
SANDIA REPORT
SAND2009-2458
Unlimited Release
Printed April 2009

Linearized Theory of Peridynamic
States

Stewart A. Silling

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.



 

2 

 
 
 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government, nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 
 
 

 



SAND2009-2458
Unlimited Release
Printed April 2009

Linearized Theory of Peridynamic States

Stewart A. Silling
Multiscale Dynamic Material Modeling Department, 1435

sasilli@sandia.gov

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1322

Abstract

A state-based peridynamic material model describes internal forces acting on a point
in terms of the collective deformation of all the material within a neighborhood of the
point. In this paper, the response of a state-based peridynamic material is investigated
for a small deformation superposed on a large deformation. The appropriate notion
of a small deformation restricts the relative displacement between points, but it does
not involve the deformation gradient (which would be undefined on a crack). The
material properties that govern the linearized material response are expressed in terms
of a new quantity called the modulus state. This determines the force in each bond
resulting from an incremental deformation of itself or of other bonds. Conditions are
derived for a linearized material model to be elastic, objective, and to satisfy balance
of angular momentum. If the material is elastic, then the modulus state is obtainable
from the second Fréchet derivative of the strain energy density function. The equation
of equilibrium with a linearized material model is a linear Fredholm integral equation
of the second kind. An analogue of Poincaré’s theorem is proved that applies to the
infinite dimensional space of all peridynamic vector states, providing a condition similar
to irrotationality in vector calculus.
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1 Introduction

The peridynamic model is a reformulation of solid mechanics in which a point in a continuum
interacts directly with other points separated from it by a finite distance. The maximum
interaction distance provides a length scale for a material model, although the model may
additionally contain smaller length scales. The purpose of the peridynamic approach is
to allow discontinuous media, including continuous media in which discontinuities appear
spontaneously as a result of deformation, to be treated according to exactly the same
equations as continuous bodies.

Restricting attention to elastic materials, the central assumption in the peridynamic
model is that the strain energy density W (x) at a point x depends collectively on the
deformation of all the points in a neighborhood x with radius δ > 0. δ is called the horizon
for the material. There is no assumption that the body is continuous within this horizon,
i.e., that density is a continuous function of position in the reference configuration; nor is
there an assumption that an initially continuous body remains continuous. To keep track
of the interactions between x and all of its neighbors within its horizon, mappings called
peridynamic states are used as a convenience. These mappings allow constitutive relations
to be expressed in a concise form. These relations prescribe how the collective deformation
of the material within the horizon of x determines the nonlocal forces acting on x.

A general framework for constitutive modeling in terms of states has been presented in
[1]. The main purpose of the present paper is to develop a linearized version of the peri-
dynamic state theory applicable to small deformations. The appropriate notion of small
deformation is different in the peridynamic theory from the standard theory, because the
peridynamic notion allows for discontinuities such as cracks in the deformation. By lineariz-
ing the general theory, simplifications are obtained that specialize the peridynamic equation
of equilibrium to a Fredholm linear integral equation of the second kind. Conditions are
obtained for a linearized material to be elastic and to satisfy objectivity and balance of
angular momentum. The material properties in the linearized theory are contained in a
quantity called the modulus state that is analogous to the fourth order elasticity tensor in
the standard theory. For an elastic material, the modulus state is obtained from the second
Fréchet derivative of the strain energy density function; this is analogous to the second
tensor gradient in the standard theory.

In this paper we summarize in Section 2 the basic mathematical tools used in the
peridynamic theory. Section 3 contains a discussion of elastic material models in the fully
nonlinear theory, including new results on the connection between objectivity and balance
of angular momentum. Section 4 presents the linearized version of the theory, including
the characterization of a material in terms of the modulus state. Necessary and sufficient
conditions for a material to be elastic are proved in terms of the properties of the modulus
state. Conditions for objectivity and balance of angular momentum in the linearized theory
are proved. The equation of motion is shown to reduce to a linear integro-differential
equation in terms of displacement whose coefficients are derivable from the original nonlinear
constitutive model. The properties of the linear theory in the limit of small horizon are
discussed in Section 4.7, where it is shown that under suitable restrictions, the model
converges to the standard theory. In Section 6 is presented a brief comparison between
the peridynamic theory, with and without linearization, and the standard theory of solid
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mechanics. Examples of linearization are given in Section 5. The Appendix contains details
about the properties of second Fréchet derivatives of functions of peridynamic states.

2 Peridynamic states

Constitutive modeling within the peridynamic theory considers the collective deformation
of all the material within a neighborhood of any point x ∈ B, where B is the reference
configuration of the body. To treat the kinematics and kinetics of such a neighborhood, it
is convenient to introduce mathematical objects called peridynamic states [1].

Let δ > 0 denote the horizon, which is treated as a material property. For any q ∈ B
such that |q − x| ≤ δ, the vector ξ = q − x is called a bond. The set of all such bonds is
called the family of x and denoted H.

A peridynamic state A is a mapping that associates with any ξ ∈ H some other quantity
denoted A〈ξ〉. (Angle brackets are used to distinguish the bond that a state operates on
from dependencies that the state itself may have on other quantities, such as position.) All
the states considered in this paper are of either of two types, called vector states and double
states. These will now be defined.

2.1 Vector states

If A is a vector state, then for any ξ ∈ H, the value of A〈x〉 is a vector in R3. The set of
all vector states is denoted V. The dot product of two vector states A and B is defined by

A •B =
∫
H

A〈ξ〉 ·B〈ξ〉 dVξ,

where the symbol “·” denotes the inner product of two vectors in R3, i.e.,

A •B =
∫
H
A i〈ξ〉B i〈ξ〉 dVξ.

Here, A i and B i represent the components of A and B respectively in an orthonormal
basis, and the summation convention is used.

The composition of two vector states A and B is defined by

(A ◦B)〈ξ〉 = A〈B〈ξ〉〉

for any bond vector ξ. The identity vector state X is defined by

X〈ξ〉 = ξ ∀ξ ∈ H.

