
SANDIA REPORT
SAND2009-2329SAND2329
Unlimited Release
Printed April 2009

OVIS 2.0 User’s Guide

J. Brandt, A. Gentile, J. Mayo, P. Pébay, D. Roe, D. Thompson, and M. Wong

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2009-2329SAND2329
Unlimited Release
Printed April 2009

OVIS 2.0 User’s Guide

J. Brandt
Sandia National Laboratories

M.S. 9152, P.O. Box 969
Livermore, CA 94551, U.S.A.

brandt@sandia.gov

A. Gentile
Sandia National Laboratories

M.S. 9152, P.O. Box 969
Livermore, CA 94551, U.S.A.

gentile@sandia.gov

J. Mayo
Sandia National Laboratories

M.S. 9159, P.O. Box 969
Livermore, CA 94551, U.S.A.

jmayo@sandia.gov

P. Pébay
Sandia National Laboratories

M.S. 9159, P.O. Box 969
Livermore, CA 94551, U.S.A.

pppebay@sandia.gov

D. Roe
Sandia National Laboratories

M.S. 9152, P.O. Box 969
Livermore, CA 94551, U.S.A.

dcroe@sandia.gov

D. Thompson
Sandia National Laboratories

M.S. 9152, P.O. Box 969
Livermore, CA 94551, U.S.A.

dcthomp@sandia.gov

M. Wong
Sandia National Laboratories

M.S. 9152, P.O. Box 969
Livermore, CA 94551, U.S.A.

mhwong@sandia.gov

Abstract

This document describes how to obtain, install, use, and enjoy a better life with OVIS

version 2.0.

3

Contents
1 Introduction . 7
2 Installation . 9

2.1 Supporting Software . 9
2.2 OVIS Install . 10
2.3 MySQL Settings . 11
2.4 PostgreSQL Settings . 12
2.5 Additional General System Settings . 13

3 OVIS Components . 15
3.1 OVIS Components . 15
3.2 General Running OVIS . 15

4 Setup . 17
4.1 XML file . 17
4.2 Database Effector . 22
4.3 Data Samplers . 25

5 Haruspices . 31
5.1 Overview . 31
5.2 Haruspex Output Tables . 32
5.3 Example: Multi-Correlative Haruspex . 34

6 Baron . 39
6.1 Cluster and Database Selection . 39
6.2 Adding Views . 39
6.3 Rotating, Panning, and Zooming the 3D View . 42
6.4 Metric Drop . 42
6.5 Setting the colors . 42
6.6 Search bar . 43
6.7 Haruspices . 43
6.8 Time Features . 46
6.9 Haruspex Requests View . 48
6.10 Saving State . 48

7 Examples . 51
7.1 Whitney Example Data . 51
7.2 Localhost Demo File . 62

8 Additional Notes and Future Work . 63
8.1 Miscellany . 63
8.2 Multiple Shepherds . 63

References . 65

4

Figures
1 Excerpt from the Whitney XML file pertaining to the rack. 18
2 Excerpt from the Whitney XML file pertaining to the node. 18
3 Excerpts from the Whitney XML file pertaining to the instances, associations, and

addresses. 20
4 Excerpt from the Whitney-Terascala XML file with the association information for

the Terascala storage rack. 22
5 Physical display of the compute nodes with storage . 23
6 Excerpt from the lmsensors sampler illustrating specification of metric name, stride,

data type etc. 26
7 Excerpts from the Whitney-Terascala XML file with partial specification of the

remote samplers. 27
8 Excerpt from Whitney-Terascala XML file showing the metric node maps which

associate remote sampler metric numbering and the corresponding components. . . 28
9 Red Storm Multicorrelative monitor analysis model drop . 35
10 Details of the analysis output in the previous figure . 36
11 Overview of the elements of the Baron . 40
12 Bookmark Editor (left) and Server Connection (right) windows. 41
13 Options for instantiating a new pane. 41
14 The color tab, where the color legend can be set. 43
15 Descriptive learn Analysis pane where the metric, components, and time range for

analysis are specified . 44
16 Descriptive monitor Analysis pane (left) and associated Model drop. 45
17 The user interactive time widget allows the user to scroll through time in the phys-

ical display. 47
18 The Time tab, which allows the user to set the time; choose to play through time;

and set the fade period. 49
19 The Baron Requests view for examining previous analyses 50
20 Investigatory analysis on the Whitney data set . 52
21 Raw metric values on the physical display pane. 54
22 Descriptive learn (left) and monitor (right) Analyses panes. 55
23 Descriptive monitor Model drop . 57
24 Multicorrelative learn (left) and monitor (right) Analyses panes. 58
25 Evinced data compared to the calculated model for the Multicorrelative Analysis

on the two metric previously studied as single metrics in the Descriptive Analyses. 59
26 Multicorrelative Analysis Model drops. 60
27 Physical display for the localhost demo example. 61

5

6

1 Introduction

This document is the user’s guide for OVIS version 2.0.

The OVIS project [5] targets scalable, real-time analysis of very large data sets. We characterize
the behaviors of elements and aggregations of elements (e.g., across space and time) in data sets
in order to detect anomalous behaviors. We are particularly interested in determining anomalous
behaviors that can be used as advance indicators of significant events of which notification can be
made or upon which action can be taken or invoked.

The OVIS open source tool (BSD license) is available for download at ovis.ca.sandia.gov.
While we intend for it to support a variety of application domains, the OVIS tool was initially
developed for, and continues to be primarily tuned for, the investigation of High Performance
Compute (HPC) cluster system health. In this application it is intended to be both a system admin-
istrator tool for monitoring and a system engineer tool for exploring the system state in depth.

OVIS 2.0 provides a variety of statistical tools for examining the behavior of elements in a cluster
(e.g., nodes, racks) and associated resources (e.g., storage appliances and network switches). It
calculates and reports model values and outliers relative to those models. Additionally, it provides
an interactive 3D physical view in which the cluster elements can be colored by raw element
values (e.g., temperatures, memory errors) or by the comparison of those values to a given model.
The analysis tools and the visual display allow the user to easily determine abnormal or outlier
behaviors.

The OVIS project envisions the OVIS tool, when applied to compute cluster monitoring, to be
used in conjunction with the scheduler or resource manager in order to enable intelligent resource
utilization [2, 3]. For example, nodes that are deemed less healthy, that is, nodes that exhibit outlier
behavior in some variable, or set of variables, that has shown to be correlated with future failure,
can be discovered and assigned to shorter duration or less important jobs. Further, applications
with fault-tolerant capabilities can invoke those mechanisms on demand, based upon notification
of a node exhibiting impending failure conditions, rather than performing such mechanisms (e.g.
checkpointing) at regular intervals unnecessarily.

More information about the OVIS project and publications describing the OVIS research in more
detail can be found at ovis.ca.sandia.gov [5].

The OVIS team can be reached at ovis-help@sandia.gov.

7

http://ovis.ca.sandia.gov/
http://ovis.ca.sandia.gov/
mailto:ovis-help@sandia.gov

This page left intentionally blank

8

2 Installation

This section contains build instructions for the OVIS release. You will be required to obtain and
install supporting software that is not part of OVIS in a manner appropriate to your platform.
Necessary supporting software is listed below. System settings for running OVIS are also given.

2.1 Supporting Software

1. Obtain and install a C compiler, a C++ compiler, OpenGL version 1.2 or newer. These are
probably already installed on your system.

2. Obtain and install PERL-DBI

3. Obtain and install a database - either MySQL or PostgreSQL will work:

MySQL:

(a) Obtain and install MySQL at least version 5.0.51
(b) Obtain and install MySql-python

PostgreSQL:

(a) Obtain and install PostgreSQL at least version 8.2.9
(b) Set the following in your environment:

setenv PGSQL_HOME /usr/local/pgsql
set path=($PGSQL_HOME/bin \$path)

4. Obtain and install Qt using the latest stable version of 4.3.x. Configure with

-plugin-sql-mysql -plugin-sql-psql -debug

As of this writing the current rpm for Fedora will work (Qt version 4.3.x). Be sure to also
install the rpm for the appropriate database plugin as well.

5. Obtain and install CMake at least version 2.6.0

6. Obtain, build and install VAC:

(a) Obtain VTK [4]. You may use either version 5.4 or the latest CVS trunk version of the
VTK source via CVS. See the instructions to “Access the CVS source-code repository”
at http://www.vtk.org/get-software.php.

(b) Tell ccmake where to find Qt:

setenv QTDIR /path/to/Qt-4.3.3

(The default location is /usr/local/Trolltech/Qt-4.3.3)

9

http://www.vtk.org/get-software.php

(c) Build and install VTK:

mkdir /path/to/vtkBuildDir
cd /path/to/vtkBuildDir
ccmake /path/to/vtkSourceDir

(d) Use the following settings within ccmake:
(Type ’c’ to configure to see these options)

BUILD EXAMPLES: ON (This setting is optional.)
BUILD SHARED LIBS: ON
CMAKE BUILD TYPE: Debug (Type in)

The following options may require typing ’t’ for advanced mode to see:

VTK USE MYSQL: ON
VTK USE POSTGRES: ON
CMAKE CXX FLAGS DEBUG: -g -Wall -Wextra -W -Wshadow

-Wunused-variable -Wunused-parameter -Wunused-function -Wunused
-Wno-system-headers -Wno-deprecated -Woverloaded-virtual

VTK USE GUISUPPORT: ON
VTK USE QVTK: ON

(To access this option, press ’c’ to configure after setting VTK USE GUISUPPORT)
DESIRED QT VERSION: 4

(To access this option, press ’c’ to configure again after setting VTK USE QVTK)

(e) make

(f) make install

7. Obtain and install libdaemon.

8. Obtain and install dbus.

9. Obtain and install avahi at least version 0.6.22. This may require you to get intltool for the
install. On 64-bit systems, you will need either version 0.6.23 or the patched version of
Avahi included with OVIS. Whatever version of Avahi you use, you must build the avahi-qt4
library if you plan to build the OVIS baron GUI.

