distribution: Uniform. Range: 3.17� 10�10–9.51� 10�9

mol/kg s. Mean, median: 4.92� 10�9mol/kg s, 4.92� 10�9mol/kg s.

WMICDFLG–Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% 0, 25% 1, 25% 2, WMICDFLG ¼ 0, 1, 2, implies

no microbial degradation of cellulose, microbial degradation of only cellulose, microbial degradation of cellulose, plastic and rubber.

WRBRNSAT—Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: 0–0.552. Mean, median: 0.276, 0.276.

WRGSSAT—Residual gas saturation i n waste (dimensionless). Distribution: Uniform. Range: 0–0.15. Mean, median: 0.075, 0.075.
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analysis inputs to analysis results is often the
most computationally demanding part of a sampling-
based uncertainty and sensitivity analysis. The details
of this propagation are analysis specific and can
range from very simple for analyses that involve a
single model to very complicated for large analyses
that involve complex systems of linked models
[82,107].
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Fig. 2. Example of Latin hypercube sampling to generate a sample of size nS ¼ 5 from x ¼ ½U ;V � with U normal on [�1, 1] (mean ¼ 0.0; 0.01

quantile ¼ �1; 0.99 quantile ¼ 1) and V triangular on [0, 4] (mode ¼ 1): (a, b) Upper frames illustrate sampling of values for U and V, and (c, d) Lower

frames illustrate two different pairings of the sampled values of U and V in the construction of an LHS (Ref. [101, Fig. 5.3]).
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When a single model is under consideration, this part of
the analysis can involve little more than putting a DO loop
around the model that (i) supplies the sampled input to the
model, (ii) runs the model, and (iii) stores model results for
later analysis. When more complex analyses with multiple
models are involved, considerable sophistication may be
required in this part of the analysis. Implementation of
such analyses can involve (i) development of simplified
models to approximate more complex models, (ii) cluster-
ing of results at model interfaces, (ii) reuse of model
results through interpolation or linearity properties, and
(iv) complex procedures for the storage and retrieval of
analysis results.

Additional information: The NUREG-1150 analyses
[82,93–100,109,119], the analyses carried out in support
of the Compliance Certification Application for the Waste
Isolation Pilot Plant [105–107], and analyses carried
out in support of the Yucca Mountain Project’s develop-
ment of a facility for the deep geologic disposal of high
level radioactive waste [140–142] provide examples of
complex analyses that have used Latin hypercube sampling
in the propagation of epistemic uncertainty.

5. Presentation of uncertainty analysis results

Presentation of uncertainty analysis results is generally
straight forward and involves little more than displaying
the results associated with the already calculated mapp-
ing [xi, y(xi)], i ¼ 1; 2; . . . ; nS. Presentation possibilities
include means and standard deviations, density functions,
CDFs, complementary cumulative distribution functions
(CCDFs), and box plots. Presentation formats such as
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Fig. 3. Examples of rank correlations of 0.00, 0.25, 0.50, 0.75, 0.90 and 0.99 imposed with the Iman/Conover restricted pairing technique for an LHS of

size nS ¼ 1000 (Ref. [137, Fig. 5.1]).
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CDFs (Fig. 4a), CCDFs (Fig. 4a) and box plots (Fig. 4b)
are usually preferable to means and standard deviations
because of the large amount of uncertainty information
that is lost in the calculation of means and standard
deviations (see Table 2 for definitions of dependent
variables used to illustrate uncertainty and sensitivity
analysis procedures). Owing to their flattened shape, box
plots are particularly useful when it is desired to the display
and compare the uncertainty in a number of related
variables.

The representational challenge is more complex when the
analysis outcome of interest is a function rather than a
scalar. For example, time-dependent system properties are
common analysis outcomes. As another example, a CCDF
that summarizes the effects of aleatory uncertainty is a
standard analysis outcome in risk assessments. An effective
display format for such analysis outcomes is to use two
plot frames, with first frame displaying the analysis results
for the individual sample elements and the second frame
displaying summary results for the outcomes in the first
frame (e.g., quantiles and means) (Fig. 5).
Additional information: Ref. [46, Section 6.4];
Refs. [143,144].

6. Determination of sensitivity analysis results

Determination of sensitivity analysis results is usually
more demanding than the presentation of uncertainty
analysis results due to the need to actually explore the
mapping [xi, y(xi)], i ¼ 1; 2; . . . ; nS, to assess the effects of
individual elements of x on the elements of y. A number of
approaches to sensitivity analysis that can be used in
conjunction with a sampling-based uncertainty analysis are
briefly summarized in this section. In this summary, (i) xj is
an element of x ¼ ½x1;x2; . . . ;xnX �, (ii) y is an element of
yðxÞ ¼ ½y1ðxÞ; y2ðxÞ; . . . ; ynY ðxÞ�, (iii) xi ¼ ½xi1;xi2; . . . ;xi;nX �,
i ¼ 1; 2; . . . ; nS, is a random or Latin hypercube sample
from the possible values for x generated in consistency with
the joint distribution assigned to the xj’s, (iv) yi ¼ yðxiÞ for
i ¼ 1; 2; . . . ; nS, and (v) xij and yi are elements of xi and yi,
respectively. Sensitivity analyses usually consider the
effects of all elements of x on individual elements of y;
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Fig. 4. Representation of uncertainty in scalar-valued analysis results: (a)

CDFs and CCDFs (Ref. [101, Fig. 7.2]) and (b) box plots (Ref. [101,

Fig. 7.4]).
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for this reason and for notational simplification, the
subscripted variables xj, j ¼ 1; 2; . . . ; nX , are used to
represent the elements of x but the unsubscripted variable
y is used to represent an arbitrary element of y.

6.1. Scatterplots

A plot of the points [xij, yi] for i ¼ 1; 2; . . . ; nS (i.e., a
scatterplot of y versus xj) can reveal nonlinear or other
unexpected relationships between analysis inputs and
analysis results (Fig. 6). Scatterplots are a natural starting
point in a complex analysis that can help in the
development of a sensitivity analysis strategy using one
or more additional techniques. Often, the examination of
scatterplots is all that is needed to understand the
relationships between the uncertainty in analysis inputs
and the uncertainty in analysis results [145].
Most analyses start with two dimensional scatterplots.

However, when strong three-way interactions between
variables are present, three-dimensional scatterplots (i.e.,
scatterplots involving three variables) can provide infor-
mative displays of analysis results (Fig. 7). The three-
dimensional scatterplot in Fig. 7 involves one sampled
variable (i.e., xj ¼WPRTDIAM) and two calculated
variables (i.e., yk ¼WAS_PRES and yl ¼ REL_VOL).
The result in Fig. 7 was calculated by a model that uses
the calculated value for WAS_PRES under undisturbed
conditions as an input and then determines the volume of
material (i.e., REL_VOL) released to the surface at the
time of a drilling intrusion due to a pressure-driven
spallings event; WPRTDIAM is one of the uncertain
(i.e., sampled) variables used in this calculation [145]
Specifically, Fig. 7 contains a plot of the points (xij, yik, yil)
for i ¼ 1; 2; . . . ; nS. As examination of Fig. 7 shows,
(i) WAS_PRES acts as a switch that determines if
REL_PRES is nonzero, and (ii) WPRTDIAM determines
the magnitude of the nonzero values for REL_PRES.
Because of the large number of possible three-way variable
combinations in most analyses, some initial insights with
respect to variable interactions usually needs to be
developed before a reasonable selection of three-dimen-
sional scatterplots can be made.
Additional information: Ref. [46, Section 6.6.1]; see

Ref. [146] for additional plotting formats, including
cobweb plots which provide a representation of multi-
dimensional results (e.g., [xi, yi] ¼ [xi1, xi2, y, xi,nX, yi],
i ¼ 1; 2; . . . ; nS) in a two-dimensional plot.

6.2. Correlation

Correlation provides a measure of the strength of the
linear relationship between xj and y. Specifically, the
(Pearson or sample) correlation coefficient (CC) c(xj, y)
between xj and y is defined by

cðxj ; yÞ ¼

PnS
i¼1ðxij � x̄jÞðyi � ȳÞPnS

i¼1ðxij � x̄jÞ
2

h i1=2 PnS
i¼1ðyi � ȳÞ2

h i1=2 , (1)

where

x̄j ¼
XnS

i¼1

xij=nS and ȳ ¼
XnS

i¼1

yi=nS.

The CC c(xj, y) has a value between �1 and 1, with a
positive value indicating that xj and y tend to increase and
decrease together and a negative value indicating that xj

and y tend to move in opposite directions. Further,
gradations in the absolute value of c(xj, y) between 0 and
1 correspond to a trend from no linear relationship
between xj and y to an exact linear relationship between
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Table 2

Definition of dependent variables calculated by BRAGFLO program for two phase flow and used in the illustration of uncertainty and sensitivity analysis

procedures

BNBHDNUZ—Cumulative brine flow (m3) down borehole at Market Bed (MB) 138 (i.e., from cell 223 to cell 575 in Ref. [102, Fig. 3]).

BRAABNIC—Cumulative brine flow (m3) out of north anhydrites A and B into disturbed rock zone (DRZ) (i.e., from cells 556 to cell 527 in Ref. [102,

Fig. 3]).

BRAABSIC—Cumulative brine flow (m3) out of south anhydrites A and B into DRZ (i.e., from cell 555 to cell 482 in Ref. [102, Fig. 3]).

BRAALIC—Cumulative brine flow (m3) out of all MBs into DRZ (i.e.,

BRAALIC ¼ BRM38NIC+BRAABNIC+BRM39NIC+BRM38SIC+BRAABSIC+BRM39SIC).

BRM38NIC—Cumulative brine flow (m3) out of north MB138 into DRZ (i.e., from cells 588 to 587 in Ref. [102, Fig. 3]).

BRM38SIC—Cumulative brine flow (m3) out of south MB138 into DRZ (i.e., from cell 571 to cell 572 in Ref. [102, Fig. 3]).

BRM39NIC–Cumulative brine flow (m3) out of north MB139 to DRZ (i.e., from cells 540 to 465 in Ref. [102, Fig. 3]).

BRM39SIC—Cumulative brine flow (m3) out of south MB139 into DRZ (i.e., from cell 539 to cell 436 in Fig. 3, Ref. [102]).

BRNREPTC—Cumulative brine flow (m3) into repository (i.e., into regions corresponding to cells 596–625, 638–640 in Ref. [102, Fig. 3]).

REP_SATB—Brine saturation in upper waste panels (i.e., average brine saturation calculated over cells 617–625 in Ref. [102, Fig. 3]).

WAS_PRES—Pressure (Pa) in lower waste panel (i.e., average pressure calculated over cells 596–616 in Ref. [102, Fig. 3]).

WAS_SATB—Brine saturation in lower waste panel (i.e., average brine saturation calculated over cells 596–616 in Ref. [102, Fig. 3])

The designator E0 is used to indicate results calculated for undisturbed conditions, and the designator E2 is used to indicate results calculated for disturbed

conditions due to a drilling intrusion that penetrates the lower waste panel of the repository 1000 yr after repository closure. Further, the designator R1

indicates results calculated for the first of the three replicated Latin hypercube samples described in Section 3, and the designators R1, R2, R3 collectively

are used to indicate results calculated with the three replicates pooled together.
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xj and y. As an example, the CCs associated with the
scatterplots in Fig. 8 are c(HALPOR, REP_SATB) ¼
0.75 (Fig. 8a) and c(WGRCOR, REP_SATB) ¼ �0.41
(Fig. 8b).

The CC c(xj, y) is closely related to results obtained
in a linear regression relating y to xj. Specifically, c(xj, y)
is equal to the standardized regression coefficient
(SRC) in the indicated regression, and the absolute
value of c(xj, y) is equal to the square root of the
corresponding R2 value (see Section 6.3). As a correlation
of 0 only indicates the absence of a linear association
between xj and y, it does not preclude the existence
of a well-defined nonlinear relationship between xj and y

(e.g., y ¼ sin xj).
Additional information: Ref. [46, Section 6.6.4].

6.3. Regression analysis

Regression analysis provides an algebraic representation
of the relationships between y and one or more of the xj’s.
Unless stated otherwise, regression analysis is usually
assumed to involve the construction of linear models of
the form

ŷ ¼ b0 þ bjxj (2)

for a single independent variable (i.e., xj) and

ŷ ¼ b0 þ
XnX

j¼1

bjxj (3)

for multiple independent variables (i.e., x1, x2, y, xnX).
The regression coefficients in Eqs. (2) and (3) are
determined such that the sums

XnS

i¼1

ðyi � ŷiÞ
2
¼
XnS

i¼1

½yi � ðb0 þ bjxijÞ�
2 (4)
and

XnS

i¼1

ðyi � ŷiÞ
2
¼
XnS

i¼1

yi � b0 þ
XnS

j¼1

bjxij

 !" #2
, (5)

respectively, are minimized. As a result, the regression
models in Eqs. (2) and (3) are often referred to as least-
squares models due to the minimization of the sums of
squares in Eqs. (4) and (5).
As important property of least squares regression models

is the equality

XnS

i¼1

ðyi � ȳÞ2 ¼
XnS

i¼1

ðŷi � ȳÞ2 þ
XnS

i¼1

ðŷi � yiÞ
2. (6)

For notational convenience, the preceding equality is often
written

SStot ¼ SSreg þ SSres, (7)

where

SStot ¼
XnS

i¼1

ðyi � ȳÞ2; SSreg ¼
XnS

i¼1

ðŷi � ȳÞ2,

SSres ¼
XnS

i¼1

ðŷi � yÞ2

and the three preceding summations are called the total
sum of squares (SStot), regression sum of squares (SSreg)
and residual sum of squares (SSres), respectively.
Since SSres provides a measure of variability about the

regression model, the ratio

R2 ¼ SSreg=SStot ¼
XnS

i¼1

ðŷi � ȳÞ2

,XnS

i¼1

ðyi � ȳÞ2 (8)

provides a measure of the extent to which the regression
model can match the observed data. Specifically, when the
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Fig. 5. Representation of uncertainty in analysis results that are functions: (a, b) Pressure as a function of time (Ref. [101, Figs. 7.5, 7.9]), and (c, d) effects

of aleatory uncertainty summarized as a CCDF (Ref. [101, Fig. 10.5]).
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variation about the regression model is small (i.e., SSres is
small relative to SSreg), then the corresponding R2 value
is close to 1, which indicates that the regression model is
accounting for most of the uncertainty in y. Conversely, an
R2 value close to 0 indicates that the regression model is
not very successful in accounting for the uncertainty in y.
When the individual xj in the regression model in Eq. (3)
are independent, the R2 value for the regression model can
be expressed as

R2 ¼ SSreg=SStot ¼ R2
1 þ R2

2 þ � � � þ R2
nX , (9)

where R2
j is the R2 value that results from regressing y on

only xj. Thus, R2
j is equal to the contribution of xj to the R2

value for the regression model in Eq. (3) when the xj’s are
independent.

The regression coefficients bj, j ¼ 1; 2; . . . ; nX , are not
very useful in sensitivity analysis because each bj is
influenced by the units in which xj is expressed and also
does not incorporate any information on the distribution
assigned to xj. Because of this, the regression models in
Eqs. (2) and (3) are usually reformulated as

ðŷ� ȳÞ=ŝ ¼ ðbjŝj=ŝÞðxj � x̄jÞ=ŝj (10)

and

ðŷ� ȳÞ=ŝ ¼
XnX

j¼1

ðbjŝj=ŝÞðxj � x̄jÞ=ŝj, (11)

respectively, where

ŝ ¼
XnS

i¼1

ðyi � ȳÞ2=ðnS � 1Þ

" #1=2
,

ŝj ¼
XnS

i¼1

ðxij � x̄jÞ
2=ðnS � 1Þ

" #1=2
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Fig. 6. Examples of scatterplots obtained in a sampling-based uncer-

tainty/sensitivity analysis (Ref. [101, Figs. 8.1, 8.2]).

Fig. 7. Example of three-dimensional scatterplot obtained in a sampling-

based uncertainty/sensitivity analysis (Ref. [145, Fig. 13]).
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and ȳ and x̄j are defined in conjunction with Eq. (1). The
coefficients bjŝj/s in Eqs. (10) and (11) are referred to as
SRCs.

When the regression models in Eqs. (2) and (10)
involving only xj are under consideration, the SRC bjŝj/ŝ
provides a measure of variable importance based on the
effect on y relative to the standard deviation ŝ of y of
moving xj away from its expected value x̄j by a fixed
fraction of its standard deviation ŝj. Further, when the xj’s
are independent, the inclusion or exclusion of an individual
xj from the regression models in Eqs. (3) and (11) has no
effect on the SRCs for the remaining variables in the
model. Thus, as long as the xj’s are independent, the SRCs
bjŝj/ŝ in Eq. (11) provide a useful measure of variable
importance, with (i) the absolute values of the coefficients
bjŝj/ŝ providing a comparative measure of variable im-
portance (i.e., variable xu is more important than variable
xv if jbuŝu/ŝj4jbvŝv/ŝj) and (ii) the sign of bjŝj/ŝ indicating
whether xj and y tend to move in the same direction or in
opposite directions. However, when xj’s are not indepen-
dent, SRCs do not provide reliable indications of variable
importance (Ref. [46, Section 6.6.7]).
For purposes of sensitivity analysis, there is usually no

reason to construct a regression model containing all the
uncertain variables (i.e., x1, x2, y, xnX) as indicated in
Eqs. (3) and (11). Rather, a more appropriate procedure is
to construct regression models in a stepwise manner. With
this procedure, a regression model is first constructed with
the most influential variable (e.g., ~x1 as determined based
on R2 values for regression models containing only single
variables). Then, a regression model is constructed with
~x1 and the next most influential variable (e.g., ~x2 as
determined based on R2 values for regression models
containing ~x1 and each of the remaining variables). The
process then repeats to determine ~x3 in a similar manner
and continues until no more variables with an identifiable
effect on y can be found. Variable importance (i.e.,
sensitivity) is then indicated by the order in which variables
are selected in the stepwise process, the changes in
cumulative R2 values as additional variables are added to
the regression model, and the SRCs for the variables in the
final regression model. An example of a sensitivity analysis
of this form is presented in Table 3.
A display of regression results of the form shown in

Table 3 is very unwieldy when results at a sequence of times
are under consideration. In this situation, a more compact
display of regression results is provided by plotting SRCs
as functions of time for all xj that appear to have a
significant effect on y at some point in the time interval
under consideration (Fig. 9a).
This section only considers linear regression models.

However, linear regression models also include models of
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Fig. 8. Illustration of correlation coefficients: (a) c(xj, y) ¼ 0.75 with

xj ¼ HALPOR and y ¼ REP_SATB (left frame), and (b) c(xj, y) ¼ �0.41

with xj ¼WGRCOR and y ¼ REP_SATB (right frame).

Table 3

Example of stepwise regression analysis to identify uncertain variables

affecting the uncertainty in pressure (WAS_PRES) at 10,000 yr in Fig. 5a

(Ref. [101, Table 8.6])

Stepa Variableb SRCc R2d

1 WMICDFLG 0.718 0.508

2 HALPOR 0.466 0.732

3 WGRCOR 0.246 0.792

4 ANHPRM 0.129 0.809

5 SHRGSSAT 0.070 0.814

6 SALPRES 0.063 0.818

aSteps in stepwise regression analysis.
bVariables listed in the order of selection in regression analysis.
cSRCs for variables in final regression model.
dCumulative R2 value with entry of each variable into regression model.
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forms such as

ŷ ¼ b0 þ
XnX

j¼1

bjf jðxjÞ þ
XnX

j¼1

XnX

l¼j

bjl f jlðxj ;xlÞ. (12)

This inclusion exists because the preceding model is
linear in its coefficients (i.e., b0, the bj, the bjl); in essence,
the indicated transformations involving the xj (i.e., fj(xj),
fjl(xj, xl)) are simply defining a new set of analysis inputs to
be used in a regression-based sensitivity analysis. Results
can be improved in some analyses by well-chosen variable
transformations of the form indicated in Eq. (12).
However, in large analyses involving many uncertain
analysis inputs (i.e., xj) and many possibly time-dependent
analysis results (i.e., many different elements of y), the a
priori determination of suitable transformations can be
difficult. Also, care can be taken to suitably account for
any correlations that may be introduced by the chosen
transformations (i.e., fj(xj) and fjl(xj, xl) may be highly
correlated).
Nonlinear regression provides an alternative to linear

regression that can be useful in some analyses. In nonlinear
regression, at least some of the model coefficients are
operated on by nonlinear functions. For example,

ŷ ¼ b0 þ b1 expðb2x1Þ þ b3 sinðb4x2Þ (13)

is a nonlinear model because b2 and b4 appear in
expressions that are operated on by nonlinear functions.
A major challenge in the use of nonlinear regression in
sensitivity analysis is the determination of a suitable form
for the nonlinear regression model. The following two
alternatives to nonlinear regression for use in the presence
of nonlinear relationships between model inputs (i.e., the
xj) and model results (i.e., the elements of y) that place
fewer a priori demands on the analyst are described later in
this presentation: rank transformations (Section 6.5) and
nonparametric regression (Section 6.8).
Additional information: Ref. [46, Sections 6.6.2,

6.6.3, and 6.6.5]. Further, general information on
regression analysis is available in a number of texts (e.g.,
Refs. [147–151]).

6.4. Partial correlation

The partial correlation coefficient (PCC) between xj and
y can be defined in the following manner. First, the two
regression models indicated below are constructed:

x̂j ¼ c0 þ
XnX

p¼1
paj

cpxp and ŷ ¼ b0 þ
XnX

p¼1
paj

bpxp. (14)

Then, the results of the two preceding regressions are
used to define the new variables xj � x̂j and y� ŷ. The
PCC between xj and y is the CC cðxj � x̂j ; y� ŷÞ (see
Eq. (1)) between xj � x̂j and y� ŷ. As for SRCs, PCCs are
often defined for variables that are functions of time and
presented as time-dependent plots (Fig. 9b).
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Fig. 9. Time-dependent sensitivity analysis results for uncertain pressure

curves in Fig. 5a: (a) SRCs as a function of time, and (b) PCCs as a

function of time (Ref. [101, Fig. 8.3]).
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The PCC characterizes the linear relationship between xj

and y after a correction has been made for the linear effects
on y of the remaining elements of x, and the SRC
characterize the effect on y that results from perturbing
xj by a fixed fraction of its standard deviation. Thus, PCCs
and SRCs provide related, but not identical, measures of
variable importance. In particular, the PCC between xj and
y provides a measure of variable importance that tends to
exclude the effects of the other elements of x, the assumed
distribution for xj, and the magnitude of the impact of the
uncertainty in xj on the uncertainty in y. In contrast, the
SRC relating xj to y is more influenced by the distribution
assigned to xj and the magnitude of the impact of the
uncertainty in xj on the uncertainty in y. However, when
the elements of x are independent, PCCs and SRCs give the
same rankings of variable importance. Specifically, an
ordering of variable importance based on the absolute
value of PCCs is the same as an ordering based on either
the absolute value of CCs or the absolute value of SRCs
(Ref. [46, Section 6.6.4]). A cosmetic benefit of using PCCs
is that PCCs tend to be spread out in value more than
SRCs and thus produce results that are easier to read (e.g.,
compare Figs. 9a and b); however, the downside to this is
that a variable can appear to have a larger effect on the
uncertainty in y than is actually the case.
As for analyses based on SRCs, analyses based on

PCCs can give very misleading results when correlations
exist between the elements of x. Specifically, if x contains
two highly correlated variables, then each variable will
cancel the other’s effect when PCCs with y are calculated.
Additional information: Ref. [46, Section 6.6.4];

Ref. [152].

6.5. Rank transformations

A rank transformation can be used to convert a
nonlinear but monotonic relationship between the xj and
y into a linear relationship. With this transformation, the
values for the xj and y are replaced by their corresponding
ranks. Specifically, the smallest value for a variable is
assigned a rank of 1; the next largest value is assigned a
rank of 2; tied values are assigned their average rank; and
so on up to the largest value, which is assigned a rank of
nS. Use of the rank transformation results in rank (i.e.,
Spearman) correlation coefficients (RCCs), rank regres-
sions, standardized rank regression coefficients (SRRCs)
and partial rank correlation coefficients (PRCCs). In
the presence of nonlinear but monotonic relationships
between the xj and y, use of the rank transform can
substantially improve the resolution of sensitivity analysis
results (Table 4).
Additional information: Ref. [46, Section 6.6.6];

Ref. [153].

6.6. Statistical tests for patterns based on gridding

Analyses based on raw or rank-transformed data can fail
when the underlying relationships between the xj and y are
nonlinear and nonmonotonic (Fig. 10). The scatterplot in
Fig. 6b is for the pressure at 10,000 yr in Fig. 10a versus the
uncertain variable BHPRM. The partial correlation
analyses summarized in Fig. 10b fail at later times because
the pattern appearing in Fig. 6b is too complex to be
captured with a partial correlation analysis based on raw or
rank-transformed data; analyses with SRCs or SRRCs also
fail for the same reason. An alternative analysis strategy for
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Table 4

Comparison of stepwise regression analyses with raw and rank-transformed data for cumulative brine inflow to vicinity of repository over 10,000 yr from

anhydrite marker beds (BRAALIC) under undisturbed (i.e., E0) conditions in Fig. 4b (Ref. [101, Table 8.8])

Stepa Raw data Rank-transformed data

Variableb SRCc R2d Variableb SRRCe R2d

1 ANHPRM 0.562 0.320 WMICDFLG �0.656 0.425

2 WMICDFLG �0.309 0.423 ANHPRM 0.593 0.766

3 WGRCOR �0.164 0.449 HALPOR �0.155 0.802

4 WASTWICK �0.145 0.471 WGRCOR �0.152 0.824

5 ANHBCEXP �0.120 0.486 HALPRM 0.143 0.845

6 HALPOR �0.101 0.496 SALPRES 0.120 0.860

7 WASTWICK �0.010 0.869

aSteps in stepwise regression analysis.
bVariables listed in order of selection in regression analysis.
cSRCs for variables in final regression model.
dCumulative R2 value with entry of each variable into regression model.
eSRRCs for variables in final regression model.
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Fig. 10. Illustration of failure of a sensitivity analysis based on rank-

transformed data: (a) pressures as a function of time and (b) PRCCs as a

function of time (Ref. [101, Fig. 8.7]).
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situations of this type is to place grids on the scatterplot for
y and xj and then perform various statistical tests to
determine if the distribution of points across the grid cells
appears to be nonrandom. Appearance of a nonrandom
pattern indicates that xj has an effect on y. Possibilities
include tests for (i) common means (CMNs), (ii) common
distributions or locations (CLs), (iii) common medians
(CMDs), and (iv) statistical independence (SI). Descrip-
tions of these tests follow.
The CMNs test is based on dividing the values of xj (i.e.,

xij, i ¼ 1; 2; . . . ; nS) into nI classes and then testing to
determine if y has a CMN across these classes (Ref. [154,
Section 3.1]). The required classes are obtained by dividing
the range of xj into a sequence of mutually exclusive
and exhaustive subintervals containing equal numbers of
sampled values (Fig. 11a). If xj is discrete, individual
classes are defined for each of the distinct values. For
notational convenience, let c, c ¼ 1; 2; . . . ; nI , designate the
individual classes into which the values of xj have been
divided; let Xc designate the set such that iAXc only if xij

belongs to class c; and let nIc equal the number of elements
contained in Xc (i.e., the number of xij’s associated with
class c).
The F-test can be used to test for the equality of the

mean values of y for the classes into which the values of xj

have been divided (e.g., the intervals defined on the
abscissa of the scatterplot in Fig. 11a). Specifically, if the
y values conditional on each class of xj values are normally
distributed with equal expected values, then

F ¼

PnI
c¼1nIcȳ2

c � nSȳ2
h i.

ðnI � 1ÞPnS
i¼1y

2
i �

PnI
c¼1nIcȳ2

c

h i.
ðnS � nIÞ

(15)

follows an F-distribution with (nI–1, nS–nI) degrees of
freedom, where ȳc ¼

P
i2Xc

yi=nIc and ȳ is defined in
conjunction with Eq. (1). Given that the indicated
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assumptions hold, the probability probF ð
~F4F j nI–1,

nS–nI) of obtaining an F-statistic of value ~F that exceeds
the value of F in Eq. (15) can be obtained from an F-
distribution with (nI–1, nS–nI) degrees of freedom. A low
probability (i.e., p-value) of obtaining a larger value for F

suggests that the observed pattern involving xj and y did
not arise by chance and hence that xj has an effect on the
behavior of y.

The CLs test employs the Kruskal–Wallis test statistic T,
which is based on rank-transformed data and uses the same
classes of xj values as the F-statistic in Eq. (15) Ref. [155,
pp. 229–230]). Specifically,

T ¼
XnI

c¼1

ðR2
c=nIcÞ � nSðnS þ 1Þ2=4

" #,
s2, (16)

where

Rc ¼
X
i2X c

rðyiÞ; s
2 ¼

XnS

i¼1

rðyiÞ
2
� nSðnS þ 1Þ2=4

" #,
ðnS � 1Þ

and r(yi) denotes the rank of yi. If the y values conditional
on each class of xj values have the same distribution, then
the statistic T in Eq. (16) approximately follows a w2

distribution with nI–1 degrees of freedom (Ref. [155,
pp. 230–231]). Thus, the probability probw2 ð

~T4T jnI � 1Þ
of obtaining a value ~T that exceeds T in the presence of
identical y distributions for the individual classes can be
obtained from a w2 distribution with nI–1 degrees of
freedom. A small value for probw2 ð

~T4T jnX � 1Þ (i.e., a
p-value) indicates that the values for y’s conditional on
individual classes have different distributions and thus,
most likely, different means and medians. Hence, a small
p-value indicates that xj has an effect on y.
The CMDs test is based on the w2-test for contingency

tables, which can be used to test for the equality of the
median values of y for the classes into which the values of xj

have been divided (Ref. [155, pp. 143–178]). First, the median
y0.5 for y is estimated for all nS observations. Specifically,

y0:5 ¼
yð0:5nSÞ if 0:5nS is an integer;

½yð½0:5nS�Þ þ yð½0:5nS�þ1Þ�=2 otherwise;

(

(17)

where y(i), i ¼ 1; 2; . . . ; nS, denotes the ordering of the
y-values such that yðiÞpyðiþ1Þ and [�] designates the
greatest integer function. The individual classes of xj values
are then further subdivided on the basis of whether y values
fall above or below y0.5 (Fig. 11a). For class c, let nI1c equal
the number of y values that exceed y0.5, and let nI2c equal
the number of y values that are less than or equal to y0.5.
The result of this partitioning is a 2� nI contingency

table with nIrc observations in each cell (i.e., in cell (r, c),
where r and c designate ‘‘row’’ and ‘‘column,’’ respectively,
in the corresponding contingency table). The following
statistic can now be defined:

T ¼
XnI

c¼1

X2
r¼1

ðnIrc � nErcÞ
2=nErc; (18)

where

nErc ¼
X2
p¼1

nIpc=nS

 ! XnI

q¼1

nIrq=nS

 !
nS

¼
X2
p¼1

nIpc

 ! XnI

q¼1

nIrq

 !,
nS

and corresponds to the expected number of observations in
cell (r, c). If the individual classes of xj values have equal
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medians, then T approximately follows a w2 distribution
with ðnI21Þð221Þ ¼ nI21 degrees of freedom (Ref. [155,
p. 156]). Thus, the probability of obtaining a value ~T that
exceeds T in the presence of equal medians is given by
probw2 ð

~T4T jnI � 1Þ. A small value (i.e., p-value) for
probw2 ð

~T4T jnI � 1Þ indicates that the y’s conditional on
individual classes have different medians and hence that xj

has an influence on y.
The SI test also uses the w2-test to indicate if the pattern

appearing in a scatterplot appears to be nonrandom. The
SI test uses the same partitioning of xj values as used for
the CMNs, CLs and CMDs tests. In addition, the y values
are also partitioned in a manner analogous to that used for
the xj values (Fig. 11b). For notational convenience, let r,
r ¼ 1; 2; . . . ; nD, designate the individual classes into which
the values of y are divided; let Yr designate the set such that
iAYr only if yi belongs to class r; and let nDr equal the
number of elements contained in Yr (i.e., the number of yi’s
associated with class r).

The partitioning of xj and y into nI and nD classes in
turn partitions (xj, y) into nI nD classes (Fig. 11a), where
(xij, yi) belongs to class (r, c) only if xij belongs to class c

of the xj values (i.e., iAXc) and yi belongs to class r of
the y values (i.e., iAYr). For notational convenience,
let Orc denote the set such that xijAOrc only if iAXc (i.e.,
xij is in class c of xj values) and also iAYr (i.e., yi is in
class r of y values), and let nOrc equal the number
of elements contained in Orc. Further, if xj and y are
independent, then

nErc ¼ ðnDr=nSÞðnIc=nSÞnS ¼ nDr nIc=nS (19)

is an estimate of the expected number of observations
(xj, y) that should fall in class (r, c).

The following statistic can be defined:

T ¼
XnI

c¼1

XnD

r¼1

ðnOrc � nErcÞ
2=nErc. (20)

Asymptotically, T follows a w2-distribution with (nI–1)
(nD–1) degrees of freedom when xj and y are independent
(Ref. [155, pp. 158–153]). Thus, probw2 ½

~T4T jðnI �

1ÞðnD� 1Þ� is the probability (i.e., p-value) of obtaining a
value of ~T that exceeds T when xj and y are independent. A
small p-value indicates that the pattern in the scatterplot
arose from some underlying relationship involving xj and y

rather than from chance alone. As shown by comparison of
Eqs. (18) and (20), the CMDs and SI tests differ only in the
partitionings used for the y values.