The norm of a vector state A is defined by

||A|| =
√

A •A. (1)

A vector state Q ∈ V is orthogonal if there is a proper orthogonal tensor Q such that
for every bond vector ξ,

Q〈ξ〉 = Qξ. (2)

Geometrically, othogonal states rigidly rotate the bonds in the family.
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2.2 Double states

If D is a double state, then the value of D〈ξ, ζ〉 is a second-order tensor, where ξ and ζ are
bonds in H. The set of all double states is denoted D. If D is a double state, let the left
product of A and D be the vector state A • D defined by

(A • D)j〈ξ〉 =
∫
H
A i〈ζ〉D ij〈ζ, ξ〉 dVζ ∀ξ ∈ H.

Similarly, let the right product of D and B be defined by

(D •B)i〈ξ〉 =
∫
H
D ij〈ξ, ζ〉B j〈ζ〉 dVζ ∀ξ ∈ H.

If E is also a double state, then D • E is defined by

(D • E)ij〈ξ, ζ〉 =
∫
H
D ik〈ξ,λ〉E kj〈λ, ζ〉 dVλ.

Denote by D† the adjoint of D, defined by

D†
ij〈ξ, ζ〉 = D ji〈ζ, ξ〉 ∀ξ, ζ ∈ H. (3)

Note that the order of the bonds, as well as the order of the indices, is switched when taking
the adjoint. Observe from (3) that for any vector states A and B,

B • D† •A = A • D •B. (4)

D is self-adjoint if
D† = D.

2.3 Fréchet derivatives of a function of a vector state

Let Ψ be a real valued function on the set of vector states, i.e., Ψ(·) : V → R. If Ψ is
Fréchet differentiable at A ∈ V, then for any a ∈ V,

Ψ(A + a) = Ψ(A) +∇Ψ(A) • a + o(||a||) (5)

where the Fréchet derivative ∇Ψ is a vector state.

Similarly, if S is vector state valued function on V, i.e., S(·) : V → V, then

S(A + a) = S(A) +∇S(A) • a + o(||a||) (6)

where ∇S is double state valued. If ∇Ψ is Fréchet differentiable, then the second Fréchet
derivative of Ψ is a double state defined by

∇∇Ψ = ∇(∇Ψ) on V.

The following list summarizes, omitting some details, three important results that are proved
in Appendix A:
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• If Φ(·, ·) is a function of two vector states, then the order of differentiation in mixed
second Fréchet derivatives of Φ is interchangeable.

• If Ψ(·) is a function of a vector state, then ∇∇Ψ is self-adjoint.

• If S(·) is a vector state valued function of a vector state, then ∇S is self-adjoint if
and only if there exists a scalar valued function Ψ such that S = ∇Ψ. (This result is
analogous to Poincaré’s theorem in vector calculus.)

3 Elastic peridynamic materials

This section summarizes some properties of simple materials and elastic materials; details
may be found in [1]. Consider the reference configuration of a peridynamic body B, and let
y be a motion of B; thus, the position of a point x ∈ B at time t ≥ 0 is y(x, t). Let Y[x, t]
be the deformation state, the vector state defined by

Y[x, t]〈q− x〉 = y(q, t)− y(x, t), (q− x) ∈ H (7)

(see Figure 1). The notation defined in the left hand side of (7) is helpful because we will
use Y, as opposed to its specific value Y〈q− x〉 operating on the bond q− x, as the basic
kinematical quantity for purposes of constitutive modeling analogous to the deformation
gradient tensor in the standard theory.

Figure 1. The deformation state Y maps a bond q− x into its
deformed image.
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The equation of motion is

ρ(x)ÿ(x, t) =
∫
H

{
T[x, t]〈q− x〉 −T[q, t]〈x− q〉

}
dVq + b̂(x, t) (8)

where b̂ is a prescribed body force density field, and where T is a vector state field called
the force state field. If the material is simple, then T[x, t] is determined from the collective
deformation of the family of x according to the following constitutive model:

T[x, t] = T̂(Y[x, t],x). (9)

If, in addition to being simple, the material is also elastic, then there exists a function
Ŵ (·, ·) : V × R3 → R such that for any Y,

T̂(Y,x) = ∇Ŵ (Y,x) (10)

in which ∇ denotes the Fréchet derivative with respect to Y. The function Ŵ is called the
strain energy density function.

A material model T̂ is objective [1] if, for every orthogonal state Q, every Y, and every
x,

T̂(Q ◦Y,x) = Q ◦ T̂(Y,x). (11)

As shown in [1], if the material is elastic, it is objective if and only if

Ŵ (Q ◦Y,x) = Ŵ (Y,x). (12)

The strain energy density function of an objective material is therefore invariant with respect
to rigid rotations of the family after a deformation of the family by Y.

3.1 Objectivity and balance of angular momentum

As proved in [1], global balance of angular momentum holds in a body whose material model
is such that the following local balance of angular momentum holds for every Y and every
x: ∫

H
Y〈ξ〉 ×T〈ξ〉 dVξ = 0, T = T̂(Y,x). (13)

The following result is of practical value because it is often easier to show that a material
model is objective than to show directly that is satisfies (13).

Proposition 3.1. Suppose a material model is elastic. Then it is objective if and only if
it satisfies the local balance of angular momentum (13).

Proof. Suppose Ŵ is objective; therefore (12) holds. Deform the family of any x ∈ B
(we omit the explicit dependence of Ŵ on x to shorten the notation), and let Y 0 be the
resulting deformation state. Let c be an arbitrary unit vector. Apply a rigid rotation
about c with rotation angle θ to the deformed family. Let Q

θ
be the corresponding proper

orthogonal state. Define

Y θ = Q
θ
◦Y 0, T θ = ∇Ŵ (Y θ). (14)
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From the geometry of rigid rotations, for any ξ ∈ H,

dY θ〈ξ〉
dθ

= c×Y θ〈ξ〉. (15)

By the properties of the Fréchet derivative (5), and using the second of (14) and (15),

dŴ (Y θ)
dθ

= T θ •
dY θ

dθ

=
∫
H

T θ〈ξ〉 · (c×Y θ〈ξ〉) dVξ.