10. Build avahi and install it as a system service. Configure avahi as follows:

setenv PKG_CONFIG_PATH /usr/local/lib/pkgconfig:$QTDIR/lib/pkgconfig
./configure --disable-python-dbus --disable-mono --disable-python \

--disable-gtk --disable-qt3

2.2 OVIS Install

1. Obtain the OVIS source at ovis.ca.sandia.gov

10

http://ovis.ca.sandia.gov/

2. mkdir /path/to/OVISBuildDir

3. cd /path/to/OVISBuildDir

4. ccmake /path/to/OVISSrcDir

5. Use the following settings within ccmake:
(Type ’c’ to configure to see these options; ignore initial warnings)

CMAKE BUILD TYPE: Debug

DNS SD INCLUDE DIRECTORIES: /usr/include (or the include dir of Avahi if you in-
stalled it in a non-standard location)

OVIS USE AVAHI: ON

VTK DIR: /path/to/VTK/BUILD/dir (Don’t use the VTK install dir)

Type ’c’ to configure. You may see more warnings but these may be ignored if there are no
conflicts.

Make sure that all the Avahi library variables point to the versions in /usr/local/lib and
not /usr/lib64 or /usr/lib libraries if you have built your own version of Avahi.

6. make

7. make install

You are now done building OVIS 2.0!

Note also that OVIS will place on your system the plain text configuration file
${HOME}/.config/Sandia/ovis.conf. This will contain Baron state information (as described
in §6) and database usernames and passwords should you choose to explicitly save them (see the
ServerConnection window in Figure 12 described in §6 and §7.1).

2.3 MySQL Settings

1. If MySQL is not currently running (however, it should be if you are running on a system
with Fedora 8 or greater installed):

/sbin/chkconfig --level 345 mysqld on # run MySQL daemon at boot
/sbin/service mysqld start # run MySQL daemon now

2. You should create a database user named ovis. This user will need full administrative priv-
ileges on the local machine and the ability to alter tables and insert records from machines
where data will be collected. The administrative privileges are required to load a shared
library (libovis-mysql.so) that contains functions used to signal the OVIS shepherd pro-
cess when rows in certain tables are inserted or modified. For connections from network

11

interfaces that face outside the cluster, you may require a password for the ovis user. Remote
connections from external networks will still require permission to insert records into the
database in order to request analyses of collected data. For example, if you will be using
OVIS to store data into a database called OVIS Cluster:

mysql -u root -p
mysql> GRANT ALL PRIVILEGES ON OVIS_Cluster.* TO ’ovis’@’localhost’;
mysql> GRANT ALL PRIVILEGES ON OVIS_Cluster.* TO ’ovis’@’192.168.1.%’;
mysql> GRANT INSERT,DELETE,UPDATE,EXECUTE,SELECT ON OVIS_Cluster.* TO
’ovis’@’someremotehost’ IDENTIFIED BY ’somepassword’;
mysql> flush privileges;

Note that you should configure mysqld so that no password is required to access the database
from the private (administrative) network of your cluster or the local host where mysqld and
the OVIS shepherd process will run. This way, sheep and shepherd processes do not need to
be configured with any database passwords.

3. Note: Some users have reported that VTK’s MySQL interface cannot find mysql.sock de-
spite its location being specified in the /etc/my.cnf configuration file. If this occurs, do the
following:

cd /tmp
ln -s /var/lib/mysql/mysql.sock mysql.sock

2.4 PostgreSQL Settings

If you wish to use a PostgreSQL database to hold OVIS information, you will need to configure it
appropriately.

1. You will need to edit the configuration file /var/lib/pgsql/data/postgresql.conf and
change the listen addresses setting to allow incoming connections from remote machines
(both sheep inserting measurements of cluster behavior and users connecting with the baron
to perform analysis). Unless you have a reason to specifically avoid a particular network in-
terface, we suggest listening on all interfaces. We also recommend turning off informational
messages printed by clients.

listen_addresses = ’*’ # listen on all network interfaces
client_min_messages = warning # print only warnings+errors

2. In addition to requesting that the daemon listen on network interfaces, you must specify
how authentication should occur in /var/lib/pgsql/data/pg hba.conf . For local con-
nections or from network interfaces on the administrative network of a cluster, you should

12

require no password so that sheep and shepherd processes may connect. For connections
from network interfaces that face outside the cluster, you may require a password for the
ovis user. As an example, consider the following lines:

TYPE DATABASE USER CIDR-ADDRESS METHOD
Connections on the local machine
local ovis ovis trust
host ovis ovis 127.0.0.1/32 trust
local OVIS_Cluster ovis trust
host OVIS_Cluster ovis 127.0.0.1/32 trust
Connections on private cluster admin network
host OVIS_Cluster ovis 192.168.1.254/24 trust
Connections from remote sites. Requires password
host OVIS_Cluster ovis 74.125.19.19/24 ident

3. If the PostgreSQL postmaster daemon was running and you changed any of the configuration
files above, you should restart it:

/sbin/service postgresql restart

Otherwise, if the daemon was not currently running, set it to run on reboot and then start it
manually:

/sbin/chkconfig --level 345 postgresql on # run daemon at boot
/sbin/service postgresql start # run PostgreSQL daemon now

4. You should create a database user named ovis. This user will need full administrative priv-
ileges on the local machine and the ability to alter tables and insert records from machines
where data will be collected. The administrative privileges are required to load a shared li-
brary (libovis-psql.so) that contains functions used to signal the OVIS shepherd process
when rows in certain tables are inserted or modified. For example, if you will be using OVIS

to store data into a database called OVIS Cluster:

createuser -s -d -l -P ovis # You will be prompted for a password.
createdb -p -U ovis ovis # Enter the password for ovis.
createdb -p -U ovis OVIS_Cluster

2.5 Additional General System Settings

Finally, many Linux distributions will need some system settings changed, links created, and dae-
mons turned on or off.

1. While it is possible to run the shepherd process on systems with SELinux enabled, it is
beyond the scope of this document to cover all of the configuration issues required. You may
wish to configure your shepherd nodes to run in permissive rather than enforcing mode.

13

2. Place the following lines in your iptables configuration file (/etc/sysconfig/iptables on
most systems):

Allow mDNS (also known as Avahi, Zeroconf, Bonjour)
-A INPUT -m state --state NEW -m udp -p udp --dport 5353 \

-d 224.0.0.251 -j ACCEPT
OVIS
-A INPUT -m state --state NEW -m udp -p udp --dport 49154 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 53170 -j ACCEPT

You may also need to add entries to allow PostgreSQL (port 5432) or MySQL (port 3306)
connections, depending on which distribution of Linux you use and which database you
prefer.

3. Turn libvirtd off

4. Set symbolic links for libraries if you are on a 64 bit machine:

cd /usr/lib64
ln -s /path/to/ovisBuildDir/lib/libovis-mysql.so libovis-mysql.so
ln -s /path/to/vtkInstallDir/lib/vtk-5.3/libvtkCommon.so.5.3 \
libvtkCommon.so.5.3

ln -s /path/to/vtkInstallDir/lib/vtk-5.3/libvtkFiltering.so.5.3 \
libvtkFiltering.so.5.3

ln -s /path/to/vtkInstallDir/lib/vtk-5.3/libvtksys.so.5.3 \
libvtksys.so.5.3

14

3 OVIS Components

In this section we describe the components of OVIS and their general interaction. For more infor-
mation on the OVIS architecture see [1].

3.1 OVIS Components

OVIS uses a whimsical and intuitive analogy for naming its components.

• Sheep - the components which report (bleat) data values. Details on setting up the sheep
data collectors can be found in §4.3.

• Shepherds - the components which maintain the databases to which the sheep report. Details
on setting up the database can be found in §4.1 and §4.2.

• Baron - the GUI from which the data can be viewed and analyzed. Features of the Baron
are given in §6 with an example in §7.1.

• Haruspices (singular Haruspex) - analysis engines, used to determine potentially porten-
tous abnormal behaviors. These are named after haruspicy, the practice of examining sheep
entrails for divination. Haruspices are described in more detail in §5.

3.2 General Running OVIS

Executables for the sheep, shepherd, baron, and the associated database effector are in
/path/to/ovisBuildDir/bin. A quick command reference is shown below for the test example
described in §7.2:

• Running the database effector:

./bin/ovis-db -d -t 16383 -u mysql://ovis@localhost/OVIS_Testone \
-x /path/to/ovisSrcDir/data/testone.ovdb

• Running the shepherd:

./bin/shepherd --name=Testone \
--database=mysql://ovis@localhost/OVIS_Testone

• Running the sheep:

./bin/sheep --name=Testone

15

• Running the baron:

./bin/baron

Note that you do not always have to start all components. If you are only taking data and not
examining it, you only need to start the sheep and shepherd. If you are only examining data in an
existing database and are not taking any additional data, you only need to start the shepherd and
the baron. If you only want to look at the geometry of a cluster and neither want to take data nor
perform any analyses, you only need to start the baron.

16

4 Setup

This section describes set up of the configuration files, samplers, and database necessary for run-
ning OVIS.

4.1 XML file

The XML file, canonically named <clustername>.ovdb, contains information on the cluster com-
ponents, including additional components such as storage elements; their physical configuration;
the metrics to be sampled; and IP addresses of the sheep, shepherd, and baron nodes.

The OVIS 2.0 release comes with an example XML file for the Whitney cluster, whitneydemo.ovdb.
In most cases, it may be easiest to copy this file and edit it for your cluster. This section describes
items of note in the XML file. Metric data for this example is also included and will be discussed
in §7.1.

