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Abstract

This report presents progress on identifying and classifying features involving combustion in
turbulent flow using principal component analysis (PCA) and k-means clustering using an
in situ analysis framework. We describe a process for extracting temporally- and spatially-
varying information from the simulation, classifying the information, and then applying the
classification algorithm to either other portions of the simulation not used for training the
classifier or further simulations. Because the regions classified as being of interest take up a
small portion of the overall simulation domain, it will consume fewer resources to perform
further analysis or save these regions at a higher fidelity than previously possible.

The implementation of this process is partially complete and results obtained from PCA
of test data is presented that indicates the process may have merit: the basis vectors that PCA
provides are significantly different in regions where combustion is occurring and even when
all 21 species of a lifted flame simulation are correlated the computational cost of PCA is
minimal. What remains to be determined is whether k-means (or other) clustering techniques
will be able to identify combined combustion and flow features with an accuracy that makes
further characterization of these regions feasible and meaningful.
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1 Introduction

This report, a follow-on to [TFMI08], presents progress towards an in situ framework for analyzing
simulation data. Where the previous report focused on design issues, this report is a case study of
in situ analysis on turbulent combustion simulation data. Specifically, a technique for classifying
regions of interest using principal component analysis (PCA) is developed.

S3D is a parallel application for simulating turbulent, reacting flows which has been run on systems
with upwards of 10,000 processors. For this case study, we consider a simulation involving 21
chemical species reacting in a lifted flame.

Specifics of the simulation are discussed below and this section concludes with a brief review
of PCA. The remainder of the report then focuses on the strategy for identifying and classify-
ing regions of interest, how in situ analysis capabilities have been added to S3D, and finally the
presentation of some intermediate results.

1.1 Lifted Ethylene Jet Simulation

In the lifted jet flame considered here a cold (550k), quickly moving, planar ethylene fuel jet is
surrounded by a co-flow of hot (1550k) oxidizer. S3D solves the differential equations governing
the evolution of momentum and composition through a fully compressible solution to the Navier-
Stokes equations. The solution is advanced on a finite difference grid using an 8th order approx-
imation to the spatial derivatives. In the current case, evolution equations are also advanced for
each of 21 species involved in a reduced chemical mechanism for ethylene-air combustion. Due to
the compressible formulation, S3D is extremely scalable as communication is only required with
neighboring processes. The lifted jet flame simulation was carried out on 30,000 processes on the
Cray XT4 at Oak Ridge National Labs with near-ideal weak scaling for a grid with 2025x1600x400
points in the x, y, and z direction.

In this configuration, the conditions following mixing between the fuel and oxidizer are suitable
for autoignition within the domain residence time, and autoignition is a significant factor in the
stabilization of the flame. The solution is statistically stationary in time; although fluctuations
about the mean quantities are unsteady, the time-averaged solution is steady. There is a spatial
development in the solution from separate, non-burning, fuel and oxidizer at the domain inlet
(bottom) to a steady flame near the outlet at the top of the domain. As this development occurs,
different underlying physics control the composition. Before any reaction has taken place, the
composition will be completely determined by the amount of fuel and oxidizer present — any
of the three species (O2,N2,C2H4) is sufficient to determine the complete composition. After a
steady flame has developed, it is known that the composition is largely determined by amount of
the mixture which originated in the fuel stream - an indication of this can be obtained by a linear
combination of all of the species present which contain the elements found in the inlet streams.
During the transition, the species which most naturally describe the thermodynamic state may
have significance indicating the dominant physical processes: it is this significance that we hope
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to explore using the PCA methodology described below.

1.2 A Review of Principal Component Analysis

PCA is a technique for identifying how several variables observed together are correlated across
a sequence of observations. Recall that correlation is related to the covariance. Say we have
variables X = {x1,x2, . . . ,xn} which are observed r times and have mean µX = {µ1,µ2, . . . ,µn}.
Their covariance matrix is

cov(X) =



∑
r

(x1−µ1)2
∑
r

(x2−µ2)(x1−µ1) · · · ∑
r

(xn−µn)(x1−µ1)

∑
r

(x1−µ1)(x2−µ2) ∑
r

(x2−µ2)2 · · · ∑
r

(xn−µn)(x2−µ2)

...
... . . . ...

