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Abstract 
Trihedral corner reflectors are the preferred canonical target for SAR performance 
evaluation for many radar development programs.  The conventional trihedrals have 
problems with substantially reduced Radar Cross Section (RCS) at low grazing angles, 
unless they are tilted forward, but in which case other problems arise.  Consequently 
there is a need for better low grazing angle performance for trihedrals.  This is facilitated 
by extending the bottom plate.  A relevant analysis of RCS for an infinite ground plate is 
presented.  Practical aspects are also discussed. 

 

Approved for public release; further dissemination unlimited. 



 - 4 -  

Acknowledgements 
This report was funded by the Joint DoD/DOE Munitions Program Memorandum of 
Understanding project.  

 



 - 5 -  

Contents 
 
Foreword ............................................................................................................................. 6 
1 Introduction ................................................................................................................. 7 
2 Radar Cross Section Calculation ................................................................................ 9 

2.1 Unit Triangular Trihedral with Infinite Ground Plate ........................................ 9 
2.2 Treating Bounces using Images ........................................................................ 11 
2.3 Calculating Projected Area ............................................................................... 14 
2.4 Calculating RCS ............................................................................................... 19 

3 Comparison to Conventional Triangular Trihedral Corner Reflector ...................... 21 
3.1 Review of Conventional Triangular Trihedral.................................................. 21 
3.2 Comparing Effects of Infinite Ground Plate..................................................... 23 

4 Some Practical Considerations ................................................................................. 25 
5 Validation .................................................................................................................. 27 
6 Conclusions ............................................................................................................... 31 
Appendix A – Rotated Coordinate Frame ........................................................................ 33 
Appendix B – Area of Triangle from Angle-Side-Angle Information ............................. 35 
References......................................................................................................................... 37 
Distribution ....................................................................................................................... 38 
 



 - 6 -  

Foreword 
The genesis of this work was the need to develop better low grazing angle performance 
for canonical targets, those for which RCS can be relatively accurately calculated.  
Previous attempts to use conventional trihedrals tilted forward, sometimes on tripods, has 
offered ambiguous results, due to multipath phenomena.  In addition, using conventional 
trihedrals with apex at ground level has led to RCS measurements exceeding the 
predicted free-space value, not surprisingly, due to ground-bounce.  Consequently, the 
need became apparent to modify the conventional trihedral performance by altering its 
geometry to address these faults, and offer more predictable performance with greater 
RCS at low grazing angles. 
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1 Introduction 
Trihedral corner reflectors are a canonical radar reflector frequently used to calibrate, or 
gauge the performance of radar systems.  They offer the following desirable attributes. 

• Fairly large Radar Cross Section (RCS) for its size. 

• Fairly broad range of aspect angles with a large RCS. 

• Theoretical RCS easily calculated as a function of aspect angle. 

However, the following undesirable attributes also exist. 

• The equations often provided for theoretical RCS assume the trihedral exists in 
free space, independent of surrounding environmental reflectors such as the 
ground. 

• The RCS falls off rather dramatically as aspect angles approach parallel with the 
plates that make up the reflector.   

• If a trihedral is tilted forward so that its direction of maximum RCS is at a 
shallow grazing angle with respect to the ground, then ground-lobing becomes 
problematic, diminishing the accuracy of the RCS calculations. 

• If the trihedral is placed such that the bottom plate is parallel to the ground, then 
the RCS of the trihedral is severely diminished at low grazing angles with respect 
to the ground. 

One solution is to build the trihedral corner reflector with an extended ground plate to 
enhance its RCS at low grazing angles without allowing ground-lobes to form. 

In this report we examine the response of a triangular trihedral corner reflector composed 
of two upright isosceles right triangular plates on an infinitely large lower plate, as 
illustrated in Figure 1.  More specifically, we will only really require an infinite quarter-
plane, that is, infinite in extent in the quadrant of positive x and positive y values. 
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Figure 1.  Triangular trihedral corner reflector on infinite conducting ground plane. 
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2 Radar Cross Section Calculation 
To calculate the RCS of the triangular trihedral on infinite ground plane we will use a 
geometric optics model.  This assumes that wavelength is small with respect to the 
dimensions of the trihedral. 

