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Abstract

In 2001, the National Nuclear Security Administration of the U.S. Department of Energy in conjunction with the
national security laboratories (i.e, Los Alamos National Laboratory, Lawrence Livermore National Laboratory and
Sandia National Laboratories) initiated development of a process designated Quantification of Margins and Uncer-
tainty (QMU) for the use of risk assessment methodologies in the certification of the reliability and safety of the
nation’s nuclear weapons stockpile. This presentation discusses and illustrates the conceptual and computational
basis of QMU in analyses that use computational models to predict the behavior of complex systems. Topics consid-
ered include (i) the role of aleatory and epistemic uncertainty in QMU, (ii) the representation of uncertainty with
probability, (iii) the probabilistic representation of uncertainty in QMU analyses involving only epistemic uncer-
tainty, (iv) the probabilistic representation of uncertainty in QMU analyses involving aleatory and epistemic uncer-
tainty, (v) procedures for sampling-based uncertainty and sensitivity analysis, (vi) the representation of uncertainty
with alternatives to probability such as interval analysis, possibility theory and evidence theory, (vii) the representa-
tion of uncertainty with alternatives to probability in QMU analyses involving only epistemic uncertainty, and (viii)
the representation of uncertainty with alternatives to probability in QMU analyses involving aleatory and epistemic
uncertainty. Concepts and computational procedures are illustrated with both notional examples and examples from
reactor safety and radioactive waste disposal.

Key Words: Aleatory uncertainty, Epistemic uncertainty, Performance assessment, Quantification of margins and
uncertainty, Risk assessment, Sensitivity analysis, Uncertainty analysis
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1 Introduction

In 2001, the National Nuclear Security Administra-
tion (NNSA) of the U.S. Department of Energy (DOE)
in conjunction with the national security laboratories
(i.e, Los Alamos National Laboratory, Lawrence Liv-
ermore National Laboratory and Sandia National Labo-
ratories) initiated development of a process designated
Quantification of Margins and Uncertainty (QMU) for
the use of risk assessment methodologies in the certifi-
cation of the reliability and safety of the nation’s nu-
clear weapons stockpile [1-6]. Specifically, the follow-
ing requirements have been proposed [7]:

Design agency assessments shall incor-
porate QMU methodologies as an essential
part of the framework necessary for the
evaluation of the performance of warhead
and warhead components. QMU can be used
as one of the tools for identification and pri-
oritization of actions required for a compo-
nent or system. Issues that require immedi-
ate attention must be raised to the NNSA
Office of Stockpile Assessments and Certi-
fication. The design agency laboratories
shall develop site-appropriate QMU imple-
mentation plans. (NNSA-1)

Certification, qualification, and signifi-
cant finding investigations closure plans shall
include QMU methodologies where applica-
ble. Results of assessments using QMU shall
be included in warhead certification docu-
ments, component qualification documents,
annual assessment reports (AARs) and Sig-
nificant Finding Investigation (SFI) closure
documentation. (NNSA-2)

As indicated by the preceding statements, the
NNSA intends for QMU to be an integral component of
the assessment process for the nation’s nuclear weapons
stockpile. However, the preceding statements give no
indication of what the NNSA envisions as the concep-
tual and computational basis for QMU. In this regard,
some additional information with respect to the
NNSA'’s intent for QMU is provided by the following
definitions supplied in conjunction with the preceding
statements [7]:

Quantification of Margins and Uncer-
tainties is a scientific methodology that iden-
tifies relevant nuclear-warhead parameters
and quantifies, using available experimental
and computational tools, the margin of that
parameter relative to its failure point and the
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uncertainties associated with the parameter
and the failure point. An assessment of the
relationship between the margin and uncer-
tainties facilitates stockpile management de-
cisions, resource allocation prioritization,
and informed judgments on the safety, reli-
ability and performance of nuclear war-
heads. (NNSA-3)

Uncertainty is a best estimate of the
range of a particular metric which may de-
rive from one or two broad sources. Uncer-
tainties that reflect a lack of knowledge
about the appropriate value to use for a
quantity that is assumed to have (missing
modifier: a fixed?) value in the context of a
particular analysis are termed epistemic.
Uncertainties that arise from an inherent
randomness in the behavior of the system
under study are termed aleatoric. (NNSA-4)

Although designated as definitions, the statements
in Quotes (NNSA-3) and (NNSA-4) are at a high level
and lack specifics. For example, QMU is defined in
Quote (NNSA-3) as a “scientific methodology” but no
details are given with respect to what the conceptual
basis and resultant computational implementation of
this methodology should be. This lack of specificity is
consistent with the requirement in Quote (NNSA-1)
that “site-appropriate QMU implementation plans”
should be developed and has the advantage of allowing
QMU to be developed and implemented in manners
appropriate for specific analysis contexts. However, this
lack of specificity does not exempt individual analyses
from a requirement to clearly define their conceptual
basis and associated computational implementation.
Such definitions are essential if a specific use of QMU
is to be considered a “scientific methodology.”

What is unambiguous from Quote (NNSA-3) is
that the appropriate treatment of uncertainty is to be an
integral part of any implementation of QMU. The na-
ture of uncertainty and the division of uncertainty into
epistemic and aleatory components is elaborated on in
Quote (NNSA-4). This is an important distinction that
can have significant effects on the conceptual basis and
computational design of an analysis and also on the
interpretation of the results of the analysis.

When viewed at a high level, the application of
QMU can be divided into two distinct cases: (i) com-
parison of experimental results against a requirement
without the use of a mathematical model to transform
the experimental results, and (ii) comparison of predic-



tions from a mathematical model against a requirement.
This presentation is restricted to the second case, and as
a result, the presented concepts, computational proce-
dures and discussions should be viewed in the context
of comparing model (i.e., computer) predictions with a
requirement. In particular, the strictly statistical issues
associated with the direct comparison of experimental
results with a requirement are not considered.

Although the descriptor “risk assessment” does not
appear in Quotes (NNSA-1) — (NNSA-4), the QMU
process being described in these quotes is clearly a
form of risk assessment in that it involves the determi-
nation of consequences (i.e., analysis outcomes and
associated margins), likelihoods (i.e., the effects of
aleatory uncertainties), and state of knowledge uncer-
tainties (i.e., epistemic uncertainties). Such determina-
tions are the essence of a risk assessment. As a result,
the NNSA’s mandate for QMU is a continuation of the
extensive and ongoing use of risk assessment in many
different areas. As indicated in the following three pa-
ragraphs, there is an extensive body of prior studies and
techniques that are relevant to the NNSA’s mandated
use of QMU.

Risk assessment for complex systems has a long
history and many examples relevant to QMU exist, in-
cluding (i) early studies of missile reliability (Ref. [8],
Sect. 3.2), (ii) the U.S. Nuclear Regulatory Commis-
sion’s (NRC’s) assessment of the risk from commercial
nuclear power plants, which is known as WASH-1400
after a report number [9], (iii) the NRC’s reassessment
of the risk from commercial nuclear power plants,
which is known as NUREG-1150 after a report number
[10; 11], (iv) the NRC’s study of margins in reactor
safety [12-18], (v) the NRC’s analysis of the LaSalle
Nuclear Power Station as part of its Risk Methods In-
vestigation and Evaluation Program [19], (vi) the
DOE’s performance assessment for the Waste Isolation
Pilot Plant (WIPP) in support of a successful Compli-
ance Certification Application to the U.S. Environ-
mental Protection Agency (EPA) [20; 21], and (vii) the
DOE’s performance assessment for the proposed re-
pository for high level radioactive waste at Yucca
Mountain, Nevada, carried out in support of a licensing
application to the NRC [22].

The NRC’s WASH-1400 analysis is rightfully con-
sidered to be the seminal study in the analysis of com-
plex systems. After its completion, the NRC commis-
sioned a review of the WASH-1400 analysis known as
the Lewis Committee Report after the chairman of the
review committee [23]. This review was highly com-
plimentary with respect to the overall WASH-1400
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analysis but noted that the analysis had inadequately
represented the (epistemic) uncertainty in its results.
This led to an extensive interest in the appropriate in-
corporation of epistemic uncertainty into analyses for
complex systems and significantly influenced the
NRC’s program to develop a risk assessment method-
ology to assess the geologic disposal of high-level ra-
dioactive waste [24-26], the NRC’s development of the
MELCOR code system for the analysis of nuclear reac-
tor accidents [27-29], and the design and implementa-
tion of the analyses indicated in (iii) — (vii) above.
Similarly to the analyses in (iii) — (vii), NNSA’s man-
date for QMU is effectively one more descendent of the
WASH-1400 analyses and the associated Lewis Com-
mittee Report.

Additional information on the development of risk
assessment methods for complex systems is available in
the excellent review by Rechard [8], which is repro-
duced in App. A. The recent review by Zio is also a
valuable source of background and perspectives on risk
and reliability analysis for complex systems [30]. Fur-
ther, the book by Bernstein is highly recommended for
a broader perspective on the evolution of the ideas un-
derlying the assessment of risk [31].

The QMU process also quite naturally falls into a
broad area of study known as uncertainty and sensitiv-
ity analysis, where uncertainty analysis refers to the
determination of the uncertainty in analysis results that
derives from uncertainty in analysis inputs and sensitiv-
ity analysis refers to the determination of the contribu-
tions of the uncertainty in individual analysis inputs to
the uncertainty in analysis results. The uncertainty be-
ing referred to in the preceding sentence is usually of an
epistemic nature. Clearly, uncertainty analysis is a fun-
damental component of QMU; indeed, when viewed
broadly, QMU is simply a call for uncertainty analyses
focused on margins (i.e., differences between required
performance and obtainable performance) associated
with the assessment of nuclear weapon reliability and
performance. However, sensitivity analysis is also a
fundamental part of QMU as indicated by reference to
“identification and prioritization of actions” in Quote
(NNSA-1) and “assessment of the relationship between
margin and uncertainties” in Quote (NNSA-3). Specifi-
cally, the indicated actions require a sensitivity analysis
to determine the effects of the uncertainty in individual
analysis inputs on the uncertainty in analysis results of
interest (e.g., margins).

As a result of its fundamental importance in analy-
ses of complex systems, a number of approaches to
uncertainty and sensitivity analysis have been devel-



oped, including differential analysis [32-37], response
surface methodology [38-44], Monte Carlo analysis
[29; 45-56], and variance decomposition procedures
[57-61]. Overviews of these approaches are available in
several reviews [62-71]. Of the indicated approaches to
uncertainty and sensitivity analysis, sampling-based
(i.e., Monte Carlo) approaches are likely to be the most
generally useful in QMU analyses. As an introduction
to analyses of this type, the review by Helton et al. [56]
is reproduced in App. B. This review provides back-
ground and additional references on many of the ideas
introduced in this presentation.

A number of presentations discussing the QMU
process are available [2; 72-77]. Of particular impor-
tance is the recently published National Academy of
Science/National Research Council (NAS/NRC) report,
which provides an overview of, and a broad perspective
on, QMU at the national security laboratories [77].
However, these presentations tend to be written at a
high level and, as a result, lack detail on the conceptual
basis and computational organization that must underlie
a real QMU analysis if that analysis is to be a manifes-
tation of a “scientific methodology” as indicated in
Quote (NNSA-3).

The purpose of this presentation is to describe the
conceptual basis and computational organization of
QMU analyses that use models to produce results that
are then compared with requirements. The basic idea is
that a QMU analysis must start with a clear understand-
ing of the conceptual (i.e., mathematical) model used to
represent uncertainty. In turn, this model leads to (i) the
manner in which the uncertainty in individual analysis
inputs is characterized, (ii) the procedures that are used
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to propagate uncertainty through the analysis, (iii) the
procedures that are available for sensitivity analysis,
and (iv) the interpretations and representations that are
available for analysis results of interest (e.g., margins).
It is important to recognize that in most real analyses
there will probably be many results of interest in addi-
tion to a single margin that is the outcome of comparing
a single calculated result with a single requirement.

The presentation is organized as follows. First, the
important concepts of aleatory and epistemic uncer-
tainty are discussed (Sect. 2). Next, the use of probabil-
ity in the representation of uncertainty is described and
two example problems are introduced that will be used
to illustrate different potential QMU analyses (Sect. 3).
Specifically, the first example problem involves only
epistemic uncertainty and is used to illustrate QMU
analyses that involve only epistemic uncertainty (Sect.
4). The second example problem involves both aleatory
and epistemic uncertainty and is used to illustrate QMU
analyses that involve both aleatory and epistemic uncer-
tainty (Sect. 5). For added perspective, the presence of
QMU-type margin analyses in several real, complex
and computationally-demanding analyses are also de-
scribed (Sect. 6); further, additional details on these
analyses are presented in three appendices (Apps. C, D
and E). A description of uncertainty and sensitivity
analysis procedures that underlie sampling-based QMU
analyses is then provided (Sect. 7). Next, alternative
mathematical structures for the representation of uncer-
tainty are described (Sect. 8) and then illustrated with
notional QMU analyses involving only epistemic uncer-
tainty (Sect. 9) and both aleatory and epistemic uncer-
tainty (Sect. 10). The presentation then ends with a
summary discussion (Sect. 11).
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2 Types of Uncertainty

In the design and implementation of analyses for
complex systems, it is useful to distinguish between
two types of uncertainty: aleatory uncertainty and epis-
temic uncertainty [78-90]. The importance of this dis-
tinction is recognized by the NNSA in Quote (NNSA-4)
and also emphasized in the NAS/NRC report on QMU
(Finding 1-3, pp. 22-23, Ref. [77]).

Aleatory uncertainty arises from an inherent ran-
domness in the properties or behavior of the system
under study. For example, the weather conditions at the
time of a reactor accident are inherently random with
respect to our ability to predict the future. Other exam-
ples include the variability in the properties of a popula-
tion of weapon components and the variability in the
possible future environmental conditions that a weapon
component could be exposed to. Alternative designa-
tions for aleatory uncertainty include variability, sto-
chastic, irreducible and type A.

Epistemic uncertainty derives from a lack of know-
ledge about the appropriate value to use for a quantity
that is assumed to have a fixed value in the context of a
particular analysis. For example, the pressure at which
a given reactor containment would fail for a specified
set of pressurization conditions is fixed but not amena-
ble to being unambiguously defined. Other examples
include minimum voltage required for the operation of
a system and the maximum temperature that a system
can withstand before failing. Alternative designations
for epistemic uncertainty include state of knowledge,
subjective, reducible and type B.

The appropriate separation of aleatory and epis-
temic uncertainty is an important component of the
design and computational implementation of an analy-
sis of a complex system and also of the decisions that
are made on the basis of this analysis. This point can be
made with a simple notional example. Suppose an
analysis concludes that the probability of a particular
component failing to operate correctly is 0.01. Without
the specification of additional information, there are
two possible interpretations to the indicated probability.
The first interpretation, which is inherently aleatoric, is
that 1 in every 100 components of this type will fail to
operate properly; or, put another way, there is a prob-
ability of 0.99 that a randomly selected component will
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operate properly and a probability of 0.01 that a ran-
domly selected component will not operate properly.
The second interpretation, which is inherently epis-
temic, is that there is a probability of 0.99 that all com-
ponents of this type will operate properly and a prob-
ability of 0.01 that no components of this type will op-
erate properly. Clearly, the implications of the two in-
terpretations of the indicated probability are very dif-
ferent, and as a consequence, any resultant decisions
about the system under study can also be expected to be
very different.

The analysis of a complex system typically in-
volves answering the following three questions about
the system:

What can happen? (QL)
How likely is it to happen? (Q2)
What are the consequences if it happens? (Q3)

and one additional question about the analysis itself:

How much confidence exists in the answers
to the first three questions? (Q4)
The answers to Questions (Q1) and (Q2) involve the
characterization of aleatory uncertainty, and the answer
to Question (Q4) involves the characterization of epis-
temic uncertainty. The answer to Question (Q3) typi-
cally involves numerical modeling of the system condi-
tional on specific realizations of aleatory and epistemic
uncertainty. The posing and answering of Questions
(Q1) — (Q3) gives rise to what is often referred to as the
Kaplan-Garrick ordered triple representation for risk
[89], which is discussed in more detail in Sect. 3.7.

The use of probability to characterize both aleatory
uncertainty and epistemic uncertainty is described and
illustrated in Sects. 3 — 6 and can be traced back to at
least the beginning of the formal development of prob-
ability theory in the late seventeenth century [31; 91;
92]. However, as discussed in Sect. 8 and illustrated in
Sects. 9 and 10, several alternative mathematical struc-
tures for the representation of epistemic uncertainty
have been developed in the last several decades. It is
possible that some of these alternative structures may
be more appropriate than probability in certain contexts
for the representation of epistemic uncertainty.
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3 Representation of Uncertainty with

Probability

The following topics related to the representation of
uncertainty with probability are now introduced: prob-
ability spaces, cumulative distribution functions and
complementary cumulative distribution functions (Sect.
3.1), the basic entities that underlie an analysis that in-
volves a representation of uncertainty (Sect. 3.2), analy-
sis in the presence of only epistemic uncertainty (Sect.
3.3), an example analysis in the presence of only epis-
temic uncertainty (Sect. 3.4), analysis in the presence of
aleatory and epistemic uncertainty (Sect. 3.5), an exam-
ple analysis in the presence of aleatory and epistemic
uncertainty (Sect. 3.6), the Kaplan-Garrick ordered triple
representation for risk (Sect. 3.7), verification and valida-
tion (Sect. 3.8), and an admonition about the importance
of a clear specification of concepts in the representation
of uncertainty (Sect. 3.9).

The NAS/NRC report on QMU emphasizes the
importance of formal uncertainty quantification (Find-
ing 1-2, p. 20, Ref. [77]). The concepts and mathemati-
cal structures introduced in this section are fundamental
to such quantification.

3.1 Probability Spaces, Cumulative
Distribution Functions and
Complementary Cumulative
Distribution Functions

Probability provides the mathematical structure
traditionally used to represent both aleatory uncertainty
and epistemic uncertainty [78; 80; 83; 86; 87]. For-
mally, a probabilistic characterization of the uncertainty
associated with a quantity x is provided by a probability
space (X, X, py), where (i) X is the set of all possible
values for x, (ii) X is a suitably restricted set of subsets
of X for which probability is defined, and (iii) py is a
function that defines probability for individual elements
of X (i.e., if U € X, then py(Y{) is the probability of L)
(Sect. 1V.4, Ref. [93]). Additional discussion of prob-
ability spaces is provided in Sect. 8.4.

In practice, a probability space (X, X, py) is often
represented by a density function dy(x), where

px (U) =], dx (x)dU (3.2)
for U e X. Integrals of the form appearing in Eq. (3.1)
are usually taken to be Lebesgue integrals in formal
developments of probability theory (e.g., [93; 94]).
However, for the purposes of this presentation, all pre-
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sented integrals can be intuitively thought of as corre-
sponding to the Riemann integral of elementary calcu-
lus. In computational practice, high-dimensional inte-
grals involving probability spaces are usually evaluated
with sampling-based (i.e., Monte Carlo) procedures.

When x corresponds to a scalar x rather than a vec-
tor, a probability space (X, X, pyx) can be summarized
with a cumulative distribution function (CDF) or a com-
plementary cumulative distribution function (CCDF).
Specifically, the CDF and CCDF for x are defined by
plots of the points

[X' Px (UX)] and [X, Px (Uf)}

respectively, for x e X, where

(3.2)

Uy = {X:XeX and X< x},
px (Uy ) = probability of 24, (i.e., of a value X < X)
= juxdx (X) dx
[, 8 (R)dx (%) d,
Px (u;?) = probability of % (i.e., of a value % > X)
= Iu)%dx (%)

= [ 3 (R)ax (1) %

if X<x

1
o (X) =
—X(X) {0 otherwise
and
_ 1 ifX>x
Ox (X) =1-0, (%) =
x (%) (%) {o otherwise.

Further, it is usually assumed for plotting purposes that
(i) px(U) = L and py (Uy) =0 for x > sup (&) and (ii)
px(Uh) =0and py (L) =1 for x < inf(X).

The results of risk assessments are often summa-
rized with CCDFs because CCDFs provide an answer
to the question “How likely is it to be this large or lar-
ger?”, which is typically the type of question that risk
assessments are intended to answer. In contrast, CDFs
answer the question “How likely is it to be this small or
smaller?”, which is likely to be the question of primary
interest in a margin analysis.

As an example, the CDF and CCDF for x with a
loguniform distribution on [2, 10] is presented in Fig.
3.1. For this example,
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Fig. 3.1. Example CDF and CCDF for variable x with
(i) a loguniform distribution on [2, 10] and
(if) px(x <x) and px(x < X) used as mnemon-
ics for the probabilities pyx(l4) and py (L)
defined in conjunction with Eq. (3.2).

dy (x)=1/[xIn(10/2)]=1/[xIn(5)], 2 < x <10, (3.3)

is the corresponding density function, and the probabili-
ties py(l) and py () that define the CDF and
CCDF are given by

(3.4)

px (Uy) = [, (/[ %In(5)]} dx = In(x/2)/In(5)

and

px (45 )= [, /(% In(5) ]} dx = In (10/%)/n(5), (3.5)

respectively, for 2 < x < 10. In practice, most probabil-
ity spaces and their associated density functions are too
complex to permit simple closed form representations
as shown in Egs. (3.4) and (3.5); rather, CDFs and
CCDFs must be determined through the use of various
numerical procedures.

Other summary measures for the distribution of x
(i.e., for the probability space (X, X, pg)) include the
expected value Ey(x) for x, the variance Vy(x) for x, and
the g quantile Qxq(x) for x, where

Ex (x) = [, %dx (%) d, (3.6)

Vy (x)= [ [%=Ex (9] dx (%) ok, (37)
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and Qxq(X) corresponds to the value of x for which

q=px (U) =], 5 (%) dx (X)d% (3.8)
Conceptually, the g quantile Qxy(x) corresponds to the
value of x obtained by (i) starting at g on the ordinate of
the CDF for x, (ii) drawing a horizontal line to the CDF,
and (iii) then drawing a vertical line down to the ab-
scissa. The value for x at the point where the indicated
vertical line intersects the abscissa corresponds to the g
quantile Qxq(x) for x (Fig. 3.1).

In most analyses, the result of interest is a function

y=f(x) (3.9)
of uncertain analysis inputs. If x is uncertain as quanti-
fied by a probability space (&, X, py), then y is also
uncertain, with this uncertainty quantified by a prob-
ability space (), Y, py) that derives from the function
f(x) and the probability space (&, X, py) for x. In con-
cept, it is possible to derive the probability space (), Y,
py). In practice, (V, Y, py) is usually approximated
with sampling-based procedures (see Sects. 7.2 — 7.4
and additional discussion in Refs. [55; 56]).

If y corresponds to a scalar y or y is a component
of the vector y, then the uncertainty in y that derives
from the uncertainty in x is usually represented by a
CDF or a CCDF that summarizes the corresponding
probability space (Y, Y, py) for y. Specifically, the CDF
and CCDF for y are defined by plots of the points

[y, Py (uy)} and [y, Py (u;)]

respectively, fory € ), where

(3.10)

Uy {y:¥eyandy<y},
by (¢y )

probability of ¢4, (i.e., of a value y <vy)

[ 8y [f ()] dx (x)ax

nSX

D8y [T(xi)]/nsx

i=1

By (Uy),

probability of L{)‘f (i.e., of avalue § >vy)

[ 3y [ (x)]dx (x)x

I
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Fig. 3.2. Example CDF and CCDF fory = f(x) = xl
2X1Xy + x2 generated with (i) a random sam-
ple X; = [Xi1, Xjol, 1 = 1, 2, ..., 100, from uni-
form distributions on [0, 2] for X1 and X, and
(i) px [f(x) <yl and px [y < f(x)] used as
mnemonics for the estimated probabilities
Py (Uy) and ﬁY(u§) defined in conjunction
with Eqg. (3.10) to emphasize the dependence
of py(t4) and py (Uy) on the probability
space (X, X, py).

= 3300
B (445,

Sy and §y are defined analogously to &, and 5 in con-
junctlon with Eq. (3.2), and x;, i = 1, 2 , NSX, is a
sample from X generated in a manner consistent with the
probability space (X, X, pyx). The sampling-based (i.e.,
Monte Carlo) approximations to py({4,) and py (u ) are
introduced because in general, the deflnlng mtegrals for
py(Uy) and Py (U ) will be high-dimensional and thus
too complex for a closed-form or quadrature-based eval-
uation.

X;)]/nsx

As an example, approximations to the CDF and
CCDF for

y=f(x)=x¢ +2xx;, +x3 (3.11)
generated with a random sample
Xi =[ %1, %2 J,i=1,2,..., nSX =100, (3.12)

23

from uniform distributions on [0, 2] for x; and x, are
shown in Fig. 3.2.

Similarly to the summary measures for x in Egs.
(3.6) — (3.8), additional summary measures for the dis-
tribution of y = f(x) (i.e., for the probability space (),
Y, py) include the expected value Ey(y) for y, the vari-
ance Vy(y) for y,and the q quantile Qy(y) for y, where

By ijxf[ ]i (3.13)
Wy (¥)=Vx [ f(x)] (314

SRLE x)]} dy (%) dx,

and Qyq(y) = Qxq[f(x)] corresponds to the value of y for
which

=y (thy)= [ 8y [ (%)]

In practice, Qyq(y) is usually approximated by the value
y such that

—Ex [ f

dy (X)dX. (3.15)

nSX

= py (Uy)= ééy[f

(3.16)

(xi)]/nsx,

where x;, i = 1, 2, ..., nSX, is a sample from X gener-
ated in a manner conS|stent with the probability space
(X, X, py) as illustrated in Fig. 3.2. Further, Ey(y) and
Vy(y) can be approximated in a similar manner with the
indicated sample.
3.2 Basic Entities Underlying an Analysis
The posing and answering of Questions (Q1) —
(Q4) introduced in Sect. 2 gives rise to an analysis pre-
dicated on three basic entities [95; 96]:

A probabilistic characterization of

aleatory uncertainty, (EN1)

A model that predicts system behavior, (EN2)
and

A probabilistic characterization of

epistemic uncertainty. (EN3)

Formally, (EN1) corresponds to a probability space (A,
A, pp) for aleatory uncertainty and provides the an-



swers to Questions (Q1) and (Q2): “What can hap-
pen?” and “How likely is it to happen?”; (EN2) corre-
sponds to a function f (e.g., the solution of a system of
differential or partial differential equations) that deter-
mines analysis outcomes of interest and provides the
answer to Question (Q3): “What are the consequences
if it does happen?”; and (EN3) corresponds to a prob-
ability space (&, E, pg) for epistemic uncertainty and
provides the basis for answering Question (Q4): “How
much confidence exists in the answers to the first three
questions?”

The sample space A for the probability space (A,
A, pp) for aleatory uncertainty is a set of the form

A:{a:a:[al,az,...,anA]}, (3.17)
where each vector a contains the defining properties
(e.g., time, size, location, ...) for a single random oc-
currence associated with the system under study. In
practice, (A, A, pp) is usually defined by specifying
probability distributions that characterize the occur-
rence of the individual components of a and hence the
occurrence of the individual elements of 4. Further,
the value of nA (i.e., the dimension of a) may change
for different elements of A. For example, the elements
of A might be of the form

a=[nt,p1,t, P2, st P (3.18)
where n is the number of occurrences of a Poisson
process over a specified period of time, tj is the time of
the ith occurrence, and p; is a vector of properties asso-
ciated with the ith occurrence. When needed, the den-
sity function associated with the probability space (A,
A, pp) is represented by da(a).

Similarly, the sample space & for the probability
space (&, E, pg) for epistemic uncertainty is a set of the
form

E={e:e=[e, e ....en ]|, (3.19)
where each vector e contains possible values for the nE
epistemically uncertain variables under consideration.
When needed, the density function associated with the
probability space (&, E, pg) is represented by dg(e).