An additional file, whitneyterascalademo.ovdb is included that illustrates use of OVIS for si-
multaneous monitoring of compute and storage resources.

4.1.1 Details of the XML file

In the cluster tag, the name field should be replaced with your cluster name.

The component types section lists information for each type of component you have in your cluster,
e.g., node, rack, switch. Each type should be listed separately in its own component type block.
Each component type should specify the following:

• type information - including the name by which the component will be identified, e.g., “rack”
and whether it is a container or not, e.g., a rack will contain nodes and is therefore a container.

• drawing information that will represent that item’s appearance (e.g., render/Rack.vtp,
where the path is relative to the directory the ovdb file is in)

• size and slot information for drawing and the latter for determining the position of contained
components if this component is a container. Units are in millimeters and we take 1 rack unit
(1 RU or 1U) to be exactly 42 [mm] for convenience.

• sampler information - samplers that will run on this type of component, which metrics they
will sample, and their interval. Samplers will be described in more detail in §4.3.

Selections of these blocks are shown in Figure 1 for the rack, which is a container with slots, and
in Figure 2 for the node, which has samplers. The Whitney cluster consists of nine racks; 284

17

Figure 1: Excerpt from the Whitney XML file pertaining to the rack.

Figure 2: Excerpt from the Whitney XML file pertaining to the node.

18

compute nodes; twelve gateway nodes in Rack 9; and 4 login nodes, two of height 2U and two
of height 4U in Rack 1. This layout can be see in the OVIS 2.0 physical display in many figures
in §7.1.

Include in this section at least one option for the shepherd node. The shepherd node will be used
for interactions with the database when taking data and/or when performing analyses (You do not
always have to do both as described in §3.2). A shepherd node may also be a sheep (i.e., running
a sampler) node.

The instances section lists the number of each type of component. The order in which these
occur will determine the overall component identifications – CompId in database tables (discussed
in §4.2.1) – and will be significant in particular for remote samplers (discussed in §4.3).

Multiple simultaneous shepherds are currently not a supported feature (This is discussed in §8.2).
However, you can specify multiple shepherd possibilities in advance, thus allowing yourself op-
tions as to where you will choose to start a shepherd at a later time. This can either take the form
of specifying multiple possible instances – in this example this would take the form of increasing
the number of instances of Component Type “ts” in Figure 3 (top) and assigning different address
information to each of those instances – or of assigning multiple addresses to the same instance
(i.e., the same CompId). The use of address infomation is described below.

The associations section specifies the physical layout. Containers and contained components and
their relative associations are specified. Containers must specify their type, their instance (by
“num”), their overall position and orientation in space, and, optionally a short name by which they
can be identified. Contained components must specify their type, their instance, the slot in the
container in which they reside (number of slots were specified in the component type block, and
an optional short name (e.g., for Whitney node 1, “wn0”).

Not all components in the instances must be in the associations section – for instance, you may
not want to explicitly draw the shepherd nodes. Selections of these blocks are in Figure 3 (top).

The addresses section gives IP and MAC addresses by which sheep and shepherds are identified.
An excerpt of this section is in Figure 3 (bottom). While Avahi is used by shepherds to advertise
their availability, each component must have a unique identifier in order to insert information in
the database. These identifiers appear in the CompId column of the StartupData table. You
may specify addresses explicitly in the addresses section or you may use a regular expression to
transform values from a column in the StartupData table into a component id (CompId) with a
hint. Explicit address entries look like either of the two options below in the XML file:

<addresses>
<address compid="2" type="ipv4" data="481d53a4"/>
<address compid="2" type="ethernet" data="0017deadbeef"/>

</addresses>

<addresses>
<address comptype="cn" compnum="1" type="ipv4" data="481d53a4"/>

19

Figure 3: Excerpts from the Whitney XML file pertaining to the instances and
associations (top) and addresses (bottom). The relationship between compid,
component type, and component num ensures that all information for a given
component is properly associated.

20

<address comptype="cn" compnum="2" type="ipv4" data="481d53a5"/>
</addresses>

where the type attribute should be either “ipv4” (for TCP/IP addresses) or “ethernet” (for MAC
addresses) and the data attribute should be a hexadecimal number that is either 4 or 6 bytes long
depending on the address type.

Hints are specified like so:

<addresses>
<hint>

<key column="NodeName">
<regex comptype="cn" compnum="%1">cn([0-9]+)</regex>
<regex comptype="cn" compnum="1">admin</regex>

</key>
</hint>

</addresses>

Each hint tag (there may be several) must always contain exactly one key tag. The column attribute
of the key tag specifies a column in the StartupData table. Note that when the sheep program is
run on a component without an entry in StartupData, the sheep will run a special metric sampler
that adds columns to StartupData containing the node’s name (NodeName in the example above),
operating system, kernel version, and other information reported by the uname command. This
results in many rows in StartupData with network addresses and other information specified but
no values in the CompId column that assigns a unique id to the component by its network address.
You may use regex tags in the XML file to assign a component number to any entry in StartupData
by extracting a numeric substring from the key column’s value with a regular expression. In the
example above, any entry in the NodeName column that starts with “cn” and ends with a decimal
number will be assigned the CompId corresponding to the “cn” CompType and whose instance
number matches the number in the hostname. It is also possible to create regular expressions that
match only a given hostname (such as the second regular expression in the example) and specify
both the component type and number directly. Note that component numbers are unique across all
components of a given type while component ids are unique across all components of all types.
The ComponentTable contains a mapping between component numbers and ids. If you use hints
to specify component numbers (and thus ids), you must allow the sheep processes to insert their
network addresses, host names, and other data into the StartupData table and then run ovis-db
with -t 512 (c.f. §4.2) to assign values to the CompId column in StartupData. Only after you do
this will the sheep be able to insert metric data into the database.

Note that OVIS can simultaneously monitor any number and type of resources. The example file
whitneyterascalademo.ovdb includes specification information for the Whitney cluster and an
associated Terascala [6] Storage rack which is a container of 4 chassis each of which contains 5
blades. The associations section of this file specifying this rack is shown in Figure 4. The resultant
OVIS physical display for the combined resources is shown in Figure 5.

21

Figure 4: Excerpt from the Whitney-Terascala XML file with the association
information for the Terascala storage rack.

4.2 Database Effector

Once you have a properly formatted ovdb XML file (located, say, at /path/to/cluster.ovdb),
you should run the ovis-db program to populate a database for the sheep, shepherds, and baron
to use given the XML file. The ovis-db utility also allows you to insert test data (formatted as an
XML ovdata file) into a database but that is not covered here.

First, you should create the database. The name of the database must be OVIS 〈ClusterName〉
where 〈ClusterName〉 matches the name attribute of the cluster tag of your ovdb file. We will
assume 〈ClusterName〉 is “Cluster” for the rest of this section. For MySQL, run this command to
create the database

echo "CREATE DATABASE OVIS_Cluster;" | mysql -u ovis

For PostgreSQL, run this command

createdb -U ovis OVIS_Cluster

Once the database exists, run ovis-db to populate it. For MySQL databases use:

ovis-db -d -t 8191 -x /path/to/cluster.ovdb \
-u mysql://ovis@localhost/OVIS_Cluster

For PostgreSQL databases use:

ovis-db -d -t 8191 -x /path/to/cluster.ovdb \
-u psql://ovis@localhost/OVIS_Cluster

22

Fi
gu

re
5:

Ph
ys

ic
al

di
sp

la
y

of
th

e
W

hi
tn

ey
co

m
pu

te
cl

us
te

rn
od

es
an

d
th

e
Te

ra
sc

al
a

St
or

ag
e

R
ac

k.
Fo

rt
he

co
m

pu
te

no
de

s,
A

ct
iv

e
M

em
or

y
is

di
sp

la
ye

d;
fo

rt
he

Te
ra

sc
al

a
C

ha
ss

is
,F

an
Sp

ee
d

is
di

sp
la

ye
d;

fo
rt

he
Te

ra
sc

al
a

B
la

de
s,

Po
w

er
O

n
H

ou
rs

ar
e

di
sp

la
ye

d.
O

ne
in

st
an

ce
of

ea
ch

of
th

es
e

co
m

po
ne

nt
ty

pe
s

is
po

pp
ed

ou
ti

n
th

e
fig

ur
e.

M
et

ri
c

va
lu

es
fo

r
th

e
Te

ra
sc

al
a

no
de

s
ar

e
be

in
g

ob
ta

in
ed

vi
a

re
m

ot
e

sa
m

pl
er

s
ru

nn
in

g
on

th
e

Te
ra

sc
al

a
ad

m
in

no
de

(n
ot

sh
ow

n)
.

23

Constant Action
1 Create the database
2 Create tables
4 Load dynamic library functions into the database server
8 Populate ComponentTypes table

16 Populate MetricValueTypes table
32 Populate MetricValueTableIndex table
64 Populate Components table

128 Populate MetricCollectionSamplers table
256 Populate RemoteSamplerLookup table
512 Populate StartupData table

1024 Populate ComponentGlyphs table
2048 Prepare trigger actions
4096 Populate metric tables with static data (e.g. component coordinates)

Table 1: Numeric constants that may be summed and passed to the ovis-db’s
-t flag specifying which actions are to be performed.

The -d flag tells ovis-db to drop any existing rows or tables as necessary. The -t 8191 option
instructs ovis-db which actions to perform. The number specified is a bit vector composed by
adding numbers from Table 1. The actions are executed in the order they appear in the table.
Generally you will only need to run this command once as specified above.

While most actions simply create or populate tables, some perform less trivial tasks and order
is important. The dynamic libraries (libovis-mysql.so and/or libovis-psql.so) must be in-
stalled into their proper locations before ovis-db is asked to have the SQL server process load
them. The SQL server must have loaded these dynamic libraries before the database triggers are
prepared since the triggers invoke functions provided by these libraries1.