We also note that RCS will then be proportional to the retro-reflecting area of the 
trihedral.  Not all parts of the plates will contribute to a retro-reflection.  The task at hand 
is to calculate the effective retro-reflecting area as a function of aspect angles. Once the 
area is calculated, then the RCS is given by 

2
2

4 A
λ
πσ =  (1) 

where 

λ  = nominal wavelength of the radar, and  
A  = effective retro-reflecting area of the target. (2) 

2.1 Unit Triangular Trihedral with Infinite Ground Plate 

Consider a trihedral on an infinite ground plate with unit edges as illustrated in Figure 2. 
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Figure 2.  Unit dimension triangular trihedral on infinite ground plane. 
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Provided geometric optics still applies, the RCS will scale as the fourth power of the edge 
length.  Now consider a viewing perspective defined by elevation and azimuth angles, as 
in Figure 3. 
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Figure 3.  Definition of viewing perspective for trihedral corner reflector. 

RCS will generally depend on the viewing perspective.  We identify the viewing 
perspective with angles 

θ  = azimuth angle ( 20 πθ << ), and 
ψ  = elevation angle ( 20 πψ << ). (3) 

The relevant points defining the trihedral are identified by the unit vectors x̂ , ŷ , and ẑ , 
as well as the origin.  These are identified in Figure 4. 
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Figure 4.  Vector definitions for relevant points that define the trihedral. 
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2.2 Treating Bounces using Images 

What makes a trihedral corner reflector retro-reflective is a triple-bounce with one 
bounce each off of the two upright triangular plates, and one bounce off the bottom 
ground plate. 

With some foresight, we will employ ‘images’ instead of dealing with the complex 
geometries involved with triple bounces.   

In a single dimension, the image of the ẑ  vector across the yx,  plane is the ẑ−  vector, 
illustrated in Figure 5. 

x̂
ŷ

ẑ

ẑ−

x̂
ŷ

ẑ

ẑ−

 
Figure 5.  Image of vertical vector across x,y ground plane. 

Since we have three orthogonal plates, the complete set of images for all unit vectors is 
illustrated in Figure 6.  Herein we identify two squares.  These are 

1. a square identified with corners x̂ , ẑ , x̂− , and ẑ− , and 

2. a square identified with corners ŷ , ẑ , ŷ− , and ẑ− . 

In addition, there is still the infinite ground plane that is the entire yx,  plane. 
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Figure 6.  Image of defining vectors across all plates of trihedral, and the squares that they define. 

Using the images, from a particular perspective, a triple bounce retro-reflection will 
occur over an effective area that is the intersection of the projections of the two squares 
in the direction of that particular perspective.  An infinite ground plane does not further 
constrain the projected area.  A limited extent ground plane would in fact constrain the 
projections even more at some perspectives, but an analytical solution for this case is 
outside the scope of this report. 

The projections of either of the squares in any particular direction will generally be a 
parallelogram.  The projection of the square will not necessarily be a square itself. 

For example, for the perspective of Figure 6, the intersection of the two parallelograms is 
identified in Figure 7.  For a different perspective, the intersection of the two 
parallelograms is given in Figure 8. 

The intersection of the two parallelograms will itself be another parallelogram.  The task 
at hand is to calculate the area of the intersection parallelogram, shaded in the figures, as 
a function of viewing perspective, that is elevation and azimuth angles.  This is the 
effective area which is used for RCS calculation. 
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Figure 7.  Intersection of projections of the two squares – Case 1. 
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Figure 8.  Intersection of projections of the two squares – Case 2. 
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2.3 Calculating Projected Area 

The first step to calculating the projected area is to define the locations of the relevant 
points in the projection plane, that is in a plane that is normal to the projection direction 
defined by the azimuth and elevation angles. 

We will use symmetry arguments to constrain our analysis to the space where 0≤y , as 
illustrated in Figure 9.  In addition, we will concern ourselves for now with the azimuth 
angles 4πθ ≤ . 

x̂
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ẑ
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ŷ

ẑ

 
Figure 9.  Triangular region that is one half the area of the intersection of the projection of the two 
squares.  Case 2 is illustrated. 

The problem is now reduced to finding the area of a triangle in both of two cases, 
depicted in Figure 10.  The input to these calculations are the locations (coordinates) of 
the four identified points, Q1 through Q4.  We also identify some useful interior angles. 