Using the vector identity p · (q× r) = q · (r× p), this implies

dŴ (Y θ)
dθ

= c ·
∫
H

Y θ〈ξ〉 ×T θ〈ξ〉 dVξ. (16)

But since, by assumption, the material is objective, it follows from (12) and (14) that

dŴ (Y θ)
dθ

= 0. (17)

Therefore (16) implies

c ·
∫
H

Y θ〈ξ〉 ×T θ〈ξ〉 dVξ = 0

for every unit vector c. This can only be true if∫
H

Y θ〈ξ〉 ×T θ〈ξ〉 dVξ = 0 ∀θ. (18)

Setting θ = 0, therefore ∫
H

Y 0〈ξ〉 ×T 0〈ξ〉 dVξ = 0.

Since this must hold for every Y 0 ∈ V, (13) follows; therefore the balance of angular
momentum holds.

Conversely, if (13) holds, then clearly (18) holds. Reversing the above steps, for any
unit vector c, (16) and (18) imply (17). Therefore, using (14),

Ŵ (Q
θ
◦Y 0)− Ŵ (Y 0) =

∫ θ

0

dŴ (Y τ )
dτ

dτ = 0 ∀θ.

Thus (12) holds, and the material is therefore objective. 2

4 Linearized peridynamic models

Linearization of the bond-based peridynamic theory was discussed in [2]. In the bond-based
theory, each bond has its own constitutive model and responds independently of the others.
As shown in [1], the bond-based version is a special case of the state-based theory, which
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allows for collective response of all the bonds in the family. The bond-based description
suffers from severe limitations on the types of materials that can be accurately described,
notably the restriction on the Poisson ratio ν = 1/4 for isotropic solids. Several studies
have investigated the linearized bond-based theory, including [3, 4, 5, 6, 7, 8].

In the present paper, linearization within the more general case of state-based models
is investigated. This version has far fewer restrictions on material response than the earlier
approach and allows any Poisson ratio (aside from material stability restrictions).

4.1 Small deformations

Let B be a closed, bounded body. Consider a deformation y0, which may be large. Let u
be a displacement field superposed on y0. The displacement state field associated with u is
defined by

U[x, t]〈q− x〉 = u(q, t)− u(x, t), ∀x ∈ B, (q− x) ∈ H. (19)

To talk about linearization, it is first necessary to introduce a notion of smallness to help
establish the conditions under which the linearized version is expected to be applicable.
This motivates the following definition:

Definition 4.1. Let B be a body with horizon δ. A displacement field u on B is small if,
for any t ≥ 0,

`� δ (20)

where
` = sup

|q−x|≤δ
|u(q, t)− u(x, t)|. (21)

This definition is a nonlocal analogue of the standard assumption in the classical theory of
linear elasticity that |grad u| � 1. Definition 4.1 does not restrict rigid translations of a
body, but it does restrict rigid body rotations to small angles. Also, it allows for possible
small discontinuities in u.

Also note from (1) and (21) that if ` exists, then, for any x ∈ B,

|| U[x, t] || =
[∫

H
(U[x, t]〈ξ〉) · (U[x, t]〈ξ〉) dVξ

]1/2

≤
[∫

H
`2 dVξ

]1/2

= `
√

vol H.

Therefore, for a small deformation, we can write

||U|| = O(`). (22)
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4.2 Linearization of an elastic constitutive model

Let B be a closed, bounded body composed of a simple material, with constitutive model
given by (9). Consider an equilibrated deformation y0 corresponding to a time-independent
external body force density field b0. Let u be a small displacement field superposed on y0.
Linearizing the function T̂ given by (9) near Y0 leads to

T(U) = T0 + K •U (23)

where
T0 = T̂(Y0),

Y0[x]〈q− x〉 = y0(q)− y0(x),

U is defined in (19), and K is a double state called the modulus state defined by

K = ∇T̂(Y0). (24)

As before, the symbol ∇ indicates the Fréchet derivative with respect to Y. In this section,
heterogeneity in the body is allowed but not explicitly included in the notation; thus we
write T̂(Y) instead of T̂(Y,x).

To evaluate the accuracy with which the linearized model approximates the full model,
from (6), (22), (23), and (24), it follows that

T̂(Y0 + U) = T(U) + o(`). (25)

So, in this sense, the linearized model for a simple material is a first order approximation
for small deformations. Note that K is independent of t and of U. It can depend on x
because T̂ can depend explicitly on x in a heterogeneous body.

If the material is elastic as well as simple, then from (10) and (24),

K = ∇∇Ŵ (Y0). (26)

Proposition 4.1. Let K be the modulus state for a linearized material model. If the
material is elastic, then

K† = K. (27)

Proof. The result follows immediately from (26) and Lemma A.3. 2

If the material is elastic, then the linearized force state given by (23) is obtainable from

T = ∇W

where the function W is defined by

W (U) = Ŵ (Y0) + T0 •U +
1
2
U •K •U,

as is easily confirmed by evaluating the Fréchet derivative of this W .
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4.3 Objectivity and balance of angular momentum in linearized models

This section proposes a definition for objectivity in a linearized material model derived
from objectivity in the nonlinear theory, (11). To arrive at this, set Y = Y0 and let Q
correspond to a rigid rotation through a small angle θ about a unit vector c. Let Q be the
corresponding proper orthogonal tensor, therefore

Q = 1 + θW +O(θ2), Wij = εikjck

where εikj is the alternator symbol. This relation together with (11) and (23) implies

T0 + K • (θWY0) = (1 + θW)T0 +O(θ2).

Retaining only first order terms in θ motivates the following definition:

Definition 4.2. A linearized material model (23) is linearly objective if for every unit vector
c,

K • (WY0)−WT0 = 0

where W is given by
Wij = εikjck.

