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Abstract 
This paper develops Classical and Bayesian methods for quantifying the uncertainty in 
reliability for a system of mixed series and parallel components for which both go/no-go 
and variables data are available.  Classical methods focus on uncertainty due to sampling 
error.  Bayesian methods can explore both sampling error and other knowledge-based 
uncertainties.  To date, the reliability community has focused on qualitative statements 
about uncertainty because there was no consensus on how to quantify them.  This paper 
provides a proof of concept that workable, meaningful quantification methods can be 
constructed.  In addition, the application of the methods demonstrated that the results 
from the two fundamentally different approaches can be quite comparable.  In both 
approaches, results are sensitive to the details of how one handles components for which 
no failures have been seen in relatively few tests. 

                                                 
*  This is joint work between Sandia National Laboratories and Los Alamos National Laboratory.  LANL work is 

funded by the Enhanced Surveillance Campaign and the DoD/DOE Joint Munitions Program. 

3 



 

 

4 



 

TABLE OF CONTENTS 
 

EXECUTIVE SUMMARY .............................................................................................................7 

1.  SYSTEM RELIABILITY MODEL AND EXAMPLE DATA................................................11 
Purpose.....................................................................................................................................11 
Model Reliability Block Diagram............................................................................................12 
Example Data...........................................................................................................................14 

Event JEI............................................................................................................................14 
Event J4..............................................................................................................................15 
Event J5..............................................................................................................................16 
Event J6..............................................................................................................................16 
Event J7..............................................................................................................................16 
Event J8..............................................................................................................................17 
Event JK20.........................................................................................................................17 
Events K14, K15, K16 .......................................................................................................19 
Event K19 ..........................................................................................................................20 
Event K20 ..........................................................................................................................20 

2.  APPROACH 1: CLASSICAL METHODOLOGY FOR PROPAGATING  
UNCERTAINTIES USING MOMENTS................................................................................21 
Moment-Based Approach for Evaluating Reliability Uncertainty ..........................................21 

Notations ............................................................................................................................21 
Adjusted Binomial Random Variables ..............................................................................22 
System Model and SNL Reliability Estimator...................................................................22 
Estimating the Mean and Variance of RSNL .......................................................................27 
Interval Estimates for System Reliability ..........................................................................32 
Calculation with J4E Adjustment ......................................................................................34 

3.  APPROACH 2:  BAYESIAN METHODOLOGY FOR PROPAGATING  
UNCERTAINTIES..................................................................................................................37 
Reliability Block Diagram .......................................................................................................37 
Overview of Bayesian Reliability Methodology .....................................................................38 

Data and Prior Distributions ..............................................................................................39 

4.  COMPARISONS AND OBSERVATIONS.............................................................................53 
Sensitivity to Zero-Failure Case Assumptions ........................................................................53 

Assume Reliability = 1 for Zero-Failure Case...................................................................54 
Assume Reliability Not Equal to 1 for Zero-Failure Case.................................................54 
Contributors to System Uncertainty...................................................................................54 
Comparison and Contrasts Between Approaches ..............................................................56 

5.  REFERENCES .........................................................................................................................59 
 

5 



 

LIST OF FIGURES 
 
Figure ES-1.  Comparison of Bayesian and Classical approaches in estimating reliability and 

uncertainty....................................................................................................................8 
Figure 1-1.  Original system model in reliability block diagram format. ......................................13 
Figure 1-2.  Equivalent, simplified block diagram of system model.............................................13 
Figure 1-3.  JK20 subdiagram. C1 and C2 have identical design and identical assessment 

data, but function independent of each other (that is, they are “mirrored”). .............17 
Figure 3-1.  Reliability block diagram for the sample system.......................................................37 
Figure 3-2.  Combining component-level data for system reliability estimate..............................39 
Figure 3-3.  Three different priors (top row) and resulting  posteriors (bottom row) for 

binomial data for component J5.................................................................................40 
Figure 3-4.  Histogram of samples from joint posterior distribution of J7A and J7B. ..................42 
Figure 3-5.  Histogram of data from J7C (left) and posterior samples (right)...............................43 
Figure 3-6.  Histogram of posterior samples from J7D. ................................................................44 
Figure 3-7.  Posterior samples for the four-component  series system represented by J7.............44 
Figure 3-8.  Posterior sample histograms for J4A (and same for J4B [left]) and J4D [right]). .....45 
Figure 3-9.  Posterior samples for J4C (left) and J4E (right).........................................................46 
Figure 3-10.  Histogram of resulting distribution on  J4 by combining posterior samples on 

components J4A–J4E.................................................................................................46 
Figure 3-11.  Joint posterior samples for K14, K15, K16..............................................................47 
Figure 3-12.  Block diagram for JK20. ..........................................................................................47 
Figure 3-13.  Amplitude as function of time (left) and posterior on JK20 at age 0 (right). ..........48 
Figure 3-14.  System reliability over time (left) and posterior at age 130 years (right). ...............48 
Figure 3-15.  System reliability for block diagram of Figure 3-1..................................................49 
Figure 3-16.  Uncertainty attribution for output uncertainty. ........................................................50 
Figure 3-17.  Largest contributors to variance (J4E and JE1). ......................................................50 
Figure 3-18.  JK20 reliability distribution as a function of age with histogram of reliability at 

age 135 years..............................................................................................................51 
Figure 4-1.  Confidence/credibility interval comparison...............................................................53 
 
 

LIST OF TABLES 
 
Table 1-1.  Regression Coefficients for Single and Pair Models...................................................18 
Table 2-1.  Assessed Reliability Factors and Adjusted Binomial Random Variables...................24 
Table 2-2.  Model Constants..........................................................................................................25 
Table 2-3.  RSNL Computation by Factor, t = 130 Years................................................................31 
Table 3-1.  Prior Distribution and Resulting Posterior Median and 95% Credible  

Intervals for Component J5........................................................................................40 
Table 4-1.  Largest Contributors to Uncertainty............................................................................55 
 

6 



 

EXECUTIVE SUMMARY 
 
This paper demonstrates a proof of concept of two methods for estimating system-level 
reliability uncertainty using component-level data.  The case study demonstrates the analysis and 
methods comparison in a common invented system model of a complexity representative of the 
top-level models used by Sandia National Laboratories and Los Alamos National Laboratory to 
assess weapon reliability.  The study included created data sets. 
 
The first method is a Classical (frequentist) approach that captures and aggregates sampling 
uncertainties at the component level.  The method evaluates the mean and variance of the various 
component-level reliability estimators and then propagates these through the system-level 
reliability equation to get an approximate value for the mean and variance of the system 
reliability estimator.  This is used to construct a 90% confidence interval for the system 
reliability. 
 
The second method is a Bayesian approach that uses Markov Chain Monte Carlo (MCMC) 
methods to develop the system-level distribution for reliability.  The approach selects a user-
specified diffuse prior distribution for each component, which is updated based upon the data 
sets to develop the posterior distribution.  By this mechanism, both sampling and other 
knowledge uncertainties can be captured, although the specific example here emphasizes the 
former.  The individual component-level reliability estimates are then combined to obtain the 
system-level reliability estimate with an associated uncertainty propagated from the component 
distributions.  This approach is used to construct a 90% credible interval for system reliability. 
 
Although the two approaches have significant conceptual differences, in the case study explored 
the two gave closely comparable results.  Both methods prove to be sensitive to how they handle 
component reliability evaluation when no failures in relatively few trials are observed.  This 
sensitivity can be much larger than the differences between Classical and Bayesian formulations. 
 
Figure ES-1 illustrates both this close comparability and sensitivity to the details of handling of 
zero-failure cases.  This figure gives the 90% Classical confidence intervals and 90% Bayesian 
credible intervals in two different cases where different underlying assumptions were made 
concerning the handling of zero-failure cases. 
 
The left side shows results when both the Classical and Bayesian approaches use a reliability of 
“1” for two influential components, identified in the model as “J1E” and “J4E.”  There is no data 
associated with the first; all uncertainty is knowledge-based.  There are no failures in 106 trials 
associated with the second.  Note the intervals are quite comparable.  In the Classical 
formulation as applied here, a best-estimate reliability of “1” naturally associates with no 
uncertainty whereas the Bayesian approach has the usual flexibility to account for associated 
uncertainty through a prior distribution. 
 
The right side explores another pair of alternatives for the zero-failure cases.  Here the Classical 
formulation uses the 50% upper confidence limit for the best estimate of the J4E failure 
probability and associates that estimator with a variation on a binomial distribution.  The 
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Classical formulation does not deal with pure knowledge uncertainties, so JE1 is still treated as 
having a fixed reliability of “1.”  The second Bayesian approach incorporates uncertainty for J4E 
from a diffuse prior and for JE1, which represents epistemic uncertainty, by a beta distribution 
formulated based from expert elicitation.  The intervals are wider than their left-side counterparts 
by comparable amounts.  The Bayesian credible interval has a smaller value for its lower bound 
because it includes effects of JE1 while the Classical one cannot. 
 
 

 
Figure ES-1.  Comparison of Bayesian and Classical  
approaches in estimating reliability and uncertainty. 

 
From the development of the two methods and comparison of their application to the sample 
problem, it is possible to draw several other comparisons and observations. 
 
The different handling of J1E above illustrates the difference in the logical scope of the 
uncertainties that can be considered by the two approaches.  The Classical approach to 
uncertainty only deals with sampling uncertainty.  The Bayesian methods capture this as well as 
a measure of knowledge uncertainties. 
 
The Bayesian calculation can show some sensitivity to assumptions about component and system 
reliabilities captured in the prior distributions.  This might cause significant differences between 
the two approaches and lower credible interval estimates.  However, the choice of an appropriate 
prior does allow for knowledge about the component or system separate from the data to be 
included.  In a real study, considerable time would be spent in choosing appropriate priors for the 
Bayesian approach using methods such as expert elicitation. 
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The Classical calculation relies on some rather specific statistical assumptions needed to fold the 
probability distributions for the component reliability estimators into a distribution of the system 
estimator.  There may well be considerable sensitivity there.  In a real study, time would need to 
be spent understanding the impact of these specific assumptions. 
 
Both approaches start from a small number of basic principles but then require a fair amount of 
mathematical machinery to execute.  Both can be complex.  In the Classical case, much of the 
complexity involves the analytic manipulation of the equations.  For more complex problems 
than the one here, however, some of this might be done numerically (e.g., numerical computation 
of the derivatives needed for the mean and variance expansions).  In the Bayesian case, more of 
the analysis was done numerically, and the underlying use of MCMC is both sophisticated and 
computation-intensive. 
 