The four tests described in this section are illustrated in
Table 5 for y ¼WAS_PRES at 10,000 yr under undis-
turbed conditions (Fig. 5a) and disturbed conditions
(Fig. 10a). Scatterplots illustrating the partitioning for
xj ¼ BHPRM and y ¼WAS_PRES under disturbed con-
ditions are given in Fig. 11. For perspective, rankings based
on CCs and RCCs are also presented in Table 4. The
relationships between y ¼WAS_PRES and the dominant
sampled variables under undisturbed conditions are fairly
linear, with the result that all ranking procedures (i.e.,
CMNs, CLs, CMDs, SI, CCs, RCCs) give the same
ordering of variable importance for the top four variables.
In contrast, the relationship between y ¼WAS_PRES and
xj ¼ BHPRM under disturbed conditions is both nonlinear
and nonmonotonic (Fig. 11), with the result that the tests
based on gridding (i.e., CMNs, CLs, CMDs, SI) all identify
BHPRM as being the dominant variable influencing the
uncertainty in WAS_PRES; in contrast, the effect of
BHPRM was completely missed by tests based on CCs and
RCCs. (Table 5).
The CMNs, CLs, CMDs and SI tests discussed in this

section are all based on p-values that derive from statistical
tests predicated on assumptions that are certainly not
satisfied in their entirety in sampling-based sensitivity
analyses. Thus, it is possible that the violation of these
assumptions could be leading to misrankings of variable
importance. Such a possibility can be explored by using a
Monte Carlo procedure to assess if the use of formal
statistical procedures to determine p-values is producing
misleading results (Ref. [156]; Ref. [157, Section 14.5]).
Specifically, nR samples of the form

ðxij ; yiÞ; i ¼ 1; 2; . . . ; nS (21)

can be generated by pairing the nS values for xj randomly
and without replacement with the nS values for y. This
random assignment is repeated nR times to produce nR

samples of the form in Eq. (21) for each uncertain input xj

under consideration. In this example, nR ¼ 10; 000 and
nS ¼ 300. For a given procedure (i.e., CMNs, CLs, CMDs,
SI), each of the nR samples can be used to calculate the
value of the statistic used to determine the corresponding
p-value. The resulting empirical distribution of the statistic
can then be used to estimate the p-value for the statistic
actually observed in the analysis. Comparison of the
p-value obtained for a given set of statistical assumptions
with the p-value obtained from the empirical distribution
of the corresponding statistic provides an indication of the
robustness of the variable rankings with respect to possible
deviations from the assumptions underlying the formal
statistical procedure. As examination of Table 6 shows, the
variable rankings illustrated in this section are quite robust
with respect to possible deviations from the underlying
statistical assumptions on which they are predicated.
Additional Information: Ref. [46, Sections 6.6.8 and

6.6.9]; Refs. [47,158–160].
6.7. Entropy tests for patterns based on gridding

Measures of entropy provide another grid-based proce-
dure to assess the strength of nonlinear relationships
between the xj and y. Specifically, the following quantities
can be defined (Ref. [157, pp. 480–484]):

HðyÞ ¼ �
XnD

r¼1

ðnDr=nSÞ lnðnDr=nSÞ; (22)
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Table 5

Comparison of statistical tests for patterns based on gridding for pressure (WAS_PRES) at 10,000 yr under undistributed (i.e., E0) conditions (Fig. 5a) and

disturbed (i.e., E2) conditions (Fig. 10a) (adapted from Ref. [47, Tables 4 and 21])

Variablea CMNs: 1� 5b CLs: 1� 5c CMDs: 2� 5d SI: 5� 5e CCsf RCCsg

Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a)

WMICDFLG 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000

HALPOR 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000

WGRCOR 3 0.0000 3 0.0000 3 0.0025 3 0.0003 3 0.0000 3 0.0000

ANHPRM 4 0.0195 4 0.0187 4 0.0663 4 0.0049 4 0.0241 4 0.0268

ANHBCVGP 18 0.8062 16 0.7686 14 0.6442 5 0.0194 20 0.8084 15 0.7686

Pressure, disturbed (i.e., E2) conditions at 10,00 yr (Fig. 10a)

BHPRM 1 0.0000 1 0.0000 1 0.0000 1 0.0000 10 0.3651 6 0.1704

HALPRM 2 0.0000 2 0.0000 2 0.0000 2 0.0002 1 0.0000 1 0.0000

ANHPRM 3 0.0002 3 0.0000 3 0.0007 4 0.0049 2 0.0000 2 0.0000

ANHBCEXP 4 0.0405 4 0.0602 4 0.0595 14 0.4414 7 0.1786 8 0.2373

HALPOR 5 0.0415 5 0.0940 5 0.0700 11 0.3142 3 0.0090 3 0.0184

WGRCOR 17 0.5428 9 0.2242 14.5 0.5249 3 0.0002 20 0.7676 17 0.6560

aTable includes only variables that had a p-value less than 0.05 for at least one of the procedures although the variable rankings for a specific procedure

are based on the p-values obtained for that procedure for all variables considered in the analysis (see Table 1; variable BHPRM not included in analyses

for undisturbed conditions).
bVariable ranks and p-values for CMNs test with 1� 5 grid; see Eq. (15). Exceptions for CMNs, CLs, CMDs and SI tests: because variables

ANHBCVGP and WMICDFLG are discrete with 2 and 3 values, respectively (see Table 1), nI ¼ 2 and 3 rather than 5 for these two variables.
cVariable ranks and p-values for CLs test with 1� 5 grid; see Eq. (16).
dVariable ranks and p-values for CMDs test with 2� 5 grid; see Eq. (18).
eVariable ranks and p-values for SI test with 5� 5 grid; see Eq. (20).
fVariable ranks and p-values for CC; see Eq. (24), Ref. [47].
gVariable ranks and p-values for RCC; see Eq. (38), Ref. [47].

J.C. Helton et al. / Reliability Engineering and System Safety 91 (2006) 1175–12091190
HðxjÞ ¼ �
XnI

c¼1

ðnIc=nSÞlnðnIc=nSÞ, (23)

Hðy;xjÞ ¼ �
XnD

r¼1

XnI

c¼1

ðnOrc=nSÞlnðnOrc=nSÞ, (24)

HðxjjyÞ ¼
XnD

r¼1

nDr

nS

� �

� �
XnI

c¼1

½ðnOrc=nSÞ=nDr=nS�

(

�ln½ðnOrc=nSÞ=nDr=nS�

)

¼ �
XnD

r¼1

XnI

c¼1

ðnOrc=nSÞ lnðnOrc=nDrÞ

¼ Hðy;xjÞ �HðyÞ, ð25Þ

HðyjxjÞ ¼
XnI

c¼1

nIc

nS

� �

� �
XnD

r¼1

½ðnOrc=nSÞ=ðnIc=nSÞ�

(

�ln½ðnOrc=nSÞ=ðnIc=nSÞ�

)

¼ �
XnI

c¼1

XnD

r¼1

ðnOrc=nSÞ lnðnOrc=nIcÞ

¼ Hðy;xjÞ �HðxjÞ, ð26Þ

UðxjjyÞ ¼ ½HðxjÞ �HðxjjyÞ�=HðxjÞ

¼ ½HðyÞ þHðxjÞ �Hðy;xjÞ�=HðxjÞ, ð27Þ

UðyjxjÞ ¼ ½HðyÞ �HðyjxjÞ�=HðyÞ

¼ ½HðyÞ þHðxjÞ �Hðy;xjÞ�=HðyÞ, ð28Þ

Uðy; xjÞ ¼ 2½HðyÞ þHðxjÞ �Hðy;xjÞ�=½HðyÞ þHðxjÞ�

¼ ½HðyÞUðyjxjÞ þHðxÞUðxjjyÞ�=½HðyÞ þHðxjÞ�,

ð29Þ

where (i) H(y) and H(xj) are estimates of the entropy
associated with y and xj, respectively, (ii) H(y, xj) is
an estimate of the entropy associated with y and xj,
(iii) H(xjjy) and H(yjxj) are estimates of the expected
entropy of xj conditional on y and the expected entropy of
xj conditional on y, respectively, (iv) U(xjjy) and U(yjxj) are
measures (i.e., uncertainty coefficients) of the contributions
of y to the entropy associated with xj and of xj to the
entropy associated with y, respectively, (v) U(y,x) is an
entropy-based measure of the strength of the association
between xj and y, (vi) the remaining expressions are the
same as defined in Section 6.6, and (vii) the defined



ARTICLE IN PRESS

Table 6

Comparison of variable rankings obtained with formal statistical procedures and Monte Carlo procedures for statistical tests for patterns based on

gridding for pressure (WAS_PRES) at 10,000 yr under undisturbed (i.e., E0) conditions (Adapted from Ref. [47, Table 8]; see Ref. [47, Table 23], for a

similar comparison for pressure at 10,000 yr under disturbed (i.e., E2) conditions)

Variable namea CMN: 1� 5b CMNMC: 1� 5c Variable namea CL: 1� 5b CLMC: 1� 5c

Rank p-Val Rank p-Val Rank p-Val Rank p-Val

WMICDFLG 1.0 0.0000 2.0 0.0000 WMICDFLG 1.0 0.0000 2.0 0.0000

HALPOR 2.0 0.0000 2.0 0.0000 HALPOR 2.0 0.0000 2.0 0.0000

WGRCOR 3.0 0.0000 2.0 0.0000 WGRCOR 3.0 0.0000 2.0 0.0000

ANHPRM 4.0 0.0195 4.0 0.0214 ANHPRM 4.0 0.0187 4.0 0.0212

SHPRMASP 5.0 0.1439 5.0 0.1495 SHPRMASP 5.0 0.1237 5.0 0.1277

WRBRNSAT 6.0 0.1506 6.0 0.1526 WRBRNSAT 6.0 0.2042 6.0 0.2053

SHRGSSAT 7.0 0.2488 7.0 0.2497 ANRBRSAT 7.0 0.2710 7.0 0.2710

ANRBRSAT 8.0 0.3034 8.0 0.3027 SHRGSSAT 8.0 0.3153 8.0 0.3167

y y y y y y y y y y

WGRMICI 23.0 0.9705 23.0 0.9717 WGRMICI 23.0 0.9649 23.0 0.9663

WGRMICH 24.0 0.9975 24.0 0.9973. WGRMICH 24.0 0.9865 24.0 0.9839

TDCCd 0.970 TDCCd 0.971

Variable namea CMD: 2� 5b CMDMC: 2� 5c Variable namea SI: 5� 5b SIMC: 5� 5c

Rank p-Val Rank p-Val Rank p-Val Rank p-Val

WMICDFLG 1.0 0.0000 1.5 0.0000 WMICDFLG 1.0 0.0000 1.5 0.0000

HALPOR 2.0 0.0000 1.5 0.0000 HALPOR 2.0 0.0000 1.5 0.0000

WGRCOR 3.0 0.0025 3.0 0.0018 WGRCOR 3.0 0.0003 3.0 0.0003

ANHPRM 4.0 0.0663 4.0 0.0690 ANHPRM 4.0 0.0049 4.0 0.0038

SHPRMASP 5.0 0.2427 5.0 0.2401 ANHBCVGP 5.0 0.0194 5.0 0.0178

SHPRMCON 6.0 0.2674 6.0 0.2718 WRGSSAT 6.0 0.1229 6.0 0.1196

ANRBRSAT 7.0 0.3386 7.0 0.3329 SHPRMCON 7.0 0.1487 7.0 0.1529

HALPRM 8.0 0.3883 8.0 0.3967 WASTWICK 8.0 0.1850 8.0 0.1829

y y y y y y y y y y

WGRMICH 23.0 0.9554 23.0 0.9439 WGRMICH 23.0 0.9437 23.0 0.9429

WGRMICI 24.0 0.9702 24.0 0.9664 ANRGSSAT 24.0 0.9763 24.0 0.9791

TDCCd 0.986 TDCCd 0.988

aTwenty-four (24) variables included in analysis; highly correlated variables and variables not relevant to E0 conditions not included.
bVariable rankings obtained with a maximum of five classes of x values (i.e., nI ¼ 5; see footnote b, Table 5) and analytic determination of p-values.
cVariable rankings obtained with a maximum of five classes of x values (i.e., nI ¼ 5; see footnote b, Table 5) and Monte Carlo determination of p-values.
dTop down coefficient of concordance (TDCC, see Section 6.12) with variable rankings obtained with a maximum of five classes of x values (i.e., nI ¼ 5;

see footnote b, Table 5) and analytic determination of p-values.
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quantities in Eqs. (22)–(29) are conditional on the grid
structure in use.

The quantities U(yjxj) and U(y, xj) can be used as
sensitivity measures, with U(yjxj) providing a measure of
the effect of the uncertainty in xj on the uncertainty in y

and U(y, xj) providing a measure of the joint behavior of xj

and y. Both quantities equal zero when there is no
relationship between y and xj that is identifiable with the
grid structure in use and equal one when there is a perfect
association between y and xj with the grid structure in use.
Values between zero and one are indicative of intermediate
levels of association. Specifically,

UðyjxjÞ ¼ Uðy;xjÞ ¼ 0 (30)

if

nOrc ¼ nS=ðnDrnIcÞ (31)

for r ¼ 1; 2; . . . ; nD and c ¼ 1; 2; . . . ; nI , and

UðyjxjÞ ¼ Uðy;xjÞ ¼ 1 (32)
if each interval of values for xj is associated with only
one interval of values for y and each interval of values
for y is associated with only one interval of values
for xj. Necessary, but not sufficient, conditions for the
equality in Eq. (31) are (i) nI ¼ nD, and (ii) nIc ¼ nDc,
c ¼ 1; 2; . . . ; nIð¼ nDÞ.
When the nI and nD intervals into which the values for xj

and y are divided contain equal numbers of sampled values
(i.e., nS/nI and nS/nD values for the intervals associated
with xj and y, respectively), then the following simpler
expressions result:

HðxjÞ ¼ lnðnIÞ;HðyÞ ¼ lnðnDÞ; (33)

HðyjxjÞ ¼ Hðy;xjÞ � lnðnIÞ;HðxjyÞ ¼ Hðy; xjÞ � lnðnDÞ;

(34)

UðyjxjÞ ¼ ½lnðnIÞ þ lnðnDÞ �Hðy;xjÞ�=lnðnDÞ, (35)

UðxjjyÞ ¼ ½lnðnIÞ þ lnðnDÞ �Hðy;xjÞ�= lnðnIÞ, (36)
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Uðy;xjÞ ¼ 2½lnðnIÞ þ lnðnDÞ �Hðy;xjÞ�=½lnðnIÞ þ lnðnDÞ�.

(37)

Further,

UðyjxjÞ ¼ UðxjjyÞ ¼ Uðy; xjÞ ¼ 2�Hðy;xjÞ=lnðnIÞ (38)

if nI ¼ nD.
As shown by comparison of Eqs. (35) and (37), use of

either U(y|xj) or U(y, xj) will produce identical rankings of
variable importance based on the size of H(y, xj) when the
same values for nI and nD and also for nIc ¼ nS=nI and
nDr ¼ nS=nD are used in the determination of U(y|xj) and
U(y, xj) for each of the independent variables under
consideration. Specifically, U(y|xj) and U(y, xj) increase in
size as the entropy H(y, xj) associated with joint distribu-
tion for xj and y decreases. Thus, U(y|xj) and U(y, xj) are
really sensitivity measures that quantify variable impor-
tance on the basis of the entropy H(y, xj) associated with xj

and y. Specifically, the smaller the entropy H(y, xj), the
more important xj is assessed to be in affecting the value of
y. As shown in Eq. (38), U(y|xj) and U(y, xj) have identical
numerical values when nI ¼ nD and nIc ¼ nDr ¼ nS=nD.

A closely related measure of association is given by

Rðy;xjÞ ¼ f1� expð�2½HðxjÞ þHðyÞ �Hðy;xjÞ�Þg
1=2, (39)

which has (i) a value of zero if there is no association
between xj and y in the sense indicated in Eq. (30), (ii) a
value that approaches one as nI and nD increase if there
is perfect association between xj and y in the sense
indicated in conjunction with Eq. (32), and (iii) inter-
mediate values for intermediate levels of association
(Ref. [161]). If xj and y have a bivariate normal
distribution, then R(y, xj) approaches the absolute value
of the correlation coefficient between xj and y as the sample
and grid sizes increase [161].

As suggested by Mishra and Knowlton [162], the SI test
(i.e., a w2-test on the same grid used to define entropy
measures) can be used to identify important variables, and
then the entropy measures U(y, xj), U(y|xj) and R(y, xj) can
be used to provide a numerical representation of variable
importance. The result of this approach is illustrated in
Table 7, with the top two sets of results corresponding to
the use of nI ¼ nD ¼ 5, and the lower two sets correspond-
ing to the use of nI ¼ 10 and nD ¼ 5. As should be the
case, the values for U(y, xj) and U(y|xj) are the same when
nI ¼ nD and are somewhat different when nIanD.
Further, there is little difference in the variable rankings
based on the SI test and on the entropy measures U(y, xj),
U(y|xj) and R(y, xj). Although U(y, xj), U(y|xj) and R(y, xj)
result in the same rankings of variable importance because
of the underlying dependence on H(y, xj), the normal-
ization associated with the definition of R(y, xj) produces
results that are more widely spread over the interval [0,1].
Although not presented, similar normalizations referred to
as Cramer’s V and the contingency coefficient, respectively,
are also possible for the w2statistic T in Eq. (20) associated
with SI test (see Ref. [157, Section 13.6]). The right-most
columns in Table 7 labeled ‘‘KS Test’’ and ‘‘KSMC Test’’
relate to a sensitivity analysis procedure based on a two-
dimensional Kolmogorov–Smirnov (KS) test that will be
discussed in Section 6.10.
The similarity between the ranking of variable impor-

tance with the SI test and with entropy-based measures is
quite striking (Table 8). For all practical purposes, the w2

statistic T defined in Eq. (20) associated with the SI test
and the entropy-based measures U(y, xj), U(y|xj) and R(y,
xj) defined in Eqs. (28), (29) and (39) give the same
rankings of variable importance. However, when discrete
variables such as ANHBCVGP and WMICDFLG are
under consideration, there can be some differences between
rankings based on p-values for the w2 statistic and rankings
based on either the w2 statistic itself or entropy measures
because of the effects of the resultant different degrees of
freedom associated with different variables on the p-values
for the w2 statistic. Clearly, there is a close algebraic
connection between T and the entropy-based measures
U(y, xj), U(y|xj) and R(y, xj). As previously illustrated,
p-values for the w2 statistic provide a way to discern
influential from noninfluential variables for both the SI test
and the entropy-based measures. Although not illustrated,
the Monte Carlo procedure discussed in conjunction with
Eq. (21) and Table 6 for the empirical determination of
p-values could be used to directly determine p-values for
U(y, xj), U(y|xj) and R(y, xj).
Additional information: Ref. [157, pp. 480–484];

Refs. [161–164].

6.8. Nonparametric regression

There are drawbacks to the parametric regression
techniques indicated in Section 6.3 that can reduce their
effectiveness in some sensitivity analyses. First, it is
necessary to provide an a priori specification of the form
of the regression model (e.g., linear as in Eqs. (3) and (12),
nonlinear as in Eq. (13), or linear with rank transformed
data as discussed in Section 6.5). Unfortunately, when
complex patterns of behavior are present, it can be difficult
to determine the appropriate form for a regression model.
Such determinations can be a particular challenge in
exploratory analyses that can involve 10 s or even 100 s of
analysis results, with each result potentially requiring the
specification of a different regression model. Second, the
specified form for the regression is required to hold across
the entire mapping from analysis inputs to analysis results,
which makes the representation of local behavior and/or
asymptotes difficult. In addition, the grid-based procedures
discussed in Sections 6.6 and 6.7 have the drawback that
the associated sensitivity results can be dependent on the
particular grid selected for use. Unfortunately, the most
appropriate grid for use with these procedures is not always
apparent.
Nonparametric regression procedures provide an alter-

native to parametric regression procedures and grid-based
procedures that can mitigate the potential problems
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Table 7

Examples of entropy measures to identify uncertain variables affecting the uncertainty in pressure (WAS_PRES) at 10,000 yr under undisturbed (i.e., E0)

Conditions (Fig. 5a) and Disturbed (i.e., E2) conditions (Fig. 10a)

Variablea SI testb Entropyc Cond. entropyd R-statistice

w2 p-Value Rank U(y, xj) Rank U(y|xj) Rank R(y, xj) Rank

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a): nI ¼ 5, nD ¼ 5

WMICDFLG 198.6 0.0000 1 0.2868 1 0.2361 1 0.7296 1

HALPOR 127.2 0.0000 2 0.1350 2 0.1350 2 0.5930 2

WGRCOR 42.5 0.0003 3 0.0485 3 0.0485 3 0.3800 3

ANHPRM 34.3 0.0049 4 0.0420 4 0.0420 4 0.3560 4

ANHBCVGP 11.7 0.0194 5 0.0172 15.5 0.0123 25 0.1970 25

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a): nI ¼ 5, nD ¼ 5

BHPRM 337.2 0.0000 1 0.3700 1 0.3700 1 0.8340 1

HALPRM 43.7 0.0002 2 0.0526 2 0.0526 2 0.3940 2

WGRCOR 43.7 0.0002 3 0.0456 3 0.0456 3 0.3690 3

ANHPRM 34.3 0.0049 4 0.0405 4 0.0405 4 0.3500 4

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a): nI ¼ 10, nD ¼ 5

WMICDFLG 198.6 0.0000 1 0.1868 1 0.2361 1 0.7296 1

HALPOR 140.2 0.0000 2 0.1240 2 0.1510 2 0.6200 2

WGRCOR 56.3 0.0167 3 0.0515 4. 0.0626 4 0.4270 4

ANHPRM 53.3 0.0314 4 0.0547 3 0.0664 3 0.4390 3

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a); nI ¼ 10, nD ¼ 5

BHPRM 402.3 0.0000 1 0.3490 1 0.4240 1 0.8630 1

WGRCOR 69.0 0.0008 2 0.0616 2 0.0749 2 0.4630 2

HALPRM 63.0 0.0035 3 0.0601 3 0.0731 3 0.4580 3

ANHPRM 63.0 0.0035 4 0.0594 4 0.0722 4 0.4550 4

aTable includes only variables that had a p-value less than 0.05 for SI test.
bw2 value, p-value and variable rank for SI test with 5� 5 grid for nI ¼ 5, nD ¼ 5 and 10� 5 grid for nI ¼ 10, nD ¼ 5; see Eq. (20). Exception: because

variables ANHBCVGP and WMICDFLG are discrete with 2 and 3 values, respectively (see Table 1), nI ¼ 2 and 3 rather than 5 for these two variables.
cEntropy U(y, xj) and variable rank; see Eq. (29).
dConditional entropy and variable rank; see Eq. (28).
eR-statistic (R(y, xj) and variable rank; see Eq. (39).
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indicated in the preceding paragraph. With nonparametric
regression procedures, an a priori specification of the
exact algebraic form of the regression model is not
required. Rather, an iterative procedure is used to
construct a model that captures the relationships that are
present in the mapping between analysis inputs and a
particular analysis result. This iterative construction
procedure does not require the use of a grid and produces
a model that can represent local patterns of behavior.
Nonparametric regression is often referred to as smooth-
ing. Popular nonparametric regression procedures include
(i) locally weighted regression (LOESS), (ii) generalized
additive models (GAMs), (iii) projection pursuit regression
(PP_REG), and (iv) recursive partitioning regression
(RP_REG). These procedures are briefly described below.

The LOESS technique is based on the assumption that
the relationship between y and x is of the form

y ¼ f ðxÞ ¼ aðxÞ þ bðxÞx, (40)

where bðxÞ ¼ ½b1ðxÞ; b2ðxÞ; . . . ;bnX ðxÞ� and x ¼ ½x1;
x2; . . . ; xnX �T. In turn, an approximate relationship of
the form

ŷ ¼ f̂ ðxÞ ¼ âðxÞ þ b̂ðxÞx (41)
is sought with LOESS. The quantities âðxÞ and b̂ðxÞ for a
given value of x are defined to be the values for a and
b ¼ ½b1;b2; . . . ;bnX � that minimize the sum

XnS

i¼1

ðaþ bxi � yiÞ
2 1�

x� xik k

drðxÞ

� �3
" #3

I ½0;drðxÞÞ x� xik kð Þ,

(42)

where (i) dr(x) is the distance to the rth nearest
neighbor (NN) of x in nX-dimensional Eulidean space,
(ii) I[0,dr(x))(Jx–xiJ equals 1 if Jx–xiJodr(x) and equals 0
otherwise, and (iii) the individual independent variables
(i.e., x1, x2, y, xnX) are normalized to mean zero
and standard deviation one so that the value of the
norm J � J is not dominated by the units used for
these variables. The determination of a and b is straight-
forward with the use of appropriate matrix techniques
(Ref. [165, p. 139]).
For GAMs, the function f(x) is assumed to have the

form

f ðxÞ ¼
XnX

j¼1

f jðxjÞ, (43)
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Table 8

Detailed comparison of w2 statistic T and entropy U(y, xj) used to identify uncertain variables affecting the uncertainty in pressure (WAS_PRES) at

10,000 yr under undisturbed (i.e., E0) conditions (Fig. 5a) and disturbed (i.e., E2) conditions (Fig. 10a)

Variablea Pressure, undisturbed (i.e., E0) conditions at 10,000 yr

(Fig. 5a): nI ¼ 5, nD ¼ 5

Variablea Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig.

10a): nI ¼ 5, nD ¼ 5

SI test Entropy SI test Entropy

w2 b df c p-Value U(y, xj)
d w2 b df c p�Value U(y, xj)

d

WMICDFLG 198.6 (1.0) 8 0.0000 (1.0) 0.2868 (1.0) BHPRM 337.2 (1.0) 16 0.0000 (1.0) 0.3700 (1.0)

HALPOR 127.0 (2.0) 16 0.0000 (1.0) 0.1350 (2.0) WGRCOR 43.7 (2.0) 16 0.0002 (2.0) 0.0456 (3.0)

WGRCOR 42.5 (3.0) 16 0.0003 (3.0) 0.0485 (3.0) HALPRM 43.7 (3.0) 16 0.0002 (3.0) 0.0526 (2.0)

ANHPRM 34.3 (4.0) 16 0.0049 (4.0) 0.0420 (4.0) ANHPRM 34.3 (4.0) 16 0.0049 (4.0) 0.0405 (4.0)

WRGSSAT 22.7 (5.0) 16 0.1229 (6.0) 0.0230 (5.0) SHRGSSAT 25.0 (5.0) 16 0.0698 (5.0) 0.0268 (5.0)

SHPRMCON 21.8 (6.0) 16 0.1487 (7.0) 0.0228 (6.0) SHBCEXP 23.5 (6.0) 16 0.1010 (6.0) 0.0260 (6.0)

WASTWICK 20.8 (7.0) 16 0.1850 (8.0) 0.0223 (7.0) WGRMICI 20.5 (7.0) 16 0.1985 (7.0) 0.0213 (7.0)

SHBCEXP 19.5 (8.0) 16 0.2436 (9.0) 0.0212 (8.0) WRBRNSAT 19.5 (8.0) 16 0.2436 (9.0) 0.0198 (8.0)

SHPRNHAL 19.3 (9.0) 16 0.2518 (10.0) 0.0200 (10.0) ANRBRSAT 19.3 (9.0) 16 0.2518 (10.0) 0.0197 (9.0)

SHPRMSAP 19.2 (10.0) 16 0.2601 (11.0) 0.0190 (12.0) SHRBRSAT 18.2 (10.5) 16 0.3142 (11.5) 0.0186 (11.0)

SHPRMDRZ 18.2 (11.0) 16 0.3142 (12.0) 0.0204 (9.0) HALPOR 18.2 (10.5) 16 0.3142 (11.5) 0.0190 (10.0)

WGRMICI 18.0 (12.0) 16 0.3239 (13.0) 0.0191 (11.0) WFBETCEL 16.8 (12.0) 16 0.3965 (13.0) 0.0175 (12.0)

ANHBCEXP 17.7 (13.0) 16 0.3438 (14.0) 0.0179 (13.5) ANHBCEXP 16.2 (13.0) 16 0.4414 (14.0) 0.0170 (13.0)

WFBETCEL 17.0 (14.0) 16 0.3856 (15.0) 0.0179 (13.5) WASTWICK 15.2 (14.0) 16 0.5125 (15.0) 0.0164 (14.0)

SHRBRSAT 16.3 (15.0) 16 0.4299 (16.0) 0.0169 (17.0) WGRMICH 14.7 (15.0) 16 0.5492 (16.0) 0.0148 (15.5)

ANRBRSAT 15.7 (16.0) 16 0.4765 (17.0) 0.0172 (15.5) SHPRMDRZ 13.8 (16.0) 16 0.6111 (17.0) 0.0148 (15.5)

HALPRM 13.7 (17.0) 16 0.6235 (18.0) 0.0156 (18.0) SHPRMCLY 13.3 (18.0) 16 0.6482 (19.0) 0.0133 (20.0)

SHRGSSAT 13.3 (18.0) 16 0.6482 (19.0) 0.0141 (19.0) ANRGSSAT 13.3 (18.0) 16 0.6482 (19.0) 0.0137 (19.0)

WRBRNSAT 12.8 (19.0) 16 0.6849 (20.0) 0.0131 (20.0) SHPRMSAP 13.3 (18.0) 16 0.6482 (19.0) 0.0145 (17.5)

SALPRES 11.8 (20.0) 16 0.7554 (21.0) 0.0125 (21.0) SALPRES 12.5 (20.0) 16 0.7089 (21.0) 0.0145 (17.5)

ANHBCVGP 11.7 (21.0) 4 0.0197 (5.0) 0.0172 (15.5) WRGSSAT 10.2 (21.0) 16 0.8578 (22.0) 0.0102 (21.0)

SHPRMCLY 8.7 (22.0) 16 0.9265 (22.0) 0.0093 (22.0) SHPRNHAL 9.2 (22.0) 16 0.9064 (24.0) 0.0099 (22.0)

WGRMICH 8.2 (23.0) 16 0.9437 (23.0) 0.0085 (23.0) SHPRMCON 5.8 (23.0) 16 0.9898 (25.0) 0.0059 (24.0)

ANRGSSAT 6.8 (24.0) 16 0.9763 (24.0) 0.0072 (24.0) ANHBCVGP 5.5 (24.0) 4 0.2427 ( 8.0) 0.0080 (23.0)

WMICDFLG 3.7 (25.0) 8 0.8859 (23.0) 0.0045 (25.0)

p-Value for w2 statistic and variable rank based on p-value for w2 statistic.
aVariables ordered by w2 statistic for SI test.
bw2 statistic for SI test with 5� 5 grid (see footnote b, Tables 5 and 7, and Eq. (20)) and variable rank based on values of w2 statistic.
cDegrees of freedom for w2 statistic.
dEntropy U(y, xj) based on 5� 5 grid (see footnote b, Tables 5 and 7, and Eq. (29)) and variable rank based on U(y, xj).
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where the fj are arbitrary functions that will be determined
as part of the analysis process. In turn, the observed values
for y are assumed to be of the form

yi ¼ f ðxiÞ ¼
XnX

j¼1

f jðxijÞ. (44)

Given initial estimates, f̂ 2; f̂ 3; . . . ; f̂ nX for f2, f3, y, fnX,
an estimate f̂ 1 for f1 can be obtained through use of the
relationship

yi �
XnX

j¼2

f̂ jðxijÞ ffi f 1ðxi1Þ (45)

for i ¼ 1; 2; . . . ; nS. In particular, a scatterplot smoother
(e.g., LOESS with only one independent variable) can be
used to smooth the partial residuals on the left-hand side of
Eq. (45) across x1. This produces an estimate f̂ 1 for f1
defined across the range of values for x1. Given this
estimate for f1, the estimate f̂ 2 for f2 can be refined in the
same manner across the range of values for x2 with
f̂ 1; f̂ 3; f̂ 4; . . . ; f̂ nX . This procedure then continues and
repetitively cycles through the variables. The cycling
continues until convergence is achieved. The result is f̂ j

defined at x1j, x2j, y, xnS,j for j ¼ 1; 2; . . . ; nX . Additional
detail is available elsewhere (Ref. [166, pp. 90–91]; Ref.
[167, pp. 300–302]).
The PP_REG procedure involves both dimension

reduction and additive modeling and is based on the
assumption that f(x) has the form

f ðxÞ ¼
XnD

s¼1

gsðasxÞ, (46)

where as ¼ [a1s, a2s, y, anX,s], x ¼ ½x1;x2; . . . ;xnX �
T, asx

corresponds to a linear combination of the elements of x,
and gs is an arbitrary function. Values for gs, as and nD are
determined as part of the analysis procedure. The expres-
sion in Eq. (46) is an additive model with the quantities
asx replacing the elements xj of x as the independent
variables. Further, this expression involves a reduction in
dimension as nD is usually smaller than nX. The entities
â1; â2; . . . ; ânD and ĝ1, ĝ2, y, ĝnD are estimated as part of
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the construction process. This is accomplished by first
estimating a1 and g1. Specifically, â1 and ĝ1 are defined to
be the values for a and ga that minimize the sum

XnS

i¼1

½yi � gaðaxiÞ�
2, (47)

where aARnX, JaJ ¼ 1, and ga is the outcome of using a
scatterplot smoother (e.g., LOESS) on the points [yi, axi],
i ¼ 1; 2; . . . ; nS. Once â1 and ĝ1 are estimated, the partial
residuals yi � g1ðâ1xiÞ, i ¼ 1; 2; . . . ; nS, are used to obtain
â2 and ĝ2. Specifically, â2 and ĝ2 are defined to be the
values for a and ga that minimize the sum

XnS

i¼1

f½yi � ĝ1ðâ1xiÞ � gaðaxiÞ�g
2, (48)

where a 2 RnX , jjajj ¼ 1, and ga is the outcome of using a
scatterplot smoother on the points [yi–ĝ1(â1 xi), axi],
i ¼ 1; 2; . . . ; nS. This process continues until no appreciable
improvement based on a relative error criterion is
observed.

The RP_REG procedure is based on splitting the data
into subgroups where observations within each subgroup
are more homogeneous than they are over the set of all
observations. Then, f(x) is estimated with regression
models defined for each subgroup. Specifically, f(x) is
estimated by

f̂ ðxÞ ¼
XnP

s¼1

ðâs þ b̂sxÞIsðxÞ, (49)

where (i) As, s ¼ 1; 2; . . . ; nP, designate the subgroups into
which the data are partitioned, (ii) ¼ s þ bsx is the least-
squares approximation to y associated with As, and (iii) Is

is the indicator functions such IsðxÞ ¼ 1 if x is associated
with As and IsðxÞ ¼ 0 otherwise. The subgroups As,
s ¼ 1; 2; . . . ; nP, are developed algorithmically from the
observations [xi, yi], i ¼ 1; 2; . . . ; nS.

The preceding procedures can all be carried out in a
stepwise manner to determine variable importance, with (i)
the most important variable ~x1 being the variable that
results in the single-variable model with the most predictive
capability, (ii) the second-most important variable ~x2 being
the variable that in conjunction with ~x1 results in the two-
variable model with the most predictive capability, and so
on until (iii) some stopping criteria is reached that indicates
that the consideration of additional variables does not
produce models with improved predictive capability. Order
of selection in the stepwise construction process and
fraction of variability explained (i.e., R2 as defined in
Eq. (8)) can be used to indicate variable importance. The
F-statistic with appropriate degrees of freedom (a topic
too complicated for consideration here; see Ref. [168] and
Ref. [169, Section 3.13]) can be used to determine a
stopping point in the stepwise variable selection procedure.

