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1 Introduction

This is a progress report on polynomial system solving for statistical modeling. This quarter we
have developed our first model of shock response data and an algorithm for identifying the chamber
cone containing a polynomial system in n variables with n + k terms within polynomial time – a
significant improvement over previous algorithms, all having exponential worst-case complexity.
We have implemented and verified the chamber cone algorithm for n+3 and are working to extend
the implementation to handle arbitrary k. Later sections of this report explain chamber cones in
more detail; the next section provides an overview of the project and how the current progress fits
into it.

1.1 Motivation

Algebraic Statistics is the art of framing discrete statistical models as polynomial systems (see, e.g.,
[PW01, PS05, DS08]). These systems tend be sparse, multivariate, and of high degree. Statistical
software packages generally solve these systems using Gröbner bases or homotopy continuation
— techniques that generate all possible solutions to the system, both real and complex-valued —
but run impractically slowly without artistry depending subtly on the underlying problem. Alter-
natively, optimization techniques are sometimes used, but the known non-algebraic techniques are
not guaranteed to find all possible solutions, thus leaving the possibility that the model is not prop-
erly fit. We aim to improve the situation by developing a technique that computes all real-valued
roots to these systems and does so (provably) quickly.

In order to understand the issues more clearly, we will now discuss how these polynomial systems
arise and how their structure may be exploited. The polynomial systems we are interested in are
generated by considering the probability of observing experimental (simulated or real-world) data.
Example 1.1. Consider an experiment is run several times under varying conditions with the fol-
lowing results

O = (a,b,b,c,d,a,d,a).

The observations in O consist of four possible outcomes: a, b, c, and d. In a given list of obser-
vations, each outcome has a multiplicity – the number of times it appears in O. Assuming that
the observations are realizations of a discrete random variable, the likelihood L of obtaining all of
those results is the product of the probability of each occurring:

L(O) = p(a)p(b)p(b)p(c)p(d)p(a)p(d)p(a),

where p denotes the probability function of the random variable. If one is willing to assume that
the order of the observations does not matter (i.e., the experimental process is not dependent on
the order in which experiments are run), then L can be written

L(O) = p(a)3 p(b)2 p(c)1 p(d)2.

Now take the log to get the log-likelihood `:

`(O) = logL(O) = 3log(p(a))+2log(p(b))+1log(p(c))+2log(p(d)).
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If each probability p(a), p(b), . . . is a function of some unknown parameters xi, then the parameters
that maximize ` (and thus L) may be determined by taking the derivative of ` with respect to the
parameters xi and setting it to the 0 vector. The result1

∂`

∂xi
(O) =

3
p(a)

∂p
∂xi

(a)+
2

p(b)
∂p
∂xi

(b)+
1

p(c)
∂p
∂xi

(c)+
2

p(d)
∂p
∂xi

(d) = 0 (1.1)

is a set of rational functions each of which can be written as the ratio of two polynomials n(xi)/d(xi)=
0. If we find x∗i where all the n(x∗i ) = 0, then we have either the most likely set of parameters x∗i
(assuming the Hessian is positive definite), the least likely set of parameters (where the Hessian is
negative definite), or a degenerate critical point (when the Hessian is semidefinite)..

In order to solve such polynomial systems, as obtained by following the same methodology as in
the above example, Pachter and Sturmfels [PS05] (and others) use Gröbner basis decompositions
of the polynomials. This becomes computationally intractable quickly as the degree of the system
increases because all of the possible solutions to the system (both real and complex) must be
computed. Other approaches do not attempt to find all the roots of the system but, given a starting
point, use gradient-descent techniques to find a single real root – which may or may not correspond
to the global minimum.

The purpose of this project is to develop techniques for solving polynomial systems with complex-
ity depending mainly on the number of real roots via a clever use of A -discriminant theory, and
to guarantee that all the real roots in some given parameter space are identified. It turns out that
discriminants allow us to partition the space of unknowns (xi) into regions with similar behavior.