For this proof-of-concept case study, our focus is on demonstrating that these types of 
calculations can be performed on complex systems rather than aiming for a one-to-one 
comparison between the Classical and Bayesian approaches.  We were gratified that the results 
demonstrated substantial similarities, at least for the relatively data-rich example considered 
here.  This is only a first step toward gaining a scientific consensus on methods.  More work 
would be required to extend these to a proper decision framework that is not overly simplified.  
In addition, to appropriately reflect understanding of a real system, more emphasis would be 
placed on how the priors in the Bayesian method would be selected and how Classical 
distribution assumptions could be validated. 
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1.  SYSTEM RELIABILITY MODEL AND EXAMPLE DATA 
 
Purpose 
 
The weapons complex gathers the bulk of system reliability and failure mode data at the 
component level and uses the data to make inferences regarding system reliability.  Such data 
contains both sampling error and other knowledge uncertainties, but currently it is common to 
report only a single best estimate of reliability.  There has not been a consensus on appropriate 
methods for capturing the effects of sampling and other knowledge uncertainties quantitatively at 
the component level and for aggregating them into a system-level uncertainty statement.  The 
only approach to date has been to capture special concerns qualitatively: to identify that the best 
estimate carries “increased uncertainty” or to withhold reporting of reliability because of even 
larger uncertainty.  The decision to cite these special qualitative concerns has been based 
primarily on knowledge uncertainties due to the lack of current data, which is only one, though 
arguably the most dominant, of the many sources of uncertainty. 
 
The purpose of this paper is to explore two approaches for capturing and aggregating uncertainty 
from the component level to the system level.  This report was compiled from briefings 
presented by Sandia National Laboratories (SNL)  and Los Alamos National Laboratory (LANL) 
on their respective approaches. 
 
The first method is a Classical technique, developed by the SNL team, and propagates moments 
through the reliability estimator to estimate mean and variance of the system reliability.  This 
approach can capture and aggregate sampling uncertainty only, and uses asymptotic 
approximations to propagate the uncertainty to a system-level summary.  Classical approaches 
need to be embedded into a larger risk-based framework to deal with knowledge-based 
uncertainties.  This is discussed in Ringland et al. (2009). 
 
The second approach, developed by the LANL team, uses a Bayesian Markov Chain Monte 
Carlo (MCMC) approach to characterize the actual distribution of the system reliability through 
simulation and sampling.  This approach can aggregate both sampling and any broader 
knowledge uncertainties, such as including expert elicitation, which can be described 
quantitatively at the component level, although the latter has only limited development here. 
 
Our motivation for this project is to demonstrate a proof of concept that complex system 
reliability can be estimated with an associated uncertainty measure that captures some, if not all, 
of the relevant sources of uncertainty.  A secondary goal of the methodology is to provide a 
foundation for building tools to aid in making decisions for deploying testing resources that most 
reduce uncertainty.  SNL explores this aspect in the companion paper by Ringland et al. (2009).  
LANL has a series of works that develops resource allocation methodology for selecting the best 
use of new resources to maximally improve the precision of the system reliability estimate (c.f., 
Wilson et al. 2006; Anderson-Cook et al. 2008 and 2009; Hamada et al. 2008). 
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Model Reliability Block Diagram 
 
We first defined an example system, with an appropriate degree of resolution and appropriate 
data.  The model in its original form is shown in Figure 1-1, as represented in ReliaSoft software. 
 
This model includes a variety of series/parallel components and is reasonably complex.  Blocks 
represent successful function of one component or component assembly.  Two different blocks 
having the same label, as for example the two blocks labeled K14 near the top, indicate 
redundant copies of the same sort of component.  We created data sets for each of the blocks in 
the diagram, including some time-dependent data, to simulate complexity that we may expect in 
a real problem.  An equivalent, simplified presentation in more traditional block diagram form is 
shown in Figure 1-2.  In Figure 1-2, the same instantiation of hardware is represented in the 
block diagram for both K14(1) and K14(2), which each appear in two positions.  Thus, if  the 
hardware K14(1) fails in one of its positions, it is also a failure in the other position; likewise, the 
same is true for K14(2). 
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Figure 1-1.  Original system model in reliability block diagram format. 

 

 
Figure 1-2.  Equivalent, simplified block diagram of system model. 
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This results in the following equation for system reliability: 
 

 (RJK20 * RJ7 * RJ4 * RJ8 * RJE1  * RJ5 * RJ6)* 
 (RK14(1) * RK14(2) * RK16(1) * RK16(2) * RK20(1) * RK20(2) * RK15(2) * RK19(1) * RK15(1) * RK19(2)  
- RK14(1) * RK14(2) * RK16(1) * RK16(2) * RK20(1) * RK20(2) * RK15(2) * RK19(2)  
- RK14(1) * RK14(2) * RK16(1) * RK16(2) * RK20(1) * RK20(2) * RK19(1) * RK15(1)  
- RK14(1) * RK14(2) * RK16(1) * RK20(1) * RK15(2) * RK19(1) * RK15(1) * RK19(2)  
- RK14(1) * RK14(2) * RK16(2) * RK20(2) * RK15(2) * RK19(1) * RK15(1) * RK19(2)  
+ RK14(1) * RK14(2) * RK16(1) * RK20(1) * RK15(2) * RK19(2)  
+ RK14(1) * RK14(2) * RK16(2) * RK20(2) * RK19(1) * RK15(1)  
+ RK14(1) * RK16(1) * RK20(1) * RK19(1) * RK15(1) 
+ RK14(2) * RK16(2) * RK20(2) * RK15(2) * RK19(2)) 
 

The notation RJK20 denotes the probability of the JK20 event.   It will be assumed that the same 
reliabilities apply to repeated copies of the same component.  Thus RK14(1) = RK14(2), RK15(1) = 
RK16(2), RK16(1) = RK14(2), RK19(1) = RK19(2), RK20(1) = RK20(2). 
 
Example Data 
 
We developed data sets for each of the series blocks and parallel blocks to utilize in the model.  
In addition, we assign a current assessment value for each event. 
 
In the majority of cases this assessment builds on the National Nuclear Security Administration 
methodology for dealing with an individual component or failure mode.  If X failures are seen in 
N tests, the failure probability assessment is typically set at X/N if X is not zero.  If X is zero, 
failure probability assessment is typically the lesser of (1) the binomial 50% upper confidence 
bound (which can be shown to equal 1- 0.5-1/N ) and (2) an initial predicted failure probability for 
that component.  The logic here is that if no failures are seen, the initial estimate will be used 
where test quantities are limited but will jump to a lower value when we have 50-50 confidence 
such a value is appropriate.  In a handful of cases, the current assessment does not follow this.  
These special cases will be discussed individually. 
 
Event JEI 

This node captures a collection of hypothesized failure modes for which we have no current data 
but for which we have a proposed test package.  It is not time-dependent.  In theory, there is both 
aliatory (physical) and epistemic (knowledge) uncertainty present, but we have no direct 
evidence on either.  Unless noted otherwise, this paper will assume a reliability of 1 with no 
uncertainty.  Chapter 3 deals with the Bayesian methodology and will illustrate ways of 
quantifying beliefs about these uncertainties. 
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Event J4 

Event J4 captures the function of five components in series, J4A, J4B, J4C, J4D, and J4E, as 
illustrated below. 
 

  
 
Data cannot be collected on each of the five components separately but are inferred from shared 
information dealing with common failure events.  We can collect data directly on these failure 
events, but the same data may be applied to several of the J4 subevents. 
 

J4A failure links to failure events E1, E2, E3, and E4 
J4B failure also links to failure events E1, E2, E3, and E4 
J4D failures links to events E1, E2, E3 (but not E4) 

 
The following data is available on E1 through E4: 
 

E1: 0 failures in 200,000 tests; current failure probability assessment = 0.0 
E2: 0 failures in 200,000 tests, current failure probability assessment = 0.0 
E3: 0 in 1,000 tests; current failure probability assessment = 0.00069  
E4: 1 failure in 516 tests; the current failure probability assessment = 1/516 = 0.0019 
 

Thus the current point-estimate reliability assessments are given as follows: 
 

RJ4A =  1* 1 * (1-0.00069) * (1-0.0019)  = 0.9974 
RJ4B =  1* 1 * (1-0.00069) * (1-0.0019)  = 0.9974 
RJ4D =  1* 1 * (1-0.00069)   = 0.9967 
 

J4C and J4E are assessed (directly) from different data sources: 
 

J4C: 1 failure in 5,000 tests; the current assessment of RJ4C = 0.9997 
J4E: 106 successful tests, no failures; the current assessment of RJ4E = 1.0 

 
In four cases, the current assessment requires some discussion.  The current assessment for E3 
represents the binomial 50% upper confidence limit.  The current assessment for RJ4C does not 
match the expected 1/5000 = 0.0002 but is reported at 0.0003 for external (but not otherwise 
reported) reasons.  The current reported assessment for RJ4E of 0.0 is less than the binomial 50% 
upper confidence limit, suggesting a very low initial or predicted value for the failure rate here.  
Chapters 2 and 3 will deal with these varied approaches to linking data to reported assessments 
in different ways. 
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Event J5 

Event J5 captures the behavior of a component that has seen no failures in 3,513 tests.  The 
currently assessed failure probability is set at the 50% upper  confidence limit of 0.0002 and the 
best estimate of reliability, RJ5, is 0.9998. 
 
Event J6 

Event J6 captures the behavior of a component that has seen six failures in 31,484 tests, resulting 
in an assessed failure probability of 6/31,484 = 0.00019. 
 
Event J7 

Event J7 captures the function of four components in series, J7A, J7B, J7C, and J7D, as 
illustrated below: 

 
Components J7A, J7B, and J7C are tested as a unit.  No failures have been seen in 2,327 tests.  
The current assessed unreliability is an initial predicted value of 0.0001, which is smaller than 
the binomial 50% upper confidence bound. 
 
For J7D, there have been no countable failures in 71,784 countable tests (trials), which would 
suggest a failure probability assessment around 10-5.  However, since the tests involve repeated 
measurements on a single part, there are effectively fewer independent measures.  The reported 
unreliability estimate is the initial failure prediction of 0.0001. 
 
Thus, the currently assessed reliability value for J7 is RJ7 = (1 – 0.0001) * (1 – 0.0001) = 0.9998. 
 
There is a desire to move to the use of variables data as described below for J7A, J7B, and J7C. 
 
 J7A: 383 variables measurements, N(0,1). Requirement (–4.5, 4.5)  
 J7B: 468 variables measurements, N(0,1). Requirement (–3.8, 3.8) 
 J7C: 15 variables measurements, N(0,1). Requirement (–6.0, 6.0) 
 
The shorthand “N(0,1)” means that the variables measures are distributed approximately as 
having Normal (Gaussian) probability distribution with mean 0 and variance 1.   The shorthand 
“Requirement (–4.5, 4.5)” means that successful system function requires the variable be in the 
interval from –4.5 to 4.5. 
 
There are 383 tests with both J7A and J7B measurements, and 85 with only the measurements of 
J7B. 
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In addition, the 2,327 pass/fail tests ensure that both J7A and J7B were within the requirements. 
This count includes the 468 tests described above.  A compounding factor is that of the 1,859 
tests that do not have data for J7A and J7B, 1,244 were done at ambient temperature and 208 
were done at cold temperatures.   There is no information about environmental conditions for the 
468 variables tests or for the remaining 407 pass/fail tests. 
 
The J7C observations were collected during diagnostic development and are independent of the 
other data. 
 
Event J8 

J8 is assessed as RJ8 = 1.0 with no uncertainty. 
 