Nonparametric regression procedures are illustrated in
Table 9 for the pressures in Figs. 5a and 10a at 10,000 yr.
For comparison, Table 9 also contains results obtained
with parametric regression procedures, with LIN_REG
indicating linear regression (see Eq. (3)), RANK_REG
indicating rank regression (see Section 6.5), and RS_REG
indicating response surface regression (i.e., the regression
model in Eq. (12) with f jðxjÞ ¼ xj and fjl(xj, xl) ¼ xjxl). For
the result in Fig. 5a (i.e., pressure at 10,000 yr under
undisturbed conditions), the relationship between pressure
and the dominant independent variables is fairly mono-
tonic, with the result that all the regression procedures
perform reasonably well (i.e., R2 values between 0.80 and
0.97 for the first five variables selected in the individual
regressions). As shown in Fig. 6b, there is a strong
nonlinear relationship between the result in Fig. 10a (i.e.,
pressure at 10,000 yr under disturbed conditions) and the
variable BHPRM. The stepwise regressions with the four
nonparametric procedures all identify BHPRM as the most
important variable. In contrast, the linear regressions with
raw and rank-transformed data fail to identify an effect for
BHPRM. For this particular variable, the parametric
response surface regression (i.e., RS_REG in Table 9) also
performs well and results in a regression model with an R2

value of 0.87; however, in many situations the nonpara-
metric regression procedures will outperform response
surface regression.
Additional information: A more detailed discussion of

the use of nonparametric regression in sensitivity is given in
Ref. [168]. General discussions of nonparametric regression
procedures appear in Refs. [165–167,169]. The use of
regression trees [170] in sensitivity analysis is discussed and
illustrated in Ref. [171].
6.9. Squared rank differences/rank correlation coefficient

(SRD/RCC) test

The SRD/RCC test is the result of combining a test for
nonrandomness in the relationship between an independent
and a dependent variable called the SRD test with the
Spearman RCC [172]. This test is effective at identifying
linear and very general nonlinear patterns in analysis
results. However, unlike the regression procedures intro-
duced in Sections 6.3 and 6.8, the SRD/RCC test does not
involve the development of a model that approximates the
relationship between independent and dependent variables.
Further, unlike the grid-based procedures introduced in
Sections 6.6 and 6.7, the SRD/RCC test does not require
the introduction and use of a grid.
A brief description of the SRD/RCC test follows. The

test is used to assess the relationships between individual
elements xj of x ¼ ½x1;x2; . . . ;xnX � and a predicted variable
y of interest for a random or LHS and a functional
relationship of the form y ¼ f ðxÞ. The SRD component of
the test is based on the statistic

Qj ¼
XnS�1

i¼1

ðriþ1;j � rijÞ
2, (50)
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Table 9

Comparison of variable rankings obtained with parametric regression (i.e., LIN_REG, RANK_REG, RS_REG), nonparametric regression (i.e., LOESS,

PP_REG, RP_REG, GAMs), and the squared rank differences/rank correlation (SRD/RCC) test for pressure at (WAS_PRES) 10,000 yr under

undisturbed (i.e., E0) conditions (Fig. 5a) and disturbed (i.e., E2) conditions (Fig. 10a)

Variablea R2b dfc p-Vald Variable R2 df p-Val Variable R2 df p-Val

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a)

LIN_REG RANK_REG RS_REG

WMICDFLG 0.5076 1.0 0.0000 WMICDFLG 0.5226 1.0 0.0000 WMICDFLG 0.5098 2.0 0.0000

HALPOR 0.7316 1.0 0.0000 HALPOR 0.7320 1.0 0.0000 HALPOR 0.7462 3.0 0.0000

WGRCOR 0.7923 1.0 0.0000 WGRCOR 0.7859 1.0 0.0000 WGRCOR 0.8812 4.0 0.0000

ANHPRM 0.8088 1.0 0.0000 ANHPRM 0.7975 1.0 0.0001 ANHPRM 0.9160 5.0 0.0000

SHRGSSAT 0.8137 1.0 0.0056 SALPRES 0.8027 1.0 0.0058 WASTWICK 0.9304 6.0 0.0000

SALPRES 0.8177 1.0 0.0119 SHRGSSAT 0.8064 1.0 0.0187 SALPRES 0.9383 7.0 0.0000

LOESS PP_REG ANHBCEXP 0.9427 8.0 0.0119

WMICDFLG 0.5098 2.0 0.0000 WMICDFLG 0.5098 2.0 0.0000 RP_REG

HALPOR 0.7662 6.1 0.0000 HALPOR 0.7617 5.4 0.0000 WMICDFLG 0.5076 1.0 0.0000

WGRCOR 0.9186 33.1 0.0000 WGRCOR 0.9236 21.5 0.0000 HALPOR 0.8205 17.0 0.0000

ANHPRM 0.9477 25.1 0.0000 ANHPRM 0.9623 11.3 0.0000 WGRCOR 0.9220 3.0 0.0000

GAM WASTWICK 0.9711 10.1 0.0000 ANHPRM 0.9662 16.0 0.0000

WMICDFLG 0.5098 2.0 0.0000 ANYBCVGP 0.9755 9.1 0.0000 WASTWICK 0.9823 40.0 0.0000

HALPOR 0.7448 4.0 0.0000 WRBRNSAT 0.9813 10.5 0.0000 SRD/RCC TEST

WGRCOR 0.8556 4.0 0.0000 WFBETCEL 0.9851 11.6 0.0000 WMICDFLG NAe 4.0 0.0000

ANHPRM 0.8854 4.0 0.0000 HALPRM 0.9874 9.3 0.0000 HALPOR NA 4.0 0.0000

WASTWICK 0.8921 4.0 0.0019 SALPRES 0.9901 8.2 0.0000 WGRCOR NA 4.0 0.0001

SHRGSSAT 0.9007 10.0 0.0116 SHPRMCLY 0.9929 13.3 0.0000

SALPRES 0.9042 1.0 0.0018 SHRBRSAT 0.9944 9.4 0.0000

SHPRMDRZ 0.9969 10.1 0.0000

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a)

LIN_REG RANK_REG RS_REG

HALPRM 0.1410 1.0 0.0000 HALPRM 0.1289 1.0 0.0000 BHPRM 0.6098 2.0 0.0000

ANHPRM 0.1999 1.0 0.0000 ANHPRM 0.1866 1.0 0.0000 HALPRM 0.7006 3.0 0.0000

HALPOR 0.2203 1.0 0.0057 HALPOR 0.2049 1.0 0.0094 ANHPRM 0.7902 4.0 0.0000

LOESS PP_REG HALPOR 0.8291 5.0 0.0000

BHPRM 0.6625 8.8 0.0000 BHPRM 0.6646 9.0 0.0000 ANHBCVGP 0.8400 6.0 0.0023

ANHPRM 0.7321 12.8 0.0000 ANHPRM 0.7603 10.7 0.0000 WGRCOR 0.8532 7.0 0.0013

HALPRM 0.7894 10.5 0.0000 HALPRM 0.8440 9.8 0.0000 SHRBRSAT 0.8654 8.0 0.0030

ANHBCVGP 0.8286 28.9 0.0058 HALPOR 0.8965 10.4 0.0000 RP_REG

GAM BHPRM 0.7163 17.0 0.0000

BHPRM 0.6654 10.0 0.0000 HALPRM 0.8474 15.0 0.0000

ANHPRM 0.7555 4.0 0.0000 ANHPRM 0.8894 -9.0 0.0000

HALPRM 0.8242 2.0 0.0000 ANRGSSAT 0.9726 81.0 0.0000

HALPOR 0.8590 2.0 0.0000 SRD/RCC TEST

BHPRM NA 4.0 0.0000

HALPRM NA 4.0 0.0000

ANHPRM NA 4.0 0.0001

SHPRMDRZ NA 4.0 0.0150

aVariables listed in order of selection.
bCumulative R2 value with entry of each variable into model.
cIncremental degrees of freedom with entry of each variable into model for all cases except SRD/RCC test; df fixed at 4.0 for all variables for SRD/RCC

test.
dp-Value for model with addition of each new variable. Stepwise procedure terminates at a p-value of 0.02.
eNA indicates that result is not applicable.
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where rij, i ¼ 1; 2; . . . ; nS, is the rank of y obtained with the
sample element in which xj has rank i. Under the null
hypothesis of no relationship between xj and y, the
quantity

Sj ¼ fQj � ½nSðnS2 � 1Þ=6�g=
ffiffiffiffiffiffiffiffi
nS5

p
=6

n o
(51)
approximately follows a standard normal distribu-
tion for nS440. Thus, a p-value prj indicative of
the strength of the nonlinear relationship between xj

and y can be obtained from Qj. Specifically, prj

is the probability that a value ~Qj4Qj would occur
due to chance if there was no relationship between xj

and y.
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BRAGFLOW (E2 at 1000 yr, R1, R2, R3)

Borehole Permeability (m2): 10x, x = BHPRM
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Fig. 12. Illustration of quadrants used with the two-dimensional KS test

for the variable WAS_PRES at 10,000 yr.
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The RCC component of the test is based on the rank
(i.e., Spearman) correlation coefficient

rcðxj; yÞ ¼

PnS
i¼1½rðxijÞ � ðnS þ 1Þ=2�½rðyiÞ � ðnS þ 1Þ=2�PnS

i¼1½rðxijÞ � ðnS þ 1Þ=2�2
n o1=2 PnS

i¼1½rðyiÞ � ðnS þ 1Þ=2�2
n o1=2

,

(52)

where r(xij) and r(yi) are the ranks associated xj and y for
sample element i. Under the null hypothesis of no rank
correlation between xj and y, the quantity rc(xj, y) has a
known distribution (Ref. [155, Table 10]). Thus, a p-value
pcj indicative of the strength of the monotonic relationship
between xj and y can be obtained from rc(xj, y).

The SRD/RCC test is obtained from combining the
p-values prj and pcj to obtain the statistic

w24 ¼ �2½lnðprf Þ þ lnðpcjÞ�, (53)

which has a w2-square distribution with four degrees of
freedom. The p-value associated with w24 constitutes the
SRD/RCC test for the strength of the relationship between
xj and y.

Results obtained with SRD/RCC test are illustrated in
Table 9. Like the nonparametric regression procedures, the
SRD/RCC test is able to identify the nonlinear effect
associated with BHPRM for the result in Fig. 10a (i.e.,
pressure at 10,000 yr under disturbed conditions), which is
completely missed with the linear regression procedures
with raw and rank-transformed data.

Additional information: A detailed description of the
SRD/RCC test and the determination of the associated p-
value is available in the original article [172].
Table 10

Comparison of formal statistical and Monte Carlo Determination of p-values f

at 10,000 yr under undisturbed (i.e., E0) conditions (Fig. 5a) and disturbed (i.

Variablea SI test: 5� 5b SIMC test: 5� 5c

p-Value Rank p-Value R

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a)

WMICDFLG 0.0000 1 0.0000

HALPOR 0.0000 2 0.0000

WGRCOR 0.0003 3 0.0003

ANHPRM 0.0049 4 0.0031

ANHBCVGP 0.0194 5 0.0181

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a)

BHPRM 0.0000 1 0.0000

HALPRM 0.0002 2 0.0003

WGRCOR 0.0002 3 0.0001

ANHPRM 0.0049 4 0.0039

HALPOR 0.3142 12 0.3164 1

aVariables ordered by p-values for SI test. Table includes only variables tha
bp-Values and variable ranks for SI test with 5� 5 grid (see Footnote b in
cp-Values and variable ranks for SI test with 5� 5 grid (see Footnote b in

associated with Eq. (21).
dp-Values and variable ranks for KS test determined from Eq. (61).
ep-Values and variable ranks for KS test determined with Monte Carlo pro
6.10. Two-dimensional Kolmogorov–Smirnov (KS) test

The two dimensional KS test provides a way to test for a
pattern in a scatterplot without the use of a grid [173–175].
With this test, each point [xij, yi] in the sample [xij, yi],
i ¼ 1; 2; . . . ; nS, is used to divide the xjy plane into four
quadrants (Fig. 12):

Qi1 ¼ fðxj ; yÞ : xijoxj ; yioyg, (54)
or the SI Test and the two dimensional KS test for pressure (WAS_PRES)

e., E2) conditions (Fig. 10a)

KS testd KSMC teste

ank p-Value Rank p-Value Rank

1.5 0.0001 1 0.0000 1.5

1.5 0.0077 2 0.0000 1.5

3 0.2979 3 0.0002 3

4 0.8228 4 0.0257 4

5 1.0000 24 0.4975 16

1 0.0048 1 0.0000 1.5

3 0.1302 2 0.0000 1.5

2 0.9609 5 0.1540 6

4 0.6102 3 0.0023 3

2 0.7830 4 0.0178 4

t had a p-value less than 0.05 for at least one of the procedures.

Tables 5 and 7) determined from w2 distribution; see Eq. (20).

Tables 5 and 7) determined with Monte Carlo procedure; see discussion

cedure; see discussion associated with Eq. (21).
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Qi2 ¼ fðxj ; yÞ : xjoxij ; yioyg, (55)

Qi3 ¼ fðxj ; yÞ : xjoxij ; yoyig, (56)

Qi4 ¼ fðxj ; yÞ : xijoxj ; yoyig. (57)

In turn, two fractions are defined for each quadrant:

fEik ¼ expected fraction of observations in quadrant

Qik if there is no relationship between xj and y, ð58Þ

fOik ¼ observed fraction of observations in quadrant Qik.

(59)

The quantity

D ¼ maxfjfEik � fOikj; k ¼ 1; 2; 3; 4; i ¼ 1; 2; . . . ; nSg

(60)

is the KS statistic for the scatterplot.
The probability probð ~D4DÞ of exceeding D given that

there is no relationship between xj and y can be
approximated by

probð ~D4DÞ

ffi QKS

D
ffiffiffiffiffiffi
nS
p

1þ ½1� cðxj ; yÞ�
1=2 0:25� 0:75

� ffiffiffiffiffiffi
nS
p� �

 !
, ð61Þ

where QKS is the function defined by

QKSðlÞ ¼ 2
X1
j¼1

ð�1Þj�1 expð�2j2l2Þ (62)

and c(xj, y) is the estimated CC between xj and y (Ref. [157,
Section 14.7]). Alternatively, probð ~D4DÞ can be estimated
by a Monte Carlo procedure in which D is repeatedly
estimated with randomly shuffled values (without replace-
ment) of the xij’s and yi’s as previously illustrated in
conjunction with Eq. (21) and Table 6 for the CMNs, CLs,
CMDs and SI tests.

The result of applying the KS test is illustrated in
Table 10, with p-values being calculated as indicated in
Eq. (61) and also calculated with the previously indicated
Monte Carlo procedure. This table also presents the results
of using the SI test with a 5� 5 grid. The direct calculation
of p-values as indicated in Eq. (61) performs rather poorly
and produces p-values that are much larger than those
obtained with the Monte Carlo procedure. In contrast, the
Monte Carlo calculation of p-values for the KS test
produces results that are generally similar to, but not the
same as, the results obtained with the SI test. In particular,
the KS test with Monte Carlo calculation of p-values and
the SI test agree on the most important variables but show
some differences on the less-important variables.

Additional information: Ref. [157]; Refs. [173–175].

6.11. Tests for patterns based on distance measures

Tests for patterns based on distance measures provide
possible alternatives to tests based on gridding as described
in Sections 6.6 and 6.7. Distance-based tests for patterns
have a potential advantage over grid-based tests in that
they do not require the definition and use of a grid that can
possibly influence the outcome of the test. Such tests have a
long history of use in the ecological sciences [176–189].
Three distance-based tests will be illustrated: NN test,

total distance (TD) test, and coefficient of aggregation
(CA) test. Each of these tests involves the consideration of
a set of points of the form [xij, yi], i ¼ 1; 2; . . . ; nS. Further,
the xij’s and yi’s are assumed to be normalized to mean zero
and standard deviation one.
The NN test [190] is based on the statistic

dj ¼
XnS

i¼1

dij=nS, (63)

where dij is the distance from the point (xij, yi) to its NN
among the points (xkj, yk) for k ¼ 1; 2; . . . ; nS and kai. If
xj has an effect on y, then the value for dj should tend
to be smaller than would be the case if xj had no effect
on y. Determination of values ~dj for samples ð ~xij ; ~yiÞ,
i ¼ 1; 2; . . . ; nS, obtained by randomly pairing, without
replacement, the values for the xij’s and yi’s in the original
sample allows the determination of a distribution for dj

under the null hypothesis that there is no relationship
between xj and y. Thus, conditional on the observed
distributions for xj and y, the probability (i.e., a p-value) of
obtaining a smaller value ~dj than the observed value dj by
chance alone can be determined. A small value for this
probability (e.g., o0.01) indicates that xj does indeed have
an effect on y.
The TD test is a variant of the NN test and is based on

the statistic

dtj ¼
XnS

i¼1

XnS

k¼iþ1

dik=nD, (64)

where dik is the distance between the points (xij, yi) and (xkj,
yk) and nD ¼ nSðnS21Þ=2 is the total number of distances
dik. As for the NN statistic dj, the value for dtj will tend to
be smaller than would otherwise be the case if xj has an
effect on y. Similarly to dj, a Monte Carlo procedure can be
used to develop a distribution for dtj under the assumption
that xj has no effect on y. Then, conditional on the
observed distributions for xj and y, the probability of
obtaining a smaller value for dtj by chance alone can be
estimated.
The CA test [179,191] is based on the statistic

Aj ¼
XnS

i¼1

~d
2

ij

, XnS

i¼1

d2
ij þ

XnS

i¼1

~d
2

ij

" #
; (65)

where dij is defined the same as in Eq. (63) for the NN test
and ~dij is defined similarly but for a sample ð ~xij ; ~yiÞ,
i ¼ 1; 2; . . . ; nS, obtained by randomly permuting the
values for the xij’s and yi’s in the sample (xij, yi),
i ¼ 1; 2; . . . ; nS. If xj has an effect on y, then the value for
Aj will tend to be larger than would otherwise be the case
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because of the presence of
P

id
2
ij in the denominator in the

definition of Aj. A Monte Carlo procedure involving
repeated calculations of Aj with two different random
permutations of the xij’s and yi’s in the sample (xij, yi),
i ¼ 1; 2; . . . ; nS, can be used to estimate a distribution for
Aj under the assumption that xj has no effect on y. Then,
conditional on the observed distributions for xj and y, the
probability of obtaining a larger value for Ãj for Aj than
the observed value by chance alone can be estimated.

The SI, NN, TD and CA tests are illustrated in Table 11.
On the whole, the results obtained with the distance-based
tests show considerable disagreement with results obtained
with the SI test and also with other grid-based techniques
illustrated in Table 5. Of the distance-based tests, the TD
test compares best with results obtained with the grid-
based techniques. Thus, this comparison suggests that the
NN, TD and CA tests are less effective sensitivity analysis
procedures than some of the other techniques introduced
in this survey. However, the idea of using a grid-free,
distance-based measure of sensitivity is very appealing. It is
certainly possible that more appropriate distance-based
measures of sensitivity can be found than those used in the
presented tests. This is an area that merits additional
investigation. For example, the use of rank-transformed
data might yield more informative results.

Additional information: Refs. [176–189]; Ref. [192,
Section 8.2.5].
6.12. Top down coefficient of concordance (TDCC)

The TDCC was introduced by Iman and Conover as a
way to test agreement between different sensitivity analysis
Table 11

Comparison of tests for patterns based on distance measures for pressure (WA

disturbed (i.e., E2) conditions (Fig. 10a)

Variablea SI test: 5� 5b NN testc

p-Value Rank p-Value R

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a)

WMICDFLG 0.0000 1 0.0001

HALPOR 0.0000 2 0.0000

WGRCOR 0.0003 3 0.0327

ANHPRM 0.0049 4 0.3669 1

ANHBCVGP 0.0194 5 0.4745

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a)

BHPRM 0.0000 1 0.0000

HALPRM 0.0002 2 0.3511 1

WGRCOR 0.0002 3 0.0095

ANHPRM 0.0049 4 0.0732

HALPOR 0.3142 12 0.2280

aVariables ordered by p-values for SI test. Table includes only variables tha
bp-Values and variable ranks for SI test with 5� 5 grid (see footnote b in T
cp-Values and variable ranks for NN test (see Eq. (63)) determined with M
dSame as c but for TD test (see Eq. (64)).
eSame as c but for CA test (see Eq. (65)).
procedures [193]. However, it also provides a way to
identify significant sets of variables in a sampling-based
sensitivity analysis that does not rely on statistical tests
predicated on distributional assumptions that may not be
satisfied. In this application, the TDCC is used in a
stepwise manner to test for agreement of sensitivity results
obtained when a particular sensitivity analysis procedures
is applied individually to each sample in a sequence
of replicated samples of the same size. The significant
variables are those which the TDCC indicates are identified
as being important across all replicates.
The TDCC is based on the consideration of arrays of the

form

R1 R2 . . . RnR

x1 rðO11Þ rðO12Þ . . . rðO1;nRÞ

x2 rðO21Þ rðO22Þ . . . rðO2;nRÞ

..

. ..
. ..

.
. . . ..

.

xnX rðOnX ;1Þ rðOnX ;2Þ . . . rðOnX ;nRÞ;

(66)

where (i) x1, x2, y, xnX are the variables under
consideration, (ii) R1, R2, y, RnR designate the replicates,
(iii) Ojk is the outcome (i.e., sensitivity measure)
for variable xj and replicate Rk, and (iv) r(Ojk),
j ¼ 1; 2; . . . ; nX , are the ranks assigned to the outcomes
associated with replicate Rk. In the assigning of ranks, (i) a
rank of 1 is assigned to the outcome Ojk with the largest
value for |Ojk|, (ii) a rank of 2 is assigned the outcome Ojk

with the second largest value for |Ojk|, and so on, and (iii)
averaged ranks are assigned to equal values of Ojk. This is
the reverse of the procedure used to assign ranks for use in
rank regression.
S_PRES) at 10,000 yr under undisturbed (i.e., E0) conditions (Fig. 5a) and

TD testd CA teste

ank p-Value Rank p-Value Rank

2 0.0000 2 0.6664 21

1 0.0000 2 0.0014 1

3 0.0000 2 0.0049 2

5 0.6348 21 0.3302 9

7 0.4563 14 0.7544 24

1 0.0000 2 0.0020 2

3 0.0000 2 0.0752 4

2 0.7210 22 0.3420 12

4 0.0000 2 0.0018 1

8 0.0210 4 0.2245 9

t had a p-value less than 0.05 for at least one of the procedures.

ables 5 and 7) determined from w2 distribution; see Eq. (20).

onte Carlo procedures; see discussion associated with Eq. (21).
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The TDCC is a measure of agreement between multiple
rankings that emphasizes agreement between rankings
assigned to important variables and deemphasizes dis-
agreement between rankings assigned to less important/
unimportant variables. For the TDCC, the ranks r(Ojk) in
Eq. (66) are replaced by the corresponding Savage scores
ss(Oij), where

ssðOjkÞ ¼
XnX

j¼rðOjkÞ

1=j (67)

and average Savage scores are assigned in the event of ties.
The result is an array of the form

R1 R2 . . . RnR

x1 ssðO11Þ ssðO12Þ . . . ssðO1;nRÞ

x2 ssðO21Þ ssðO22Þ . . . ssðO2;nRÞ

..

. ..
. ..

.
. . . ..

.

xnX ssðOnX ;1Þ ssðOnX ;2Þ . . . ssðOnX ;nRÞ;

(68)

which has the same form as the array in Eq. (66) except
that the ranks r(Ojk) have been replaced by the correspond-
ing Savage scores ss(Ojk).

The TDCC is defined by

CT ¼
f
PnX

j¼1½
PnR

k¼1ssðOjkÞ�
2 � nR2nX g

fnR2ðnX �
PnX

j¼11=jÞg
(69)

and is equivalent to Kendall’s coefficient of concordance
(Ref. [155, p. 305]) calculated with Savage scores rather
than ranks. Under repeated random assignment of the
integers in the columns of Eq. (66),

T ¼ nRðnX � 1ÞCT (70)

approximately follows a w2-distribution with nX–1 degrees
of freedom and thus provides the basis for a statistical test
of agreement.

The procedure to identify a significant set of variables
with the TDCC operates in the following manner: (i) The
sensitivity analysis technique in use (e.g., stepwise regres-
sion analysis) is applied to each replicate to rank variable
importance. (ii) The TDCC is applied to the variable
rankings obtained with each replicate to determine if there
is a significant agreement between the replicates (e.g., as
defined by a specified p-value for the TDCC). (iii) If there is
significant agreement, the top ranked variable (i.e., rank 1)
for each replicate is removed from consideration for all
replicates; this results in the removal of one variable if all
replicates assign the same variable a rank of 1 and more
than one variable if different variables are assigned a rank
of 1 in different replicates. (iv) A new sensitivity analysis is
then performed for each replicate with the remaining
variables, the remaining variables are reranked for each
replicate, and Steps (ii) and (iii) are repeated with the
reduced set of variables. (v) The process is continued until
the deleted variable result in the analysis reaches a point at
which the TDCC indicates that there is no significant
agreement between the variable rankings obtained with the
individual replicates. (vi) At this point, the analysis ends,
and the significant set of variables are those deleted before
the TDCC indicated no significant agreement between the
variable rankings obtained with the individual replicates.
This procedure is illustrated for rank regression analysis

with the three replicated random samples (i.e., RS1, RS2,
RS3) from the variables in Table 1 for cumulative brine
flow into the repository (BRNREPTC) at 1000 yr. The
individual regression analyses all rank HALPOR as the
most important variable (Table 12) and have a TDCC of
0.80 with a p-value of 5.2E-5 (Table 13). As a result,
HALPOR is removed from consideration, which reduces
the number of independent variables from 29 to 28. A new
rank regression is then performed for each replicate with
the remaining 28 variables, and the variables are reranked
(i.e., from 1 to 28) on the basis of their SRRCs, with
ANHPRM having a rank of 1 in one replicate and
WMICDFLG having a rank of 1 in two replicates. For
this new ranking (i.e., without HALPOR), the TDCC has a
value of 0.71 with a p-value of 5.0E-4 (Table 13). As this is
considered to be significant agreement, ANHPRM and
WMICDFLG are dropped; the remaining 26 variables are
reranked; new regressions are performed for each replicate;
and a resultant TDCC of 0.46 with a p-value of 9.8E-2 is
calculated (Table 13). If a p-value of 9.8E-2 is considered to
be insignificant, then the analysis ends, and the set of
significant variables is taken to be {HALPOR, ANHPRM,
WMICDFLG}.
If a p-value of 9.8E-2 is considered to be significant (e.g.,

if the analysis was using 0.1 as the p-value above which the
analysis stopped), then the analysis would continue with
the top ranked variables in the individual replicates being
dropped (i.e., SALPRES, HALPRM, BPPRM) and the
TDCC recalculated for the remaining 23 variables. This
process would continue until either an insignificant value
for the TDCC was obtained or all variables were dropped,
with the latter being an unlikely outcome.
Additional information: Refs. [138,193]. Content of this

section is an adaptation of material contained in of Ref.
[138, Sections 5 and 6].

6.13. Variance decomposition

An informative, but potentially computationally expen-
sive, sensitivity analysis procedure is based on a complete
variance decomposition of the uncertainty associated with
y [56–59] With this procedure, the variance V(y) of y is
expressed as

V ðyÞ ¼
XnX

j¼1

Vj þ
XnX

j¼1

XnX

k¼jþ1

Vjk þ � � � þ V12;...;nX , (71)

where Vj is the contribution of xj to V(y), Vjk is the
contribution of the interaction of xj and xk to V(y), and so
on up to V12,y,nX, which is the contribution of the
interaction of x1, x2, y, xnX to V(y). Sensitivity measures
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Table 13

Sensitivity analysis with the TDCC for three replicated random samples of

size 100 for cumulative brine flow into repository (BRNREPTC) at 1000 yr

under undisturbed (i.e., E0) conditions (adapted from Ref. [138, Table 9])

Stepa TDCCb p-Valuec Variable(s) removedd

1 0.80 5.2E-05 HALPOR

2 0.71 5.0E-04 WMICDFLG, ANHPRM

3 0.46 9.8E-02 SALPRES, HALPRM, BPPRM

aSteps in analysis.
bTDCC at beginning of step.
cp-Value for TDCC at beginning of step.
dVariable(s) removed at end of step.

Table 12

Sensitivity analysis results based on SRRCs for three replicated random

samples (RS1 RS2, RS3) of size 100 for cumulative brine flow into

repository (BRNREPTC) at 1000 yr under undisturbed (i.e., E0) condi-

tions (adapted from Ref. [138, Table 8])

Variablea RS1b RS2 RS3

HALPOR 9.93E�01(1)c 9.67E�01(1) 9.73E�01(1)

WMICDFLG �9.72E-02(2) �6.92E�02(4) �1.13E�01(2)

ANHPRM 6.49E-02(3) 1.33E�01(2) 9.84E�02(3)

SALPRES �4.00E�02(4) �2.70E�03(26) �1.41E�02(13)

HALPRM 3.53E�02(5) 7.67E�02(3) 4.05E�02(5)

WRBRNSAT �3.08E�02(6) �1.79E�02(14) 9.13E�03(17)

WASTWICK �2.82E�02(7) �2.27E�02(10) �4.47E�03(21)

BPCOMP �2.61E�02(8) 2.36E�02(9) �8.05E�04(29)

SHPRMDRZ 2.29E�02(9) �1.37E�02(17) 2.58E�02(8)

BPPRM �1.85E�02(10) 1.27E�02(19) 5.08E�02(4)

y y y y

BPVOL �1.58E�03(27) 6.54E�03(23) 4.64E�03(20)

ANHBCEXP �1.30E�03(28) 4.32E�03(25) 2.88E�02(6)

WRGSSAT �1.19E�03(29) 1.32E�02(18) �5.33E�03(19)

aVariables in regression model ordered by SRRCs for sample RS1.
bSRRC in model containing all variables for indicated sample.
cVariable rank based on absolute value of SRRC for indicated sample.
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are provided by

sj ¼ V j=V ðyÞ and sjT ¼

V j þ
PnX

k¼1
kaj

V jk þ � � � þ V12;...;nX

V ðvÞ
,

(72)

where sj is the fraction of V(y) contributed by xj alone and
sjT is the fraction of V(y) contributed xj and interactions of
xj with other variables.

The contributions to variance Vj, Vjk, y, V12,y,nX in
Eqs. (71) and (72) are defined by multidimensional
integrals involving y ¼ f ðxÞ and the individual elements xj

of x. Specifically,

EðyÞ ¼

Z
X

f ðxÞ
YnX

j¼1

djðxjÞ
YnX

j¼1

dxj , (73)
V ðyÞ ¼

Z
X

½f ðxÞ � EðyÞ�2
YnX

j¼1

djðxjÞ
YnX

j¼1

dxj

¼

Z
X

f 2
ðxÞ
YnX

j¼1

djðxjÞ
YnX

j¼1

dxj � E2ðyÞ, ð74Þ

Vj ¼

Z
Xj

Z
X�j

f ðxÞ
YnX

k¼1
kaj

dkðxkÞ
YnX

k¼1
kaj

dkxk

2
64

3
75
2

�djðxjÞdxj � E2ðyÞ, ð75Þ

Vjk ¼

Z
Xj

Z
Xk

Z
X�j;k

f xð Þ
YnX

l¼1
laj;k

dl xlð Þ
YnX

l¼1
laj;k

dxl

2
64

3
75
2

� djðxjÞdkðxkÞdxjdxk � E2ðyÞ � V j � Vk ð76Þ

and

Vj þ
XnX

k¼1
kaj

V jk þ � � � þ V 12;...;nX

¼ V ðf Þ �

Z
X�j

Z
Xj

Z
~X j

f ðxÞ f ð ~xÞdjð ~xjÞdjðxjÞ
YnX

k¼1
kaj

dkðxkÞ

2
64

3
75

8><
>:

� d ~xjdxj

YnX

k¼1
kaj

dxk � E2ðyÞ

9>=
>;, ð77Þ

where (i) Xj is the sample space for xj, dj(xj) is the density
function for xj and the resultant quantities

X ¼
YnX

j¼1

X j and dðxÞ ¼
YnX

j¼1

djðxjÞ

are the sample space and density function, respectively, for
x, (ii) X�j and X�j,k correspond to the reduced sample
spaces defined by

X�j ¼
YnX

k¼1
kaj

X k and X�j;k ¼
YnX

l¼1
laj;k

X l

and (iii) Xj ¼ X̃j in Eq. (77) with the value for ~xj 2 ~X j

replacing the value for xjAXj in the vector ~x (i.e., the
variables xj and ~xj associated with Xj and X̃j have identical
distributions but are assumed to be independent and the
vectors x and ~x are the same except that xj appears as
element j in x and ~xj appears as element j in ~x).
As a result, the determination of sj and sjT is a problem in

the evaluation of multidimensional integrals. In practice,
this evaluation is carried out with sampling-based methods
of the form indicated in the following algorithm.

Step 1: Generate a random or LHS

xi ¼ ½xi1; xi2; . . . ; xi;nX �; i ¼ 1; 2; . . . ; nS (78)
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from x ¼ ½x1; x2; . . . ;xnX � in consistency with the distribu-
tions assigned to the individual xj.

Step 2: Estimate the mean and variance for y with the
approximations

ÊðyÞ ¼
XnS

i¼1

f ðxiÞ=nS (79)

and

V̂ ðyÞ ¼
XnS

i¼1

½f ðxiÞ � ÊðyÞ�2=nS ¼
XnS

i¼1

f 2
ðxiÞ=nS � Ê

2
ðyÞ.

(80)

The estimation of Ê(y) and V̂ ðyÞ requires nS evaluations
of the function f.

Step 3: Generate a second random or LHS

ri ¼ ½ri1; ri2; . . . ; ri;nX �; i ¼ 1; 2; . . . ; nS (81)

by randomly permuting, without replacement, the indivi-
dual variable values associated with the sample generated
in Step 1.

Step 4: For each variable xj, generate a reordering

rij ¼ ½rij1; rij2; . . . ; rij;nX �; i ¼ 1; 2; . . . ; nS (82)

of the sample generated in Step 3 such that rijj ¼ xij. This
step only involves a change in the numbering associated
with the sample generated in Step 3 for each xj; no changes
to the sample itself are involved.

Step 5: For each variable xj, estimate sj by

sj ffi
XnS

i¼1

f ðxiÞf ðrijÞ=nS � Ê
2
ðyÞ

" #,
V̂ ðyÞ. (83)

The estimation of sj for all xj requires only nS additional
evaluations of the function f as a result of the efficient reuse
of the function evaluations for the sample generated in
Step 3.

Step 6: For each variable xj, generate an additional
sample

xij ¼ ½xij1; xij2; . . . ; xij;nX �; i ¼ 1; 2; . . . ; nS, (84)

where xijj is generated as a random or LHS from xj and
xijk ¼ xik for kaj. The sample generated for xj in this step
differs from the sample generated in Step 1 only in the
values associated with xj.

Step 7: Estimate sjT by

sjT ffi
XnS

i¼1

f ðxiÞ½f ðxiÞ � f ðxijÞ�=½nSV̂ ðyÞ� (85)

for each xj. The estimation of sjT for all xj requires an
additional (nX)(nS) evaluations of the function f.

Although the sensitivity measures sj and sjT provide
valuable sensitivity information, their determination can be
computationally expensive due to the large number of
function evaluations that could be required. Specifically,
2(nS), ðnX þ 1ÞðnSÞ and ðnX þ 2ÞðnSÞ function evaluations
are required to estimate sj, sjT and both sj and sjT,
respectively, for nX uncertain variables. Further, because
integrals are being approximated, the basic sample size nS

required for the preceding algorithm to produce acceptable
approximations to sj and sjT is likely to be larger than the
sample sizes required for other sampling-based sensitivity
measures.
Sensitivity analysis based on variance decomposition is

illustrated with a simple test function introduced as part of
a review of uncertainty and sensitivity analysis procedures
(Ref. [194, Model 9]). Specifically, this test function is
defined by

y ¼ f ðxÞ;x ¼ ½x1; x2; x3�

¼ sin x1 þ A sin2x2 þ Bx4
3 sinx1 ð86Þ

with A ¼ 7, B ¼ 0:1 and each xj uniform on [�p,p].
Unfortunately, the fluid flow model that has been used to
illustrate other sensitivity analysis procedures is too
computationally demanding for use with the procedures
discussed in this section. Values of sj and sjT obtained with
a base sample size of nS ¼ 10; 000 are

S1 ¼ 0:30; s2 ¼ 0:46; s3 ¼ 0:00 (87)

and

s1 T ¼ 0:53; s2 T ¼ 0:45; s3 T ¼ 0:23. (88)

Further, results obtained with different values for nS are
illustrated in Table 14 and suggest that the approximations
of the integrals appearing in the definitions of sj and sjT are
close to being converged with nS ¼ 10; 000.
For perspective, sensitivity results based on CCs, RCCs,

CMNs, CLs, CMDs and SI are presented in Table 15 and
scatterplots for x1, x2 and x3 are given in Fig. 13. The
model in Eq. (86) was constructed to have patterns that
would be difficult to identify with regression-based
sensitivity analysis procedures. Thus, although x2 is a
major contributor to the uncertainty in y, this effect is
completely missed by the analyses based on CCs and RCCs
in Table 15 owing to the oscillatory relationship between
x2 and y (Fig. 13b). Similarly, the CMDs test does
not identify x3 as having an effect on y owing to the
constancy of the median values for y across the range of x3

(Fig. 13c). Of the tests presented in Table 15, the SI test has
the best performance and gives a reasonable indication
of the importance of x1, x2 and x3 with respect to the
uncertainty in y for nS ¼ 100 and 1000. This is not
surprising as the SI test is effective at identifying nonlinear
relationships. Fullest representation of the effects of x1, x2

and x3 on uncertainty in y is given by the variance
decomposition results in Eqs. (87) and (88). However,
this enhanced resolution comes at a cost as the results in
Eqs. (87) and (88) required more function evaluations (i.e.,
nS ¼ 10; 000) than the SI results (i.e., nS ¼ 100 and
nS ¼ 1000) in Table 15.
Additional Information: Refs. [56–60,195–210].
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Table 15

Sensitivity results based on CCs, RCCs, CMNs, CLs, CMDs and SI for model in Eq. (86) (Ref. [101, Table 9.14])

Variable namea CCb RCCc CMN: 1� 5d CL: 1� 5e CMD: 2� 5f SI: 5� 5g

Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val

Sample size nLHS ¼ 100

x1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 2.0 0.0001 1.0 0.0000

x3 2.0 0.5667 2.0 0.6361 3.0 0.6917 3.0 0.5495 3.0 0.9384 3.0 0.0615

x2 3.0 0.8327 3.0 0.8393 2.0 0.0000 2.0 0.0000 1.0 0.0000 2.0 0.0008

Sample size nLHS ¼ 1000

x1 1.0 0.0000 1.0 0.0000 1.5 0.0000 1.5 0.0000 2.0 0.0000 1.5 0.0000

x3 2.0 0.0162 2.0 0.0187 3.0 0.0438 3.0 0.0347 3.0 0.1446 3.0 0.0000

x2 3.0 0.9799 3.0 0.9999 1.5 0.0000 1.5 0.0000 1.0 0.0000 1.5 0.0000

aVariables ordered by p-values for CCs.
bRanks and p-values for CCs; see Eq. (24), Ref. [47].
cRanks and p-values for RCCs; see Eq. (38), Ref. [47].
dRanks and p-values for CMNs test with 1� 5 grid; see Eq. (15).
eRanks and p-values for CLs test with 1� 5 grid; see Eq. (16)
fRanks and p-values for CMDs test with 2� 5 grid; see Eq. (18).
gRanks and p-values for SI test with 5� 5 grid; see Eq. (20).