 - 15 -  

y’

z’
Q1

Q2

Q3

Q4

y’

z’

Q2

Q3

Q4

Q1

Case 1 Case 2

β1

α1

β2

α2

y’

z’
Q1

Q2

Q3

Q4

y’

z’

Q2

Q3

Q4

Q1

Case 1 Case 2

y’

z’
Q1

Q2

Q3

Q4

y’

z’

Q2

Q3

Q4

Q1

y’

z’
Q1

Q2

Q3

Q4

y’

z’
Q1

Q2

Q3

Q4

y’

z’

Q2

Q3

Q4

Q1

y’

z’

Q2

Q3

Q4

Q1

Case 1 Case 2

β1

α1

β2

α2

 
Figure 10.  Triangular regions defined by the intersection of the projections of the two squares. 

In the zyx ,,  coordinate frame, the four points correspond to the positions 

[ ]TQ 100: 11 =p , 

[ ]TQ 100: 22 −=p , 

[ ]TQ 001: 33 =p , 

[ ]TQ 010: 44 −=p , (4) 

where the superscript ‘T’ denotes a transpose. 

In the rotated zyx ′′′ ,,  coordinate frame, the four points correspond to the positions 

111 : pRp =′Q , 

222 : pRp =′Q , 

333 : pRp =′Q , 

444 : pRp =′Q , (5) 

where the rotation matrix is given by 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

ψψθψθ
θθ

ψψθψθ

cossinsinsincos
0cossin

sincossincoscos
R . (6) 

The result is expanded to 

[ ] [ ]TTQ ψψ cos0sin100: 11 ==′ Rp , 

[ ] [ ]TTQ ψψ cos0sin100: 22 −−=−=′ Rp , 

[ ] [ ]TTQ ψθθψθ sincossincoscos001: 33 −−==′ Rp , 

[ ] [ ]TTQ ψθθψθ sinsincoscossin010: 44 −−=−=′ Rp . (7) 

In the zy ′′,  plane, these are projected to the coordinates 

[ ]TQ ψcos0: 11 =′q , 

[ ]TQ ψcos0: 22 −=′q , 

[ ]TQ ψθθ sincossin: 33 −−=′q , 

[ ]TQ ψθθ sinsincos: 44 −=′q . (8) 

The interior angles of Figure 10 may be calculated as follows. 

ψθψ
θα

sincoscos
sintan 1 +

= , 

ψθψ
θβ

sincoscos
sintan 1 −

= , 

ψθψ
θαα

sincoscos
sintantan 12 +

== , 

ψθψ
θβ

sinsincos
costan 2 +

= . (9) 

Based on these angles we can select whether we have case 1 or case 2 for a particular 
viewing perspective.  Note that 

⇒≥ 12 tantan ββ  case 1, and 
⇒< 12 tantan ββ  case 2. (10) 

This may be expanded, and then simplified to the rule 

( ) ⇒≥− ψθθ tansincos  case 1, otherwise case 2. (11) 
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Case 1. 

Using the results of Appendix B, the area of the triangle is 

( )
( )11

11
2

tantan2
tantancos2
βα

βαψ
+

=triA . (12) 

which is expanded to 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

ψθψ
θ

ψθψ
θ

ψθψ
θ

ψθψ
θψ

sincoscos
sin

sincoscos
sin2

sincoscos
sin

sincoscos
sincos2 2

triA . (13) 

This can be simplified to 

ψθ cossin=triA . (14) 

Case 2. 

Using the results of Appendix B, the area of the triangle is 

( )
( )22

22
2

tantan2
tantancos2
βα

βαψ
+

=triA . (15) 

which is expanded to 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

ψθψ
θ

ψθψ
θ

ψθψ
θ

ψθψ
θψ

sinsincos
cos

sincoscos
sin2

sinsincos
cos

sincoscos
sincos2 2

triA . (16) 

This can be simplified to 

( )ψθθ
ψθθ

tancossin
coscossin2
++

=triA . (17) 
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Combined Results for Area. 

The two cases are combined to the following. 

( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

≥−
=

else

if
Atri

ψθθ
ψθθ

ψθθψθ

tancossin
coscossin2

tansincoscossin

. (18) 

We reiterate that this is just the area of the triangular region that represents one half the 
area of the intersection of the projections of the two squares defined by vectors and their 
images in the x,z and y,z planes. 