Event JK20 

Component JK20 consists of two subcomponents (C1 and C2) in parallel.  The output amplitudes 
of the subcomponents add.  Successful component function requires that the sum of the outputs 
be greater than some critical value k = 500,000 as measured in arbitrary output-units. 
 
There are two independent failure modes for each subcomponent.  A subcomponent may fail 
catastrophically, giving no output, or it may function but give less than expected output. 
 
There are three ways that JK20 can function successfully.  Figure 1-3 shows this breakout. 
 

E1:  Both C1 and C2 function, and (C1 amplitude + C2 amplitude) > k, where k is the 
required output 
E2:  C2 fails catastrophically, C1 functions, and C1 amplitude > k. 
E3:  C1 fails catastrophically, C2 functions, and C2 amplitude > k. 
 
 

 
 

 
Figure 1-3.  JK20 subdiagram. C1 and C2 have identical design and identical assessment data, 

but function independent of each other (that is, they are “mirrored”). 

 
In this figure, C1 and C2 represent the events that components function and A1 and A2 identify the 
output amplitudes.  Events E1, E2, and E3 here represent success events.  Note these are 
unrelated to the E1, E2, E3, and E4 used in the Event J4 discussion. 
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The reliability model for RJK20 is 
 

RJK20 = Pr(E1) + Pr(E2) + Pr(E3)  
RJK20 = Pr(E1) + 2Pr(E2) 
RJK20 = Pr(C1)Pr(C2)Pr(A1 + A2 > k) + 2(1 - Pr(C1))P(C1)P(A1 > k). 
 

 
There are 2500 independent tests of components of the type used for C1 and C2.  Of these, 100 
showed catastrophic failures.  Thus, the current assessment is Pr(C1) = Pr(C2) = 1 – 100/2500 = 
0.96.  It is unknown whether Pr(C1) and Pr(C2) have a dependence upon time.  Failure data and 
associated age-at-test data need to be investigated to check this.  Unless otherwise specified, the 
sample problem assumes no dependence on time. 
 
Component output amplitude is known to decrease as the component ages with an end of life 
projected at 130 years.  The value k represents a requirement that may be exceeded until the 
component nears end of life.  The trend in component output amplitude is assumed to follow a 
log-linear decrease with component age, with some unit-to-unit scatter about this trend.  If y  
represents mean output and t represents component age, then 
 

Ln(y) = a + bt. 
 
The intercept and slope, a and b, can be estimated using linear regression on 400 available data 
points.  One can also compute the residual standard deviation, s, which represents the unit-to-unit 
variation seen among the measured units.  Separate regressions can be done (with a separate set 
of constants) for the cases where yn represents the output of a single subcomponent (i.e., A1) and 
where it represents the output of both subcomponents added (i.e., A1 + A2).  We assume paired 
components are of roughly the same age.  The estimation technique assumes that the standard 
deviation of the residuals is constant and the sample data set reflects that. 
 
For the single and pair models, the estimated regression coefficients are summarized in  
Table 1-1. 
 

Table 1-1.  Regression Coefficients for Single and Pair Models. 

 Regression Constants 
Regression Model a b s 
Single C1 29.22 -0.1204 0.1826 
C1 and C2 Pair 29.88 -0.1204 0.1284 

 
 
The single model is obtained directly from the data.  The pair model was obtained by simulation, 
but could also have been derived analytically.  The standard deviation of the residuals from the 
model for the pair (0.1284) agrees well with its theoretical prediction, which is the standard 
deviation of the residuals from the single model (0.1826) divided by the square root of 2.  The 
intercept for the pair model is approximately ln(2) greater than the intercept for the single model, 
also as expected.  [This theoretical prediction is obtained by expanding the function f(y1,y2) = 
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ln(ey1+ey2) about (y1,y2) = (0,0) with a first-order Taylor series approximation to estimate 
Var(f(y1,y2)).] 
 
The probability that either an individual output A1 or the summed output A1 + A2 will achieve the 
required amplitude is calculated by first determining the margin (K-factor) as a function of age: 
 
 K = (ln(y)-ln(k))/s, 
 
and then applying the log-linear regression model for ln(y):  
 
 K = [ a + bt – ln(k) ] / s , where a, b, and s come from Table 1-1. 
 
The probability that a particular single A1 or the sum A1 + A2  meet the amplitude requirement is 
the standard normal probability (Pr(Z<K)) for the appropriate single or pair version of the model 
coefficients.  
 
The assessed value for RJK20  can then be computed from the reliability equation given with 
Figure 1-3, applied with time t set to the nominal end-of-life age of 130 years. 
 

RJK20 = Pr(C1)Pr(C2)Pr(A1 + A2 > k) + 2(1 - Pr(C1))P(C1)P(A1 > k). 
 
The calculation is given below: 
 

Pr(C1) ~ 0.96 

Pr(C2) ~ 0.96 

Pr(A1 + A2 > k) ~ P (Z < Kpair) = 1 
  where, using the regression coefficients, 
   Kpair = [(29.88 - (0.1204)(130) - 13.12)] / (0.1284) = 8.6292 

P(A1 > k) ~ P (Z < Ksingle) = 0.9929 
  where, using the regression coefficients, 
   Ksingle = [(29.22 - (0.1204)(130) - 13.12)] / (0.1826) = 2.4535 

Assessed RJK20 ~ (0.96)2(1) + (2)(0.04)( 0.96)(0.9929) = 0.9976 

 
Events K14, K15, K16 

Events K14, K15, and K16 capture the failures of components that are not observed separately.  
Testing is done on an assembly made up of the these three components.  Observed failures at this 
higher level of assembly are allocated among the three.   One failure has been seen in 4,132 tests, 
resulting in an overall failure probability of 0.00024.  This failure probability is allocated among 
the three failure events as follows: 
 
 K14:  (7/16)*(1/4,132)  ~ 0.000106 assessed failure probability 
 K15:  (7/16)*(1/4,132)  ~ 0.000106 assessed failure probability 
 K16:  (1/8)*(1/4,132)  ~ 0.000029 assessed failure probability 
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Event K19 

Event K19 captures the behavior of a component that has seen no failures in 3,338 tests.  The 
currently estimated failure probability is assessed at the 50% upper confidence limit of 0.00021. 
 
Event K20 

Event K20 captures the behavior of a component that has seen four failures in 18,803 tests.  The 
currently estimated failure probability is assessed at 4/18,803 = 0.000021. 
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2.  APPROACH 1: CLASSICAL METHODOLOGY FOR  
PROPAGATING UNCERTAINTIES USING MOMENTS 

 
Moment-Based Approach for Evaluating Reliability Uncertainty 
 
This section develops the methodology for estimating potential random errors in weapon 
reliability estimates resulting from sampling error, based on Classical statistical theory.  It also 
creates an approximate confidence interval for the reliability. 
 
This section divides into several parts.  It begins with some of the building blocks needed: a 
discussion of notation and of SNL’s special handling of go/no-go test data as “adjusted binomial 
random variables.”  The third subsection reformulates the system model from Chapter 1 based on 
this construct and defines the system reliability estimator in terms of this reformulation.  The 
fourth subsection develops formulas for the mean and variance of the system reliability 
estimator.  The final subsection uses these to develop confidence intervals.  Numerical results 
from the sample problem are presented at each relevant step. 
 
Notations 

This section adopts the following notational conventions: 
 

Lower-case Roman letters (e.g., n, b or c) represent known values (like the number of tests 
exploring a particular failure mode). 

Lower-case Greek letters (e.g., θ, τ, or μ) represent unknown parameters (like a  “true” 
component failure probability).  When in boldface, notations like θ or τ  represent vectors of 
unknown parameters.  

Upper-case Roman letters in italics (e.g., A or Y) represent random variables (i.e., quantities 
that in theory could take on different values according to some probability distributions).  
When in boldface, notations like Y represent vectors of random variables. 

The notation E(Y) is used to denote the expected value of the random variable Y. 

The notation V(Y) denotes the variance of the random variable Y. 

The notations R
s
(·) and R(·) represent the system model functions that roll lower-level 

reliability parameters into a system reliability.  There are two notations because two different 
but equivalent forms of the function are used. 
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Adjusted Binomial Random Variables 

Most of the data for estimating system reliability come from component- or subsystem-level 
go/no-go tests.  SNL typically estimates the failure probability for such a component or 
subsystem using a random variable, Y, of the form 
 
Y   = X/n 
 
 
 
            = d 
 

where X > 0 is the number of failures that have been seen in n  relevant 
tests.  (This is the usual maximum likelihood estimator associated with 
binomial random variables) 
 
when no failures have been seen.  Typically d is the minimum of some pre-
assigned value, c, representing the pre-production estimate of unreliability, 
and (1-0.51/n), the binomial 50% upper confidence limit. 

(1)
 
This form is referred to as an “adjusted binomial random variable” since it is based on a usual 
binomial random variable with special handling of the zero-failure case.  A later section works 
through the properties of such a random variable. 
 
System Model and SNL Reliability Estimator 

The sample problem involves a system model of the form 
 

R
s
(τ) =  

jjjjj ccccc

j
jJKJJJJEJDJCJBJAJJE b ,20,19,16,15,14

2019161514

9

1
208765444441 ττττττττττττττττ ∑

=

 (2) 

Here the τ’s are parameters representing the actual but unknown reliabilities of various 
subsystems and components.  The b’s are either +1 or -1. The c’s are integers 0, 1, or 2. The 
notation τ  represents the vector of all the τ’s, and R

s
(τ) indicates the system reliability is some 

nonlinear function, R, of the τ’s.  This is a variation on the notation used in Chapter 1.  There, 
for instance, the notation RJ7 was used broadly to reference either the actual failure probability or 
the best estimate of that value based on available data.  Formal Classical handling of the problem 
requires making a clear notational distinction between the actual probability and the estimator.  
The RJ7-like notation will be reserved for the estimator so the new τJ7 has been introduced for the 
actual probabilities.   
 
The system-level estimator of reliability typically used at SNL is 
 

RSNL =  

R
s
(Rsub) =  

jjjjj ccccc

j
jJKJJJJEJDJCJBJAJJE RRRRRbRRRRRRRRRRR ,20,19,16,15,14

2019161514

9

1
208765444441 ∑

=

. (3) 
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Here the R’s are random variables estimating the unknown τ’s. Most of these are based on results 
from large numbers of go/no-go tests, although as noted in Chapter 1, RJK20 is more complex.  
The notation Rsub represents the vector of all the subsystem and component R’s.  Note that the 
system reliability estimator is the same nonlinear function, R

s
, of the R’s as appears in the 

system model [Equation (2)]. 
 

While simple, RSNL is not the only way one could estimate R
s
(τ).  The Bayesian formulation, for 

instance, uses the system model [Equation (2)] but computes a point estimate for R
s
(τ) that is 

close to, but not identical to R
s
(Rsub).  Hence, it is useful to separate out the system model 

[Equation (2)], which may be common to many approaches, from the estimator [Equation (3)], 
which may not. 