Table 14

Evaluation of variance decompositions sj and sjT for model in Eq. (86) with different sample sizes

nSa
ÊðyÞb V̂ ðyÞc ŝ1

d ŝ2
d ŝ3

d ŝ1T
e ŝ2T

e ŝ3T
e

10 3.7 16.5 0.70 0.65 �0.04 0.84 �0.09 �0.24

100 3.9 13.1 0.10 0.37 �0.24 0.79 0.80 0.45

1000 3.5 14.2 0.30 0.44 �0.02 0.56 0.53 0.24

10,000 3.5 14.0 0.30 0.46 0.00 0.53 0.45 0.23

100,000 3.5 13.9 0.32 0.44 �0.00 0.56 0.44 0.24

1,000,000 3.5 13.8 0.32 0.44 0.00 0.56 0.44 0.24

aSample size.
bEstimate for expected value of y; see Eqs. (74) and (79).
cEstimate for variance of y; see Eqs. (74) and (80).
dEstimate for contribution of xj, j ¼ 1, 2, 3, to variance of y; see Eqs. (72) and (83).
eEstimate for contribution of xj, j ¼ 1, 2, 3, and its interactions with the other two variables to the variance of y; see Eqs. (72) and (85).
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7. Summary

Sampling-based uncertainty and sensitivity analysis is
widely used, and as a result, is a fairly mature area of study.
However, there remain a number of important challenges
and areas for additional study. For example, there is a need
for sensitivity analysis procedures that are more effective at
revealing nonlinear relations than the parametric regres-
sion procedures (Section 6.3) and partial correlation
procedures (Section 6.4) currently in wide use. Among
the approaches to sensitivity analysis described in the
preceding section, statistical tests for patterns based on
gridding (Section 6.6), nonparametric regression (Section
6.8), the SRD/rank correlation test (Section 6.9), the two
dimensional KS test (Section 6.10), and complete variance
decomposition (Section 6.13) have not been as widely used
as approaches based on parametric regression and partial
correlation and merit additional investigation and use. As
another example, sampling-based procedures for uncer-
tainty and sensitivity analysis usually use probability as the
model, or representation, for uncertainty. However, when
limited information is available with which to characterize
uncertainty, probabilistic characterizations can give the
appearance of more knowledge than is really present.
Alternative representations for uncertainty such as evi-
dence theory and possibility theory merit consideration for
their potential to represent uncertainty in situations where
little information is available [84–92]. Finally, a significant
challenge is the education of potential users of uncertainty
and sensitivity analysis about (i) the importance of such
analyses and their role in both large and small analyses,
(ii) the need for appropriate separation of aleatory and
epistemic uncertainty in the conceptual and computational
implementation of analyses of complex systems [15–24],
(iii) the need for a clear conceptual view of what an analysis
is intended to represent and a computational design that is
consistent with that view [15,124,211,212], (iv) the role that
uncertainty and sensitivity analysis plays in model and
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Nonmonotonic Test Problem : nLHS = 1000
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Fig. 13. Scatterplots for model in Eq. (86) with grid for SI test with nI ¼ nD ¼ 5 (adapted from Ref. [101, Fig. 9.15]).
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analysis verification [5,6], and (v) the importance of
avoiding deliberately conservative assumptions if mean-
ingful uncertainty and sensitivity analysis results are to be
obtained [213–217].
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Performance Assessment in Support of the 1996 
Compliance Certification Application for the Waste 
Isolation Pilot Plant 

J. C. Helton,’ D. R. Anderson: H.-N. Jow: M. G. Marietta: and G. Basabilvazo3 

The conceptual and computational structure of a performance assessment (PA) for the Waste 
Isolation Pilot Plant (WIPP) is described. Important parts of this structure are (1) maintenance 
of a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, 
with stochastic uncertainty arising from the many possible disruptions that could occur over 
the 10,000-year regulatory period that applies to the WIPP, and subjective uncertainty arising 
from the imprecision with which many of the quantities required in the analysis are known, 
(2) use of Latin hypercube sampling to incorporate the effects of subjective uncertainty, (3) 
use of Monte Carlo (i.e., random) sampling to incorporate the effects of stochastic uncertainty, 
and (4) efficient use of the necessarily limited number of mechanistic calculations that can be 
performed to support the analysis. The WIPP is under development by the U.S. Department of 
Energy (DOE) for the geologic (i.e., deep underground) disposal of transuranic (TRU) 
waste, with the indicated PA supporting a Compliance Certification Application (CCA) by 
the DOE to the U.S. Environmental Protection Agency (EPA) in October 1996 for the 
necessary certifications for the WIPP to begin operation. The EPA certified the WIPP for 
the disposal of TRU waste in May 1998, with the result that the WIPP will be the first 
operational facility in the United States for the geologic disposal of radioactive waste. 

KEY WORDS Aleatory uncertainty; compliance certification application; epistemic uncertainty; Latin 
hypercube sampling; performance assessment; radioactive waste; stochastic uncertainty; subjective uncer- 
tainty; transuranic waste; Waste Isolation Pilot Plant; 40 CFR 191; 40 CFR 194. 

1. INTRODUCTION area of low population density approximately 42 km 
(26 mi) east of Carlsbad. Waste disposal will take 
place in excavated chambers (i.e., waste disposal pan- 
els) in a bedded salt formation, the Salado Formation 
(Fm), approximately 655 m (2,150 ft) below the land 
surface (Fig. 1). The Salado Fm is contained in the 
Delaware Basin, which is a large sedimentary basin 
located in southeastern New Mexico and western 
Texas (Ref. 4, Vol. 3, Section 1.5.3; Ref. 6, Chapter 2). 

The sequence of events that led to the develop- 
ment of the w~pp by the DOE for the disposal of 
TRU waste in bedded salt began in 1955 when the 
Atomic Energy Commission (AEC), part of which 
later became the DOE, asked the National Academy 

The Waste Isolation Pilot Plant (WIPP) is under 
development by the U.S. Department of Energy 
(DOE) for the geologic disposal of transuranic 
(TRU) waste that has been generated at government 
defense installations in the United States.(l”) The 
WIPP is located in southeastern New Mexico in an 
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Fig. 1. Cross-sectional view of the WIPP (Fig. 1-9, Vol. 1, Ref. 4; see Section 2.2, Vol. 2, Ref. 5 ,  for detailed stratigraphy). 

of Science (NAS) to examine disposal options for 
radioactive waste (Ref. 7, Section 1.5.1; see Ref. 7, 
Tables 1.5-1 and 1.5-2 for more details on the histori- 
cal development of the WIPP than can be presented 
here). In response, the NAS reported in 1957 that, 
while various options and disposal sites were feasible, 
disposal in bedded salt was the most promising dis- 
posal method.@) From that point through the early 
1970s, Oak Ridge National Laboratory conducted 
radioactive-waste disposal experiments, most notably 
Project Salt Vault in an abandoned salt mine near 
Lyons, Kansas.” Although the AEC considered us- 
ing the mine as a repository, the discovery of bore- 
holes in the nearby area prompted the AEC to search 
for more suitable sites.(Io) 

At the invitation of New Mexico’s governor, the 
AEC investigated the Delaware Basin in the Carls- 
bad area of New Mexico. After an initial examina- 
tion, a potential site was identified in the 1970s. The 
site was named the Waste Isolation Pilot Plant 
(WIPP) in January 1976.‘”) The regional site-charac- 
terization phase of this potential waste disposal site(I2) 
ended with the preparation of an Environmental Im- 
pact Statement (EIS) in 1980;’) as required by the 

National Environmental Policy Act of 1969 
(NEPA).(I3) In response to the EIS, the DOE decided 
to proceed with a preliminary design phase at this site. 

During the 1970s, the mission of the WIPP, and 
thus the design,(I4) varied between including and not 
including defense high-level waste (HLW) in addi- 
tion to TRU waste. However, with passage of the 
National Security and Military Applications of Nu- 
clear Energy Authorization Act of 1 980,(15) Congress 
defined the WIPP as a research and development 
facility for the storage and disposal of TRU waste, 
and exempted the WIPP from regulation by the U.S. 
Nuclear Regulatory Commission. 

In 1981, the “Stipulated Agreement” and “Con- 
sultation and Cooperation Agreement” defined the 
WIPP’s relationship with the State of New Mexico 
and stipulated specific geotechnical experiments re- 
quired by the state.(16) After much planning, construc- 
tion of the WIPP began in 1983.(I7*l8) Experiments to 
characterize the local disposal system f~llowed.(’~-~’) 
In preparation for the WIPP’s opening, a Supplemen- 
tal EIS was published in 1990.” 

In the Waste Isolation Pilot Plant Land With- 
drawal Act of 1992 (LWA),(22) Congress defined the 
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process by which WIPP’s compliance with applicable 
regulations would have to be evaluated, and trans- 
ferred ownership of the WIPP site to the DOE. This 
act officially marked the transition from the construc- 
tion and disposal-system characterization phase to 
the compliance and testing phases, although these 
phases had begun unofficially in 1985 when the EPA 
issued 40 CFR 191(23) and in 1989 when Sandia Na- 
tional Laboratories (SNL) first began to assess per- 
formance of the WIPP using the EPA 
Additional performance assessments (PAS) were car- 
ried out for the WIPP in 1990, 1991 and 1992,(4J27) 
with summaries of the 1991 and 1992 PAS available 
in the journal literat~re.(*~-~’) 

The efforts to produce a PA for the WIPP to 
satisfy the requirements in 40 CFR 191 began in 1992, 
when Congress passed the LWA in which it estab- 
lished several mandates. First, Congress required that 
the DOE demonstrate compliance to the final dis- 
posal standards codified in 40 CFR Part 191, Subparts 
B and C, prior to opening the WIPP for the disposal 
of TRU ~aste.(’~-~’) Second, Congress mandated that 
the DOE submit an application to the EPA seeking 
certification of the DOE’S compliance demonstra- 
tion. Third, Congress mandated that the EPA issue 
certification criteria to judge the adequacy of the 
DOE’S application. The EPA met this obligation in 
February 1996 with the issuance of 40 CFR Part 
194.‘33.”) 

This presentation describes a PA carried out at 
SNL to support the Compliance Certification Appli- 
cation (CCA) made by the DOE to the EPA in Octo- 
ber 1996 for the certification of the WIPP for the 
disposal of TRU waste as mandated in the LWA.@) 
This PA will be referred to as the 1996 WIPP PA, 
with some documents also referring to it as the 1996 
CCA PA or the 1996 WIPP CCA PA. This presenta- 
tion is based in part on a preliminary description of 
the 1996 WIPP PA that was written in the summer 
of 1996 while the analysis was still in progress.(3s) 
When appropriate, changes to this preliminary de- 
scription are made to better indicate what was done 
in the final analysis and also to provide more detail 
on what was done. In addition, the presentation of 
results from the analysis is now possible, which could 
not be done in the summer of 1996 as such results 
were not yet available. The intent is to give a high- 
level overview of the conceptual and computational 
structure of the 1996 WIPP PA with approximately 
equal coverage given to the individual parts of this 
large analysis. Further, references to additional and 
more detailed sources of information are given. 

2. REGULATORY REQUIREMENTS 

The conceptual structure of the 1996 WIPP PA 
ultimately derives from the regulatory requirements 
imposed on this The primary regulation 
determining this structure is the U.S. EPA’s standard 
for the geologic disposal of radioactive waste (40 
CFR 191),(u32) which is divided into three parts. Sub- 
part A applies to a disposal facility prior to decom- 
missioning and limits annual radiation doses to mem- 
bers of the public from waste management and 
storage operations. Subpart B applies after 
decommissioning and sets probabilistic limits on cu- 
mulative releases of radionuclides to the accessible 
environment for 10,OOO years (40 CFR 191.13) and 
assurance requirements to provide confidence that 
40 CFR 191.13 will be met (40 CFR 191.14). Subpart 
B also sets limits on radiation doses to members of the 
public in the onment for 10,OOO years of undisturbed 
performance (40 CFR 191.15). Subpart C limits ra- 
dioactive contamination of certain sources of ground- 
water for 10,OOO years after disposal (40 CFR 191.24). 
The DOE must provide a reasonable expectation 
that the WIPP will comply with the requirements of 
Subparts B and C of 40 CFR 191. 

The following is the central requirement in 40 
CFR 191, Subpart B, and the primary determinant 
of the conceptual structure of the 1996 WIPP PA 
(Ref. 23, p. 38086): 

$ 191.13 Containment requirements: 
(a) Disposal systems for spent nuclear fuel or high- 

level or transuranic radioactive wastes shall be de- 
signed to provide a reasonable expectation, based 
upon performance assessments, that cumulative re- 
leases of radionuclides to the accessible environment 
for 10,OOO years after disposal from all significant 
processes and events that may affect the disposal 
system shall: (1) Have a likelihood of less than one 
chance in 10 of exceeding the quantities calculated 
according to Table 1 (Appendix A); and (2 )  Have 
a likelihood of less than one chance in 1,OOO of ex- 
ceeding ten times the quantities calculated according 
to Table 1 (Appendix A). 

(b) Performance assessments need not provide 
complete assurance that the requirements of 
191.13(a) will be met. Because of the long time pe- 
riod involved and the nature of the events and pro- 
cesses of interest, there will inevitably be substantial 
uncertainties in projecting disposal system perfor- 
mance. Proof of the future performance of a disposal 
system is not to be had in the ordinary sense of the 
word in situations that deal with much shorter time 
frames. Instead, what is required is a reasonable 
expectation, on the basis of the record before the 
implementing agency, that compliance with 
191.13(a) will be achieved. 
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Containment Requirement 191.13( a) refers to 
“quantities calculated according to Table 1 (App. 
A),” which means a normalized radionuclide release 
to the accessible environment based on the type of 
waste being disposed of, the initial waste inventory, 
and the release that takes place (Ref. 23, Appendix 
A). That table specifies allowable releases (i.e., re- 
lease limits) for individual radionuclides and is repro- 
duced as Table I of the present paper. The WIPP is 
intended for TRU waste, which is defined to be 
“waste containing more than 100 nanocuries of 
alpha-emitting transuranic isotopes, with half-lives 
greater than twenty years, per gram of waste” (Ref. 
23, p. 38084). The normalized release R for trans- 
uranic waste is defined by 

R = ( Qi/Li)(l X lo6 Ci/C) (1) 
I 

where Qi is the cumulative release of radionuclide i 
to the accessible environment during the 10,000-year 
period following closure of the repository (Ci, curie), 
L, is the release limit for radionuclide i given in Table 
I (Ci), 1 X lo6 Ci is a normalization term, and C is 
the amount of transuranic waste emplaced in the 

Table 1. Release Limits for the Containment Requirements” 

Release limit L, 
per 1,000 MTHMb 

or other unit of wastec Radionuclide 

Americium-241 or -243 
Carbon-14 
Cesium-135 or -137 
Iodine-129 
Neptunium-237 
Plutonium-238, -239, -240, or -242 
Radium-226 
Strontium-90 
Technetium-99 
Thorium-230 or -232 
Tin-126 
Uranium-233, -234. -235, -236, or -238 

Any other alpha-emitting radio- 
nuclide with a half-life greater 
than 20 years 

half-life greater than 20 years 
that does not emit aloha Darticles 

Any other radionuclide with a 

100 
100 

100 
100 
100 
100 

1 ,Ooo 
1o,OO0 

10 

100 

100 

1 

1 

1 .000 

Ref. 23, Appendix A, Table 1. 
Metric tons of heavy metal exposed to a burnup between 25,000 
MW-days per metric ton of heavy metal (MWdlMTHM) and 
40,000 MWdlMTHM. 
‘ An amount of transuranic wastes containing one million Ci of 
alpha-emitting transuranic radionuclides with half-lives greater 
than 20 years. 

repository (Ci). The normalized release R is unitless 
as a result of the release limit being scaled by the 
inventory of the repository; for convenience, R will 
be referred to as being in “EPA units.” In the 1996 
WIPP PA, C = 3.44 X 106 Ci.(=) Further, accessible 
environment means (1) the atmosphere, (2) land sur- 
faces, (3) surface waters, (4) oceans, and ( 5 )  all of 
the lithosphere that is beyond the controlled area; 
and controlled area means (1) a surface location, to 
be identified by passive institutional controls, that 
encompasses no more than 100 km2 and extends hori- 
zontally no more than 5 km in any direction from 
the outer boundary of the original location of the 
radioactive wastes in a disposal system and (2) the 
subsurface underlying such a surface location. 

As required by the LWA, the EPA also promul- 
gated 40 CFR 194,(”) where the following elaboration 
on the intent of 40 CFR 191.13 is given (Ref. 33, 
pp. 5242-5243): 

8 194.34 Results of performance assessments. 
(a) The results of performance assessments shall 

be assembled into “complementary, cumulative dis- 
tribution functions” (CCDFs) that represent the 
probability of exceeding various levels of cumulative 
release caused by all significant processes and events. 
(b) Probability distributions for uncertain disposal 
system parameter values used in performance assess- 
ments shall be developed and documented in any 
compliance application. (c) Computational tech- 
niques, which draw random samples from across the 
entire range of the probability distributions devel- 
oped pursuant to paragraph (b) of this section, shall 
be used in generating CCDFs and shall be docu- 
mented in any compliance application. (d) The num- 
ber of CCDFs generated shall be large enough such 
that, at cumulative releases of 1 and 10, the maximum 
CCDF generated exceeds the 99th percentile of the 
population of CCDFs with at least a 0.95 probability. 
(e) Any compliance application shall display the full 
range of CCDFs generated. (f) Any compliance ap- 
plication shall provide information which demon- 
strates that there is at least a 95 percent level of 
statistical confidence that the mean of the population 
of CCDFs meets the containment requirements of 
8 191.13 of this chapter. 

In addition to the requirements in 40 CFR 191.13 
and 40 CFR 194.34 just quoted, 40 CFR 191 and 40 
CFR 194 contain many additional requirements for 
the certification of the WIPP for the disposal of TRU 
waste. However, it is the indicated requirements that 
determine the overall structure of the 1996 WIPP PA 
and are the primary focus of this presentation. A 
complete description of the requirements that are 
placed on the WIPP and how these requirements 
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are addressed is available in the CCA (Ref. 6, pp. 

The results required in 191.13 and 194.34 deter- 
mine the conceptual and computational structure of 
the 1996 WIPP PA and lead to an analysis based on 
three distinct entities (EN1, EN2, EN3): EN1 is a 
probabilistic characterization of the likelihood of dif- 
ferent futures occurring at the WIPP site over the 
next 10,OOO years; EN2 is a procedure for estimating 
the radionuclide releases to the accessible environ- 
ment associated with each of the possible futures that 
could occur at the WIPP site over the next 10,000 
years; and EN3 is a probabilistic characterization of 
the uncertainty in the parameters used in the defini- 
tions of EN1 and EN2. Together, EN1 and EN2 give 
rise to the CCDF specified in 191.13(a) (Fig. 2), and 
EN3 corresponds to the distributions indicated in 
194.34(b). 

The preceding entities arise from an attempt to 
answer three questions (Ql, Q2, Q3) about the 
WIPP Q1 “What occurrences could take place at 
the WIPP site over the next 10,OOO years?”; Q2, 
“How likely are the different occurrences that could 
take place at the WIPP site over the next 10,000 
years?”; Q3, “What are the consequences of the dif- 
ferent occurrences that could take place at the WIPP 
site over the next 10,000 years?”. And one question 
(Q4) about the WIPP PA: Q4, “How much confi- 

XWALK-1 to XWALK-36). 

~ 1.0 

.€ - 
1 1 0 - 3  
n ! 

CCDF Specifed 
in 191.13(a) 1 0 4  

0 
I I I I 1 I 

V 
o 10s 10-4 10-3 10-2 10-1 100 101 102 

R : Release to Accessible Environment 

TRl-6342-730-16 

Fig. 2. Boundary line and associated CCDF specified in 40 CFR 
191, Subpart B (Fig. 4, Ref. 39); see Sections 4 and 5 for a discussion 
of this CCDF as an integral involving a probability space (&,& 
ps,) for stochastic uncertainty and a function f defined on &,. 

dence should be placed in answers to the first three 
questions?”. In the WIPP PA, EN1 provides answers 
to Q1 and Q2; EN2 provides an answer to Q3; and 
EN3 provides an answer to Q4. 

3. SCREENING OF FEATURES, EVENTS, 
AND PROCESSES 

As just indicated, the 1996 WIPP PA is based 
on three distinct entities. Careful definitions of how 
these entities are specified for the 1996 WIPP PA 
are given in Sections 4-6, and are necessary for the 
computational implementation of the analysis. How- 
ever, the start of a PA for a complex system goes 
through a preliminary, and often rather ill-defined, 
phase in which it must be decided what is to be, and 
hence what is not to be, included in the analysis. It 
is from this work that the formal definitions of these 
entities ultimately emerge. 

In a very real sense, this work has been going 
on for the WIPP since its development was initiated 
in the 1970s, and indeed goes back to the beginning of 
the consideration of geologic disposal for radioactive 
wastes in the 1950s. This development work and the 
early PAS carried out for the WIPP certainly led to 
general ideas about what would be important with 
respect to the performance of a waste repository in 
bedded salt. However, a PA that is to be used in a 
regulatory context requires a formal development 
and documentation of what is to be included in, and 
excluded from, the analysis. For the 1996 WIPP PA, 
this initial and fundamental work was carried out 
in an activity referred to as the identification and 
screening of features, events, and processes (FEPs) 
(Ref. 6, Section 6.2). 

The regulatory requirements for an analysis of 
FEPs potentially important with respect to the WIPP 
derive from the following statement in 40 CFR 194 
(Ref. 33, p. 5242): 

8 194.32 Scope of performance assessments. 
. . . (e) Any compliance application(s) shall in- 

clude information which: (1) identifies all potential 
processes, events or sequences and combinations of 
processes and events that may occur during the regu- 
latory time frame and may affect the disposal system; 
(2) Identifies the processes, events or sequences and 
combinations of processes and events included in 
performance assessments; and (3) Documents why 
any processes, events or sequences and combinations 
of processes and events identified pursuant to para- 
graph (e)(l) of this section were not included in 
performance assessment results provided in any 
compliance application. 
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To meet the preceding requirements, a formal 
FEPs screening was carried out as part of the 1996 
WIPP PA. 

As a starting point, a list of potentially relevant 
FEPs was assembled from a compilation developed 
for the Swedish Nuclear Power Inspectorate (SKI).(“) 
The SKI list is based on several FEP lists developed 
for other waste disposal programs and constituted the 
best documented and most comprehensive starting 
point for the WIPP PA. WIPP-specific FEPs were 
added to the SKI list, and the combined list was edited 
to remove redundancy and ambiguity, resulting in 
a FEPs list (Ref. 6, Attachment 1, Appendix SCR) 
that was appropriate for the WIPP (Ref. 6, Section 
6.2.1). 

This list was then carefully analyzed to identify 
the FEPs that should be incorporated into the compu- 
tational structure of the 1996 WIPP PA and also 
the FEPs that did not require incorporation into this 
structure. Decisions to remove (i.e., screen out) FEPs 
from the computational structure used for the 1996 
WIPP PA were based on the following criteria: regu- 
latory exclusion (SO-R), low probability (SO-P), and 
low consequence (SO-C). The three screening crite- 
ria derive from specific regulatory requirements (Ref. 
6, Section 6.2.2.1). In particular, the screening crite- 
rion SO-R arises because certain types of FEPs are 
specifically excluded from consideration in PAS to 
assess the compliance of the WIPP with 40 CFR 191 
[e.g., the statement “Inadvertent and intermittent in- 
trusion by drilling for resources (other than those 
resources provided by the waste in the disposal sys- 
tem or engineered barriers designed to isolate such 
waste) is the most severe human intrusion scenario” 
in 40 CFR 194.33 (Ref. 33, p. 5242) excludes many 
potential human disruptions of the WIPP from con- 
sideration]; the screening criterion SO-P arises be- 
cause low-probability FEPs are specifically excluded 
from consideration in PAS to assess the compliance 
of the WIPP with 40 CFR 191 [i.e., the statement 
“Performance assessments need not consider pro- 
cesses and events that have less than one chance in 
10,000 of occurring over 10,OOO years” appears in 40 
CFR 194.34 (Ref. 33, p. 5242)l; and the screening 
criterion SO-C arises because the occurrence of many 
FEPs has no effect on the location of the CCDF used 
to assess compliance with 40 CFR 191.13 [i.e., the 
statement “The results of performance assessments 
shall be assembled into “complementary cumulative 
distribution functions” (CCDFs) that represent the 
probability of exceeding various levels of cumulative 
release caused by all significant processes and events” 

appears in 40 CFR 194.34 (Ref. 33, p. 5242) and 
implies that it is acceptable to omit FEPs from the 
PA calculations when there is a reasonable expecta- 
tion that the resultant CCDF for cumulative release 
would not be significantly changed by such omis- 
sions]. 

The FEPs not screened out were retained for 
inclusion in the PA and were classified as undisturbed 
performance (UP) or disturbed performance (DP) 
FEPs. As an example, a summary of the screening 
process for natural FEPs is given in Table 11; in addi- 
tion, waste- and repository-induced FEPs (Ref. 6, 
Table 6-46) and human-initiated events and pro- 
cesses (EPs) (Ref. 6, Table 6-56) were also consid- 
ered. A detailed description of the screening process 
is available in Appendix SCR of Ref. 6. 

4. ENk PROBABILISTIC 
CHARACTERIZATION OF DIFFERENT 
FUTURES 

The entity EN1 is the formal outcome of the 
FEPs process for determining what could happen at 
the WIPP. Specifically, EN1 provides a probabilistic 
characterization of the likelihood of different futures 
that could occur at the WIPP site over the 10,OOO- 
year period specified in 40 CFR 191. The entity EN1 
is defined by a probability space (s,,, A,, p,,), with the 
sample space s3, given by 

S,, = {x,,: x,, is a possible 10,OOO year sequence 

The subscript st refers to stochastic (i.e., aleatory) 
uncertainty and is used because (&, A,, ps,) is provid- 
ing a probabilistic characterization of occurrences 
that may take place in the 

The introduction of the idea of a probability 
space may seem overly formal. However, this intro- 
duction provides a way to distinguish between the 
use of probability in the definition of EN1 (i.e., in 
the characterization of stochastic uncertainty) and 
the use of probability in the definition of EN3 (i.e., 
in the characterization of subjective uncertainty; see 
Section 6). As a reminder, a probability space (3, d 
p) consists of three components: a set 6 that contains 
everything that could occur for the particular “uni- 
verse” under consideration, a suitably restricted set 
./of subsets of S, and a function p defined for ele- 
ments of 9 that actually defines probability.(43) In the 
terminology of probability theory, 6 is the sample 
space; the elements of 6 are elementary events; the 

of occurrences at the WIPP} (2) 
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subsets of 8 contained in Yare events; and p is a 
probability measure. 

The FEPs development process for the WIPP 
identified drilling for natural resources as the only 
disruption with sufficient likelihood and consequence 
for inclusion in the definition of EN1 (Ref. 6, Appen- 
dix SCR). In addition, 40 CFR 194 specifies that the 
occurrence of mining within the land withdrawal 
boundary must be included in the analysis. The pre- 
ceding considerations led to the elements x,, of as, 
being vectors of the form 

nth intrusion (3) 
in the 1996 WIPP PA, where n is the number of drilling 
intrusions, ti is the time (years) of the ith intrusion, 1; 
designates the location of the ith intrusion, ei desig- 
nates the penetration of an excavated or nonexca- 

Table 11. Natural FEPs and Their Screening Classificationsab 

Geological FEPs (Section SCR.l.l, Ref. 6): 1. Stratigraphy. 1.1 Stratigraphy (UP). 1.2 Brine reservoirs (DP). 2. Tectonics. 2.1 Changes 
in regional stress (SO-C). 2.2 Regional tectonics (SO-C). 2.3 Regional uplift and subsidence (SO-C). 3. Structural FEPs. 3.1 Deforma- 
tion. 3.1.1 Salt deformation (SO-P, UP near repository). 3.1.2 Diapirism (SO-P). 3.2 Fracture development. 3.2.1 Formation of frac- 
tures (SO-P, UP near repository). 3.2.2 Changes in fracture properties (SO-C, UP near repository). 3.3 Fault movement. 3.3.1 Forma- 
tion of new faults (SO-P). 3.3.2 Fault movement (SO-P). 3.4 Seismic activity. 3.4.1 Seismic activity (UP). 4. Crustal processes. 4.1 
Igneous activity. 4.1.1 Volcanic activity (SO-P). 4.1.2 Magmatic activity (SO-C). 4.2 Metamorphism 4.2.1 Metamorphic activity (SO-P). 
5. Geochemical FEPs. 5.1 Dissolution. 5.1.1 Shallow dissolution (UP). 5.1.2 Lateral dissolution (SO-C). 5.1.3 Deep dissolution (SO-P). 
5.1.4 Soluion chimneys (SO-P). 5.1.5 Breccia pipes (SO-P). 5.1.6 Collapse breccias (SO-P). 5.2 Mineralization. 5.2.1 Fracture infills 

Subsurface hydrological FEPs (Section SCR.12, Ref. 6): 1. Groundwater characteristics. 1.1 Saturated groundwater Bow (UP). 1.2 Un- 
saturated groundwater flow (UP, SO-C in Culebra). 1.3 Fracture flow (UP). 1.4 Density effects on groundwater flow (SO-C). 1.5 Ef- 
fects of preferential pathways (UP, UP in Salado and Culebra. 2. Changes in groundwater flow. 2.1 Thermal effects on groundwater 
flow (SO-C). 2.2 Saline intrusion (SO-P). 2.3 Freshwater intrusion (SO-P). 2.4 Hydrological response to earthquakes (SO-C). 2.5 Natu- 
ral gas intrusion (SO-P). 

Subsurface geochemical FEPs (Section SCR.1.3, Ref. 6): 1. Groundwater geochemistry. 1.1 Groundwater geochemistry (UP). 2. 
Changes in groundwater chemistry. 2.1 Saline intrusion (SO-C). 2.2 Freshwater intrusion (SO-C). 2.3 Changes in groundwater Eh 
(SO-C). 2.4 Changes in groundwater pH (SO-C). 2.5 Effects of dissolution (SO-C). 

Geomorphological FEPs (Section SCR.l.4, Ref. 6): 1. Physiography. 1.1 Physiography (UP). 2. Meteorite impact. 2.1 Impact of a large 
meteorite (SO-P). 3. Denudation. 3.1 Weathering. 3.1.1 Mechanical weathering (SO-C). 3.1.2 Chemical weathering. 3.2 Erosion. 3.2.1 
Aeolian erosion (SO-C). 3.2.2 Fluvial erosion (SO-C). 3.2.3 Mass wasting (SO-C). 3.3 Sedimentation. 3.3.1 Aeolian deposition (SO-C). 
3.3.2 Fluvial deposition (SO-C). 3.3.3 Lacustrine deposition (SO-C). 3.3.4 Mass wasting (SO-C). 4. Soil development. 4.1 Soil develop- 
ment (SO-C). 

Surface Hydrological FEPs (Section SCR.1.5, Ref. 6): 1. Fluvial. 1.1 Stream and river flow (SO-C). 2. Lacustrine. 2.1 Surface water 
bodies (SO-C). 3. Groundwater recharge and discharge. 3.1 Groundwater discharge (UP). 3.2 Groundwater recharge (UP). 3.3 Infiltra- 
tion (UP, UP for climate change effects). 4. Changes in surface hydrology. 4.1 Changes in groundwater recharge and discharge (UP). 
4.2 Lake formation (SO-C). 4.3 River flooding (SO-C). 

Climatic FEPs (Section SCR.l.6, Ref. 6): 1. Climate. 1.1 Precipitation (for example, rainfall) (UP). 1.2 Temperature (UP). 2. Climate 
change. 2.1 Meteorological. 2.1.1 Climate change (UP). 2.2 Glaciation. 2.2.1 Glaciation (SO-P). 2.2.2 Permafrost (SO-P). 

Marine FEPs (Section SCR.1.7, Ref. 6): 1. Seas. 1.1 Seas and Oceans (SO-C). 1.2 Estuaries (SO-C). 2. Marine sedimentology. 2.1 
Coastal erosion (SO-C). 2.2 Marine sediment transport and deposition (SO-C). 3. Sea level changes. 3.1 Sea level changes (SO-C). 

Ecological FEPs (Section SCR.1.8, Ref. 6): 1. Flora and fauna. 1.1 Plants (SO-C). 1.2 Animals (SO-C). 1.3 Microbes (SO-C, UP for col- 
loidal effects and gas generation). 2. Changes in flora and fauna. 2.1 Natural ecological development (SO-C). 

(SO-C). 

Adapted from Ref. 6, Table 6-3. 
UP, FEPs accounted for in the assessment calculations for undisturbed performance for 40 CFR 9 191.13 (as well as 40 CFR 8 191.15 
and Subpart C of 40 CFR Part 191); DP, FEPs accounted for (in addition to all UP FEPs) in the assessment calculations for disturbed 
performance for 40 CFR 8 191.13; SO-R, FEPs eliminated from performance assessment calculations on the basis of regulations provided 
in 40 CFR Part 191 and criteria provided in 40 CFR Part 194; SO-C, FEPs eliminated from performance assessment (and compliance 
assessment) calculations on the basis of consequence; SO-P, FEPs eliminated from performance assessment (and compliance assessment) 
calculations on the basis of low probability of occurrence. 
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vated area by the ith intrusion, bi designates whether 
or not the ith intrusion penetrates pressurized brine 
in the Castile Fm (see Ref. 5,  Vol. 2, Section 2.2, for 
detailed stratigraphy), p i  designates the plugging pro- 
cedure used with the ith intrusion, ai designates the 
type of waste penetrated by the ith intrusion, and fmin 
is the time at which potash mining occurs within the 
land withdrawal boundary (Table 111). 

With respect to the questions indicated in Sec- 
tion 2, 5, provides an answer to Q1, while and Pa 
provide an answer to Q2. In practice, Q2 is answered 

by the distributions specified for n, ti, I i ,  ei, bi,pi, ai, and 
fmin (Table 111), which in concept lead to definitions for 
41 and pSr. The CCDF specified in 40 CFR 191 is 
obtained by evaluating an integral involving (s,,, & 
psr) (Fig. 2), with the probabilities associated with A, 
and psr being replaced symbolically by the corre- 
sponding density function ds,. The function f i n  Fig. 
2 represents the environmental release associated 
with x,,, corresponds to the second entity (i.e., EN2) 
in the 1996 WIPP PA, and is discussed in the next 
section. 

Table 111. Definitions and Distributions for Individual Elements t , ,  I , ,  e,, b,, p, ,  a,, and tmrn of Vectors x,, in Sample Space &, for 
Stochastic Uncertainty 

t,: Time (years) of ith drilling intrusion within area marked by a berm as part of a system of passive institutional controls (Fig. 3, Ref. 
39) with tl 5 t2 5 . . . 5 tn 5 10,OOO years and occurrence of individual drilling intrusions following a Poisson process with a time-de- 
pendent rate 
2.94 X 
pendix DEL, Ref. 6), with no drilling intrusions possible between 0 and 100 years due to active institutional controls (Chapter 7, Ref. 
6) and a two-order-of-magnitude reduction in drilling rate between 100 and 700 years due to passive institutional controls (Ref. 44). 
Additional information: Section 3.2, Ref. 45. 