The incorporation of this area into RCS calculations is performed in the next section. 
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2.4 Calculating RCS 

Given the results of the previous section, we note that the total area of intersection of 
projections is twice triA .  Furthermore, this assumes a unit edge for the trihedral edges 
that meet at the apex.  A more general expression for RCS is then 

( ) ( ) 42
2 24, aAtri
λ
πθψσ =  (19) 

where 

a  = the edge of the triangular sections of the trihedral meeting at the apex. (20) 

Consequently, for the trihedral on an infinite ground plate 

( ) ( )22

416, triAa
λ
πθψσ =      where 

( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

≥−
=

else

if
Atri

ψθθ
ψθθ

ψθθψθ

tancossin
coscossin2

tansincoscossin

, (21) 

but recall that that this assumed 4πθ ≤ .  Due to symmetry arguments we expect the 
RCS at θ  to be the same as at θπ −2 .  This leads to the final equation for RCS as 

( ) ( )22

416, triAa
λ
πθψσ =      where 

( )
( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

≥−
≥−

=

else

if
if

Atri

ψθθ
ψθθ

ψθθψθ
ψθθψθ

tancossin
coscossin2

tancossincoscos
tansincoscossin

, (22) 

where this expression is good for 20 πθ << , and 20 πψ << . 
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“This is really something. I don't know what, but it's something.” 

-- Crow T. Robot, Mystery Science Theater 3000 (MST3K) 
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3 Comparison to Conventional Triangular Trihedral 
Corner Reflector 

In this section we compare the RCS of a triangular trihedral with infinite ground plate to 
the RCS of a more conventional triangular trihedral.  To begin this discussion we borrow 
a section from an earlier report.1  More conventional trihedrals are discussed in some 
detail in the literature, including by Ruck, et al.2, Bonkowski, et al.3, Crispen and Siegel4, 
and Sarabandi and Chiu5. 

3.1 Review of Conventional Triangular Trihedral 

Consider a trihedral with sides comprised of isosceles right triangles.  With the geometry 
defined as in Figure 11, using geometrical optics, we identify the relative RCS as a 
function of orientation as 

( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−++

≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=

321

2

321
321

4
2

321

2

321

214
2

for24

for44

,

ccc
ccc

ccca

ccc
ccc

cca

triangle

λ
π

λ
π

θψσ  (23) 

where 321 ,, ccc  are each assigned one of 

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

θψ
θψ

ψ

coscos
sincos

sin

3

2

1

c
c
c

 (24) 

such that 321 ccc ≤≤ .  The peak RCS of such a trihedral is calculating as 

2

4
,

3
4
λ
πσ a

peaktriangle =  (25) 

The direction of peak RCS, or the bore-sight of the trihedral, is in the direction 4πθ = , 

or 45 degrees, and at a grazing angle of ( )21tan 1−=ψ , or about 35.2644  degrees.   

Figure 12 plots contours of constant RCS relative to peak value as a function of azimuth 
and elevation angles. 
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Figure 11.  Geometry definition for RCS characteristics. 
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Figure 12.  Contours of constant relative RCS for triangular trihedral corner reflector.  Contour 
labels are in dBc. 
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3.2 Comparing Effects of Infinite Ground Plate 

We wish now to compare the RCS of the trihedral with infinite ground plate to that of the 
conventional triangular trihedral.  To make this meaningful, we wish to plot contours of a 
normalized RCS, that is, we will plot 

( ) ( ) ( )2
,

12,, tri
peaktriangle

normalized A==
σ

θψσθψσ  (26) 

where 

( )
( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

≥−
≥−

=

else

if
if

Atri

ψθθ
ψθθ

ψθθψθ
ψθθψθ

tancossin
coscossin2

tancossincoscos
tansincoscossin

. (27) 

This normalized RCS is plotted in Figure 13.  We note the following. 

• In the bore-sight direction of the conventional trihedral, 45=θ  degrees, and 
2644.35≈ψ  degrees, the infinite ground-plane trihedral exhibits a gain of about 

2.5 dB. 

• The direction of maximum RCS is at 45=θ  degrees, and 0=ψ  degrees.  That is, 
the RCS increases with shallower grazing angles.   

Perhaps more interesting, we also identify a relative RCS of the trihedral with infinite 
ground plate compared to the conventional trihedral as a function of viewing perspective, 
that is 

( ) ( )
( )θψσ
θψσθψσ

,
,,

triangle
relative = . (28) 

This is plotted in Figure 14.  We note the following. 

• The trihedral with infinite ground plate shows RCS substantially greater than that 
of the conventional trihedral, especially at shallow grazing angles.  For example, 
at 4 degrees grazing angle, the improvement is better than 20 dB. 