Rewriting System Model in Terms of Independent Data Sources 

In most cases, individual R’s derive from adjusted binomial random variables.  Table 2-1 gives 
the translation between the R’s in Equation (3) and adjusted binomial random variables Y1 
through Y12. These derive directly from the discussion in Chapter 1.  In some cases, more than 
one adjusted binomial random variable—more than one type of go/no-go test—enters into the 
evaluation of a given R. In some cases, a given adjusted binomial random applies to several R’s.  
The RJK20 factor has a special form involving an additional adjusted binomial random variable, 
YJK20, plus two other random variables derived from other data.  These are discussed in the next 
section.  Table 2-1 also gives the available data and the zero-failure values that apply in 
Equation (1). 
 
A value for d is given in all cases.  The Classical statistical formulation deals with an event space 
of all possible ways the data could have come out, including the event where a particular 
component saw no failures.  The mean and variance of the Y’s are averages, weighted by 
probability, across all events in the event space.  Thus, to compute the moments of Y, one needs 
the value it would take on for all points in the event space, including d, the zero failure case.  A 
later section in this paper illustrates explicitly how d enters in to the calculations. 
 
Folding the equations in Table 2-1 together with Equation (3), one can rewrite the reliability 
estimator using the following data-source parameters: 
 

⎭
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The b’s and c’s are constants, as shown in Table 2-2. 
 
Equation (4) illustrates that RSNL can be viewed as the product of factors involving independent 
variables, including one factor, shown in brackets, that consists of a sum-product that collects the 
contribution of components that appear in parallel. 
 

Table 2-1.  Assessed Reliability Factors and Adjusted Binomial Random Variables.  

Model Reliability Factor 
Adjusted 

Bino-
mial RV 

# 
Failures

(X) 
 # Tests

(n) 
Zero  

Failure 
Value (d) 

Current 
Assessed 
Value for Y 

Note 

RJE1 = 1 (with no uncertainty)  0 (1) 
RJ4A = (1- Y1) (1- Y2) (1- Y3) (1-Y4) Y1 0 200,000 0 0 (2) 
RJ4B = (1- Y1) (1- Y2) (1- Y3) (1-Y4) Y2 0 200,000 0 0 (2) 
RJ4D = (1- Y1) (1- Y2) (1- Y3) Y3 0 1,000 0.00069 0.00069 (3) 
 Y4 1 516 0.0013 0.0019 (4) 
RJ4C= (1-Y5) Y5 1 5,000 0.0003 0.0002 (5) 
RJ4E= (1-Y6) Y6 0 106 0 0 (2) 
RJ5= (1-Y7) Y7 0 3,513 0.00020 0.00020 (3) 
RJ6= (1-Y8) Y8 6 31,484 0.000022 0.00019 (4) 
RJ7 = (1-Y9) CJ7 Y9 0 2,327 0.0001 0.0001 (2) 
CJ7 = 0.9999 is a constant.  (71,784 
data treated as not applicable.)       

RJ8 = 1 (with no uncertainty)     0 (1) 
RK14= (1 - (7/16)Y10) Y10 1 4,132 0.00017 0.0024 (4) 
RK15 = (1 - (7/16)Y10)       
RK16 = (1 - (1/8)Y10)       
RK19= (1-Y11) Y11 0 3,338 0.00021 0.00021 (3) 
RK20= (1-Y12) Y12 4 18,803 0.000037 0.00021 (4) 
RJK20 = 2P1(YJK20)(1-YJK20) + P2(1-
YJK20)2 YJK20 100 2500 0.00028 0.04 (4) 

P1 and P2 are derived from 
regression 
P1 = Prob (sufficient output from 1) 
P2 = Prob (sufficient output from 2) 

(400 obs. on output vs. age)  

(6) 

Data sources as described in Chapter 1. 
 
Notes: (1)  Omitted from subsequent calculation.  

(2)  d is the initial prediction value, which is used as the current assessed failure 
probability. 

(3)  d is the 50% upper confidence limit, which is used as the current assessed failure 
probability. 

(4)  The currently assessed unreliability is X/n.  No zero-failure value was given or could 
be inferred in the sample problem.  It could be either 50% upper confidence limit or some 
initial predicted value.  Without specific information about an initial predicted value, the 
zero-failure value, d, is set to the 50% upper confidence bound. 
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(5)  Even with one failure, the reported unreliability for this event in the sample problem 
is not X/n.  Presumably, the reported unreliability represents a prediction that was not 
replaced when failures were seen.  This analysis uses X/n as the currently assessed 
unreliability.  The table value of d is set to the reported (predicted?) unreliability. 

(6)  Involves continuous measurement data (see JK20 component description). 

 
Table 2-2.  Model Constants. 

 bj   c14,j c15,j c16,j c19,j c20,j   
j=1 1  j=1 2 2 2 2 2  c1=3 
j=2 -1  j=2 2 1 2 1 2  c2=3 
j=3 -1  j=3 2 1 2 1 2  c3=3 
j=4 -1  j=4 2 2 1 2 1  c4=2 
j=5 -1  j=5 2 2 1 2 1  c5=1 
j=6 1  j=6 2 1 1 1 1  c6=1 
j=7 1  j=7 2 1 1 1 1  c7=1 
j=8 1  j=8 1 1 1 1 1  c8=1 
j=9 1  j=9 1 1 1 1 1  c9=1 

 

JK20 Component Model 

The RJK20 factor in Equation (3) is more complicated than the others.  The following section 
recasts the model presented in Chapter 1 to illustrate that RJK20 can be written as a nonlinear 
function of three independent random variables.  From Chapter 1, 
 

RJK20 = 2P1 YJK20 (1-YJK20) + P2 (1-YJK20)2, where 

P1 estimates the probability one component at end of life gives output above threshold k, 
P2 estimates the probability two components at end of life sum to give output above 
threshold k. (5) 

P1 and P2 derive from component test data of output versus time.  Again, following Chapter 1, if 
A1(t) represents the output from one component at time t, the following log-linear model applies 
 

ln(A1(t)) = a + βt + Ε1, 

where Ε1 is a Gaussian random variable with mean 0 and variance σ2. (6) 

This follows the discussion in Chapter 1, with some changes of notation to follow the 
conventions in this chapter.  The parameters α, β, and σ2 are not known, but can be estimated via 
standard linear least squares regression estimators from the 400 (A1(t), t) pairs provided in the 
sample problem.  Let the estimators be denoted A, B, and S2.  (This follows this chapter’s 
notational conventions; Chapter 1 used lower case a, b, and s.)   The mean log output at time t is 
 

μ = α + βt, (7) 
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which can be estimated by 
 

M = A + Bt. (8) 

M will be evaluated at the end of life of t = 130. 
 
Since E1 in Equation (6) is assumed to have a Gaussian distribution, the calculation for P1 is then 
 

P1 = Φ((M − ln(k)) / S ), (9) 

where Φ is the Gaussian cumulative.  Note that P1, as a function of two other random variables, 
M and S, is itself a random variable.  Also note that under the model in Equation (6), the usual 
regression estimators, M and S, are independent. 
 
One can also show that the probability that the sum of two components’ outputs is k or greater 
can be approximated by 
 

)/))ln)2ln((2(2 SkMP −+Φ=

=20JKR

[ ]

. (10) 

Putting this all together, RJK20 is thus the following nonlinear function of the three independent 
random variables YJK20, M, and S: 
 

 

[ ]2
202020 )1()/))ln()2ln((2()1()/))ln(((2 JKrJKJKr YSyMYYSyM −−+Φ+−−Φ=  (11) 

Summary Notations for Subsystem and Data-Source Representations 

Equation (4) provides an equivalent system model to Equation (3) with vector of subsystem 
random variables, Rsub, replaced by the vector of independent random variables linked to data 
sources.  With a small abuse of notation, let 
 

Y = (Y1 , Y2, …. Y12, YJK20, M , S) and  

RSNL = R
s
(Rsub) = R(Y). (12) 

The full form of R combines Equation (4) with Equation (11): 
 

RSNL = R(Y) 
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where 
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and the b’s and c’s are as in Table 2-2.  (13) 

The same equivalence applies to the theoretical model involving unknown parameters. Each Yi 
estimates some probability θi .  The regression random variables M and S2 estimate parameters μ 
and σ2.  Thus, with similar notation as before, let θ = (θ1, θ2, …., θ12, θJK20, μ, σ2).  Then, for the 
same R

s
 and R as above, 

 
R

s
(τ) = R( θ) 
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 (14) 

ependent random variables, the formulation involving R(Y) is easier to 
use as the basis for constructing confidence statements.  Working with R (Rsub) requires tracking 

 
R

s
(Rsub) – a structure based on the reliability block diagram and system operation – to R(Y) – a 

structure based on independent data sources – may take significant effort.  It is possible that the  
R(Y) model may be considerably larger than the R

s
(Rsub) for some systems.  This could happen, 

for instance, if many independent data subsets are applied in more complex ways than was the 
case for the J4 event here. 
 
Estimating the Mean and Variance of RSNL 

The mean and variance of RSNL can be approximated from moments of the random variables 
entering into it, Y1 through Y12, YJK20, and the regression estimates M and S.  This mean and 
variance are used to develop confidence intervals for R(θ). 

Because it involves ind

s

the correlations between the component or subsystem reliability estimators in Rsub introduced 
because some rely in part on the same test data.  Note, however, that the restructuring from
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General Formulas for the Mean and Variance of a Function of Random Variables 

Two general approximation formulas are used extensively: 
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where Y, Y1, Y2, … are independent univariate random variables (15) 

To see the first, let μ = E(Y), write f(Y) ~ f(μ) + f’(μ))(Y – μ) + f”(μ)(Y-μ)2/2, and take expected 
values on both sides. In some cases where it appears the second term is quite small, only the first 
term is used. 
 
A multivariate version of the same leads to the familiar variance expansion.† 

Random variables Y1 through Y12 and YJK20 have adjusted binomial distributions of the form 
given in Equation (1).  Following the notation in Equation (1), if X has a binomial distribution 
associated with n trials and probability of failure θ, then the probability that random variable X 
(upper case) takes some particular numerical value x (lower case) is given by 
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Mean and Variance for Adjusted Binomial Random Variables 
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The adjusted binomial random variable follows the same functional formexcept for special 
handling of the zero-failure case: 
 

ndY )1()Pr( θ−== , and 
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== )1()/Pr( θθ   for x = 1, 2, ..., n. (17) 

                                                 
†  This is standard practice.  See, for example, Taylor and Kuyatt (1994).  
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From this, the moments of an adjusted binomial random variable are easily computed.  For the 
mean: 
 

E(Y)  = θ + (1-θ)nd   = value for regular binomial + “new” zero failure term. (18) 

Note that even though Y was constructed to provide an estimate of θ, it is a biased (in the 
statistical sense) estimate: E(Y) ≠ θ. 
 