4.2.1 Database Tables

Information in the XML file is used to set up the database tables. Of particular interest are:

• ComponentTypes - information about the Component Types

• ComponentTable - associates a given Component Type and number with the unique Com-
pId and its name.

• StartupData - for each component address information and samplers

• EventIndex - unique identification of metric value entries including in which table the entry
was stored and where in that table the entry is stored (MetricValue tables are described in

1Specifically, the function signal local haruspex is provided to send a UDP message to the local shepherd
when rows of the HaruspexRequests or haruspex subresults tables discussed later are inserted or modified.

24

more detail below).

• TimeIndex - association of the unique identifiers in the ovdbtabEventIndex and their time
of occurrence.

You should also be aware of the HaruspexIds table. This table assigns unique instance numbers
to any active shepherds on this database. The use of “Haruspex” in the name reflects the intent
that analyses may be performed differently if there are multiple shepherds available. Multiple
shepherds is not a supported feature at this time and is discussed (briefly) in §8.2.

Database tables for the samplers are described in more detail in §4.3. Database tables for analyses
are described in §5.2.

4.3 Data Samplers

The OVIS 2.0 release comes with several samplers, some of which read from well-known lo-
cations on Linux installations and will probably work as is, and some which will have to be
altered to work with your system. The former include those that read from /proc, such as
ovMetricLinuxProcStatUtilSampler and ovMetricLinuxProcMemInfoSampler. The latter
will require some modification of configuration information, such as available metrics from the
source or path information as in, for example, ovMetricExampleLinuxlmsensorsSampler and
ovMetricExampleLinuxSmartctlSampler.

Samplers can either be local or remote. A local sampler is a process running on machine A that
collects metrics related to machine A and then inserts them on behalf of itself into an OVIS database
– which is usually some remote machine C but could also be A. A remote sampler is a process
running on machine A that collects metrics related to some other machine B and then inserts them
on behalf of machine B into an OVIS database – which is usually some remote machine C but
could be B (or even A, but this would be odd). The only constraint is that A and B must be
distinct machines. Examples of remote samplers are ovMetricExampleLinuxIMPItoolSampler
and ovMetricExampleLinuxSNMPNodeSampler. In the case of the combined Whitney-Terascala
monitoring, all of the Terascala samplers were remote with chassis data being collected via an
SNMP sampler, and blade and associated disk data being collected via both an SNMP sampler and
a Smartctl sampler. These remote samplers were running on the Terascala admin node.

In the sampler, each metric must be identified by its name, the frequency of that metric’s insertion
into the database (the stride), and the metric value’s data type (e.g., ovis::INT), as illustrated
in Figure 6. Note that some metrics lend themselves to reporting as instantaneous values while
others as differences from their last value, as for counters. The sampler inserts the metric data
value into the database via its RecordXXX (e.g., RecordInt) function that takes the data value and
a number identifier that uniquely distinguishes the component and the metric. Required functions
in the sampler, such as GetMetricName and GetMetricStorageType, associate a particular num-
ber identifier with a particular metric. For local samplers, unique distinguishing of the component
is done innately by the identity of the sheep. The situation is more complex for remote samplers,

25

Figure 6: Excerpt from the lmsensors sampler illustrating specification of met-
ric name, stride, data type etc.

however. Not only must the remote sampler associate a particular numeric identifier with a particu-
lar metric, but the numeric identifier must also be used to distinguish the component. For example,
a remote sampler that keeps track of 3 metrics on behalf of 5 other components will use 15 unique
identifiers. The mapping of these identifiers to the particular components is specified via the sam-
pler listing in the XML file and the metric node map, as described below. These identifiers are
then placed into the RemoteSamplerLookup table of the database by the ovis-db command and
read by the sheep process running the remote sampler at startup.

Setup in the XML file for remote samplers involves the following:

• you must specify dummy samplers with the metrics of the correct name for the component
on whose behalf data will be taken, in order for the correct tables to be established;

• you must specify real remote samplers with the metrics of the correct name and the real
collection interval on the component that is actually doing the collection and insertion; and

• you must specify a metric node map that associates a remote sampler instance and its
unique metric identifiers with the component upon which it is running and the component
on whose behalf data is being taken.

In Figure 7 the sampler specification for the Terascala chassis is a dummy, with the sampler speci-
fication on the Terascala admin node being the actual remote sampler that will be instantiated. The
metric node map in the associations section shown in Figure 8 associates the unique metric num-
berings of the real sampler running on the Terascala admin node with the particular Terascala com-
ponent (e.g., Chassis or Blade) to which those metrics pertain. For instance, in Figure 8 metrics 0-6
(the unique identifiers in the remote sampler) in the ovMetricTerascalaSNMPChassisSampler
running on the first instance of type tsadmin (which is the only admin node) are actually values for

26

Figure 7: Excerpts from the Whitney-Terascala XML file with partial specifi-
cation of the remote samplers. The samplers (top) given for the component to
which the data pertains, in this case the Chassis, are dummy and are just used
to establish the metric tables. The samplers (bottom) for the component that
will actually do the database insertion are real.

27

Figure 8: Excerpt from Whitney-Terascala XML file showing the metric
node maps which associate remote sampler metric numbering and the corre-
sponding components.

the first chassis, tsnode 1 (the component types and number associations are in the instances and
associations sections as described earlier with respect to the Whitney XML file). The order of the
metrics (e.g., which metric is 0) is determined as previously described.

There is currently no mechanism to dynamically add in a sampler once the OVIS database has been
instantiated, as the tables for the metric data are set up at that time. These are discussed in the next
paragraph.

4.3.1 Database Tables For Samplers

There are separate database tables for each combination of component type and metric that are
canonically named ‘Metric’ ComponentType MetricName ‘Values’. As an example, compute
nodes (abbreviated “cn”) with a metric named CPUTemp would have metric values stored in a
table named MetricCnCPUTempValues. Each row corresponds to a unique reporting of a metric
value and its associated component. When combined with information from the EventIndex and
TimeIndex, one can determine which component reported what value at what time.

The MetricValueTableIndex holds information on the MetricTables, in particular associating a
particular table by name with its identifier and the identifier of the sampler associated with that
metric. The samplers are listed in the MetricCollectionSamplers table, along with information

28

regarding upon which component type they sample on behalf of and on what interval they sample.
The interval is determined at setup time from information in the XML file. With the information
from these tables, one can determine into which table a particular metric is inserted, for which
type of component, and by which sampler. This is of particular interest for the remote samplers
where the component running the sampler is not the component for which the value actually per-
tains. Remote sampler association information thus requires information from the RemoteSam-
plerLookup table which associates a sampler, a metric, the component that is reporting the values
into the database, and the component for which the value actually pertains.

Knowledge of these tables can help in debugging samplers, particularly remote samplers, as de-
scribed in the next section.

4.3.2 Debugging Remote Samplers

Since the setting up of the remote samplers is non-trivial it is suggested that you verify the associ-
ations after you have instantiated the database with the Database Effector §4.2. In particular, note
that the Database Effector will warn you if you put in a duplicate metric map, but there is nothing
that tells you:

• if there are not enough or too many numbers compared to the number of overall metrics

• if there are the wrong number of metrics mapped onto a given remote component

– this is to allow you to deliberately not collect metrics that you are not interested in, but
it also opens you up to accidentally missing metrics, or accidentally numbering wrong

• if there is a bad type and/or number of the remote component in the metric map or in the
addresses section

– this could lead to the sampler not starting, or starting but not being able to write the
metrics to the database properly

In order to verify the associations, check the RemoteSamplerLookup table (which matches up
CompId, SamplerId, MetricId, and RemoteCompId) for the following things:

• cross-reference CompId and RemoteCompId in RemoteSamplerLookup with the Compo-
nentTable to make sure that the component associations are correct.

• make sure that the CompId is not -1 or something you don’t want it to be – if so you may
have misnamed the sampler or the metric in the XML file

• cross-reference SamplerId in RemoteSamplerLookup with those in MetricCollectionSam-
plers, to make sure that the remote sampler identity is correct.

• make sure that the MetricIds are correct. In particular:

29

– verify that there are the correct number of them

– verify that the right ones go with the right remote CompId

Do not use hyphens in your metric names.

You can test samplers (both local and remote) via the following:

./bin/ovisTests testSampler mySampler interval iterations

where mySampler is the sampler to be tested and interval is the interval between iterations of the
test. The test will print values to stdout and not to a database.

30

5 Haruspices

In Roman practice inherited from the Etruscans, a haruspex (plural haruspices) was a man trained
to practice a form of divination called haruspicy, the inspection of the entrails of sacrificed animals,
especially the livers of sacrificed sheep.

In this section, we first provide an overview of the analysis engines, which are called haruspices
in OVIS parlance. We subsequently illustrate the utilization of these haruspices by providing an
application of the multi-correlative haruspex; for more context about this application example,
please refer to [3].

5.1 Overview

Definition 5.1. A OVIS 2.0 haruspex is a process that:

1. is triggered by the baron,

2. runs on a shepherd node,

3. executes an analytical engine.

In particular, haruspices rely on specific tables of the underlying OVIS 2.0 database.

There are currently four types of analyses supported by OVIS, although only three are part of
the public release; only these are described here. Readers interested in the fourth type (Bivariate
Bayesian) should contact the authors to discuss licensing options.