Writing out these last two expressions yields

0 =
∫
H
K ij〈ξ, ζ〉Wjm Y 0

m〈ζ〉 dVζ −WimT
0
m〈ξ〉

=
∫
H
K ij〈ξ, ζ〉 εjkmck Y

0
m〈ζ〉 dVζ − εikmckT

0
m〈ξ〉

=
(∫

H
K ij〈ξ, ζ〉 εjkm Y 0

m〈ζ〉 dVζ − εikmT
0
m〈ξ〉

)
ck.

Requiring this to hold for every choice of c results in the following condition for linear
objectivity:

Proposition 4.2. A linearized material model (23) is linearly objective if and only if

εjkm

∫
H
K ij〈ξ, ζ〉 Y 0

m〈ζ〉 dVζ − εikmT
0
m〈ξ〉 = 0 ∀ξ ∈ H. (28)

To obtain a definition of balance of angular momentum for linearized material models,
assume that T̂ satisfies (13), thus using (23) and (25),∫

H

(
Y0〈ξ〉+ U〈ξ〉

)
×

(
T0〈ξ〉+ (K •U)〈ξ〉+ o(`)

)
dVξ = 0. (29)

By (13),
∫

Y0〈ξ〉 ×T0〈ξ〉 dVξ = 0. Since U = O(`), requiring (29) to hold to first order in
` leads to the following notion of balance of angular momentum appropriate for linearized
models.
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Definition 4.3. A linearized material model of the form (23) satisfies the linear balance of
angular momentum if the following condition holds:∫

H

(
Y0〈ξ〉 × (K •U)〈ξ〉+ U〈ξ〉 ×T0〈ξ〉

)
dVξ = 0 (30)

for all vector states U.

The first term in the integrand in (30) accounts for changes in the bond forces due to U.
The second term accounts for rotations due to U of bonds with pre-existing forces T0〈ξ〉.
These small rotations have a first order effect on the couple Y〈ξ〉 ×T0〈ξ〉.

If the linearized material model is elastic, then, as in the full nonlinear theory (see
Proposition 3.1), there is a close connection between objectivity and angular momentum
balance:

Proposition 4.3. Suppose a linearized material model of the form (23) is elastic. Then it
satisfies linear objectivity if and only if it satisfies the linear balance of angular momentum.

Proof. Suppose the linear balance of angular momentum (30) holds. The component form
of this is

εkmj

∫
H

∫
H
Y 0

m〈ξ〉K ji〈ξ, ζ〉U i〈ζ〉 dVζ dVξ + εkim

∫
H
U i〈ξ〉 T 0

m〈ξ〉 dVξ = 0.

Interchanging the dummy variables of integration ξ ↔ ζ in the double integral leads to∫
H

(
εkmj

∫
H
Y 0

m〈ζ〉K ji〈ζ, ξ〉 dVζ + εkimT
0
m〈ξ〉

)
U i〈ξ〉 dVξ = 0.

Since this must hold for every choice of U, it follows that

εkmj

∫
H
Y 0

m〈ζ〉K ji〈ζ, ξ〉 dVζ + εkimT
0
m〈ξ〉 = 0 ∀ξ ∈ H.

Since the material is elastic, (27) holds, so

εkmj

∫
H
Y 0

m〈ζ〉K ij〈ξ, ζ〉 dVζ + εkimT
0
m〈ξ〉 = 0 ∀ξ ∈ H.

Using the identities
εkmj = εjkm, εkim = −εikm,

(28) is seen to hold, therefore, by Proposition 4.2, the material model satisfies linear objec-
tivity.

Conversely, reversing the above steps shows that (28) implies (30). Therefore, linear
objectivity implies the linear balance of angular momentum. 2

The condition (27) is analogous to the major symmetry of the elasticity tensor in the
standard theory,

Cijkl = Cklij ,
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which applies to elastic materials. The condition (28) is analogous to the minor symmetry
in the standard theory,

Cijkl = Cjikl

which ensures the symmetry of the stress tensor and therefore, by Cauchy’s theorem, also
ensures balance of angular momentum.

4.4 Equation of motion

No additional approximations need to be applied to the equation of motion in the linearized
theory. Substituting the linearized constitutive models into this equation transforms it into
a linear integro-differential equation expressed in terms of displacement. This equation will
now be derived.

As before, assume that a body B is subjected to time-independent body force den-
sity field b0, resulting in an equilibrated1 deformation y0. Then subject the body to an
additional body force density field b, so

b̂ = b0 + b.

Let the resulting change in the displacement field be denoted u, thus

y = y0 + u.

It is now more convenient to write volume integrals with points such as p ∈ B as the dummy
variable of integration rather than bond vectors such as ξ ∈ H. To simplify the notation, we
will adopt the convention that state quantities take on null values for bond vectors outside
the family, i.e., if the material horizon is δ, then

T[x]〈p− x〉 = 0 whenever |p− x| > δ.

From (8) and (23), we have

ρ(x)ü(x, t) =
∫
B

{
(T0[x] + K[x] •U[x])〈p− x〉

−(T0[p] + K[p] •U[p])〈x− p〉
}
dVp + b̂(x, t). (31)

Since y0 is equilibrated, from (8),∫
B

{
T0[x]〈p− x〉 −T0[p]〈x− p〉

}
dVp + b0(x) = 0. (32)

Subtracting (32) from (31) yields

ρ(x)ü(x, t) =
∫
B

{
(K[x] •U[x])〈p− x〉 − (K[p] •U[p])〈x− p〉

}
dVp + b(x, t).

1The assumption that y0 is equilibrated is not essential but results in the simplification that the linearized
material properties become time-independent.
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Writing out the dot products explicitly using (19) and (23) and rearranging leads to

ρ(x)ü(x, t) =
∫
B

∫
B

K[x]〈p− x,q− x〉(u(q, t)− u(x, t)) dVq dVp

−
∫
B

∫
B

K[p]〈x− p,q− p〉(u(q, t)− u(p, t)) dVq dVp + b(x, t).