(∑
r

x1−µ1)(xn−µn) ∑
r

(x2−µ2)(xn−µn) · · · ∑
r

(xn−µn)2


.

Note that cov(X) is symmetric, positive definite, and has n(n+1)
2 unique entries. While examining

the covariance matrix of a set of observations directly is possible, it can be very difficult to identify
patterns of correlations between sets of more than 3 or 4 variables directly. PCA simplifies this
work by presenting a set of up to n vectors which indicate correlated sets of variables.

The PCA technique computes the eigenvectors and eigenvalues of cov(X) and uses these eigenvec-
tors to project observations into a space with reduced dimensionality m < n. Our implementation
uses the singular value decomposition (SVD) of cov(X) = UΣV T to compute the eigenvectors and
eigenvalues. Because cov(X) is symmetric, U = V and each column of U is an eigenvector. Recall
that Σ is a diagonal matrix. In our case, the square root of each diagonal entry of Σ is the eigenvalue
associated with the eigenvector in the corresponding column of U .

Obtaining the eigenvalues v = diag(Σ) and eigenvectors V using the SVD is preferred over other
methods because it behaves well in the face of degeneracy; if one variable is constant or if some
combination of variables have precisely zero covariance, the SVD still produces valid results. Each
eigenvector identifies a correlation among several variables and the ratio of the associated eigen-
value to other eigenvalues indicates the strength of the correlation relative to the other correlations
present in V . Most numerical implementations of SVD, including the one we use, return v as a list
of eigenvalues sorted in descending order. This is very useful as high values of v indicate strong
correlations – meaning that the first entries in v and V are the ones we should consider.

Once v and V are obtained, PCA uses V to project the original observations X into a smaller space,
Y . This is accomplished by letting Vm be the first m columns of V and taking Y = XVm.
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2 Analysis Strategy

The overall goal of the analysis is to identify, characterize, and validate models of ignition and
extinction. The result of PCA on some sub-block (i, j,k) of the simulation domain at time t is a
set of eigenvalues vi jkt and eigenvectors Vi jkt . Alone, all vi jkt and Vi jkt tell us is which species
are correlated in that region. However, taken as a collection over the entire simulation space-
time domain, they approximate the set of possible states that the simulation has taken on. If
we can further reduce the number of states in this approximation using clustering or some other
classification algorithm to some tractable number, it may be possible to determine which states or
time-sequence of states are locally responsible for ignition or extinction events. In the best possible
scenario, a small number of clusters in state space are associated almost exclusively with ignition
or extinction. In this case, we need only determine what distinguishes these clusters from others.
More likely, a sub-block of the simulation containing an ignition or extinction event will move
through several states during ignition or extinction and some analysis of the time-series of states
in the neighborhood will be required.

In order to make classification and clustering as tractable as possible by reducing the dimension of
the data, we can use PCA to project into a lower dimension; however, rather than projecting into a
different space on each (i, j,k, t)-block, we can first reduce the overall dimension of the problem
by eliminating combinations of species that are strongly correlated. To do this, PCA run over the
entire space-time mesh can be used to identify a global projection that we can apply to each block’s
eigenvectors and eigenvalues before performing clustering. This global PCA is simple to calculate
since the covariances for all the sub-blocks may be combined using the update formulas in [P0́8].
The SVD of the global covariance matrix costs no more than for a single block.

PCA is a linear change of basis from one set of coordinates into an orthogonal set of vectors. In
order for this change of basis to make sense, each coordinate in the original space should be inter-
changeable with other coordinates in some sense – it must make sense to sum multiple coordinates
because weighted sums of existing coordinates are the way the new basis is created. When PCA
is performed on geometric coordinates, this intuitively makes sense: moving some distance along
one coordinate axis is equivalent to moving the same distance along another axis. The underlying
physics are independent of the coordinate system chosen. When the coordinates have some other
meaning, it is not clear that a change of some magnitude in one coordinate is identical to a change
of the same magnitude in another coordinate.