Each haruspex has the option to be run using either the learn or monitor modes of operation: In
learn a model is calculated or inferred from unmodified data. Such a model can take several forms,
such as statistical moment estimators, PDFs, etc.. In monitor the roles are here interchanged with
those of the learn mode: the data is now assessed with respect to a given model. The output of
the monitor mode is a collection of outliers, described in a way that allows for unambiguous and
efficient retrieval of the particular components and times to which these correspond; the output
may also be presented as an ordered list so as to reflect a gradation in severity or abnormality
of behavior. The output may also be seen in the physical view, where components’ values at
the displayed time can be compared to the calculated model and colored accordingly. Note that
reportable cases may occur either when a particular event diverges from the model more than
what has been set as acceptable or because no (or fewer than specified) events of a particular type
occurred. For instance, outliers – which may be defined in several ways depending on the type of
model being used – can be identified as elements of the data set that deviate from what the model
predicts within pre-defined acceptability bounds.

Within this framework, the currently available engines are the following:

31

Descriptive haruspices: In learn mode, descriptive statistics of the data set of interest are cal-
culated (estimators of the mean, standard deviation, skewness, kurtosis, as well as bounds). These
statistics can be interpreted directly by the user, or be used as input parameters to the monitor mode
of the descriptive engine itself or even of another engine, e.g., to complement expert knowledge
prior to Bayesian parameter estimation. In monitor mode, relative distance in terms of mean and
standard deviation (which, as indicated, may be the result of a prior learn stage) is the criterion
according to which outliers are detected, based on user-specified probabilistic thresholds.

Bivariate and Multivariate Correlative haruspices: The goal of these engine is to seek anoma-
lous behaviors by calculating (in learn mode) or devising (with “expert knowledge”) multivariate
correlation statistics, via mean vectors and covariance matrices – and thus, implicitly, a multiple
linear regression model – for a set of tuples of variables of interest, and examining (in monitor
mode) how individual observations of these tuples of variables of interest deviate from the afore-
mentioned model. Note that the bivariate haruspex explicitly presents the linear regression model
to the user; the multivariate does not because multiple regressions can be calculated, resulting
in user interface complications which are not handled yet. Such deviations are characterized in
terms of the the multivariate Mahalanobis distance computed with the mean vector and covari-
ance matrix. This is especially useful to prevent the user from conducting more advanced and
costly analysis such as running a Bayesian engine when linear correlation between metrics can be
evinced.

5.2 Haruspex Output Tables

This section is especially intended for the advanced OVIS user, as it delves into the details of “under
the hood” of the database model used by haruspices. The user who will mostly use the Baron and
does not plan on manually inspecting the haruspex tables can directly skip to §5.2.4 where reported
events tables are described.

All haruspices report their results in output tables of the underlying OVIS database. This approach
enables data persistence, thus allowing for later inspection of the results, storage, comparison, etc.
Each haruspex uses output tables specific to it, as specified below using SQL types (note that the
SequenceId field is unused in OVIS 2.0). These tables will likely change in future versions of
OVIS.

5.2.1 Descriptive Haruspex-Specific Output Tables

In learn mode, each descriptive haruspex logs its results into the table HaruspexDescriptiveSub-
Results with primary key (RequestId, SequenceId, Rank):

RequestId SequenceId Rank SampleSize Minimum Maximum Sum1 Sum2 Sum3 Sum4

INT(11) INT(11) INT(11) INT(11) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

32

Subsequently, a MySQL trigger updates the summary table HaruspexDescriptiveResults with
primary key (RequestId, SequenceId):

RequestId SequenceId SampleSize Minimum Maximum Sum1 Sum2 Sum3 Sum4

INT(11) INT(11) INT(11) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Finally, the descriptive statistics are obtained by calling the (static) CalculateFinalSatistics method,
which calculates the mean, unbiased variance, sample skewness, sample kurtosis, and G2 kurtosis
estimators (min and max do not need to be updated). These final results are those that are ultimately
presented to the user by the Baron (cf. § 6.7).

5.2.2 Correlative Haruspex-Specific Output Tables

Similarly, in learn mode, each correlative haruspex logs its results into the table HaruspexCorrel-
ativeSubResults with primary key (RequestId, SequenceId, Rank):

RequestId SequenceId Rank SampleSize Sum1A Sum1B Sum2A Sum2B SumAB

INT(11) INT(11) INT(11) INT(11) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Subsequently, a MySQL trigger updates the summary table HaruspexCorrelativeResults with
primary key (RequestId, SequenceId):

RequestId SequenceId SampleSize Sum1A Sum1B Sum2A Sum2B SumAB

INT(11) INT(11) INT(11) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Finally, the correlative statistics are obtained by calling the (static) CalculateFinalSatistics method,
which calculates the means, unbiased variances, and unbiased covariance estimators, along with
the linear correlation coefficient and the 4 linear regression coefficients. These final results are
those that are ultimately presented to the user by the Baron (cf. § 6.7).

5.2.3 Multi-Correlative Haruspex-Specific Output Tables

In learn mode, each multi-correlative haruspex logs its results into the table HaruspexMultiCor-
relativeSubResults with primary key (RequestId, SequenceId, Rank, MetricA, MetricB):

RequestId SequenceId Rank MetricA MetricB SumAB

INT(11) INT(11) INT(11) INT(11) INT(11) DOUBLE

Subsequently, a MySQL trigger updates the summary table HaruspexMultiCorrelativeResults
with primary key (RequestId, SequenceId, MetricA, MetricB):

33

RequestId SequenceId MetricA MetricB SumAB

INT(11) INT(11) INT(11) INT(11) DOUBLE

−1 −1 size

i = 0, . . . ,m−1 −1 first moments

i = 0, . . . ,m−1 j = 0, . . . , i second moments

Here m is the number of metrics; the number of rows in HaruspexMultiCorrelativeResults for
each multi-correlative haruspex run is 1+m+m(m+1)/2. Finally, the multi-correlative statistics
are obtained by calling the (static) CalculateFinalSatistics method, which calculates the means and
Cholesky values. These final results are those that are ultimately presented to the user by the Baron
(cf. § 6.7).

5.2.4 Common Haruspex Output Tables

In addition to the haruspex-specific output tables, in monitor mode all haruspices log reportable
events into the table HaruspexRequestsReportedEvents with primary key ReportedEventId (auto-
incremented, may not be sequential for a given RequestId):

ReportedEventId RequestId Cause Value

INT(11) INT(32) INT(32) DOUBLE

where RequestId, Cause, and Value indicate, respectively, the haruspex that reported the event, the
type of event, and a numeric characterization of the event (whose meaning may depend on Cause
and on the haruspex type).

To make it possible to locate the datum that generated a reportable event, table identifier and key
in this table are logged for each event into the table HaruspexRequestsReportedTableKeys with
primary key ReportedEventId:

ReportedEventId TableId TableKey

INT(32) INT(32) INT(32)

Note that CompId is not present in the reported event tables, because it is implicit in the combi-
nation (TableId, TableKey) in HaruspexRequestsReportedTableKeys. In fact, if and when correla-
tions across multiple components are supported, there may be no single CompId associated with
an event (this would of course involve changes to HaruspexRequestsComponents).

5.3 Example: Multi-Correlative Haruspex

We now illustrate the use of OVIS 2.0 haruspices with an application of the multi-correlative harus-
pex to resource characterization. In this approach, anomalous behaviors are sought by

34

1. calculating (with “training data”) or devising (with “expert knowledge”) mean vectors and
covariance matrices – and thus, implicitly, a multiple linear regression model – for a set of
tuples of variables of interest, and

2. examining how individual observations of these tuples of variables of interest deviate from
the aforementioned model; such deviations are characterized in terms of the significance
level to which they correspond when the mean vector and covariance matrix are made those
of a multivariate Gaussian model. Note that this is directly related to the multivariate Maha-
lanobis distance computed with the mean vector and covariance matrix.

Figure 9: Actual rendering of the Red Storm platform zoomed in on the par-
tition on which data were taken. The nodes are colored red if below the user-
defined probabilistic threshold for being too unreliable and green otherwise.
Grey indicates there was no data in the display time window for that resource
for the metric being displayed.

For instance, Figure 9 displays a simple use case where only one pair of variables is of interest
to the analyst, namely PROCPIC 0 CORE and PROCPIC 0 Proc Int, which we will respectively
denote A and B.

When the first phase of the process described above is meant to be calculated (as opposed to
devised, e.g., using expert knowledge), then the “Learn” mode of the haruspex is turned on prior to
the execution of the haruspex on a set of training data. This is the case in the example of Figure 9:
specifically, all observations (a,b) of (A,B) between the specified start and end times (respectively
10:52:02 a.m. and 4:45:02 p.m. on November 8, 2007) on all components called rsnoden, where n
varies between 1 and 3000, are used to “Learn” a model. To ensure that the number of observations
are the same for each component, the data is interpolated by taking the most recent observed value
at even time intervals for each component.

35

As a result, a mean vector and a covariance matrix are calculated, and are available to the user in
the “Learn” tab (not selected in the figure).

Figure 10: The interface in Figure 9, zoomed in on the analysis output.

Note that the second phase of the analysis process, called “Monitor”, can be performed on either the
same data set used to infer a model, or on a different data set. For simplicity, the former option is
the case in our running example. Therefore, as illustrated again in Figure 9 and Figure 10, under the
“Monitor” tab, one can see the mean vector and Cholesky-decomposed covariance matrix that have
been calculated by the haruspex during the “Learn” phase. In particular, the means µA = 1364.15
and µB = 32.4116 as well as the covariance matrix

Σ := cov(A,B) = U tU,

where

U =

 5.07163 −0.407603

0 8.21949

 ,

36

are those of the underlying (bivariate, in this case) linear regression model.