After further rearrangement and an interchange of dummy variables of integration p ↔ q,
this becomes

ρ(x)ü(x, t) =
∫
B
C0(x,q)u(q, t) dVq −P0(x)u(x, t) + b(x, t) (33)

for all x and t, where C0 is the tensor valued function defined by

C0(x,q) =
∫
B

(
K[x]〈p− x,q− x〉

− K[p]〈x− p,q− p〉+ K[q]〈x− q,p− q〉
)
dVp (34)

and where

P0(x) =
∫
B

∫
B

K[x]〈p− x,q− x〉 dVq dVp =
∫
B
C0(x,q) dVq. (35)

As illustrated in Figure 2, C0(x,q) may be non-null even though δ < |q − x| < 2δ. This
can occur because there are intermediate points p whose horizon includes both x and q.
Thus, x and q can interact indirectly even though they are outside of each other’s horizon.
This type of indirect interaction appears in the term in the integrand in (34) involving K[p],
since this term arises from the force state at p.

In practice, the expressions for C0 in many materials of interest contain Dirac delta
functions centered at x. It is convenient to move this term outside the integral in the
equation of motion (33) by rewriting it as

ρ(x)ü(x, t) =
∫
B
C(x,q)u(q, t) dVq −P(x)u(x, t) + b(x, t), (36)

for all x and t, where
C(x,q) = C0(x,q) + λ(x)∆(q− x), (37)

P(x) = P0(x) + λ(x) =
∫
B
C(x,q) dVq, (38)

λ(x) = − lim
ε→0

∫
Sε

C0(x,q) dVq, (39)

where Sε is the interior of a sphere of radius ε centered at x, and ∆ is the Dirac delta
function in R3. From Proposition 4.1, (34), (37), (38), and (39), the following symmetries
hold for any x and q:

CT (x,q) = C(q,x), PT (x) = P(x).
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In the special case of a bond-based material description (see Example 1 below), then in
addition to this symmetry, one also has

C(x,q) = C(q,x).

Setting the acceleration term to zero in (36) yields the linearized equation of equilibrium:∫
B
C(x,q)u(q) dVq −P(x)u(x) + b(x) = 0 (40)

for all x. This is a Fredholm linear integral equation of the second kind.

4.5 Physical interpretation of P

The tensor P has the same mechanical interpretation as in the bond-based theory (see
equation (90) in [2]). To interpret P, consider the deformation with displacement field v
given by

v(x) =
{

e if x = x0

0 otherwise

Figure 2. Point q interacts indirectly with x even though they
are outside each other’s horizon because they are both within the
horizon of intermediate points such as p.
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where x0 ∈ B is a fixed point and e is an arbitrary unit vector. The body force density
field required to equilibrate this displacement field is found by substituting v into (40). The
integral vanishes, and body force density at x0 required to sustain the deformation is

b(x0) = P(x0)e.

The value of the vector P(x0)e is therefore the force density (per unit volume) at x0 required
to displace x0 by the vector e, holding all other points fixed.

4.6 Summary of the linear theory

Equation of motion:

ρ(x)ü(x, t) =
∫
B
C0(x,q)u(q, t) dVq −P0(x)u(x, t) + b(x, t)

where

C0(x,q) =
∫
B

(
K[x]〈p− x,q− x〉)−K[p]〈x− p,q− p〉+ K[q]〈x− q,p− q〉

)
dVp,

P0(x) =
∫
B
C0(x,q) dVq.

The linearized material properties are contained in the double state K. The material is
elastic if and only if K† = K, in which case it is related to the strain energy density by

K = ∇∇W.

Regardless of whether the material is elastic:

• K satisfies equation (28) ⇐⇒ the material is linearly objective.

• K satisfies equation (30) ⇐⇒ the material satisfies linear balance of angular momen-
tum.

If the material is elastic, then (28) and (30) are equivalent.

If C0 contains terms of the form ∆(q−x), it is often convenient to rewrite the equation
of motion as described in (36)–(39) and as illustrated in Example 1.

4.7 Limit of small horizon

It was shown in [6] and more generally in [9] that if a deformation of a body is classically
smooth, then the peridynamic theory converges to the standard theory in the limit δ → 0.
This limiting process is carried out in such a way that the bulk properties of the material
at every point (the material’s response under homogeneous deformation) are unchanged as
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δ changes. The limit provides a local description of the internal forces (see Equation (50)
of [9]) given by the following Piola stress tensor field:

σ =
∫
H

T̂(FX)〈ξ〉 ⊗ ξ dVξ, F =
∂y
∂x

(41)

where T̂ is the constitutive model in the original (nonlocal) peridynamic description.

To investigate the implications of this for the linear peridynamic theory, assume for
simplicity that T0 = 0 and Y0 = X. From (23), set

T̂(FX)〈ξ〉 = (K •U)〈ξ〉 =
∫
H

K〈ξ, ζ〉(Hζ) dVζ , H = F− 1 =
∂u
∂x

.

From this and (41),

σ =
∫
H

∫
H

(
K〈ξ, ζ〉(Hζ)

)
⊗ ξ dVζ dVξ,

or

σij =
∫
H

∫
H

(
K ik〈ξ, ζ〉(Hklζl)

)
ξj dVζ dVξ.

This may be rewritten as a conventional linear elastic model in the form

σij = CijklHkl, Cijkl =
∫
H

∫
H
K ik〈ξ, ζ〉ξjζl dVζ dVξ.

Observe that the fourth order elasticity tensor C defined by this equation has the major
symmetry C = CT if K is self-adjoint. Therefore, the limiting linear local material model is
elastic if the original peridynamic linear material model is elastic.

These results do not mean that the linear peridynamic theory is equivalent to the stan-
dard theory. They do mean that the standard linear theory is derivable from the peridy-
namic theory in the sense of a limit, under suitable restrictions on the smoothness of the
deformation. In particular, the limit does not exist if cracks or other discontinuities are
present. Assuming the smoothness requirements are met, then under this limiting process,
the material becomes “more local” because the interaction distance as δ becomes smaller. It
should be emphasized that the limit of small horizon considered in this section is unrelated
to the notion of a small deformation that enables the linear approximations derived earlier
in this paper.