1,: Integer designator for 144 discretized locations for drilling intrusions within area marked by a berm as part of a system of passive in- 
stitutional controls (Fig. 3, Ref. 39). Probability pL, that drilling intrusion i will occur at location L,,  j = 1, 2, . . . , 144, in Fig. 3 of 
Ref. 39 is p L ,  = 1/144 = 6.94 X 

e,: Integer designator for whether or not drilling intrusion i penetrates an excavated area of the respository (i.e*, e, = 0, 1 implies pene- 
tration of nonexcavated, excavated area, respectively). Corresponding probab es p E o ,  p E l  for e, = 0, 1 are pEo = 0.791, p E l  = 0.209 
and derive from excavated and nonexcavated areas within berm (Fig. 3, Ref. 39). Additional information: Section 3.4, Ref. 45. 

b,: Integer designator for whether or not drilling intrusion i penetrates pressurized brine in the Castile Fm (i.e., b, = 0, 1 implies non- 
penetration, penetration of pressurized brine; see Section 2.2, Vol. 2, Ref. 5, for detailed stratigraphy). Corresponding probabilities for 
b, = 0, 1 are pBo = 0.08, p B ,  = 0.92. Additional information: Ref. 46; Section 3.5, Ref. 45. 

p , :  Integer designator for plugging pattern used for drilling intrusion i, with (1) p, = 1 corresponding to a full concrete plug through 
Salado Fm to Bell Canyon Fm with a permeability of 5 X lo-’’ m2, (2) p, = 2 corresponding to a two-plug configuration with concrete 
plugs at RustlerlSalado interface and Castile/Bell Canyon interface, and (3) p, = 3 corresponding to a three-plug configuration with 
concrete plugs at RustlerlSalado, SaladolCastile, and Castile/Bell Canyon interfaces. The probability that a given drilling intrusion will 
be sealed with plugging pattern j, j = 1, 2, 3, is given by pPL,, where pPLl = 0.02, pPL2 = 0.68, and pPL3 = 0.30. Additional informa- 
tion: Ref. 47; Appendix DEL, Ref. 6; Section 3.6, Ref. 45. 

a,: Designator for type of waste penetrated by drilling intrusion i. The waste intended for disposal at the WIPP is divided into 570 dis- 
tinct waste streams (see Table 3.7.1, Fig. 3.7.1, Ref. 4 9 ,  with 569 of these waste streams designated as contact-handled (CH)-TRU 
waste and one waste stream designated as remotely handled (RH)-TRU waste. Each waste drum emplaced at the WIPP will contain 
waste from a single CH-TRU waste stream. Given that the CH-TRU drums will be stacked three high, each drilling intrusion through 
CH-TRU waste will intersect three waste streams. In contrast, there is only one waste stream for RH-TRU waste with RH-TRU waste 
being emplaced separately from CH-TRU waste, and so each drilling intrusion through RH-TRU waste will intersect this single waste 
stream. Specifically, a, = a, = 0 if e, = 0 (i.e., if the ith drilling intrusion does not penetrate an excavated area of the repository); a, = 
a, = 1 if e, = 1 and RH-TRU waste is penetrated; and a, = [2, ICH,,, iCH,2, XH,,] if e, = 1 and CH-TRU waste is penetrated. where 
iCH,, , iCH,,, and iCH,, are designators for the CH-TRU waste streams intersected by the ith drilling intrusion. Whether the rth intru- 
sion penetrates a nonexcavated or excavated area is determine y the probabilities pEo and pEl  defined in conjunction with e,. Given 
that the ith intrusion penetrates an excavated area, the probab es pCH and p R H  of penetrating CH- and RH-TRU wastes are given 
by 0.876 and 0.124, respectively (Section 3.7, Ref. 45). The probabilities of the individual CH-TRU waste streams are indicated in Ta- 
ble 3.7.1 of Ref. 45. Additional information: Ref. 3 8  Section 3.7, Ref. 45. 

r,,,: Time (years) at which mining of potash deposits within land withdrawal boundary occurs. Assumed to follow a Poisson process (p. 
5242, Ref. 33) with a time-dependent rate A m ( t )  defined by A&) = 0 year-I for 0 5 t 5 100 years, A,(r) = 1 X year-’ for 100 < t 
s 700 years, and A&) = 1 X year-l for 700 < t 5 10,OOO years, with no mining possible between 0 and 100 years due to active in- 
stitutional controls (Chapter 7, Ref. 6) and a two-order-of-magnitude reduction in the mining rate between 100 and 700 years due to 
passive institutional control (Ref. 44). Additional information: Section 3.8, Ref. 45. 

defined by &(t) = 0 year-l for 0 5 t 5 100 years, Ad(?)  = 2.94 x lo-’ year-’ for 100 < t 5 700 years, and A&) = 
year-l for 700 < t 5 10,OOO years. Base drilling rate defined to be 46.8 drilling intrusions/km’/lV years after 700 years (Ap- 

Additional information: Section 3.3, Ref. 45. 
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5. EN2: ESTIMATION OF RELEASES 

The entity EN2 is the formal outcome of the FEPs 
process for determining what physical processes 
should be modeled at the WIPP, although most of the 
development of the mathematical representations for 
these physical processes took place outside of the 
FEPs process. Specifically, EN2 provides a way to esti- 
mate radionuclide releases to the accessible environ- 
ment for the different futures (ie., elements x,, of a,,) 
that could occur at the WIPP. In concept, estimation 
of environmental releases corresponds to evaluation 
of the function f in Fig. 2; in practice, estimation of 
environmental releases and other system properties 
of interest involves evaluation of the models indicated 
in Fig. 3 and briefly described in Table IV. 

When expressed in terms of the models indicated 
in Fig. 3 and Table IV, the function f i n  Fig. 2 is 
given by 

f(xs,) = fC(xs,) + fSP[xs,, fB(xst)] 

+ fDBR{Xsr, fSP[xsr, fB(xsr)], fB(xsf>) 
+ fMB[xs,, fB(xsr)] 

+ fDL[x~h fB(xs,)] + fS[xs,, fB(xrt)] 

+ fS-r(Xsr0~ fs-Ftxsr.O), fN-P[Xsr, fB(Xst)]) (4) 
where x ,  corresponds to the particular future under 
consideration; x,,,~, a future involving no drilling intru- 
sions but a mining event at the same time tmi, as in 
x,,; fc(xsr), cuttings and cavings release to accessible 
environment for x ,  calculated with CUTTINGS-S; 
fB(xS,) ,  results calculated for x,, with BRAGFLO [in 
practice, fB(x,,) is a vector containing a large amount 

138 

E 

l m e e . a a l . 1 1  

Fig. 3. Computer programs (models) used in 1996 WIPP PA 
(Fig. 5,  Ref. 39). 

of information]; fsp[xs,, fB(x,r)], spallings release to ac- 
cessible environment for x,, calculated with the spall- 
ings model contained in CUTTINGS-S [this calcula- 
tion requires BRAGFLO results, i.e.,fB(x,), as input]; 
fDBR{Xsr, fs~[x~,, fB(xs,)], f~(x,,)), direct brine release to 
accessible environment for x,, calculated with a modi- 
fied version of BRAGFLO designated BRAG- 
F L O D B R  [this calculation requires spallings re- 
sults obtained from CUTTINGS-S, i.e., fsp[x,,, 
fB(&)], and BRAGFLO results, i.e., fB(xSr), as input]; 
fMB[x,,, fB(xs,)], release through anhydrite marker beds 
to accessible environment for x ,  calculated with 
NUTS [this calculation requires BRAGFLO results, 
i.e., fB(x,), as input]; ~ D L [ x ~ , ,  fB(%,r)], release through 
Dewey Lake Red Beds to accessible environment for 
x,, calculated with NUTS [this calculation requires 
BRAGFLO results, i.e.,fB(x,,), as input];fs [xs,,fB(xsr)], 
release to land surface due to brine flow up a plugged 
borehole for x,, calculated with NUTS or PANEL 
as appropriate [this calculation requires BRAGFLO 
results, i.e., fE(xs,), as input]; f s . ~ ~ , , , ~ ) ,  flow field calcu- 
lated for xsso with SECOFL2D;fN.p[x,,, f B  (xsr)], release 
to Culebra for x ,  calculated with NUTS or PANEL 
as appropriate [this calculation requires BRAGFLO 
results, i.e., fB(xs0, as input]; fs-T {x,r,o, fs-Ftxs,,o), 
fN.p[X,r, fB(xs,)]), groundwater transport release 
through Culebra to accessible environment calcu- 
lated with SECOTP2D [this calculation requires 
SECOFL2D results, i.e., fs.Xxsr,o), and NUTS or 
PANEL results, i.e., fN.p[xs,, fB(x,,)], as input; x,,,~ is 
used as an argument tofs-T because drilling intrusions 
are assumed to cause no perturbations to the flow 
field in the Culebra]. 

The models in Fig. 3 and Table IV are too com- 
plex to permit a closed-form evaluation of the inte- 
gral in Fig. 2 that defines the CCDF specified in 40 
CFR 191. Instead, a Monte Carlo procedure was used 
in the 1996 WIPP PA.(61) With this approach, elements 

x,,,~, i = 1,2. . . . , nS (5) 
were randomly sampled from as, in consistency with 
the definition of (asr,.x,,p,,). Then the integral in Fig. 2, 
and hence the associated CCDF, was approximated by 

prob(Rel> R )  
nS 

= [a,, aRv(xs~)]&(xsl) dVsr = aRlf(xs,,i)]/ns ( 6 )  
i= 1 

where &V(x,r)] = 1 iff(xsr) > R and 0 iff(x,,) 5 R. The 
Monte Carlo CCDFconstruction procedure indicated 
in Eq. (6) and implemented by CCDFGFpr~grarn(~~.'~) 
used a sample of size nS = 10,OOO in the 1996 WIPP 
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Table IV. Summary of Computer Models Used in the 1996 WIPP PA" 

BRAGFLO: Calculates multiphase flow of gas and brine through a porous, heterogeneous reservoir. Uses finite-difference procedures 
to solve system of nonlinear partial differential equations that describes the mass conservation of gas and brine along with appropriate 
constraint equations, initial conditions, and boundary conditions. Additional information: Ref. 4 8  Section 4.2, Ref. 45. 

BRAGFLODBR: Special configuration of BRAGFLO model used in calculation of dissolved radionuclide releases to the surface 
(i.e., direct brine releases) at the time of a drilling intrusion. Uses initial value conditions obtained from calculations performed with 
BRAGFLO and CUTTINGS-S. Additional information: Ref. 49; Section 4.7, Ref. 45. 

CUTTINGSS: Calculates the quantity of radioactive material brought to the surface in cuttings and cavings and also in spallings gen- 
erated by an exploratory borehole that penetrates a waste panel, where cuttings designates material removed by the drillbit, cavings 
designates material eroded into the borehole due to shear stresses resulting from the circular flow of the drilling fluid (i.e,, mud), and 
spallings designates material carried to the borehole at the time of an intrusion due to the flow of gas from the repository to the bore- 
hole. Spallings calculation uses intial value conditions obtained from calculations performed With BRAGFLO. Outside reviewers ex- 
pressed some concern over the spallings model incorporated into CUTTINGSS,(m) but additional study led to the conclusion that 
this model was unlikely to have overestimated the sue of the spallings relea~e.'~') Additional information: Refs. 52, 53; Sections 4.5, 
4.6. Ref. 45. 

GRASP-INV Generates transmissivity fields (estimates of transmissivity values) conditioned on measured transmissivity values and cal- 
ibrated to steady-state and transient pressure data at well locations using an adjoint sensitivity and pilot-point technique. Additional in- 
formation: Refs. 54, 55. 

NUTS: Solves system of partial differential equations for radionuclide transport in vicinity of repository. Uses brine volumes and flows 
calculated by BRAGFLO as input. Additional information: Ref. 56; Section 4.3, Ref. 45. 

PANEL Calculates rate of discharge and cumulative discharge of radionuclides from a waste panel through an intruding borehole. Dis- 
charge is a function of fluid flow rate, elemental solubility, and radionuclide inventory. Uses brine volumes and flows calculated by 
BRAGFLO as input. Based on solution of system of linear ordinary differential equations. Additional information: Ref. 56; Section 
4.4, Ref. 45. 

SANTOS: Solves quasistatic, large-deformation, inelastic response of two-dimensional solids with finite-element techniques. Used to de- 
termine porosity of waste as a function of time and cumulative gas generation, which is an input to calculations performed with 
BRAGFLO. Additional information: Refs. 48, 57, 5 8  Section 4.2.3, Ref. 45. 

SECOFL2D: Calculates single-phase Darcy flow for groundwater flow in two dimensions. The formulation is based on a single partial 
differential equation for hydraulic head using fully implicit time differencing. Uses transmissivity fields generated by GRASP-INV. Ad- 
ditional information: Refs. 59, 60, Section 4.8, Ref. 45. 

SECOTP2D: Simulates transport of radionuclides in fractured porous media. Solves two partial differential equations: one provides 
two-dimensional representation for convective and diffusive radionuclide transport in fractures and the other provides one-dimensional 
representation for diffusion of radionuclides into rock matrix surrounding the fractures. Uses flow fields calculated by SECOFL2D. Ad- 
ditional information: Refs. 59, 60, Section 4.9, Ref. 45. 

Ref. 39, Table I. 

PA. The individual programs in Fig. 3 do not run fast 
enough to allow this number of evaluations off. As a 
result, it wasnecessary toevaluate the programsinFig. 
3 for a limited number of futures and then to use this 
limited number of evaluations to construct the re- . 
leases €or the large number of futures that must be con- 
sidered in Eq. (6) (see Section 7). 

With respect to the questions indicated in Sec- 

EN3 provides a probabilistic characterization of the 
uncertainty in the parameters that underlie the WIPP 
PA. The entity EN3 is defined by a probability space 
(&, A,,, p,,), with the sample space 6, given by 

,, = {xsu: x,, is possibly the correct vector 
of parameter values to use 
in the WIPP PA models} (7) 

tion 2, the models in Fig. 3 and Table IV are providing 
an answer to Q3. The subscript su refers to subjective (i.e., epistemic) 

uncertainty and is used because (S,, A,,, p,,) is provid- 

6. EN3 PROBABILISTIC 
CHARACTERIZATION OF 
PARAMETER UNCERTAINTY 

- .  - 
ing a probabilistic characterization of where the ap- 
propriate inputs to use in the WIPP PA are believed 
to be l o ~ a t e d . ( ~ ~ * ~ ~ )  The vectors x,, in &, are of the form 

x,, = [XI, x2, * * * 9 &"I (8) 
The entity EN3 is the formal outcome of the 

data development effort for the WIPP. Specifically, where each element xi of x,, is an uncertain input to 
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Table V. Example Elements of x, in the 1996 WIPP PA" 

ANHPRM, Logarithm of anhydrite permeability (m2). Used in BRAGFLO. Distribution: Student's I distribution with 5 degrees of free- 
dom. Range: -21.0 to -17.1 (i.e., Permeability range is 1 X to 1 X lo-".' d ) .  Mean, median: -18.9, -18.9. Correlation: -0.99 
rank correlation with ANHCOMP (bulk compressibility of anhydrite, Pa-'). 

BPCOMP, Logarithm of bulk compressibility of brine pocket (Pa-'). Used in BRAGFLO. Distribution: Triangular. Range: -11.3 to 
-8.00 (ie., bulk compressibility range is 1 X to 1 X lo-* Pa-'). Mean, mode: -9.80, -10.0. Correlation: -0.75 rank correlation 
with BPPRM (logarithm of brine pocket permeability, m2). 

HALPRM, Logarithm of halite permeability (m'). Used in BRAGFLO. Distribution: Uniform. Range: -24 to -21 (i.e., permeability 
range is 1 X 
ibility of halite, Pa-'). 

WMICDFLG, Pointer variable for microbial degradation of cellulose. Used in BRAGFLO. Distribution: Discrete, with 50% 0, 25% 1, 
25% 2. WMICDFLG = 0, 1, 2 implies no microbial degradation of cellulose, microbial degradation of only cellulose, microbial degra- 
dation of cellulose, plastic, and rubber. 

WTAUFAIL, Shear strength of waste (Pa). Used in CUTTINGS-S. Distribution: Uniform. Range: 0.05-10 Pa. Mean, median: 5.03, 
5.03 Pa. 

to 1 X lo-" m2). Mean, median: -22.5, -22.5. Correlation: -0.99 rank correlation with HALCOMP (bulk cornpress- 

See Ref. 46, Appendix PAR and Ref. 45, Table 5.2.1 for a complete listing of the nV = 57 elements of x," and sources of additional infor- 
mation. 

the 1996 WIPP PA and nV is the number of such 
inputs (Table V). 

The uncertainty in x,, is characterized by speci- 
fying a distribution 

(9) D ,  j = l , 2  , . . . ,  nV 

for each element x j  of x,, (Fig. 4). Correlations and 

other restrictions involving the elements of x,, are 
also possible. In the 1996 WIPP PA, rank correla- 
tions(65"6) were imposed on three pairs of variables 
(Fig. 5) .  The distributions Dj, j = 1, 2,. . . , nV, and 
any associated conditions then give rise to the proba- 
bility space (&, xu, p,,). 

In concept, individual elements of x,, can affect 

Variable: WSOLAM3C 

' 0'4 E Cumulative Probability / 
f + SampledData 

^ ^  Variable 37 in LHS 

0.0 L d e  I . . . . . . . . , l . . . . . . . . . l . . . .  

-2.0 -1 .o 0.0 1 .o 
Logarithm Scale Factor Solubility Am: WSOlAM3C 

-14.5-14.0-13.5-13.0-12.5-12.0-11.5-11.0-10.5-10.0 
Logarithm Brine Pocket Permeablity (d): BPPRM 

TRI-6342-5173-2b TRl-6342-5174.1 

Fig. 4. Example of an uncertain variable, its associated distribution, Fig. 5. Scatterplot illustrating correlation within the pair 
and sampled values obtained with a Latin hybercube sample(M) of (BPCOMP, BPPRM); see Fig. 5.4.1, Ref. 45, for correlations 
sue 100 (see Appendix PAR, Ref. 6, for distributions of the within the pairs (ANHCOMP, ANHPRM) and (HALCOMP, 
nV = 57 variables in x,). HALPRM). 
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: CCDFs Used to Summarize Distribution 
of prob (Re/ > R h,, ) Conditional on R 

I 

either the definition of (s,,, A,, p,) or the definition 
and/or evaluation of $ For example, the drilling rate 
or probability of penetrating pressurized brine in the 
Castile Fm could be treated as being uncertain, which 
would affect the definition of (a,,, .& p,,). Similarly, 
whether to use the Brooks-Corey or van Genuch- 
ten-Parker model for relative permeability or the 
appropriate value of a spatially averaged distribution 
coefficient (i.e., kd value) could be treated as being 
uncertain, with the former affecting the definition of 
f and the latter defining a specific input parameter 
to f. All elements of x,,, relate to the models in Fig. 
2 in the 1996 WIPP PA. However, this does not have 
to be the case, and the probability of penetrating 
pressurized brine (i.e., pB1  in Table 111) was treated 
as being uncertain in a verification analysis associated 
with the 1996 WIPP PA carried out by SNL for 
the EPA.@') 

If x,, was known exactly, then the CCDF in 
Fig. 2 could be determined with certainty and an 
unambiguous comparison made with the boundary 
line specified in 40 CFR 191. However, given the 
complex physical processes that could take place 
at the WIPP site and the 10,000-year time period 
under consideration, x,, can never be known with 
certainty. Instead, uncertainty in x,, as characterized 
by (&,, Xu, p,,) will lead to a distribution of possible 
CCDFs (Fig. 6), with a different CCDF resulting 

" 
C 
W 
.2 a 
U 
A 

- 
0 

Fig. 6. Distribution of CCDFs resulting from possible values for 
x,, E 4,. (adapted from Fig. 2, Ref. 42). 

for each value that x,, can take on. As indicated 
in Fig. 6, f is now being viewed as a function of 
both x, and x,,, with (A,,, A,, p,,) giving rise to a 
different CCDF for each value that x,, can take. 
In turn, (a,,, 4, p,,) gives rise to a distribution of 
CCDFs. The proximity of this distribution to the 
boundary line in Fig. 2 provides an indication of 
the confidence with which 40 CFR 191 will be 
met. 

The distribution of CCDFs in Fig. 6 can be sum- 
marized by distributions of exceedance probabilities 
conditional on individual release values (Fig. 7). For 
a given release value R ,  this distribution is defined 
by a double integral over a,, and In practice, 
this integral is too complex to permit a closed-form 
evaluation. Instead, the 1996 WIPP PA used Latin 
hypercube sampling(64) to evaluate the integral over 
s,, and, as indicated in Eq. (6), simple random sam- 
pling to evaluate the integral over A,,. With this ap- 
proach, a Latin hypercube sample (LHS) X,&k, k = 1, 
2, . . . , nLHS, is generated from s,, in consistency 
with the definition of (s,,, A,,, p,,), and a random 
sample x,,,~, i = 1, 2, . . . , nS, is generated from A,, 
in consistency with the definition of (A,,, -4, p,,). The 
percentile values in Fig. 7 are then approximated 
by solving 

- 3 0.8 - 
- M 

0.7 - 

0.6 - 
0.5 - 
0.4 - z 1 0.3 - 

- 
P 

0 

g 0.2 - 
g 0.1 - 
- a 
a 

dw (xsu ) - density function 
characterizing SUbjectiW 

g '  I I I  

Po.1 h . 5  p p '0.g 
prob (Rel>Rlx,): Probability of Release > R Given xsu E S,, 

TRIS342-48403 

Fig. 7. Distribution of exceedance probabilities due to subjec- 
tive uncertainty (adapted from Fig. 3, Ref. 42). 
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for P with prob(p I PIR) = 0.1,0.5, and 0.9, respec- 
tively, and the definition of SR, and hence the corre- 
sponding definition of S,, given in conjunction with 
- Eq. (6). Similarly, the mean exceedance probability 
P is approximated by 

The results of the preceding calculations are typically 
displayed by plotting percentile values (e.g., Po.l, Po.s, 
Po,9 in Fig. 7) and also mean values for exceedance 
probabilities (i.e., P in Fig. 7) above the correspond- 
ing release values (i-e., R) and then connecting these 
points to form continuous curves (Fig. 8). The prox- 
imity of these curves to the indicated boundary line 
provides an indication of the confidence with which 
40 CFR 191 will be met. 

With respect to the questions indicated in Sec- 
tion 2, (ts,,, &,, p,.) and results derived from (&., Au, 
p,,) (e.g., the distributions in Figs. 6-8) are providing 
an answer to Q4. 

7. COMPUTATIONAL DETAILS OF 1996 
WIPP PA 

The requirements in 194.34(c), (d), and (f) relate 
to the procedures used for a Monte Carlo integration 
over (&, xu, p J .  The accuracy requirements in 
194.34(d) can be satisfied with a simple random sam- 
ple from as, of size 300 (i.e., 1 - 0.99" > 0.95 yields 

0 104  10-1 10' Id 
Release lo ACC Environment. R 

n = 298). However, the 1996 WIPP PA decided to 
use Latin hypercube sampling(64) rather than simple 
random sampling for the required Monte Carlo inte- 
gration on (ts,., A,,, pJu) due to the efficient stratifica- 
tion properties of Latin hypercube ~ampling.@~-'~) 

By using an LHS of size 300, the requirements in 
194.34(c) and (d) can be met. Further, the confidence 
intervals required in 194.34(f) can be determined by 
generating the LHS with a replicated sampling proce- 
dure proposed by Iman.(72) In this procedure, the LHS 
XSgk, k = 1, 2,. . ., nLHS, used in Eqs. (10) and (11) 
is repeatedly generated with different random seeds. 
These samples lead to a sequence Pr(R), r = 1, 2, 
. . ., nR, of estimated mean exceedance probabilities, 
where pr(R) defines the mean CCDF obtained for 
sample r [i.e., pr(R) is the mean probability that a 
normalized release of size R will be exceeded] and 
nR is the number of independent LHSs generated 
with different random seeds. Then, 

- nR - 
P(R)  = C P,(R)/nR (12) 

r = l  

and 
nR 

{ r = l  
SE(R) = [pr(R) - P(R)I2/nR(nR - (13) 

provide an additional estimate of the mean CCDF 
and an estimate of the standard error associated with 
the mean exceedance probabilities. The t distribution 
with nR - 1 degrees of freedom can be used to place 
confidence intervals around the mean exceedance 
probabilities for individual R values [i.e., around P 
(R)]. Specifically, the 1 - a confidence interval is 
given by P(R)  5 tl-a,2SE(R), where is the 1 - 

104  10-1 101 lo3 
Release lo ACC Environment, R 

m145udm~ 

Fig. 8. Example CCDF distribution from 1992 WIPP PA (Fig. 10, Ref. 30). 
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a/2 quantile of the t distribution with nR - 1 degrees 
of freedom (e.g., t1-a,2 = 4.303 for a = 0.05 and 
nR = 3). 

To implement the preceding procedure, the 
1996 WIPP PA used nR = 3 replicated LHSs of size 
nLHS = 100 each. This produced a total of 300 obser- 
vations, which is approximately the same as the sam- 
ple size of 298 indicated above. Each sample has 
the form 

X s , k  = [ X k l  7 xk27 * * . 9 Xk,nV]r 

k = 1 , 2 , .  . . ,nLHS=100 (14) 

and was generated with the restricted pairing tech- 
nique developed by Iman and C o n ~ v e r ' ~ ~ )  to induce 
specified rank correlations between correlated vari- 
ables and also to assure that uncorrelated variables 
have correlations close to zero. 

The calculations performed with the models in 
Fig. 3 and Table IV for the LHS elements in Eq. (14) 
had to be chosen very carefully. Otherwise, the total 
computational cost would have been prohibitive. In 
particular, a full set of model calculations to deter- 
mine f(xSr.J in Eq. (6) could not be performed for 
each randomly sampled future xSr,;. Rather, calcula- 
tions were performed for a selected group of futures 
for each LHS element (Table VI), and then various 
interpolations and algebraic procedures were used to 
extend the results obtained with these futures to the 
large number of randomly sampled futures used in 
Eq. (6) (Ref. 45, Chapters 9-13). As an example, the 
procedures used to construct the spallings release 
[i.e.,fs,(xsr,l) in Eq. (4)] will be described in Section 9; 
in addition, Section 6.6 of Ref. 45 provides a detailed 
description of the procedure used to sample the indi- 
vidual futures. Once values for f(xS,,;)  were deter- 
mined, which correspond to the normalized release 
R in Eq. (l), the CCDF specified in 191.13(a) was 
readily constructed. Similarly, fc, ~ S P ,  ~ D B R ,  ~ M B ,  f D L ,  fs, 
and fS.T in Eq. (4) were used to estimate CCDFs for 
individual release modes. 

Repetition of the preceding procedure for each 
LHS element yielded a distribution of CCDFs of the 
form in Fig. 8 for each of the nR = 3 replicates as 
requested in 194.34(e). Further, the replicated sam- 
ples and the procedure in Eqs. (12) and (13) provided 
a basis for the estimation of confidence intervals as 
requested in 194.34(f). 

8. INTERMEDIATE RESULTS 

As indicated in Table VI, a large number of 
mechanistic calculations were performed as part of 

the 1996 WIPP PA. In turn, the outcomes of these 
calculations served as input to other mechanistic cal- 
culations or to algebraic procedures used in CCDF 
construction. The outcomes of a small number of 
these calculations are now presented, with more de- 
tailed presentations available in the original docu- 
mentation for the 1996 WIPP PA.(4s~48~4953sss6*('O) 

The first result required in the evaluation of f (xsr)  
in Eq. (4) is the cuttings and cavings release (i.e., fc). 
The volume of waste removed by cuttings and cavings 
was calculated by CUTTINGS-S (Fig. 9). As indi- 
cated in conjunction with a; in Table 111, this volume 
was then multiplied by an appropriate radionuclide 
concentration to obtain the actual radionuclide re- 
lease to the surface. The sampling of the waste type 
(see a, in Table 111) and the individual waste streams 
if CH waste is penetrated is carried out within the 
Monte Carlo construction of individual CCDFs indi- 
cated in Eq. (6), with the cuttings and cavings release 
being dominated by intrusions through CH waste. In 
particular, the average concentration of CH waste is 
higher than that of RH waste (Fig. lo), and a drilling 
intrusion is more likely to penetrate CH waste than 
RH waste (se pCH and pRH in entry for a; in Table 
111). Further, the variation in the radionuclide con- 
centrations in the 569 waste streams for CH waste 
causes a wide range in the size of the releases associ- 
ated with individual drilling intrusions through CH 
waste (Fig. 11). 

The BRAGFLO model lie., fB in Eq. (4)] pro- 
duced results used by CUTIINGS-S, BRAG- 
F L O D B R ,  NUTS, and PANEL to estimate re- 
leases from the repository. An important result 
supplied by BRAGFLO and used by C U T T I N G S 3  
and B R A G F L O D B R  to estimate spallings and di- 
rect brine releases, respectively, is repository pres- 
sure (Fig. 12). The pressure results in Fig. 12 are for 
replicate R1 and BRAGFLO calculations for two 
cases: (1) undisturbed (i.e., EO) conditions, and (2) 
a drilling intrusion at 1,OOO years that penetrates pres- 
surized brine in the Castile Fm (i.e., an El intrusion 
at 1,OOO years). Each frame in Fig. 12 contains 100 
individual pressure curves, with each curve calculated 
for one of the 100 LHS elements associated with 
replicate R1 [see Eq. (14)]. Thus, Fig. 12 displays 
results (i.e., pressure curves) obtained in 200 of the 
1,800 calculations performed with BRAGFLO 
(Table VI). 

The pressure in the repository under undis- 
turbed conditions tends to increase monotonically 
toward an asymptote (Fig. 12a). In contrast, pressure 
tends to drop rapidly subsequent to a drilling intru- 
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Table VI. Mechanistic Calculations Performed as Part of the 1996 WIPP PA 

BRAGFTO 
Individual calculations (six cases): EO (i.e., undisturbed conditions); E l  at 350, 1000 years (i.e., drilling intrusion through repository 
that penetrates pressurized brine in the Castile Fm); E2 at 350. 1000 years (i.e., drilling intrusion through repository that does not 
penetrate pressurized brine in the Castile Fm); E2E1 with E2 intrusion at 800 years and E l  intrusion at 2,000 years. Total calcula- 
tions: 6 nR nLHS = 6.3.100 = 1800. 

Individual calculations (52 cases): Intrusion into lower waste panel in previously unintruded (i.e., EO conditions) repository at 100, 
350, 1000, 3000, 5000, 10.000 years; intrusion into upper waste panel in previously unintruded repository at 100, 350, 1000, 3000, 
5000, 10,OOO years; initial E l  intrusion at 350 years followed by a second intrusion into the same waste panel at 550,750,2000,4000. 
or 10,000 years; initial E l  intrusion at 350 years followed by a second intrusion into a different waste panel at 550, 750,2000,4000, 
or 10.000 years; initial E l  intrusion at lo00 years followed by a second intrusion into the same waste panel at 1200, 1400, 3000, 5000, 
or 10,000 years; initial E l  intrusion at lo00 years followed by a second intrusion into a different waste panel at 1200, 1400, 3000, 
5000, or 10,OOO years; same 23 cases for initial E2 intrusions as for initial E l  intrusions. Total calculations: 52 nR nLHS = 52.3.100 
= 15,600. 

Same computational cases as for CUlT1NGS-S. 

Individual calculations (15 cases): EO El at 100, 350, 1000, 3000, 5000, 7000, 9OOO years; E2 at 100, 350, 1000, 3000, 5000, 7000, 9OOO 
years. Screening calculations: 5 nR nLHS = 1500. Total NUTS calculations: 594. Note: Screening calculations were initially per- 
formed for each LHS element (i.e., EO, E l  at 350 and 1000 years, E2 at 350 and 1000 years, which produces the multiplier of 5 in 
the calculation of the number of screening calculations) to determine if the potential for a radionuclide release existed, with a full 
NUTS calculation only being performed when such a potential existed. 

Individual calculations (seven cases): E2E1 at 100,350, 1O00, 2000, 4000, 6OOO,9ooo years. Total calculations: 7 nR nLHS = 7.3.100 
= 2100. Note: Additional PANEL calculations were also performed at 100, 125, 175, 350, 1000,3000,5000, 7500, and 10.000 years 
for Salado-dominated brines and also for Castile-dominated brines to determine dissolved radionuclide concentrations for use in the 
determinations of direct brine releases. 

Individual calculations (two cases): Partially mined conditions in vicinity of repository (i.e., conditions before fmh); fully mined condi- 
tions in vicinity of repository (i.e., conditions after fme). Total calculations: 2 nR nLHS = 2.3.100 = 600. 

Individual calculations (two cases): Partially mined conditions in vicinity of repository; fully mined conditions in vicinity of reposi- 
tory. Total calculations: 2 nR nLHS = 2.3.100 = 600. Note: Each calculation is for four radionuclides: Am-241, Pu-239, Th-230, U- 
234. Further, calculations are done for unit releases at time 0 years, which can then be used to construct transport results for the Cu- 
lebra for arbitrarv time-deoendent release rates into the Culebra (Ref. 45. Section 12.2). 

CU'lTINGS-S 

BRAGFLODBR 

NUTS 

PANEL 

SECOFL2D 

SECOTP2D 

sion due to gas flow up the borehole (Fig. 12b). Due 
to the relatively high permeability of the repository 
and the surrounding disturbed rock zone (DRZ), 
pressure gradients within the repository are small and 
pressure is almost constant throughout the repository 
at any given time. 

Spallings results [i.e., fsp in Eq. (4)] were calcu- 
lated for both drilling intrusions into an undisturbed 
repository (i.e., EO conditions) and drilling intrusions 
subsequent to an El or E2 intrusion (Table VI), with 
intrusions under undisturbed (Fig. 13) and disturbed 
(Fig. 14) repository conditions using pressure results 
of the form shown in Figs. 12a and 12b, respectively. 
Repository pressure at the time of the intrusion is 
used in the calculation of spallings releases with 
CUTTINGS-S. The calculations with CUT- 
TINGS-S produced volumes of material released 
due to spallings (Figs. 13a, 14a), with these volumes 
then multiplied by the concentration of radionuclides 

in waste [EPA units/m3 as defined in Eq. (l)] (Fig. 
10) to produce radionuclide releases to the surface 
(Figs. 13b, 14b). Second and subsequent drilling in- 
trusions often produce no spallings release (Fig. 14) 
due to low pressure in the repository (Fig. 12b). In 
particular, a column of drilling fluid at the depth of 
the repository exerts a pressure of approximately 8 
MPa, and so both spallings releases and direct brine 
releases were assumed to have the potential to take 
place only when the pressure in the repository was 
above 8 MPa.(49) 

Direct brine releases [i.e., fDBR in Eq. (4)] were 
calculated for the same cases as spallings releases 
(Table VI). Similarly to the spallings calculation with 
CUTTINGS-S, a brine release was initially calcu- 
lated by B R A G F L O J B R  (Fig. 15a), which was 
then multiplied by a radionuclide concentration (Fig. 
16) to produce a direct brine release to the surface 
(Fig. 15b). Time-dependent radionuclide concentra- 
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Fig. 9. Distribution over all 300 LHS elements for original (Le., 
uncompacted) volume removed due to cuttings and cavings by 
a single drilling intrusion through CH-TRU waste. 

tions for Salado-dominated brine (Fig. 16a) and Cas- 
tile-dominated brine (Fig. 16b) were used in the anal- 
ysis because the chemistry of the brine and hence 
radionuclide solubilities are believed to be a function 
of brine source. The distributions of concentration 

Concentration of CH-TRU and RH-TRU Waste 

lo-' 4 

103  I I 

Id 1 o3 1 o4 
Time (yr) 

TRl-6342-4785-0 

Fig. 10. Average concentration (EPA unitslm') of CH- and 
RH-TRU waste. 

Fig. 11. Distribution of normalized release to accessible environ- 
ment for cuttings removal from CH-TRU waste due to variation in 
intersected waste streams. Results calculated with median volume 
from Fig. 9 (i.e., 0.508 m'), 38.6% of removed volume assumed to 
be CH-TRU waste, and a sample of size 10,ooO at each time. 

curves in Fig. 16 result from uncertain variables con- 
tained in x,,, and sampled in the LHS in Eq. (14). The 
calculations for direct brine releases subsequent to 
an initial drilling intrusion have the same case struc- 
ture as for spallings releases (Table VI), with these 
releases often being zero due to either low pressure 
or low brine saturation in the repository (Ref. 45, 
Figs. 10.1.6, 10.1.7). 

Another important result calculated by BRAG- 
FLO is brine flow away from the repository, with 
such flows then used as input to NUTS and PANEL 
to determine radionuclide transport away from the 
repository by flowing brine. In terms of the represen- 
tation for f (xs , )  in Eq. (4), these flows are used in the 
determination of fMs, f D L ,  fs, and fN+ The releases 
represented by f M D ,  f D L ,  and f s  were determined by 
calculations performed with NUTS and were found 
to be zero for each of the 1,500 BRAGFLO calcula- 
tions used to supply input for NUTS calculations 
(Table VI) due to limited or nonexistent brine flow 
from the repository to the marker beds, the Dewey 
Lake Red Beds, and the land surface. The only poten- 
tially significant brine flows away from the repository 
calculated by BRAGFLO were up an intruding bore- 
hole from the repository to the Culebra Dolomite 
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BRAGFLO (EO, R1)  
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Fig. 12. Repository pressure for 100 LHS elements in replicate R1: (a) Undisturbed (i.e., EO) conditions, and (b) El  intrusion 
at 1,OOO years. 