It is beyond the scope of this article to delve into too many details about multiple linear regression
models and their relationships to multivariate Gaussian distributions; one only has to know that the
underlying linear model is mapped into an N-variate (bivariate in our running example) Gaussian
model, whose probability density function (PDF) is, by definition,

fX(x) :=
1

(2π)N/2|Σ|1/2 exp
(
−1

2
(x−µ)t

Σ
−1(x−µ)

)
,

where xt := (x1, . . . ,xN) is the observation of an N-tuple of interest. In our bivariate example, this
simplifies into

f(A,B)(x) =
1

2π|Σ|1/2 exp
(
−1

2
(x−µ)t

Σ
−1(x−µ)

)
,

where xt := (a,b) and thus (x−µ)t = (a−µa,b−µb). (Note that the inverse covariance matrix Σ−1

is computed only once, by means of the Cholesky decomposition.) The argument of the exponen-
tial is −1

2 times the squared Mahalanobis distance, which is the natural metric associated with the
multivariate distribution. The significance level of observation x is defined as the probability (in
the Gaussian model) of observing a Mahalanobis distance greater than that of x. This significance
level is a natural choice of cumulative distribution function (CDF) for the multivariate Gaussian
distribution; it ranges from 1 for a central (mean) observation to 0 for observations infinitely far
from the mean vector.

With this in mind, we define an outlier as any observation x of X whose significance level is less
than a user-specified threshold τ (typically τ� 1). If observations accurately follow the multi-
variate Gaussian model, then a fraction τ of observations should meet this criterion. Observations
may not follow the inferred model, however, either because the data are non-Gaussian or because
the data being monitored have a different distribution from the training data. Nevertheless, the
computed significance level is useful in assessing the deviance of an observation.

A simpler description of the significance level is possible in the bivariate case. There, the signif-
icance level happens to equal the exponential factor in the Gaussian PDF. This factor can then be
described as the relative probability (normalized to the maximum of the PDF), and an outlier can
alternatively be defined as an observation x with

fX(x)
maxIR2 fX

< τ.

As shown in the “Monitor” tab of Figure 10, a threshold value of τ = 0.005 was chosen, resulting
in 85 outliers being reported by the haruspex, and listed in the lower right text window of the user
interface. For example, the first of these outliers corresponds to an observed value of (1492,38),
which, in the context of the underlying model, has a significance level (or relative probability) of
≈ 1.574 ·10−139 < τ = 0.005, making it an outlier according to our definition. (Such a vanishingly
small value indicates that the data are non-Gaussian, since an event with actual probability of order
10−139 would not realistically occur.) In turn, in the cluster view of Figure 9, all components evinc-
ing outlier behavior at the time shown in the view are colored in red, whereas other components

37

appear in green (data were not collected on the grayed-out components during the time interval of
interest).

38

6 Baron

The Baron is the graphical interface of OVIS which enables exploration of the data. The Baron
allows the user to:

1. select a cluster and a relevant database

2. visualize cluster geometry in a physically accurate display

3. visually inspect raw variable values and those variables relative to model calculations on the
physical display

4. create haruspices and inspect the results of their analyses, both textually and graphically

5. view historical data, browsing through time history both manually and animatedly

6. view live data, updating in real-time, and

7. tune many display parameters.

Features and capability of the Baron are described in this section. Figure 11 is a picture of the
Baron with the elements referred to in this section labeled.

6.1 Cluster and Database Selection

The Bookmark Editor allows you to specify to which database you want to connect. Figure 12
(left) shows selection options filled out for connecting to local database holding the test data set for
the Whitney cluster. Use of this data set is discussed in §7.1. In addition to selecting a database, you
may enter connection parameters (user name and, possibly, a password) in the Server Connection
window in shown in Figure 12 (right). WARNING: In the ServerConnection window, if you
choose the option to remember the password for any of the different OVIS 〈clustername〉
databases, the user name and password on your database will be stored in plain text in the
file ${HOME}/.config/Sandia/ovis.conf.

The yellow star icon indicates a user-specified static entry. The blue globe icon indicates an
automatically-populated entry, representing an available shepherd as advertised by Avahi.

6.2 Adding Views

Any number of physical and analysis panes may be shown simultaneously. You can create addi-
tional panes by either clicking on the New Pane Icons in the upper left corner of Figure 11 or the
Split Pane buttons in the upper right corner of any existent pane, also seen in Figure 11 which split

39

Figure
11:

O
verview

ofthe
elem

ents
ofthe

B
aron

w
ith

annotation.

40

Figure 12: Bookmark Editor (left) and Server Connection (right) windows.

Figure 13: Options for instantiating a new pane.

41

the existent pane in the direction indicated in the buttons. The buttons include one by which a pane
can be closed.

When a split is selected, options for the new pane are presented and can be selected as in Figure 13.

6.3 Rotating, Panning, and Zooming the 3D View

The middle pane in Figure 11 is a 3D interactive physical representation of the cluster of interest.
Moving the mouse while pressing the left mouse button will rotate the 3D view. Moving the mouse
while pressing the middle mouse button will pan the 3D view. Moving the mouse while pressing
the right button will zoom the 3D view. Also, rotating the mouse wheel button will zoom the 3D
view. Selecting the Display tab (shown in Figure 11) presents the user with the option to reset the
physical view to its original position.

6.4 Metric Drop

On the far left of Figure 11 is a pane which lists the various component types in this data set and
the metrics which are taken upon them. Metrics can be selected with the mouse and dragged and
dropped upon the physical view (Middle pane). The physical view will then color the elements by
the selected metric. A color bar will indicate the color-value mapping. By default, the range has
as its max and min values the max and min values for that metric for the time displayed (More on
Time in §6.8). The range can be overridden as described in §6.5.

Components having no value at that time (or within the relevant fade period, described in §6.8)
will be shown as gray.

Drops of analyses onto the physical view are also enabled and are discussed in §6.7.

6.5 Setting the colors

The Baron provides a default background color, as well as default color scheme, scale and ranges
for the component variables. These can be modified through the Colors tab – the tab is shown
in 11), with the content of the tab illustrated in Figure 14. The Components section of the Color
tab allows one to override the default range for the color legend for metrics. This can be done by
selecting Override default range and specifying the range explicitly. If this is done, the color
range for the metrics will be fixed, even as one animates through time (see §6.8).

Setting the range manually allows easy visual comparison of the distribution and locations of
regions of interest across time and across data sets. Selecting a subset of the overall possible range
allows one to see finer grained detail within a section of interest. For example, if the range for a

42

Figure 14: The color tab, where the color legend can be set.

particular metric ranges from 0-100, one may be primarily interested in details of the values in the
upper end of the range, and therefore may set the color range from 80-100, for instance.

All color related options in this section will be retained as described in §6.10.

6.6 Search bar

The Search Bar (aka Component Bar) 11 is used to pop out components in the physical display.
This is shown in Figure 11 where we have popped out a node and a rack. Components to pop out
can be specified by short name (e.g., wn207) or by component type and number (e.g., rack8). The
advantage of the former is that the short name is generally well known. The advantage of the latter
is range notation is supported (e.g., “node10-14,node57-65”).

Some of the analysis monitor results can also be dropped onto the Search Bar, popping out the
outlier components. This is described in more detail in §6.7.

6.7 Haruspices

The Baron provides a graphical interface for creating and obtaining the results of the haruspices
(cf. 5).

A typical analysis pane is shown in Figure 15. It contains regions in which to input the metric
or metrics of interest, the time range of the calculation, and the components involved in the cal-
culation. The metrics can be populated by dragging and dropping them from the metric list. The
components can be specified by component type and number, in which case ranges are supported,
or by short name.

43

Figure 15: Descriptive learn Analysis pane where the metric, components, and
time range for analysis are specified

44

Fi
gu

re
16

:
D

es
cr

ip
tiv

e
m

on
ito

rA
na

ly
si

s
pa

ne
(l

ef
t)

an
d

as
so

ci
at

ed
M

od
el

dr
op

.

45

learn analyses learn a model; monitor analyses determine outliers given a model. For more infor-
mation on the learn and monitor phases of OVIS analyses, please refer to §5.1.

After a learn analysis, one can click on the Monitor tab and the Monitor window will have the
the model parameters automatically filled with the results of the learn analysis. In the case of the
Descriptive Learn analysis in Figure 15 the associated Descriptive Monitor analysis is shown in
Figure 16 (left). The Mean and Deviation are automatically populated from the learn; the number
of deviations is by default 2. All of these values can be changed by the user. In the case of
the Multicorrelative analysis, the parameters that are automatically filled are those of the matrix
described in §5.3.

Clicking the Learn or Monitor buttons on the pane start the analysis. When the results in an analysis
window are not current, either because new parameters are being entered into an analysis pane or
because the analysis has not yet returned, the result area of the window is colored pink.

After a monitor analysis, outliers are displayed in the results window. These outliers can also be
displayed in the physical display, by dragging and dropping the analysis onto the physical display
(Grab where it says “Haruspex submitted successfully”). Supported drops are

• Descriptive Monitor - colors everything below the threshold red, above blue, and in between
green. See Figure 16 (right).

• MultiCorrelative Learn - colors on a scale from red to blue everything by its significance
level. See Figure 26 (top) in §7.1.

• MultiCorrelative Monitor - colors red everything with significance level below the threshold,
green everything above the level. See Figure 26 (bottom) in §7.1.

In the first and third cases, the values corresponding to the color bar legend are meaningless - they
only serve to make “good” values green and bad values “red” or “red/blue”. The multicorrelative
cases are described in more detail in §7.1.

Outliers will pop out of the physical display if the analysis is also dragged to the Search Bar. So
that you may be sure that you have successfully dropped the results properly, the Search Bar will
flash green a few times after the drop.

The Repeat Analysis button is currently not enabled. When enabled it will automatically recalculate
the analysis including any newly collected data. This will ensure that the model is current and will
allow the user to note model changes with time. This feature will be enabled in a future release.

6.8 Time Features

One can manually scroll through time or have the Baron automatically animate playing through
time, and view the current state in the physical display.

46

Figure 17: The user interactive time widget allows the user to scroll through
time in the physical display.