5 Examples

These examples illustrate how to obtain K and related quantities from a nonlinear constitu-
tive model and how they result in particular forms of the linearized equation of motion. In
all cases, we consider linearization at points in the body far from boundaries and interfaces.
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5.1 Example 1: A bond-based material

Consider a homogeneous body composed of a bond-based material in which the bond force
densities are given by the following pairwise force function [2]:

f(u′ − u,x′ − x) = β(ξ)f
(
|(u′ + x′)− (u + x)| − |x′ − x|

)
M, M =

(u′ + x′)− (u + x)
|(u′ + x′)− (u + x)|

where u′ = u(x′), β and f are functions, β is even, and f(0) = 0. The same constitutive
model can be expressed in the state formalism as follows:

T〈ξ〉 =
1
2
β(ξ)f

(
|Y〈ξ〉| − |ξ|

)
M, M =

Y〈ξ〉
|Y〈ξ〉|

.

We linearize with respect to small displacements applied to the reference configuration, in
which T = 0. Thus, neglecting terms higher than first order in U,

M =
ξ

|ξ|
, |Y〈ξ〉| − |ξ| = ξ ·U〈ξ〉

|ξ|
,

T〈ξ〉 =
1
2
β(ξ)

(
f ′(0)

ξ ·U〈ξ〉
|ξ|

) (
ξ

|ξ|

)
.

With the objective of evaluating K, this last expression can be rewritten as

T〈ξ〉 =
f ′(0)β(ξ)ξ

2|ξ|2

∫
H

∆(ζ − ξ) ξ ·U〈ζ〉 dVζ

where ∆ denotes the Dirac delta function in R3. Using (6) and (23), the modulus state is
therefore given by

K[x]〈ξ, ζ〉 =
1
2
α(ξ)∆(ζ − ξ), α(ξ) =

f ′(0)β(ξ)
|ξ|2

ξ ⊗ ξ.

This K is self-adjoint, so the linearized material model is elastic. (K also happens to be
symmetric for this material model.) Note that this K〈ξ, ζ〉 is non-null only if ξ = ζ;
mechanically this means that each bond responds independently of the others. From (34)–
(39),

C0(x,q) =
1
2

∫
B

{
α(p− x)∆(q− p)−α(x− p)∆(q− x) + α(x− q)∆(p− x)

}
dVp

= α(q− x)− 1
2
∆(q− x)

∫
H

α(ξ) dVξ.

Therefore,

P0(x) = λ(x) =
1
2

∫
H

α(ξ) dVξ,

C(x,q) = α(q− x), P(x) =
∫
H

α(ξ) dVξ,

and the equation of motion for this body is

ρü(x, t) =
∫
B

α(q− x)(u(q)− u(x)) dVq + b(x).

22



The same result can be obtained, more simply, using the linearization method given in [1]
for bond-based materials. The purpose here is to illustrate the more general method within
the state-based theory.

In Example 1, by assuming f(0) = 0, we are neglecting internal forces in the reference
configuration. Example 3 illustrates how to treat such forces.

5.2 Example 2: Linear fluid

A peridynamic inviscid fluid (see equation (100) of [1]) may be described in the following
form:

T〈ξ〉 =
3kϑ
m

ω(|ξ|)|ξ|M, M =
Y〈ξ〉
|Y〈ξ〉|

where k is the bulk modulus, ω is a weighting function, and

ϑ =
3
m

∫
H
ω(|ξ|)|ξ|

(
|Y〈ξ〉| − |ξ|

)
dVξ, m =

∫
H
ω(|ξ|) |ξ|2 dVξ.

ϑ is a nonlocal dilatation, and m is a normalization factor. This model for a fluid is
constitutively linear in the sense that all the bond forces are proportional to ϑ. To evaluate
K for Y0 = X, i.e., for small displacements applied to the reference configuration, observe
that

T〈ξ〉 =
(

3k
m
ω(|ξ|)ξ

) (
3
m

∫
H
ω(|ζ|) ζ ·U〈ζ〉 dVζ

)
hence, using (6) and (23),

K〈ξ, ζ〉 =
9k
m2

ω(|ξ|)ω(|ζ|)ξ ⊗ ζ.

From the above definitions and (34)–(39), one finds

C(x,q) =
−9k
m2

∫
B
ω(|p− x|)ω(|p− q|) (p− x)⊗ (p− q) dVp,

P(x) = λ(x) = 0,

and the equation of motion for this body is

ρü(x, t) =
∫
B
C(x,q)u(q) dVq + b(x).

5.3 Example 3: Single-bond material with constant force magnitudes

This is a special case of a bond-based material in which each point has only one bond τ
that is capable of sustaining force, and the magnitude of the force is constant:

T〈ξ〉 = f0∆(ξ − τ )M, M =
Y〈ξ〉
|Y〈ξ〉|

where f0 is a constant. This type of model could reasonably represent a material composed
of unidirectional fibers with no adhesion or friction between them, in which the axial forces
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in the fibers are insensitive to the stretch. We carry out the linearization process near the
reference configuration, allowing for nonzero f0. To do this, first observe that only term in
the expression for T that depends on U is M. Differentiating M leads to

dM =
1
|ξ|

(
1− ξ ⊗ ξ

|ξ|2

)
dY〈ξ〉.

Since U is a small displacement state, we set dY = U in this equation for purposes of
linearization, resulting in

T〈ξ〉 = f0∆(ξ − τ )(M + dM)
= f0∆(ξ − τ )M + f0N∆(ξ − τ )U〈ξ〉

= f0∆(ξ − τ )M + f0N
∫
H

∆(ξ − τ )∆(ζ − τ )U〈ζ〉 dVζ

where N is a constant tensor given by

N =
1
|τ |

(
1− τ ⊗ τ

|τ |2

)
. (42)

Hence we can write
T = T0 + K •U

where
T0〈ξ〉 = f0∆(ξ − τ )

τ

|τ |
and

K〈ξ, ζ〉 = f0N∆(ξ − τ )∆(ζ − τ ).