For the variance: 
 

V(Y) = E(Y2) – [E(Y)]2  and 

E(Y2) = [θ(1-θ)/n + θ2] + d2(1-θ)n   = value for regular binomial + “new” X = 0 term, so 

V(Y) = θ(1-θ)/n + (d-2θ)d(1-θ)n – d2(1-θ)2n. (19) 

Equations (18) and (19) involve two known parameters, n and d, and one unknown parameter, θ.  
Thus, these equations cannot be used directly to give a numerical estimate of moments.  A 
natural way to approximate E(Y) and V(Y) would be to replace θ  by the realized value of the Y 
in question.  If there were no failures, that would be the d value shown in Table 2-1.  If there 
were failures, that would be the X/n from Table 2-1. 

Mean and Variance for Individual Model Factors 

To compute the mean and variance of RSNL in Equation (13), one needs the mean and variance of 
each of the factors.  Factors are of four forms: 
 

CJ7 = a constant. 
RJK20 = as expanded in Equation (11). 
(1-Yi)ci = for i = 1, 2, …, 9 and the Yi’s being adjusted binomial random  
     variables. 
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= the sum-product term. 

ean CJ7 and variance 0. 
 

JK20 ated by applying the general formulas [Equation (15)] to the 
full equation for RJK20 given in Equation (11).  For the mean, only the first term in Equation (15) 
is used.  The numerical estimate of the mean is then just Equation (11) with the random variables 
M and S replaced by their observed values and the adjusted binomial random variable YJK20 
replaced by a numerical estimate of its expected value, YJK20 + d(1- YJK20)n. 
 

As a constant, CJ7 essentially has m

The moments of R  can be estim
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Likewise, the variance computation follows Equation (15): 
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Here the partial derivatives are evaluated at the expected values for the variables.  The 
calculations are straightforward if messy.  Note they require 2/

2
1 2

)(' xex −=
π

.  A numerical 
result is obtained by the same sort of replacements as were done for the mean. Unknown 
parameters μ = E(M) and σ2 = E(S2) are replaced by the observed values for M and S. E(YJK20) is 
replaced by YJK20 + d(1- YJK20)n.  The variances in Equation (20) come from various sources. 
V(YJK20) can be estimated using Equation (19) with θ  replaced by the observed value of YJK20.  
V(M) can be estimated using from the usual linear regression analysis.  (For the t set to the end-
of-life age of 130 years, the regression on the 400-point data set gives V(M) = 0.05503.  This 
corresponds to a standard error for M — the square root of V(M) – equal to 0.2346.)   V(S2) is 
typically not computed as part of the usual regression analysis, but can be derived using the same 
theory.  Under the usual linear regression model, S2 is distributed as a multiple of a Chi-Square 
distribution, S2 ~ νχσ ν /22 , for some number of degrees of freedom ν.  Here, ν = 398. Hence, 
 

νσ /2)( 42 =SV   ~ 2S4/398. 
 
For factors of the form (1-Y)c, the approximation formula Equation (15) gives 
 

( )

Φ

)())(1)(1()(1))1(( 2
2
1 YYccYY ccc V−−−+−≈− EEE and 

[ ] [ ] )())(1()1( 21 YYEcY cc VV −−≈− . (21) 

As before, numerical estimates can be obtained by using Equations (18) and (19) for E(Y) and 
V(Y , respectively, with the unknown parameter θ  replaced by the observed value for the Y in 
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The derivatives—straightforward if messy—are evaluated at the means of the random variables.  
As before, numerical estimates can be obtained by using formulas 18 and 19 with unknown θ’s 
replaced by observed Y’s. 
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Mean and Variance for Product of Model Factors 

The last step is then to compute the mean and variance of RSNL given the moments of each of the 
factors.  For products, the approximation formulas [Equation (15)] take on some simple forms. 
 
Suppose Ai are independent random variables for i = 1, 2, …, then 
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ed 
value:

E (Factor)

Variance:
V (Factor)

Variance 
contribution to 

product:
E2(R)*

(Var(F)/E2(F))

Fraction of 
variance

CJ7 0.9999 0.0001 1% 0.9999 0 0 0%

RJK20 0.9978 0.0022 24% 0.9978 4.13E-06 4.06E-06 25%

(1-Y1)
3 1.0000 0.0000 0% 1.0000 0 0 0%

(1-Y2)
3 1.0000 0.0000 0% 1.0000 0 0 0%

0.9969 2.97E-06 2.92E-06 18%
0.9952 9.11E-06 9.00E-06 56%
0.9997 2.41E-08 2.35E-08 0%
1.0000 0 0 0%

2.70E-08 2.64E-08 0%
6.03E-09 5.90E-09 0%
2.88E-08 2.81E-08 0%

Su 1.92E-13 1.88E-13 0%

Est for RSNL Est for (1-RSNL) E(RSNL) Var(RSNL)
0.9911 0.0089 0.9889 1.6064E-05

(product) (product) (sum)

. (23) 

The latter gives the variance of the product as the sum of variance contributions associated with 
each factor.  

Numerical Results 

Table 2-3 gives numerical results of the computations described above, broken up by model 
factor.  The calculations are for an RJK20 end-of-life value of t = 130 years. 
 

Table 2-3.  RSNL Computation by Factor, t = 130 Years. 

del Factor for
Factor

1-Estimate
Estimated Value Expect

(1-Y3)
3 0.9979

(1-Y4)
2 0.9961

(1-Y5) 0.9998
(1-Y6) 1.0000

0.0021 23%
0.0039 44%
0.0002 2%
0.0000 0%

(1-Y7) 0.9998
(1-Y8) 0.9998
(1-Y9) 0.9999
mproduct 1.0000

0.0002 2% 0.9997
0.0002 2% 0.9998
0.0001 1% 0.9998
0.0000 0% 1.0000
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Note that the RJK20, Y3, and Y4 factors are the only factors that contribute substantially to system 

ce” column indicates the largest contributors to uncertainty.  
e largest contributors to unreliability are the largest contributors to 

erical values are not identical. 
 

 
 one can generate an interval estimate, bounds pL and pU, that, 
asses the value of R(θ), the true but unknown reliability.  To do 

that, one needs a distributional form for RSNL.  As a nonlinear function of adjusted binomials, the 
Gaussian random variable M, and the Chi-square random variable S2, RSNL does not have a 
simple distributional form.  This analysis uses a common approximation—cited in Diegert 
(2006), for instance—of assuming that it has binomial distribution with some equivalent number 
of tests.  That is, this analysis associates RSNL with a binomial random variable REQ = XEQ/neq, 
where XEQ equivalent failures are observed in neq tests, and then builds an approximate binomial 
confidence interval based on REQ.  This provides a means of getting a reasonable distributional 
shape for RSNL, but specific meaning should not be applied to the exact values of XEQ and neq. 
 
The choice of X  is complicated by R  being a biased estimator of system failure probability, 

unreliability.  The “Fraction of varian
Not too surprisingly, th
uncertainty, although the num

Interval Estimates for System Reliability 

oments of RSNL,

 confidence, encomp
Based on the m
with some

EQ SNL

R(θ).  If REQ is to be used to build confidence intervals R(θ), one would like 
 
E (REQ) = R(θ) or, equivalently 
 

 E(XEQ) = R(θ) × neq. (24) 

(For the moment, assume neq is known.  It is discussed below.)  To develop this, define 
 

Bias(RSNL) = E (RSNL) – R(θ). (25) 

Note that all of these depend on unknown parameters. Putting Equation (24) and Equation (25) 
together and rearranging gives 
 

E (XEQ) = [E (RSNL) – Bias(RSNL) ] × neq. (26) 

This then suggests the association 
 

XEQ ~  [ RSNL – Bias(RSNL) ] × neq, (27) 

provided one can develop a numerical estimate of Bias(RSNL).  There are two ways to do so. 
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First, and very simply, if the calculation of RSNL is carried out with regular binomial random 
variables rather than adjusted binomial random variables (i.e., if no failures are observed for a 
component, assess the reliability as 1), the resulting estimator, call it RBIN, has only small bias.  
(That small bias occurs because system reliability is a nonlinear function of the component and 
subsystem reliabilities.  Informal numerical studies indicate that bias—as partially measured by 
the second derivative term in Equation (15)—is small compared to that introduced by using 
adjusted binomial random variables.  However, there has been no full examination of the residual 
bias.) 
 
Thus, 
 

Bias(RSNL) Estimate #1 = RSNL - RBIN. (28) 

A second approach makes use of the computed value for E(RSNL.).  To introduce this, some 
additional notation is needed. One can write the theoretical value for E(RSNL) as some function, 
E(θ), of the various unknown parameters.   We can write the computed value for E(RSNL) as the 
same function E(Y) applied to the estimated failure probabilities Y = (Y1 , Y2, …. Y12, YJK20, M , 
S2).  With this notation, Equation (25) can be rewritten: 
 

Bias(RSNL)  = E(RSNL) – R(θ)  = E(θ) – R(θ),    

which suggests  

Bias Estimate #2 ~ E(Y) – R( Y)  
 
 =  numerical estimate for E(RSNL) – RSNL. (29) 

This works provided that the inaccuracy in moving from E(θ) to E(Y) is the same as that in 
moving from R(θ) to R(Y).  That appears to be a reasonable approximation, but as was the case 
with bias estimate #1, there has been no formal examination of this approximation’s properties. 
For the sample problem, 
 
 Bias Estimate #1 = –0.0023 
 Bias Estimate #2 = –0.0022. 
 
These are reassuringly close. In the following, bias estimate #2 is used. 
 
The value of neq can be developed from the formulas for the mean and variance of a binomial 
random variable: 
 

)( EQRE  ~ pequiv 
)( EQRV  ~ pequiv (1-pequiv)/neq 
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Solving: 
 

neq ~ (E )(1-)( EQR )( EQRE )/ )( EQRV . (30) 

It is natural to replaces )( EQRV with its estimated value for the variance of RSNL (1.61 × 10-5 in 
Table 2-3).  Although the discussion above indicates that there are many considerations in 
associating a numerical value with )( EQRE , it seems most natural that )( EQRE should be 
evaluated in the same way as )( EQRV , with estimated value (0.9889) in Table 2-3. 
 
In the computational example, one obtains neq = 681.1.  Then applying Equation (28) with bias 
estimate #2, one gets Xeq  = 676.6.  (These calculations were done to full precision and then 
rounded, rather than using rounded values throughout.) 
 
Approximate 100(1-α) confidence intervals of the form (pL, pU) can be found by solving the 
equations 
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The limits pL and pU can be evaluated via reference to the incomplete beta function.‡  In EXCEL, 
the calls are pL = BETAINV(α/2, X, N-X+1) and pU = BETAINV(1-α/2, X+1, N-X). 
 
In this context, pL is referred to as the lower 100(α/2)% confidence limit, and pU is the upper 
100(1-α/2)% confidence limit.  For example, for a 90% confidence interval, pL is the lower 5% 
confidence limit, and pU is the upper 95% limit. 
 
In the sample problem, a 90% confidence interval is given as (0.9855, 0.9975), with, again, 
RSNL = 0.9911.  A 95% interval is given by (0.9839, 0.9980). 
 