For our application, the underlying coordinates are not directly interchangeable. Even small
changes in some chemical concentrations are significant while large changes in others are in-
significant. In order for PCA results to be meaningful, the coordinates in question should thus
be normalized. External knowledge of the meaning of each coordinate is the best source of nor-
malization. Since it is independent of observations, there is no question of circular logic creating or
removing important trends in the data as part of the change in basis. Failing that, it can sometimes
make sense to normalize by the variance along each initial coordinate axis. To guarantee that the
PCA does not ignore variance in species with small changes in concentration, a normalization step
is performed as follows:
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PCA is first performed over the entire mesh at the first time step, yielding a global covariance
matrix cov(X) = Cab. Then, as PCA is performed on sub-block (i, j,k) of the mesh, its covariance
cov(Xi jk) = Ci jk

ab is normalized before SVD is applied:

Ci jk
ab ←

Ci jk
ab√

CaaCbb
. (2.1)

This transformation normalizes the variances of each species directly and the covariances between
pairs of species are normalized using a combination of the variances of each entry in the pair.

Once we have a set of vectors to classify, we plan to explore various clustering algorithms (includ-
ing k-means) as well as other classifiers such as decision trees. As a first step, we are currently
in the process of extending the VTK library to include a vtkKMeansStatististics class. At this
point, we have developed the design of the class and are in the initial implementation stages. The
vtkKMeansStatistics class will accept a series of raw observations as well as an optional argu-
ment consisting of initial set(s) of cluster centers (if no initial cluster centers are provided then a
default number of random cluster center locations are generated). The class will be implemented
as a subclass of vtkStatisticsAlgorithm and will thus perform its computations in a series of
three phases:

Learn Updated set(s) of cluster centers are computed.

Derive Errors for the different cluster center requests are reported.

Assess Given a vtkKMeansStatistics model and a set of input data, the membership indicator
and distance from the corresponding center for each observation is computed.

When using the k-means algorithm to classify data, there are several key issues that we must
address. First and formemost, a value for k must be chosen. We plan to choose k a posteriori using
the variance measured for each result. Recall that k-means is an optimization problem that cannot
usually be solved in a global sense. The starting positions of the k cluster centers heavily affects
the variance associated with the result. One way to choose k might be to examine how the range
of variances associated with several different sets of starting positions changes with k. When k is
too low, variances will be high since some eigenvectors will be far from any cluster center. As
k increases, variances will tend to drop. However, when k is larger than necessary, some starting
positions for cluster centers will yield very good results due to overfitting while other starting
positions may not since there will be many local minima that can keep optimizers from converging
to a reasonable value. Thus we will look for values of k that have a low overall variance and also a
low distribution of variances when run with different initial cluster positions.

In addition to selecting a value for k, it important to select “good” starting positions for the initial
cluster centers. When cluster centers are poorly chosen the k-means optimization algorithm will
likely get stuck in a local minimum and will not converge to a globally optimal result. We plan on
leveraging recent research [DH04] that has shown a close relationship between k-means clustering
and PCA. Specifically, this work has proven that the continuous solutions of the discrete k-means

10

http://www.vtk.org/


clustering membership indicators are the data projections on the principal eigenvectors of the co-
variance matrix of the input data. When k = 2, a near optimal clustering can be computed, and
when k > 2 a hierarchical approach can be used to generate a good set of initial cluster centers.
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3 Analysis Framework

S3D allows multiple analysis modules – each perhaps written by different authors and performing
different tasks – to each be linked into its executable. Static linking is preferred since dynamic
loaders may not be available on all high-performance computing (HPC) platforms and even where
they are, dynamic libraries on nodes used for compilation may not be present in the run-time
environment. To avoid reference loops between libraries (which again may not be supported on
HPC systems), analysis modules do not make any calls to functions in S3D. Instead, S3D calls the
analysis modules with all of the information they require.