In practice, (&, E, pg) is usually defined by specify-
ing probability distributions that characterize the epis-
temic uncertainty associated with the individual com-
ponents of e. Specifically, the distributions for the ele-
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ments of e are providing a quantitative characterization
of degrees of belief based on all available information
with respect to where appropriate values of these ele-
ments are located for use in the analysis under consid-
eration. The development of these distributions often
involves an extensive expert review process [97-103].
The importance of expert review and judgment in the
characterization of epistemic uncertainty is specifically
recognized in the NAS/NRC report on QMU (Finding
1-5, p. 30, Ref. [77]).

In many analyses, e has the form

e=[ea.em (3.20)

where

€p= [eAL €a2:--e eA,nEA]

is a vector of nEA epistemically uncertain quantities
used in the characterization of aleatory uncertainty
(e.g., an imprecisely known rate A that defines a Pois-
son process) and

em :[eMl’eMZP--’eM,nEMJ

is a vector of nEM epistemically uncertain quantities
used in the modeling of one or more physical processes
(e.g., an imprecisely known thermal conductivity).

In some situations involving margin analyses, it
may be appropriate to further decompose ey, into

em =[eR,ep:|, (321)
where eg is a vector of epistemically uncertain quanti-
ties used in the definition of the requirements that un-
derlie the margins under consideration and ep is a vec-
tor of epistemically uncertain quantities that correspond
to model parameters. The possible presence of epis-
temic uncertainty in the definition of requirements is
specifically recognized by the NNSA is Quote (NNSA-
3). Also, the NAS/NRC report on QMU recognizes the
possibility of epistemic uncertainty in a requirement in
a notional example involving the determination of a
margin (pp. 25-26, Ref. [77]).

When e has the form e = [e,, ey] indicated in Eq.
(3.20), the analysis in effect has two probability spaces
for epistemic uncertainty: a probability space (EA, EA,
Pea) that characterizes the uncertainty in e,, and a



probability space (EM, EM, pgy) that characterizes the
uncertainty in ey;. Inturn,
E=EAXEM (3.22)
is the sample space for the probability space (&, E, pg).
In practice, the probability spaces (EA, EA, pga) and
(EM, EM, pgyy) are defined by assigning distributions
to the components of e, and e, respectively, which in
effect also defines the probability space (&, E, pg).
Although the probability spaces (£A4, EA, pga) and
(EM, EM, pgp) are incorporated into the probability
space (&, E, pg), it is often convenient to maintain their
separate identities for conceptual and notational pur-
poses. When needed, the density functions associated
with (€A, EA, pgp) and (EM, EM, pgpy) are repre-
sented by dea(ep) and dgp(ep), respectively. As a re-
minder, a different probability space (A, A, pp) for
aleatory uncertainty with corresponding density func-
tion dy(alep) results for each element e, of EA.

As previously indicated, the probability spaces (A,
A, pp) and (&, E, pg) correspond to the Entities (EN1)
and (EN3). In turn, Entity (EN2) corresponds to a func-
tion of the form

y(tja,en )
il )i ]

=f(tla, ey ),
(3.23)

where a € A, £= EA x EM as indicated in Eq. (3.22),
em € EM, t corresponds to time with the assumption
that time-dependent results are under consideration, and
the vertical line in y(t|a, ep) is used to indicate the
concept of “conditional on”. Further, in a QMU analy-
sis, one or more elements of y(t|a, ey,) will either be
margins or analysis results used in the definition of
margins. In most real analyses, the number of results
under consideration (i.e., nY) is likely to be very large.
However, for notational simplicity, a real-valued result

y(tlaem)=f(tla,aw) (3.24)

is assumed to be under consideration.

The uncertainty associated with y(t|a, ey,) is often
studied in one of two contexts. In the first context, a is
assumed to be fixed, and the uncertainty in y(tla, ey)
that derives from the epistemic uncertainty associated
with ey, is analyzed. In essence, this context involves
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only the Entity (EN2) corresponding to the function
y(tla, ep) and the Entity (EN3) corresponding to the
probability space (EM, EM, pgy) that characterizes the
epistemic uncertainty associated with ey,. The Entity
(EN1) corresponding to the probability space (A, A,
pp) that characterizes the aleatory uncertainty associ-
ated with a does not enter into the analysis as a result of
fixing a at a specific value.

In the second context, a is not assumed to be fixed,
and the distributions of y(t|a, ey,) that derive from the
aleatory uncertainty associated with a characterized by
probability spaces (A, A, pa) conditional on specific
values for e = [e,, ey] are central to the analysis. In
this context, all three entities are present, with the anal-
ysis involving distributions that derive from epistemic
uncertainty for (i) CDFs and CCDFs that derive from
aleatory uncertainty or (ii) summary quantities (e.g.,
expected values, quantiles) for CDFs and CCDFs that
derive from aleatory uncertainty. Specifically, each
CDF and each CCDF indicated in the preceding sen-
tence derives from aleatory uncertainty conditional on a
specific value for e = [e,, ey]; in turn, the epistemic
uncertainty associated with e and characterized by the
probability space (&, E, pg) results in distributions of
these CDFs and CCDFs and also in distributions of
guantities such as means and variances that summarize
these CDFs and CCDFs. The preceding distributions
that derive from epistemic uncertainty are the focus of
study in this second analysis context.

The two indicated analysis contexts are discussed in
the next four sections (Sects. 3.3 — 3.6). However, most
large analyses that involve both aleatory uncertainty and
epistemic uncertainty will have various subanalyses that
involve each of these analysis contexts. Specifically,
some subanalyses will be carried out conditional on spe-
cific realizations of aleatory uncertainty (i.e., analyses in
the sense of the first context as discussed in Sects. 3.3
and 3.4) and some subanalyses will be carried out that
address the epistemic uncertainty associated with results
that derive from aleatory uncertainty (i.e., analyses in the
sense of the second context as discussed in Sects. 3.5 and
3.6).

3.3 Analysis in the Presence of Only
Epistemic Uncertainty

This section presents a formal description of the
representation of uncertainty in an analysis that in-
volves only epistemic uncertainty. The following sec-
tion (Sect. 3.4) then presents a simple example illustrat-
ing the formal concepts presented in the present section.
If desired, Sect. 3.4 can be read before Sect. 3.3, with



Sect. 3.3 being referred to only when a more technical
description of the results in Sect. 3.4 is desired. The
importance of the quantification of the epistemic uncer-
tainty in analysis results that derives from epistemic
uncertainty in analysis inputs is emphasized in the
NAS/NRC report on QMU (Recommendation 1-2, p.
22, Ref. [77]).

The CDF and CCDF introduced in the first analysis
context at the end of the preceding section and condi-
tional on specific values for t and a are defined as indi-
cated in Eg. (3.10). Specifically, the CDF and CCDF

for y(tla, ey) that derive from the different possible
values for ey, are defined by plots of the points

{y, pem [ Uy (t|a)]} and {y, PEM [u; (t|a)}}, (3.25)

respectively, for y € Y (t|a), where
(ta)
Uy (ta)

PEM [uy (t|a)}

{y: yey(ta) andysy},

probability of 24, (t|a) (i.e., of a

value y<vy)

- IEMQV [y(t|a, em )] dem (em ) dEM

= E Sy [y(t|a, emi )]/nSE
= Pem [uy (t|a)]

Pew | U5 (a) | = probability of 245 (t,a) (i.e. of a
value y>vy)

=0 Oy[ v(tlaem ) |dem (em ) dEM
nSE

2 5 [y( |a,eMi)]/nSE
PEm [us(/: (t|a)]

dy and 5y are defined analogously to 8, and 5 in con-
junctlon with Eq. (3.2), and ey;, i = 1 2, nSE is a
sample from EM generated in a manner conS|stent with
the probability space (EM, EM, pgy) and its associated
density function dgy(ep). The result is a CDF and
CCDF of the form shown in Fig. 3.2 that summarize the

I3

{y: y=y(tla ey ) forey eSM},
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epistemic uncertainty in y(t|a, ey,) that derives from the
epistemic uncertainty in ey, characterized by the prob-
ability space (EM, EM, pgm)-

The CDF and CCDF defined in Eq. (3.25) can also
be summarized with various real-valued quantities, in-
cluding an expected value Egy[y(tla, ep)], a variance
Vemly(tla, ey), and selected quantiles Qgpgly(tla,
em)]. As described in Egs. (3.13) — (3.16),

Eem [ (t|a, e )J IEM (ta, ey ) dem (ey ) dEM

S E y(t/a, ei)/nSE
= Egy [y(t|a,eM )]

(3.26)

Vem [y(t a, ey )J

zjsM{y(t

= E{y(t

=Vewm [Y(t

a, ey )J}szM (em ) dEM

a, ey )J}z/nSE

)—Eem [Y(t
')*EEM [Y(
a, ey )J

(3.27)

and Qgpmgly(tla, ey) corresponds to the value y such
that

9= Pem [Uy (t\a)}

3.28
= [en 8y [ v(taen )] dem (em ) dEM (3.28)
nSE
= Z‘iéy[y(t i)]/nsE,
i=
where ey;;, i = 1, 2, ..., nSE, is the sample indicated in

conjunction with Eq. (3.25).

As discussed in Sect. 7 and in greater detail in Ref.
[56], the sample ey, i =1, 2, ..., nSE, also provides the
basis for the implementation of a variety of sensitivity
analysis procedures. The use of such procedures is a
natural and important part of any sampling-based un-
certainty analysis. The importance and usefulness of
appropriate sensitivity analyses is emphasized in the
NAS/NRC report on QMU (pp. 14-15, Ref. [77]).

34 Example Analysis in the Presence of
Only Epistemic Uncertainty

A simple example is now presented to illustrate the
concepts introduced in Sect.3.3. This example will also
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Fig. 3.3. Solution Q(t) shown in Eq. (3.31) to differen-
tial equation in Eq. (3.29) obtained with L =1
henry, R = 100 ohms, C = 104 farads, E, =
1000 volts, and 1 =0.1s1,

be used in Sects. 4 and 9 to illustrate potential QMU
analyses involving only epistemic uncertainty.

The example is based on a closed electrical circuit
that is under consideration for some unstated realization
a of aleatory uncertainty. For example, a might simply
correspond to nominal (i.e., unperturbed) conditions for
the system under study. Specifically, the behavior of
this circuit is described by a differential equation

L d2Q/dt? + R dQ/dt+Q/C = Eq exp(-At)
Q(0)=0,dQ(0)/dt =0,

(3.29)

where

Q(t) = electrical charge (coulombs) at time t
(s),

inductance (henrys),

resistance (ohms),

capacitance (farads),

electromotive force (volts),

= current (amperes).

For this example, it is also assumed that R, L and C
have values such that the inequality
R%Z-4L/C <0 (3.30)

holds.

The significance of the preceding inequality is that
it results in Q(t) displaying a damped, oscillatory be-
havior. In particular, the closed form solution to Eq.
(3.29) when the inequality in Eq. (3.30) holds is

Q1) :exp[(_R/zL)t]{ol coswm /zLH
+C;,sin KW/ZL}}}

—cpexp(—At) (3.31)

with

o = —CEO/(CL}LZ ~CR2+1]
2L

=

‘RZ —4L/C‘

ACE, RCE,
CLA%2 —CRA+1 2L(CL/12 —CRA +1)

X

As an example, Q(t) is illustrated in Fig. 3.3 with L =1
henry, R = 100 ohms, C = 104 farads, E; = 1000 volts,
and A1=0.1s"1

For the examples of this section, the vector ey, of
epistemically uncertain analysis inputs for the model
defined in Egs. (3.29) — (3.31) is

em =[em1 em2: em3. ema4. ems |=[ L R, C, Eq, 4],
(3.32)

with epq, em2, ---» €5 Used in place of L, R, ..., A t0
represent the elements of e when notationally conven-
ient. Incorporation of a and ey, into the notation for
Q(t) results in the representation Q(t|a, e),), with Q(tla,
ey corresponding to the generic representation y(t|a,
ew) in Eq. (3.24).

The appropriate values for L, R, C, Eg and A are as-
sumed to be contained in the intervals

EM ={L:Lp, <L <Ly}

3.33
={L:0.8<L <12 henrys}, (3.33)

EMy ={R:Rpy <R< Ry}

3.34
={R:50 <R <100 ohms}, (3:349)



Fig. 3.4. lllustration of sets &, &, &3 and &4 defined
in Eqgs. (3.38) — (3.41) with the interval [a, b]
normalized to the interval [0, 8] for represen-
tational simplicity.

EMg={C:Cpp <C<Cpy}
» » (3.35)
- {c 10.9x10™4 <C <1.1x10 farads},
(C;M4 = {EO . Emn < EO < me} (3 36)
= {Eg : 900 < Ey <1100 volts}, '
and
EMy ={A: Apn <A< Ay}
(3.37)

={2:04<2<0857),

respectively.

A probabilistic characterization of the epistemic
uncertainty associated with L, R, ..., 4 is provided by a
probability distribution defined on each of the preced-
ing intervals. Specifically, four subintervals are con-
sidered for each of the intervals EM;, 1 =1, 2, ..., 5,
defined in Egs. (3.33) — (3.37):

€1 =[ab-(b-a)/4], (3.38)
&p =[a+(b-a)/4,b], (3.39)
&3 =[a+(b-a)/8,b-3(b-a)/8], (3.40)
§a =[a+3(b-a)/8,b—(b-2)/s]. (3.41)

where [a, b] corresponds t0 [Lymn, Liysds [Rmne Rmnds
[Crnn: Cinxls [Emny Emyd @nd [An, Amyd fori=1,2,3, 4
and 5, respectively (Fig. 3.4). For example and for a
given element ey;; of ey, each of the preceding intevals
could have been indicated by a different source as con-
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taining the correct value to use for ey,; in the analysis
under consideration.

In turn, the corresponding density function dj(ey;)
for the set EM is given by

4

di (emi) = &5 (ewi ) /4] max (& )-min(&; )] (3.42)

=

under the assumption that the four sources that provided
the intervals in Egs. (3.38) — (3.41) for an element ey;
of ey, are equally credible, where

1 ifeMi Eglj

Jj (eMi):{

0 otherwise.

The preceding specification for dj(ey;) corresponds to
defining a uniform distribution on each interval &; and
then weighting each distribution equally. The equal
weighting derives from an assumption of equal credi-
bilty for the four sources of the intervals in Egs. (3.38)
— (3.41). The definition of the density functions di(ey;)
in Eq. (3.42) results in the assignment of more probabil-
ity where the inervals supplied by the four sources
overlap and less probability where the intervals do not
overlap. The density functions d;(ep;) in essence define
probability spaces (EM;, EM;, pgy i) for the variables
emi-i=1,2, ...,5.

The set EM of possible values for e, is given by

EM = EM x EMo x EMy x EMy x EM, (3.43)
where EMy, EM,, ..., EMs are defined in Egs. (3.33) —
(3.37). In turn, EM has a probabilistic structure that de-
rives from the distributions characterizing the uncertainty
in ey em2: ---» Ems. Formally, this structure corresponds
to a probability space (EM, EM, pgy) that, in effect, is
defined by the density functions introduced in Eq.
(3.42).

The epistemic uncertainty associated with Q(t|a,
ey) that derives from the probability space (EM, EM,
Pen) IS now considered. As indicated in Egs. (3.25) —
(3.28), this uncertainty can be characterized by various
guantities defined by integrals over £EM.  However,
such integrals are difficult to determine in closed form
(i.e., by use of antiderivatives in conjunction with the
Fundamental Theorem of Calculus) because of the high
dimensionality of ey, and the complexity of the func
tion being integrated. Instead, sampling-based methods
are used in most analyses to determine these quantities.
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Fig. 3.5. Solutions Q(t|a, ey;) to differential equation
in Eqg. (3.29) obtained with the first 50 ele-
ments of the LHS in Eq. (3.44) (i.e., with ey;
fori=1,2,...,50).
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Fig. 3.6. Estimated CDF and CCDF for Q(0.1]a, ep;;) (i)
obtained with the LHS of size 200 in Eq. (3.44)
generated from EM in consistency with the de-
fining density functions for the probability
space (EM, EM, pgpy) and (ii) presented with
Pem[Q(0.1]a, ey) < Q] and pey[Q < Q(0.1]a,
ew] used as mnemonics for estimated prob-
abilities of the form pPgy [¢4(0.1]a)] and
ﬁEM[u§(O.1|a)] defined in conjunction with
Eq. (3.25).
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Consistent with this approach, the present example
uses a Latin hypercube sample (LHS)

emi =[emis: emiz: - emis | i=12,...,nSE,  (3.44)
of size nSE = 200 generated from EM in consistency
with the probability space (EM, EM, pgyy) (i.e., in con-
sistency with the distributions associated with the den-
sity functions defined in Eq. (3.42)). As discussed in
Sect. 7 and in more detail in Refs. [45; 55; 56], Latin
hypercube sampling is widely used in sampling-based
uncertainty and sensitivity analyses involving computa-
tionally demanding models because of its efficient stra-
tification properties. In addition, this sampling-based
approach also provides the basis for the application of a
variety of sensitivity analysis procedures (see Sect. 7
and Ref. [56]).

The sample in Eq. (3.44) results in nSE = 200 time-
dependent results: Q(tla, ep), i = 1, 2, ... 200 (Fig.
3.5). The spread of the curves in Fig. 3.5 provides a
nonquantitative indication of the epistemic uncertainty
associated with Q(t|a, ey,) that derives from the uncer-
tainty in ey as quantified by the probability space
(EM, EM, pgp)- Only 50 of the 200 time-dependent
results for Q(t|la, ey;) are presented in Fig. 3.5 as pres-
entation of all 200 curves results in an almost solid
band of overlapping curves that obscures the shape of
the individual curves.

A quantitative summary of the epistemic uncer-
tainty in Q(t|la, ey,) that derives from the epistemic un-
certainty in ey, is provided by the CDFs and CCDFs for
Q(tla, epy) at selected points in time. As an example,
approximations to the CDF and CCDF att = 0.1 s ob-
tained with use of the sample in Eq. (3.44) are shown in
Fig. 3.6. Specifically, the CDF and CCDF in Fig. 3.6
are constructed from the values for Q(0.1[a, ey;) asso-
ciated with the vertical line in Fig. 3.5 as described in
conjunction with Eq. (3.25). With respect to notation,
the expressions Py [Q(0.1]a, ey) < Q] and pgy[Q <
Q(0.1/a, epp)] on the ordinate of Fig. 3.6 correspond to the
defining probabilities for the CDF and CCDF, respec-
tively, for Q(0.1]a, eyy). Specifically, pgpm[Q(0.1]a, eyy) <
Q] is the estimated probability that Q(0.1]a, ey,) is less
than or equal to a value Q on the abscissa, and pgy[Q <
Q(0.1a, eyy)] is the estimated probability that Q(0.1]a, ey)
is greater than a value Q on the abscissa. The indicated
probabilities are characterizing epistemic uncertainty and
thus are indicating degrees of belief with respect to where
the correct value for Q(0.1a, eyy) is located. Thus, for
example, there is a “degree of belief” probability of 0.9
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Fig. 3.7. Estimated time-dependent expected value and
quantile curves for Q(tja, e),) obtained with
the LHS of size 200 in Eq. (3.44) generated
from EM in consistency with the defining
density functions for the probability space
(SM! EM, pEM)'

that Q(0.1]a, ey,) is located between the 0.05 and 0.95
quantiles in Fig. 3.6. Further, the expected value and
quantile values indicated in Fig. 3.6 are obtained as
described in Egs. (3.26) and (3.28), respectively. In this
example, the expected value and median value are very
close together; this is often not the case in analyses that
involve substantial epistemic uncertainties.

The presentation of CDFs and CCDFs of the form
shown in Fig. 3.6 for multiple values of t is cumber-
some. An effective alternative is to plot expected val-
ues and quantiles as functions of time (Fig. 3.7). With
this presentation format, expected values and quantiles
as indicated in Fig. 3.6 are determined for a sequence of
values for t and then plotted above these values to ob-
tain the expected value and quantile curves in Fig. 3.7.
Specifically, the expected value curve in Fig. 3.7 is a
plot of the points

(t, Eem [ v(ta e )]) 0<t<0.20, (3.45)

with 2 emlY(tla, ep)] defined as indicated in Eq. (3.26),
and the quantile curves in Fig. 3.7 are plots of points

(t, Qe[ ¥(fa e )]) 0<t<0.20, (3.46)

for g = 0.05, 0.5 and 0.95 with QEMq[y(tla, ew)] defined
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as indicated in Eqg. (3.28). In this example, the expected
value and median value (i.e., 0.5 quantile) curves al-
most exactly overlap.

35 Analysis in the Presence of Aleatory
and Epistemic Uncertainty

This section presents a formal description of the
representation of uncertainty in an analysis that in-
volves both aleatory and epistemic uncertainty. The
following section (Sect. 3.6) then presents a simple
example illustrating the formal concepts presented in
the present section. If desired, Sect. 3.6 can be read
before Sect. 3.5, with Sect. 3.5 being referred to only
when a more technical description of the results in Sect.
3.6 is desired.

The analyses described in Sects. 3.5 and 3.6 in-
volve what the NAS/NRC report on QMU refers to as
the “probability of frequency approach” and recom-
mends for use in QMU analyses (Recommendation 1-7,
p. 33, and App. A, Ref. [77]). Specifically, the descrip-
tor “probability of frequency approach” designates an
analysis in which a careful distinction and separation is
maintained between the effects and implications of
aleatory uncertainty and the effects and implications of
epistemic uncertainty.

The CDF and CCDF introduced in the second
analysis context described in Sect. 3.2 and conditional
on specific values for t and e = [e,, ep] are also de-
fined as indicated in Eq. (3.10). Specifically, the CDF
and CCDF for y(t|a, e),) that derive from the different
possible values for a are defined by the plots of the
points

{y, pA[uy (t|e)‘eAJ} and {y, pA[u)? (t|e)‘eAJ},

(3.47)

respectively, fory € )(tle), where

y(te) = {y: y=y(tlaey) foraeA},
Uy (tle) = {37: yey(tle)andy< y},

pA[Z/{y (t|e)‘eA = probability of u/, (t|e) (i.., ofa
value y<vy)

= IAéy[y(t|a, ey )} da(alen)dA

= jzz'iéy[y(qaj,e,\,,)J/nSA
= If’A[uy (t|e)‘eA]



pA[u§ (t|e)‘eAJ =probability of 2y (t,e) (i.e., of a
value y>vy )

- [, [ ) 0x(elen) o

nSA

Jzzllgy[y(qaj,eM )J/nSA
= Ba| U5 (e)en .

Sy and 5, are defined analogously to &, and &, in con-
junction with Eq. (3.2), and a;, j =1, 2, ..., nSA, is a
sample from A generated in a manner consistent with
the probability space (A, A, pp) and its associated den-
sity function da(ales). The result is a CDF and CCDF
of the form shown in Fig. 3.2 that summarize the alea-
tory uncertainty in y(t|a, ey;) that derives from the alea-
tory uncertainty in a characterized by the probability
space (A, A, pp).

IR

In general, the set .4 could be, and often is, a func-
tion of elements of e,. In this case, the sets A and A
would appropriately be represented by .A(ep) and
A(ep). Then, the representation for the probability
space (A, A, pp) conditional on an element e = [ep,
em] of £would be [A(ep), A(en), paldlea)]. To reduce
notational clutter, this fully general representation for
(A, A, pa) is not used. Instead, the possible dependence
of (A, A, pp) on the elements of e, is indicated through
the use of the notations pa(Ulep) and da(alea).

Similarly to the CDF and CCDF defined in Eqg.
(3.10), the CDF and CCDF defined in Eq. (3.47) can
also be summarized with various real-valued quantities,
including an expected value Eply(tla, ey)leal, a vari-
ance Va[y(tla, ey)lea] and selected quantiles Qaqgly(tfa,
emlleal. The definitions of Exly(tla, emleal, Valy(tla,
ewm)leal and Qaqly(tla, ep)lea] are effectively the same
as the definitions for Egyly(tla, em)], Vemly(tla, em]
and Qgpmgly(tla, ew)] in Egs. (3.26) — (3.28) with the
only difference being that integrations are performed
with respect to the probability space (A, A, pp) and its
associated density function dp(alen) rather than with
respect to the probability space (EM, EM, pgyy) and its
associated density function dgy(ey). Specifically,

EA[y(t|a, ey )‘eA} =IAy(t|a, ey ) da(alen)dA

= jZz‘iy(t|aj,e,\,| )/nSA
AA[y(qa’eM )‘GA]

=E (3.48)
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VA[y(t|a, ey )‘eAJ

_J‘ { (ta ey ) [y(t|aveM)]}2dA(a|eA)dA

= r;z&::{y(t|aj ey )— EA[y(t|a, ey )]}Z/nSA
:VA[y(t|a, em )|eA] (3.49)

and Qpqly(tla, em)leal and its approximation QAq[y(t|a,
ewmleal correspond to the value y such that

q= pA[Z/l (t\e)‘eA}

-1, y[ ta ey }dA(a\eA)dA
nSA

= jzzllgy[y(t\aj,eM)}/nSA,

(3.50)

where &, j = 1, 2, ..., nSA, is the sample indicated in
conjunction with Eq. (3.47).

Distributions of CDFs and CCDFs result from the
different possible values for e = [e,, ep]. As indicated
in conjunction with Eq. (3.47), each value for e results
in a different CDF and associated CCDF that summa-
rize the effects of aleatory uncertainty. In turn, these
CDFs, CCDFs and their associated summary measures
have distributions that characterize epistemic uncer-
tainty and derive from the epistemic uncertainty in e
characterized by the probability space (&, E, pg).

In general, the probability space (&, E, pg) will re-
sult in infinitely many CDFs and CCDFs of the form
defined in conjunction with Eq. (3.47). Thus, some way
of summarizing these CDFs and CCDFs is necessary.
As illustrated in Sect. 3.6, this summary is provided by
expected value curves and quantile curves (e.g., q =
0.05, 0.5, 0.95)

(e o[t (te)fes])
and [ v, Qeq {Pa[t4 (t1e)]en |

(3.51)

and

(& {pafus e)es ]
o 1.0 {16 1 ]

(3.52)



for distributions of CDFs and CCDFs, respectively,

e =1 pales

EE{pA[ ‘eAJdE( )dE

—fg{h 5,[y(tla en ]dA(a|eA)dA}dE(e)dE

~ nsf{:ijg‘y [y(t|aij e )J/nSA}/BE

i=1

:éE{pA[Uy(t|e)|eAJ},
EE{pA[U§ (t|e)|eAJ} =jg pA[Z/{§ (t|e)|eAJ de (e)dE
IE{-[A [ (tja, ey ]dA(a|eA)dA}dE e)dE

—%{%5 v (t|aij’eMi)J/“SA}/‘SE

Qeq{pPallty (te)leal} and the associated approxima-
tion Qeq {pall/y (t|€)|e ]} correspond to the probabil-
ity p such that

q :jgép{pA [Uy (t|e)‘eAJ} de (e)dE

= e {jAéy [y(t|a, em )J da(alen) dA} de (e)dE
{géy [y(t|aij e )J/nSA}/qSE,

nSE
= Z Sy
i=1
QEq{pA[uc (t|e)|e al} and the associated approxima-
tion' Qgq{PA[UAy (t|€)[ea]} correspond to the probabil-
ity p such that

0o {pa[ 145 (te)]en ]| de (e)ce
j {JA y[ t|a em :|dA(a|eA)dA}dE(E)dE

5 {'?jgy[y(tlaq,em)}/ ”SA}/n >

=23
i=1
ei =[eai.emil 1=1, 2, ..., nSE, is a sample from £
generated in a manner consistent with the probability
space (&, E, pg) and its associated density function, and
ajj j=1,2, ..., nSA, is a sample from A generated in a
manner consistent with the probability space (A, A, pa)
and its associated density function da(alep;) for each e;.

q:
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Although not incorporated into the notation in use, the
sample size nSA could change for each e;.