• The improvement is nearly constant for all azimuth angles. 
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Figure 13.  RCS of trihedral with infinite ground plane normalized to boresight RCS of conventional 
trihedral. 
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Figure 14.  RCS of trihedral with infinite ground plane relative to RCS of conventional trihedral. 
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4 Some Practical Considerations 
Of course, building a trihedral corner reflector with infinite ground plane poses a 
difficulty.  More practical is a finite extent to the bottom plate, as might be exemplified in 
Figure 15.  Using geometric optics, it becomes apparent that the RCS response of this 
arrangement will be equivalent to the infinite bottom plate over some limited extent of 
grazing angles, but will depart from that of the infinite plate at the shallower grazing 
angles.  This is illustrated in Figure 16. 

For a bottom plate with edge located a distance b from the trihedral apex, the infinite 
bottom plate RCS formula would be accurate as long as 

( )baatan≥ψ . (29) 

For example, if ab 5= , then the infinite ground-plane formula would be accurate for 
3.11≥ψ  degrees, and provide an RCS more than 11 dB brighter than the conventional 

trihedral with same dimension a. 

a

b

b

a

b

b

 
Figure 15.  Trihedral on large but limited extent conducting plate. 
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Figure 16.  Illustration of grazing angle limit for the accuracy of the given RCS calculation. 
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Design Example 

Consider a design requirement that calls for a +20 dBsm RCS at a 10 degree elevation 
angle using a physical geometry as illustrated in Figure 15.  The wavelength is 18 mm, 
the center of Ku-band. 

The task is to find dimensions a and b. 

We begin by assuming 1=a .  At a 45 degree azimuth angle and 10 degree elevation 
angle, the RCS is calculated to be 47.7 dB.  Consequently we have an excess of 27.7 dB.  
This is corrected by adjusting the side-length to a = 20.23 cm. 

At a 10 degree elevation angle, for there to be no ground bounce influencing the RCS, we 
need 73.114≥b  cm. 

We note that a conventional triangular trihedral would require a = 41.83 cm to achieve 
this in free space.  However ground bounce in front of the trihedral would increase the 
RCS by an uncertain amount.  The architecture of Figure 15 is superior in this regard. 
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5 Validation  
The validity and usefulness of any new radar-cross-section formula based on geometric 
optics is open to question, so a demonstration of its validity is important.  A comparison 
of the geometric RCS formula with other methods of computation can provide the 
validation needed.  In this case, numerical computations for a specific example using the 
more rigorous methods will be compared with the prediction of the geometric formula.   
An extended trihedral with a corner-edge length of 150 mm and an extended bottom plate 
with radius 500 mm, illustrated in Figure 17, is used as a validation model.  The 
computations are performed at 10 GHz, where the corner edge dimension is 5 
wavelengths.  The Shooting-and-Bouncing Ray (SBR) method and the Method of 
Moments (MoM) with the Multilevel Fast Multipole Algorithm (MLFMA) are the more 
rigorous methods used.   

At 10 GHz, the Shooting-and-Bouncing Ray (SBR) method predicts the RCS of the 
standard trihedral in free space to be 4.4 dBsm at elevation 35.3° and azimuth 45°, and 
the RCS of the extend-plate trihedral with radius 500 mm to be 9.6 dBsm at elevation 15° 
and azimuth 45°.  The predicted RCS of the extended-plate trihedral, using the new 
geometric formula is 9.7 dBsm at elevation 15° and azimuth 45°.  The agreement is 
outstanding.  The simple geometric RCS formula is a very good predictor of the RCS of a 
trihedral on a ground plane.   

 

Figure 17.  Extended trihedral with 150-mm corner edge and 500-mm extension radius. 