The user interactive time widget 17, shows the current time in the physical display. There are
marks/hands for month, day, hours, minutes, and seconds that can be grabbed and pulled forward
and backward in time with the current state shown in text as well.

Additional handling of time is done in the Time tab – the tab is shown in 11), with the content of
the tab illustrated in Figure 18.

The first check-box controls the visibility of the time widget. The box below enables animated
playing through time. Setting the x RealTime entry to values greater than zero enables automatic
playback at the specified rate, where 1 equals real time. Setting the Frame Rate (target) entry
specifies the maximum number of times per second that the baron should update and redraw the
cluster. High values require more communication with the database but will make color fades
and the motion of the clock hands on the time widget appear smoother. Low values require less
communication but may result in a “jumpy” looking interface. It is possible to specify a frame rate
that the baron is unable to produce. In this case, it will redraw the cluster as quickly as it can.

After the x RealTime and Frame Rate (target) entries have been set, the user can press the
space bar (on the keyboard) in the 3D View tab to start and stop the clock. Note that stopping the
clock will only freeze the display, and the internal clock will continue to progress; the 3D View
will reflect the data at the frozen time.

The playback time section allows one to manually set the initial time of the clock. The Earliest
button will set the time to the earliest time in the database; the Now button will set the time to the
current time on the machine. After adjusting the time, click the Apply button for the changes to
take place.

Data is recorded in the database at the fidelity of a second. Because of issues such as clock skew,
database insert times, etc., it is desirable to see all data not at a given point in time, but within
a window of time. For this region a Fade Period can be set that will allow components in the
physical data to be colored by the data value corresponding for that time nearest in time to that
shown on the clock within the specified fade period. For example, for the Whitney database,
described in §7.1 data is taken on 5 second intervals, so one should set the Fade Period to 9, and
preferably greater, so that all components will be colored by a timely value. In order to distinguish
the age of values, the component color will also fade out as the data value gets increasingly distant
from the clock time. There is no correct value of the fade period – this is determined by the

47

frequency of data collection/inserts and the user’s desire regarding the fading effect. For example,
if the user finds the fading distracting, a longer time may be desirable; if the user is specifically
trying to investigate when components cease to report a smaller fade time is more appropriate. Note
also that longer fade periods require more data to be sifted through so that longer fade periods result
in decreasing performance.

Note that currently the fade period is a global variable pertaining to all physical views in the Baron.

All time related options in this section will be retained as described in §6.10.

6.9 Haruspex Requests View

The Haruspex Requests view 19 can be generated via the New Pane icons in 11. This is a table
that lists the previously requested analyses, displaying the RequestId and some parameters of the
request as described in §5.2. Single clicking an entry brings up the results. Double clicking an entry
instantiates the corresponding Analysis view, filled out with the request and results. This allows
the user to view the results without having to redo the analysis. The analysis pane generated in this
way is similar to other generated panes and can be dropped on the the physical display and Search
Bar, as usual.

6.10 Saving State

State, including color bar ranges, time ranges for analyses, time shown in the physical pane, etc, in
plain text in a file in $HOME$/.config/Sandia/ovis.conf.

48

Figure 18: The Time tab, which allows the user to set the time; choose to play
through time; and set the fade period.

49

Figure
19:

T
he

B
aron

R
equests

view
w

hich
allow

s
one

to
exam

ine
previous

analyses.T
he

upperleftis
an

interactive
table

for
selecting

previous
analyses.

Single
clicking

an
entry

brings
up

the
results

in
the

low
er

left.
D

ouble
clicking

an
entry

instantiates
the

corresponding
A

nalysis
view

.

50

7 Examples

The OVIS 2.0 release tar ball comes with two example cases. The first includes a set-up file and
example data from a cluster. The second is a set up file, that with minor modifications will take
and display data from your local machine.

See §2 for info on the mysql settings and general system settings before beginning.

7.1 Whitney Example Data

This case involves analysis of some test data already gathered from a cluster. It illustrates use of the
Baron in case where we find anomalous behavior when we consider the behavior of two variables
taken in conjunction (Multicorrelative analysis) that would be insufficiently captured, if one were
to independently consider the behaviors of the two variables.

Data is not gathered, but rather is loaded from a mysqldump of previously gathered data. Rel-
evant files are in the OVIS data directory /path/to/ovisSrcDir/devel/data, and are the tar
file of the mysqldump of the database, mysqldump.OVIS WhitneyRelease.sql.tgz file, and
whitneydemo.ovdb which is the set-up data file which was used in the actual data collection and
established the cluster display arrangement.

We illustrate the analysis by building the display in Figure 20 which consists of three analyses, two
Descriptive and one Multicorrelative using the variables in the two Descriptive analyses. Further,
there are physical displays associated with each analysis, where the displays easily illustrate outlier
behaviors relative to the resultant analysis models.

7.1.1 Getting Started

1. First load the mysqldump. This requires creating the empty database in mysql and then
decompressing and loading the data file.

mysql> create database OVIS_Whitney;
mysql -u ovis OVIS_Whitney < mysqldump.OVIS_WhitneyRelease.sql

2. Edit the StartupData table so that OVIS will recognize the shepherd on your machine for
performing analyses:

mysql> use OVIS_Whitney;

mysql> select * from ComponentTypes;

(this will show you that the shepherd has CompType 5)

mysql> select * from ComponentTable where CompType=5;

(this will show you that the shepherd has CompId 314)

51

Figure
20:

U
sing

the
B

aron
foranalysis.T

hree
sets

ofanalysis
and

m
odeldrops

onto
the

physicaldisplay
are

show
n.Tw

o
are

descriptive
statistics

and
one

is
a

m
ulticorrelative

analysis.
O

utliers
relative

to
the

relevantm
odels

are
colored

in
the

figures.

52

mysql> select * from StartupData where CompId=314;

(this will show you the current allowable shepherds)

mysql> update StartupData set AddressData="XXX" where
CompId=314 and AddressType=2;

(replace XXX with the hex version of your IP address)

mysql> update StartupData set AddressData="XXX" where
CompId=314 and AddressType=0;

(replace XXX with the hex version of your MAC address)

3. Start the shepherd:

cd /path/to/ovisBuildDir

./bin/shepherd --name=Whitney \
--database=mysql://ovis@localhost/OVIS_Whitney

If you get a warning at this point like

Shepherd was unable to determine its own component ID.
This will cause haruspex calculations to be unreliable
at a minimum. Set a component ID in the StartupData table.

then you have not edited the StartupData table properly.

4. Start the baron:

in a different window but the same directory run:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/ovisBuildDir/lib

./bin/baron

5. Choose the Whitney database in the Baron (The Bookmark Editor and ServerConnection
windows are described in §6.1):

(a) When the Browser Window comes up select: View→Show Bookmark Editor

(b) Fill in the following fields:

• Service name = Whitney
• Protocol = MySQL
• Hostname = localhost
• Database name = OVIS Whitney

(c) Click on the plus sign

(d) Select “Whitney” in window

(e) When the OVIS Server Connection window comes up you should see ”ovis” as the
user name and nothing for the password. You can use the default, if you have enabled
user ovis the appropriate permissions on the OVIS Whitney database; otherwise you
can use the user name and password of your choice. Note that these will be stored (as
described in §2) in plain text on your machine. Click ”OK”.

53

(f) At this point the OVIS Digest (baron window) should appear with the cluster displayed.

6. Set the Fade Period in the Time Tab to 30 seconds. (The Fade Period and Time tab are
discussed in §6.8. Determination of the correct value based on the innate frequency of the
data collection (in this case 5 second intervals) and the preference of the user as to the fading
effect. If this is the first time running the Baron, the date/time may be set to January 1, 1970,
GMT. To change the date/time to the earliest time at which there is data for this cluster, click
on the “Earliest” button in the Time Tab of the 3D View.

7.1.2 Using the Baron: Displaying Raw Metric Values

Figure 21: Raw metric values on the physical display pane.

To display raw metric values in the physical display:

1. Click on “node” in the left hand menu to see the available metrics for display for the node.

2. Drag and drop a metric onto the display, such as CPU1 Temp.

The nodes should become colored by value as shown in Figure 21. The range of the values in
the color bar is determined by the min and max metric values exhibited at the time in the display,
unless overridden by settings in the Color tab (described in §6.5).

54

7.1.3 Using the Baron: Performing Analyses and Displaying Model Comparisons in the
Physical Display

With the analysis capabilities, you can build a model of data and determine outliers relative to that
model, presented both textually and in the physical display. The analyses and model drops in this
section are those in Figure 20.

Figure 22: Descriptive learn (left) and monitor (right) Analyses panes.

Click on Analysis in the upper left of the window and a Descriptive Analysis pane should appear.
The default time range is the entire time range in the database. Do the following:

1. Drag and drop the metric 3p3V onto the analysis metric window .

2. For the components entry, fill in “node1-300”. Components can be specified by either their

55

canonical names or their component type and number (as they are in this case). If they are
specified by canonical names, note that ranges are not supported as canonical names can
have hyphens within them.

3. Click on Learn

Analysis results should appear as in Figure 22 (left).

To determine outliers relative to the results of the Descriptive Analysis:

1. Click on the Monitor tab in the same pane. Note that the results of the learn analysis have
populated the monitor options. By default, the outlier threshold has been chosen to be 2
standard deviations. You may change any of these values, but for this example keep them as
is.

2. Click on the Monitor button

Analysis results should appear as in Figure 22 (right). In the result window will be a list of compo-
nents which satisfy the outlier criteria at any time during the time range as well as at least a partial
list of details of the outliers, including component, time, and metric value.

After an analysis, outliers can also be displayed in the physical display, by dragging and dropping
the analysis onto the physical display (Grab where it says “Haruspex submitted successfully”).
Supported drops are

• Descriptive Monitor - colors everything below the threshold red, above blue, and in between
green.