An alternative summary is provided by reducing
each CDF to its corresponding expected value E,[y|a,
ewm)lea] as indicated in Eq. (3.48) and then presenting
the CDF and CCDF for Ep[y|a, ep)|ealthat result from
the epistemic uncertainty associated with e = [e,, eyl
Similarly to the results presented in conjunction with
Eq. (3.10), the CDF and CCDF for E[y(t|a,ey)|eal
are defined by plots of the points

vl 0] f. e ]

respectively, for y e Y (t), where

(3.53)

V(0)={7:7=Ea] y(tfaen
fore=[ep ey]eé

(t)={y:¥ eI (t) andy <y},

PE [uy (t)]z probability of g (t) (i.e., of a value

=[.0 { [t|aeM)|eAJ}dE(

éy {%y(qaij,ew)/nSA}/]SE

= Pe [MV (t)]'

Pe [Z/l§ (t)} = probability of 45 (t) (i.e., of avalue y > y)

:.[557 {EA[y(t|a, ey )|eA]} de (e)dE
~ rffa} {niAy(qaij e )/nSA}/nSE
= Pe [“5 (t)]

and the samples e; = [ep;, emil, i = 1, 2, ..., nSE, and
ajj, j =1, 2, ..., nSA, are defined the same as indicated
in conjunction with Egs. (3.51) and (3.52).

Jea
J

Uy
y<V)
)

If desired, the reduction indicated in the preceding
paragraph can be carried further by reducing the ex-
pected value Ex[y(t|a, ey)lea] over aleatory uncertainty
defined in Eq. (3.48) to an expected value E{E[y(t|a,
emlleal} over aleatory and epistemic uncertainty de-
fined by



EE{EA[ (t]a, eM }
_.[ EA[ (t]a, eM)|eA}dE(e)dE
= [o [, y(taen) da(alen) da| de (e)cE

nSE | nSA
=1 y(t|aij,eMi)/nSA nSE
i=1| j=1
=Eg {EA[y(t|a, ew )|eAJ}, (3.54)
where the samples €; = [eaj, emil, i =1, 2, ..., nSE, and

ajj j=1,2, ..., nSA, are again defined the same as in
conjunction with Egs. (3.51) and (3.52). The expected
value Eg{Ea[y(t|a, ey )|eal} is the result of reducing
all the information associated with the probability space
(& E, pg) for epistemic uncertainty, the probability
space (A, A, p,) for aleatory uncertainty and the func-
tion y(t|a, ep) to a single number.

3.6 Example Analysis in the Presence of
Aleatory and Epistemic Uncertainty

A simple, randomly perturbed system is now pre-
sented to illustrate the concepts introduced in Sect. 3.5.
This example will also be used in Sects. 5 and 10 to
illustrate potential QMU analyses involving aleatory
and epistemic uncertainty. Further, the results from real
analyses presented in Sect. 6 are of the form described
in the present section.

The system is assumed to receive random perturba-
tions in time whose occurrence is characterized as a
stationary Poisson process with a rate A4 (s71). The am-
plitudes (i.e., magnitudes) for the individual perturba-
tions are assumed to vary randomly and to undergo
exponential decay in a manner characterized by a rate
constant r (s~1). In concept, any of a large variety of
systems could be under consideration, with the result
that the perturbation might involve a mechanical force,
an electrical impulse, a radiation impulse, a heat im-
pulse, the injection of a material, or some additional
possibility. For notational convenience, the initial per-
turbations will be represented by Ay and assumed to
have units of force (kg m/s?). As a result of the indi-
cated exponential decay,

r(t-tp)] (3.55)

A(t) = Agexp[—r
is the amplitude at time t of a perturbation of size A,
that occurs at time ty. Further, the amplitudes of the
individual perturbations are assumed to be character-
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ized by a triangular distribution defined on an interval
[a, b] with a mode of m.

This example involves both aleatory and epistemic
uncertainty. For a given time interval (e.g., [0, 10 s]),
the different possible realizations of aleatory uncer-
tainty correspond to vectors of the form

a=[nty, Aos. to, Agp, -ty Aon] (3.56)
where (i) n is the number of perturbations that occur in
the time interval, (ii) t; <t, < ... <t, are the times at
which the individual perturbations occur, and (ii) Agg,
Agy, ..., Agy are the initial amplitudes for the individual

perturbations. In turn,

(3.57)

A={a:a=[nt, Ay tp, Agz. - 1o, Aon ]}

is the sample space for aleatory uncertainty, and the
probabilistic structure required to formally complete the
definition of the corresponding probability space (A, A,
pp) derives from A and the probability distribution for Ag.

For a given element a of .4 and a given value for r,
the resultant amplitude A(t|a) at time t is given by

0

z Aok exp[ —r (

ift<tl

A(tla, r)=

3.58
r(t-t)] ifttg, (3.58)

where fi = max{k :t, <t}.

For this example, 4, a, m, b and r are assumed to
be uncertain in an epistemic sense. As a result,

e=[ea. em]=[e1. €. 83,8, 85]=[4, a,m,b,r] (3.59)

is the vector of epistemically uncertain variables under
consideration, with ey = [4, a, m, b] and ey, = [r]. Spe-
cifically, 4, a, m and b are involved in the definition of
probability distributions that characterize aleatory un-
certainty, and r relates to the physical processes in-
volved in the decay of an initial perturbation Ag.

The appropriate values for A, a, m, b and r are as-
sumed to be contained in the intervals

&41:{/1 Amn _/1<ﬂ,mx}

={2:05<2<1557 (3.60)
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Fig. 3.8. Estimated CDF and CCDF for amplitude
A(10ja, 0.7) with e, = [1.0, 1.5, 3.0, 4.5] and
em = [0.7] (i) determined with a sample of size
nSA = 10,000 from the set .4 of possible values
for a conditional on e = [e,, ey] = [1.0, 1.5,
3.0, 4.5, 0.7] and (ii) presented with pA[A(10]a,
0.7) < Alea] and Pa[A < A(10Ja, 0.7)ea] used
as mnemonics for estimated probabilities of the
form p[U4(10e)lea] and f)A[u§(10|e)|eA] de-
fined in conjunction with Eq. (3.47).

EAy ={atam, <a<ap}

9 (3.61)
={a 1.0<a<2.0kgm/s }

EAg ={m:my, <m<mp, |

? (3.62)
={m:20$ms4.0kg m/s }

EAy ={b by <b <Dy}

9 (3.63)
:{b:4.0sbs5.0kg m/s }
and
EMy={r iy <<t
(3.64)

={r:02<r<1257t),

respectively.

The resultant sample space for the vector e of epis-
temically uncertain variables is
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E=EAM xEAy xEAgx EAy x EMy (3.65)
with EAq, EA,, ..., EM, defined in Egs. (3.60) —
(3.64). Further, associated probability spaces (£A;, EA;,
pEA,i)' i= 1, 2, 3, 4, and (ng, EM]_, pEM,l) for the
individual elements of e (i.e., 4, a, m, b and r) and also
the probability space (&, E, pg) for e are defined in the
same manner as for the elements of e = [L, R, C, Eg, 4]
in Egs. (3.38) — (3.42).

For a given value for e = [4, a, m, b, r], a distribu-
tion for A(tla, ep) = A(tla, r) over the possible values
for a results for each time t as indicated in conjunction
with Eq. (3.47). As an example, the CDF and CCDF for
A(tla, r) att = 10 s conditional on e = [1.0, 1.5, 3.0, 4.5,
0.7] (i.e., for A(10Ja, 0.7)) is illustrated in Fig. 3.8. The
results in Fig. 3.8 were generated with a random sample
aj,j =1,2,...,nSA, (3.66)
of size nSA = 10,000 from .4 obtained in consistency
with the distributions for perturbation time t and pertur-
bation magnitude A, that derive from A= 1.0s7, a =
1.5 kg m/s2, m = 3.0 kg m/s2, and b = 4.5 kg m/s2 (i.e.,
from e, = [1.0, 1.5, 3.0, 4.5]). In addition, estimates
for the expected value Ep[A(10]a, 0.7)|ea] and the g =
0.9 quantile Qp9[A(10la, 0.7)lea] for A(10]a, 0.7)
obtained with the preceding sample as indicated in Egs.
(3.48) and (3.50) are also shown in Fig. 3.8.

A subset of the results used in the generation of
Fig. 3.8 is shown in Fig. 3.9. Each of the curves in Fig.
3.9 is a plot of A(t|a;, 0.7) for 0 <t <20 s and a specific
element a; of the sample indicated in Eq. (3.66). Spe-
cifically, a plot of A(tla;, 0.7) is shown in Fig. 3.9,
and plots of A(tlay, 0.7) for j=1, 2, ..., 5 are shown in
Fig. 3.9b. The CDF and CCDF in Fig. 3.8 summarize
the aleatory uncertainty (i.e., intrinsic variability) in the
values for A(10|a, 0.7) associated with the vertical line
originating at t = 10 s in Fig. 3.9 for all elements of the
sample in Eq. (3.66).

The CCDF in Fig. 3.8 summarizes the aleatory un-
certainty in A(tja, 0.7) at t = 10 s as indicated by the
vertical line in Fig. 3.9. Corresponding summaries are
possible for each value of t in the interval under consid-
eration. However, presentation of such summaries for a
large number of values for t is cumbersome. A more
compact summary is to present the expected value for
A(tla, 0.7) and selected quantiles for A(tla, 0.7) (e.g.,
0.05, 0.25, 0.5, 0.75, 0.95) as functions of time (Fig.
3.10). This format presents the primary uncertainty in-
formation for A(tla, 0.7) as a function of time in a
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Fig. 3.10. Estimated expected value and quantile
curves for aleatory uncertainty in amplitude
A(tla, 0.7) as a function of time conditional
one=[1.0,15,3.0,4.5,0.7].

single plot. The expected values and quantiles in Fig.
3.10 are obtained from the sample in Eqg. (3.66) as de-
scribed in Egs. (3.51) and (3.52) and illustrated in Fig.
3.8.

If e = [4, a, m, b, r] was precisely known, then re-
sults of the form shown in Figs. 3.8 and 3.10 would be
the unique outcomes of the analysis. However, e is not
precisely known and has many possible values. As a
result, there are many possible values for the results in
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Figs. 3.8 and 3.10. For example, there are many possi-
ble values for the CDF and CCDF in Fig. 3.8 (Fig.
3.11), with each possible CDF and CCDF deriving from
a different element e = [4, a, m, b, r] of the set £ de-
fined in Eq. (3.65).

Specifically, the results in Fig. 3.11 were generated
with an LHS

e =[eni. ewmi] (3.67)
=[4, 8, m,b,5]i=12 .., nSE,

of size nSE = 200 from the set £ in consistency with the
distributions that define the probability space (€, E, pg)
for epistemic uncertainty. In turn, a different CDF and
associated CCDF results for each sample element e;.
Further, the individual CDFs and CCDFs were esti-
mated with random samples

a: =

j [njvtjlvAOjlvth'A0j2'-~~vtjnj'AOjnj]
i=12 ... nSA

(3.68)

of size nSA = 10,000 from .4 generated in consistency
with e, = [4;, &, m;, b;] and the corresponding prob-
ability space (A, A, pp) for aleatory uncertainty and its
associated density function da(alep;). Although not
explicitly incorporated into the notation in use, the set
A changes for each e, as a result of the effect of the
interval [a;, b;] on the set of possible values for the size
of the perturbation associated with each occurrence of
the Poisson process under consideration.
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When small exceedance probabilities arising from
aleatory uncertainty are the analysis outcomes of interest,
CCDFs are usually plotted with log-transformed values
on the ordinate (Fig. 3.12a). Use of log-transformed val-
ues allows small exceedance probabilities to be dis-
played; in contrast, small exceedance probabilities are
difficult, and sometimes impossible, to determine from
plotted results when a linear scale is used on the ordinate
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(e.g., compare the CCDFs in Figs. 3.11b and 3.12a). In
many QMU analyses, it is likely that small exceedance
probabilities will be the analysis outcomes of greatest
interest.

Distributions of CDFs and CCDFs can be summa-
rized with expected value and quantile curves as indi-
cated in conjunction with Egs. (3.51) and (3.52). As an
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Eq. (3.53).

example, a summary of this form is presented in Fig.
3.12b for CCDFs with log-transformed exceedance
probabilities.

As indicated in conjunction with Eqg. (3.53), distri-
butions of CDFs and CCDFs can also be summarized
by reducing each CDF and corresponding CCDF to an
expected value and then presenting the CDF and CCDF
for the resultant expected values (Fig. 3.13). Specifi-
cally, Fig. 3.13 shows the CDF and CCDF for the ex-
pected values associated with the individual CDFs and
CCDFs in Figs. 3.11 and 3.12. Each expected value
EA[A(10Ja, rj)lea] is calculated as indicated in Eq.
(3.48), and the resultant CDF and CCDF are calculated
as indicated in conjunction with Eq. (3.53). In consis-
tency with the results in Figs. 3.11 and 3.12, the preced-
ing calculations use the samples indicated in Egs. (3.67)
and (3.68).

The estimated expected value EE{ Ea [A(10]a,
r)leal} over aleatory and epistemic uncertainty is also
shown in Fig. 3.13 and corresponds to the estimated ex-
pected value Eg{E[y(t|a,ey)|eal} defined in Eq.
(3.54). The quantity Ec{EA[A(10]a,r)|e ]} is the out-
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come of reducing all the information in Figs. 3.11 and
3.12 to a single number.

3.7 Kaplan-Garrick Ordered Triple
Representation for Risk

The Kaplan-Garrick ordered triple representation
for risk is introduced in conjunction with Questions
(Q1), (Q2) and (Q3) in Sect. 2 as a way of intuitively
describing risk. More formally, this representation cha-
racterizes risk as an ordered triple of the form

(8j.pS;j.cSj),i=12,...n8, (3.69)
where S is a set of similar occurrences, pS; is the prob-
ability of the set S, ¢S; is a vector of consequences asso-
ciated with §;, the sets S; are disjoint (i.e., §NS; = & for
i # ), and the set US; contains all risk significant occur-
rences in the particular universe under consideration.

The representation in Eq. (3.69) is simply a way to
describe the components of approximations to integrals
of the form appearing in Eq. (3.48) obtained with strati-
fied sampling from the sample space A for aleatory
uncertainty. With stratified sampling, the expected val-
ue Eply(tla, ep)leal and its defining integral in Eqg.
(3.48) are approximated by

EA[y<t|a, ey )‘eA}:J‘Ay(qa, ey )da(alen)dA
= :Zsz/;ymaj,e,\,l )pA(Aj‘eA),

(3.70)

where the 4; are disjoint subsets of A with UA; = A,
Pa (Ajlea) is the probability of A;, and a; is a represen-
tative element of .A;. With respect to the representation
in Eq. (3.69), A; corresponds to Sj, pa(Ajlea) corre-
sponds to pS;, y(t|a;, ey) corresponds to an element of
cS;, and nSA corresponds to nS.

In turn, the defining probabilities for CDFs and
CCDFs are given by

DA[y(t|a, em )ﬁ Y‘eA]
nSA

Héy [Y(t|aj ey )JPA(Aj‘eA)

(3.71)

and



pA[y< y(ta ey )\eA]
nSA

= %gy[y(qaj ey )JpA(Aj‘eA),

(3.72)

respectively.

In summary, the Kaplan-Garrick ordered triple rep-
resentation for risk provides a simple and intuitive de-
scription of the basic components of a risk assessment.
Specifically, this representation provides a display of the
answers to the first three basic questions that underlie a
risk assessment: (i) “What can happen?”, (ii) “How like-
ly is it to happen?”, and (iii) “What are the consequences
if it does happen?”. However, it is important to recognize
that this representation is simply a way of decomposing
approximations to integrals involving aleatory uncer-
tainty into their basic components as indicated in Egs.
(3.70) - (3.72). Use of the Kaplan-Garrick ordered triple
representation for risk is suggested in App. A of the
NAS/NRC report on QMU [77].

3.8 Verification and Validation

Verification and validation are two very important
components of a QMU analysis that are intimately con-
nected with the assessment and representation of uncer-
tainty, where (i) verification is the process of determin-
ing that a model implementation accurately represents
the developers’ conceptual description of the model and
the solution to the model, and (ii) validation is the proc-
ess of determining the degree to which a model is an
accurate representation of the real world from the per-
spective of the intended uses of the model (p. 3, [104];
[105-110]).

Sampling-based sensitivity analysis as described in
Sect. 7 and illustrated in Sects. 4 and 5 is a powerful
tool for checking for analysis errors and thus is an im-
portant component of analysis verification. Further,
model validation is an important contributor to the in-
sights that ultimately lead to the definition of the prob-
ability space that characterizes epistemic uncertainty.

Techniques for verification and validation are not
the focus of this presentation but are necessary compo-
nents of a credible QMU analysis. The importance of
verification and validation is emphasized in the
NAS/NRC report on QMU (p. 22, Ref. [77]).
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3.9 An Admonition

As the reader has undoubtedly observed, this sec-
tion essentially presents the same calculation over again
and over again as different expected values and prob-
abilities are calculated. As a reminder, the probabilities
that define CDFs and CCDFs are actually themselves
expected values; specifically, these probabilities are
expected values for indicator functions (i.e., functions
of the form &, (X) and 6, (X) as defined in conjunction
with Eqg. (3.2)). What is changing in the calculations is
the sample space under consideration (e.g., EA, EM, £
= EA x EM, A, ...), the probability space associated
with the sample space (e.g., (A, EA, pga), (EM, EM,
Pem): (& E, pe), (A, A, pp), ...), and the function being
integrated (e.g., y(tla, ey), oyly(tla, em)], oyly(tla,
ew], Ealy(tla, ep)leal, -...). However, at a conceptual
level, the basic calculation remains the same. The cal-
culations are repeated to be explicit about the sample
space, probability space and function involved rather
than because of inherent conceptual differences in the
probabilistic basis of the calculation.

Now for the admonition. When confronted with a
probability or a calculation involving probability, the
first two questions to ask are “What is the sample
space?” and “What subset of the sample space is under
consideration?”. If you do not know the answers to
these two questions, then you do not know enough to
meaningfully assess the probability or calculated result
under consideration. Further, if the source of the prob-
ability or calculated result cannot supply precise an-
swers to these two questions, then there is reason to be
cautious with respect to the meaning and correctness of
such results. Basically, having a probability without
knowing the associated sample space and the subset of
that sample space for which the probability is defined is
analogous to knowing the answer to a question without
knowing what the question is.

For the preceding reason, this section has been very
explicit in stating the sample space and the relevant
subsets of that sample as different quantities have been
introduced and defined. This results in some repetition
at a conceptual level but has the positive effect of un-
ambiguously defining the individual quantities under
consideration.



4 QMU with Epistemic Uncertainty:

Characterization with Probability

The use of probability to represent the epistemic
uncertainty associated with results of the form

y(tla,em )= (tjaey) (4.1)
is extensively discussed in Sect. 3.3, where y(t|a, ey) is
a generic real-valued quantity conditional on a specific
realization a of aleatory uncertainty and e, is a vector
of epistemically uncertain analysis inputs. The result
y(tla, eyy) is epistemically uncertain as a consequence
of the epistemic uncertainty associated with the ele-
ments of ey,. Given that the realization a of aleatory
uncertainty is fixed, analyses related to y(tla, ey) in-
volve two of the three basic analysis components dis-
cussed in Sect. 3.2: (i) (EN2), a model that predicts
system behavior (i.e., a function f(tla, ep)), and (ii)
(EN3), a probabilistic characterization of epistemic
uncertainty (i.e., a probability space (EM, EM, pgp)
that characterizes the epistemic uncertainty associated
with the elements of e,).

Margins can be defined for y(t|a, e),) in a variety of
ways, and in turn, the epistemic uncertainty associated
with ey, results in uncertainty in y(tja, eyy) and the mar-
gins that derive from y(ta, ey;). At an intuitive level, a
margin corresponds to a difference between a required
level of performance and an estimated level of perform-
ance, with a positive margin indicating that the required
level of performance is met and a negative margin indi-
cating that the required level of performance is not met.
Multiple examples of how margins could be defined are
introduced in this section and in Sects. 5 and 6.

This section uses the function Q(tla, e);) intro-
duced in Sect. 3.4 to illustrate a variety of ways in
which QMU analyses could arise and be carried out in
the context of analyses that involve a generic result
y(t|a, ep) of the form indicated in Egs. (3.24) and (4.1).
Further,

em =[ev1 em2: 8m3. em4 ems J=[ L, R, C, Eg, 2]
(4.2)

has the properties defined in conjunction with Eg.
(3.32), and the corresponding probability space (EM,
EM, pgp) that characterizes the epistemic uncertainty
associated with e, is defined in conjunction with Egs.
(3.33) — (3.43). The time-dependent behavior of Q(t|a,
e is illustrated in Fig. 3.5.
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The examples presented in this section use an LHS

i =[ emivs Bmizs -+ ewis | 43)
=[L, Ri.Ci Egi, 4 J,i=12,...,nSE=200,
from EM generated in consistency with the distribu-
tions that define the probability space (EM, EM, pgp)-
In turn, evaluation of Q(t|la, ep;) for elements of the
preceding sample produces a mapping

e Q(t/a, ei) ], i=12,..., nSE =200, (4.4)

from uncertain analysis inputs to analysis results that is
used in the generation of the example results presented
in this section.

The following topics related to QMU in the presence
of only epistemic uncertainty are considered in this sec-
tion; epistemic uncertainty with a specified bound (Sect.
4.1), epistemic uncertainty with a specified bounding
interval (Sect. 4.2), epistemic uncertainty with a speci-
fied bounding interval over time (Sect. 4.3), epistemic
uncertainty with an uncertain bound (Sect. 4.4), and in-
formation loss associated with a “margin/uncertainty”
ratio (Sect. 4.5). The bounds considered in Sects. 4.1 —
4.4 correspond to the requirements that give rise to mar-
gins (i.e., the differences between required system per-
formance and predicted system performance).

As indicated at the beginning of Sect. 3.3, the
NAS/NRC report on QMU emphasizes the importance
of the quantification of the epistemic uncertainty in
analysis results that derives from epistemic uncertainty
in analysis inputs (Recommendation 1-2, p. 22, Ref.
[77]). The results presented in Sects. 4.1 — 4.2 illustrate
analyses of this type.

4.1 Epistemic Uncertainty with a
Specified Bound

For this example, a fixed bound is assumed to exist
with respect to the value for Q(0.1|a, e)y). Possibilities
include lower bounds on Q(0.1la, ey) (e.9., Qp =
0.075 and Qp, = 0.09 in Fig. 4.1a) and upper bounds on
Q(0.1)a, epy) (e.g9., Qpz = 0.105 and Qp4 = 0.125 in Fig.
4.1b). Consistent with the nature of the bounds being
illustrated, the distribution of possible values for
Q(0.1)a, epy) in Fig. 4.1a is summarized with a CDF,
and the distribution of possible values for Q(0.1|a, ep)
in Fig. 4.1b is summarized with a CCDF. Specifically,
the CDF in Fig. 4.1a displays the probability of being
less than a specific bound, which is the probability of
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interest for the lower bounds Qp; and Qy,, and the
CCDF in Fig. 4.1b displays the probability of being
greater than a specified bound, which is the probability
of interest for the upper bounds Qu3 and Q4. The CDF
and CCDF in Fig. 4.1 were generated with the sample
and associated mapping in Egs. (4.3) and (4.4) as de-
scribed in conjunction with Eq. (3.25).

For notational simplicity, the ordinates in Figs. 4.1a
and 4.1b are assigned the labels “Cumulative Probabil-
ity” and “Complementary Cumulative Probability” rather
than the more explicit but also more complex labeling
used with CDFs and CCDFs in Sect. 3. This labeling
convention is also used with other similar figures.

All sampled values for Q(0.1a, ey,;;) are above the
bound Qy;. However, this is not the case for Qy,, with the
CDF in Fig. 4.1a indicating that the probability of Q(0.1a,
e being below Qy,, = 0.09 is approximately 0.200.

All sampled values for Q(0.1|a, ey;) are below the
bound Qp,. However, this is not the case for Qy3, with
the CCDF in Fig. 4.1b indicating that the probability of
Q(0.1]a, ep,) being above Quz = 0.105 is approximately
0.155.

The margins between Q(0.1|a, ep;) and the bounds
Qu k=1, 2, 3, 4, indicated in Fig. 4.1 are defined by

Q(0da ey )-Qy fork=1,2

Qo —Q(0.1]a, ey ) fork=3,4,
(4.5)

Qmk (O'j-la’ em ):
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with Qn(0.1]a, e),) > 0 indicating that a specific bound
is satisfied and Q(0.1]a, ey) < O indicating that a
specified bound is not satisfied (i.e., a positive margin
is good and a negative margin is bad). As a result of
Q(0.1Ja, ep) being epistemically uncertain, the corre-
sponding margins Q,(0.1la, eyy), k=1, 2, 3, 4, are also
epistemically uncertain and have an uncertainty struc-
ture that derives from the uncertainty structure assumed
for ey, (Fig. 4.2). Representations of the form shown in
Fig. 4.2 provide a complete display of the uncertainty
associated with the margins Q. (0.1la, ey), k=1, 2, 3,
4, and thus a complete QMU representation of margin
uncertainty.

An alternative format involves the use of normal-
ized margins defined by

Qnk (012, ey ) =Qui (012, ey ) /Quk
[[@(04a em)-Qu |/Qu  fork=12
_ [ Qo Qe (04a ey )| /Quc fork=3,4,

(4.6)

which expresses margin as a fraction of the correspond-
ing bounding value (Fig. 4.3). This format has the ad-
vantage in that it presents margin as a multiple of the
bounding value, which is a presentation format thatsome
individuals prefer. However, it has the disadvan tage that
it does not present the actual size of the margin.
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Fig. 4.2. Estimated CDFs for margins Q,(0.1]a, ey,) associated with bounds Qy for k = 1, 2, 3, 4: (a) Qm1(0.1]a,
enm) for Qpy = 0.075, (b) Qm2(0.1]a, ey) for Qy, = 0.09, (c) Qm3(0.1]a, eyy) for Quz = 0.105, and (d)

Qma(0.1]a, e)y) for Qpg = 0.125.

It is sometimes stated the QMU corresponds to the
determination of the ratio “margin/uncertainty.” Unfor-
tunately, it is not always apparent how this imagined
concept translates into quantities that are mathemati-
cally defined and conceptually useful. In contrast, mar-
gin results of the form illustrated in Fig. 4.2 are mathe-
matically well-defined, computationally practicable,
and meaningful in a decision context as all available
information about margins and their associated uncer-
tainty is presented.

Quyu (ta em )=

41

Two possible definitions of “margin/uncertainty”
for an arbitrary margin Qp(tla, ey) (e.9., Qmk(0.1a,
em) fork=1,2,3o0r4)are

Qmos (t|a, em )

Qm,05 (t|a, em )—Qm,o.os (t|a, em )
4.7
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(d) Qna(0.1]a, ey) for Quy = 0.125.

and

Qm(taem)
Qm (t|a, em )_Qm,0.05 (t|av M ) ’
(4.8)

(jm/u (t|a' em ):

where

Qm.os (t]a, ey ) =median (i.e., g = 0.5 quantile) for
Qm(t Ia! eM)l
Qm,0.05 (/@ ey ) =0.05 quantile for Qp(ta, ey),
Qm (t|a, ey ) =expected value for Qp(tla, ey).
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As illustrated in Fig. 4.2, quantities such as Qy, o s(tla,
em): Qmo.ostla, em) and Qy(tla, ey) are typically esi-
timated with sampling based procedures. With respect
to the more detailed notation used in Sects. 3.3 and 3.4,
Qmos(tla, ey) and Qpoos(tla, ey) correspond to
Qemg[Qm(tla, ey)] for g = 0.5 and 0.05, respectively,
and Qp(tla, ep) corresponds to Egm[Qp(tla, eyl

The quantities Qy,(ta, ey) and Qp,, (tla, ey) de-
fined in Egs. (4.7) and (4.8) are based on using the me-
dian and mean margins Qp, o 5(t/a, ey) and Qp(tla, ey)
as best estimates for an uncertain margin and then de-
fining uncertainty as the difference between this best
estimate and a low quantile (e.g., @ = 0.05) of the un-



certainty distribution for margin. In general, large posi-
tive margins are good and small or negative margins are
bad; in turn, margins associated with small quantiles
correspond to small differences between required
bounds and predicted system behavior and thus are less
desirable than margins associated with larger quantiles.
As a result, the differences in the denominators in Egs.
(4.7) and (4.8) provides a measure of the epistemic un-
certainty present in the determination of the margin
under consideration.