Calculation with J4E Adjustment 

A variation on the calculation above was done to explore the sensitivity to the handling of the 
J4E event.  In the calculation above, the reliability of this event was set to 1 based on no 
observed failures in 106 tests and, implicitly, a strong initial belief that the failure probability 
was very low.  This shown in Table 2-1, where the zero-failure value (d) for Y6 is set to 0, as is 
the failure assessment (1-Y6).  In this variation, the zero-failure value for Y6. is changed to 
d = 0.00652, which is the lower 50% binomial confidence limit with 106 tests.  The calculational 
formulas are otherwise the same. 
 

                                                 
‡  See Chapter 3, Section 7.2 of Johnson and Kotz (1969). 
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A few results are as follows: 
 
 RSNL = 0.9847 
 E(RSNL) ~ 0.9793 
 Var(RSNL) ~ 4.4335 × 10-5 
 Bias Estimate #2 = –0.0054 
 neq = 457.9 
 Xeq = 453.4 
 90% confidence interval: (0.9785, 0.9963) 
 95% confidence interval: (0.9761, 0.9970) 
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3.  APPROACH 2:  BAYESIAN METHODOLOGY 
FOR PROPAGATING UNCERTAINTIES 

 
Reliability Block Diagram 
 
We now demonstrate the Bayesian methodology on the same system given in the block diagram 
of Figure 3-1 (a repeat of Figure 1-2). 
 

 
Figure 3-1.  Reliability block diagram for the sample system. 

 
Each block represents a component within the system.  We use the term component more 
generally than is traditionally done in the reliability literature.  A component here can represent a 
subsystem.  Blocks beginning with the letter “K” are generally in parallel, whereas blocks 
beginning with “J” represent series systems.  For example, block J4 is a subsystem consisting of 
components J4A, J4B, J4C, and J4D in series. In fact, we could replace block J4 in Figure 3-1 
with a series of four blocks labeled J4A–J4D.  Identical but multiple components are 
distinguished with a number after them as in K14(1) and K14(2), which are two parts of the same 
type in parallel. 
 
The reliability block diagram is equivalent to the one presented in Figure 1-1, which is produced 
by ReliaSoft software in use by SNL.  These diagrams are equivalent and lead to the system 
reliability equation: 
 
(RJK20 * RJ7 * RJ4 * RJ8 * RJE1  * RJ5 * RJ6)* 
( RK14(1) * RK14(2) * RK16(1) * RK16(2) * RK20(1) * RK20(2) * RK15(2) * RK19(1) * RK15(1) * RK19(2)  
- RK14(1) * RK14(2) * RK16(1) * RK16(2) * RK20(1) * RK20(2) * RK15(2) * RK19(2)  
- RK14(1) * RK14(2) * RK16(1) * RK16(2) * RK20(1) * RK20(2) * RK19(1) * RK15(1)  
- RK14(1) * RK14(2) * RK16(1) * RK20(1) * RK15(2) * RK19(1) * RK15(1) * RK19(2)  
- RK14(1) * RK14(2) * RK16(2) * RK20(2) * RK15(2) * RK19(1) * RK15(1) * RK19(2)  
+ RK14(1) * RK14(2) * RK16(1) * RK20(1) * RK15(2) * RK19(2)  
+ RK14(1) * RK14(2) * RK16(2) * RK20(2) * RK19(1) * RK15(1)  
+ RK14(1) * RK16(1) * RK20(1) * RK19(1) * RK15(1)  
+ RK14(2) * RK16(2) * RK20(2) * RK15(2) * RK19(2))       (32) 
 
In Equation (33), the notation R(.) represents the reliability of component (.), and RSYS is the 
overall system reliability for the block diagram of Figure 3-1.  We assume that multiple parts of 
the same type (e.g., K14(1) and K14(2)) are identical but different parts and have the same 
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reliability distribution.  Chapter 1 details component definitions and data for the model.  For 
more details on the methodology described in this section, see Huzurbazar et al (2009). 
 
Overview of Bayesian Reliability Methodology 
 
To estimate the system reliability of Equation (34), we estimate the component reliability of each 
component (J4, J5,…, JK20) individually.  We use a Bayesian inference approach (Berger 1993; 
Gelman et al. 1995) where a prior for each component is specified and available data is 
combined with the prior to obtain a posterior distribution. 
 
Bayesian inference provides a mechanism for making inferences about unknown parameters in a 
model, updating our knowledge of the mechanism that generated the data, and ultimately making 
predictions, with associated uncertainty, about system reliability. 
 
The basic terminology used in Bayesian inference includes the terms prior distribution, posterior 
distribution, likelihood function, and predictive distribution.  Let θ represent the parameter 
vector and let f(x|θ) represent the probability density function or model of one observation.  The 
prior distribution, π(θ), describes a priori beliefs about the plausibility of the model.  For n 
observations X1 … Xn, the likelihood function is defined by 
 

L( x x f x xθ | 1,..., n ) X1 ,...,X n
( 1,..., n |= θ), 

 
where the right side is the joint distribution of the data.  Our prior belief about θ is updated by 
using the data through the likelihood function.  This updated belief is represented by the 
posterior probability distribution on θ denoted by π(θ|x) and calculated by 
 

x x L( x xπ (θ | 1,..., n ) ∝ θ | 1,..., n )π (θ). 
 
The Bayes predictive density of a future observation Z given data D is 
 

f (z | D) = f (z,θ | D)dθ = f (z |θ)π (θ | D)d∫ θ∫  
 
where θ represents the parameter vector and π is the posterior distribution of θ. 
 
Depending on the complexity of the distributional forms, we either obtain an analytical closed-
form posterior or an approximation based on sampling from the integral form of the posterior 
using MCMC.  We provide both a point estimate (median or mean) and a measure of uncertainty 
(credible interval).  Once we have the reliability distribution for each component, we use Monte 
Carlo integration to compute a system reliability distribution. 
 
Figure 3-2 provides an illustration for combining component-level data for the system reliability 
estimate using MCMC.  The top four figures represent different posterior distributions for 
components.  The first and fourth components represent closed-form analytic solutions from 
which we would sample, while the second and third components represent posteriors obtained 
using MCMC.  We repeatedly draw values from the distribution of each component using 
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MCMC.  Each value is combined using Monte Carlo to give the system reliability estimate, 
based on the assumed series or parallel structure of the components in the system.  The resulting 
estimate of the system reliability is shown in the bottom plot of Figure 3-2. 
 

 
 

Figure 3-2.  Combining component-level data for system reliability estimate. 

 
The methodology of Bayesian inference applied directly to the subject area of reliability is 
detailed in many excellent texts including Martz and Waller (1982) and Hamada et al. (2008). 
 
Data and Prior Distributions 

We describe the data and form of the prior distributions used for some of the components in 
order of increasing complexity of the distributions for each block.  We also present some 
sensitivity analysis for the priors.  We consider the components J5, J7, J4, K14–K15–K16, and 
JK20 here.  Components J6, K19, and K20 are similar to J5. Component J8 is assumed to have 
constant reliability of 1.0.  All of these illustrate different aspects of the inference problem.  We 
also present and discuss the negative-log gamma distribution (Lawrence and Vander Wiel 2006), 
a relatively new distribution in reliability that has some very useful properties. 
 
Block J5:  This is the simplest component because it fits into the standard Bayesian framework 
for binomial data.  For this component, there were 3,513 tests, all resulting in success.  There is 
no aging in this data.  We use a binomial model for the success/failure data with a conjugate beta 
prior giving a beta posterior distribution.  Figure 3-3 gives an illustration of the sensitivity of the 
prior for three priors that are commonly used with the binomial: a uniform prior, a Jeffreys prior, 
and an informative beta prior.  For comparison, the median and 95% credible interval are given 
in Table 3-1.  The differences in the posteriors are a reflection of the combination of the data and 
prior information.  Depending on what experts believe to be true about the component reliability 
before the data is observed, when the analysis combines the data and prior, slightly different 
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results may be obtained.  This emphasizes the importance of thinking carefully about what is 
known about the reliability outside of the data currently being considered to accurately reflect 
that knowledge.  As the amount of data in the current study increases, the posterior becomes less 
dependent on the shape, center, and spread of the prior. 
 
 

 
Figure 3-3.  Three different priors (top row) and resulting  

posteriors (bottom row) for binomial data for component J5. 

 
 

Table 3-1.  Prior Distribution and Resulting Posterior  
Median and 95% Credible Intervals for Component J5. 

Prior Distribution Posterior Median 95% Credible Interval 
Uniform(0,1) 0.999803 (.998995,.999993) 
Jeffreys Prior 0.999935 (.999285,1.00000) 
Beta(10,1) 0.999803 (.998954,.999993) 
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Blocks J6, K19, and K20:  These blocks have binomial data and are analyzed similar to J5 
using Beta(1,1) priors.  The data for block J6 is 31484 tests, resulting in 31478 successes and 6 
failures.  The posterior median is 0.999820 and the 95% credible interval is (0.999629, 
0.999930).  The data for block K19 has 3338 tests, all resulting in success.  The posterior median 
is 0.999792 and the 95% credible interval is (0.998896, 0.999992).  The data for block K20 is 
18,803 tests, resulting in 18,799 successes and 4 failures.  The posterior median is 0.999752 and 
the 95% credible interval is (0.999455, 0.999914). 
 
Block J7:  Component J7 is composed of four components in series, J7A, J7B, J7C, and J7D.  
We discuss each component separately and then show how to combine the results for all of J7.  
The data used with J7 here is an expansion of the basic information on this event given in 
Chapter 1. 
 
Components J7A and J7B:  J7A consists of 383 variables measurements with a requirement 
that each measurement be in the interval (–4.5, 4.5). J7B consists of 468 variables measurements 
with a requirement that each measurement be in the interval (–3.8, 3.8).  There are 383 tests that 
provide measurements of J7A and J7B, and 85 tests that measured J7B. In addition, 2,327 tests 
recorded pass/fail data that ensured that both J7A and J7B were within requirements.  These 
include the 468 tests described above.  
 
This combination of having both pass/fail and continuous measurement (variables data) on 
components is called multilevel data (cf., Wilson and Huzurbazar 2007).  
 
For this data, we use normal distributions with mean μA and variance σA

2 for J7A and mean μB 
and variance σB

2 for J7B.  We use noninformative priors on all the parameters such that we have 
flat priors on μA and μB and diffuse (1/variance) priors on σA

2 and σB
2. The posterior is given by 
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where Φ is the standard normal cumulative distribution function and a term such as Φ(4.5, μA , 
σA)- Φ(–4.5, μA , σA) gives the probability that the component J7A is within requirement.  We 
use MCMC to sample from the posterior in Equation (2).  For J7A and J7B together in series, the 
posterior distribution median is 0.9998 and a 95% credible interval is (0.9996, 0.9999).  Figure 
3-4 gives a histogram of samples from the joint posterior distribution of J7A and J7B. 
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Figure 3-4.  Histogram of samples from joint posterior distribution of J7A and J7B. 