• MultiCorrelative Learn - colors on a scale from red to blue everything by its significance
level.

• MultiCorrelative Monitor - colors red everything with significance level below the threshold,
green everything above the level.

Additionally, outliers will pop out of the physical display if the analysis is also dragged to the
component list window.

This first is shown in Figure 23. Note that depending on the time chosen, components may pop
out that are not colored as outliers at that time, as outliers at any one time may not be outliers at
all times. The Multicorrelative drops will be illustrated below after the Multicorrelative analysis is
illustrated. (The analysis and model drop are the leftmost column in Figure 20).

Splitting the pane (see Figure 13 in §6.2) and performing a similar descriptive analysis for 5V
proceeds similarly, with the results shown in the middle analysis and physical display column in
Figure 20. Note that for the 5V cases there are outliers both below (red) and above (blue) the mean.

Finally we illustrate a Multicorrelative analysis, using both the 3p3V and 5V metrics:

56

Figure 23: Descriptive monitor Model drop

1. Drag both metrics to a new analysis pane

2. Click on Learn

The resultant pane is shown in Figure 24 (left).

This analysis can then be dragged to the physical pane as shown in Figure 26 (top). In the physical
pane model comparison, data for that time is compared to the model and colored according to
significance level. Figure 25 shows the model surface calculated in this case with evinced data
(over the entire time range) indicated on the plot. (This is not a figure that you can generate with
OVIS via the Baron).

The Multicorrelative Monitor analysis determines probabilistic outliers given a user specified sig-
nificance level:

1. Select the Monitor option on the previous Multicorrelative analysis pane. This populates the
analysis with the model values recently calculated.

2. Change the probabilistic threshold to 0.003

3. Click on Monitor

57

Figure 24: Multicorrelative learn (left) and monitor (right) Analyses panes.

58

Figure 25: Evinced data compared to the calculated model for the Multicor-
relative Analysis on the two metric previously studied as single metrics in the
Descriptive Analyses.

Results are shown in Figure 24 on the right. Note that there is only one node exhibiting outlier
behavior in the multicorrelative analysis, as compared to the two single variable analyses. The
analysis can be dragged to the physical pane as shown in Figure 26 (bottom). (This analysis and
model drop are the rightmost column in Figure 20). We have further dropped the analysis on the
component selection which pops out the the node exhibiting outlier behavior in the multicorrelative
analysis. It is easily seen in the physical view that the outlier node in the multicorrelative analysis
is not an outlier in the 3p3V metric at the time shown and that outliers in one of the metrics do not
necessarily exhibit outlier behaviors in the correlation analysis.

Analyses such as these can be used not only to determine outliers but to determine variable de-
pendencies. This information, when combined with event data, such as, for example, node failure
data, can be used to determine if outliers in a metric or a combination of metrics can be used as
advanced indicators of the event of interest.

7.1.4 Using the Baron: Playing Through Time in the Physical Display

The Baron also supports playing data through time. Details can be found in §6.8. For this example,
in the Time tab shown in Figure 18:

1. set the Playback time to be the initial time given in the analysis window

2. click on Show time widget

3. set 1xRealtime

In the physical display you should see the time animation of the data. Colors shown indicate the
data value at the time currently shown on the clock and the clock should be changing with time.

59

Figure 26: Multicorrelative Learn Analysis dropped onto the physical layout (top) and
Monitor Analysis drop (bottom). Nodes are colored by significance level in the Learn
drop. Nodes are colored green/red relative to the probabilistic threshold in the Monitor
drop. Note that outliers in the Multicorrelative Analysis are not necessarily outliers in the
single metric Descriptive Analysis and vice versa (only 1 outlier in the Monitor drop).

60

Figure 27: Physical display for the localhost demo example.

61

7.2 Localhost Demo File

This case collects data from your local machine for analysis and display. In the OVIS source data
directory is the file testone.ovdb which is an OVIS configuration file that can be modified to test
collecting and displaying data with OVIS. For example purposes the display shows 3 racks, 2 of
which have two nodes each. Only one of the nodes will be used in this example and will collect
data from your local machine. The physical display is shown in 27 with the real component upon
which data will be displayed popped out in the figure.

To use the localhost demo example:

1. Review the samplers to ensure that the metrics are correct for your system

2. Edit the addresses section of testone.ovdb where it is indicated to replace the data in the
lines with that corresponding to your local IP address and MAC address

3. mysql> create database OVIS_Testone

4. cd /path/to/ovisBuildDir

5. ./bin/ovis-db -d -t 16383 -u mysql://ovis@localhost/OVIS_Testone
-x /path/to/ovisSrcDir/data/testone.ovdb

(this will set up the correct tables in your database)

6. In a different window but the same directory run

./bin/shepherd --name=Testone \
--database=mysql://ovis@localhost/OVIS_Testone

7. In a different window but the same directory run

./bin/sheep --name=Testone

8. In a different window but the same directory run

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/ovisBuildDir/lib
./bin/baron

62

8 Additional Notes and Future Work

This section presents some additional notes and some planned enhancements.

8.1 Miscellany

Currently under development are enhancements to OVIS for handling job information including
the display of jobs and idle times on the nodes and analyses invoked upon job ids. This feature will
be incorporated in a future release.

Time series analyses will be included in a future release.

The Repeat Analysis capability (see §6.7) will be included in a future release.

Graphing/plotting capabilities will be included in a future release.

The Bayesian Modeling Analysis, referred to at ovis.ca.sandia.gov is not part of the release,
and a patent application has been applied for on this part of the OVIS work.

OVIS is released open source under BSD license, which allows for the development of plat-
form specific samplers or enhancements to OVIS to be kept for private usage. Please contact
ovis-help@sandia.gov for more information.

8.2 Multiple Shepherds

The initial release of OVIS 2.0 supports a single database back-end.

Database insertion and analysis on a fully replicated database back-end (e.g. MySQLCluster) may
work, but we have been unsatisfied with the performance of such databases in this application
and consider this option to be an unsupported feature. In this configuration, multiple shepherds
can be started and sheep attach themselves to a random shepherd from those that advertise. Each
sheep then inserts data into its selected shepherd’s database and the clustered database performs
cluster-wide replication of the data upon insertion. Each instance of a shepherd inserts an entry in
the HaruspexIds table (see §4.2.1) upon startup (and removes it when shutting down). When a
haruspex request is made, the HaruspexIds table is used by each shepherd to determine its rank
and the total number of participants; since the table is replicated, it contains a list of all available
shepherds which can participate in analysis. Each shepherd then performs its calculation on a
subset of the (replicated) metric data available to it. The metric data is partitioned by assigning
equal fractions of components in the request to each shepherd.

We have begun development to enable distributed (non-replicated) database back-ends. Unlike the
clustered database scenario, when sheep insert their values into any one of several shepherds no
replication is performed. The HaruspexIds table is ignored in this case since shepherds perform

63

http://ovis.ca.sandia.gov/
mailto:ovis-help@sandia.gov

the analysis using all metric data available to them, as opposed to a subset computed from a rank
and number of participants. The haruspex request and result data is replicated by OVIS using
database triggers to detect insertions and updates followed by socket serialization of the rows in
question. You can see our progress by preparing a build with the DISJOINT DATABASE BACKEND
set to ON. This is for demonstration only; we do not support it. Only the descriptive and correlative
haruspices have their request and result data replicated at this time. It will require an additional
exception in your firewall for traffic to replicate rows.

Distributed databases will be supported in a future release.

64

References

[1] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P. Pébay, D. Thompson, and M. Wong. OVIS
2: A robust distributed architecture for scalable RAS. In Proc. 22nd IEEE International Par-
allel & Distributed Processing Symposium (4th Workshop on System Management Techniques,
Processes, and Services), Miami, FL, April 2008.

[2] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P. Pébay, D. Thompson, and M. Wong. Us-
ing probabilistic characterization to reduce runtime faults on hpc systems. In Workshop on
Resiliency in High-Performance Computing, Lyon, France, May 2008.

[3] J. Brandt, A. Gentile, J. Mayo, P. Pébay, D. Roe, D. Thompson, and M. Wong. Resource
monitoring and management with ovis to enable hpc in cloud computing. In Proc. 23rd IEEE
International Parallel & Distributed Processing Symposium (5th Workshop on System Man-
agement Techniques, Processes, and Services), Rome, Italy, May 2009.

[4] Kitware, Inc. Visualization Tool Kit (VTK). www.vtk.org.

[5] Sandia National Laboratories. OVIS. ovis.ca.sandia.gov.

[6] TERASCALA. Terascala performance notes. www.terascala.com/pdf/Terascala
Performance Notes.pdf. last accessed 2009-04-13.

65

http://www.vtk.org/
http://ovis.ca.sandia.gov/
http://www.terascala.com/pdf/Terascala Performance Notes.pdf
http://www.terascala.com/pdf/Terascala Performance Notes.pdf

DISTRIBUTION:

1 MS 0899 Technical Library, 8944 (electronic)

66

v1.31

	Introduction
	Installation
	Supporting Software
	Ovis Install
	MySQL Settings
	PostgreSQL Settings
	Additional General System Settings

	Ovis Components
	Ovis Components
	General Running Ovis

	Setup
	XML file
	Database Effector
	Data Samplers

	Haruspices
	Overview
	Haruspex Output Tables
	Example: Multi-Correlative Haruspex

	Baron
	Cluster and Database Selection
	Adding Views
	Rotating, Panning, and Zooming the 3D View
	Metric Drop
	Setting the colors
	Search bar
	Haruspices
	Time Features
	Haruspex Requests View
	Saving State

	Examples
	Whitney Example Data
	Localhost Demo File

	Additional Notes and Future Work
	Miscellany
	Multiple Shepherds

	References