_ At least notionally, values for Qq,(tla, ey) and
Qm,u(tla, ep) significantly larger than 1 are good be-
cause this situation results when Qo s(tla, ey) and
Qn(tla, ey) are close to Qpopos(tla, ey) in value,
which in turn implies that there is little epistemic uncer-
tainty present in the estimation of the margin under
consideration. However, values for Qq,(tja, ey) and
Qmyu(tla, eyy) significantly greater than 1 do not ex-
clude the undesirable situation in which the estimated
margins are very close to 0. Values for Qp(tla, ey)
and Qpy (tla, eyy) equal to or only slightly larger than 1
are undesirable because this situation results when
Qm.o.0s5(tfa, ey) is equal to or only slightly larger than
0, and values for Q,,(tla, ey) and Qy,,y (tla, ey) less
than 1 are bad because this situation results when
Qm.o.05(t[a, ) is negative. It is important to recognize
that very different distributions for Q(tla, ep) can
result in similar values for Qg (t}a, ey) and also for
Qmyu(tla, ). As a result, consideration of only sum-
mary values such as Q,(tla, ey) and Qn,yy(tla, ey)
can result in an incomplete and potentially misleading
assessment of the implications of the uncertainty asso-
ciated with the margin Q,(tla, eyy). Additional discus-
sion of the nature of “margin/uncertainty” results is
provided in Sect. 4.5.

For the example margins under consideration in
this section (Fig. 4.2) and the normalization defined in
Eq. (4.7), the values for Q,,,,(0.1]a, e),) are

Qujua(0.1]a, ey )=0.022/(0.022-0.009)
=17,

(4.9)

Qmyu2 (0.1a, ey ) =0.0070/[0.0070-(-0.0056) |
= 0.56,

(4.10)

Qmyu3(0-1]a, ey ) =0.0080/{0.0080 - (—0.0068) |
= 0.54,

and
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(4.11)

Qmyu.4(0-1a, ey ) =0.028/(0.028-0.013)
=1.9.

(4.12)

The values for Qm/u,k(0.1|a, ey ) are essentially the
same as the values for Q, «(0.1]a, ey) in Egs. (4.9) -
(4.12) because of the similarity of the mean and median
values for Q,,(0.1]a, ey;) (see Fig. 4.2). However, such
similarity will not exist in many analyses.

As discussed in Sect. 4.5, “margin/uncertainty” ra-
tios of the form defined in Egs. (4.7) and (4.8) and illus-
trated in Eqgs. (4.9) — (4.12) are in (i) the interval [1, +o)
if the best margin estimate (e.g., the mean or median) is
positive and the lower margin estimate (e.g., the 0.05
quantile) is nonnegative, (ii) the interval [0, 1) if the best
margin estimate is nonnegative and the lower margin
estimate is negative, and (iii) the interval (—oo, 0) if the
best margin estimate and the lower margin estimate are
both negative. With respect to the preceding statements,
it is tacitly assumed that the best margin estimate is
greater than the lower margin estimate. Further, the indi-
cated ratio (i) equals 1 only when the best estimate is
positive and the lower estimate is 0, (ii) equals 0 only
when the best estimate is 0 and the lower estimate is neg-
ative, and (iii) is undefined when the best estimate and
the lower estimate are equal. Consistent with the indi-
cated relationships, the “margin/uncertainty” ratios
Qmu1(0.1a, ey) = 1.7 and Qpyy 4(0.1]a, €y) = 1.9 in
Egs. (4.9) and (4.12) are greater than 1 because both the
best and lower margin estimates are nonnegative, and the
“margin/uncertainty” ratios Qp, 2(0.1/a, eyy) = 0.56 and
Qmu3(0.1a, ey) = 0.54 in Egs. (4.10) and (4.11) are in
the interval (0, 1) because the best and lower margin
estimates are positive and negative, respectively.

The “margin/uncertainty” results defined in Eqgs.
(4.7) and (4.8) and illustrated in Egs. (4.9) — (4.12) re-
duce the individual CDFs in Fig. 4.2 to single numbers.
As a result, a large amount of information is lost in this
reduction. Further, as discussed and illustrated in Sect.
4.5, a “margin/uncertainty” ratio provides no informa-
tion on the actual values for the best and lower margin
values used in the determination of this ratio. Thus, for
example, there is no way to use the results in Egs. (4.9)
— (4.12) to retrieve the margin values used in the de-
termination of these results. Simply put, all the informa-
tion in Figs. 4.1 and 4.2 has been lost.

At their most extreme, Qp, (tla, ey) and Qp,,, (tla,
ep) have the forms



Cm,05 (t|a, em )

Qmos(ta em )—Qmooo(ta em)
(4.13)

Qm/u (t|av em ) =

and

ém (t|a’ €M )
Qnm (t/a, em )~ Qmo.oo (t]a ey ) l
(4.14)

Qm/u (t|a, em ):

where

Qm.0.00 (|2 ey ) =0.00 quantile for Q (t|a, ey )
:inf{Qm(t|a,eM):eM eé’}.

In words, Qp, 0.00(t/a, €y) is the smallest possible value
for the margin Q,(t|a, eyy). As a result of the inequality

Qm.0.0o (f| €m )< Qmoos(ta ey ). (4.15)

use of Qp o go(tla, ey) in the definition of Qny(tla, ey)
and Qp/y (tla, ep) results in smaller values for these
quantities than the use of Qy, g gs(tla, ey

For the example margins under consideration in
this section, the values for Qp,(0.1]a, e),) obtained
with Qp 0.00(0.1|a, ey) as indicated in Eq. (4.13) are

Qmyu1(0.1]a, ey ) =0.022/(0.022-0.004)
=12,

(4.16)

Qmyu2 (0.1a, ey ) =0.0070/[0.0070-(-0.0106) |
= 0.40,

Qmyuz(0-1]a, ey ) =0.0080/[0.0080 - (-0.0153
=0.34,

and

Qmyua (0-1]a, ey ) =0.028/(0.028-0.005)
=1.2.

(4.19)

Again, the values for Qn,  (0.1]a, ey ) defined in Eg.
(4.14) are very similar to the values for Q,,,(0.1|a, ey)
defined in Eq. (4.13) because of the similarity of the
mean and median values for Q,,(0.1|a, ey;). As noted in
conjunction with the inequality in Eq. (4.15), “margin/-

(4.17)

)] (4.18)
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uncertainty” ratios obtained with Qp, 9 00(0.1a, e)) are
smaller than the ratios obtained with Qy, 9 05(0.1]a, en)
(i.e., compare results in Egs. (4.9) — (4.12) with results
in Eqs. (4.16) — (4.19)).

The importance of sensitivity analysis is recog-
nized in the NAS/NRC report on QMU (pp. 14-15, Ref.
[77]). Indeed, sensitivity analysis should be an integral
part of any QMU analysis. As an example, a sensitivity
analysis for Q(0.1|a, e),) based on stepwise regression
analysis is presented in Table 4.1. Specifically, stepwise
regression analysis is used to explore the mapping
[emi-Q(0.1]a,ep;)],i=12,...,nSE =200, (4.20)
used to generate the uncertainty results in Figs. 4.1
— 4.3. With this procedure, variable importance is indi-
cated by the order in which variables are selected in the
stepwise process, the incremental changes in R? values
with the entry of individual variables into the regression
model, and the sizes and signs of the standardized re-
gression coefficients (SRCs) in the final regression
model (see Sect. 7 and Ref. [56] for additional discus-
sion of regression-based sensitivity analysis).

As examination of Table 4.1 shows, the dominant
variables affecting the uncertainty in Q(0.1|a, ey) are
Ey and C. Specifically, the positive SRCs associated
with E; and C indicate that Q(0.1|a, ey) tends to in-
crease in value as each of these variables increases. In
addition, small negative effects are indicated for R and
A, and a small positive effect is indicated for L.

The examination of scatterplots is also an informa-
tive part of sampling-based sensitivity analysis. For
example, the scatterplots in Fig. 4.4 clearly reveal the
positive effects of Ej and C on Q(0.1|a, ey;) and the
resultant outcomes that negative or small positive mar-
gins associated with requirements Qp; and Qp, occur
for small values of E, and C and that negative or small
positive margins associated with requirements Q3 and
Qpg4 Occur for large values of Eg and C.

Regression-based sensitivity analysis could also be
carried out for the margins Q«(0.1a, ey), k = 1, 2, 3,
4, defined in Eq. (4.5) and illustrated in Fig. 4.2. How-
ever, given that the margins are simply affine transfor-
mations (i.e., linear scalings plus constant shifts) of
Q(0.1)a, ey,) defined by the bounds Qy, k =1, 2, 3, 4,
the resultant regression analyses for Q,(0.1]a, ey), k =
1, 2, would be the same as presented in Table 4.1 as a
result of the defining transformation
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Fig. 4.4. Scatterplots for Q(0.1|a, ep): (a) [Egj, Q(0.1]a, eyl 1= 1,2,

=12, ...,nSE = 200.

Table 4.1. Stepwise Regression Analysis to ldentify
Uncertain Variables Affecting Q(0.1|a, ep)

Step? VariableP SRC¢ R2d
1 E, 0.70 0.51
2 C 0.63 0.91
3 R -0.22 0.96
4 A -0.12 0.98
5 L 0.06 0.98

Steps in stepwise regression analysis with an a-value of 0.01
or less required for a variable to enter a regression model.

Variables listed in the order of selection in regression analysis.
SRCs for variables in final regression model.

Cumulative R? value with entry of each variable into regression
model.

Qmk (0-1]a,ep ) =Q(0.1]a,e )~ Qui (4.21)
for k =1, 2, and the resultant regression analyses for
Qmk(0.1]a, ep), k = 3, 4, would also be the same as
presented in Table 4.1 except for a reversal in the signs
of the SRCs as a result of the defining transformation
Qmk (0.1]a,ey ) =Qu —Q(0.1|aey ) (4.22)
for k = 3, 4. Similarly, the scatterplots for the margins
Qmk(0.1]a, ep), k=1, 2, 3, 4, would effectively convey
the same information as the scatterplots for Q(0.1]a,
ewm) in Fig. 4.4.
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..., nSE = 200, and (b) [C;, Q(0.1]a, ey)], i

4.2 Epistemic Uncertainty with a
Specified Bounding Interval

A QMU problem involving a bounding interval ra-
ther than simply an upper or lower bound is now con-
sidered. Specifically, the problem involves a specified
interval within which the quantity of interest is required
to be located. For the quantity Q(0.1|a, ey), this in-
volves the specification of an interval [Q, (jb] such
that the inequalities -
Q <Q(0.1a ey )<Qy (4.23)
hold (Fig. 4.5). For illustration, [Q,, (§b] is assumed to
equal [0.08, 0.12] as indicated in Fig. 4.5. This example

corresponds to consideration of what is called a “gate”
in some discussions of QMU [1; 4].

There are several ways in which the epistemic un-
certainty associated with compliance with the specified
bounds can be represented. The easiest is simply to
consider whether or not Q(0.1|a, ey;) falls within the
specified bounds. This involves consideration of the
indicator function

1 ifQ<Q(0laey)<Qy
5[Q(0.Jla, ey )J - {o oth_erwise( !
(4.24)
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Fig. 4.6. Estimated CDF summarizing uncertainty in
margin Qp(0.1[a, ey) defined in Eq. (4.29)
for bounding interval [Q, Qpl = [0.08, 0.12].
and the associated sets
Xt ={eM ey € EMand 5[Q(O.]4a, em )le}
(4.25)
and
X~ :{eM ey € EMand §[Q(0.]4a, ew )] :0}.
(4.26)

Then, the probabilities of compliance and noncompli-
ance are given by
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nSE

Pem (X* ) = S[Q(o.qa, ewi )]/nSE —0.985(4.27)

i=1
and

Pew (X_) =1- pey (X+) ~1-0.985=0.015 (4.28)

respectively.

The representation in the preceding paragraph
summarizes the uncertainty in whether or not the speci-
fied interval bound will be satisfied. However, the un-
certainty in the location of Q(0.1|a, e),) relative to the
ends of the bounding interval [Qy, Qb] is not indicated.
The consideration of this uncertainty requires the de-
termination of margins and the uncertainty associated
with these margins. Specifically, a margin associated
with the containment of Q(0.1|a, ey;) in the interval
[Qp, Q] can be defined by

0.1a, ey |-

Qm (0.1, ey ) = min ?( fa.ew )= (4.29)
Q% -Q(01a ey ),
with the result that (i) Q,,(0.1]a, ey,) is nonnegative if
Q(0.1]a, ey,) falls within the interval [Qy, (jb] , and (ii)
Qm(0.1]a, ey) is negative if Q(0.1]a, ey) falls outside
the interval [Q,,Q,]. In turn, Qy(0.1]a, ey) has an
uncertainty structure that derives from the uncertainty
structure imposed on ey, (Fig. 4.6). The probability
Pem(X7) = 0.015 in Eq. (4.28) corresponds to the cumu-
lative probability associated with Q,,(0.1|a, epy) =0 in
Fig. 4.6.

An alternate representation is to use normalized
margins. Specifically, the margin Q,(0.1ja, ey;) de-
fined in Eq. (4.29) can be replaced by a normalized
margin Qn(0.1]a, ey;) defined by

[Q(0-4a e ) -0y ]/Q

Q, (O.JJa, ey ): min [Qb _Q(O.]Ja, e, )J/éb: (4.30)

which expresses margin as a fraction of the bounding
value from which Q(0.1|a, ey,) has the smallest frac-
tional deviation (Fig. 4.7).
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If desired, “margin/uncertainty” summary meas-
ures of the form defined in Eqgs. (4.7), (4.8), (4.13) and
(4.14) can be defined for the distribution of Q,(0.1/a,
ewm) in Fig. 4.6. Specifically,

Qm,05 (t|a, em )
Qm,O.S (t|a' em )_Qm,q (t|a, em )
B {0.013/(0.013—0.003):1.30 for g =0.05

Quyu (ta e )=

0.013/[ 0.013—(~0.001) | =0.93 for g = 0.00
(4.31)

fort=0.1s, and
Qm(tja. ey )

t}a,en )-Qmg(ta em)
(4.32)

6m/u (t|av em ): 6 (
m

effectively has the same values as Q. (tla, ey) for t =
0.1 s because of the similarity of the mean and median
values for Qn(0.1]a, ey) (see Fig. 4.6). However, as
previously discussed in Sect. 4.1, a significant amount
of information is lost when the results in Figs. Fig. 4.5
and Fig. 4.6 are reduced to a single number (see Sect.
4.5 for additional discussion).

The results of a sensitivity analysis for Q(0.1|a,
enm) are presented in Table 4.1 and Fig. 4.4. Because
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Qmn(0.1la, ey) as defined in Eq. (4.29) for bounding
interval [Qy, Q] = [0.08, 0.12] is not an affine trans-
formation of Q(0.1|a, ey), these analyses do not reveal
the full effects of the elements of ey, on Q,,(0.1|a, eyy).
To determine these effects, a stepwise regression analy-
sis (Table 4.2) is initially performed for the mapping

[emi.Qm(0.1aey;)].i=12,.,nSE =200, (4.33)

and then followed by an examination of scatterplots.

The regression analysis in Table 4.2 for
Qmn(0.1a, eyy) is very poor, with the final regression
model containing E; and C having an R2 value of only
0.16. As a reminder, Eg and C are the dominant vari-
ables affecting the uncertainty in Q(0.1|a, ey (see
Table 4.1 and Fig. 4.4). Given the effects of Eg and C
on Q(0.1]a, eyy), a natural next step is to examine the
scatterplots for Eq, C and Q,,(0.1|a, ep) (Fig. 4.8). Spe-
cifically, the scatterplots in Fig. 4.8 show that small
values for Q,,(0.1|a, e),) are associated with both small
and large values for Eg and C. This is consistent with
the monotonic effects of Eg and C on Q(0.1]a, ey)
shown in the scatterplots in Fig. 4.4 and the dependence
of the margin Qn(0.1]a, ey) on both small and large
values for Q(0.1]a, e),) (see definition of Q,(0.1]a, ey)
in Eq. (4.29)). Given the monotonic effects of Ejand C
on Q(0.1]a, ey) and the definition of Q,,(0.1]a, ep),
small values for Q,(0.1]a, ep,) will tend to occur when
either (i) both Ey and C are at the lower ends of their
ranges or (ii) both Ey and C are at the upper ends of
their ranges.

The regression analysis for Q,(0.1|a, ey,) in Table
4.2 fails beause of the honmonotonic relationships in-
volving Eq, C and Q,(0.1]a, ey) shown in Fig. 4.8.
Given the complexity of the relationships involving E,
C and Qn(0.1]a, ey), a successful regression-based
sensitivity analysis for Q,(0.1]a, ep,) would require the
use of nonparametric regression procedures [111; 112].

As indicated by this example, sensitivity analyses
associated with margins defined for bounding intervals
(i.e., gates) can be challenging. This can happen for at
least two reasons. First, different subranges of a vari-
able can affect compliance with upper and lower
bounds. Second, different variables can affect compli-
ance with upper and lower bounds. The outcome of
these two effects can be complex relational patterns
between margins and uncertain analysis inputs whose
identification requires sophisticated sensivity analysis
procedures (e.g., [111; 112]).
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Table 4.2. Stepwise Regression Analysis to Identify
Uncertain Variables Affecting the Margin
Qmn(0.1]a, e)y) defined in Eq. (4.29)

Step? VariableP SRC¢ R2d
1 Eo 0.28 0.08
2 C 0.27 0.16

Steps in stepwise regression analysis with an a-value of 0.01 or
less required for a variable to enter a regression model.

b Variables listed in the order of selection in regression analysis.
C SRCs for variables in final regression model.

Cumulative R? value with entry of each variable into regression
model.

4.3 Epistemic Uncertainty with a
Specified Bounding Interval over

Time

A QMU problem involving a bounding interval at a
fixed point in time is considered in Sect. 4.2. This prob-
lem is now increased in complexity by considering a
situation in which a bounding interval [Qy, Qb] is spe-
cified for a quantity such as Q(ta, ey;) that takes on
values over a time interval [ty tn] (Fig. 4.9). Spe-
cifically, the requirement is that the values for Q(tla,
ey) stay within the bounding interval [Q,, Q] for ty,
<t<tp (6.9, [Qy, Q] =1[0.07, 0.14], {, = 0.02 s and
tnx = 0.18 s in Fig. 4.9). Formally stated, the require-
ment is that the inequalities

Q <Q(tla,em )<Qy (4.34)
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Uncertainty in compliance with the indicated re-
quirement can be represented with use of the indicator
function

5[Q(ta e )t <t <ty |

_J1ifQy<Q(t|a ey )< Qp for ty, St<ty,
0 otherwise
(4.35)

and the associated sets

. {e,v, ey €EMand
X —

5[Q(t|a,eM ) tmn

<<ty | :1} (4.30)

and

} o} (4.37)

Then, the probabilities of compliance and noncompli-
ance are given by

ey ey €EMand
ou
5[Q(ta ey ) tm <t <ty

nSE
pEM(X+) 25[ t|a eM,

= 0.82

pnst<

tmx | /NSE

(4.38)
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Fig. 4.10. Estimated CDF summarizing uncertainty in
margin Qn(tla, em, [tmns tmyl) defined in Eq.
(4.40) for bounding interval [Q,, Q,] = [0.07,
0.14] and time interval [ty tnd = [0.02,
0.18 3].

Cumulative Probability

and

PEM (X’ ) ~1- pgy (X* ) ~1-082=018  (4.39)

respectively.

The preceding representation summarizes the un-
certainty in whether or not compliance with the speci-
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fied bounding interval over time will be satisfied.
However, this representation does not display the asso-
ciated margins. These margins can be defined by

Qm (t|a, €M v[tmnl tmx])
an (t|a, €M v[tmnv tmx])_gb

| (4.40)
=ming —
& Qo ol ],

where

an (tla' em '[tmn ' tmx])

:min{Q(t|a, em ):tmn ststmx}
and

me (tla' €M '[tmn ' tmx ])

=max{Q(t/a, e ) :tmy <t <tpy].

In turn, Q(tla, em, [tmn tmyd) has an uncertainty struc-
ture that derives from the uncertainty structure imposed
on ey (Fig. 4.10). The probability pgp(X~) = 0.18 in Eq.
(4.39) corresponds to the cumulative probability associ-
ated with Q,(0.1|a, ey, [tns tmyd) = 0 in Fig. 4.10.

An alternative representation is to use normalized
margins. Specifically, the margin Qp,(tla, e, [tmn, tmxl)
defined in Eq. (4.40) can be replaced by a normalized
margin Qn(tla, em, [tmns tmyd) defined by

Qn (tla: em :[tmn:tmx])
an (t|a, em ![tmnltmx])_(_)b
o Qo
=min{ _
Qb _me (t|a, em ![tmnl tmx])
Q

(4.41)

which expresses margin as a fraction of the bounding
value from which Q(t| a, ep;) has the smallest fractional
deviation (Fig. 4.11).

If desired, “margin/uncertainty” summary meas-
ures of the form defined in Egs. (4.7), (4.8), (4.13) and
(4.14) can be defined for the distribution of Q(0.1a,
em [tmn tmxd) in Fig. 4.10. Specifically,
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Fig. 4.11. Estimated CDF summarizing uncertainty in
normalized margin Qu(t|a, em, [tmns tmyd) de-
fined in Eqg. (4.41) for bounding interval
[Qp. Q,1=1[0.07, 0.14] and time interval [ty
tox] = [0.02, 0.18 5].

Qm/u (t|a- €m l|:tmnvtmx]>
Qm,0.5 (t|a, em 7[tmna tmx :D

) Qm,0.5 <t|a’ €m ’|:tmn ' tmx])_Qm,q (t|a, €m v[tmmtmx])
0.0082/[0.0082 - (~0.0094) | = 0.47 for g = 0.05

{0.0082/[0.0082 ~(~0.0257) | = 0.24 for g = 0.00
(4.42)

and

ém/u (t|a, em [ tmn: tnx :I)

B Qm (t]a e [tmn: tmx )

- Qu (ta em [ton: trx )~ Qm g (t2 e [tmn. tme )
0.0069/[ 0.0069 - (~0.0094) ] = 0.42 for q = 0.05

{0.0069/[0.0069 ~(~0.0257) ] = 0.21 for q = 0.00.
(4.43)

However, as is always the case, a significant amount of
information is lost when the results in Figs. 4.9 and
4.10 are reduced to a single number (see Sect. 4.5 for
additional discussion).

Sensitivity analysis can also be performed for Q(t|a,
ew) and the results summarized by Qu(tla, em, [tne
tm])- A natural starting point is to investigate the vari-
ables affecting Q(t|la, ey,) over the time interval [ty, tyx
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(Fig. 4.12). To this end, partial correlation coefficients
(PCCs) and SRCs for Q(t|a, ep;) and the elements of ey,
are presented in Fig. 4.12.

Related, but not identical information is provided
by PCCs and SRCs. Specifically, a PCC provides a
measure of the strength of the linear relationship be-
tween two variables after the linear effects of all other
variables have been removed, and a SRC provides a
measure of the fraction of the uncertainty in a depend-
ent variable that can be accounted for by the independ-
ent variable under consideration (see Refs. [53; 56] for
additional discussion of PCCs and SRCs). Although
their numeric values differ, the absolute values of PCCs
and SRCs provide the same orderings of variable im-
portance when no correlations between the independent
variables (i.e., the elements of ey,) are present. For
comparison, both PCCs and SRCs are presented in Fig.
4.12. For presentation purposes, PCCs can be preferable
to SRCs because PCCs tend to be more spread out in
the interval [-1, 1] than SRCs, with the result that a
single plot frame containing multiple time-dependent
PCCs is easier to read than a single plot frame contain-
ing multiple time-dependent SRCs.

As examination of Fig. 4.12 shows, the effects of the
elements of ey, tend to swing from positive to negative
prior to approximately 0.1 s. This effect results because of
the oscillatory behavior of Q(tja, ey) that can be seen in
Fig. 4.9 and derives from the sine and cosine terms in the
closed form representation for Q(ta, ey;) shown in Eq.
(3.31). During this early time period, all variables except A
have appreciable effects on Q(tla, ey;). After approxi-
mately 0.1 s, the oscillatory behavior of Q(tla, ey;) has
significantly decayed, and the uncertainty in Q(tja, ey) is
dominated by C and E. As indicated by its PCCs and
SRCs, A has a strong negative partial correlation with
Q(tla, epy) beginning at about 0.1 s but the actual size of
this effect on the uncertainty in Q(t|a, ey,) is rather small.

In this example, the margin Qp(tla, e, [tmn: trxl) 1S
not an affine transformation of the underlying analysis
result Q(tla, ep). As a consequence, sensitivity analysis
results for Q(t|a, ey,) cannot be expected to be the same
as sensitivity analysis results for Qy,(tla, ey, [tmn: thx)-
For this reason, a sensitivity analysis for Qp(tla, ey,
[tons tmx]) with stepwise regression analysis is presented
in Table 4.3. This analysis indicates that R is the domi-
nant variable affecting the uncertainty in Qp(tla, ey,
[t D), With Qn(tla, em, [tnn tnyl) tending to in-
crease as R increases. After R, smaller effects on Qp(tla,
em [tnn tmx]) are indicated for Eg, C and L, with Qp(tla,
em [tmn tmx]) tending to decrease as each of these vari-
ables increases.
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Fig. 4.12. Sensitivity analysis for Q(t|a, e),) for 0 <t < 0.2 s with PCCs (left column) and SRCs (right column).

Additional insights on the effects of R, Ej, C and L
on Qn(tla, ey, [tyns tmxl) €an be obtained by examining
the scatterplots involving these variables and Q(tla,
em: [tmns tnxd) (Fig. 4.13). Specifically, the strong posi-
tive effect of R on Q(t|a, em, [tmn, tmxl) Can be clearly
seen, with negative values for Qn(tla, em, [tmns tmxl)
occurring for small values for R. Further, the negative
but less strong effects of Eg, C and L on Q(tla, ey,
[tmns tmx]) Can also be seen, with negative values for
Qn(tla, ey, [tmns tmx]) tending to be associated with
large values for Eg, C and L.

Although not particularly high, the final R? value
of 0.62 in Table 4.3 is significantly better than the al-
most meaningless final R2 value of 0.16 in Table 4.2.
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This difference results because the margins associated
with the problem in Sect. 4.3 have relationships with
the elements of ey, that have a monotonic character
while the margins in Sect. 4.2 and their relationships
with the elements of ey, do not have this character (i.e.,
compare the scatterplots in Figs. 4.8 and 4.13).

4.4 Epistemic Uncertainty with an
Uncertain Bound

The QMU results presented in Sects. 4.1 — 4.3 in-
volve uniquely specified bounds. However, it is likely
that this will not always be the case in QMU analyses.
For example, a requirement might be that a certain sys-
tem operates but the conditions that define when the
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system does and does not operate appropriately may not
be specified. Then, it is the responsibility of the individu-
als (i.e., analysts) charged with carrying out the analysis
to specify the conditions under which the system oper-
ates in the manner desired. However, there may be un-
certainty with respect to exactly what conditions are nec-
essary for the appropriate operation of the system. Then,
in this situation, there is epistemic uncertainty as to the
conditions must be specified to define what constitutes
appropriate operation of the system.

The example presented in Sect. 4.3 can be modi-
fied to illustrate this situation. As originally stated, the
example in Sect. 4.3 involves a bounding interval

53

[Qp. Qy1 for Q(tja, ey over the time interval [tyn, tmy-
For the example of this section, it is assumed that the
specified requirement is that the system be operational
over the time interval [t tm.] but the requirement
does not specify what conditions are necessary for the
system to be operational. For purposes of illustration, it
is assumed that the analysts involved conclude that the
system being operational over [ty tnx] corresponds to
Q(t| a, e)) being within a bounding interval [Q,, Qp].
However, they are uncertain with respect to the appro-
priate value for this bounding interval. Thus, there is
epistemic uncertainty with respect to the values to use
for Q, and Q,. As a result, the vector ey, of epistemi-
cally uncertain inputs to the analysis now has the form



Table 4.3. Stepwise Regression Analysis to Identify Un-
certain Variables Affecting Margin Qq(tla,
em» [tmn tmxl) Defined in Eq. (4.40)

Step? VariableP SRC¢ R2d
1 R 0.67 0.45
2 Eo -0.26 0.53
3 C -0.23 0.58
4 L —0.20 0.62

Steps in stepwise regression analysis with an a-value of 0.01 or
less required for a variable to enter a regression model.