Evidently K† = K, so, by Proposition 4.1, the linearized material model is elastic. Substi-
tuting this T0 and K into (28) shows that the model is linearly objective, and therefore,
by Proposition 4.3, it satisfies the linear balance of angular momentum. Proceeding as in
Example 1 using (34) to find the linearized equation of motion,

C0(x,q) = f0N
(
∆(q− x− τ ) + ∆(x− q− τ )−∆(q− x)

)
,

P0(x) = f0N.

Since this C0 contains a term of the form ∆(q− x), we can combine this term with P0 as
indicated in (36)–(39) to obtain

λ(x) = f0N, P(x) = 2f0N,

C(x,q) = f0N
(
∆(q− x− τ ) + ∆(x− q− τ )

)
.

The linearized equation of motion is therefore

ρü(x, t) = f0N
∫
B

(
∆(q− x− τ ) + ∆(x− q− τ )

)
u(q, t) dVq − 2f0Nu(x, t) + b(x, t)

or
ρü(x, t) = f0N

(
u(x + τ , t) + u(x− τ , t)− 2u(x, t)

)
+ b(x, t). (43)
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Because of the form of N given in (42), it follows that Nτ = 0, which implies that dis-
placements parallel to the bond direction τ result in no force in the bond. Accordingly, the
linearized equation of motion (43) always predicts zero acceleration parallel to the bonds.
However, it predicts nonzero transverse accelerations. These transverse accelerations give
rise to shear waves propagating parallel to τ . To see this, assume transverse displacements
of the form u = exp iκ(τ · x− ωt) where ω is the angular wave frequency and κ the wave
number. Using this expression in (43) with b = 0, one arrives at the following dispersion
relation:

ω2 =
2f0

ρ

(
1− cos (|τ |κ)

)
.

This is the same as the well-known dispersion relation for a lattice of linear springs and
masses, but in this case the spring constant is determined by the pre-existing bond force
density f0. If this force density is tensile (f0 > 0), then stable transverse waves can exist.
The waves are similar to transverse waves in a stretched rubber band. However, if the force
density is compressive (f0 < 0), then the right hand side of the dispersion relation can
be negative, and transverse oscillations are unstable. This instability is reminiscent of the
microbuckling mechanism in fiber-reinforced composite materials, which causes failure in
compression due to the transverse deformation of the fibers [13, 14].

For simplicity, in this example, linearization was performed in the reference configura-
tion. Similar results would be obtained in any other configuration, but the waves would be
transverse to the bond orientation where linearization occurs.

This example illustrates the role of finite bond forces in the reference configuration, if
they are present, and how they interact with a small displacement field. The linearized
bond forces transverse to τ arise because of a purely geometrical effect. The rotation of
the bonds containing a force density f0 has a first order effect on the bond forces when the
small displacement state U is applied. In Section 6, we will return briefly to the significance
of this coupling in modeling atomic scale systems.

6 Discussion

The linearized state-based theory developed in this paper has basically the same structure
as the linearized bond-based theory [2]. The equation of motion (36) is formally the same.
However, as noted in the discussion before (36), C has additional restrictions in the bond-
based theory. Also, in the linearized state-based version, the effective maximum interaction
distance between points is 2δ, where δ is the horizon in the original state-based constitutive
model that was linearized. (See Figure 2.)

The linearization process described above preserves the ability of the nonlinear peridy-
namic model to treat discontinuities in displacement, such as cracks, according to the same
equations as continuous deformations. This treatment of discontinuities is possible because
there is nothing in the notion of a small deformation in (20), (21) that requires smoothness
of the displacement field.

The peridynamic theory has been developed in such a way as to emphasize the parallels
between it and the standard theory. Table 1 lists some of the quantities, operations, and
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equations that are analogous between the two theories.

The linear theory described here can serve as the basis for an incremental form of
peridynamic constitutive models. The only change is that the modulus state becomes time-
dependent, thus

Ṫ = K[x, t] • Ẏ.

In such an incremental version, if the material is elastic, Lemma A.4 continues to apply,
hence the time-dependent modulus state is self-adjoint. (Conversely, if it is self-adjoint,
then the material is elastic.)

Certain approaches to nonlocal elasticity take linear integro-differential equations sim-
ilar to (36), or their equivalent variational form, as a starting point [10, 11, 12]. These
theories do not include the underlying structure presented here for material models based
on peridynamic states. This additional structure tends to make the entire model more com-
plete and useful by providing a way to determine the material-dependent functions C and
P in the linear integro-differential equation (36). For example, if we start with (36) and
ask how to represent a fluid within this model, it is not obvious how to choose C and P. In
the peridynamic approach, these quantities emerge in a natural way as shown in Example 2
above. Also, as shown in the present paper, the linear peridynamic theory is derivable as
a special case of a more general, nonlinear theory, by introducing only the assumption of
small deformation.

The linearized peridynamic approach also allows for finite internal forces T0 that may
be present initially when linearization is applied. These forces are important in the small
scale modeling of many materials. In an unstressed crystal, for example, there are strong
forces between the individual atoms; the stress tensor is zero if the compressive and tensile
forces acting through any surface cancel each other out. As shown in Example 3 above, these
finite nonlocal forces in the reference configuration interact with bond rotations when a small
deformation is applied, creating a first order effect on bond forces. Linear nonlocal theories
that do not include terms like T0 therefore may be neglecting a potentially significant effect.
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Quantity or relation Standard Peridynamic

Required smoothness
y ∈ C 2(B) (strong)
y ∈ C 1

pw(B) ∩ C (B) (weak)
y integrable on B

Fundamental description
of internal forces

Piola stress tensor σ Force state T

What internal
forces depend on
(nonlinear theory)

F = grad y Y〈q− x〉 = y(q)− y(x)

What internal
forces depend on
(linearized)

H = grad u U〈q− x〉 = u(q)− u(x)

Constitutive model
(nonlinear theory)

σ = σ̂(F) T = T̂(Y)

Elastic constitutive
model (nonlinear theory)

σ̂ = ∂Ŵ/∂F T̂ = ∇Ŵ

Rate of change of
strain energy density

Ẇ = σ · Ḟ Ẇ = T • Ẏ

Elastic constitutive
model (linearized)