(Fig. 17), with these flows used in the determination 
of fN.p with NUTS or PANEL as appropriate (Table 
VI). However, most of these potentially important 
flows were also zero or very close to zero (Fig. 17). 

The NUTS program was used to determine fN.p 
for cases involving a single drilling intrusion (i.e., an 

CUITINGS-S (First Intrusion, R1, R2. R3): Splllngs 
I 

l o 0 U  Frame 1% 

350U lWLl x x x  xx- - 
U 

2 
-- 1 m u  I I 

I I 

10-1 1 00 10' 
Volume Removed (ms) 

E l  or E2 intrusion), and the PANEL program was 
used to determine fN.p for cases involving both an E2 
and an El intrusion into the same waste panel (i.e., 
an E2E1 intrusion). As an example, Fig. 18 shows 
releases of individual radionuclides for an E l  intru- 
sion at 1,OOO years (Fig. 18a) and total normalized 

CUlTlNGS-S (First Intrusion, R1. R2, R3): Spallings 
I * ' ~ ' ~ ~ " 1  8 ~ ~ ~ ~ ~ ' 1  8 ~~~ 
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TR16342-4772-3 

Fig. W. Distribution over all 300 LHS elements for original (i.e., uncompacted) volume removed (m') and normalized release 
(EPA units) due to spallings for a single drilling intrusion into a previously unintruded repository that encounters CH- 
TRU waste. 
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CUTTINGS-S (R1, Fi2, R3): El  at loo0 yr, Spalllnos 2nd lntr CUlTlNGS-S (Rl, R2. R3): E l  at loo0 yr, Spallhgs 2nd lntr 
I . """'I ' " " ' l . l  . . .  .....' . . . . . . . .  I . "'I 
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104  104  104  10-2 10-1 100 
Normalized Release (EPA unlts) 

*S Signifies Second Intrusion Occurs in Same (S) Waste Panel as Firat Intrusion 
bD Signifies Second Intrusion Occurs in Different (D) Waste Panel than First Intrusion 

Fig. 14. Distribution over all 300 LHS elements for original (i.e., uncompacted) volume removed (m3) and normalized release 
(EPA units) due to spallings for the second drilling intrusion into CH-TRU waste after an initial E l  intrusion at 1,OOO years. 
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Fig. 15. Distribution over all 300 LHS elements for brine release (m3) and normalized release (EPA units) due to direct 
brine release for a single drilling intrusion into a previously unintruded repository. 



1996 Compliance Certification Application 977 

Salado Brine Dominated Condlti~ls 
Radionudide Concentration in Waste Panel 

1 0-6 
0.0 2.0 4.0 6.0 8.0 10.0 

Time (Id yr) 

lo-'k r . , , , , . , . . , , , , , 

Castile Brine Dominated Condlions 
Radionuclide Chrwntratlon in Waste Panel 

Repiicete R1 

Castile Brine Dominated Condlions 
Radionuclide Chrwntratlon in Waste Panel 

I T  10-2 i 
Q 1O-l 

2 10-3 a 

Frame 18b 

2.0 4.0 6.0 8.0 10.0 
TIM (103yr) 

TRl-6342-4777-2 

Fig. 16. Radionuclide concentration (EPA unitslm') in repository with MgO backfill. 

releases for E l  intrusions at different times (Fig. 18b). 
The large number of zero releases results from a 
failure of the repository to fill with brine, with the 
result that there is no brine flow from the repository 
to the Culebra. The results in Fig. 18 are cumulative 
(i.e., integrated) releases. As an example, the time- 
dependent cumulative releases for an El  intrusion at 
1,000 years are shown in Fig. 19, with the cumulative 
releases at 10,OOO years corresponding to the total 
normalized releases for replicate R1 and an intrusion 
at 1,000 years in Figs. 18a and 18b. 

The releases to the Culebra calculated by NUTS 
and PANEL provided input to SEC02DTP for trans- 
port through the Culebra to the accessible environ- 
ment [i.e., for the evaluation off& in Eq. (4)]. Also, 
Culebra flow fields were provided by calculations per- 
formed with SEC02DFL. The actual results avail- 
able from NUTS and PANEL were time-dependent 
release rates of individual radionuclides to the Cule- 
bra (i.e., results of the form that were integrated to 
obtain the cumulative releases in Fig. 19, but for 
individual radionuclides). 

To save on computational requirements, the 
1996 WIPP PA performed SEC02DTP calculations 
for unit radionuclide releases to the Culebra, with 
the results of these calculations then being used to 
construct transport results for arbitrary time-depen- 
dent radionuclide releases to the Culebra (Ref. 45, 
Table 12.2.3). This computational strategy was possi- 
ble because SEC02DTD is based on the solution of 
a system of linear partial differential equations. When 
the SEC02DTP calculations were performed for unit 
releases to the Culebra, the resultant transport to the 

accessible environment was found to be zero for all 
sample elements and all radionuclides except for U- 
234 for one sample element. However, that sample 
element had no radionuclide release to the Culebra. 
Thus, although radionuclide releases to the Culebra 
did take place for some sample elements, no radionu- 
clide transport through the Culebra to the accessible 
environment took place in the analysis. 

9. CONSTRUCTION OF CCDFs AND 
COMPARISONS WITH 40 CFR 191.13 

The central result calculated in the 1996 WIPP 
PA is the CCDF for normalized radionuclide release 
to the accessible environment specified in 40 CFR 
191.13 (Section 2). As indicated in Sections 4 and 5, 
individual CCDFs were constructed with Monte 
Carlo techniques for normalized releases defined by 
a function fof the form in Eq. (4), with such CCDFs 
characterizing the effects of stochastic uncertainty. 
Further, as indicated in Sections 6 and 7, distributions 
of CCDFs derive from subjective uncertainty and 
were estimated with procedures based on Latin 
hypercube sampling. 

Of the components off in Eq. (4), only fc, fsp, 
and fDBR are nonzero in the 1996 WIPP PA, with the 
result that f has the simpler form 

flxsr) = fC(xsr) + fSP[xsr,fB(xsr)] 

+ fDBR{xsr, fSP[xsr, fB(xsr)], fdxsr)) (15) 
Although the CCDF specified in 40 CFR 191.13 is 
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Fig. 17. Cumulative brine flow up borehole at  top of DRZ 
for 100 LHS elements in Replicate R1: (a) El intrusion, (b) 
E2 intrusion, and (c) E2E1 intrusion. 

for all release modes [i.e., is based on f as defined in 
Eqs. (4) and (15)], CCDFs can also be determined 
for the individual release modes [i.e., fc, f sp ,  and fDBR 

in Eq. (15)], with such results helping provide per- 
spective on what is determining the location of the 
CCDF for all release modes. 

As an example, the construction of the CCDFs 
associated with spallings releases is now illustrated. 
This construction is based on the evaluation of f s p  
(x,,~) for a sequence of randomly sampled futures 
xssi, i = 1, 2, . . . , nS = 10,OOO [see Eqs. ( 5 ) ,  (6 ) ] .  
Specifically, the construction uses results obtained 
in a small number of calculations performed with 
CUTTINGS-S (Table VII) in conjunction with alge- 
braic manipulations and interpolations (Table VIII) 
to estimatefSP(xssi) for each randomly sampled future 
x,,,. Once the &(x,~,~) are evaluated, the resultant 
CCDF can be constructed as indicated conceptually 
in Eq. (6) ,  although in computational practice a some- 
what different and more efficient procedure is used 
(Ref. 45, Section 6.7). The computational results de- 
scribed in Table VII are illustrated in Figs. 10, 13, 
and 14. The distributions in Figs. 13 and 14 are over 
all 300 LHS elements used in the analysis. However, 
the algorithm described in Table VIII to determine 
fsp(xSsi) ,  i = 1,2, . . . , nS, uses results obtained with 
one LHS element at a time [i.e., Xs,k in Eq. (14)], 
with the result that each constructed CCDF is condi- 
tional on the occurrence of a specific LHS element. 

The resultant distribution of CCDFs for the 
spallings release for replicate R1 is shown in Fig. 20b. 
As each CCDF was constructed for a single LHS 
element, Fig. 20b potentially contains 100 CCDFs, 
although only 82 CCDFs appear in the plot because 
18 LHS elements failed to produce spallings releases 
that exceeded 1 X EPA units. The spread of the 
CCDFs in Fig. 20b provides an indication of confi- 
dence that the CCDF for spallings release does in- 
deed fall below the boundary line specified in 40 CFR 
191.13. As indicated by the location of all CCDFs 
to the left of the boundary line, a high degree of 
confidence exists that the CCDF for spallings releases 
meets the requirements imposed by 40 CFR 191.13. 

Similar construction procedures were also used 
to determine CCDFs due to cuttings and cavings 
(Ref. 45, Section 9.2) and direct brine releases (Ref. 
45, Section 10.3). Further, the cuttings and cavings, 
spallings, and direct brine releases were combined to 
determine a total release as indicated in Eq. (15). 
The CCDFs for the individual release modes and 
the total release fall substantially to the left of the 
boundary line specified in 40 CFR 191.13, with the 
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Fig. 18. Cumulative radionuclide transport over 10,OOO years from repository to Culebra Dolomite for El intrusions: (a) 
Individual radionuclides with an El  intrusion at 1OOO years, and (b) total release for El intrusions at 100, 350, 1000, 3000, 
SOOO, 7000, and 9OOO years. 

total release dominated by the cuttings and cavings 
component (Fig. 20). 

The presentation of mean CCDFs and percentile 
curves as described in conjunction with Fig. 8 pro- 
vides a more quantitative way to compare the distri- 
butions of CCDFs in Fig. 20 with the boundary line 
specified in 40 CFR 191.13. As an example, mean 

NUTS (El at lo00 yr, R1) 
Total Isotope Activity up Borehole at Rustler/Culebra Interface 

and percentile curves for the total release are shown 
in Fig. 21 and fall substantially to the left of the 
boundary line. 

The curves in Fig. 21 were obtained by pooling 
replicates R1, R2, and R3 (i.e., the mean CCDFs 
and percentile curves were constructed from the 300 
CCDFs associated with replicates R1, R2, and R3). 
However, the results obtained with the individual 
replicates were quite stable, with little variation in 
the location of the mean CCDF and percentile curves 
from replicate to replicate. For the total release 
CCDFs, the results obtained with the individual repli- 
cates are almost indistinguishable (Fig. 22a). 

The requirement in 40 CFR 194.34(f) mandates 
the determination of a 95% confidence interval on 
the mean CCDF (Section 2), which can be obtained 
from the three replicated samples with the technique 
described in conjunction with Eqs. (12) and (13). 
In particular, a very tight confidence interval exists 
around the mean CCDF (Fig. 22b), which is consis- 
tent with the stability of the mean CCDF across the 
three replicates (Fig. 22a). 

0.0 2.0 4.0 6.0 8.0 10.0 

10. DISCUSSION Time (lo3 yr) 
TRl-6342-57294 

Fig. 19. Cumulative normalized release from repository to Culebra 
Dolomite for an El intrusion at 1,OOO years. 

The 1996 WIPP PA was carried out to support 
an application by the DOE to the EPA for the certi- 
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Table VII. Results Available for Each LHS Element x , ~ ~  from Calculations with CUTTINGS-S for Use in CCDF Construction for 
Spallings Releases 

CcH(n): Concentration (EPA unitslm’) in CH-TRU waste at time T ~ ,  where Q, k = 1, 2, . . . , 9, corresponds to 100, 125, 175, 350, 
1000, 3000, 5000, 7500, and 10,000 years, respectively. See curve “CH-TRU waste within waste panels” in Fig. 10. Source: Refs. 38, 73. 

VSm,u( a): Volume (m’) of original (i.e., uncompacted) material released by a drilling intrusion into a previously unintruded repository 
at time T~ that encounters CH-TRU waste in an upper waste panel, where Q, k = 1, 2, . . . , 6 ,  corresponds to 100, 350, 1000, 3000, 
5000, and 10,000 years, respectively. See Fig. 13a. Source: CUTTINGS-S. 

VSmL(q): Same as VSm,u(~k), but for intrusion into a lower waste panel. 

VSEI,S(~, Aqk): Volume (m’) of original (i.e., uncompacted) material released by second drilling intrusion at time T, + Aqk into the 
same waste panel penetrated by an initial El intrusion at time q,  where (1) 3 , j  = 1, 2, corresponds to 350 and lo00 years; (2) T~ + 
A q k ,  k = 1, 2. . . . , 7, corresponds to 350, 550, 750, 2000, 4000, 10,000, and 10,250 years (i.e., ArIk = 0, 200, 400, 1650,3650,9650, 
9900 years), results for k = 2, 3, . . . , 6 are summarized in Fig. 9.3.6 of Ref. 45, VSEI.S(T~,  AT^^) = VSBI,S(~l ,  h12) [i.e., VSE1,d350, 0) = 
VSEl,s(350, ZOO)], and VSn.s(~l ,  Aq6) = VSEI.S(~l,  AT^,) [i.e., VSE1,S(350, 9650) = VSEl,s(350, 9900)]; and (3) 72 +  AT^, k = 1, 2, . . . , 
6. corresponds to 1000, 1200, 1400, 3000, 5000, and 10,000 years (i.e., AT= = 0, 200,400, 1000,4OOO, 9OOO years), results for k = 
2, 3, . . . , 6 are summarized in Fig. 14a, and VSE1.s(r2r h21) = VSEI.S(~2, A722) [i.e., VSE1,s(lOOO, 0) = VSEl.S(l000, 200)]. Source: 
CUTTINGS-S. The assignments VSElS(35O, 0) = VSEI,,(35O, 200) and VSm,S(lOOO, 0 )  = VSE1,S(lOOO, 200) are made to bracket the time 
period between the occurrence of the first drilling intrusion and the failure of the plug at the Rustler/Salado interface (see Table 4.2.8, 
Ref. 45); the assignment VSEl,S(350, 9650) = VSEl,s(350, 9900) is made to facilitate the use of VSEI.S(71,  AT^^) for initial intrusions before 
T~ = 350 years. 

VSEI,S(~ ,  Aqk): Same as VSE~.~(T, ,  Aqk) .  but for intrusion into different waste panel. See Fig. 9.3.6 of Ref. 45 for initial intrusions at 350 
years and Fig. 14a of this presentation for initial intrusions at lo00 years. 

VSns(q, Same as VSEI.S(q, Aqk), but for initial E2 intrusion. See Fig. 9.3.7, Ref. 45. 
VSno(q, Aqk): Same as VSEI,D(7j, A q )  but for initial E2 intrusion. See Fig. 9.3.7, Ref. 45. 

fication of the WIPP for the disposal of TRU waste.@) 
The most important result from a regulatory perspec- 
tive calculated in this PA is a CCDF for normalized 
radionuclide release to the accessible environment, 
which is required to fall to the left of the boundary 
line specified in the EPA’s regulation 40 CFR 191.13 
(Section 2). Even when the effects of subjective un- 
certainty are taken into account, this CCDF was 
found to meet the requirements associated with 40 
CFR 191.13 (Section 9). 

Some individuals feel that the boundary line 
specified in 40 CFR 191.13 for the CCDF for normal- 
ized radionuclide release to the accessible environ- 
ment (Fig. 2) is a novel concept. However, this bound- 
ary line is actually an example of the Farmer limit 
line approach to the definition of acceptable ri~k.(’~-’~) 
A similar construction appears in the U.S. Nuclear 
Regulatory Commission’s proposed large release 
safety goal (Ref. 41, Fig. 20; Refs. 77, 78). 

As is typical of large PAS, the 1996 WIPP PA 
was not a single isolated analysis, but rather the final 
outcome of a sequence of iterative PAS carried out 
over approximately 10  year^.(^^.^-") By starting the 
PA process early in the development of the WIPP’s 
CCA, important insights were obtained with respect 
to model and data needs and also with respect to the 
appropriate conceptual and computational structure 

of the PA itself. It is strongly recommended that any 
project that is required to produce a PA start the 
process as early as possible so that the associated 
experience and insights can be gained before carrying 
out the final PA. 

The overall conceptual and computational struc- 
ture of the 1996 WIPP PA derived from the require- 
ment to maintain a separation between stochastic 
(i.e., aleatory) uncertainty and subjective (i.e., episte- 
mic) uncertainty as mandated in 40 CFR 191 and 40 
CFR 194 (Section 2). This distinction was maintained 
by defining separate probability spaces (asf, A,, psf) 
and (A,,, &, p3,) for stochastic and subjective uncer- 
tainty, respectively, with individual CCDFs for com- 
parison with the boundary line in 40 CFR 191.13 
deriving from stochastic uncertainty and distributions 
of CCDFs deriving from subjective uncertainty (Sec- 
tions 4-6). In the computational implementation of 
the PA, simple random sampling was used to deter- 
mine the effects of stochastic uncertainty, and Latin 
hypercube sampling was used to determine the ef- 
fects of subjective uncertainty (Sections 7-9). 

The use of simple random sampling to assess the 
effects of stochastic uncertainty was made possible by 
performing a relatively small number of mechanistic 
calculations for each LHS element (Tables VI, VII) 
and then using algebraic procedures (Table VIII) to 
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Fig. 20. Distributions of CCDFs for normalized release to the accessible environment over 10,OOO years for replicate R1: 
(a) Cuttings and cavings, (b) spallings, (c) direct brine release, (d) total release (Figs. 6, 9, Ref. 39). 

extend the results of these calculations to the large 
number of futures generated in random sampling 
from the probability space (4, Zl, ps,). The mainte- 
nance of an appropriate separation between stochas- 
tic and subjective uncertainty, as done in the 1996 
WIPP PA, is widely recognized as an essential part 
of PAS for complex 

Formal quality assurance (QA) procedures are 
essential in an analysis such as the 1996 WIPP PA that 
supports a major regulatory decision and, indeed, are 
specified by the EPA as part of the requirements that 

must be satisfied by the WIPP (see Ref. 33, Section 
194.22, which specifies adherence to a QA program 
that implements the requirements of ASME NQA- 
1, ASME NQA-2a, and ASME NQA-3). Such proce- 
dures assure (1) adequate documentation of models 
and the computer programs that implement them, 
(2) adequate documentation of analysis assumptions 
and data used within the analysis, and (3) the trace- 
ability and archival storage of all calculations per- 
formed as part of the analysis. To this end, formal 
QA procedures based on guidance from the EPA(") 



982 Helton, Anderson, Jow, Marietta, and Basabilvazo 

Table WI. Determination of Spallings Release fSP[x,,, f ~ ( x , , ) ]  for 
an Arbitrary Future x,, 

Notation: 

nH, = number of intrusions prior to intrusion i that penetrate 
pressurized brine and use plugging pattern 2 (i.e., two 
discrete plugs) 

nD = number of intrusions required to deplete brine pocket 
(see B P V U L  in Table 5.2.1, Ref. 45, for definition of nD 
in 1996 WIPP PA) 

vated area and plugging pattern 1 used (i.e., contin- 
6, = 0 if intrusion i into (1) nonexcavated area or (2) exca- 

uous plug) 
= 1 if intrusion i into excavated area, penetrates pressurized 

= 2 if intrusion i into excavated area and either (1) pene- 
brine, plugging pattern 2 used, and nH, 5 nD 

trates pressurized brine, plugging pattern 2 used, and nHi > 
nD, (2) does not penetrate pressurized brine and plugging 
pattern 2 used, or (3) plugging pattern 3 used (i.e., three 
discrete plugs) 

Release rSP, for intrusion into nonexcavated area at time f,: 

rSP, = 0 

Release rSP, for intrusion into pressurized repository at time 
t,(i.e., i = 1 or 6, = O for j = 1, 2, . . . , i - 1): 

rSP, = 0 if intrusion penetrates RH-TRU waste 
= CcH(t,)V.Sm,u(t,) if 1, in upper waste panel" 
= cCH(f,)vs,,L(f,) if 1, in lower waste panel 

Release rSP, for intrusion into a depressurized repository at 
time t, with no El intrusion in first i - 1 intrusions (i.e., 6, = 0 
for k = 1. 2 , .  . . , j  - 1, hi = 2, 6, # 1 fork = j + 1.j + 2, 
. . . , i - 1 ) :  

rSPi = 0 if intrusion penetrates RH-TRU 
waste 

= CcH(t,)VS,,(t,, t, - ti) if l,, 1, in same waste panelb 
= CC-(t,)VS,,& t, - ti) if 1,. 1, in different waste panels 

Release rSP, for intrusion into a depressurized repository at 
time t, with first E l  intrusion at time t, < f, (i.e., 6, # 1 for k = 
1. 2. .  . . , j - 1, b, = 1): 

if intrusion penetrates RH-TRU 
waste 

= ccH(f,)vs~I~(f,. t, - t,) if 1,. 1, in same waste panel 
= CCH(f,)VSEI,D(t,, t, - t,) if 1,. 1, in different waste panels 

rSP, = 0 

Spallings release fsp[x,,, fs(x,,)]: 

M~,,JA~,JI = 2 r s p ,  
i- 1 

@ Here and elsewhere, appearance of an undefined time implies 
linear interpolation between defined times in Table VII. 
Here and elsewhere, appearance of two undefined times implies 
two-dimensional linear interpolation between defined times in 
Table VII. 

and the DOE(@) were implemented and followed as 
an integral part of the 1996 WIPP PA. 

Although not emphasized in this presentation, 
regression-based sensitivity analysis played an impor- 
tant role in both the 1996 WIPP PA(45) and in earlier 
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Fig. 21. Mean and percentile curves for total normalized 
release (i.e., cuttings, cavings, spallings and direct brine) to 
the accessible environment over 10,OOO years obtained by 
pooling results for replicates R1, R2, and R3. 

PAS (Ref. 4, Vol. 4; Ref. 5, Vols. 4, 5 ;  Refs. 28-30, 
85, 86) and helped provide many of the important 
insights gained in these PAS. In particular, the LHSs 
used to propagate subjective uncertainty lead to a 
mapping from uncertain analysis inputs to analysis 
results that can be explored with techniques based 
on examination of scatterplots, stepwise regression 
analysis, and partial correlation analysis.@') Sensitiv- 
ity analysis provides a way to identify which of the 
uncertain inputs to the analysis (Table V) are most 
important in determining the uncertainty in analysis 
outcomes. For example, the uncertainty character- 
ized by the distribution of CCDFs in Fig. 20d for total 
normalized release to the accessible environment is 
dominated by the uncertainty in the shear strength 
of the waste (WTAUFAZL in Table V) and the extent 
to which microbial degradation of cellulose takes 
place (WMZCDFLG in Table V), with smaller effects 
due to a number of additional variables (Ref. 45, 
Section. 13.2). Further, sensitivity analysis constitutes 
a powerful tool for analysis verification by providing 
a way to examine the effects of different inputs on 
a large number of analysis outcomes, with the possi- 
bility of an error being indicated when a variable 
has an observed effect that is not consistent with its 
anticipated effect (e.g., the observation that radionu- 
clide release to the Culebra increases as radionuclide 
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Fig. 22. Outcome of replicated sampling for distribution of CCDFs for total 
normalized release to the accessible environment over 10,000years: (a) Mean 
and percentile curves for individual replicates, (b) confidence intervals (CIS) 
on mean curve obtained from the three replicates (Fig. 8, Ref. 39). 

solubility decreases would suggest that there was 
probably an error in the implementation of the analy- 
sis). A high-level overview of sensitivity analysis in 
PA for the WIPP is given in Ref. 88. 

The EPA certified the WIPP for the disposal of 
TRU waste in May 1998,@’) and at present (August 
1998), it appears likely that the WIPP will be in opera- 
tion by the end of 1998. The LWA(”) specifies that the 
WIPP must undergo a recertification every 5 years. 
These recertifications will require updates of the 
CCA PA described in this presentation that incorpo- 
rate any new information or perspectives with respect 
to the WIPP that have been acquired since the imple- 
mentation of the CCA PA. 
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        The conceptual structure and computational 
organization of the 2008 total system performance 
assessment (TSPA) for the proposed high-level 
radioactive waste repository at Yucca Mountain, Nevada, 
are described. This analysis was carried out to support 
the License Application by the U.S. Department of Energy 
(DOE) to the U.S. Nuclear Regulatory Commission 
(NRC) for the indicated repository. In particular, the 
analysis was carried out to establish compliance with the 
postclosure requirements specified by the NRC in 
proposed 10 CFR Part 63. The requirements in 10 CFR 
Part 63 result in a performance assessment that involves 
three basic entities: (EN1) a characterization of the 
uncertainty in the occurrence of future events (e.g., 
igneous events, seismic events) that could affect the 
performance of the repository; (EN2) models for 
predicting the physical behavior and evolution of the 
repository (e.g., systems of ordinary and partial 
differential equations); and (EN3) a characterization of 
the uncertainty associated with analysis inputs that have 
fixed but imprecisely known values (e.g., the appropriate 
spatially-averaged value for a distribution coefficient). 
The designators aleatory and epistemic are commonly 
used for the uncertainties characterized by entities (EN1) 
and (EN3). The manner in which the preceding entities 
are defined and organized to produce the 2008 TSPA for 
the proposed Yucca Mountain repository are described.  
 

 
I. INTRODUCTION 

 
The appropriate disposal of radioactive waste from 

military and commercial activities is a challenge of 
national and international importance. As part of the 
solution to this challenge, a proposed deep geologic 
repository for high-level radioactive waste is under 
development by the U.S. Department of Energy (DOE) at 
Yucca Mountain (YM), Nevada. The development of the 
YM repository is the single most important radioactive 
waste disposal project currently being undertaken in the 
United States. The following presentation provides a 
description of the conceptual structure and computational 
organization of the 2008 total system performance 
assessment (TSPA) for the proposed YM repository. 

 

II. REGULATORY BACKGROUND 
 
As mandated in the Energy Policy Act of 1992,1 the 

U.S. Environmental Protection Agency (EPA) is required 
to promulgate public health and safety standards for 
radioactive material stored or disposed of in the YM 
repository; the U.S. Nuclear Regulatory Commission 
(NRC) is required to incorporate the EPA standards into 
licensing standards for the YM repository; and the DOE is 
required to show compliance with the NRC standards.  
The regulatory requirements for the YM repository that 
resulted from these mandates have two primary sources:  
(i) Public Health and Environmental Radiation Protection 
Standards for Yucca Mountain, NV; Final Rule (40 CFR 
Part 197),2 which has been promulgated by the EPA, and 
(ii) Disposal of High-Level Radioactive Wastes in a 
Proposed Geologic Repository at Yucca Mountain, 
Nevada; Final Rule (10 CFR Parts 2, 19, 20, etc.),3 which 
has been promulgated by the NRC. In turn, the DOE is 
required to carry out a performance assessment for the 
YM repository that satisfies the requirements specified in 
the preceding documents. In addition, the NRC has 
published the Yucca Mountain Review Plan; Final Report 
(YMRP)4 to guide assessing compliance with 10 CFR 
Parts 2, 19, 20, etc.  

The initial EPA standard indicated above specified 
conditions that the YM repository was required to satisfy 
for the first 104 yr after its closure. In a subsequent suit,5 
it was ruled that the EPA did not follow guidance in a 
National Academy of Science (NAS) study6 as mandated 
by Congress in the Energy Policy Act of 1992. In 
particular, it was ruled that the EPA had failed to follow 
the guidance in the NAS study that the regulatory period 
for the YM repository should extend over the period of 
geologic stability at the facility site, which was suggested 
to be 106 yr. As a result, the initial regulation for the YM 
facility was remanded to the EPA for revision. 

In response to this remand, the EPA published 40 
CFR Part 197, Public Health and Environmental 
Radiation Protection Standards for Yucca Mountain, 
Nevada; Proposed Rule,7 which contained proposed 
revisions to the standards for the YM repository. 
Consistent with the EPA’s proposed revisions, the NRC 
published proposed 10 CFR Part 63, Implementation of a 
Dose Standard After 10,000 Years.8 The EPA’s and 
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NRC’s proposals in response to the remand left most of 
the requirements for the first 104 yr after repository 
closure unchanged. However, new conditions were 
proposed for the time interval from 104 yr through the 
period of geologic stability. 

The overall structure of the YM 2008 TSPA derives 
from the individual protection standard specified by the 
EPA and the NRC. Specifically, the following standard is 
specified by the NRC (Ref. 8, p. 53319): 

 
§ 63.311 Individual protection standard after permanent 
closure.  (a) DOE must demonstrate, using performance 
assessment, that there is a reasonable expectation that the 
reasonably maximally exposed individual receives no more than 
the following annual dose from releases from the undisturbed 
Yucca Mountain disposal system: (1) 0.15 mSv (15 mrem) for 
10,000 years following disposal; and (2) 3.5 mSv (350 mrem) 
after 10,000 years, but within the period of geologic stability. 
(b) DOE’s performance assessment must include all potential 
environmental pathways of radionuclide transport and 
exposure. (NRC1) 

 
Except for minor differences in wording, the preceding 
standard is the same as the proposed standard specified by 
the EPA (Ref. 7, p. 49063). 

 
In turn, the NRC gives the following guidance on 

implementing the preceding individual protection 
standard (Ref. 8, p. 53319): 

 
§ 63.303  Implementation of Subpart L. (a) Compliance is based 
upon the arithmetic mean of the projected doses from DOE’s 
performance assessments for the period within 10,000 years 
after disposal for:  (1) § 63.311(a)(1); and (2) §§ 63.321(b)(1) 
and 63.331, if performance assessment is used to demonstrate 
compliance with either or both of these sections. (b) Compliance 
is based upon the median of the projected doses from DOE’s 
performance assessments for the period after 10,000 years of 
disposal and through the period of geologic stability for: (1) § 
63.311(a)(2); and (2) § 63.321(b)(2), if performance assessment 
is used to demonstrate compliance. (NRC2) 

 
Again, the preceding is the same as the corresponding 
guidance given by the EPA (Ref. 7, p. 49063). 

As indicated in (NRC1) and (NRC2), the NRC 
expects the determination of mean and median dose to the 
reasonably maximally exposed individual (RMEI) to be 
based on a detailed performance assessment. This 
expectation is further emphasized by the following 
statement in the YMRP (Ref. 4, p. 2.2-1): 

 
Risk-Informed Review Process for Performance Assessment—
The performance assessment quantifies repository performance, 
as a means of demonstrating compliance with the postclosure 
performance objectives at 10 CFR 63.113. The U.S. Department 
of Energy performance assessment is a systematic analysis that 
answers the triplet risk questions: what can happen; how likely 
is it to happen; and what are the consequences. (NRC3) 

 

For convenience, the preceding questions can be 
represented by (Q1) “What can happen?”, (Q2) “How 
likely is it to happen?”, and (Q3) “What are the 
consequences if it does happen?”. The preceding 
questions provide the intuitive basis for the 
Kaplan/Garrick ordered triple representation for risk: 

 
(Si, pSi, cSi), i = 1, 2, …, nS,   (1) 
      

where (i) Si is a set of similar occurrences (i.e., the answer 
to Q1), (ii) pSi is the probability of Si (i.e., the answer to 
Q2), and (iii) cSi is a vector of consequences associated 
with Si (i.e., the answer to Q3).9 Further, the Si must be 
disjoint (i.e., Si ∩  Sj = ∅  for i ≠  j); each Si must be 
sufficiently homogeneous to allow use of a single 
representative consequence vector cSi; and ∪ iSi must 
contain all risk significant occurrences for the facility 
under consideration.  

In addition, there is a fourth basic question that 
underlies the YM 2008 TSPA and, indeed, all complete 
performance assessments: (Q4) “What is the uncertainty 
in the answers to the initial three questions?”. The 
importance of answering this fourth question is 
emphasized in a number of statements by the NRC. For 
example: 

 
For such long-term performance, what is required is reasonable 
expectation, making allowance for the time period, hazards, and 
uncertainties involved, that the outcome will conform with the 
objectives for postclosure performance for the geologic 
repository. Demonstrating compliance will involve the use of 
complex predictive models that are supported by limited data 
from field and laboratory tests, site-specific monitoring, and 
natural analog studies that may be supplemented with prevalent 
expert judgment. Compliance demonstrations should not exclude 
important parameters from assessments and analyses simply 
because they are difficult to precisely quantify to a high degree 
of confidence. The performance assessments and analyses 
should focus upon the full range of defensible and reasonable 
parameter distributions rather than only upon extreme physical 
situations and parameter values (Ref. 3, p. 55804).  (NRC4) 

 
Once again, although the criteria may be written in unqualified 
terms, the demonstration of compliance must take uncertainties 
and gaps in knowledge into account so that the Commission can 
make the specified finding with respect to paragraph (a)(2) of § 
63.31 (Ref. 3, p. 55804).      (NRC5) 

 
Both the preceding statements clearly indicate that a 
reasonable treatment of uncertainty should be a 
fundamental part of a performance assessment used to 
support a licensing application for the YM repository. 
 
III. CONCEPTUAL STRUCTURE 
 

The YM 2008 TSPA was developed to satisfy 
requirements in 10 CFR Part 63 and has a structure that 
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involves three basic entities: (EN1) a characterization of 
the uncertainty in the occurrence of future events (e.g., 
igneous events, seismic events) that could affect the 
performance of the repository; (EN2) models for 
predicting the physical behavior and evolution of the 
repository (e.g., systems of ordinary and partial 
differential equations); and (EN3) a characterization of 
the uncertainty associated with analysis inputs that have 
fixed but imprecisely known values (e.g., the spatially-
averaged value for a distribution coefficient).10 The 
designators aleatory and epistemic are commonly used for 
the uncertainties characterized by (EN1) and (EN3). 

In the preceding, aleatory uncertainty is used in the 
designation of randomness in the possible future 
conditions that could affect the YM repository.  In 
concept, each possible future at the YM repository can be 
represented by a vector 

 [ ]1 2, , , ,nAa a a=a …    (2) 
where each ai is a specific property of the future a (e.g., 
time of a seismic event, size of a seismic event, …).  In 

turn, a subset S of the set A of all possible values for a 
constitutes what is referred to as a scenario class in the 
YM 2008 TSPA.  As part of the YM 2008 TSPA 
development, a probabilistic structure is imposed on the 
set A.  Formally, this corresponds to defining a 
probability space (A, A, pA) for aleatory uncertainty.  

Then, A is the set of all possible scenario classes, and pA 

is the function that defines scenario class probability (i.e., 
scenario class S is an element of A and pA(S) is the 

probability of scenario class S). As discussed in more 
detail in Sect. VI, the set A contains both disjoint and 

nondisjoint scenario classes.    Formally, the probability 
space (A, A, pA) provides a characterization of aleatory 

uncertainty and constitutes the first of the three basic 
mathematical entities that underlie the determination of 
expected (i.e., mean) dose. 

 
TABLE I. Representation of Aleatory Uncertainty in the YM 2008 TSPA  

 
Individual Futures: 

, , , , , , , , , , ,EW ED II IE SG SFnEW nED nII nIE nSG nSF= ⎡ ⎤⎣ ⎦a a a a a a a  

where, for a time interval [a, b] (e.g., [0, 104 yr] or [0, 106 yr]), nEW = number of early waste package (WP) failures, nED = 
number of early drip shield (DS) failures, nII = number of igneous intrusive (II) events, nIE = number of igneous eruptive 
(IE) events, nSG = number of seismic ground (SG) motion events, nSF = number of seismic fault (SF) displacement events, 
aEW = vector defining the nEW early WP failures, aED = vector defining the nED early DS failures, aII = vector defining the 
nII igneous intrusive events, aIE = vector defining the nIE igneous eruptive events, aSG = vector defining the nSG seismic 
ground motion events, and aSF = vector defining the nSF seismic fault displacement events. 
 