In order to perform analysis in situ, access to simulation state is required. S3D is a finite-difference
code running on a rectilinear grid with nearly evenly spaced nodes. In practice, nodes far from the
flame are spread slightly further apart than nodes near the flame in order to reduce the simulation
size required. Because these changes in spacing are small, we choose to make simulation data
available to analyses in the form of vtkImageData rather than as a vtkStructuredGrid. This
makes it possible to perform volume rendering using much faster algorithms. Since S3D can be
asked to provide spatial derivatives of quantities with much higher order kernels than are present
in VTK, it is unlikely this approximation will cause trouble.

On the jaguar machine at Oak Ridge, approximately 1
3 of a node’s memory is used by the sim-

ulation. Some of this is persistent state and some is in the form of a working array. Neither the
persistent state nor the working array are dynamically allocated during the course of a simulation,
so S3D only passes addresses to each in situ module once at initialization. In between time steps,
S3D copies species concentrations into the working array and then calls each analysis module.
Once the analyses are done, more time steps are simulated until S3D reaches a termination condi-
tion, at which point each analysis module is given an opportunity to complete any ongoing work,
free any resources it has acquired, and close any open files.

Each analysis module is expected to provide a set of libraries that implement 3 procedures with the
following C signatures:

void module init ( int* mpiRank, int* mpiCommunicator,
double* speciesVals, char* speciesNames, int* numSpecies,
double* x, double* y, double* z,
int* nx, int* ny, int* nz,
int* npx, int* npy, int* npz,
int neighbors[6] )

void module tstep ( int* mpiRank, int* mpiCommunicator, double* time )
void module fini ( int* mpiRank, int* mpiCommunicator )

where module is the name of the analysis module in all lowercase. All values are passed by
address instead of value since the subroutines will be called from FORTRAN. The trailing under-
scores on the procedure names are present because most FORTRAN compilers add an underscore
to procedure names. If you are building S3D with a FORTRAN compiler that does not do this, you
will have to remove the final underscores from the C implementations of the routines.

12
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4 Results

The following results are from a small subset of simulation data provided by Jacqueline H. Chen
and Chun Sang Yoo. In late April, we will be running the same analysis on a much larger dataset
– with each restart file requiring 136 GiB – in order to obtain eigenvectors that can be clustered.
At that point, the stretch goal for the FY09 feature recognition milestone will have been met.
After examining these clusters for signs that they are involved in ignition and extinction events,
the cluster centers will then be used during live simulation runs to identify regions of of interest
correlated with ignition and extinction.

Figure 1 shows the principal eigenvalue produced by each block in the mesh. Figure 2 shows
one component of the principal eigenvector along with its associated species concentration in the
raw simulation data. Each block has 20 other eigenvalues and 441 other eigenvector components
associated with it (besides those shown). However, if some species are not involved in reaction
and are not being convected in large quantities to or from neighboring blocks, then some of the
eigenvalues for that block will be near or exactly 0. In these cases, the associated eigenvectors carry
no information other than that they are part of some orthonormal basis. Thus it is wise to consider
only the subset of eigenvectors and eigenvalues that are likely to carry significant information about
interactions between species.

Figures 3 and 4 show the top 152 eigenvectors and values ranked by eigenvalue. Even considering
single components, H and CH3CHO concentrations can clearly be used to divide blocks into clus-
ters. Considering pairs of components by examining the figures, CH4 and CO appear to have two
distinct regions. Similarly, CO2 and CH2O; and aC3H5 and C3H6 may also be prove useful for
classifying eigenvectors. Rather than relying on human inspection, we hope to apply k-means to
find signatures for several different regions. Then, by examining how these signatures change over
time it may be possible to determine a pattern evinced by ignition and extinction.
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Figure 1. To the left is the source mesh colored by a species
concentration. Sub-blocks on the mesh to the right are colored by
the principal eigenvalue magnitude.
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Figure 2. To the left is the source mesh colored by a species
concentration. Sub-blocks on the mesh to the right are colored by
the magnitude of that species’ entry in the principal eigenvector.

Figure 3. Parallel coordinates rendering of the preliminary re-
sults. The first column shows eigenvalues while the remaining
columns are components of the associated eigenvector. Only the
eigenvectors with the highest values are displayed.
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Figure 4. Scatterplots between neighboring pairs of coordinates
– in the order shown in the parallel coordinates rendering of Fig-
ure 3.
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