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Abstract 

A residual chirp waveform is a quadratic phase error that broadens the Impulse Response 
(IPR) and diminishes its peak value in a predictable manner.  This report qualitatively 
and quantitatively analyzes the effects of a residual chirp on the IPR. 
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Foreword 

It is well known that quadratic phase errors defocus or blur energy in a SAR image.  A 
question has arisen “What is the impact of interfering signals with only partial or residual 
Linear FM chirp characteristics in a SAR image?”  This necessitated an analysis to 
quantify these effects. 
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1 Introduction 

A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and 
quadratic phase characteristic.  In a focused Synthetic Aperture Radar (SAR) image, a 
residual chirp is undesired for targets of interest, as it coarsens the manifested resolution.  
However, for undesired spurious signals, a residual chirp is often advantageous because it 
spreads the energy and thereby diminishes its peak value. 

In either case, a good understanding of the effects of a residual LFM chirp on a SAR 
Impulse Response (IPR) is required to facilitate system analysis and design.  This report 
presents an analysis of the effects of a residual chirp on the IPR. 

As reference, there is a rich body of publications on various aspects of LFM chirps.  A 
quick search reveals a plethora of articles, going back to the early 1950s.  We mention 
here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et 
al.1   
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Figure 1.  A Linear FM chirp waveform.  Frequency changes linearly with time. 
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2  The Impulse Response of a Residual Chirp 

Consider a time-dependent signal with a quadratic phase function described by 
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where 

res  = residual phase,  

res  = residual frequency,  

res  = residual chirp rate, 

T  = pulse width, 

and 
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This report is concerned with the effects of the quadratic component of the phase 
function.  Without loss of generality, for this report we will assume 

0res , and 

0res . (3) 

We readily calculate the residual chirp bandwidth in Hz as 
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T
B res
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In addition, we can calculate the peak quadratic phase deviation from the center of the 
pulse as 
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8
Tres
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 . (5) 

Combining these two results allows us to relate the quadratic phase deviation to the chirp 
bandwidth as 
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cq TB
4


 . (6) 

This relationship is stated in terms of the residual chirp bandwidth, that is, the difference 
between chirp instantaneous start and stop frequencies.  With some foresight, a more 
interesting bandwidth is the actual signal bandwidth, which for large time-bandwidth 
signals approaches the chirp bandwidth.  That is, the signal bandwidth 

cBB  . (7) 

When this is accurate, we can calculate 

TBq 4


 . (8) 

The quantity TB  is the time-bandwidth product.  It identifies the broadening of the 
bandwidth of the signal over the ideal.  In general 

1TB . (9) 

The equivalence cBB   is fairly accurate for large time-bandwidth products, where 

1TB , (10) 

however it offers reduced accuracy as the time-bandwidth approaches one.  This, of 
course, depends on several factors, including just how exactly bandwidth is defined, and 
whether any amplitude tapering (windowing) is performed prior to transformation to the 
frequency domain. 

Of interest to us in this report is the Fourier Transform of  tx , which will ultimately 
correspond to the Impulse Response (IPR) of the radar with a residual phase error 
function corresponding to  tx .  
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2.1 Uniform Taper 

Consider our signal model to be 
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where 
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and we calculate 

TBq 4


 . (13) 

We now examine several time-bandwidth products as examples.  Figure 2 through Figure 
5 plot the Fourier Transform of  tx , exemplifying TB  = 2000, 200, 20, and 2 

respectively.  Note how for the large TB  the band edge in the spectrum of  tx  is at 

approximately 2TB  resolution units away from the center of the spectral response, as 

desired.  However as TB  decreases, the band edge is less accurately predicted by 2TB , 
but still reasonably approximate for all but the TB = 2 case. 

We now define the IPR width in resolution units as calculated to be 

TBn  . (14) 
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Figure 2.  Impulse Response for residual chirp with TB = 2000, and uniform weighting. 
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Figure 3.  Impulse Response for residual chirp with TB = 200, and uniform weighting. 
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Figure 4.  Impulse Response for residual chirp with TB = 20, and uniform weighting. 
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Figure 5.  Impulse Response for residual chirp with TB = 2, and uniform weighting. 
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2.2 Taylor Taper 

Consider now our signal model to be modified to 
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where 
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  (16) 

but now we employ a taper, or weighting, to the data identified by 
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While any of a number of weighing functions may be employed, we shall presume that 
 zw  is a Taylor weighting with 35 dB sidelobes, and 4n .  This weighting is 

illustrated in Figure 6.  Its Impulse Response (IPR), calculated as its Fourier Transform, 
is illustrated in Figure 7. 