Sample Space for Aleatory Uncertainty:  { }: , , , , , , , , , , ,EW ED II IE SG SFnEW nED nII nIE nSG nSF= = ⎡ ⎤⎣ ⎦A a a a a a a a a  

Example Scenario Classes: 

Nominal, { }:  and 0N nEW nED nII nIE nSG nSF= ∈ = = = = = =a aA A  

Early WP failure, { }:  and 1EW nEW= ∈ ≥a aA A ; Early DS failure, { }:  and 1ED nED= ∈ ≥a aA A  
 Igneous intrusive, { }:  and 1II nII= ∈ ≥a aA A  ; Igneous eruptive, { }:  and 1IE nIE= ∈ ≥a aA A  
 Seismic ground motion, { }:  and 1SG nSG= ∈ ≥A Aa a  ; Seismic fault displacement, { }:  and 1SF nSF= ∈ ≥a aA A  
Early failure, E EW ED= ∪A A A ; Igneous, I II IE= ∪A A A ; Seismic, S SG SF= ∪A A A  

Scenario Class Probabilities: 
pA (AN) = probability of no disruptions of any kind 
pA (AEW) = probability of one or more early WP failures ; pA (AED) = probability of one or more early DS failures 
pA (AII) = probability of one or more II events ; pA (AIE) = probability of one or more IE events 
pA(ASG) = probability of one or more SG motion events; pA(ASF) = probability of one or more SF displacement events 
pA(AE) = probability of one or more early failures ; pA(AI) = probability of one or more igneous events  
pA(AS) = probability of one or more seismic events 
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Although useful conceptually and notationally, the 

probability space (A, A, pA) is never explicitly defined in 

the YM 2008 TSPA.  Rather, the characterization of 
aleatory uncertainty enters the analysis through the 
definition of probability distributions for the individual 
elements of a.  Conceptually, the distributions for the 
elements of a lead to a distribution for a and an 
associated density function dA(a). The nature of the 

probability space (A, A, pA) in the context of the 2008 

YM TSPA is summarized in Table I (see Ref. 11, App. J, 
for additional information).  

The second of the three basic mathematical entities 
that underlie the determination of expected dose is a 
model that estimates dose to the RMEI.  Formally, this 
model can be represented by the function 

 
D(τ |a) = dose to RMEI (mrem/yr) at time τ  (yr)  

 conditional on the occurrence of the future  
 represented by a.     (3)
     
Technically, D(τ |a) is the committed 50 yr dose to the 
RMEI that results from radiation exposure incurred in a 
single year.  In the computational implementation of the 
YM 2008 TSPA, D(τ |a) is only one of the 
results calculated with the GoldSim program for the 
particular analysis configuration defined for the future a.  
In practice, many results are calculated for a in addition 
to dose to the RMEI (see Ref. 11, Table K3-4).  Thus, 
D(τ |a) is part of a vector containing at least several 
thousand elements.  For notational convenience, this 
paper presents the analysis for dose to the RMEI D(τ |a) ; 
however, other YM 2008 TSPA results can be handled in 
exactly the same manner as described for dose. The 
general nature of D(τ |a) is described in several following 
presentations12-14 and in more detail in Ref. 11.  

The third of the three basic mathematical entities that 
underlie the determination of expected dose is a 
probabilistic characterization of epistemic uncertainty.  
Here, epistemic uncertainty refers to a lack of knowledge 
with respect to the appropriate value to use for a quantity 
that is assumed to have constant or fixed value in the 
context of a particular analysis. Specifically, epistemic 
uncertainty relates to a vector of the form 

 
[ ]

[ ]
1 2 , 1 2 ,

1 2

,

, , , , , , ,

, , , , ,

A M

A A A nAE M M M nME

nE

e e e e e e

e e e nE nAE nME

=

⎡ ⎤= ⎣ ⎦
= = +

e e e

… …

…

 

      (4) 
where 

 1 2 ,, , ,A A A A nAEe e e⎡ ⎤= ⎣ ⎦e …  

is a vector of epistemically uncertain quantities used in 
the characterization of aleatory uncertainty (e.g., a rate 
term that defines a Poisson process) and 

 1 2 ,, , ,M M M M nMEe e e⎡ ⎤= ⎣ ⎦e …  
is a vector of epistemically uncertain quantities used in 
the determination of dose (e.g., a distribution coefficient). 

Epistemic uncertainty results in a set E of possible 
values for e.  In turn, probability is used to characterize 
the level of likelihood or credence that can be assigned to 
various subsets of E.  In concept, this leads to a 
probability space (E, E, pE) for epistemic uncertainty.  

Like the probability space (A, A, pA) for aleatory 

uncertainty, the probability space (E, E, pE) for epistemic 

uncertainty is useful conceptually and notationally but is 
never explicitly defined in the YM 2008 TSPA. Rather, 
the characterization of epistemic uncertainty enters the 
analysis through the definition of probability distributions 
for the individual elements of e.  These distributions serve 
as mathematical summaries of all available information 
with respect to where the appropriate values for individual 
elements of e are located for use in the YM 2008 TSPA.  
Conceptually, the distributions for the elements of e lead 
to a distribution for e and an associated density 
function dE(e). The nature of the probability space (E, E, 

pE) in the context of the YM 2008 TSPA is indicated in 
Table II (see Ref. 11, Tables K3-1, K3-2, K3-3, for 
additional information ). 
 
TABLE II. Examples of the nE = 392 Epistemically 
Uncertain Variables Considered in the YM 2008 TSPA  

 
ASHDENS - Tephra settled density (kg/m3). Distribution: 
Truncated normal.. Range: 300 to 1500. Mean: 1000. 
Standard Deviation: 100. 
IGRATE - Frequency of intersection of the repository 
footprint by a volcanic event (yr-1). Distribution: 
Piecewise uniform. Range: 0 to 7.76E-07. 
INFIL - Pointer variable for determining infiltration 
conditions: 10th, 30th, 50th or 90th percentile infiltration 
scenario (dimensionless). Distribution: Discrete. Range: 
{1, 2, 3, 4}. 
MICPU239 - Groundwater biosphere dose conversion 
factor (BDCF) for 239Pu in modern interglacial climate 
((Sv/year)/(Bq/m3)). Distribution: Discrete. Range: 
3.49E-07 to 2.93E-06.  
SZFISPVO - Flowing interval spacing in fractured 
volcanic units (m). Distribution: Piecewise uniform. 
Range: 1.86 to 80.  
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IV. EXPECTED DOSE, MEAN DOSE, MEDIAN 
DOSE 

 
Now that the characterization of epistemic 

uncertainty has been introduced, the notations used to 
represent aleatory uncertainty and dose need to be 
expanded.  Because the representation of aleatory 
uncertainty depends on elements of the vector eA, each 
possible value for eA could lead to a different probability 

space (A, A, pA) for aleatory uncertainty.  For notational 

convenience, this dependence will be indicated by 
representing the density function associated with aleatory 
uncertainty by dA(a|eA).  Similarly, the determination of 
dose depends on elements of the vector eM, with each 
possible value for eM potentially leading to different dose 
results.  For notational convenience, this dependence will 
be indicated by representing the dose function by D(τ |a, 
eM). 

The probability space (A, A, pA) for aleatory 

uncertainty characterized by the density function 
dA(a|eA), the dose function D(τ |a, eM), and the 

probability space (E, E, pE) for epistemic uncertainty 
characterized by the density function dE(e) constitute the 
three basic parts of the YM 2008 TSPA that come 
together in the determination of expected dose to the 
RMEI and the uncertainty in expected dose to the RMEI.  
Specifically, the expected value for dose at time τ 
conditional on a specific element e = [eA, eM] of E is 
given by 

 

 
( ) ( )

( ) ( )
,

, d ,

A M A

M A A

D E D

D d A

τ τ

τ

⎡ ⎤= ⎣ ⎦

= ∫

e a e e

a e a eA
 (5)

      
where EA[D(τ |a, eM)|eA] denotes expectation over 
aleatory uncertainty. 

In turn, the uncertainty associated with the estimation 
of ( | )D τ e  can be determined from the properties of the 

probability space (E, E, pE) for epistemic uncertainty.  In 
particular, the cumulative distribution function (CDF) for 

( | )D τ e  and the expected value for ( | )D τ e  that derive 
from epistemic uncertainty are given by 

 
( ) ( ) ( )

( ) ( ) ( )

d

, d d

E D E

D M A A E

p D D D d E

D d A d E

τ δ τ

δ τ

⎡ ⎤ ⎡ ⎤≤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

∫

∫ ∫

e e e

a e a e e

E

E A
 

      (6) 
and 

 

( ) ( ) ( ) ( )d ,E ED E D D d Eτ τ τ⎡ ⎤= =⎣ ⎦ ∫e e e
E

      (7)  
respectively, where 
 

( ) ( )
( )

1   if |
|

0   if |D
D D

D
D D

τ
δ τ

τ
⎧ ≤⎪⎡ ⎤ = ⎨⎣ ⎦ >⎪⎩

e
e

e
 

and [ ( | )]EE D τ e denotes expectation over epistemic 
uncertainty. 

The individual grey curves in Fig. 1 correspond to 
expected doses ( | )D τ e  as defined in Eq. (5). The totality 
of the grey curves provides a display of the uncertainty 
in ( | )D τ e  that derives from the uncertainty in e. The red 

curve in Fig. 1 corresponds to the mean dose ( )D τ defined 
in Eq. (7) and used in comparisons with the 104 yr 
standard as specified in Quotes (NRC1) and (NRC2). 
Specifically, ( )D τ is the expected value for ( | )D τ e over 
the epistemic uncertainty associated with e.   
. 

The value of D for which 
 

( ) ( ) ( )dE D Eq p D D D d Eτ δ τ⎡ ⎤ ⎡ ⎤= ≤ =⎣ ⎦ ⎣ ⎦∫e e eE  (8) 
 
defines the q quantile (e.g., q = 0.05, 0.5, 0.95) for the 
distribution of expected dose over epistemically uncertain 
analysis inputs.  For notational purposes, the value of D 
corresponding to the q quantile of ( | )D τ e  defined in Eq. 
(8) will be represented by QE,q[ ( | )D τ e ]. The blue curve 
in Fig. 1 corresponds to the median dose QE,0.5[ ( | )D τ e ] 
defined in Eq. (8) for q = 0.5 and used in comparisons 
with the proposed post 104 yr standard as specified in 
Quotes (NRC1) and (NRC2).  
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Fig. 1 Expected, mean and median curves for dose to the 
RMEI 
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TABLE III. Decomposition of Expected Dose ( | )D τ e into Expected Incremental Doses ( | )CD τ e  from Individual 
Scenario Classes 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

, d

, , d

, , d

, , d

,

M A A

N N M C M A A
C

N N M C M A A
C

N N M C M A A
CC

N N M C
C

D D d A

D D d A

D D d A

D D d A

D D

τ τ

τ τ

τ τ

τ τ

τ τ

∈

∈

∈

∈

=

⎧ ⎫⎪ ⎪≅ +⎨ ⎬
⎪ ⎪⎩ ⎭

= +

= +

= +

∫

∑∫

∑ ∫

∑ ∫

∑

e a e a e

a e a e a e

a e a e a e

a e a e a e

a e e

A

A MC

AMC

AMC

MC

( ) ( ) ( )

{ }

,
with 

, , , , ,

N N M C M
C

D , D D ,

EW ED II IE SG SF

τ τ τ
∈

⎧ ≅ +
⎪
⎨
⎪
⎩

∑
MC

a  e a e a e

=MC
 

where aN corresponds to the single future associated with the nominal scenario class AN in which no disruptions of any kind 
occur, ( | , )N N MD τ a e is the dose to the RMEI that results solely from processes associated with the nominal scenario class, 
and ( | , )C MD τ a e is the incremental dose to the RMEI that results solely from the effects of the disruptions that result in the  
future a being an element of  the scenario class (i.e., set) AC . 

       
V. COMPUTATIONAL IMPLEMENTATION 
 

Evaluation of expected, mean and median doses as 
described in the preceding section presents two numerical 
challenges. First, it is necessary to evaluate integrals over 
the set A to obtain expected doses over aleatory 
uncertainty. Second, it is necessary to evaluate integrals 
over the set E to obtain mean and median doses over 
aleatory and epistemic uncertainty. 

Evaluation of integrals over the set A is considered 
first. These evaluations are accomplished under the 
assumption that there are no synergisms between the 
effects of the disruptions associated with the individual 
scenario classes that have a significant effect on the 
expected dose ( | )D τ e . As a result and with the 
assumption that nominal process releases occur for all 
scenario classes, ( | )D τ e  can be approximated as 
indicated in Table III.  Example derivations of how the 
use of disjoint scenario classes to calculate expected 
dose ( | )D τ e in combination with the no significant 
synergisms assumption leads to the relationships Table III 
are presented in Ref. 16. 

Given the decomposition in Table III, ( | )D τ e  can 
be approximated by (i) approximating ( | , )N N MD τ a e  
and individually approximating the integrals defining the 
expected incremental doses ( | )CD τ e as indicated in 
Table IV (see Ref. 11, App. J, for additional details) and 

then (ii) adding these approximations to obtain an 
approximation to ( | )D τ e . 

 
TABLE IV. Integration Procedures Used to Obtain 
Expected Incremental Dose ( | )CD τ e  for Individual 

Scenario Classes in the YM 2008 TSPA  
 

Nominal Conditions: DN(τ |e) 
• Always zero for [0, 2 × 104 yr] in YM 2008 

TSPA 
• Combined with seismic ground motion for [0, 

106  yr]  
Early WP and DS Failures: ( | )EWD τ e , ( | )EDD τ e  

• Summation of probabilistically weighted results 
for individual failures 

Igneous Intrusive Events: ( | )IID τ e  
• Quadrature procedure 

Igneous Eruptive Events 
• Combined Quadrature/Monte Carlo procedure 

Seismic Ground Motion Events: ( | )SGD τ e  
• Quadrature procedure for [0, 2 ×  104 yr] 
• Monte Carlo procedure for [0, 106 yr] 

Seismic Fault Displacement Events: ( | )SFD τ e  
• Quadrature procedure 
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The mean dose ( )D τ  and the median dose 
QE,0.5[ ( | )D τ e ] are defined by integrals over the set E  
of epistemically uncertain analysis inputs as indicated in 
Eqs. (7) and (8). In the YM 2008 TSPA, these integrals 
are approximated with use of a Latin hypercube sample 
(LHS)  

 
 [ ], , 1, 2, , ,i Ai Mi i nLHS= = …e e e   (9) 

of size nLHS = 300 generated in consistency with the 
definition of the probability space (E, E, pE) (i.e., in 
consistency with the distributions defined for the 
individual elements of e).  Then, ( )D τ and pE[ ( | )D τ e ≤ 
D] are approximated by 
 

( ) ( )
1

nLHS

i
i

D D nLHSτ τ
=

≅ ∑ e    (10) 

and 

( ) ( )
1

,
nLHS

E D i
i

p D D D nLHSτ δ τ
=

⎡ ⎤ ⎡ ⎤≤ ≅⎣ ⎦ ⎣ ⎦∑e e  (11) 

respectively. Further, this sample can be used in a 
numerical determination of the quantiles QE,q[ ( | )D τ e ] 
for ( | )D τ e defined in Eq. (8). Analogous approximations 
to mean and median doses over epistemic uncertainty also 
exist for the individual scenario classes. 
 
VI. DISJOINT AND NONDISJOINT SCENARIO 
CLASSES 
 

As used in this presentation, a scenario class is any 
element of the set A appearing in the formal definition of 

the probability space (A, A, pA) for aleatory uncertainty. 

Specifically, a scenario class is any subset S of the set A 
of possible futures (see Table I) for which a probability 
pA(S) can be defined. This definition, which is consistent 
with the formal development of probability, allows for 
both disjoint and nondisjoint scenario classes. Consistent 
with this, both disjoint and nondisjoint scenario classes 
have significant roles in the YM 2008 TSPA. 

As recognized by the NRC in the following statement 
from the YMRP (Ref. 4, p. 2.2-133), the calculation of 
expected dose to the RMEI has a conceptual basis that 
involves the use of disjoint scenario classes: “The 
occurrence of scenario classes, included in the calculating 
the annual dose, sum to one.” This statement is consistent 
with the approximation of the expected dose 

( | )D τ e defined in Eq. (5) by  

 ( ) ( ) ( )
1

, ,
nS

i M A i A
i

D D pτ τ
=

≅ ∑ Se a e e  (12) 

where the Si are elements of A (i.e., subsets of A ), Si ∩  

Sj = ∅  if i ≠  j, ∪ iSi = A, ai ∈ Si, and pA(Si|eA) is the 
probability of Si. The preceding approximation to 

( | )D τ e corresponds to an expected value calculation in 
the context of the ordered triplet representation for risk 
(Si, pSi, cSi), i = 1, 2, …, nS, in Eq. (1). Specifically, the 
sets Si are the same, pA(Si|eA) corresponds to pSi, 
and ( | , )i MD τ a e corresponds to cSi. 

As indicated in Eq. (12), the calculation of expected 
dose to the RMEI in the YM 2008 TSPA can be formally 
based on the consideration of disjoint scenario classes 
with probabilities that sum to one. However, in 
computational practice, the number of disjoint scenario 
classes required for the sum in Eq. (12) to be a reasonable 
approximation to ( | )D τ e is both large and difficult to 
determine (e.g., see Ref. 15). For this reason and with 
described justification (Ref. 11, App. J), the YM 2008 
TSPA approximates ( | )D τ e on the basis of the no 
significant synergisms decomposition indicated in Table 
III. This decomposition involves the nondisjoint scenario 
classes AC , C = EW, ED, II, IE, SG, SF, appearing in 
Tables I and III. However, the starting integral that 
defines ( | )D τ e in Eq. (5) is predicated on the concept of 
disjoint scenario classes. In particular, the correct place to 
check for conservation of probability in the determination 
of ( | )D τ e is in the integral definition of ( | )D τ e in Eq. 
(5) rather than after the no significant synergisms 
assumption has been implemented at the end of Table III. 
This decomposition is very beneficial because 
implementing integrals over the sets AC (or modeling 
cases as they are sometimes called; see Table IV) is much 
easier that implementing an integral over the set A. This 
decomposition also facilitates informative uncertainty and 
sensitivity analyses of the form presented in Refs. 17 and 
18 and in more detail in Apps. J and K of Ref. 11. 

In addition, when scenario class probabilities are 
requested, it is likely that the desired probabilities are for 
the nondisjoint scenario classes AC , C = EW, ED, II, IE, 
SG, SF, or possibly some other collection of nondisjoint 
scenario classes. In particular, it is probabilities for the 
nondisjoint scenario classes AC that are presented in App. 
J of Ref. 11. For example, if probability of early WP 
failure is under consideration, then most likely pA(AEW| 
eA) rather than pA({a| nEW  > 0, nED = nII = nIE = nSG 
= nSF = 0}|eA) is the probability of interest. Specifically, 
the pA(AEW|eA) is the probability that one or more early 
WP failures occur while pA({a| nEW  > 0, nED = nII = 



 8

nIE = nSG = nSF = 0}|eA)  is the probability that one or 
more early failures occur and also that no other failures of 
any other type occur; this latter probability is significantly 
affected by the indicated nonoccurrence assumptions and 
effectively provides no information on the likelihood of 
early WP failures.   

 
VII. SUMMARY 
 

As described, the conceptual and computational 
structure of the YM 2008 TSPA is based on three basic 
entities: (EN1) a characterization of the uncertainty in the 
occurrence of future events that could affect the 
performance of the repository (i.e., a probability space (A, 
A, pA) characterizing aleatory uncertainty), (EN2) models 
for predicting the physical behavior and evolution of the 
repository system (i.e., a very complex function D(τ |a, 
eM) that predicts dose to the RMEI and a large number of 
additional analysis results), and (EN3) a characterization 
of the uncertainty associated with analysis inputs that 
have fixed but imprecisely known values (i.e., a 
probability space (E, E, pE) characterizing epistemic 
uncertainty). 

This paper summarizes the first presentation in a 
special session intended to provide an overview on the 
YM 2008 TSPA. Following presentations in the session 
provide summaries of (i) the development and use of the 
models that collectively constitute the function D(τ |a, 
eM),12-14 (ii) the performance of uncertainty and 
sensitivity analyses for physical processes based on 
D(τ |a, eM) and the characterization of epistemic 

uncertainty provided by (E, E, pE),18 (iii) the performance 
of uncertainty and sensitivity analyses for expected dose 
to the RMEI based on the characterization of aleatory 
uncertainty provided by (A, A, pA), the function D(τ |a, 
eM)  and the characterization of epistemic uncertainty 

provided by (E, E, pE),17 and (iv) a summary of the YM 
2008 TSPA in the context of the regulatory requirements 
specified by the NRC in 10 CFR Part 63.19  

Additional and more detailed information on the YM 
2008 PA is available in a detailed analysis report11 and in 
the references cited in this report.   
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The Total System Performance Assessment (TSPA) for the 
proposed high level radioactive waste repository at Yucca 
Mountain, Nevada, uses a sampling-based approach to 
uncertainty and sensitivity analysis. Specifically, Latin 
hypercube sampling is used to generate a mapping 
between epistemically uncertain analysis inputs and 
analysis outcomes of interest. This results in distributions 
that characterize the uncertainty in analysis outcomes. 
Further, the resultant mapping can be explored with 
sensitivity analysis procedures based on (i) examination 
of scatterplots, (ii) partial rank correlation coefficients, 
(iii) R2 values and standardized rank regression 
coefficients obtained in stepwise rank regression ana-
lyses, and (iv) other analysis techniques. The TSPA  
considers over 300 epistemically uncertain inputs (e.g., 
corrosion properties, solubilities, retardations, defining 
parameters for Poisson processes, ….) and over 70 time-
dependent analysis outcomes (e.g,, physical properties in 
waste packages and the engineered barrier system, 
releases from the engineered barrier system, the 
unsaturated zone and the saturated zone for individual 
radionuclides, and annual dose to the reasonably 
maximally exposed individual (RMEI) from both 
individual radionuclides and all radionuclides. The 
obtained uncertainty and sensitivity analysis results play 
an important role in facilitating understanding of analysis 
results, supporting analysis verification, establishing risk 
importance, and enhancing overall analysis credibility. 
The uncertainty and sensitivity analysis procedures are 
illustrated and explained with selected results for releases 
from the engineered barrier system, the unsaturated zone 
and the saturated zone and also for annual dose to the 
RMEI. 

 
I. INTRODUCTION 

 
The importance of an appropriate assessment of the 

uncertainty present in performance assessments (PAs) for 
the proposed Yucca Mountain (YM) repository for high-
level radioactive waste has been strongly emphasized by 
the U.S. Nuclear Regulatory Commission (NRC) (e.g., 
Ref. 1, Quotes (NRC4) and (NRC5)). As a result, 
uncertainty analysis and sensitivity analysis are important 
parts of the 2008 total system performance assessment 
(TSPA) for the YM repository, where uncertainty analysis 

designates the determination of the uncertainty in analysis 
results that derives from uncertainty in a analysis inputs 
and sensitivity analysis designates the determination of 
the contributions of individual uncertain analysis inputs to 
the uncertainty in analysis results.  

As described in a preceding paper1 and in more detail 
in an extensive analysis report (Ref. 2, App. J), the 
conceptual structure and computational organization of 
the  TSPA involves three basic entities: (EN1) a charac-
terization of the uncertainty in the occurrence of future 
events that could affect the performance of the repository; 
(EN2) models for predicting the physical behavior and 
evolution of the repository; and (EN3) a characterization 
of the uncertainty associated with analysis inputs that 
have fixed but imprecisely known values. The designators 
aleatory and epistemic are commonly used for the 
uncertainties characterized by entities (EN1) and (EN3), 
respectively. Formally, (EN1) is defined by a probability 
space (A, A, pA) (Ref. 1, Sect. III); (EN2) corresponds to 

a very complex function that predicts the time-dependent 
behavior of many different physical properties associated 
with the evolution of the YM repository system (Ref. 2, 
Chap. 6; Refs. 3- 5); and (EN3) is defined by a probability 
space (E, E, pE) (Ref. 1, Sect. III). 

In the context of the preceding entities, uncertainty 
analysis involves the determination of the uncertainty in 
predictions by the model that corresponds to (EN2) that 
derives from the uncertainty in analysis inputs 
characterized by the probability space (E, E, pE). Further, 

this determination is made for either (i) results conditional 
on the occurrence of specific futures contained in the set 
A (see Ref. 1, Table I) or (ii) expected results based on 
the probability space (A, A, pA) and obtained by 

integrating over the set A (see Ref. 1, Sect. IV). Similarly, 
sensitivity analysis involves the determination of the 
effects of individual variables contained in elements e of 
E (see Ref. 1, Table II) on results of the form just 
indicated. 

The primary emphasis of this paper is on uncertainty 
and sensitivity analysis for results conditional on the 
occurrence of specific futures contained in the set A. A 
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following presentation considers uncertainty and 
sensitivity analysis for expected results based on the 
probability space (A, A, pA) and obtained by integrating 

over the set A.6     
 

II. UNCERTAINTY AND SENSITIVITY ANALYSIS  
 

Conceptually, the component (EN2) of the TSPA can 
be represented by a function 
  

( | ) ( | )τ τ=y a,e f a,e ,  (1) 
 
where 
 

1 2[ , ,..., ]nAa a a=a       (2) 
 
is an element (i.e., future) contained in A (see Ref. 1, 
Table I), 
 

1 2[ , ,..., ]nEe e e=e   (3) 
 
is an element of E (see Ref. 1, Eq. (4) and Table II), and 
 

1 2( | , ) [ ( | , ), ( | , ),..., ( | , )]nYy y yτ τ τ τ=y a e a e a e a e  (4) 
 
is the value of the function ( | )τf a,e at timeτ (see Ref. 2, 

Chap. 6, and Refs. 3-5). In general, the dimensions nA 
and nY of a and ( | , )τy a e can be quite large. Further, the 
dimension nE of e in the 2008 TSPA is 392; however, 
most elements of ( | , )τy a e are potentially affected by 
only a subset of the variables contained in e. The 
elements of ( | , )τy a e include both physical properties of 
the YM system (e.g., temperature, pH, radionuclide 
release rates, …) and quantities involving dose to the 
reasonably maximally exposed individual (RMEI) (e.g., 
the doses ( | , )N ND τ a e , ( | , )CD τ a e  and ( | , )D τ a e  dis-
cussed in Sects. IV and V of Ref. 1 are elements of 

( | , )τy a e ). 
The uncertainty associated with e is characterized by 

a sequence of distributions 
 

1 2, ,..., nED D D ,   (5) 
 
where Dj is the distribution assigned to the element ej of e 
(i.e., see the variables and distributions indicated in Table 
II of Ref. 1 and given in full in Tables K3-1, K3-2 and 
K3-3 of Ref. 2).  Correlations and other restrictions are 
also assumed to exist between some variables. The 
distributions indicated in Eq. (5) and any associated 

restrictions characterize epistemic uncertainty and, in 
effect, define the probability space (E, E, pE).  

Latin hypercube sampling7,8 is used to propagate the 
uncertainty characterized by the distributions indicated in 
Eq. (5) through the 2008 TSPA. Specifically, a Latin 
hypercube sample (LHS) 

 
1 2, , ,  ,   1, 2, ,i i i inEe e e i n= =⎡ ⎤⎣ ⎦e ,  (6) 

 
of size n = 300 is generated from the possible values for e 
(i.e., form the set E). Then, the function ( | )τf a,e is 
evaluated for each element ei of the LHS indicated in Eq. 
(6). This creates a mapping  
 

( )[ ] 30021 == niii ,,,  ,,, eaye τ ,   (7) 
 
from uncertain analysis inputs to uncertain analysis 
results. In practice, the indicated mapping is generated 
many times for different values of a for the calculation of 
each of the doses ( | , )CD τ a e indicated in Table III of Ref. 
1). 

Once generated, the mapping in Eq. (7) provides the 
basis for both uncertainty analysis and sensitivity 
analysis. Specifically, each sample element has a weight 
(i.e., a probability in common but incorrect usage) of 1/n 
= 1/300 that can be used to construct cumulative 
distribution functions (CDFs) and complementary 
cumulative distribution functions (CCDFs) that 
summarize the uncertainty in analysis results.  In addition, 
expected values (i.e., means) and various quantiles can 
also be obtained and used to summarize the uncertainty in 
analysis results. Or, most simply, the spread of the results 
obtained for individual elements of ( | , )τy a e can be 
presented. 

Sensitivity analysis results can be obtained by 
exploring the mapping between analysis inputs and 
analysis results in Eq. (7) with a variety of procedures. 
The simplest is to examine scatterplots that graphically 
show the relationship between an element of 

( | , )τy a e and individual elements of e (i.e., plots of 
points of the form [eij, ( | , )k iτy a e ], i = 1, 2, …, n, for 
individual elements ej and ( | , )k τy a e of e and ( | , )τy a e , 
respectively). More complex analyses involve the use of 
partial correlation coefficients (PCCs) and stepwise 
regression analyses to assess the relationships between 
analysis inputs and analysis results. With stepwise 
regression analysis, variable importance is indicated by 
the order of selection in the stepwise process, the 
incremental increase in R2 values as variables are added 
to the regression model, and the standardized regression 
coefficients (SRCs) in the final regression model. A SRC 
provides a measure of the fraction of the uncertainty in an 
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analysis accounted for by a given analysis input; in 
contrast, a PCC provides a measure of the strength of the 
linear relationship between an analysis result and a given 
analysis input after the linear effects of all other analysis 
inputs have been removed. When nonlinear relationships 
are present, analyses are often performed with rank 
transformed data, which results in partial rank correlation 
coefficients (PRCCs) and standardized rank regression 
coefficients (SRRCs) rather than PCCs and SRCs. 

Additional information on the sampling-based uncer-
tainty and sensitivity analysis procedures used in the 
TSPA is available in a recent review article.9 

 
III. NOMINAL SCENARIO CLASS AN  
 

A large number of analysis results are considered in 
the uncertainty and sensitivity analyses for the nominal 
scenario class AN (Table I). The variables indicated in 
Table I correspond to a subset of the vari-
ables ( | , )k τy a e that comprise the elements of 

( | , )τy a e in Eq. (4).  Of these variables, the number of 
failed commercial spent nuclear fuel waste packages in 
percolation bin 3 (NCSFL) is used as an initial example 
for illustration (Fig. 1). The element aN of A under 
consideration corresponds to the future in which no 
disruptions of any kind take place.  

 
TABLE I.  Examples of 11 of the 32 Time-Dependent 

Results Analyzed for the Nominal Scenario Class (Ref. 2, 
Table K4.1-1) 

 
BACSFLAD : Average breached area (m2) on failed CSNF WPs under 
dripping conditions (Ref. 2, Figures K.4.2-6, K.4.2-7)  

DOSTOT: Dose to RMEI (mrem/yr) from all radioactive species (Ref. 2, 
Figures K4.5-1, K4.5-2, K4.5-3)  
DSFLTM : Drip Shield failure time (yr) (Ref. 2, Figure K.4.2-1) 

ISCSINAD : Ionic strength (molal) in the invert beneath the WP for 
CSNF WPs under dripping conditions (Ref. 2, Figures K.4.3-9, K.4.3-
11) 
NCDFL : Number of failed CDSP WPs (Ref. 2,  Figure K.4.2-2) 

NCSFL : Number of failed CSNF WPs (Ref. 2, Figures K.2-1, K.4.2-3) 

NCSFLAD : Number of failed CSNF WPs under dripping conditions 
(Ref. 2,  Figures K.4.2-4, K.4.2-5) 

NCSFLND : Number of failed CSNF WPs under nondripping conditions 
(Ref. 2, Figures K.4.2-4, K.4.2-5) 

PCO2CSIA : Partial pressure of CO2 (bars) in the invert for CSNF WPs 
under dripping conditions (Ref. 2, Figures K.4.3-7, K.4.3-8) 
PHCSINAD : pH in the invert beneath the WP for CSNF WPs under 
dripping conditions (Ref. 2, Figures K.4.3-12, K.4.3-13) 

RHCDINV : Relative humidity for CDSP WPs in the invert beneath the 
WP (Ref. 2, Figure K.4.3-6) 

 
The uncertainty in the time dependent values for 

NCSFL is shown by the 300 curves in Fig. 1a, with a 
single curve resulting for each of the LHS elements ei in 
Eq. (6). Sensitivity analysis results based on PRCCs and 
stepwise rank regression are presented in Figs. 1b and 1c. 
In both analyses, the dominant variable with respect to the 
uncertainty in NCSFL is WDGCA22 (see Table II for 
variable definitions), with NCSFL tending to decrease as 
WDGCA22 increases. This effect results because of the 
role that increasing WDGCA22 plays in decreasing the 
rate of general corrosion. The strong effect of WDGCA22 
on NCSFL can be seen in the scatterplot in Fig. 1d. After 
WDGCA22, a number of additional variables are 
identified as having small effects on NCSFL. 

 
TABLE II.  Variables Appearing in Sensitivity Analyses 
for NCSFL and DOSTOT in Figs. 1 and 2 (Ref. 2, Tables 

K3-1, K3-2, K3-3) 
 

WDGCA22: Temperature dependent slope term of Alloy 22 general 
corrosion rate (K). Distribution:  Truncated normal.  Range:  666 to 
7731.  Mean:  4905.  Standard Deviation:  1413. 
WDZOLID : Deviation from median yield strength range for outer lid 
(dimensionless). Distribution:  Truncated normal.  Range:  -3 to 3.  
Mean:  0.  Standard Deviation:  1.   
INFIL : Pointer variable for determining infiltration conditions:  10th, 
30th, 50th or 90th percentile infiltration scenario (dimensionless). 
Distribution:  Discrete.  Range:  1 to 4.   
THERMCON : Selector variable for one of three host-rock thermal 
conductivity scenarios (low, mean, and high) (dimensionless). 
Distribution:  Discrete.  Range:  1 to 3.   
WDNSCC : Stress corrosion cracking growth rate exponent 
(repassivation slope) (dimensionless).  Distribution:  Truncated normal.  
Range:  0.935 to 1.395.  Mean:  1.165.  Standard Deviation:  0.115. 
WDGCUA22: Variable for selecting distribution for general corrosion 
rate (low, medium, or high) (dimensionless). Distribution:  Discrete.  
Range:  1 to 3.   
SCCTHR : Stress threshold for stress corrosion cracking (MPa).  
Distribution:  Uniform.  Range:  315.9 to 368.55. 

 
 



 4

                   Time (years)

0 200000 400000 600000 800000 1000000

To
ta

l n
um

be
r o

f C
SN

F 
W

ps
 fa

ile
d

100

101

102

103

104

LA_v5.000_NC_000300_000.gsm;
NO_1M_00_300_PRCC_HT_NCSFL_NCDFL.JNB

   Time (yr)
0 200000 400000 600000 800000 1000000 

P
R

C
C

 fo
r T

ot
al

 n
um

be
r o

f C
S

N
F 

W
Ps

 F
ai

le
d

-0.75

-0.25

0.25

0.75

-1.00

-0.50

0.00

0.50

1.00 WDGCA22
WDZOLID
INFIL
WDNSCC
THERMCON
SCCTHR

LA_v5.000_NC_000300_000.gsm; NO_1M_00_300_NCSFL.mview;
NO_1M_00_300_PRCC_HT_NCSFL_NCDFL.JNB

. 
 

                                                                                                                                     WDGCA22
0 1000 2000 3000 4000 5000 6000 7000 8000

N
C

SF
L 

at
 1

,0
00

,0
00

 y
r 

1

10

100

1000

10000

LA_v5.000_NC_000300_000.gsm; NO_1M_00_300_NCSFL.mview;
NO_1M_00_300_Scatter_NCSFL_NCDFL.JNB

  
 
 
 
Fig. 1. Uncertainty and sensitivity analysis results for NCSFL: (a) NCSFL for all (i.e., 300) sample elements, (b) PRCCs for 
NCSFL, (c) stepwise rank regression analysis for NCSFL at 106 yr, and (d) scatterplot for (WDGCA22, NCSFL) at 106 yr 
(Ref. 2,  Fig. K2-1) 
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Fig. 2. Uncertainty and sensitivity analysis results for DOSTOT (i.e., for ( | )N N MD τ a ,e as defined in Table III of Ref. 1): 
(a) DOSTOT for all (i.e., 300) sample elements, and (b) PRCCs for DOSTOT (Ref. 2, Fig. K4.5-1[a]). 