Variables listed in the order of selection in regression analysis.
SRCs for variables in final regression model.

Cumulative R? value with entry of each variable into regression
model.
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Fig. 4.14. Example uncertain bounding interval [Qy, Q]
with 0.06 < Q, < 0.08 and 0.14 < Qp, <0.16
over the time interval [ty ty] = [0.02, 0.18 5]

for Q(tja, ey

eM =[eR,eP]=|:9b,6b,L,R,C,EO,%J, (444)
where eg =[Qp, Q,]and ep = [L, R, C, Eg, 4] as indi-
cated in Eq. (3.21).

For purposes of illustration, it is assumed that the
analysts conclude that (i) Q, is contained in the interval
[0.06, 0.08], (ii) Q, is contained in the interval [0.14,
0.16], (iii) Qp and Q, have the same uncertainty structure
specified for L, Ry, C, E and A (see Egs. (3.38) — (3.43)
and associated discussion), and (iv) no dependency or
correlation exists between Q, and Q, (Fig. 4.14).

This problem can now be analyzed exactly as in
Sect. 4.3. The only difference is that ey, now contains 7
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rather than 5 elements, with two of these elements being
Qy, and Qp. Specifically, S[Q(tla, ep): tn <t < tyyd, A
and X are defined as indicated in Egs. (4.35) —(4.37)
with the understanding that the indicator function 5[~] is
now a function of Q, and Q,. Given the dependency of
5[~ on Q, and Q,, a more complete but rather cumber-
some notation for 5[~] is S[~,(Qp, Qy)], which will be
used below to make the dependence of §[~] on Q, and
Qp explicit. In turn, the probabilities of compliance and
noncompliance are given by

PEM (X+)
nsE 5[Q(t|a, emi ) tmn ststmx,((_gbi,ébi )J
= .Z‘ < (4.45)
=0.895

and

Pem (X ) =1-peu (X" ) =1-0.895-0.105, (4.46)

respectively, where
emi =| Qi Qoi» Li» Ri» Gy, Egi, 4 |,i=1,2,.., nSE,

is now an LHS of size nSE = 200 from vectors of the
form defined in Eq. (4.44).

Margin analysis results Qp(tla, em, [tmn: tnxl) and
normalized margin analysis results Qu(t| a, e, [tmn,
ty]) of the form defined in Egs. (4.40) and (4.41), re-
spectively, can also be obtained (Figs. 4.15 4.16).

Similarly to the results in Egs. (4.42) and (4.43),
“margin/uncertainty” ratios Qp(tfa, e, [tmn, tnyl) and
Q mu(tla, eps [tmns tmxl) can be used to summarize the
distribution for Q,(tla, epm, [tmn tnxl) in Fig. 4.15. Spe-
cifically,

Qm/u (t|a’ em [ tmn: tmx])
0.011/[0.011-(~-0.005) | = 0.69 for q = 0.05
) 0.011/[0.011-(~0.021) |= 0.34 for q = 0.00,
(4.47)

and similar values are obtained for Q ,(tla, ey, [tyn,
tmyx]) @s a consequence of the similarity of the mean and
median values for Q(tfa, ey, [tnn tmxl) (See Fig. 4.15).

However, as is always the case, a significant amount of
information is lost when the results in Figs. 4.14 and 4.15
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Fig. 4.16. Estimated CDF summarizing uncertainty in
normalized margin Q(tla, epm, [tmn tmd) de-
fined in Eq. (4.41) for time interval [ty trd =
[0.02, 0.18 s] and uncertain bounding interval
[Qy, Qp] with 0.06 < Q, <0.08 and 0.14 < Q,
<0.16. B

are reduced to a single humber (see Sect. 4.5 for addi-
tional discussion).

A sensitivity analysis for Qn(tla, em, [t tmxl)
based on stepwise regression analysis is presented in
Table 4.4. The two most important variables affecting the
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Table 4.4. Stepwise Regression Analysis to Identify Un-
certain Variables Affecting Margin Q(tla,
em [tnn tnd) Defined in Eq. (4.40) for Time
Interval [t tn] = [0.02, 0.18 s] and Uncer-
tain Bounding Interval [Qy, Q] with 0.06 <

Q <0.08 and 0.14 < Q, <0.16.
Step? VariableP SRC¢ R2d
1 R 0.53 0.28
2 Qp -0.40 0.43
3 L —0.32 0.54
4 Q 0.23 0.59
5 Eo 0.13 0.61

@ Steps in stepwise regression analysis with an a-value of 0.01 or
less required for a variable to enter a regression model.

b Variables listed in the order of selection in regression analysis.
C SRCs for variables in final regression model.

d' cumulative R? value with entry of each variable into regression
model.

uncertainty in Qy(tla, ey, [tyn tmxl) are R and Qy, with
Qu(tla, ep, [tyn: tmd) tending to increase as R increases
and tending to decrease as Qy increases. In addition, a
negative effect is indicated for L and positive effects are
indicated for Q, and Ey,.

The effects of R, Q, and Q, on Qu(tla, e, [t trxd)
can be seen in the scatterplots in Fig. 4.17. In particular,
negative values for Q(tla, ey, [tmn tmy]) tend to be asso-
ciated with small values for R that occur in conjunction
with a large value for Q, and a small value for Q.

4.5 Information Loss in a “Margin/
Uncertainty” Ratio

As already emphasized several times, results of the
form “margin/uncertainty” involve a significant loss of
information. This loss is particularly acute because the
actual magnitudes of the margins involved in the de-
termination of “margin/uncertainty” are suppressed and
cannot be determined from this ratio. Specifically,
many different pairings of “margin” and “uncertainty”
can result in the same “margin/uncertainty” ratio. In
particular, it is impossible to determine from a “mar-
gin/uncertainty” ratio whether the underlying margins
are large or small. Generally, large margins are prefer-
able to small margins but insights into whether the mar-
gins underlying a “margin/uncertainty” ratio are large
or small are not directly obtainable from this ratio.
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The ambiguity of a “margin/uncertainty” ratio can
be illustrated with a simple plot involving the ratio
k:mb /(mb —m|), (448)
where my, is the best estimate for a margin (e.g., the
mean or median of the epistemic uncertainty distribu-
tion for the margin under consideration), m is the lower
estimate for a margin (e.g., the 0.05 or 0.00 quantile of
the epistemic uncertainty distribution for the margin
under consideration), and the difference my, — m; defines
the “uncertainty” in the margin under consideration.
Then, as shown in Fig. 4.18, infinitely many pairs (my,
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..., NSE = 200.

m;) of margin estimates result in the same “mar-
gin/uncertainty” ratio k. Specifically, each line segment
in Fig. 4.18 defines pairs (mp, m;) of margin estimates
that result in the same “margin/uncertainty” ratio k. As
a consequence, knowledge of the “margin/uncertainty”
ratio k provides no information on whether the underly-
ing margins involved in the definition of k are large or
small.

Some additional properties of the “margin/uncer-
tainty” ratio k are also illustrated by Fig. 4.18. Specifi-
cally, (i) 1 < k < oo results for 0 < m; < my, with k ap-
proaching « as m; approaches m,, and k approaching 1



+|m my=m
_ k=4
Not considered: k=3
Mp<m, k=2
s k=150
k=1.25
my k=1
- +
k=0.90
k=0.75
mb = mI k=0.50
k=-3
%24
kK =-050 k=0.25
k=-0.25 _|k=0

Key: k=my/(my-m) = m =[(k-1)Kk]my

Fig. 4.18. Relationship of best estimate margin my, and lower estimate margin m; to “margin/uncertainty” ratio k de-

fined by k = my/(my, — m;).

as m; approaches 0, (ii) 0 < k < 1 results for m; <0 <mj
with k approaching 1 as m; approaches 0 and k ap-
proaching 0 as m; approaches —oo, and (iii) —co <k <0
results for m; < my < 0 with k approaching 0 as m; ap-
proaches —o and k approaching —co as m; approaches
my,. However, as already discussed, knowledge of k
provides no information on the underlying margins my,
and m,. Presumably, the half plane to the left of the line
my, = m; in Fig. 4.18 is not of interest as the pairs (m,
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m,) in this region correspond to the best estimate mar-
gin my, being less than the lower margin estimate m;.
Also, the “margin/uncertainty” ratio k is not defined for
points on the straight line my = m; as this situation in-
volves an undefined division by my—m; = 0.

Significant reservations about the use of “uncer-
tainty/margin” ratios are also expressed in the NAS/NRC
report on QMU (e.g., Finding 1-4, p. 25, Ref. [77]).
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5 QMU with Aleatory and Epistemic
Uncertainty: Characterization with

Probability

The use of probability to represent epistemic uncer-
tainty in analyses that involve only epistemic uncer-
tainty is discussed and illustrated in Sects. 3.3, 3.4 and
4. Specifically, the formal discussion in Sect. 3.3 in-
volves a generic real-valued quantity

y(tla,em )= (tjaey) (5.1)
conditional on a specific realization a of aleatory uncer-
tainty. The vector ey, contains epistemically uncertain
analysis inputs, with the uncertainty in these inputs cha-
racterized by a probability space (EM, EM, pgpm)-

As discussed in Sect. 3.5, an increase in complexity
is to include the aleatory uncertainty associated with a in
the analysis. Then, in addition to the probability space
(EM, EM, pgyy) that characterizes the epistemic uncer-
tainty associated with ey, there is also a probability
space (A, A, pp) that characterizes the aleatory uncer-
tainty associated with a. Further, there can be, and often
is, epistemic uncertainty with respect to a vector e, of
quantities used in the definition of the probability space
(A, A, pp). As aresult, there is also a probability space
(A, EA, pgp) that characterizes the epistemic uncer-
tainty associated with e,. The vector e = [e,, ey] then
contains the epistemically uncertain inputs to the analy-
sis, with the uncertainty in e characterized by a probabil-
ity space (£, E, pg) that derives from the probability
spaces (EA, EA, pga) and (EM, EM, pgy). Conceptu-
ally, the resultant analysis involves the three basic analy-
sis components discussed in Sect. 3.2: (i) (EN1), a prob-
abilistic characterization of aleatory uncertainty (i.e., a
probability space (A, A, pp) that characterizes the alea-
tory uncertainty associated with the elements of a), (ii)
(EN2), a model that predicts system behavior (i.e., a
function f(tja, e),)), and (iii) (EN3), a probabilistic char-
acterization of epistemic uncertainty (i.e., a probability
space (£, E, pg) that characterizes the epistemic uncer-
tainty associated with the elements of e = [e,, em]).

The results of analyses involving aleatory and epis-
temic uncertainty are usually summarized with CDFs
and CCDFs that display the effects of aleatory uncer-
tainty conditional on specific realizations of epistemic
uncertainty and also with various quantities derived
from such CDFs and CCDFs (e.g., quantiles and ex-
pected values). In turn, margins can be defined in a
variety of ways for CDFs, CCDFs and associated de-
rived quantities, and the presence of epistemic uncer-
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tainty results in a corresponding epistemic uncertainty
in the resulting margins.

This section uses the function A(t|a, e),) introduced
in Sect. 3.6 to illustrate two ways in which QMU analy-
ses could arise and be carried out in the context of
analyses that involve a generic result y(t|a, ey,) of the
form indicated in Egs. (3.24) and (5.1). Further,

e=[ea ey]
=[e1. €0, 63, 4, 5]
=[4,a,m,b,r],

(5.2)

where (i) ep = [4, a, m, b] and ey, = [r] have the prop-
erties defined in conjunction with Eq. (3.59) and (ii) the
corresponding probability space (&, E, pg) that charac-
terizes the epistemic uncertainty associated with e is
defined in conjunction with Egs. (3.60) — (3.65).

The time-dependent behavior of A(tla, ey = A(tla,
r) is illustrated in Figs. 3.9 and 3.10, and the CDFs and
CCDFs for A(10|a, ep) = A(10]a, r) that result for dif-
ferent values of e are illustrated in Figs. 3.11 and 3.12
and are defined by the probabilities p[A(10ja, r) < A
lea] and pa[A < A(10Ja, r)leal, respectively. As indi-
cated by the vertical line “ | ”, the value of A(tla, r) is
conditional on a and r. As a result, e, does not affect
the value of A(t|a, r) but does affect the distribution of
A(t|a, r) arising from the distribution of possible values
for a. In contrast, probabilities of the form p[A(tla, r)
< Alep] and palA < A(tla, r)|e] are conditional on e,
and hence on the probability space (A, A, pp) with as-
sociated density function dp (alea).

The examples presented in this section use an LHS
e =[eai ewmi |

=[e &2, Bi5
:I:/%i, 4, mi,bi, I’,], i =1 2,...,nSE = 200,

(5.3)

from &£ generated in consistency with the distributions
that define the probability space (£, E, pg). Further,
results conditional on individual sample elements e; are
generated with a random sample
aj, j=1,2,...,nSA, = 10,000, (5.4)
from A consistent with the probability space (A, A,
Pa)- As a result of the values associated with e, = [Aj,
aj, m;, b;l, the sample space (A, A, pa) underlying the
generation of the sample in Eq. (5.4) changes for each
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sample element e; = [ea;, emil = [eai, Ii]- Evaluation of
A(tlaj, ;) and results such as pa[A < A(tla, ry)lea] for
elements of the preceding samples generates mappings
of the form

[ri,A(t|aj,ri)]

i=12,...,nSE =200, j=1, 2,...,nNSA=10,000

(5.5)

and

{ei, pA[A< A(t]a, ri)‘eAiJ},

i=12,...,nSE =200,

(5.6)

that are used in the generation of the example results
presented in this section.

The following topics related to QMU in the pres-
ence of aleatory and epistemic uncertainty are consid-
ered in this section: epistemic uncertainty in margins
associated with a specified bound on a quantile deriving
from aleatory uncertainty (Sect. 5.1), and epistemic
uncertainty in margins associated with a specified
bound on an expected value deriving from aleatory un-
certainty (Sect. 5.2).

As indicated at the beginning of Sect. 3.5, the
NAS/NRC report on QMU recommends the use of what
it describes as the “probability of frequency approach”
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in QMU analyses (Recommendation 1-7, p. 33, and
App. A, Ref. [77]). The examples presented in Sects.
5.1 and 5.2 involve what the NAS/NRC report de-
scribes as the “probability of frequency approach” (i.e.,
an analysis that involves an explicit separation of alea-
tory and epistemic uncertainty).
5.1 Epistemic Uncertainty with a

Specified Bound on a Quantile

For this example, it is assumed that pa[20 <
A(10|a, r)|ea] is required to be less than a bound (e.g.,
the possible bounds p,; = 0.05 and pp, = 0.1 in Fig.
5.1b). Specifically, the values for pa[20 < A(10Ja,
rleal in Fig. 5.1b correspond to the exceedance prob-
abilities associated with the vertical line in Fig. 5.1a,
and the corresponding distribution of these probabilities
and the associated bounds p,; and py, are shown in Fig.
5.1b. In particular, the probabilities that p[20 < A(10Ja,
r)lea] will exceed py; = 0.05 and py, = 0.1 are 0.055
and 0.025, respectively. The indicated exceedance
probabilities of 0.055 and 0.025 derive from epistemic
uncertainty and thus characterize degrees of belief that
Pal20 < A(10]a, r)|ea] will exceed py; and py,,, respec-
tively.

In turn, the margins between pa[20 < A(10Ja, r)|eal
and the bounds pyy, k = 1, 2, indicated in Fig. 5.1b can
be defined in the same manner as the margins in Eq.
(4.5). Specifically, the margin py,(10|e) is defined by



o T T T l T
10 - Frame 5.2a | E
z 1: |
510°F E
] g I E
Qo I | N
o B | ]
a : (I 4
. I
2107 : | E
g P 1
= | ]
=] B | | 1
103} Lo -
| |
| |
0 | | ]
I I I | L
-0.4 -0.3 -0.2 -0.1 0.0 0.1
Pm1(10[e)

T T T T
Frame 5.2b !
I

Ll R |

Cumulative Probability

|

[
[
[
[
[
[
[
[
[
[
[
[
|

|
|
|
|
|
|
|
|
|
|
|

I I I
-0.3 -0.2 -0.1

Pm2(10]e)

0.0 0.1 0.2

Fig. 5.2. Estimated CDFs for margins p,,(10|e) associated with bounds py, for k = 1, 2: (a) p,1(10le) for py, =

0.05, and (b) pm2(10Je) for p,, = 0.1.

Pric (10/€) = Py — PA[ 20< A0, T)en ], (6.7)
with pp,(10le) > 0 indicating that bound py is satisfied
and p«(10le) < 0 indicating that bound py is not satis-
fied. As a result of pa[20 < A(10|a, r)|ea] being epis-
temically uncertain, the corresponding margins
Pmk(10]e) are also epistemically uncertain and have an
uncertainty structure that derives from the correspond-
ing uncertainty structure assumed for e (Fig. 5.2).

As discussed in conjunction with Eq. (4.6), an al-
ternative presentation involves the use of normalized
margins. For the present example, normalized margins
are defined by

Prk (10]€) = P (10]€)/ pok (5.8)
for k = 1, 2 and express margin as a fraction of the cor-
responding bounding value (Fig. 5.3).

If desired, the CDFs for margin in Fig. 5.2 can be
converted into summary “margin/uncertainty” results as
indicated in Eqgs. (4.7) and (4.8) by the normalizations

Prju(20) = P 05 10)/[ P05 (10) ~ Pmg10) |  (5.9)
and
Py (10) = Py (10)/] P (10) — Ping 10) |, (5.10)
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where ppq(10) is the g quantile (e.g., g = 0.0, 0.05 or
0.5) for the margin p,(10|e) corresponding to py,1(10]e)
in Fig. 5.2a or py,»(10|e) in Fig. 5.2b and Py, (10) is the
expected value for p,,(10/e). In turn,

pm/u,l(lo)
{0.050/[0.050— (-0.007)] = 0.8 for g = 0.05
0.050/[0.050 —(-0.313)] = 0.14 for ¢ = 0.00
(5.11)

and

5m/u,1(10)
{0.041/[0.041— (-0.007)] = 0.85 for q = 0.05
0.041/[0.041~(~0.313)] = 0.12 for ¢ = 0.00
(5.12)

for ppm1(10Je) in Fig. 5.2a, and

Pm/u,2 (10)
0.100/(0.100—0.043) =1.75 for q =0.05
- {0.100/[0.100 - (—0.263)] =0.28 for q=0.00
(5.13)

and

ﬁm/u,Z(lO)
0.09]/(0.091—0.043) =1.90 for g =0.05
- {0.091/[0.091— (-0.263)] = 0.26 for q = 0.00
(5.14)
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for py,1(10je) in Fig. 5.2b. The normalizations in Egs.
(5.11) and (5.12) are the outcomes of converting all the
information in Figs. 5.1 and 5.2a into single numbers.
Similarly, the normalizations in Egs. (5.13) and (5.14)are
the outcomes of converting all the information in Figs.
5.1 and 5.2b into single numbers. Because of the pres-
ence of both aleatory and epistemic uncertainty, the con-
version of analysis results into a single “mar-
ginfuncertainty” ratios illustrated in this section involves
a greater loss of information than is the case when only
epistemic uncertainty is present (see Sect. 4.5 for addi-
tional discussion).

Additional insights with respect to the uncertainty
associated with the margins p,,1(10je) and py,»(10]e) in
Fig. 5.2 can be obtained by performing a sensitivity
analysis on the values for p,[20 < A(10|a, r)lea] sum-
marized in Fig. 5.1 and used in the generation of
Pm1(10le) and p,,»(10Je) as indicated in Eq. (5.7). Be-
cause pm1(10je) and py»(10le) are obtained from an
affine transformation of pa[20 < A(10Ja, r)lep], the
analysis of pa[20 < A(10Ja, r)|ea] produces effectively
the same results as an analysis of p.,1(10je) and
Pm2(10le). The only difference is that the effects of in-
dividual variables are reversed owing to the subtraction
of pa[20 < A(10|a, r)|ea] in the definition of p,;(10]e)
and pyo(10le) in Eq. (5.7).

An initial sensitivity analysis for p,[20 < A(10|a,
r)lea] based on stepwise regression analysis is pre-
sented in Table 5.1. This analysis is basically a failure
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as it produces a regression model containing the vari-
ables r and A that has an R? value of only 0.19. As a
result, this regression model provides little information
on the variables that are affecting the uncertainty in
pal20 <A(10]a, r)leal.

The natural next step at this point is to examine
scatterplots involving pa[20 < A(10Ja, r)lea] and the
elements of e (Fig. 5.4). A clearer picture of the effects
of r and A on pp[20 < A(10|a, r)lea] emerges from an
examination of these plots. Specifically, pa[20 <
A(10|a, r)|ea] decreases as r increases and is almost
always zero when r exceeds approximately 0.75. Fur-
ther, zero values for pa[20 < A(10|a, r)lea] show a
strong tendency to be associated with values for A that
are less than approximately 1.0.

The failure of the regression analysis in Table 5.1
results because the large number of zero values for p,[20
< A(10Ja, r)|ea] results in patterns that the linear regres-
sion model in use cannot match. In such situations, there
are a number of additional techniques for sampling-based
sensitivity analysis that can be tried. The examination of
scatterplots as illustrated is certainly the simplest of these
techniques. Other possibilities include rank regression,
tests for patterns based on gridding, nonparametric re-
gression, tests for patterns based on distance measures,
tree-based searches, the two-dimensional Kolmogorov-
Smirnov test, and the squared differences of ranks test
(see Sect. 7.5 and Refs. [53; 54; 56]).
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Table 5.1. Stepwise Regression Analysis to Identify Un-
certain Variables Affecting Exceedance Prob-
ability pa[20 < A(10Ja, r)|eal

Step? VariableP SRC¢ Rz
1 r —0.36 0.14
2 A 0.24 0.19

a Steps in stepwise regression analysis with an a-value of 0.01 or
less required for a variable to enter a regression model.

b Variables listed in the order of selection in regression analysis.
C SRCs for variables in final regression model.
d cumulative R? value with entry of each variable into regression model.
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5.2 Epistemic Uncertainty with a
Specified Bound on an Expected

Value

For this example, it is assmed that the expected
value EA[A(10]a, r)lea] summarized in Fig. 3.13 is re-
quired to be less than a bound (e.g., the bound A, =13
in Fig. 5.5). At a conceptual level, this example is es-
sentially the same as the example in Sect. 5.1 as the
only difference is that (i) each CCDF in Sect. 5.1 is
being reduced to an exceedance probability pa[20 <
A(10|a, r)|ea] associated with A(10Ja, r) = 20 and (ii)
each CCDF in the present section is being reduced to an
expected value EA[A(10|a, r)|ep]. In both cases, CCDFs
summarizing aleatory uncertainty are being reduced to a
single number. However, it is easy to envision that each
of these cases could arise in QMU analyses. Specifically,
the results in Sect. 5.1 involve a situation in which a
bound is being placed on the likelihood of extreme out-
comes arising from aleatory uncertainty, and the results
in the present section involve a situation in which a
bound is being placed on the expected value of outcomes
arising from aleatory uncertainty.

Margins and normalized margins for E[A(10|a,
r)lea] are defined by

An(10]e) = Ay —EA[A(10]a,1) | ep] (5.15)
and
A,(10]e) = A, (10]e)/ Ay, , (5.16)
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Table 5.2. Stepwise Regression Analysis to Identify Un- A (10) = A. (10 /[: 10)— A 10}
certain Variables Affecting EA[A(L0]a, r)|ex] Anju 00) = AnQO)/] An (10) = Anq (10)

7.8/(7.8-0.6) =1.1 for g = 0.05 (5.18)
Step? | Variable® | SRCC R ~7.8/[7.8—(-5.3)] = 0.6 for q = 0.00,
1 r -0.76 0.61
2 A 047 0.82 where Kmq (10) is_the g quantile for the margin
3 m 0.13 0.84 A,(10]e) and A,(10) is the expected value for
4 a 0.08 0.85 A, (10]e). The preceding normalizations are the out-
& Steps in stepwise regression analysis with an a-value of comes of converting all the information in Figs. 3.11,
0.01 or less required for a variable to enter a regression 3.12, 5.5 and 5.6a into single numbers (see Sect. 4.5 for
model.

additional discussion).
Variables listed in the order of selection in regression anal-

ysis.

SRCs for variables in final regression model. A sensitivity analySlS for EA[A(loIa' r)leA] based on

L, . A stepwise regression analysis is presented in Table 5.2.
gcrigl?é?]t'r\{qi?eralue with entry of each variable fnto re- As indicated, the uncertainty in EA[A(10]a, r)lea] is
dominated by r and A, with smaller effects indicated for
m and a. Specifically, EA[A(10a, r)|les] tends to de-
crease as r increases and tends to increase as each of A, m
and a increases. The final regression model has an R2
Similarly to the results in Egs. (5.9) and (5.10), the vglue (_)f 0.85, which indice}tes t_hat most of the uncer-
tainty in E5[A(10]a, r)|ea] is being captured by the re-
gression model. A regression-based sensitivity analysis
for A, (10|e) would produce the same results as shown

respectively, and summarized in Fig. 5.6.

CDF for margin in Fig. 5.6a can be converted into
summary “margin/uncertainty” results by the normali-

zations in Table 5.2 with the exception that the signs on the
_ _ _ — SRCs would be reversed as a result of the subtraction of
Anju(10) = An 05 10) /] A 05(10) ~ Ayq (10) EAIA(LOja, rlea] in the definition of A,(10|e)in Eq.
8.7/(8.7-0.6) =1.1 for q = 0.05 (6.17)  (5.15).
- {8.7/8.7 ~[(-5.3)] = 0.6 for g = 0.00

For perspective, the scatterplots for the two domi-
nant variables affecting the uncertainty in EA[A(10|a,

and r)le,] identified in the regression analysis in Table 5.2
are shown in Fig. 5.7. Specifically, the negative effect
of r and the positive effect of A are easily seen in the
two scatterplots in Fig. 5.7.
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6 Example QMU Analyses

Notional QMU analyses are presented in Sects. 4
and 5. Examples are now presented from three real ana-
lyses involving both aleatory and epistemic uncertainty
in the assessment of compliance with requirements ana-
logous to what could be encountered in real QMU ana-
lyses. Specifically, examples are presented involving
compliance with the NRC’s nuclear reactor accident
safety goals (Sect. 6.1), the EPA’s regulatory require-
ments for the Waste Isolation Pilot Plalnt (Sect. 6.2),
and the NRC’s regulatory requirements for the pro-
posed high-level radioactive waste repository at Yucca
Mountain, Nevada (Sect. 6.3).

As observed in the NAS/NRC report on QMU, past
analyses of the type illustrated in this section can pro-
vide valuable insights and techniques for future QMU
analyses (Finding 1-7, pp. 31-32, Ref. [77]). Consistent
with this observation, the three example analyses in-
volve (i) the “probability of frequency approach” entail-
ing an explicit separation of aleatory and epistemic un-
certainty (Finding 1-3, pp. 22-23, Recommendation 1-7,
p. 33, and App. A, Ref. [77]), (ii) efficient sampling
from high-dimensional input spaces (Recommendation
1-4, p. 29, Ref. [77]), (iii) extensive sensitivity analyses
(pp. 14-15, Ref. [77]), (iv) extensive use of expert re-
view and judgment (Recommendation 1-5, p. 30, Ref.
[77]), and (v) a full presentation of analysis results ra-
ther than a limited number of one-dimensional sum-
mary results (Finding 1-4, p. 25, Ref. [77]).