For objects that are electrically large, measured in wavelengths, the physical optics 
method is useful for predicting scattering and radar cross section, unless currents that 
exist in the shadow region produce significant contributions to the scattered field.  In the 
forward scattering region of a trihedral, there is essentially no contribution from currents 
in the shadow region, so physical optics methods are quite appropriate.  The shooting and 
bouncing ray (SBR) method is an extension of physical optics, merging geometric optics 
with physical optics.  The incident field is defined using geometric optics (tracing rays, 
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which are equivalent to plane-wave components), while the scattered field is computed 
with physical optics.  It can be used efficiently to compute the scattered electromagnetic 
fields, radar cross-section, and, very importantly, the coupling and interaction between 
scattering surfaces for geometries that are very large with respect to a wavelength.  As 
does physical optics, the SBR method computes the scattered field from an object by 
integrating surface currents (both electric and magnetic as appropriate) against the free-
space Green’s function to propagate the associated fields to the field point.  It is generally 
more accurate than geometric optics, and provides a good comparison for appraising the 
reliability of the new geometric-optics model.  It is especially well suited to computing 
the RCS of objects where multiple reflections are important, like the trihedral.  The 
Xpatch® 6,7 implementation of the shooting and bouncing ray method is used to model the 
trihedral with the extended bottom plate.  A good summary of Xpatch® capabilities is 
contained in the paper by Andersh.8   

The extended-plate trihedral is also modeled with the SAIC Full-wave solver (SAF).9   
SAF is an electromagnetic-scattering computation program based on the Method of 
Moments (MoM) solution of the hybrid volume-surface integral equation. The SAF 
solver incorporates the Multilevel Fast Multipole Algorithm (MLFMA), and provides 
efficiency in computation speed and memory requirements.  Since MoM incorporates the 
radiation condition into the formulation, no absorbing boundary is necessary.   MoM and 
MLFMA codes are rigorous numerical solvers, and provide the highest level of 
computational accuracy, true to the physical laws of electromagnetism.   

The MoM and SBR algorithms are similar in that they both are based on the equivalence 
principle.  In fact, the only difference between MoM and SBR is the way in which the 
equivalent currents are computed.  However, this is a very significant difference:  MoM 
rigorously solves for the currents, while SBR approximates the currents using the 
physical-optics approximation.  Once the currents are determined, though, both methods 
compute the scattered field by integrating the currents against the free-space Green’s 
function. 

The computed RCS for the trihedral with a corner edge of 150 mm is plotted as a 
function of both elevation and azimuth in Figure 18.  The plot for the standard trihedral 
in free space is on the left, the extended-plate trihedral (with radius 500 mm) is in the 
middle (both computed with SBR), and the predicted RCS from the new geometric 
formula is on the right.  When presented in this way, it is very clear that the extended-
plate trihedral provides an enhanced RCS at low elevations, compared to the standard 
trihedral in free space.  It is also clear that the new formula faithfully captures the 
important behavior. 
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Figure 18.  RCS at 10 GHz as a function of azimuth and elevation for the trihedral in free space on 
the left, the extended-plate trihedral in the middle (both computed with SBR), and the new 
geometric formula on the right. 

Figure 19 shows the RCS computed from the new formula for the trihedral on an infinite 
ground plane (solid black curve) along with the RCS computed for the trihedral in free 
space and for the extended-plate trihedral with radii 500 mm and 1,000 mm.  The corner 
edge of the trihedral is 150 mm in all cases.  The predicted RCS is computed along an 
elevation arc located at azimuth 45°, in the vertical symmetry plane of the trihedral.  The 
solid curves are computed with the SBR method, and the circles are computed with 
MLFMA.  For elevations less than about 45°, the RCS of the extended-plate trihedral is 
greater than that of the equivalent standard trihedral in free space.   

A similar comparison is displayed in Figure 20 as a function of azimuth, where the 
elevation is held constant at 15° for the extended-plate trihedral and 35.26° for the 
standard trihedral in free space.  Of particular note is the approximately 4.5 dB stronger 
return for the extended-plate trihedral compared to the standard trihedral, especially 
noteworthy since the standard trihedral is observed at its optimum elevation.  Its return is 
another 4 dB lower at an elevation of 15°, as can be seen in Figure 19.   

As the comparisons in Figure 18 through Figure 20 demonstrate, the agreement between 
the predictions from the new geometric formula (black solid curve), the SBR predictions, 
and the MLFMA predictions is remarkable.   
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Figure 19.  RCS at 10 GHz as a function of elevation at azimuth 45° for the extended-plate trihedral 
illustrated in Figure 1.  RCS is computed with the SBR method for the solid curves and with the 
MLFMA  method for the circles.  The solid black curve is the model described in this report.  The 
RCS of the equivalent standard trihedral in free space is also plotted. 

 

Figure 20.  RCS at 10 GHz as a function of azimuth at elevation 15° for the extended-plate trihedral 
illustrated in Figure 17, and for the unmodified trihedral in free space at elevation 35.26°.  RCS is 
computed with the multi-layer fast multipole integral equation method.  The solid black curve is the 
model described in this report.  
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6 Conclusions 
The following points are worth repeating. 