 
As another example, analyses for dose from all 

radionuclides for the nominal scenario class AN  (i.e., 
( )MND eτ , or equivalently, DOSTOT) are presented in 

Fig. 2. The uncertainty in the time dependent values for 
DOSTOT is shown by the 300 curves in Fig. 2a, with a 

single curve resulting for each of the LHS elements ei in 
Eq. (6). Sensitivity analysis results based on PRCCs are 
presented in Fig. 2b. The dominant variables with respect 
to the uncertainty in DOSTOT are WDGCA22 and 
WDZOLID (see Table II for variable definitions), with 

NCSFL: 1M yr 
Variablea R2  b SRRCc 

WDGCA22 0.91 -0.98 

WDZOLID 0.92 0.10 

INFIL 0.93 -0.12 

     THERMCON 0.94 -0.10 

WDNSCC 0.95 -0.09 

WDGCUA22 0.96 0.09 

SCCTHR 0.96 -0.05 

(c) (d) 

a: Variables listed in order of selection in stepwise regression 
b: Cumulative R2 value with entry of each variable into regression model 
c: SRRCs in final regression model 

(b) (a) 

(a) (b) 
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DOSTOT tending to decrease as WDGCA22 increases and 
to increase as WDZOLID as increases. These effects result 
because increasing WDGCA22 decreases WP failures due 
to general corrosion (see Fig. 1) and increasing 
WDZOLID increases corrosion-induced failures of welds 
at the WP lids.        

Analyses similar to those presented in Figs. 1 and 2 
were carried out for the nominal scenario class for all 32 
analysis results indicated in Table I (Ref. 2, Sect. K4). 

 
IV. IGNEOUS INTRUSIVE SCENARIO CLASS AII 

As for the nominal scenario class, a large number of 
analysis results are considered in the uncertainty and 
sensitivity analyses for the igneous scenario class AII 
(Table III). The variables indicated in Table III 
correspond to a subset of the variables ( | , )k τy a e that 
comprise the elements of ( | , )τy a e in Eq. (4). As 
examples, this section considers the movement of 237Np 
through the repository system and the dose to the RMEI 
that results from this movement. The specific element a 
of A under consideration corresponds to a single igneous 
intrusive event that occurs at 10 yr after repository closure 
and damages all waste packages in the repository, and the 
results selected for use are ESNP237, UZNP237, 
SZNP237 and DONP237 as defined in Table III. 

 
TABLE III.  Examples of 7 of the 49 Time-Dependent 

Results Analyzed for the Igneous Intrusive Scenario Class (Ref. 
2, Table K6.1-1)  

 
DONP237: Dose to RMEI (mrem/yr) from dissolved 237Np (Ref. 2, 
Figures K.6.6.1-5, K.6.6.1-6, K.6.6.2-3) 

ESNP237: Release rate (g/yr) for the movement of dissolved 237Np from 
the EBS to the UZ (Ref. 2, Figures K.6.3.1-5, K.6.3.1-6, K.6.3.2-3) 

ESNP237C : Cumulative release (g) for the movement of dissolved 
237Np from the EBS to the UZ (Ref. 2, Figures K.6.3.1-5, K.6.3.1-6, 
K.6.3.2-3, K.6.4.1-9) 
SZNP237: Release rate (g/yr) for the movement of dissolved 237Np 
across a subsurface plane at the location of the RMEI (Ref. 2, Figures 
K.6.5.1-7, K.6.5.1-8, K.6.5.2-3) 
SZNP237C : Cumulative release (g) for the movement of dissolved 
237Np across a subsurface plane at the location of the RMEI (Ref. 2, 
Figures K.6.5.1-7, K.6.5.1-8, K.6.5.1-9, K.6.5.2-3) 
UZNP237: Release rate (g/yr) for the movement of dissolved 237Np from 
the UZ to the SZ (Ref. 2, Figures K.6.4.1-7, K.6.4.1-8) 

UZNP237C : Cumulative release (g) for the movement of dissolved 
237Np from the UZ to the SZ (Ref. 2, Figures K.6.4.1-7, K.6.4.1-8, 
K.6.4.1-9, K.6.5.1-9) 

 
The uncertainty in the time-dependent values for 

ESNP237 and UZNP237 are shown by the 300 curves in 
Figs. 3a and 3c, with a single curve resulting for each of 
the LHS elements ei in Eq. (6). Sensitivity analysis results 
for ESNP237 based on PRCCs are presented in Fig. 3b 
and indicate (i) positive effects for EP1NPO2, INFIL, 

DELPPCO2 and EP1LOWAM, (ii) a negative effect for 
PHCSS, and (iii) a very early positive effect for 
THERMCON (see Table IV for variable definitions). The 
indicated effects result because (i) increasing EP1NPO2 
and DELPPCO2 increases the solubility of neptunium, 
(ii) increasing INFIL increases water flow through the 
EBS, (iii) increasing EP1LOWAM increases the solubility 
of 241Am, which is a parent of 237Np, (iv) increasing 
PHCSS decreases the solubility of neptunium, and (v) 
increasing THERMCON decreases the time required for 
the repository to reach below-boiling temperatures for 
water and thereby facilitates early radionclide releases. 

 
TABLE IV. Variables Appearing in Sensitivity Analyses for 

ESNP237 and SZNP237 in Figs. 3 and 4 (Ref. 2, Tables K3-1, 
K3-2, K3-3)  

 
EP1NPO2: Logarithm of the scale factor used to characterize 
uncertainty in NpO2 solubility at an ionic strength below 1 molal 
(dimensionless).  Distribution:  Truncated normal.  Range:  -1.2 to 1.2.  
Mean:  0.  Standard Deviation:  0.6.   
PHCSS: Pointer variable used to determine pH in CSNF Cell1 under 
liquid influx conditions (dimensionless).  Distribution:  Uniform.  
Range:  0 to 1.   
THERMCON: Selector variable for one of three host-rock thermal 
conductivity scenarios (low, mean, and high) (dimensionless). 
Distribution:  Discrete.  Range:  1 to 3.   

DELPPCO2: Selector variable for partial pressure of CO2 
(dimensionless).  Distribution:  Uniform.  Range:  -1 to 1.   

INFIL: Pointer variable for determining infiltration conditions:  10th, 
30th, 50th or 90th percentile infiltration scenario (dimensionless). 
Distribution:  Discrete.  Range:  1 to 4.   

EP1LOWAM: Logarithm of the scale factor used to characterize 
uncertainty in americium solubility at an ionic strength below 1 molal 
(dimensionless).  Distribution:  Truncated normal.  Range:  -2 to 2.  
Mean:  0.  Standard Deviation:  1. 
SZGWSPDM: Logarithm of the scale factor used to characterize 
uncertainty in groundwater specific discharge (dimensionless). 
Distribution:  Piecewise uniform.  Range:  -0.951 to 0.951.    
SZFIPOVO: Logarithm of flowing interval porosity in volcanic units 
(dimensionless).  Distribution:  Piecewise uniform.  Range:  -5 to -1. 

 
 

 The similarity of the scatterplots of cumulative 
releases for ESNP237C and UZNP237C at 104 yr in 
Figures 3a and 3c suggest that processes in the 
unsaturated  zone have little effect on the uncertainty in 
the movement of 237Np.   This is confirmed in the 
scatterplot in Fig. 3d.  This means that the PRCCs for 
UZNP237 are essentially the same as the PRCCs for 
ESNP237, and would have the same relationships as 
shown in Fig. 3b for  the PRCCs for ESPN237 
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  The uncertainty in the time dependent values for 
SZNP237 and DONP237 are shown by the 300 curves in 
Figs. 4a and 4c. Unlike the unsaturated zone, the saturated 
zone can have a significant effect on the movement of 
237Np to the location of the RMEI (Fig. 5). 

 Sensitivity analysis results for ESNP237 based on 
PRCCs are presented in Fig. 4b and indicate (i) positive 
effects for SZGWSDM, EP1NPO2 and INFIL, (ii) a 
negative effect for PHCSS, and (iii) an early positive  
effect THERMCON and a early negative effect for 
SZFIPOVO (see Table IV for variable definitions). The 
indicated effects for EP1NPO2, INFIL and PHCSS derive 
from their previously discussed effects on release from 
the EBS. The positive effect associated with SZGWSDM 
results from increasing water flow in the SZ, and the early 
negative effect associated with SZFIPOVO results from 

slowing the initial movement of released radionuclides in 
the SZ.      

 The comparison of SZNP237 and DONP237 at 104 
yr in the scatterplot in Fig. 4d shows that the uncertainty 
in SZNP237 dominates the uncertainty in DONP237. This 
means that the PRCCs for DONP237 are essentially the 
same as the PRCCs for SZNP237, and would have the 
same relationships as shown in Fig. 3b for  the PRCCs for 
SZPN237. 

Analyses similar to those presented in Figs. 3-5 were 
carried out for all 49 results for the igneous scenario class 
indicated in Table III (Ref. 2, Sect. K6). 
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Fig.  3. Uncertainty and sensitivity analysis results for ESNP237 and UZNP237: (a) ESNP237 for all (i.e., 300) sample 
elements, (b) PRCCs for ESNP237, (c) UZNP237 for all (i.e., 300) sample elements, and (d) scatterplot for (ESNP237C, 
UZNP237C) at 104 yr (Ref. 2, Figs.  K6.3.1-5, K6.4.1-7, and K6.4.1-9) 

(a) (b) 

(c) (d) 
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Fig. 4. Uncertainty and sensitivity analysis results for SZNP237 and DONP237: (a) SZNP237 for all (i.e., 300) sample 
elements, (b) PRCCs for SZNP237, (c) DONP237 for all (i.e., 300) sample elements, and (d) scatterplot for (SZNP237, 
DONP237) at 104 yr (Ref. 2, Figs. K6.5.1-7,  K6.6.1-5 and K6.6.1-6 ). 
 

 
 

Fig. 5. Scatterplot for (UZNP237C, SZNP237C) at 104 yr 
(Ref. 2, Fig.  K6.5.1-9).  
 
 

 
 

V. ADDITIONAL SCENARIO CLASSES 
 

Example uncertainty and sensitivity analysis results 
have been presented for the nominal scenario class AN 
and the igneous intrusive scenario class AII.  In addition, 
extensive uncertainty and sensitivity analyses were also 
carried out as part of the TSPA for the early waste 
package failure scenario class AEW, the early drip shield 
failure scenario class AED, the igneous eruptive scenario 
class AIE, the seismic ground motion scenario class ASG, 
and the seismic fault displacement scenario class ASF. In 
performing these analyses, two different time periods 
were considered for the definition of the sample space A 

for aleatory uncertainty: 4[0,2 10  yr]×  and [0, 106 yr].  
The results of these analyses are given in Apps. J and K 
of Ref. 2.  
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VI. SUMMARY 
 
The importance of an appropriate assessment of the 

uncertainty present in PAs for the proposed YM 
repository for high-level radioactive waste has been 
strongly emphasized by the NRC (e.g., see Ref. 1, Quotes 
(NRC4) and (NRC5)). In response, extensive sampling- 
based uncertainty and sensitivity analyses have been 
carried out as part of the 2008 TSPA. 

The performance of these uncertainty and sensitivity 
analyses has a number of benefits, including: (i) 
permitting analysts to objectively assess the uncertainty 
present in  the models that they developed and/or use, (ii) 
providing a rigorously derived assessment of the 
uncertainty present in analysis results, (iii) providing 
insights into the relationships between uncertainty in 
individual analysis inputs and the uncertainty in analysis 
results, (iv) extensively exercising the models in use and 
thereby contributing to analysis verification, (v) aiding 
decision makers by explicitly representing the uncertainty 
in the results that underlie their decisions, and (vi) 
enhancing the overall credibility of the analysis.  

A following paper provides additional uncertainty 
and sensitivity analysis results involving expected dose to 
the RMEI.6 Further, full details of the uncertainty and 
sensitivity analyses performed as part of the 2008 TSPA 
are presented in Apps. J and K of Ref. 2.      
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Uncertainty and sensitivity analyses of the expected dose 
to the reasonably maximally exposed individual in the 
Yucca Mountain 2008 total system performance 
assessment (TSPA) are presented.  Uncertainty results are 
obtained with Latin hypercube sampling of epistemic 
uncertain inputs, and partial rank correlation coefficients 
are used to illustrate sensitivity analysis results. 
 
I. INTRODUCTION 

 
A core requirement in 10 CFR Part 63 and the 

proposed standard for post-10,000 years for the proposed 
Yucca Mountain (YM) repository for high level 
radioactive waste is that the mean dose to the reasonably 
maximally exposed individual (RMEI) is to be less than 
15 mrem/yr for the time period [0, 104 yr] after repository 
closure and also that the median dose to the RMEI is to be 
less than 350 mrem/yr for the time period [104, 106 yr] 
after repository closure.1,2  

In the 2008 total system performance assessment 
(TSPA) for the proposed YM repository, the indicated 
mean and median doses are obtained by first calculating a 
distribution of time-dependent expected doses that result 
from aleatory uncertainty (i.e., the perceived randomness 
of future occurrences such as early waste package and 
drip shield failures, igneous events, seismic events).  
Then, the desired mean and median doses are obtained 
from the distribution of time-dependent expected doses.3  

Specifically, a Latin hypercube sample (LHS) e1, e2, 
…, enLHS of size nLHS = 300 was generated from the 
epistemically uncertain analysis inputs chosen for 
consideration. Next, a time-dependent expected dose 

( | )iD τ e  was determined for each of the 300 LHS 
elements, with each time-dependent expected dose 
deriving from integration over the possible realizations of 
aleatory uncertainty (i.e., numbers and properties of early 
waste package and early drip shield failures, numbers and 
properties of igneous events, numbers and properties of 
seismic events).  Additionally, the time-dependent dose 
for nominal conditions (i.e., futures in which no early 
failures, seismic or igneous events occur) is also 
computed.  Thus, expected doses ( | )C iD τ e  were 
calculated individually for the following six scenario 

classes (also termed modeling cases when implemented in 
the YM 2008 TSPA model): (i) ( | )EW iD τ e  with C =EW 
for the early waste package (WP) failure scenario class 
AEW, (ii) ( | )ED iD τ e  with C=ED for the early drip 
shield (DS) failure scenario class AED, (iii) ( | )II iD τ e  
with C=II for the igneous intrusive scenario class AII, (iv) 

( | )IE iD τ e  with C=IE for the igneous eruptive scenario 
class AIE, (v) ( | )SG iD τ e  with C=SG for the seismic 
ground motion scenario class ASG, and (vi) ( | )SF iD τ e  
with C=SF for the seismic fault displacement scenario 
class ASF , as well as (vii) ( | )N iD τ e  with C=N for the 
nominal scenario class AN (see Ref. 3, Table I, for formal 
definitions of the individual scenario classes).  The 
quantities ( | )C iD τ e  are incremental expected doses that 
result solely from the effects associated with the 
corresponding scenario class AC; thus, summing the 
preceding seven time-dependent expected doses for 
corresponding LHS elements produces ( | )iD τ e  (see 
Ref. 3, Sect. V and Table III, for additional discussion). 

Finally, the mean dose ( )D τ  was approximated by 
the point-wise vertical average of the 300 time-dependent 
expected dose curves ( | )iD τ e , and the median dose 
QE,0.5[ ( | )D τ e ] was defined analogously as the point-
wise median of the expected dose curves. (Ref. 3, Sect. 
V).  Thus, the mean dose curve ( )D τ  is an expectation 
over the epistemic uncertainty in expected dose, and the 
median dose curve QE,0.5[ ( | )D τ e ] is a median over the 
epistemic uncertainty in expected dose.  The mean and 
median doses are compared against the current and 
proposed NRC standards for the [0, 104 yr] and [104, 106 
yr] time periods, respectively.1,2 

Uncertainty and sensitivity analysis results for 
expected dose and associated analysis insights are 
presented and discussed.  Specifically, results are first 
presented for the individual scenario classes.  Then, the 
outcome of summing the results for the individual 
scenario classes is presented.  Results presented herein are 
derived from calculations performed separately for the [0, 
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104 yr] and [0, 106 yr] time periods with the YM 2008 
TSPA model.4  This presentation provides results for each 
scenario class (except for the nominal scenario class) for 
the time period [0, 2×104 yr], as well as for the 
summation over scenario classes for both time periods.  
For the nominal scenario class, the dose to the RMEI for 
the time period [0, 2×104 yr] is identically zero; results for 
the time period [0, 106 yr] are presented elsewhere.5  
Uncertainty results for scenario classes important in the 
time period [0, 106 yr] are also presented elsewhere.6,7  
Sensitivity analysis techniques employed herein are 
similar to those employed in analysis of physical 
processes simulated in the YM 2008 TSPA model.5 

 
II. CONCEPTUAL BASIS 

 
As described in a related paper3 and in more detail in 

an extensive analysis report4, the conceptual structure and 
computational organization of the YM 2008 TSPA 
involves three basic entities: (EN1) a characterization of 
the uncertainty in the occurrence of future events that 
could affect the performance of the repository; (EN2) 
models for predicting the physical behavior and evolution 
of the repository; and (EN3) a characterization of the 
uncertainty associated with analysis inputs that have fixed 
but imprecisely known values.  The designators aleatory 
and epistemic are commonly used for the uncertainties 
characterized by entities (EN1) and (EN3), respectively. 
Formally, (EN1) is defined by a probability space (A, A, 

pA) (Ref. 3, Sect. III); (EN2) corresponds to a very 
complex function that predicts the time-dependent 
behavior of many different physical properties associated 
with the evolution of the YM repository system;4,7,8,9 and 
(EN3) is defined by a probability space (E, E, pE) (Ref.3, 

Sect. III).  
In the context of this presentation, (EN2) corresponds 

to the functions ( | , )D τ a e  and ( | , )CD τ a e for C = EW, 
ED, II, IE, SG and SF that define dose to the RMEI at 
time τ conditional on elements a and e of A and E, 
respectively. Specifically, ( | , )D τ a e  is the incremental 
expected dose to the RMEI at time τ from all disruptions 
associated with a, and ( | , )CD τ a e  is the incremental 
expected dose to the RMEI at time τ that derives only 
from the disruptions associated with a that are also 
associated with the scenario class designated by C. 

In turn, ( | )D τ e  and ( | )CD τ e are defined by 
integrals of ( | , )D τ a e  and ( | , )CD τ a e over A 
conditional on the element e of E (Ref. 3, Sect. IV).  

Similarly, the mean ( )D τ , the q quantile QE,q[ ( | )D τ e ] 
(e.g., q = 0.05, 0.5, 0.95) and the median QE,0.5[ ( | )D τ e ] 
(i.e., q = 0.5) are defined by integrals over E.  

Corresponding results ( )CD τ , QE,q[ ( | )CD τ e ] and 
QE,0.5[ ( | )CD τ e ] for individual scenario classes are 
defined in the same manner.  

 
III. EARLY FAILURE SCENARIO CLASSES 
 

As indicated in Sects. I and II, the YM 2008 TSPA 
considers two early failure scenario classes: the early drip 
shield (DS) failure scenario class AED and the early waste 
package (WP) failure scenario class AEW.  The 
occurrence of early DS failures and early WP failures are 
modeled with binomial probability distributions with 
defining parameters PROBDSEF and PROBWPEF (see 
Table I).  The individual DS failure probability 
PROBDSEF applies to all DSs in the repository.  
Similarly, the individual WP failure probability 
PROBWPEF applies to all WPs in the repository.  As 
modeled, early failures of DSs and WPs occur at 
repository closure.  However, transport of radionuclides 
from the affected WPs depends on environmental 
conditions such as the relative humidity in the affected 
WPs, or the presence of drift seepage.8  

The time-dependent expected doses to the RMEI 
from early DS failure, ( | )ED iD τ e , and from early WP 
failure, ( | )EW iD τ e , for the individual LHS elements ei, 
i = 1, 2, …, 300, are  shown in Figs. 1a and 1c.  Fig. 1c 
shows that expected dose to the RMEI from early-failed 
WPs begins within the first 2,000 years, followed by 
increases in ( | )EW iD τ e starting at approximately 104 yr.  
These increases correspond to the arrival of radionuclides 
from early-failed commercial spent nuclear fuel WPs.  
Because commercial spent nuclear fuel WPs  are in 
general hotter than co-disposed WPs, formation of 
continuous liquid pathways occurs later,8 delaying release 
of radionuclides from commercial spent nuclear fuel WPs. 

As shown by the spread of the individual curves, 
considerable uncertainty exists with respect to the values 
for ( | )ED iD τ e  and ( | )EW iD τ e .  Sensitivity analyses 
for ( | )ED iD τ e  and ( | )EW iD τ e  based on partial rank 
correlation coefficients (PRRCs); (see Ref. 5, Sect. II) are 
presented in Figs. 1b and 1d (see Table I for definitions of 
individual variables).  The dominant variables with 
respect to the uncertainty in ( | )EWD τ e and 

( | )EDD τ e are PROBWPEF and PROBDSEF, 
respectively, with ( | )EWD τ e  and ( | )EDD τ e increasing 
as PROBWPEF and PROBDSEF increase, because the 
expected number of early failures increase.  After 
PROBWPEF and PROBDSEF, the PRCCs indicate 
smaller effects for a number of additional variables that 
influence the movement of water through the natural 
barriers of the repository system. 
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Fig. 1. Expected dose to RMEI (mrem/yr) over 4[0,2 10  yr]× for all radioactive species resulting from early failures: (a, b) 

( | )EDD τ e  and associated PRCCs for early DS failure (Ref. 3, Fig. K5.7.1-1[a]), and (c, d) ( | )EWD τ e and associated 
PRCCs  for early WP failure (Ref. 4, Fig. K5.7.2-1[a]). 
 
IV. IGNEOUS SCENARIO CLASSES 
 

Two igneous scenario classes are considered in the 
YM 2008 TSPA: the igneous intrusion scenario class AII 
and the igneous eruptive scenario class AIE. The 
occurrence of igneous intrusion events and igneous 
eruptive events are modeled by Poisson processes with 
rates defined by IGRATE and IGERATE (See Table I). 
Further, an igneous intrusion event is assumed to destroy 
all WPs in the repository, and an igneous eruptive event 
ejects the contents of a small number of WPs into the 
atmosphere.7  The time-dependent expected doses to the 
RMEI from igneous intrusions, ( | )II iD τ e , and from 
igneous eruptions, ( | )IE iD τ e , for the individual LHS 
elements ei, i = 1, 2, …, 300, are shown in Figs. 2a and 
2c.  The smoothness evident in these curves results from 
the use of quadrature procedures in the evaluation of 
expected dose.3  As shown by the spread of the individual 
curves, considerable uncertainty exists with respect to the 
values for ( | )II iD τ e and ( | )IE iD τ e .  Sensitivity 
analyses for ( | )II iD τ e and ( | )IE iD τ e  based on PRRCs 

are presented in Figs. 2b and 2d (see Table I for 
definitions of individual variables).  The dominant 
variables with respect to the uncertainty in ( | )II iD τ e and 

( | )IE iD τ e  are the occurrence rates IGRATE and 
IGERATE, respectively, with ( | )IID τ e and ( | )IED τ e  
increasing as IGRATE and IGERATE increase.  

The physical processes associated with igneous 
intrusive events and igneous eruptive events that result in 
dose to the RMEI are very different.7  As a result, the 
variables selected after IGRATE and IGERATE in Figs. 2b 
and 2d are very different.  Specifically, analysis for 

( | )IID τ e in Fig. 2b indicates effects for variables that 
influence the movement of water through the natural 
system (SZGWSPDM, INFIL, SZFIPOVO and 
SZCOLRAL) and the contribution of 99Tc to dose to the 
RMEI (MICTC99).  The analysis for ( | )IED τ e in Fig. 2d 
indicates effects for variables related to the uncertainty in 
dose to the RMEI by inhalation of contaminated particles 
(INHLTPV), the diffusion of radionuclides downward out 
of surface soils (DDIVIDE), the mass of radionuclides in 
waste packages (CSNFMASS), and the attachment of 
waste particles to ash particles (DASHAVG). 
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Fig. 2. Expected dose to RMEI (mrem/yr) over 4[0,2 10  yr]× for all radioactive species resulting from igneous events: (a, b) 

( | )IID τ e  and associated PRCCs for igneous intrusive events (Ref. 3, Fig. K6.7.1-1[a]), and (c, d) ( | )IED τ e  and associated 
PRCCs for early igneous eruptive events (Ref. 4, Fig. K6.8.1-1). 
 
 
V. SEISMIC SCENARIO CLASSES 
 

Two seismic scenario classes are considered in the 
YM 2008 TSPA: the seismic ground motion scenario 
class ASG and the seismic fault displacement scenario 
class ASF.  The occurrence of seismic ground motion 
events and seismic fault displacement events are modeled 
as Poisson processes defined by underlying hazard curves 
that define the annual frequencies of seismic ground 
motion events and seismic fault displacement events of 
different sizes.7  A seismic ground motion event that 
damages WPs is assumed to cause the same damage to all 
WPs in the repository; in contrast, a seismic fault 
displacement event damages a relatively small number of 
WPs. 

The time-dependent expected doses to the RMEI 
from seismic ground motion events, ( | )SG iD τ e , and 
from seismic fault displacement events, ( | )SF iD τ e , for 
the individual LHS elements ei, i = 1, 2, …, 300, are 

shown in Figs. 3a and 3c.  The spread of the individual 
curves shows considerable uncertainty exists with respect 
to the values for ( | )SG iD τ e  and ( | )SF iD τ e .  
Sensitivity analyses for ( | )SGD τ e and ( | )SF iD τ e  based 
on PRRCs are presented in Figs. 3b and 3d (see Table I 
for definitions of individual variables).  The dominant 
variable with respect to the uncertainty in ( | )SGD τ e  is 
SCCTHRP, with ( | )SGD τ e  decreasing as SCCTHRP 
increases.  The strong effect associated with SCCTHRP 
results because SCCTHRP defines the residual stress level 
at which WPs are considered to be damaged by 
seismically-induced impacts.  The YM 2008 TSPA uses a 
mean hazard curve to define the annual frequencies of 
seismic ground motion events of different magnitudes, 
thus no variable related to the occurrence of seismic 
events is present in the sensitivity analysis.  After 
SCCTHRP, the analyses for ( | )SGD τ e  indicates effects 
for variables that influence movement of water through 
the natural system (SZFIPOVO, SZGWSPDM, and 
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INFIL), the mass of radionuclides in the disposed waste 
(DSNFMASS) and the contribution of 99Tc to dose to the 
RMEI (MICTC99).   

For ( | )SF iD τ e , effects are indicated for variables 
related to the movement of water through the natural 
system (SZGWSPDM, INFIL, SEEPUNC, SZFIPOVO and 

SEEPPRM) and the contribution of 99Tc to dose to the 
RMEI (MICTC99).  However, unlike the analysis 
for ( | )SGD τ e , no single variable dominates the 
uncertainty in ( | )SF iD τ e . 

  

 

 
Fig. 3. Expected dose to RMEI (mrem/yr) over 4[0,2 10  yr]× for all radioactive species resulting from seismic events: (a, b) 

( | )SG iD τ e  and associated PRCCs for seismic ground motion events (Ref. 3, Fig. K7.7.1-1[a]), and (c, d) ( | )SF iD τ e and 
associated PRCCs  for seismic fault displacement events (Ref. 4, Fig. K7.8.1-1[a]). 

 
 
VI. ALL SCENARIO CLASSES 
 

Expected dose results for individual scenario classes 
are presented in Sects. III-V.  As discussed in Section I, 
the total expected dose ( | )D τ e  for all scenario classes 
results from adding the incremental expected doses for the 
individual scenario classes.  Specifically, the total 
expected doses ( | )iD τ e in Fig. 4a for the time period 

4[0,2 10  yr]×  result from adding the expected doses in 
Figs. 1-3 for corresponding LHS elements ei, i = 1, 2, …, 
300.  Similarly, the total expected doses ( | )iD τ e in Fig. 

4c for the time period 6[0,10  yr]  result from adding the 
expected doses for the individual scenario classes for this 
time period.  Additional detail is provided in an extensive 
analysis report.4  

In turn, the total expected doses ( | )iD τ e in Figs. 4a 

and 4c can be used to estimate mean doses ( )D τ over 
aleatory and epistemic uncertainty and quantiles 
QEq[ ( | )D τ e ] (e.g., q = 0.05, 0.5, 0.95) for ( | )D τ e that 

derive from epistemic uncertainty.  Values for ( )D τ and 
QEq[ ( | )D τ e ], q = 0.05, 0.5, 0.95, are shown in Figs. 4a 

and 4b.  The YM 2008 TSPA uses the mean dose ( )D τ in 
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comparisons with the 15 mrem/yr dose standard specified 
by the NRC for the time period 4[0,10  yr] 1 and uses the 
median expected dose QE,0.5[ ( | )D τ e ] in comparisons 
with the 350 mrem/yr dose standard proposed by the NRC 
for the time period 6[0,10  yr] .2   

The total expected dose ( | )D τ e  for the time period 
4[0,2 10  yr]×  is primarily determined by the expected 

dose from seismic ground motion with a secondary 
contribution from the expected dose from igneous 
intrusion.6  All other scenario classes have a marginal 
contribution to total expected dose.  For the time period 

6[0,10  yr] , expected dose from these same scenario 
classes primarily determine the median expected dose 
QE,0.5[ ( | )D τ e ]. 

The smoothness evident in the expected dose results 
for the time period 4[0,2 10  yr]×  results from the 
quadrature procedure used to evaluate the expected dose 
from seismic ground motion for this time period.3  In 
contrast, the Monte Carlo procedure used to evaluate 
expected dose from the combination of seismic ground 
motion and nominal corrosion processes for the time 
period 6[0,10  yr]  results in the spikes in total expected 
dose evident in Fig. 4c.  Although these spikes could be 
smoothed by use of a larger sample size in the calculation, 
the sample sizes employed are sufficient to yield a stable 
estimate of the mean dose and median expected dose, as 
will be shown.  

As shown by the spread of the results in Figs. 4a and 
4c, a substantial amount of uncertainty is present in the 
estimation of ( | )D τ e .  The sensitivity analyses in Figs. 
4b and 4d indicate the variables that are giving rise to the 
uncertainty in ( | )D τ e .  The PRCCs in Fig. 4b indicate 
that the uncertainty in ( | )D τ e for the time interval 

4[0,2 10  yr]×  is dominated by SCCTHRP (see Table I for 
definitions of individual variables), reflecting the 
dominant contribution to total expected dose from the 
expected dose from seismic ground motion, and the 
importance of this variable to the expected dose from 
seismic ground motion.  Smaller effects are evident from 
the frequency of igneous events (IGRATE), from variables 
that influence movement of water (SZGWSPDM, 
SZFIPOVO, and INFIL) and from the contribution of 14C 
to dose to the RMEI (MICC14) (the contribution of 99Tc 
to uncertainty in expected dose is slightly less than the 
contribution from the variables identified in Fig. 4b).4  
For the time period 6[0,10  yr] , the PRCCs in Fig. 4d 
indicate that the three most important variables with 
respect to the uncertainty in ( | )D τ e  for the time interval 
are SCCTHRP, IGRATE and WDGCA22.  In turn, 

SCCTHRP is the dominant variable affecting the 
uncertainty in expected dose from seismic ground motion 
events; IGRATE is the dominant variable affecting the 
uncertainty in expected dose ( | )IID τ e from igneous 
intrusive events; and WDGCA22 is the dominant variable 
affecting the uncertainty in the dose ( | )ND τ e  from 
nominal processes.5  In addition, smaller effects are 
indicated for SZGWSPDM, SZFIPOVO and for 
uncertainty in plutonium solubility (EP1LOWPU).  

The YM 2008 TSPA used a LHS of size 300 to 
estimate ( | )D τ e  (Ref. 5, Sect V).  Given that 392 
epistemically uncertain variables are under consideration 
in the YM 2008 TSPA model (i.e., e is a vector of length 
392), it is reasonable to ask if this is a sufficiently large 
sample to obtain stable results.  To answer this question, 
the analysis was repeated three times with independently 
generated LHSs of size 300.  As shown in Fig. 5, the 
values obtained for ( )D τ  and QEq[ ( | )D τ e ], q = 0.05, 
0.5, 0.95, for these three samples are similar.  Thus, an 
LHS of size 300 is adequate to obtain stable results for the 
propagation of epistemic uncertainty.  The reader should 
note that the stability results summarized in Fig. 5 are 
from a near-final version of the YM 2008 TSPA model, 
and hence are slightly different in shape and magnitude 
from those presented in Fig. 4. 

 
VII. SUMMARY 
 

Uncertainty and sensitivity analysis are important 
parts of the analysis of expected dose in the TS YM 2008 
TSPA. These analyses show that (i) the mean and median 
for expected dose are below regulatory standards 
specified by the NRC, (ii) mean and expected doses for 
all scenario classes are dominated by the doses arising 
from the seismic ground motion scenario class and the 
igneous intrusion scenario class for the 4[0,2 10  yr]×  
time period and by the doses arising from nominal 
processes, the seismic ground motion scenario class and 
the igneous intrusion scenario class for the 

6[0,10  yr] time period, (iii) the uncertainty in the 
expected dose from disruptive events tends to be 
dominated by the uncertainty in the rate of occurrence of 
these events, and (iv) an LHS of size 300 is adequate for 
the propagation of epistemic uncertainty in the YM 2008 
TSPA.  In addition, the sampling-based methods used for 
uncertainty and sensitivity analysis played an important 
role in analysis verification by allowing a detailed 
examination of the effects of analysis inputs on analysis 
results. 

Additional extensive uncertainty and sensitivity 
analyses for dose, expected dose and many other analysis 
results are available in Apps. J and K of Ref. [4]. 
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Fig. 4. Expected dose to RMEI (mrem/yr) for all radioactive species and all scenario classes: (a, b) ( | )D τ e and associated 

PRCCs for 4[0,2 10  yr]×  (Ref. 4, Fig. K8.1-1[a]), and (c, d) ( | )D τ e and associated PRCCs  for 6[0,10  yr]  (Ref. 4, Fig. 
K8.2-1[a]). 
 

 
Fig. 5. Stability of estimates of expected dose ( | )D τ e  to RMEI (mrem/yr) for all radioactive species and all scenario 

classes: (a) 4[0,2 10  yr]×  (Ref. 4, Fig. 7.3.1-15a), and (b) 6[0,10  yr]  (Ref. 4, Fig. 7.3.1-16a). 
 

TABLE I.  Variables Appearing in Sensitivity Analyses 
for EXPDOSE  in Figs. 1-4.  

 

DASHAVG: Mass median ash particle diameter (cm) 

DDIVIDE: Diffusivity of radionuclides in divides of the Fortymile Wash 
fan (RMEI location) (cm2/yr).  
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DSNFMASS: Scale factor used to characterize uncertainty in 
radionuclide content of DSNF (dimensionless).  
EP1LOWPU: Logarithm of the scale factor used to characterize 
uncertainty in plutonium solubility at an ionic strength below 1 molal 
(dimensionless).   
IGRATE: Frequency of intersection of the repository footprint by a 
volcanic event (yr-1).  Distribution: Piecewise uniform.   
IGERATE: Frequency of occurrence of volcanic eruptive events (yr-1).   

INFIL: Pointer variable for determining infiltration conditions:  10th, 
30th, 50th or 90th percentile infiltration scenario (dimensionless).   
INHLTPV: Pointer variable for long-term inhalation dose conversion 
factor for volcanic ash exposure (dimensionless).   
MICC14:  Groundwater Biosphere Dose Conversion Factor (BDCF) for 
14C in modern interglacial climate ((Sv/year)/(Bq/m3)).   
MICTC99:  Groundwater Biosphere Dose Conversion Factor (BDCF) 
for 99Tc in modern interglacial climate ((Sv/year)/(Bq/m3)).   
PROBDSEF: Probability for undetected defects in drip shields 
(dimensionless).   
PROBWPEF:  Probability for the undetected defects in waste packages 
(dimensionless).   
SCCTHRP: Residual stress threshold for SCC nucleation of Alloy 22 (as 
a percentage of yield strength in MPa) (dimensionless).   
SEEPPRM: Logarithm of the mean fracture permeability in lithophysal 
rock units (dimensionless).   
SEEPUNC: Uncertainty factor to account for small-scale heterogeneity 
in fracture permeability (dimensionless).   
SZCOLRAL:   Logarithm of colloid retardation factor in alluvium 
(dimensionless).   
SZFIPOVO: Logarithm of flowing interval porosity in volcanic units 
(dimensionless).   
SZGWSPDM: Logarithm of the scale factor used to characterize 
uncertainty in groundwater specific discharge (dimensionless).   
THERMCON: Selector variable for one of three host-rock thermal 
conductivity scenarios (low, mean, and high) (dimensionless).   
WDGCA22: Temperature dependent slope term of Alloy 22 general 
corrosion rate (K).   
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