6.1 Nuclear Reactor Accident Safety
Goals

In the 1980’s and into the 1990’s, the NRC consid-
ered the implementation of safety goals for the opera-
tion of commercial nuclear power plants [113-116]. The
proposed safety goals and their quantitative evaluation
have aspects that are very similar to what might be ex-
pected in a QMU analysis of weapon system perform-
ance that involves the incorporation and representation
of the implications of both aleatory and epistemic un-
certainty. As a result, the proposed safety goals and
analyses carried out in their support provide an excel-
lent example of the ideas and challenges that are likely
to be encountered in a nontrivial application of QMU in
stockpile performance. Specifically, results from a
probabilistic risk assessment (PRA) for the Surry Nu-
clear Power Station [117] carried out in support of the
NRC’s reassessment of the risk from commercial nu-
clear plants [10] are used to illustrate what a QMU
analysis involving both aleatory and epistemic uncer-
tainty is likely to involve.
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An article summarizing this analysis [118] is re-
produced in App. C and will be referred to in the fol-
lowing discussion as a convenient and accessible source
of additional information on this analysis. Inclusion of
this article in App. C makes it possible to have an ac-
cessible description of the analysis as part of this report.
More detailed analysis descriptions are available in a
detailed technical report [117], in a sequence of journal
articles [11; 119-121], and in detailed technical reports
cited in the preceding references. In addition, further
discussions of the NRC’s safety goals are also available
[11; 122-132].

Specifically, the NRC considered two safety goals
for individual fatality risk and three quantitative risk
goals for accident frequency. These goals have the
following form:

e Individual early fatality risk: The expected
value for average individual early fatality
risk in the region between the plant site
boundary and 1609.3 m (1 mi) beyond this
boundary will be less than 5 x 107" yr ., (SG1)

e Individual latent cancer fatality risk: The
expected value for average individual latent
cancer fatality risk in the region between the
plant site boundary and 16,093 m (10 mi)
beyond this boundary will be less than 2 x
10 yrt, (SG2)

e Severe accident frequency: The expected
value for the frequency of a severe accident
will be less than 1 x 107 yr™. (QRG1)

e Conditional probability of containment fail-
ure: The expected value for the probability
of containment failure given the occurrence
of a severe accident will be less than 0.1. (QRG2)

e Large release frequency: The expected val-
ue for the frequency of a large release will
be less than 1 x 107° yr™. (QRG3)

The two safety goals stated in (SG1) and (SG2) and
the three quantitative risk goals stated in (QRG1) —
(QRG3) involve requirements and analyses similar to
requirements and analyses that will be encountered in
QMU applications for weapons systems. Specifically,
each goal specifies a desired bound on a specific quan-
tity. Further, the analysis for each goal involves both
aleatory uncertainty and epistemic uncertainty, with
aleatory uncertainty arising from the many possible
accidents that could, but probably will not, occur at a



particular nuclear power plant and epistemic uncer-
tainty arising from the many imprecisely known quanti-
ties required in a PRA for a nuclear power plant.

Because the goals in (SG1) — (QRG3) involve both
aleatory uncertainty and epistemic uncertainty, their
evaluation is underlain by two probability spaces: a
probability space (A, A, pa) for aleatory uncertainty
and a probability space (&, E, pg) for epistemic uncer-

tainty.

The probability space (€, E, pg) for epistemic un-
certainty involves nE = 130 variables (Ref. [117], Ta-
bles 2.2-9, 2.2-10, 2.3-2 and 3.2-1). Thus, each element
e of £is a vector of the form

e=[e, e, ... |=[er e, ... 05 (6.1)
Examples of variables that constitute elements of e are
presented in Table 8 of Ref. [118]. With respect to no-
tation, the set £ corresponds to the set Q2 in Ref. [118],
and the vector e = [eq, e,, ..., e,g] corresponds to the
vector X = [Xq, Xo, ..., Xpy] in Ref. [118].

The probability space (&, E, pg) was developed
through an extensive expert review process that con-
structed a distribution D;, i = 1, 2, ..., nE = 130, for
each element e; of e [97; 133-140]. The review process
used to define the distributions Dy, Dy, ..., D3¢ and
thus the probability space (&, E, pg) provides an exam-
ple and model of how the characterization of epistemic
uncertainty could be carried out in support of QMU.

The probability space (A, A, pa) characterizes the
universe of possible accidents at the nuclear power sta-
tion under consideration. When viewed at a high level,
each element a of A is a vector of the form

a:[IE, AS, PDS, APB, STG,WT], (6.2)

where
IE = designator for initiating event (see Eq.

(17), Table 1, and associated discussion in

Sect. 3 of Ref. [118]),

designator for accident sequence (see Eq.

(18), Table 3, and associated discussion in

Sect. 3 of Ref. [118]),

designator for plant damage state (see Eqg.

(33), Tables 4 and 5, and associated dis-
cussion in Sect. 4 of Ref. [118]),

AS

PDS
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APB

designator for accident progression bin
(see Egs. (37) and (38), Table 6, and asso-
ciated discussion in Sect. 4 of Ref. [118]),
designator for source term group (see Eqg.
(53) and associated discussion in Ref.
[118]),

designator for weather type (see discus-
sion in Sect. 6 of Ref. [118]).

STG

WT

The analysis reported in Ref. [118] involves (i) nlE =
11 initiating events (Table 1, Ref. [118]), (ii) nAS = 28
accident sequences (Table 3, Ref. [118]), (iii) nPDS =
25 plant damage states that were then reduced to nPDS
= 7 plant damage states for the final analysis (Tables 4
and 5, Ref. [118]), (iv) nAPB = 54 to nAPB = 157 acci-
dent progression bins, with the exact number depending
on values assigned to epistemically uncertain quantities
and a total of 1906 unique accident progression bins
considered in the entire analysis (Table 6, Ref. [118]),
(v) nSTG = 54 source term groups (Sect. 5, Ref. [118]),
and (vi) nWT = 2560 weather types (Sect. 6, Ref.
[118]). However, not all combinations of initiating
event, accident sequence, plant damage state, accident
progression bin, source term group, and weather type
are possible.

As summarized in Ref. [118] and presented in
more detail in the reports cited in Ref. [11], extensive
use of fault trees, event trees, and other analysis proce-
dures are used to arrive at the actual combinations of
the elements of a that are meaningful and also to de-
termine their probabilities. Formally, the analysis can
be represented by a sequence of matrix multiplications
but it is important to realize that a large amount of
analysis and modeling underlies the determination of
the transition probabilities that constitute the elements
of the matrices involved in the indicated multiplica-
tions. The results presented in this section provide an
example of an actual implementation of the analysis
approach summarized in App. A of Ref. [77].

The analysis documentation summarized in Ref.
[118] never specifically refers to a probability space for
aleatory uncertainty. However, such a probability
space is clearly being defined by the specification of
frequencies for initiating events and then conditional
probabilities for transitions from initiating events to
accident sequences to plant damage states to accident
progression bins to source term groups to weather con-
ditions. In essence, these transition probabilities define
probabilities for vectors of the form indicated in Eq.
(6.2) and thus provide a discretized approximation to
the probability space (A, A, pa). Technically, the vec-
tors in Eq. (6.2) are actually designators for sets of



similar accidents rather than descriptions for single
unique accidents; this point is made because a single
accident described in full and complete detail would
have a probability of zero. A purist would point out
that the analysis is starting with frequencies rather than
probabilities for initiating events; however, the conver-
sion from frequencies to probabilities is straightforward
and, for practical purposes, there is no meaningful dif-
ference between a small annual frequency and a small
annual probability.

The safety goals indicated in (SG1) — QRG3) can
be represented by the vector

G =[SGL, SG2, QRGL QRG2, QRG3 |

- [5x10*7 yr ! 2x1078 yr L, (6.3)

1x107 yrt,0.1,1x10°° yrﬂ.

Similarly, the estimated performance of a nuclear pow-
er station can be represented by the vector
P:[pSGl, pSG2, pQRGI, pQRG2, pQRG3], (6.4)
where pSG1, pSG2, pQRG1, pQRG2 and pQRG3 are
the performance values calculated for comparison with
the corresponding elements of G. The quantities pSG1,
pSG2, pQRG1 and pQRG3 are frequencies that derive
from aleatory uncertainty, and the quantity pQRG2 is a
conditional probability that derives from aleatory uncer-
tainty. As a result, the determination of pSG1, pSG2,
PQRG1, pQRG2 and pQRG3 involves the evaluation of
integrals involving the probability space (A, A, pp) for
aleatory uncertainty. The evaluation of these integrals
is a complex process and in most PRAs is performed
with algorithms that rely heavily on fault trees, event
trees, selective mechanistic modeling of physical proc-
esses, and extensive use of interpolation procedures to
estimate the behavior of unmodeled physical condi-
tions. For the Surry analysis, the process used to arrive
at values for the elements of P is summarized in Ref.
[118] and described in more detail in the technical re-
ports cited in Ref. [11].

If the probability space (A, A, pa) was known pre-
cisely and all additional quantities required in the eval-
uation of P were also known precisely, then the associ-
ated vector M of margins would be unambiguously de-
fined by
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M=G-P -
=[mSG1, mSG2, MQRGL, mQRG2, mQRG3], (6.5)
where
mSG1 = 5x 107 yr'—pSGi,
mSG2 = 2x 107" yr'—pSG2,
mMQRG1 = 1x10™*yr* - pQRG1,
mQRG2 = 0.1 - pQRG2,
mMQRG3 = 1x10°yr* - pQRG3.

However, (A, A, pp) and additional quantities required
in the evaluation of P are not known precisely in the
example under consideration nor are they likely to be
known precisely in any real analysis of a complex sys-
tem. Rather, P is actually a function

P(e)=[ pSGl(e), psG2(e), pQRGI(e),

(6.6)
PQRG2(e), pPQRG3(e) |

of vectors e € & where (& E, pg) is the probability
space for epistemic uncertainty. As a result, the vector
M of margins has the form
M(e)=G-P(e)
=[ mSG1(e), msG2(e), mQRG(e),
MQRG2(e), MQRG3(e)]

(6.7)

and is thus epistemically uncertain with its elements
having distributions that derive from the probability
space (&, E, pg) for epistemic uncertainty.

As stated, the safety goals in (SG1) — (QRG3) in-
volve comparisons with expected results, where the
indicated expectations are over epistemic uncertainty.
Specifically, note where the modifier “expected” ap-
pears in (SG1) — (QRG3). Thus, a literal reading of
(SG1) - (QRG3) implies that

Ee {P(e)} =[ Ee {pSGL(e)}, Ee {psG2(e)},
Ee { PQRGL(e)}, E¢ { PQRG2(e)} (6.8)
Ee {PQRG3(e)} |

is to be used in comparisons with the specified goals,
where

Eg {pSGL(e)} = [, pSGL(e) de (e)dE,



dg(e) is the density function associated with the prob-
ability space (&, E, pg) for epistemic uncertainty, and
the remaining elements of Eg{P(e)} are defined simi-
larly to Eg{pSGL(e)}. In the example of Ref. [118],

B {P(e)} =[16x10® yr ! 1.7x10° yr Y,

(6.9)
4.1x1075 yr,0.19,1.5x1077 yrﬂ,
and, in turn, the resultant margins are
G-Eg [P(e)) = [4.8><10‘7 yrt,2.0x1078 yr L,
(6.10)

5.9x107° yrt, ~0.09,8.5x10~" yr‘l].

However, this approach is not consistent with the basic
premises of QMU as the epistemic uncertainty in the
margins is suppressed in the calculation of expected
values.

Fortunately, the analyses presented in Ref. [118]
use a sampling-based approach to the propagation of
epistemic uncertainty. Specifically, an LHS
€ :[eil, TP ei'nE], i=12,...,nLHS, (6.11)
of size nLHS = 200 from the nE = 130 uncertain vari-
ables under consideration is used in the generation of

the expected results in Eqg. (6.8). This procedure re-
sulted in the estimation of

P(ej)=[ pSGi(ej), pSG2(e;), PQRGL(e;),

(6.12)
PQRG2(e;), pQRG3(e; ) |

fori=1, 2, ..., nLHS = 200, and in turn allows estima-
tion of the margins

M(ei):G—P(ei)
= [mSGl(ei ), mSG2(ej), mQRG1(e;), (6.13)
MQRG2(e;), MQRG3(e;) |
fori=1, 2, ..., nLHS = 200. As a result, the informa-

tion needed for a QMU-type analysis of margins is pre-
sent.

A sample of size nLHS = 200 from nE = 130 un-
certain variables may seem too small to be effective.
However, replicated sampling was used to establish that
this sample size was adequate to obtain stable uncer-
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tainty and sensitivity results in the Surry analysis [141].
In general, there is a tendency to overestimate the sam-
ple size needed to obtain an adequate representation and
assessment of the implications of epistemic uncertainty
[54; 141-143].

The individual requirements specified in (SG1) —
(QRG3) and the uncertainty in the margins associated
with these goals are now considered.

Safety Goal SG1. Safety goal SG1 specifies that
individual early fatality risk in the region between the
plant site boundary and 1609.3 m (1 mi) beyond this
boundary will be less than SG1 =5 x 107 yr-1, Indi-
vidual early fatality risk is obtained by first calculating
an exceedance frequency curve for early fatality prob-
ability for each of the nLHS = 200 LHS elements (Fig.
6.1). In turn, each exceedance frequency curve is re-
duced to an estimate pSG1(e;) for early fatality risk
(Fig. 6.2).

Conceptually although not in direct computational
implementation, the individual exceedance frequency
curves in Fig. 6.1 and the early fatality risk results in
Fig. 6.2 are defined by integrals involving the probabil-
ity space (A, A, pp) for aleatory uncertainty, with (A,
A, pp) and other epistemically uncertain quantities
changing for each LHS element e; (see Sect. 3.5). In
effect, each CCDF in Fig. 6.1 is reduced to an expected
value (i.e., pSG1(ej)), with the resultant 200 expected
values and their associated epistemic uncertainty sum-
marized in Fig. 6.2. The values for pSG1(e;) in Fig. 6.2
are summarized with a CCDF rather than a CDF be-
cause use of a CCDF permits a direct reading from the
ordinate of the exceedance probabilities for large values
for pSG1, which are the results of greatest interest in
comparisons with safety goal SG1.

Margins associated with safety goal SG1 are now
given by
mSG1(e;j) = SG1- pSG1(e;)

(6.14)
=5x107" yri- pSG1(ej)

fori=1,2,...,nLHS = 200 (Fig. 6.3a). Similarly, nor-
malized margins for safety goal SG1 are given by

nSGi(ej)=[ SG1- pSGi(e;)]/sG1
= [5><10_7 yr*— pSGl(e; )}/5><10_7 yrt
(6.15)
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tors at Surry.

fori=1,2, ..., nLHS = 200 (Fig. 6.3b). The values for
the margins in Fig. 6.3 are summarized with CDFs rather
than CCDFs because use of a CDF permits a direct read-
ing from the ordinate of the probabilities associated with
small margins, which are the margin results of greater
interest in comparisons with safety goal SG1.
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As indicated in Eqgs. (6.14) and (6.15), the margin
results in Fig. 6.3 are obtained by simple translations
and normalizations of the values for pSG1(e;) in Fig.
6.2. Thus, Figs. 6.2 and 6.3 effectively contain the
same information. Specifically, given the value for
SG1, the results in any one of the three plot frames in
Figs. 6.2 and 6.3 can be used to generate the results in
the other two plot frames. The results in Fig. 6.3 pro-
vide a direct representation of the uncertainty in the
margin associated with safety goal SG1. However, in
the view of the author, the summary in Fig. 6.2 pro-
vides a more readily interpretable representation for the
relationships involved in assessing compliance with
safety goal SG1 than the margin plots in Fig. 6.3. Spe-
cifically, inspection of Fig. 6.2 provides immediate
information on the uncertainty in pSG1, the relationship
of pSG1 to SG1, and the differences (i.e., margins) be-
tween SG1 and pSG1. In contrast, the actual values for
SG1 and pSG1 are not readily apparent in the margin
results in Fig. 6.3; as a consequence, the results in Fig.
6.2 are more informative with respect to system per-
formance than the results in Fig. 6.3.

The CDF in Fig. 6.2 provides a complete summary
of the uncertainty in the margin associated with safety
goal SG1 under the assumption that the analysis was
performed without serious implementation or sampling
errors (see discussion of verification and validation in
Sect. 3.8). If desired, single number summaries of the
results in Figs. 6.2 and 6.3 in the spirit of “mar-
gin/uncertainty” can be defined. Examples include

MSGlyy, /(MSGly, —MSGlg o5 )
=4.84x107" (4.84x10‘7 —4.61x10_7) (6.16)
=21.0,

mSGly 5 /(mSGly 5 —mSGly g5 )

= 4.99x1077 (4.99><10_7 - 4.61x10—7) (6.17)

=131,
MSGly, /(MSGLyy — MSGlyiy )
— 4.84x1077 [4.84><10_7 ~(~1.50x10”7 )} (6.18)
=0.76,
and
mSGly 5 /(MSGly 5 — MSGlyiy )
=4.99x107" / [4.99x10*7 —(—1.50x10*7 )} (6.19)

=0.77,
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Fig. 6.3. Estimated CDFs for margins associated with safety goal SG1 for annual individual early fatality risk with-
in 1 mile of the site boundary due to accidents resulting from internal initiators at Surry: (a) margin mSG1
(see Eq. (6.14)), and (b) normalized margin nSG1 (see Eq. (6.15)).

where
mSG1,,, = mean value for mSG1(e) estimated from
CCDF inFig. 6.34a,
mSG1l, = quantile for g = 0.00, 0.05 and 0.5 for
mSG1(e) estimated from CDF in Fig.
6.3a,
mSG1,i, = minimum value for mSG1(e) in Fig. 6.3a

(i.e., mSG1 for g = 0.00).

However, a significant amount of information is lost in
“margin/uncertainty” summaries of the form shown in
Egs. (6.16) — (6.19). Specifically, the single number
summaries in Eqgs. (6.16) — (6.19) are the result of re-
ducing all the information in Fig. 6.1 to one number
(see Sect. 4.5 for additional discussion).

As displayed, the “margin/uncertainty” results in
Egs. (6.16) — (6.19) are calculated directly from the mar-
gin results displayed in Fig. 6.3a. The same results can
also be calculated directly from the results displayed in
Fig. 6.2. Specifically,

MSGLyy /(MSGLy, ~MSGly gs)
SG1- pSGlyy
"~ (SG1- pSGlyy )—(SG1- pSGly.gs )

(SG1- pSGlyy )/(PSGlo.g5 — PSGly )
(5><10_7 1. 63><10_8)/(3.89><10_8 —1.63><10_8)

(6.20)
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mSGly 5 /(MSGly 5 —MSGly o5 )
SG1- pSGlys

" (SG1- pSGlys )~ (SG1— pSGly g5 )
(SGL-pSGlys )/( PSGly g5 — PSGlys)

(5><10_7 -8. 64x10_10)/(3.89x10_8 —8.64><10_10)
~13.1,

(6.21)

MSGlyy, /(MSGly, —MSGlyin )

SG1- pSGlpy,
(SGl— PSGly, ) —(SG1— pSGlyy )
(SG1- pSGlyy )/( PSGling — PSGlyy )

(5><10 7 _1.63x1078 )/(6.50x10*7 —1.63x10*8)
(6.22)

and

mSGly 5 /(MSGly 5 — MSGlyin )
SG1- pSGlys
~ (SG1- pSGlys )~ (SGL— pSGlyy )

(SG1- pSGly5)/( PSGlyy — PSGly 5 )
(5><10 7 _g. 64><10_1O)/(6.50><10_7 —8.64x10‘1°)
(6.23)

where
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Fig. 6.5. Estimated CCDF for annual individual latent
cancer fatality risk within 10 miles of the site
boundary due to accidents resulting from in-
ternal initiators at Surry.

pSGl,,, = mean value for pSG1(e) estimated from
CCDFinFig. 6.2,
pSGly = quantile for g = 0.5, 0.95 and 1.00 for

pSG1(e) estimated from CCDF in Fig.
6.2,

pSGl,, = maximum value for pSG1(e) in Fig. 6.2
(i.e., pSG1 for g =1.00),

and the remaining symbols in Egs. (6.20) — (6.23) are
defined the same as in conjunction with Egs. (6.16)
—(6.19). As a reminder, the quantiles pSG1, for g =
0.5, 0.95 and 1.00 correspond to exceedance probabili-
ties of 0.5, 0.05 and 0.00 for pSG1(e) in Fig. 6.2.

Safety Goal SG2. Safety goal SG2 specifies that
individual latent cancer fatality risk in the region be-
tween the plant site boundary and 16,093 m (10 mi)
beyond this boundary will be less than SG2 = 2 x 106
yr-1. Similarly to individual early risk, individual la-
tent cancer fatality risk is obtained by first calculating
an exceedance frequency curve for latent cancer fatality
probability for each of the nLHS = 200 LHS elements
(Fig. 6.4) and then reducing each exceedance frequency
to an estimate pSG2(e;) for latent cancer fatality risk
(Fig. 6.5).

Margins and normalized margins associated with
safety goal SG2 are now given by
mSG2(e;j)=SG2- pSG2(e;)

(6.24)
=2x10°yr ! - psG2(e;)

and
nSG2(e;)=[SG2- psG2(e;)]/sG2
- [2><10‘6 yrt— pSG2(e; )J/leO‘6 yr 1,
(6.25)
respectively, fori=1, 2, ..., nLHS = 200 (Fig. 6.6).

As discussed in conjunction with Eqgs. (6.16) —
(6.23), the results in Figs. 6.5 and 6.6 can be reduced to
single number summaries of the “margin/uncertainty”
form. As for safety goal SG1, examples include
MSG 2y, /(MSG 2, —MSG2q g5)

~1.9983x107°/(1.9983x10°° ~1.9921x10°°)
=3223,
(6.26)
MSG2y5/(MSG2y5 —MSG2q g5 )
~1.9995x10°°/(1.9995x10°° ~1.9921x10°¢

=270.2,
(6.27)
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ternal initiators at Surry.

MSG 2y /(MSG 2, —MSG2i )
~1.9983x10°° (1.9983><1o*6 —1.9521><10*6)
— 43.25,

(6.28)

and
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mSG2y5/(MSG2 5 — MSG2ip )
~1.9995x1078 (1.9995><10_6 —1.9521x10_6)

=42.18,
(6.29)

with mSG2y,,, mSG2, and mSG2y, defined similarly to
mSGly,, MSGLy and mSGly, in conjunction with Egs.
(6.16) — (6.19).

Quantitative Risk Goal QRG1. Quantitative risk
goal QRG1 specifies that the frequency of a severe ac-
cident will be less than 104 yr-1. For this example, a
severe accident is assumed to be an accident that results
in core damage. Each of the nLHS = 200 LHS elements
results in an estimate pQRG1(e;) for the frequency of a
severe accident (Fig. 6.7). As for safety goals SG1 and
SG2, the severe accident frequencies summarized in
Fig. 6.7 are defined in concept, although not in direct
computational implementation, by integrals involving
the probability space (A, A, pa) for aleatory uncer-
tainty, with (A, A, pa) and other epistemically uncer-
tain quantities changing for each LHS element e;.

Margins and normalized margins associated with
QRG1 are now given by

MQRGL(e; ) = QRGL- pQRGL(e;)

6.30
=10"yr ™~ pQRG1(e;) (6.50)
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Eqg. (6.27)).
and

NQRGL(e; ) =[ QRG1- pQRGI(e; ) ] /QRG1
= [10‘4 yr ! — pQRG1(e; )} / 1074yr 1,
(6.31)
respectively, fori=1, 2, ..., nLHS = 200 (Fig. 6.8).

As discussed in conjunction with Egs. (6.16) —
(6.23), the results in Figs. 6.7 and 6.8 can be reduced to
single number summaries of the “margin/uncertainty”
form. As for safety goal SG1, examples include

MQRGLy,, /(MQRGLy, ~MQRGL g5 )

=5.94x107° (5.94x10_5—3.28x10_7) (6.32)
=1.01,

MQRG1y 5 /(MQRG1y 5 - MQRG1y 5)
—7.46x107° (7.46x10*5—3.28x10*7) (6.33)

=1.00,

MQRGLy, /(MQRGLy, —MQRGLyir )
_ 5.94><10_5/ [5.94><10_5 ~(-820x107 )} (6.34)
=0.068,

and
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MQRG1 5 /(MQRG1y 5 - MQRGLyip )
— 7.46x107° [7.46 x107° —(-8.20x107* )} (6.35)
—0.083

with MQRG1y,,, MQRG1, and MQRG1y,, defined simi-
lary to mSG1ly,, mSGl, and mSGly, in conjunction
with Egs. (6.16) — (6.19).

Quantitative Risk Goal QRG2. Quantitative risk
goal QRG2 specifies that the probability of containment
failure given the occurrence of a severe accident will be
less than 0.1. For this risk goal, an exact definition for
containment failure has not been specified. Thus, it is
the responsibility of the individuals (i.e., analysts)
charged with carrying out the analysis to formulate this
definition. This is certainly a situation that could occur
in QMU analyses for weapons systems when all aspects
of a requirement have not been fully and unambigu-
ously specified. Further, given that risk goal QRG2
places a bound on the conditional probability of an un-
desirable event given a particular type of accident, this
goal is identical in concept to the Walske criterion
[144] for accidents involving nuclear weapons (i.e., the
requirement that the probability of inadvertent detona-
tion conditional on the occurrence of a credible accident
is to be less than 10-5).
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Fig. 6.9. Estimated CCDFs for conditional probability
of containment failure given a severe accident
resulting from internal initiators at Surry (see
Egs. (6.39) and (6.40)).

For the analyses presented in Ref. [118], three pos-
sible sets of accidents are proposed for use in the
evaluation of quantitative risk goal QRG2:

S, ={a: a involves core damage and the
containment fails (by a leak, rupture

or catastrophic rupture) or a contain- (6.36)
ment bypass occurs or a steam
generator tube rupture occurs}.
S, ={a: a involves core damage and the
containment fails by rupture or (6.37)

catastrophic rupture}.
and

S; ={a: a involves vessel failure and the containment
fails by rupture or catastrophic rupture}.

(6.38)

The following ordering exists: S; < S, < S;. Further,
in the Surry analysis in use as an example, the equality
S3 = S, was found to exist (i.e., rupture and catastro-
phic rupture of the containment only occurred in con-
junction with vessel failure).

Given the preceding sets involving core damage
and containment failure, possible definitions for the
conditional probabilities specified in risk goal QRG2
are

PQRGZ = pa(Sc)/pa(S) (6.39)
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fork=1, 2, 3, where
S ={a:a involves core damage}.

In practice, the sets Sy, S,, S3, S and also their prob-
abilities depend on values for uncertain variables con-
tained in e. As a result, the equality in Eq. (6.39) is
more appropriately written as

PQRG2 (€)= palSc(e)]/pa[S(e)] (6.40)
to emphasize the dependence on e. In concept, pa[Sk
(e)] and pp[S(e)] are defined by complex integrals in-
volving the probability space (A, A, pp) for aleatory
uncertainty and a large amount of underlying analysis.
In the analysis being used as example, the discretization
procedure summarized in conjunction with Eq. (43) of
Ref. [118] is used in the evaluation of pa[S(e)] and
hence pQRG2,(e).

Each of the nLHS = 200 LHS elements results in
estimates pQRG2,(e;), k = 1, 2, 3, for the conditional
probability of containment failure given core damage
(Fig. 6.9).

In turn, margins and normalized margins associated
with QRG2 are given by

MQRG2, (€)= QRG2~ pQRG2y (&;)

(6.41)
=0.1- pQRGZk (ei )

and

NQRG2y (e;)=[ QRG2- pQRG2 (e;)]/QRG2
=[0.1- pQRG2y (ej)]/0.1 (6.42)

respectively, fori=1, 2, ..., nLHS = 200 (Fig. 6.10).