 
Component J7C:  For this component, we have 15 variables measurements on J7C with a 
requirement that they be in the interval (–6.0, 6.0).  These observations are independent of the 
other data.  We assume that the data is normally distributed with mean μ and variance σ2.  We 
use a flat prior on μ and a noninformative (1/variance) prior on σ2. The posterior is proportional 
to 
 

 2 2
1 2 i

i

1 1 1exp ( )
n

x μ
σ σ σ=

⎜ ⎟
⎝ ⎠

 (34) 

 
Figure 3-5 gives a histogram of the data along with a histogram of samples drawn from the 
posterior distribution of Equation (3) using MCMC.  The distribution is very skewed, with a 
posterior median of 1.0 and a 95% credible interval of (0.9999997, 1.0). 

⎛ ⎞− −∏
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Figure 3-5.  Histogram of data from J7C (left) and posterior samples (right). 

 
Component J7D:  There were no failures in 71,784 tests (trials).  The total number of individual 
parts tested to obtain the trials data was 6,175.  We used a negative log-gamma (NLG) (0.25,1) 
distribution for the prior. 
 
The NLG distribution was introduced by Springer and Thompson (1967) specifically for 
problems in system reliability. Martz and Waller (1982) and Lawrence and Vander Wiel (2006) 
provide detailed explanation.  The NLG distribution has the property that for components in 
series that have NLG priors, the system-level prior is Uniform(0,1).  In our case, this means that 
the block prior is Uniform(0,1) and the prior on each success probability pi is: 
 

− log( i = 1pi) ~ gamma(α i,1) where α∑

 

pS =

− log(pS ) = − log(pi)∑ ~ gamma(1,1)
⇒ pS = Uniform(0,1)  (35) 

 
We use MCMC to sample from the posterior to give the posterior distribution samples in 
Figure 3-6.  The posterior distribution median is 0.999993, and a 95% credible interval is 
(0.99972, 1.0). 

pi∏
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Figure 3-6.  Histogram of posterior samples from J7D. 

 
Block J7:  We use Monte Carlo to combine the posterior samples from the four components in 
series: J7A, J7B, J7C, and J7D.  We take a product of the joint draws of (J7A, J7B) and marginal 
draws of J7C and J7D.  The posterior samples are shown in Figure 3-7.  The distribution median 
is 0.9998, and the 95% credible interval is (0.9995, 0.9999). 
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Figure 3-7.  Posterior samples for the four-component  

series system represented by J7. 
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Block J4:  This is composed of five components in series, J4A, J4B, J4C, J4D, and J4E. 
J4A, J4B, and J4D are assessed as series systems with data from all three components combined.  
They are judged to be “similar enough” to be evaluated jointly.  All three have the following 
events: 
 

E1: 0 failures in 200,000 tests 
E2: 0 failures in 200,000 tests 
E3: 0 failures in 1,000 tests. 

 
In addition, J4A and J4B have an additional failure event E4: 1 failure in 516 tests. We calculate 
p1, p2, p3, p4 corresponding to failure events (E1,…,E4) using the NLG(1/β,1) prior distribution 
and binomial data.  The NLG is used so that J4 has a uniform prior distribution.  The posterior 
samples are given in Figure 3-8. J4A and J4B have the same distribution.  The distribution 
median is 0.9984 with a 95% credible interval of (0.9925, 0.9999).  For J4D, the distribution 
median is 0.9999982, and the 95% credible interval is (0.9991, 1.0). 
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Figure 3-8.  Posterior sa r J4B [left]) and J4D [right]). 
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Figure 3-9.  Posterior samples for J4C (left) and J4E (right). 

The solid line on the J4E is the posterior with a uniform prior. 

 
Component J4E:  Component J4E had 106 successful tests with no failures. pE is calculated 
using an NLG(1/13,1) prior along with binomial data.  The posterior is presented in Figure 3-9 
along with some sensitivity analysis using a uniform prior (solid line in Figure 3-9, right).  With 
the NLG, the distribution median is 0.999998 and a 95% credible interval is (0.9914, 1.0).  For 
the uniform prior, the distribution median is 0.9935, and the 95% credible interval is (0.9661, 
0.9998). 
 
Block J4 Results:  The five-component series system is a product of 13 probabilities, 
(p1p2p3p4)(p1p2p3p4)(pC)(p1p2p3)(pE).  We use Monte Carlo to combine the five components, six 
distinct probabilities together.  The distribution on J4 has a median of 0.9960 and a 95% credible 
interval of (0.9818, 0.9996).  Posterior samples from J4 are given in Figure 3-10. 
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Figure 3-10.  Histogram of resulting distribution on  

J4 by combining posterior samples on components J4A–J4E. 
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Blocks K14, K15, and K16:  These components are distinct but are tested together so that we do 
not know which one failed.  We observe 1 failure in 4,132 tests.  The failure allocation with K14, 
K15, K16 is 4:4:1.  The probability that the system works is pS = p1p2p3.  We have binomial data 
with success probability pS.  We use an NLG prior on (p1,p2,p3) with α1 = α2 = 4/9 and α3 = 1/9, 
which matched the gamma prior means to the failure event ratio.  This induces a Uniform(0,1) 
prior on at the block level. 
 
The posterior distribution median is 0.9999415 with a 95% credible interval of (0.9991630, 1.0) 
and is shown in Figure 3-11. 

 
Figure 3-11.  Joint posterior samples for K14, K15, K16. 

 
Block JK20:  This block represents a subsystem with components C1 and C2, each of which 
produces an amplitude, A1 and A2, respectively.  The reliability in this case is age-dependent 
through the amplitude.  Figure 3-12 shows a block diagram of the subsystem. 
 

 
 

Figure 3-12.  Block diagram for JK20. 

 
We assume that C1, C2 have the same reliability distribution and that Log(A1) and  
log( A2) are i.i.d. N(a+bti, σ2) .  The data on C1 and C2 has 100 failures in 2,500 trials. We model 
reliability of C1, C2 with a Beta(1,1) (Uniform) prior, which gives a Beta(2401,101) posterior. 
Log(A1)+log(A2) are i.i.d. N(2(a+bti), 2σ2).  We simulated 400 “ages” from Gamma(1.4, 0.27) so 
that t1,…,t400  have a median =  4, and a 99th percentile = 20.  We generated observations from an 
N(a+bti, σ2)  with a = 29.22, b = –0.1204, σ = 0.1826.  We used diffuse gamma priors on a, b and 
inverted gamma on σ2. The posterior probabilities of interest are P(A1>age cutoff) and 
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P(A1+A2>age cutoff).  Figure 3-13 gives a plot of the amplitude changing over time and the 
posterior samples from block JK20.  Figure 3-14 gives a plot of the system reliability over time 
and a plot of the posterior at age = 130 years. 
 

 
Figure 3-13.  Amplitude as function of time (left) and posterior on JK20 at age 0 (right). 

 
Figure 3-14.  System reliability over time (left) and posterior at age 130 years (right). 

 
Block JE1:  This block is the node that captures the epistemic uncertainty.  In the first analysis 
(left-side results of Figure ES-1), we assume that it makes no contribution to the variability of 
the system.  This corresponds to assuming a reliability distribution of “1” for this component. In 
the second (right side of Figure ES-1) we assume that there is a hypothesized failure mode above 
a certain stress level for which we have no data.  The reliability is assumed to be not time-
dependent.  While no data was available for this block’s analysis, a probability distribution is 
chosen to reflect the a priori belief that there is a 50% chance of a 0.5% problem, and a 5% 
chance of a 1% problem.  The distribution that captures this assumption is a Beta(861.2,4.655).  
Note this is an extension of the basic problem as laid out in Chapter 1. 
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Combining Component-Level Data 
 
Once we have a distribution to estimate the reliabilities for all components of the system, we can 
combine these distributions using Monte Carlo to obtain an overall distribution to estimate the 
system reliability.  Note that not all component reliabilities have been estimated independently 
(e.g., K14, K15, K16).  Thus, we must sample from the joint distribution of the nonindependent 
components (instead of their marginal distributions). 
 
If we assume that “JE1” has reliability of “1” and include no additional uncertainty for “J4E,” 
then we obtain the following reliability estimates for the system.  The distribution median is 
0.9941. The resulting quantiles are 
 

95%:   0.9972 
 5%:   0.9852. 

 
Figure 3-15 gives the system reliability for the second scenario, where we have included some 
uncertainty in the estimates of both “JE1” and “J4E.”  Then the distribution median is 0.9880. 
The resulting quantiles are 
 

97.5%:  0.9941 
 95%:   0.9935 
 5%:   0.9767 
2.5%:   0.9734. 
 

 
Figure 3-15.  System reliability for block diagram of Figure 3-1. 
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We can also attribute the uncertainty in the inputs to uncertainty in the output using posterior 
draws to approximate the largest contributors to approximate the expected variability of the 
system reliability with or without the component reliability uncertainty E[Var(Xi|X-i)].  
Figure 3-16 displays this for the system at age = 0 for the second scenario with included 
uncertainty for both “JE1” and “J4E” in a Pareto bar plot for variance contribution rather than 
counts.  By ordering the component contributions to the overall uncertainty in the system 
reliability estimate, we are able to determine the relative contribution of the components to the 
precision of our estimates. 
 

 
Figure 3-16.  Uncertainty attribution for output uncertainty. 

 
The largest contributors to variance are J4E and JE1, as shown in Figure 3-17. 
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Figure 3-17.  Largest contributors to variance (J4E and JE1). 
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Figure 3-18 shows the overall system reliability as a function of time.  An implicit assumption of 
the current model for components with no aging trend is that the component reliabilities can be 
predicted beyond the observed ages with no change in this non-aging assumption. 
 
 

 
Figure 3-18.  JK20 reliability distribution as a function  
of age with histogram of reliability at age 135 years. 
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4.  COMPARISONS AND OBSERVATIONS 
 
The previous sections provide a proof of concept for two different approaches for estimating 
reliability and its associated uncertainty in a sample system.  This section briefly explores the 
similarities and differences both in the formulation and execution of the two methods. 
 
Sensitivity to Zero-Failure Case Assumptions 
 
Although the two approaches have significant conceptual differences, in the case study explored 
here the two can give closely comparable results.  Both methods prove to be sensitive to how 
they handle zero-failure cases.  This sensitivity can be much larger than the differences in results 
between Classical and Bayesian formulations. 
 
Figure 4-1 compares 90% confidence/credible intervals for the Classical and Bayesian 
approaches. 
 
 
 
 Reliability equal “1” 

for zero failure case 
Reliability < “1” for 
zero failure case 

 
Figure 4-1.  Confidence/credibility interval comparison. 
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Assume Reliability = 1 for Zero-Failure Case 

The left side shows the Classical and Bayesian approaches using a reliability of “1” for both 
component J4E that has zero failures and for knowledge uncertainty event JE1. The results in the 
Classical and Bayesian approaches in this case are almost identical:  the Classical 90% 
confidence interval is (0.9855, 0.9975) centered at 0.9911; the Bayesian 90% credible interval is 
(0.9852, 0.9972) with a median of 0.9941.  The width and placement of the two intervals is quite 
similar with the point estimate of the Classical method being slightly lower than the Bayesian 
estimate.  Note that in this case of zero failures, when the Classical approach assumes a 
reliability of “1” it naturally associates this with no uncertainty whereas the Bayesian approach 
would more naturally apply the flexibility to account for the associated uncertainty through a 
prior distribution.  
 