• Conventional trihedral reflectors suffer degraded RCS at low grazing angles with 
respect to their bottom plate. 

• A trihedral’s RCS at low grazing angles can be enhanced by extending the lower 
conducting plate.  Equations for RCS with an infinite bottom plate are presented. 

• Even a limited extent to the bottom plate will improve low grazing angle 
performance.  This will match the infinite plate equations out to some readily 
calculated grazing angle. 

• The new geometric formula agrees remarkably well with more rigorous 
computations. 
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“Okay, what are we looking at and why are we looking at it?” 

-- Tom Servo, Mystery Science Theater 3000 (MST3K) 
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Appendix A – Rotated Coordinate Frame 
Consider the geometry of a rotated coordinate frame as in Figure 21. 
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Figure 21.  Angle definitions for rotated coordinate frame. 

The question is “Given an arbitrary vector with coordinates in the zyx ,,  frame, what are 
its coordinates in the zyx ′′′ ,,  coordinate frame?” 

Towards this end, we identify the new coordinate unit vectors as 

ψψθψθ sinˆcossinˆcoscosˆˆ zyxx ++=′ ,  
θθ cosˆsinˆˆ yxy +−=′ ,  

ψψθψθ cosˆsinsinˆsincosˆˆˆˆ zyxyxz +−−=×=′ . (A1) 

This can be described via a rotation matrix, where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

ψψθψθ
θθ

ψψθψθ

cossinsinsincos
0cossin

sincossincoscos
R . (A2) 

Consequently, some vector p  with coordinates in the zyx ,,  frame, will have new 
coordinates in the zyx ′′′ ,,  coordinate frame described by 

pRp =′ . (A3) 
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Of note are the following. 

• With this particular transformation, there is no ‘twist’ about the x′  axis.  While 
the rotation matrix developed herein is thereby somewhat less general, as it takes 
into account only two independent angles, this nevertheless serves the purpose of 
this report. 

• The vector ẑ  is contained within the zx ′′,  plane. 

• Projections of an arbitrary vector p  into a plane normal to x′  will have 
coordinates in that plane of 

( ) ( )zzyy ′′•+′′•=′ ˆˆˆˆ ppq . (A4) 

Decomposed Rotations 

We note that the final rotation matrix R can be decomposed into a rotation about the 
vertical axis z followed by a rotation about the axis y’.  That is 

zy RRR ′=  (A 5) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0cossin
0sincos

θθ
θθ

zR , (A6) 

and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=′

ψψ

ψψ

cos0sin
010

sin0cos

yR . (A7) 

We confirm that 

⎥
⎥
⎥

⎦
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⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

100
0cossin
0sincos

cos0sin
010

sin0cos

cossinsinsincos
0cossin

sincossincoscos
θθ
θθ

ψψ

ψψ

ψψθψθ
θθ

ψψθψθ
R .  

  (A8) 
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Appendix B – Area of Triangle from Angle-Side-Angle 
Information 
The task at hand is to calculate the area of a triangle from initial knowledge of the length 
of one edge, and two angles.  These quantities are illustrated in Figure 22.   

β αdβ αd  
Figure 22.  Trigonometric parameter definitions for triangle. 

We approach this problem by dropping a perpendicular as illustrated in Figure 23. 

β α

d1 d2

h

 
Figure 23.  Additional trigonometric parameter definitions for triangle. 

We observe that the height h is calculated as 

αβ tantan 21 ddh == . (B1) 

Furthermore, we identify that the total base length is 

21 ddd += . (B2) 

These observations may be combined to yield 

( ) αβ tantan 22 ddd =− . (B3) 
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This can be solved to yield 

( )βα
β

tantan
tan

2 +
=

dd . (B4) 

Combining with above, we can calculate 

( )βα
βα

tantan
tantan

+
=

dh . (B5) 

The area of the triangle is then calculated as 

( )βα
βα

tantan2
tantan

2

2

+
==

dhdAtri . (B6) 

A little further manipulation shows that this is equivalent to a form that sometimes 
appears in the literature as 

( )βα
βα

+
=

sin2
sinsin2dAtri . (B7) 

These are sometimes referred to as Angle-Side-Angle (ASA) formulas for the area of a 
triangle. 
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