As discussed in Ref. [118], an alternate and possi-
bly more appropriate definition for the conditional
probability associated with QRG2 is

PQRG2 (e)=pa[SC(e)]/pPa[SC(e)].  (643)

where

SC(e)={a:a involves vessel breach}
and

SC(e)=S (e)nSC(e)
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Fig. 6.11. Estimated CCDFs for conditional probability
of containment failure given a severe accident
with vessel breach resulting from internal ini-
tiators at Surry (see Eqg. (6.43)).

for k =1, 2, 3. This results in QRG2 being a more de-
manding requirement because the required probability
is now conditional on a more severe accident (i.e., an
accident involving vessel breach rather than core dam-
age), which in turn tends to raise the value for this
probability. In the analysis being used as an example,
the discretization procedure summarized in conjunction
with Eq. (48) of Ref. [118] is used in the evaluation of
PALSC(€)], palSC(e)] and hence pQRG2,(e) as defined
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in Eq. (6.43). The resultant conditional probabilities and
margins for the nLHS = 200 LHS elements are summa-
rized in Figs. 6.11 and 6.12, respectively.

Although not presented, various results in the form
of “margin/uncertainty” can also be calculated for the
indicated variants of quantitative risk goal QRG2 as
shown in Egs. (6.16) — (6.23).

Note: The results in Figs. 6.9 — 6.12 were calcu-
lated from original Surry results saved in Ref. [145].
The results in Figs. 6.9 and 6.11 differ from what
should be corresponding results in Figs. 6 and 7 of Ref.
[118]. Checking has not revealed any errors in the gen-
eration of Figs. 6.9 and 6.11; unfortunately, the pro-
gram used to generate Figs. 6 and 7 of Ref. [118] is no
longer available. Given that all other figures Sect. 6.1
were also generated directly from original results con-
tained in Ref. [145] and are the same as corresponding
results contained in Ref. [118], it is felt that the results
in Figs. 6.9 and 6.11 are correct.

Quantitative Risk Goal QRG3. Quantitative risk
goal QRG3 specifies that the frequency of a large re-
lease will be less than 106 yr-1. The guidance associ-
ated with risk goal QRG3 defines a large release as a
release that has the potential to cause an early fatality,
although the word “potential” is not defined. Thus, a
decision must be made as to exactly what constitutes
the potential to cause an early fatality. The analysis
reported in Ref. [118] considers exceedance frequencies
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Fig. 6.13. Exceedance frequency curves for early fatali-
ties due to accidents resulting from internal
initiators at Surry (Ref. [117], Fig. D.1). Each
curve corresponds to one sample element.

(i.e., annual probabilities of exceeding) for three num-
bers of early fatalities as possible threshold levels for
“potential” to cause an early fatality. These early fatal-
ity members are 0.01, 0.1 and 1. Values less than 1 early
fatality result because low levels of radiation have a
probability of causing an early fatality that is considera-
bly less than 1 and also because most of the potentially-
exposed population (i.e., 99.5%) is assumed to evacuate.
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The initial step in obtaining results for comparison
with risk goal QRG3 is to determine the exceedance
frequency curves for number of early fatalities, with
one exceedance frequency curve resulting for each of
the nLHS = 200 LHS sample elements e;. The result of
this calculation is summarized in Fig. 6.13. Specifi-
cally, each curve in Fig. 6.13 is conditional on the value
for epistemically uncertain variables contained in an
LHS element e; and defines the frequencies of exceed-
ing different numbers of early fatalities. The construc-
tion of the exceedance frequency curves in Fig. 6.13 is
summarized in Ref. [118].

Early fatality levels of 0.01, 0.1 and 1 have been
posited as possibly appropriate values for correspon-
dence with “potential” to cause an early fatality. In the
following, pQRG34(e), pQRG3,(e) and pQRG35(e) are
used to represent the frequency (yr—1) of exceeding ear-
ly fatality values of 0.01, 0.1 and 1, respectively, condi-
tional on the values for epistemically uncertain analysis
inputs contained in e. For the LHS of size nLHS = 200
under consideration, each LHS element e; results in
values for pQRG3(e;), pPQRG3,(e;) and pQRG35(e)).
These values correspond to the exceedance frequencies
on the ordinate of Fig. 6.13 associated with the vertical
lines originating at 0.01, 0.1 and 1 on the abscissa. The
resultant estimated CCDFs for pQRG3,(e), k = 1, 2, 3,
are presented in Fig. 6.14.
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at Surry.

In turn, margins associated with the three possible
definitions of “potential” to cause an early fatality in
QRG3 are given by

MQRG3, (ej) = QRG3- pQRG3, (e;)

(6.44)
=107 yr'' - pQRG3, (e;)

and

NQRG3y (&) =[ QRG3- pQRG3, (e; ) |/QRG3

=[107° yrt - pQRG3, (e)] /107 yrt,
(6.45)

respectively, fori=1, 2, ..., nLHS = 200 (Fig. 6.15).

Although not shown, various results in the form of
“margin/uncertainty” can also be calculated for the in-
dicated variants of risk goal QRG3 as shown in Egs.
(6.16) — (6.23).

6.2 Regulatory Requirements for Waste
Isolation Pilot Plant (WIPP)

The Waste Isolation Pilot Plant (WIPP) in South-
eastern New Mexico has been developed by the DOE
for the geologic disposal of transuranic (TRU) waste
generated at government defense installations in the
United States. For the WIPP to be certified for opera-
tion, the DOE had to establish that the WIPP met regu-
latory standards promulgated by the EPA. Like the
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NRC’s safety goals for nuclear power stations dis-
cussed in Sect. 6.1, the EPA’s standards for the WIPP
have aspects that are very similar to what might be ex-
pected in a QMU analysis that involves the incorpora-
tion and representation of the effects of aleatory and
epistemic uncertainty. As a result, the EPA’s standards
for the WIPP provide another example of the ideas and
challenges that are likely to be encountered in a non-
trivial application of QMU. Specifically, results from
the performance assessment (PA) that supported the
successful Compliance Certification Application (CCA)
for WIPP to the EPA [20] are used as another example
to illustrate what a QMU analysis involving both alea-
tory and epistemic uncertainty is likely to involve.

An article summarizing the PA that supported the
CCA for WIPP [146] is reproduced in App. D and will
be referred to in the following discussion as a conven-
ient and accessible source of additional information on
this analysis. Inclusion of this article in App. D makes
it possible to have a moderately detailed description of
the analysis under consideration as part of this report.
More detailed analysis descriptions are available in
Refs. [20; 21] and in a number of additional detailed
technical reports cited in the two preceding references.

The conceptual structure of the 1996 WIPP PA ul-
timately derives from the regulatory requirements im-
posed on this facility [147; 148]. The primary regula-
tion determining this structure is the EPA’s standard for
the geologic disposal of radioactive waste (40 CFR
191) [148; 149], which is divided into three parts. Sub-
part A applies to a disposal facility prior to decommis-
sioning and limits annual radiation doses to members of
the public from waste management and storage opera-
tions. Subpart B applies after decommissioning and
sets probabilistic limits on cumulative releases of ra-
dionuclides to the accessible environment for 10,000
years (40 CFR 191.13) and assurance requirements to
provide confidence that 40 CFR 191.13 will be met (40
CFR 191.14). Subpart B also sets limits on radiation
doses to members of the public in the accessible envi-
ronment for 10,000 years of undisturbed performance
(40 CFR 191.15). Subpart C limits radioactive con-
tamination of certain sources of groundwater for 10,000
years after disposal (40 CFR 191.24). Subparts A, B
and C all have requirements that could be used as illus-
trations of QMU-type analyses. This presentation uses
the Subpart B release requirements for illustration ow-
ing to the fundamental role that these requirements
played in the design and implementation of the analyses
that supported the WIPP’s CCA.
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implementing agency, that compliance with
191.13(a) will be achieved.

The following is the central requirement in 40 CFR
191, Subpart B, and the primary determinant of the
conceptual structure of the 1996 WIPP PA (Ref. [150],

p. 38086):

8§ 191.13 Containment requirements:

(a) Disposal systems for spent nuclear fuel
or high-level or transuranic radioactive wastes
shall be designed to provide a reasonable
expectation, based upon performance assess-
ments, that cumulative releases of radionu-
clides to the accessible environment for 10,000
years after disposal from all significant
processes and events that may affect the
disposal system shall: (1) Have a likelihood of
less than one chance in 10 of exceeding the
quantities calculated according to Table 1
(Appendix A); and (2) Have a likelihood of
less than one chance in 1,000 of exceeding ten
times the quantities calculated according to
Table 1 (Appendix A).

(b) Performance assessments need not
provide complete assurance that the
requirements of 191.13(a) will be met.
Because of the long time period involved and
the nature of the events and processes of
interest, there will inevitably be substantial
uncertainties in projecting disposal system
performance. Proof of the future performance
of a disposal system is not to be had in the
ordinary sense of the word in situations that
deal with much shorter time frames. Instead,
what is required is a reasonable expectation,
on the basis of the record before the
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Containment Requirement 191.13(a) refers to
“guantities calculated according to Table 1 (App. A),”
which means a normalized radionuclide release to the
accessible environment based on the type of waste be-
ing disposed of, the initial waste inventory, and the re-
lease that takes place (Ref. [150], Appendix A). The
indicated table specifies allowable releases (i.e., release
limits) for individual radionuclides and is reproduced as
Table | of Ref. [146]. The WIPP is intended for TRU
waste, which is defined to be “waste containing more
than 100 nanocuries of alpha-emitting transuranic iso-
topes, with half-lives greater than twenty years, per
gram of waste” (Ref. [150], p. 38084). The normalized
release R for transuranic waste is defined by

R=3(Q/L )(1x10° Ci/c), (6.46)

where Q; is the cumulative release of radionuclide i to
the accessible environment during the 10,000-year pe-
riod following closure of the repository (Ci), L; is the
release limit for a radionuclide i given in Table | of Ref.
[146] (Ci), 1 x 10° Ci is a normalization term, and C is
the amount of transuranic waste emplaced in the reposi-
tory (Ci). The normalized release R is unitless as a re-
sult of the release limit being scaled by the inventory of
the repository; for convenience, R will be referred to as
being in “EPA units.” In the 1996 WIPP PA, C = 3.44
x 108 Ci [151].



A full reading of the explanatory material associ-
ated with “Table 1 (Appendix A)” of Ref. [150] estab-
lishes that the intent of the containment requirement in
191.13(a) is that the normalized release R defined in
Eq. (6.46) is to have a probability of less than 0.1 of
exceeding 1 and a probability of less than 103 of ex-
ceeding 10. Specifically, this component of the regula-
tory requirements placed on the WIPP can be summa-
rized as follows:

The probability of exceeding a normalized
release of size RL1 = 1 over 104 years must
be less than RP1 = 0.1 (RL2)
The probability of exceeding a normalized
release of size RL2 = 10 over 10% years must
be less than RP2 = 10-3. (RL2)

The EPA also promulgated 40 CFR 194 [152],
where the following elaboration on the intent of 40
CFR 191.13 is given (Ref. [152], pp. 5242-5243):

§ 194.34 Results of performance assessments.
(@) The results of performance assessments
shall be assembled into “complementary,
cumulative distribution functions” (CCDFs)
that represent the probability of exceeding
various levels of cumulative release caused by
all significant processes and events. (b)
Probability distributions for uncertain disposal
system parameter values used in performance
assessments  shall be developed and
documented in any compliance application. (c)
Computational  techniques, which  draw
random samples from across the entire range
of the probability distributions developed
pursuant to paragraph (b) of this section, shall
be used in generating CCDFs and shall be
documented in any compliance application. (d)
The number of CCDFs generated shall be
large enough such that, at cumulative releases
of 1 and 10, the maximum CCDF generated
exceeds the 99™ percentile of the population of
CCDFs with at least a 0.95 probability. (e)
Any compliance application shall display the
full range of CCDFs generated. (f) Any
compliance application shall provide informa-
tion which demonstrates that there is at least a
95 percent level of statistical confidence that
the mean of the population of CCDFs meet the
containment requirements of § 191.13 of this
chapter.

The requirements placed on PAs for the WIPP in
the quoted material from 191.13 and 194.34 clearly

indicate an analysis that involves the three basic entities
indicated in Sect. 3.2: EN1, a probability space (A, A,
pp) for aleatory uncertainty; EN2, a model for predict-
ing system behavior; and EN3, a probability space (&,
E, pg) for epistemic uncertainty. The CCDFs indicated
in 194.34 derive from aleatory uncertainty and define
the exceedance probabilities associated with normalized
releases of 1 and 10 in the containment requirements in
191.13(a). The determination of the releases them-
selves requires the extensive use of models for reposi-
tory behavior and the movement of radionuclides away
from the repository and ultimately to the accessible
environment. Statements in both 191.13(b) and 194.34
indicate the importance of an adequate treatment of
epistemic uncertainty. In particular, the statements in
194.34(b) — (f) all relate to various aspects of the treat-
ment of epistemic uncertainty in a PA for the WIPP.
With respect to terminology, the WIPP PA used the
terms stochastic and subjective for the now more wide-
ly used terms aleatory and epistemic, respectively.

An overview of the definition of the probability
space (A, A, pp) for aleatory uncertainty is given in
Sect. 4 of Ref. [146]. Specifically, the sample space A
is defined by

A ={a: a is a possible 10,000 year sequence (6.47)
of occurrences at the WIPP}. '
The development process for the WIPP PA identified
drilling for natural resources as the only disruption with
sufficient likelihood and consequence for inclusion in
the definition of EN1 (Ref. [146], Sect. 3; Ref. [20],
Appendix SCR). In addition, 40 CFR 194 specifies that
the possible occurrence of mining within the land with-
drawal boundary must be included in the analysis. The
preceding considerations led to the elements a of A
being vectors of the form

t2, |2, €, bZ’ Po,as,
2nd intrusion

a=[t,h,e,b, p.a,
1st intrusion

cor thylns €0, by Poy @p, tmin]:
nth intrusion

(6.48)

where n is the number of drilling intrusions, t; is the
time (years) of the ith intrusion, I; designates the loca-
tion of the it intrusion, e; designates the penetration of
an excavated or nonexcavated area by the ith intrusion,
b; designates whether or not the it intrusion penetrates
pressurized brine in the Castile Formation, p; designates
the plugging procedure used with the ith intrusion, a;
designates the type of waste penetrated by the ith intru-
sion, and t,;, is the time at which potash mining occurs



within the land withdrawal boundary. Additional in-
formation on the elements of a and their probabilistic
characterization is given in Table Il of Ref. [146] and
in Ref. [153].

The WIPP PA used a variety of mathematical
models and techniques in the determination of radionu-
clide releases to the accessible environment. A sum-
mary of these models and techniques is given in Sect. 5
of Ref. [146]. Additional information is available in
individual articles in a special journal issue devoted to
the WIPP PA in support of the CCA [21].

An overview of the definition of the probability
space (&, E, pg) for epistemic uncertainty is given in
Sect. 6 of Ref. [146]. Specifically, the sample space &£
is defined by

& ={e: e is possibly the correct vector

of parameter values to use in the WIPP (6.49)
PA models}.
The elements e of £ are vectors of the form
ez[el,ez,...,enE]Z[el,EZ,...,e57:|, (650)

where each of the nE = 57 elements of e is an epistemi-
cally uncertain input of the WIPP PA. Examples of the
elements of e are given in Table V of Ref. [146]. A full
listing of the elements of e and description of their
probabilistic characterization is given in Ref. [154]. In
the WIPP PA, all elements of e are quantities used in
models for physical processes. Thus, technically, (&, E,
pe) as defined for the WIPP PA corresponds to the pro-
bability space (EM, EM, pgyy) introduced in Sect. 3.2.

The regulatory requirements summarized in (RL1)
and (RL2) can be represented by the vector
R =[RL1, RL2]=[1,10], (6.51)
where RL1 and RL2 are the maximum acceptable nor-
malized releases over 104 years with exceedance prob-
abilities of 0.1 and 1073, respectively. Similarly, the
estimated performance of the WIPP can be represented
by the vector
P =[pRLL, pRL2], (6.52)
where pRL1 and pRL2 are the performance values cal-
culated for comparison with the corresponding elements

of R. The quantities pRL1 and pRL2 are quantile val-
ues that derive from aleatory uncertainty. Specifically,
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pRL1 is the normalized release associated with an ex-
ceedance probability of 0.1 and thus corresponds to the
0.9 quantile of the distribution of normalized releases,
and pRL2 is the normalized release associated with an
exceedance probability of 10-3 and thus corresponds to
the 0.999 quantile of the distribution of normalized re-
leases. The determination of pRL1 and pRL2 in effect
requires the solution of integral equations to determine
quantiles (see Sect. 3.5). As summarized in Sect. 9 of
Ref. [146] and described in more detail in Refs. [96;
153; 155-157], the WIPP PA uses a Monte Carlo pro-
cedure to construct the CCDF for normalized release
and thus, in effect, solve the integral equations that de-
fine pRL1 and pRL2.

If the probability space (A, A, pa) was known pre-
cisely and all additional quantities required in the eval-
uation of P were also known precisely, then the vector
M of margins would be unambiguously defined by

M = [mRLL, mRL2], (6.53)
where

mRL1 = RL1-pRL1=1-pRL1

mRL2 = RL2-pRL2 =10 — pRL2.

The WIPP PA did not consider any uncertainty in the
definition of the probability space (A, A, p,) for alea-
tory uncertainty but did consider the uncertainty associ-
ated with the modeling physical process in the determi-
nation of pRL1 and pRL2 (see Eg. (6.50)). As a result,
P is actually a function

P(e)=[ pRL1i(e), pRL2(e)] (6.54)

of vectors e € & where (& E, pg) is the probability
space for epistemic uncertainty. As a result the vector
M of margins has the form
M(e)=R-P(e)
=[1-pRL1(e),10- pRL2(e)]
=[mRL1(e), mRL2(e)]

(6.55)

and is thus epistemically uncertain with mRL1(e) and
mRL2(e) having distributions that derive from the
probability space (&, E, pg) for epistemic uncertainty.
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The WIPP PA used a sampling-based approach to
the propagation of epistemic uncertainty. Specifically,
an LHS
e = |:Ei1, €j2,..., ei’57], i=12,...,nLHS, (656)

of size nLHS = 100 from the nE = 57 uncertain vari-
ables under consideration was used in the generation of

83

CCDFs for normalized release. Further, the CCDF for
each sample element e; was generated with a random
sample of size 10,000 from the sample space A for
aleatory uncertainty. The result is the 100 CCDFs for
normalized release in Fig. 6.16.

To establish compliance with all the conditions
specified in 194.34, the WIPP PA actually used three
replicated (i.e., independently generated) LHSs of size
nLHS = 100, which resulted in a total sample size of
300 (see [158] and Sects. 6 and 7 of Ref. [154] for dis-
cussion). The indicated replicated samples were used to
establish the adequacy of an LHS of size 100 for the
generation of uncertainty and sensitivity analysis results
in the WIPP PA. The results used for illustration in this
presentation are for the first of the three replicated sam-
ples (i.e., the replicate designated R1 in the WIPP PA).

The normalized releases pRL1(e;) and pRL2(e;) that
result for the LHS in Eq. (6.56) correspond to the nor-
malized releases on the abscissa of Fig. 6.16 associated
with the locations where the individual CCDFs are
crossed by the two indicated horizontal lines (Fig. 6.17).

In turn, the corresponding margins mRL1(e;) and
mRL2(e;) are defined as indicated in Eq. (6.55) (Fig.
6.18). Normalized margins of the form

nRL1(e;)=mRL1(e;)/RL1=mRL1(e;)/1 (6.57)
and
nRL2(ej)=mRL2(e;)/RL2=mRL2(e;)/10  (6.58)

can also be defined but effectively replicate the results
in Fig. 6.18 as nRL1(e;) = mRL1(e;) and nRL2(g;) =
mRL1(e;)/10.

The estimated CCDFs and CDFs in Figs. 6.17 and
6.18 summarize all available information about the un-
certainty in margins associated with compliance with
the release requirements RL1 and RL2. Various results
in the form of “margin/uncertainty” can also be calcu-
lated for requirements RL1 and RL2 as indicated in
Egs. (6.16) — (6.23). For example, the following results
can be calculated for requirement RL1:

MRLL, /(MRLLy, —mMRLg g5 )
=0.9458/(0.9458 - 0.8741)
=132,

(6.59)
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MRLLy 5 /(MRLLys ~MRLIy o5)

=0.9553/(0.9553-0.8741) (6.60)
=118,

MRLLy, /(MRLLy,, —mRLL ;)
=0.9458/(0.9458 - 0.8005) (6.61)
=6.5,

and

mRL1y 5 /(MRL1y 5 — MRLLp;, )
=0.9553/(0.9553—0.8005) (6.62)

=6.2.

Similar results can also be obtained for requirement RL2.
However, information is lost in calculations of this type
as they in effect reduce all the information in Fig. 6.16 to
single numbers (see Sect. 4.5 for additional discussion).

If desired, the regulatory requirements RL1 and
RL2 can also be represented by the vector

R =[RPL RP2]=[0.1,107], (6.63)

where RP1 and RP2 are the maximum acceptable prob-
abilities for exceeding normalized releases of size 1 and
10, respectively. Similarly, the corresponding perform-
ance of the WIPP would be
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P =[pRPL, prRP2], (6.64)
where pRP1 and pRP2 are the performance values cal-
culated for comparison with the corresponding elements
of R. Specifically pRP1 and pRP2 would be the ex-
ceedance probabilities deriving from aleatory uncer-
tainty for normalized releases of size 1 and 10, respec-
tively. Corresponding margins would then be defined
by R — P. However, as essentially all values for pRP1
and pRP2 are zero in the present analysis as can be seen
from Fig. 6.16, this formulation of margins does not
result in a very interesting example.

The requirements in (RL1) and (RL2) in essence
specify a boundary line beneath which the CCDF for
normalized release is required to fall (Fig. 6.16). This
corresponds to what is known as the Farmer limit line
approach to the definition of acceptable risk [159-161].
This approach defines decreasing acceptable probabili-
ties of occurrence for undesired consequences of in-
creasing size. It is easy to envision that requirements of
this type could be present in future QMU analyses.

6.3 Regulatory Requirements for Yucca
Mountain Repository

The Yucca Mountain (YM) repository is under de-
velopment by the DOE for the geologic disposal of
high-level radioactive waste. For the YM repository to
be licensed for operation, the DOE must establish that
regulatory standards promulgated by the NRC are met.
Like the NRC’s safety goals for nuclear power stations
discussed in Sect. 6.1 and the EPA’s standards for the



WIPP discussed in Sect. 6.2, the NRC’s standards for
the YM repository have aspects that are very similar to
what might be expected in a QMU analysis. As a re-
sult, the NRC’s standards for the YM repository pro-
vide another example of the ideas and challenges that
are likely to be encountered in a nontrivial application
of QMU. Specifically, results from the PA that sup-
ported the 2008 license application to the NRC for the
YM repository [22] are used as an additional example
to illustrate a QMU analysis involving both aleatory
and epistemic uncertainty.

Three articles summarizing the PA that supported
the 2008 license application for the YM repository
[162-164] are reproduced in App. E and will be referred
to in the following discussion as convenient and acces-
sible sources of additional information on this analysis.
Inclusion of these articles in App. E makes it possible
to have a moderately detailed description of the analysis
under consideration as part of this report. More de-
tailed analysis descriptions are available in Ref. [22]
and in a number of additional detailed technical reports
cited in this reference.

The regulations that relate to the YM repository are
complex and specify a number of requirements that
must be met for the repository to be licensed [165;
166]. This presentation will use one aspect of these reg-
ulations as an example: the maximum expected dose
(mrem/yr) over 10* years to the reasonably maximally
exposed individual (RMEI). The RMEI is a hypotheti-
cal individual with well-defined and time-invariant cha-
racteristics who is assumed to be exposed to potential
radionuclide releases from the YM repository. For the
purposes of this presentation, the indicated expected
dose is assumed to be an expectation over aleatory un-
certainty at individual points in time. As such, this ex-
pected dose is a surrogate for cancer risk as multiplica-
tion by an appropriate scalar converts expected dose to
cancer risk.

The regulatory wording that defines the require-
ments with respect to expected dose to the RMEI is
spread over multiple locations (e.g., see Refs. [163;
167] and a more detailed discussion in App. J of Ref.
[22]). At the time of this writing, the most current NRC
requiements for the YM repository are given in Ref.
[168]. The following statement summarizes the re-
quirement on expected dose to the RMEI for the initial
104 year period after repository closure as interpreted
and implemented in the PA supporting the 2008 license
application for the YM repository:
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The maximum expected dose to the RMEI
over the first 104 years following repository
closure shall be less than 15 mrem/yr. (YM1)

Further, a number of statements made by the NRC
stress the importance of an appropriate representation
of epistemic uncertainty in analyses supporting a li-
cense application for the YM repository (e.g., see Refs.
[163; 167] and a more detailed discussion in App. J of
Ref. [22]).

The NRC has specified an expected dose require-
ment for the time interval following the 104 year time
period after repository closure and extending through
the period of geologic stability, with the period of geo-
logic stability assumed to end 108 years after repository
closure [168]. This requirement can be summarized as
follows:

The maximum expected dose to the RMEI
over the time interval [104, 106 yr] following
repository closure shall be less than 100
mrem/yr. (YM2)
However, as noted above, the emphasis of this presenta-
tion is on the 104 year requirement.

As in the examples in Sects. 6.1 and 6.2, an analy-
sis is under consideration that involves the three basic
entities indicated in Sect. 3.2: EN1, a probability space
(A, A, pp) for aleatory uncertainty; EN2, a model for
predicting dose to the RMEI; and EN3, a probability
space (&, E, pg) for epistemic uncertainty.

As already indicated, the expected dose to the
RMEI is an expectation over aleatory uncertainty.
Thus, there must be a probability space (A, A, pp) for
aleatory uncertainty. An overview of the definition of
(A, A, pp) is given in Sect. 11l of Ref. [163]. Concep-
tually, the sample space .4 for this probability space is

A ={a: aisapossible 10,000 year sequence of (6.65)
occurrences at the YM repository} '
when occurrences over the time interval [0, 104 yr] are
under consideration. Because of interest in results oc-
curring both before and after 104 years, the sample
space used in the 2008 YM PA to assess compliance
with the requirement in (YM1) was defined for the time
interval [0, 2 x 104 yr]; however, compliance with
(YM1) was assessed for the time interval [0, 104 yr] as
required.



After an extensive review and selection process
[22], the following conditions/occurrences related to
aleatory uncertainty were identified for inclusion in the
2008 YM PA: nominal (i.e., undisturbed) conditions,
early waste package (WP) failure, early drip shield
(DS) failure, igneous intrusive events, igneous eruptive
events, seismic ground motion events, and seismic fault
displacement events. Consistent with this, each alea-
tory future a can be represented by

a=[nEW, nED, nll, nlE, nSG, nSF,
(6.66)

agw,8gp: ap, g, aSG'aSF]

where, for the time interval [0, 2 x 104 yr],

nEW = number of early WP failures,
nED = number of early DS failures,
nll = number of igneous intrusive events,
nlE = number of igneous eruptive events,
nSG = number of seismic ground motion events,
nSF = number of seismic fault displacement
events,
agpy = vector defining the nEW early WP fail-
ures,
agp = vector defining the nED early DS failures,
a; = vector defining the nll igneous intrusive
events,
ae = vector defining the nlE igneous eruptive
events,
agg = vector defining the nSG seismic ground
motion events,
age = vector defining the nSF fault displacement

events.

In turn, the vectors agy, agp, &), &g, asg and agg are
of the form

agw =[8ew 1 3w 2 -+ AEW nEW | (6.67)
agp =[3ep1r AED,2: -+ AED,NED |, (6.68)
ay =[ansan 2 an | (6.69)
ag =[aes e 2 - Qg niE | (6.70)
a3 =|se1: 56,2 -+ 36,06 s (6.71)
and

asg :[aSF,lv asf 21 aSF,nSF:|v (6.72)
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where

agw,; = vector defining early WP failure j for j =
1,2,...,nEW,

agp,; = Vector defining early DS failure j for j = 1,
2, ...,nED,

a)j = vector defining igneous intrusive event j
forj=1,2, ..., nll,

agj = vector defining igneous eruptive event j
forj=1,2,...,nlE,

asg;j = Vector defining seismic ground motion
eventjforj=1,2,...,nSG,

aggj = Vector defining seismic fault displacement

eventjforj=1,2, ..., nSF.