Recall that the signal is changing in frequency linearly with time, so that the window 
function is applied effectively over frequency.  That is, the taper of Figure 6 represents a 
passband transfer function.  This implies that the taper effectively reduces the effective 
bandwidth of the signal.  Let the bandwidth now be defined as the noise bandwidth of the 
window taper.  That is 

bBB c , (18) 

where the relative bandwidth factor is given by 
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For the 35 dB Taylor window ( 4n ), we identify 

4472.0b . (20) 
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Figure 6.  Taylor weighting with 35 dB sidelobes, and 4n . 
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Figure 7.  Characteristics of 35 dB Taylor window.  The red curve is a common peak sidelobe 
specification. 
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This relative noise passband for the Taylor window is also illustrated in Figure 6.  Note 
that for a uniform taper, nominally 0.1b . 

In any case, we calculate the required chirp bandwidth to achieve this noise bandwidth as 

b

B
Bc  . (21) 

Combining this with earlier results yields the required quadratic phase deviation as 
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. (22) 

Putting this all together yields the set of equations for generating  tx  as 
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where 
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 , (24) 

and 
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. (25) 

We now examine several time-bandwidth products as examples.  Figure 8 through Figure 
11 plot the Fourier Transform of  tx , exemplifying TB  = 2000, 200, 20, and 2 

respectively.  Note how the band edge in the spectrum of  tx  is at approximately 2TB , 
as desired, for all values of TB .   

The IPR width in resolution units is then calculated to be 

cTbBTBn  . (26) 
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Figure 8.  Impulse Response for residual chirp with TB = 2000, and Taylor weighting. 
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Figure 9.  Impulse Response for residual chirp with TB = 200, and Taylor weighting. 
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Figure 10.  Impulse Response for residual chirp with TB = 20, and Taylor weighting. 
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Figure 11.  Impulse Response for residual chirp with TB = 2, and Taylor weighting. 
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2.3 Conservation of Energy 

The energy of the signal is finite and must be conserved, regardless of the phase error 
function introduced.  Consequently, as the energy of a signal is smeared across multiple 
resolution cells, the peak value must be diminished accordingly, in fact proportionately.  
That is 

n
IPRpeak

1
 . (27) 

This is illustrated in Figure 12.  Each factor of 10 in TB yields a 10 dB reduction in peak 
value of the respective IPR. 

The implication is that any signals for which we wish do diminish their peak value, we 
can do so by operating in a manner to provide them with a residual chirp. 
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Figure 12.  Impulse Response comparison for residual chirps with various TB, and Taylor weighting. 
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"Energy can be transformed (changed from one form to another), but it can neither be 
created nor destroyed." – First Law of Thermodynamics 
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3 Procedure for Precisely Smearing Range IPR 

We will assume the following. 

 We wish to smear the range IPR in a range-Doppler map by a relatively precise 
amount. 

 The video signal has been de-chirped using stretch processing. 

 We wish to smear the range response by adding back a slight residual chirp, that 
is, a quadratic phase function to each pulse echo data.  Equivalently, this can be 
part of the de-chirping process. 

 The IPR is ultimately generated using a Taylor weighting with 35 dB sidelobes, 
and 4n . 

3.1 Specified Number of Resolution Units 

We begin with a specified number of resolution cells to smear across, that is, n . 

Recall that 

nTB  , (28) 

and that we calculate the corresponding peak quadratic phase deviation as 
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where 4472.0b  for the chosen Taylor window. 

Furthermore, we calculate the necessary chirp rate for the perturbation signal as 
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Combining all these yields 
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3.2 Specified Percentage of Resolution Units 

The total number of independent range dimension resolution cells in the SAR image is 
limited to 

w

IF
a

TB
N  . (32) 

An image will have somewhat less than this due to the passband filter bandwidth needing 
to be less than the sampling frequency to limit aliasing.  A typical number for usable 
resolution cells in an image might be 85%  of this number. 

The ratio of IPR smearing to the maximum number of resolution cells is calculated to be 

IF

c
w B

B
ba

N

n
r 




 . (33) 

where 4472.0b  for the chosen Taylor window.  This can be rearranged to 

IF
w

c Br
ba

B 
1

 . (34) 

This in turn allows the required chirp rate to be calculates as 

T

B
r

baT

B IF

w

c
res 

 2
2  . (35) 

Note that the residual chirp will force some target energy outside of the data passband 
that otherwise would be available.  In fact, this will occur for n  resolution cells, split 

between the near edge and far edge of the image.  To avoid an excessive amount of this, 

r  should be limited to something acceptable, say a few percent or so. 
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4 Conclusions 

The following points are worth repeating. 

 A residual chirp waveform is a quadratic phase error. 

 The quadratic phase error broadens the Impulse Response in a predictable 
manner.  The equations for this are presented herein. 

 The quadratic phase error also reduces the peak value of the Impulse Response. 
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“The difference between chirping out of turn and a faux pas depends on what kind of a 
bar you're in” -- Wilson Mizner (Playwright, 1876-1933) 
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