Assume Reliability Not Equal to 1 for Zero-Failure Case 

The right side of Figure 4-1 explores another pair of alternatives for the zero-failure cases.  If we 
select the 50% upper confidence limit for J4E, the Classical approach estimates a lower mean 
reliability, and a wider 90% interval.  The second (labeled “Bayesian with JE1 & J4E 
Adjustment”) estimates system reliability using the Bayesian approach and incorporates 
uncertainty for both J4E and JE1.  The uncertainty for J4E is estimated by using a diffuse prior, 
and the uncertainty for JE1, which represents a hypothesized unknown failure mode, is 
summarized by a beta distribution formulated based from expert elicitation.  The uncertainty of 
the JE1 component is not included in the Classical estimate; hence these two results are not 
directly comparable.  Because the Bayesian interval contains this extra component, the bounds 
are somewhat lower than the Classical ones.  However, the overall point estimate of system 
reliability remains higher than the Classical approach by an amount similar to that in the first 
comparison. 
 
Contributors to System Uncertainty 

Table 4-1 compares the largest contributors to system uncertainty.  These results draw from 
Table 2-3 and Figure 3-16.  The “Left” and “Right” analyses correspond to those discussed for 
Figure 4-1.  Note that the percentages of the uncertainty explained are scaled differently, since 
the widths of the intervals differ between approaches.  While both the Classical and the Bayesian 
approaches produce an ordering that is roughly comparable, there are obvious differences.  Both 
the details on what the contributors represent and the scales of measurement contribute.  The full 
nature of the differences remains to be explored but some general observations can be made on 
individual components. 
 

• The JE1 event used different models in the two computations.  The Classical computation 
assumed no uncertainty and no impact on reliability here.  On the other hand, the 
Bayesian model allows for the inclusion of uncertainty through a prior that matches 
specified assumptions about the expert assessment of the likelihood of potential problems 
from this component. 
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• The J4E event only enters in the “Right” analyses.  The Classical calculation used the 
50% upper confidence level as the best estimate of the failure probability associated the 
relatively small sample size (106 trials) with considerable uncertainty.  The Bayesian 
approach of applying an NLG prior is updated by the observation of 0 failures in 106 
trials associated less uncertainty.  As noted in Chapter 3, this is a place where the 
Bayesian calculation shows considerable sensitivity to assumptions.  For an NLG(1/13,1) 
prior, which was used for the calculation reported above, a 95% credible interval for J4E 
would be (0.9914, 1.0).  For a uniform prior (which assumes that reliabilities between 0 
and 1 are all assumed equally likely), the interval would be (0.9611, 0.9998).  Note that 
the assumed user knowledge about the reliability of the system for these two priors is 
very different (ranging from a belief that reliability is centered around 0.95 versus 
centered around 0.5).  Since these priors represent very different assumptions about the 
state of the component, we would hope that they would have an impact on our post-
analysis summaries of the component reliability. 

 
Table 4-1.  Largest Contributors to Uncertainty. 

Classical Model Bayesian Model 

Contributor 
Contribution 

(R=1 for 0 
failure cases) 

Contribution 
(R < 1 for 0 

failure cases) 
Contribu-

tor 
Contribution 

(R=1 for 0 
failure cases) 

Contribution
(R < 1 for 0 

failure cases) 

 N/I N/I JE1 event N/I  25% 

(1-Y6) –  
J4E event N/I 64% J4E event N/I 27% 

(1-Y4)2  – 
J4A and 

J4B events 
56% 20% J4A, J4B 29% 14% 

JK20 event 25% 9%  4% 2% 

(1-Y3)3  – 
J4A, J4B 
and J4D 
events 

18% 6% J4D 4% 2% 

others <1% <1%  <3% <2% 
N/I = not included 
 
 

• The contributed uncertainty from J4A and J4B events came next for both approaches.  
There is reasonable alignment here, but note the Classical and Bayesian approaches are 
measuring the uncertainty associated with somewhat different things.  The Classical 
value gives the contribution associated with data source Y4, which is one contributor to 
J4A and J4B.  The Bayesian deals with the reliability contribution from J4A and J4B 
directly.  This reflects the differences in the approaches themselves.  Classical approaches 
use probability to measure randomness associated with data and data sources.  Bayesian 
approaches measure the same quantities and in addition use probability distributions to 
measure uncertainties in knowledge about underlying parameters. 
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• The JK20 event also shows some differences.  The Classical calculation is for system end 

of life of 130 years while the Bayesian calculation was done for both beginning of life (0 
year) and at end of life (30 years).  The Classical calculation includes the uncertainties 
involved in the considerable extrapolation of the data illustrated in Figure 3-13.  The 
Bayesian calculation handles continuous aging and also explores uncertainties as part of 
the sensitivity study reported in Figures 3-14 and 3-18.  It should also be noted that the 
Classical calculation shows considerable sensitivity to the specific lifetime: an 
extrapolation to 129.5 years show results much closer to those for the Bayesian 
uncertainty calculation at 130 years.  In both cases, the assumption that the model form of 
linear degradation towards a known specification limit is central to the projection of 
reliability.  If another failure mode or the pattern of the degradation changed beyond the 
range of observed data, then the reliability estimates of both approaches would be invalid. 

 
• As was the case for the Y4/J4A and J4B discussion, the uncertainties associated with Y3 

and J4D shown on the last of Table 4-1 measure somewhat different things. 
 
Comparison and Contrasts Between Approaches 

Separate from these specific results, some general comparisons and contrasts can be made about 
the approaches. 
 
Philosophically, there are, of course, the familiar, if considerable, differences.  Interval estimates 
in both cases rest on a statement of the form 
 

Prob(L < Reliability < U) = 0.90  (36) 

but the handling of that statement is very different.  The Bayesians treat the reliability as a 
random variable and compute L and U based on its distribution. The resulting interval is called a 
credible interval.  The frequentists treat L and U as random variables whose distribution depends 
on the unknown (but nonrandom) reliability. As noted in the discussion of event J4E, the breadth 
of the uncertainties being captured by the concept of “probability” is different as well. 
 
Both approaches embed judgments that can greatly influence the results.  This was clearly 
illustrated in the discussion of the J4E event but applies more generally in other assumptions and 
approximations involving statistical distributions. 
 
As with the J4E event, the Bayesian prior distributions seek to capture what experts know, with 
specific distributional choices being typically used.  Classical approximations come at the end of 
the calculation where the moments of RSNL need to be equated with some distribution.  Here an 
equivalent binomial was used.  And with that choice, the confidence interval bounds given by 
Equation (31) only give an approximate solution to Equation (36).  Other distributional 
approaches might be explored in follow-on studies, such as use of the chi-square distribution 
associated with the asymptotic theory behind the likelihood ratio test.  In any case, the sensitivity 
of results to all such choices, judgments, and approximations need careful review before too 
much credence is put in the specific results. 
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These results illustrate that the two approaches seek to reflect somewhat different sources of 
uncertainties.  The Classical approach incorporates and propagates sampling uncertainties 
through distributional approximations.  It does not include other knowledge-based sources of 
uncertainty.  These must be handled via a larger risk-based structure as discussed in Ringland et 
al. (2009).  The Bayesian approach allows for expert knowledge about each component to be 
incorporated via a prior and propagates uncertainties using Monte Carlo simulation. 
 
Both approaches start from a small number of basic principles but then require a fair amount of 
mathematical or computational machinery to execute.  In the Classical case, much of the 
complexity involves the analytic manipulation of the equations.  For more complex problems 
than the one here, however, some of this might be done numerically (e.g., numerical computation 
of the derivatives needed for the mean and variance expansions).  In the Bayesian case, more of 
the analysis was done numerically, and the underlying use of MCMC and other simulation and 
numerical integration techniques are both sophisticated and computation-intensive. 
 
Two additional issues with the Classically based SNL reliability estimator should also be pointed 
out. 
 
First, the uncertainty calculation for RSNL depends on values that would be used if there are zero 
failures for the various subsystems, even when one or more failures has been seen and those 
values are not active.  That is part of the structure of Classical (Neyman-Pearson) philosophy 
where probabilities represent repeated frequencies over conceptual repetitions of the entire 
test/surveillance history.  It is often said that the zero-failure values are not relevant for mature 
systems because most components will have seen failures.  From the perspective of Classical 
statistical uncertainty calculations based on Neyman-Pearson philosophy, that is not true, 
although the impact is reduced with more data and more observed failures.  In a sense, the 
situation resembles the Bayesian situation where the influence of the prior distribution decreases 
as more data is available. 
 
Second, the use of RSNL itself deserves re-examination.  It is known to be a biased estimator 
because of the special handling of zero-failure results for individual subsystems.  As shown in 
Ringland (2008), RSNL can have lower mean square error (a frequently used measure of goodness 
in Classical statistics) than an estimator without special handling of zero-failure cases if system 
unreliability is the result of subsystem unreliability localized to one or two such subsystems.  If 
three or more subsystems are significant contributors, RSNL is not necessarily superior, and can be 
much worse. 
 
Some concluding observations about the Bayesian analysis are given below. 
 

• The Bayesian approach requires that expert knowledge be incorporated into the analysis. 
While there is considerable flexibility about the specificity and the nature of the 
information captured in the prior, there is a requirement to consider what is known about 
the reliability of the component outside of the data currently included in the analysis. 
Diffuse priors can be used if the expert knowledge is not specific, and the impact of the 
prior is dependent on the amount of data in the analysis.  For a component with little data, 
the impact of the prior can be substantial.  Since this study was a proof of concept, we 
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primarily selected diffuse priors because expert elicitation for this fictitious system was 
not available.  In a real application, considerable time would be spent on appropriate prior 
selection to incorporate expert judgment. 

 
• In the above analysis, since the analysis represents a fictitious system, we assumed that 

little was known outside of the data available.  For each block, it was assumed that a 
uniform distribution from [0,1] was appropriate to summarize what was known.  This 
subjective choice was made to avoid inserting artificial outside knowledge into the 
analysis, in an effort to make the two approaches most comparable.  In general, it would 
be typical to have expert opinion that would make these priors less diffuse, and more 
accurately reflect what is known about the system and its components.  This prior may be 
inherently pessimistic, since it implies that a reliability of less than 0.5 is as equally likely 
as a reliability of more than 0.5.  This assumption was then translated to information at 
the sub-block levels (in the cases of J7 and J4 where multiple failure modes or 
subcomponents were involved).  The NLG model allows for priors to be constructed at 
the sub-block level, while preserving the desired prior characteristics at the block level.  

 
For this proof-of-concept case study, our focus is on demonstrating that these types of 
calculations can be performed on complex systems rather than aiming for a one-to-one 
comparison between the Classical and Bayesian approaches.  Still, we were gratified by the 
degree to which the results were similar.  This is only a first step toward gaining a scientific 
consensus on methods. More work would be required to extend these to a proper decision 
framework that is not overly simplified.  In addition, to appropriately reflect the entire 
understanding of a real system, more emphasis would be placed on data acquisition and how to 
best capture other sources of knowledge from experts into the priors in the Bayesian method.  
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