σ = σ0 + CH, C = ∂2Ŵ/∂F2 T = T0 + K •U, K = ∇∇Ŵ

Condition for
linearization

|H| � 1 sup
q∈H

|u(q)− u(x)| � δ

Equation of motion
(nonlinear theory)

ρÿ = div σ + b̂
ρÿ =

∫ (
T[x]〈q− x〉

−T[q]〈x− q〉
)
dVq + b̂

Equation of motion
(linearized)

ρü = div (CH) + b
ρü =

∫
C(x,q)u(q)dVq

−Pu + b

Balance of angular
momentum
(nonlinear theory)

σFT − FσT = 0
∫

Y〈ξ〉 ×T〈ξ〉dVξ = 0

Condition for a
linear material
to be elastic

C = CT K = K†

Table 1. Analogies between the standard and peridynamic the-
ories. The symbol ∇ denotes the Fréchet derivative. Linearization
takes place following a large equilibrated deformation with stress
tensor field σ0 or force state field T0.
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A Properties of second Fréchet derivatives

A.1 Differentiation by a scalar parameter

The following result follows immediately from (5):

Lemma A.1. Let Ψ(·) : V → R, and let Ψ be Fréchet differentiable. For fixed A,a ∈ V,
define a function ψ(·) : R → R by

ψ(α) = Ψ(A + αa).

Then
dψ

dα
(α) = ∇Ψ(A) • a.

Lemma A.1 remains true if Ψ and ψ are state-valued.

A.2 Exchange of mixed Fréchet derivatives

Let Φ(·, ·) : V × V → R. Denote its Fréchet derivatives with respect to its first and second
arguments by ∇1 and ∇2 respectively, each holding the other argument fixed. Let the
second Fréchet derivatives of Φ be the double states denoted

∇1∇1Φ = ∇1(∇1Φ), ∇1∇2Φ = ∇1(∇2Φ), . . . .

Lemma A.2. Let Φ(·, ·) : V × V → R be twice continuously Fréchet differentiable in both
its arguments. Then

∇1∇2Φ = (∇2∇1Φ)†, ∇2∇1Φ = (∇1∇2Φ)† on V × V. (44)

Proof. For fixed A,B,a,b ∈ V, let

φ(α, β) = Φ(A + αa,B + βb),

and observe that φ is twice continuously differentiable in both variables. Then from an
obvious extension of Lemma A.1 to functions of two variables,

∂φ

∂α
(α, β) = ∇1Φ • a,

∂φ

∂β
(α, β) = ∇2Φ • b. (45)

Using (45) and differentiating again,

∂

∂β

(
∂φ

∂α

)
= (∇2∇1Φ • b) • a = a • ∇2∇1Φ • b (46)
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∂

∂α

(
∂φ

∂β

)
= (∇1∇2Φ • a) • b = b • ∇1∇2Φ • a. (47)

Because of the interchangeability of mixed partial derivatives of φ, (46) and (47) are equal,
so

a • ∇2∇1Φ • b = b • ∇1∇2Φ • a.

From this and (4),
a •

(
∇2∇1Φ− (∇1∇2Φ)†

)
• b = 0.

Since this must hold for every choice of a and b, (44) follows. 2

A.3 Self-adjointness of second Fréchet derivatives

Lemma A.3. Let Ψ(·) : V → R. If Ψ is twice continuously Fréchet differentiable, then

(∇∇Ψ)† = ∇∇Ψ on V. (48)

Proof. Define a function Γ(·, ·) : V × V → R by

Γ(a,b) = Ψ
(

a + b
2

)
∀a,b ∈ V.

Evaluating the second Fréchet derivatives of Γ and setting b = a,

∇1∇2Γ(a,a) = ∇2∇1Γ(a,a) =
∇∇Ψ(a)

4
.

Therefore, by Lemma A.2, (48) follows. 2

A.4 Poincaré’s theorem for states

Lemma A.4. Let S(·) : V → V be continuously Fréchet differentiable. A necessary and
sufficient condition for there to exist a scalar valued function Ψ(·) : V → R such that

S = ∇Ψ on V (49)

is that
∇S = (∇S)† on V. (50)

Proof.

(i) Necessity. If (49) holds, then (50) follows immediately from Lemma A.3.

(ii) Sufficiency. Suppose (50) holds. Define Ψ(·) by

Ψ(A) =
∫ 1

0
S(pA) •A dp
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for any A ∈ V. We will evaluate directly the Fréchet derivative of this Ψ. To do this, use
(5) to obtain, for any a ∈ V,

Ψ(A + a)−Ψ(A) =
∫ 1

0
S(pA + pa) • (A + a) dp−

∫ 1

0
S(pA) •A dp

=
∫ 1

0

(
S(pA) • (A + a) + (∇S(pA) • pa) •A

)
dp

−
∫ 1

0
S(pA) •A dp+ o(||a||)

=
∫ 1

0

(
S(pA) • a + pA • ∇S(pA) • a

)
dp+ o(||a||)

=
∫ 1

0

(
a • S(pA) + pa • (∇S(pA))† •A

)
dp+ o(||a||). (51)

Define a function s(·) : R → V by s(p) = S(pA). Then by (5),

ds
dp

(p) = ∇S(pA) •A.

Using this, (50), and (51) leads to

Ψ(A + a)−Ψ(A) = a •
∫ 1

0

(
S(pA) + p∇S(pA) •A

)
dp+ o(||a||)

= a •
∫ 1

0

(
s(p) + p

ds
dp

(p)
)
dp+ o(||a||)

= a •
∫ 1

0

d

dp

(
ps(p)

)
dp+ o(||a||)

= a •
[
ps(p)

]p=1

p=0
+ o(||a||)

= a •
[
pS(pA)

]p=1

p=0
+ o(||a||)

= a • S(A) + o(||a||)
= S(A) • a + o(||a||).

Comparing this with (5), evidently

S(A) = ∇Ψ(A),

establishing (49). 2
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