Definitions of the vectors agy j, @gp j, a1} AiEj asG,j
and agr ; and their associated probabilistic characteriza-
tions are given in App. J of Ref. [22]. These definitions
and probabilistic characterizations underlie the com-
plete, though never fully stated, definition of the prob-
ability space (A, A, pp) for aleatory uncertainty.

Determination of dose to the RMEI requires a
function D(r|a) such that
D(r|la) = dose to RMEI (mrem/yr) at time
7 (yr) conditional on the occurrence
of the future represented by the

element a of A. (6.73)

Technically, D(z|a) is the committed 50-yr dose to the
RMEI that results from radiation exposure incurred in a
single year. The function D(z|a) is the result of com-
bining mathematical models for a number of complex
processes, including fluid flow, heat flow, waste pack-
age degradation, chemical reactions, radionuclide
transport by flowing groundwater in dual porosity me-
diums, radionuclide transport in the surface environ-
ment, and human exposure to radionuclides as a result
of a variety of transport processes and exposure modes.
A careful description of D(z|a) is outside the intended
scope of this presentation. Overviews of the individual
models that are assembled to produce D(z|a) are pro-
vided in Refs. [169-171]. A more detailed description
of these models and a source of additional references is
Chapt. 6 of Ref. [22].

It is also important to recognize that D(z|a) corre-
sponds to only one of hundreds of time-dependent re-
sults produced in the 2008 YM PA. This is typical of
large system analyses where many individual results are
produced. Results such as D(rz|a) are the final out-
comes of a long and involved sequence of calculations.



To understand a result such as D(z|a) and also to check
its correctness, it is necessary to examine the intermedi-
ate results that underlie its production. A subset of the
results that underlie the determination of D(rz|a) are
presented in Refs. [162; 164]. More extensive presenta-
tion and discussion of results that underlie D(z|a) are
given in Apps. J and K of Ref. [22].

The probability space (&, E, pg) for epistemic un-
certainty involves nE = 392 variables (Ref. [22], Tables
K3-1, K3-2 and K3-3). Specifically, each element e of
£ is a vector of the form

e=[ea em]

=| €A1s €a2: -+ €A NEA) €M1 EM 25 -+ EmonEM J

=[er, €, ... eng ]

:[el,ez,...,e392], (674)
where

ep= [eAl’ €A eA,nEAJ

is a vector of epistemically uncertain variables used in
the definition of the probability space (A, A, pa),

em :[9M11‘3M2:---1 eM,nEM]

is a vector of epistemically uncertain variables required
in the evaluation of D(z|a), and

nE = nEA + nEM = 392.

The probability space (€, E, pg) was defined by devel-
oping a distribution D; for each element e; of e. These
distributions provide a probabilistic characterization of
the available knowledge with respect to where the ap-
propriate value to use for each variable is located. Ex-
tensive references describing the nature of each variable
gj in e and the development of its distribution D; are
given in Table K3-3 of Ref. [22].

With the introduction of the probability space (¢,
E, pg) for epistemic uncertainty and the associated ele-
ments e = [e,, eyl of &, the dose function D(z|a) is
now more appropriately represented by D(z|a, e)) to
explicitly indicate the dependence of dose on the values
for epistemically uncertain analysis inputs contained in
ewm. Further, the epistemic uncertainty associated with
the definition of the probability space (A, A, pp) for
aleatory uncertainty can be formally recognized by us-

87

ing da(ale,) to represent the density function associated
with (A, A, pp) that derives from e,.

The expected dose specified in (YM1) is formally
defined by

D(r|e)=jAD(r|a,eM )da(alen)dA (6.75)
In words, D(z|e) is the expected value for dose to the
RMEI at time 7 conditional on the values for epistemi-
cally uncertain analysis inputs contained in e = [e,,
em]. As indicated in Ref. [163] and described in detail
in App. J of Ref. [22], a complex sequence of calcula-
tions is involved in the evaluation of the integral that
defines D(zle).

The regulatory requirement summarized in (YML1)
requires that the inequality

Dx (€) < Dy = 15 mrem/yr (6.76)
hold, where
Dy (&) = max{D(7[e) :0< 7 <10 yr} (6.77)

is the maximum value for D(z|e) over the time interval
[0, 104 yr] and Dy, = 15 mrem/yr is the bound specified
in (YML1). In turn, the associated margin mDy (e) is
defined by

MDyny (€)= Dy — Dy (€)

_ (6.78)
=15 mrem/yr — Dy, (€).

If e was known with certainty, then D, (e) and

mDp,(€) would also be known with certainty. How-

ever, both D, (e) and mD,,(e) are uncertain because

of the epistemic uncertainty associated with e and char-

acterized by the probability space (&, E, pg).

In the 2008 YM PA, an LHS

e=|eaj, emi
[ Ai MI] . (6.79)
=[ei1,ei2, ...,ei,nE] i=12, ..., nLHS,
of size nLHS = 300 from the nE = 392 uncertain vari-
ables under consideration is used in the propagation of
epistemic uncertainty. The adequacy of this sample size

was established with replicated sampling (see App. J,
Ref. [22]).
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The indicated sample results in 300 expected dose
curves [z, D(zley)] (Fig. 6.19). In addition to the indi-
vidual curves corresponding to [z, D(z|e;)], Fig. 6.19
also shows mean and quantile results that derive from
epistemic uncertainty; specifically, these results corre-
spond to quantities of the form defined in Egs. (3.26)
and (3.28) and discussed in conjunction with Fig. 1 of
Ref. [163].

Corresponding to each dose curve [z, D(zle;)] in
Fig. 6.19 is a maximum dose Dy, (e;) for the time in-
terval [0, 10% yr] defined as indicated in conjunction
with Eq. (6.77). Specifically, 300 values for Dy, (€;)
are obtained and provide the basis for an estimated
CCDF that summarizes the epistemic uncertainty asso-
ciated with Dy, (e) (Fig. 6.20). Because the individual
expected dose curves [t, D(z|e;)] in Fig. 6.19 are effec-
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tively monotonically increasing, the equality Dinx (&) =
D(10%|e;) is assumed to hold.

In turn, 300 values for the margin

MDpy (€j) = Dp — Dy (&5)

_ (6.80)
=15 mrem/yr — Dy, (&)

and also for the corresponding normalized margin

nI:_)mx (ei ) = [Isb - ISmx (ei )]/ﬁb
=[15 mrem/yr — D,y (e ) |/15 mrem/yr
(6.81)

are obtained and provide the basis for estimated CDFs
that summarize the epistemic uncertainty associated
with mD,,.(e) and nDp,,(e) (Fig. 6.21).

As discussed in conjunction with Egs. (6.16) —
(6.23), the results in Figs. 6.20 and 6.21 can be reduced
to single-valued “margin/uncertainty” summary statis-
tics by the following calculations:

MDipyp /(MDpyy —MDg g5 ) = 14.76/(14.76 -14.29)

(6.82)

= 31.40,

mDg 5 /(mDgs ~MDggs ) =14.88/(14.88-14.29) (689)
= 2522, '

MDpyp /(MDppy ~MDpyin ) = 14.76/(14.76 ~11.49) (6.8
—451, '

and

mDy5 /(mDg 5 —MDpyip ) =14.88/(14.88-11.49) (6.85)
=439, '

where

_ nLHS
MDyn = Y, MDpyy (€)/nLHS
i=1

is an approximation to the expected value of mD,,(e)
over epistemic_ uncertainty,_mljq is the estimated g-
quantile for mDy,,(e), and mDy,;, = mDg og. However, as
previously discussed, significant information is lost in
the preceding reductions of the information in Figs.
6.20 and 6.21a and ultimately Fig. 6.19 to single num-
bers (see Sect. 4.5 for additional discussion).
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Note: In its regulations, the NRC implies, but never
explicitly states, that the bounds in (YM1) and (YM2)
are to apply to results of the form

Din = max{jgﬁ(r le)dg (e)dE:a< er}

nLHS
;max{ > D(rlej)/nLHS:a<r<b
i1

} (6.86)

with
5(r|e)=jAD(r|a,eM )da(alen)dA

and [a, b] equal to [0, 10 yr] and [104, 10° yr], respec-
tively. In effect, this places the bounds of 15 mrem/yr
and 100 mrem/yr in (YM1) and (YM2) on quantities
defined on the basis of expected values over both alea-
tory and epistemic uncertainty (i.e., on the curve labeled
“mean” in Fig. 6.19). Because of the expectations over
both aleatory and epistemic uncertainty, there is no un-
certainty in the central regulatory quantity D,,, once the
probability spaces (A, A, pa) and (&, E, pg) and the
dose function D(z|a, e),) have been specified. How-
ever, the NRC is also very explicit in stating that the
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uncertainty in results used in assessing compliance with
the requirements in (YM1) and (YM2) is to be shown
(see discussion in Ref. [167]). In the 2008 YM PA, this
potentially contradictory situation was handled by first
calculating D(z|e;) conditional on individual LHS ele-
ments e; and then calculating D, from the expecta-
tions D(zle;) over aleatory uncertainty. Specifically,
the individual expected dose curves [z, D(zle;)] in Fig.
6.19 provide both the desired representation of the epis-
temic uncertainty in the estimation of expected dose
and the basis for estimatimng the central regulatory
quantity Dy,,. This provides an example of a situation
that also underlies the examples presented in Sects. 6.1
and 6.2 and is likely to be encountered in QMU analy-
ses. Namely, a situation in which the descriptions of
required results are not complete or possibly fully con-
sistent and thus require some level of interpretation
and/or elaboration by the analysts involved in actually
defining, planning, and implementing the calculations
necessary to assess compliance with an incompletely
specified requirement. At the core of this process is the
determination of how to convert what maybe less than
fully precise verbal and numeric specifications into a
well-defined mathematical structure that facilitates the
planning, implementation and documentation of the
analysis to be performed.
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7 Uncertainty and Sensitivity Analysis for

Models of Complex Systems

Uncertainty analysis and sensitivity analysis are es-
sential parts of analyses for complex systems [2; 172-
182]. Specifically, uncertainty analysis refers to the
determination of the uncertainty in analysis results that
derives from uncertainty in analysis inputs, and sensi-
tivity analysis refers to the determination of the contri-
butions of individual uncertain analysis inputs to the
uncertainty in analysis results. The uncertainty under
consideration here is often referred to as epistemic un-
certainty as previously discussed in Sect. 2; alternate
designations for this form of uncertainty include state of
knowledge, subjective, reducible, and type B [78-81;
83; 85-89]. Epistemic uncertainty derives from a lack
of knowledge about the appropriate value to use for a
quantity that is assumed to have a fixed value in the
context of a particular analysis. In the conceptual and
computational organization of an analysis, epistemic
uncertainty is generally considered to be distinct from
aleatory uncertainty, which arises from an inherent ran-
domness in the behavior of the system under study [78-
81; 83; 85-89]. Alternative designations for aleatory
uncertainty include variability, stochastic, irreducible,
and type A. The importnance of uncertainty and sensi-
tivity analysis is specifically recognized in the
NAS/NRC report on QMU (pp. 14-15, Ref. [77]).

A number of approaches to uncertainty and sensi-
tivity analysis have been developed, including differen-
tial analysis [32-37], response surface methodology
[38-44], Monte Carlo analysis [29; 45-56], and variance
decomposition procedures[57-61]. Overviews of these
approaches are available in several reviews [62-70].

The focus of this section is on Monte Carlo (i.e.,
sampling-based) approaches to uncertainty and sensitiv-
ity analysis. Sampling-based approaches to uncertainty
and sensitivity analysis are both effective and widely
used [29; 51; 53; 55; 56; 64; 65]. Analyses of this type
involve the generation and exploration of a mapping
from uncertain analysis inputs to uncertain analysis re-
sults. The underlying idea is that analysis results y(x) =
[y1(%), Yo(X), ..., Yay(X)] are functions of uncertain anal-
ysis inputs X = [Xq, Xy, ..., Xox]- 1IN turn, uncertainty in x
results in a corresponding uncertainty in y(x). This leads
to two questions: (i) What is the uncertainty in y(x) giv-
en the uncertainty in x?, and (ii) How important are the
individual elements of x with respect to the uncertainty
in y(x)? The goal of uncertainty analysis is to answer the
first question, and the goal of sensitivity analysis is to
answer the second question. In practice, the implementa-
tion of an uncertainty analysis and the implementation of
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a sensitivity analysis are closely connected on both a
conceptual and a computational level.

The following sections summarize the five basic
components that underlie the implementation of a sam-
pling-based uncertainty and sensitivity analysis: (i)
Definition of distributions D,, D, ..., D, that charac-
terize the epistemic uncertainty in the components x;,
Xa, ..., Xnx Of x (Sect. 7.1), (ii) Generation of a sample
X1, X, ..., Xpg from the x’s in consistency with the dis-
tributions Dy, D, ..., Dpx (Sect. 7.2), (iii) Propagation
of the sample through the analysis to produce a map-
ping [X;, Y(Xi)], i =1, 2, ..., nS, from analysis inputs to
analysis results (Sect. 7.3), (iv) Presentation of uncer-
tainty analysis results (i.e., approximations to the distri-
butions of the elements of y constructed from the corre-
sponding elements of y(x;), i = 1, 2, ..., nS) (Sect. 7.4),
and (v) Determination of sensitivity analysis results
(i.e., exploration of the mapping [x;, y(xj)l.i=1, 2, ...,
nS) (Sect. 7.5).

Space limitations in this presentation preclude the
presentation of detailed examples of the indicated anal-
ysis components; however, extensive examples can be
found in the published descriptions of uncertainty and
sensitivity analyses carried out for the Waste Isolation
Pilot Plant (e.g., Refs. [21; 146; 183]) and the proposed
Yucca Mountain repository for high-level radioactive
waste (e.g., Refs. [162-164] and Apps. J and K of Ref.
[22]). These two analyses have been previously intro-
duced in Sects. 6.2 and 6.3.

Only probabilistic characterizations of uncertainty
are considered in this presentation. Alternative uncer-
tainty representations (e.g., interval analysis, possibility
theory, evidence theory) are an active area of research
[184-190] and are discussed in Sects. 8 — 10.

This presentation is a lightly edited version of two
prior workshop presentations [191; 192] and is intended
to introduce the reader to sampling-based procedures for
uncertainty and sensitivity analysis. More extensive in-
formation on these procedures is available in five techni-
cal reports [193-197] and a number of additional presen-
tations derived from these reports [52-55; 111; 112].

7.1 Characterization of Uncertainty

Definition of the distributions Dy, D, ..., D,x that
characterize the epistemic uncertainty in the compo-
nents xq, Xy, ..., Xnpx Of X is the most important part of a
sampling-based uncertainty and sensitivity analysis as
these distributions determine both the uncertainty in y
and the sensitivity of the elements of y to the elements



of x. To the extent possible, the indicated distributions
should be defined on the basis of results obtained from
relevant and appropriately designed experimants. Un-
fortunately, such experimental results do not always
exist. As a result, the distributions D4, Dy, ..., Dy of-
ten need to be developed, at least in part, through an
expert review process [97-103]. Further, this develop-
ment can constitute a major analysis cost.

It is important to recognize that the purpose of the
indicated expert review process for a given element of
X is not to replace experimental results with personnel
opinion. Rather, the purpose is to assess information
from what could potentially be a variety of sources of
different levels of relevance and credibility and then to
summarize this information with a probability distribu-
tion. In turn, the development of the indicated distribu-
tions allows the assessed epistemic uncertainty in anal-
ysis inputs to used in determining the epistemic uncer-
tainty in analysis results.

A possible analysis strategy is to perform an initial
exploratory analysis with rather crude definitions for Dy,
Dy, ..., Dyx and use sensitivity analysis to identify the
most important analysis inputs; then, resources can be
concentrated on characterizing the uncertainty in these
inputs and a second presentation or decision-aiding anal-
ysis can be carried out with these improved uncertainty
characterizations. For example, additional experimental
work might be performed to reduce the epistemic uncer-
tainty present with respect to the correct values for the
variables whose uncertainty most influences the uncer-
tainty in analysis results of interest. This strategy is par-
ticularly appropriate for analyses that involve a large
number of epistemically uncertain inputs.

The scope of an expert review process can vary
widely depending on the purpose of the analysis, the
size of the analysis, and the resources available to carry
out the analysis. At one extreme is a relatively small
study in which a single analyst both develops the uncer-
tainty characterizations (e.g., on the basis of personal
knowledge or a cursory literature review). At the other
extreme, is a large analysis on which important deci-
sions will be based and for which uncertainty charac-
terizations are carried out for a large number of vari-
ables by teams of outside experts who support the ana-
lysts actually performing the analysis.

Appropriate documentation of the information con-
sidered and how this information was used in develop-
ing distributions to characterize epistemic uncertainty is
an essential part of an expert review process. Without
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such documentation, distributions developed through an
expert review process will hve little credibility.

Given the breadth of analysis possibilities, it is be-
yond the scope of this presentation to provide an ex-
haustive review of how the distributions D4, D,, ...,
Dpx might be developed. However, as general guid-
ance, it is best to avoid trying to obtain these distribu-
tions by specifying the defining parameters (e.g., mean
and standard deviation) for a particular distribution
type. Rather, distributions can be defined by specifying
selected quantiles (e.g., 0.0, 0.1, 0.25, ..., 0.9, 1.0) of
the corresponding cumulative distribution function
(CDF), which should keep the individual supplying the
information in closer contact with the original sources
of information or insight than is the case when a par-
ticular named distribution is specified (Fig. 7.1a). Dis-
tributions from multiple experts can be aggregated by
averaging (Fig. 7.1b).

7.2 Generation of Sample

Several sampling strategies are available, including
random sampling, importance sampling, and Latin hy-
percube sampling [45; 55]. Latin hypercube sampling
is very popular for use with computationally demanding
models because its efficient stratification properties
allow for the extraction of a large amount of uncertainty
and sensitivity information with a relatively small sam-
ple size [141-143].

Latin hypercube sampling operates in the following
manner to generate a sample of size nS from the distribu-
tions Dy, Dy, ..., Dy associated with the elements of x =
[X1, Xo, ..., Xnx]- The range of each x; is exhaustively di-
vided into nS disjoint intervals of equal probability and
one value X;; is randomly selected from each interval. The
nS values for x; are randomly paired without replacement
with the nS values for x, to produce nS pairs. These pairs
are then randomly combined without replacement with the
nS values for x5 to produce nS triples. This process is con-
tinued until a set of NS nX-tuples X; = [Xj1, X2, -+« Xjnx)s 1 =
1, 2, ..., nS, is obtained, with this set constituting the Latin
hypercube sample (LHS) (Fig. 7.2).

Latin hypercube sampling is a good choice for a
sampling procedure when computationally demanding
models are being studied. The popularity of Latin hyper-
cube sampling recently led to the original article being
designated a Technometrics classic in experimental de-
sign [198]. When the model is not computationally de-
manding, many model evaluations can be performed and
random sampling works as well as Latin hypercube sam-

pling.
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[194]), and (b) Construction of mean CDF by vertical averaging of CDFs defined by individual experts with
equal weight (i.e., 1/nE = 1/3, where nE = 3 is the number of experts) given to each expert (Fig. 4.2, Ref. [194]).

Control of correlations is an important aspect of
sample generation. Specifically, correlated variables
should have correlations close to their specified values,
and uncorrelated variables should have correlations
close to zero. In general, the imposition of complex
correlation structures is not easy. However, Iman and
Conover have developed a broadly applicable proce-
dure to impose rank correlations on sampled values that
(i) is distribution free (i.e., does not depend on the as-
sumed marginal distributions for the sampled vari-
ables), (ii) can impose complex correlation structures
involving multiple variables, (iii) works with both ran-
dom and Latin hypercube sampling, and (iv) preserves
the intervals used in Latin hypercube sampling [199;
200]. Details on the implementation of the procedure
are available in the original reference [199]; illustrative
results are provided in Fig. 7.3.

Unlike simple random sampling, the size of an
LHS cannot be increased by simply adding one sample
element at a time. However, recently developed tech-
niques provide a means to retain the elements of an
initial LHS in an expanded LHS [201; 202]. This can
be important in a computationally demanding analysis
in which it is desired both to increase the size of an
LHS and also to retain already performed calculations
in the analysis. Further, the stability of results obtained
with Latin hypercube sampling for a given sample size
can be assessed with a replicated sampling technique
developed by R.L. Iman [154; 203].
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7.3 Propagation of Sample Through the

Analysis

Propagation of the sample through the analysis to
produce the mapping [x;, y(Xi))], i =1, 2, ..., nS, from
analysis inputs to analysis results is often the most
computationally demanding part of a sampling-based
uncertainty and sensitivity analysis. The details of this
propagation are analysis specific and can range from
very simple for analyses that involve a single model to
very complicated for large analyses that involve com-
plex systems of linked models [11; 21].

When a single model is under consideration, this
part of the analysis can involve little more than putting
a DO loop around the model that (i) supplies the sam-
pled input to the model, (ii) runs the model, and (iii)
stores model results for later analysis. When more
complex analyses with multiple models are involved,
considerable sophistication may be required in this part
of the analysis. Implementation of such analyses can
involve (i) development of simplified models to ap-
proximate more complex models, (ii) clustering of re-
sults at model interfaces (i.e., at analysis pinchpoints),
(iii) reuse of model results through interpolation or li-
nearity properties, and (iv) complex procedures for the
storage and retrieval of analysis results.
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Fig. 7.2. Example of Latin hypercube sampling to generate a sample of size nS = 5 from x = [U, V] with U normal on
[-1, 1] (mean = 0.0; 0.01 quantile = —1; 0.99 quantile = 1) and V triangular on [0, 4] (mode = 1): (a) Upper
frames illustrate sampling of values for U and V, and (b) Lower frames illustrate two different pairings of the
sampled values of U and V in the construction of a Latin hypercube sample (Fig. 5.3, Ref. [194]).

7.4 Presentation of Uncertainty Analysis

Results

Presentation of uncertainty analysis results is gen-
erally straightforward and involves little more than dis-
playing the results associated with the already calcu-
lated mapping [x;, y(x;)], i =1, 2, ..., nS. Presentation
possibilities include means and standard deviations,

94

density functions, cumulative distribution function
(CDFs), complementary cumulative distribution func-
tions (CCDFs), and box plots [55; 64]. Presentation
formats such as CDFs (Fig. 7.4a), CCDFs (Fig. 7.4a)
and box plots (Fig. 7.4b) are preferable to means and
standard deviations because of the large amount of un-
certainty information that is lost in the calculation of
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Fig. 7.3. Examples of rank correlations of 0.00, 0.25, 0.50, 0.75, 0.90 and 0.99 imposed with the Iman/Conover
restricted pairing technique for an LHS of size nS = 1000 (Fig. 5.1, Ref. [195]).

means and standard deviations. For this reason, analy-
sis summaries based on presenting only means and
standard deviations should be avoided. Owing to their
flattened shape, box plots are particularly useful when it
is desired to the display and compare the uncertainty in
a number of related variables.

The representational challenge is more complex
when the analysis outcome of interest is a function ra-
ther than a scalar. For example, a system property that
is a function of time is a common analysis outcome. As
another example, a CCDF that summarizes the effects
of aleatory uncertainty is a standard analysis outcome in
risk assessments. An effective display format for such
analysis outcomes is to use two plot frames, with the
first frame displaying the analysis results for the indi-
vidual sample elements and the second frame display-
ing summary results for the outcomes in the first frame
(e.g., quantiles and means) (Fig. 7.5).
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7.5 Determination of Sensitivity Analysis

Results

Determination of sensitivity analysis results is usu-
ally more demanding than the presentation of uncer-
tainty analysis results due to the need to actually ex-
plore the mapping [x;, y(xj)I, i = 1, 2, ..., nS, to assess
the effects of individual components of x on the com-
ponents of y. A number of approaches to sensitivity
analysis that can be used in conjunction with a sam-
pling-based uncertainty analysis are listed and briefly
summarized below. In this summary, (i) X; is an ele-
ment of X = [Xq, Xy, ..., XpxJ, (ii) Yk is an element of
Y() = 100, Y200, -, YoyOO, (i) x; = Dig, Xig, -
Xinxl: 1 =1, 2, ..., n§, is a random or Latin hypercube
sample from the possible values for x generated in con-
sistency with the joint distribution assigned to the x;,
(iv)yi=y(xj) fori=1,2, .., nS and (v) x;; and y; are
elements of x; and y;, respectively.

1



I Frame 7.4a 1
1.0 ——monw —~— 1.0
L oy P B
™ A
08 + Y r 109
N /
Y f
08 + 7\ / -08
> CCDF — N / =
= \ f =
[P \ g e
v Ul \ yd 107 o
2 \ / 3
s 06 A -~ 408 =
z NS z
Eos5 b b4 dos 3
= o
K SN 3
L 04 L i N Jdpa =
=i A N, A
o d \, o
& opg b s AN daa &
~ V.o f \ V.o u
o s Y o
0‘2 I mne / \ I 0'2
R Vs \
01 \jjrf \\ - 0.1
_ ~_ i
0.0 o0
Time: 10000 yr 4
2.0 5.1 8.1 11.2 14.2 17.3

y = EO: WAS_PRES, Pa (10%)
TRI-6342-6041-2

Fig. 7.4. Representation of uncertainty in scalar-valued analysis results:

[194]) and (b) box plots (Fig. 7.4, Ref. [194]).

Scatterplots. Scatterplots are plots of the points
[Xij, Vil fori=1,2, ..., nS and can reveal nonlinear or
other unexpected relationships (Fig. 7.6). In many ana-
lyses, scatterplots provide all the information that is
needed to identify the sensitivity of analysis results to
the uncertainty in analysis inputs. Further, scatterplots
constitute a natural starting point in a complex analysis
that can help in the development of a sensitivity analy-
sis strategy using one or more additional techniques.
Additional information: Sect. 6.6.1, Ref. [53]; Sect.
6.1, Ref. [56].

Cobweb Plots. Cobweb plots are plots of the points
[Xi, yik] = [Xill Xi2y ooy Xi,an ylk] fori= 1,2, ..,nS and
provide a two-dimensional representation for [X;, Vi,
which is a nX + 1 dimensional quantity. Specifically,
values for the y; and also for the elements x;; of x; ap-
pear on the ordinate of a cobweb plot and the variables
themselves are designated by fixed locations on the ab-
scissa. Then, the values y;, i =1, 2, .., nS, for y, and the
values xj;, i = 1, 2, ..., nS, for each x; are plotted above
the locations for yj and x; on the abscissa and each nX +
1 dimensional point [x;, y; ] is represented by a line con-
necting the values for the individual components of [x;,
yi]. Cobweb plots provide more information in a single
plot frame than a scatterplot but are harder to read. Ad-
ditional information: Sect. 11.7, Ref. [204].
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(a) CDFs and CCDFs (Fig. 7.2, Ref.

Correlation. A correlation coefficient (CC) pro-
vides a measure of the strength of the linear relationship
between X; and y,. The CC between x; and yj has a val-
ue in the interval [-1, 1], with (i) a positive value indi-
cating that x; and yj tend to increase and decrease to-
gether, (ii) a negative value indicating that x; and yj
tend to increase and decrease in opposite directions, and
(iii) the absolute value of the CC indicating the strength
of the linear relationship between x; and y,. The CC
between x; and yj is equal to the standardized regression
coefficient (SRC) in a linear regression relating y to X;
and is also equal in absolute value to the square root of
the R? value associated with the indicated regression.
When calculated with raw (i.e., untransformed) data,
the CC is often referred to as the Pearson CC. Addi-
tional information: Sect. 6.6.4, Ref. [53]; Sect. 6.2,
Ref. [56].

Regression Analysis. Regression analysis pro-
vides an algebraic representation of the relationships
between y, and one or more X;’s. Regression analysis is
usually performed in a stepwise fashion, with initial
inclusion of the most important x;, then the two most
important x;’s, and so on until no more x;’s that signifi-
cantly affect y, can be identified. Variable importance
is indicated by order of selection in the stepwise proc-
ess, changes in R? values as additional variables are
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Fig. 7.5. Representation of uncertainty in analysis results that are functions: (a, b) Pressure as a function o