Example 1.2. A familiar example is the simple univariate, quadratic trinomial

f (x) = ax2 +bx+ c,

whose discriminant is ∆ = b2−4ac. If ∆ < 0 then f (x) has 2 complex roots. Where ∆ > 0, there
are 2 real roots. And when ∆ = 0, there is a double real root. f (x) can be rewritten as follows in
order to remove one coefficient:

g(x) = x2 +Bx+C

where B = b/a and C = c/a and so the discriminant becomes

∆ = B2−4C

The plot of ∆(B,C) = 0 is a 2-dimensional curve2 that separates the (B,C) plane into 3 regions
(∆ < 0,∆ > 0,∆ = 0). Each region is called a discriminant chamber. All the polynomials in the
same chamber have the same number of real roots.

While the number of chambers can grow exponentially in the number of monomial terms, we have
developed an algorithm that can find a polyhedral approximation to the chamber (a chamber cone)

1Note that evaluating log p before differentiating instead of afterwards (as shown) is what makes log-likelihood a
useful technique. Don’t take this equation too literally.

2specifically, a parabola.
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containing a given system in polynomial time. Our algorithm is already implemented for a broad
class of systems of n polynomials in n unknowns, and as of this writing a completely general
implementation is being completed.

Knowing the chamber cone that contains a system F := ( f1(x1, . . . ,xn), . . . , fn(x1, . . . ,xn)) is im-
portant because the vertex of the chamber cone can be used to construct a family of new systems
Ht := (h1,t(x1, . . . ,xn), . . . ,hn,t(x1, . . . ,xn)) with the following properties:

1. H0 :=F

2. the real roots of G :=H1 are easy to find and are the same in number as the real roots of our
original system F .

3. Ht(x) is a differentiable function on [0,1]× IRn.

A technique called homotopy can then be used to find the roots of F . More specifically, homotopy
continuation deforms the roots of a system we know (G) to the roots of a system (F) we are trying
to understand, and does so numerically by a simple application of Newton-Raphson iteration.
However, what distinguishes the homotopies we use is that we specifically construct H so
that G and F lie in the same discriminant chamber, with high probability.

Existing homotopy techniques [SW05] are robust but are also slow because they choose H without
paying any attention whatsoever to discriminant chambers. Without knowing if F and G lie in
the same chamber, homotopy methods must then track every complex root (including all non-real
roots) of Ht from t = 0 to t = 1. Sparse polynomials tend to have few real roots, regardless of how
many complex roots there are. So, for earlier homotopy methods, much of the cost of tracking
roots is spent performing work that will be of no use in the end.

By choosing F to lie in the same chamber cone as G, all of the work tracking non-real roots can
be eliminated. Our technique is, by construction, probabilistic: our use of chamber cones implies
that there will be a small fraction of inputs which do not actually lie in a putative corresponding
discriminant chamber. Earlier algorithms could not attain polynomial time for even a provably
small fraction of inputs. Moreover, since the problem of counting the number of real roots is #P-
hard [BRS08], a small set of hard inputs is very likely unavoidable. Initial experiments indicate
that our approach is quite practical. Furthermore, with some additional work we may still get
useful results even when F does not lie in the discriminant chamber we expect.

The formulation of this method, and obtaining rigorous estimates on success probability, are the
research part of the proposal. But in order to answer these questions, we need a source of poly-
nomials generated by physical systems; it is easy to test with random distributions of polynomials
but that does not say anything about how useful the technique will be in practice. That is where
ASC simulation data will come in. By modeling phenomena such as properties of shock response
spectra (SRS) we will obtain systems of equations representative of physical systems. If they tend
to lie away from the vertices of chamber cones, then the technique will provide good start systems
– unlike other homotopy methods – so that we need only track the real roots of F .
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The remainder of this report covers progress on the theory – particularly on homotopy methods –
and on the application of the theory to physical models – particularly shock response data.
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2 Polynomial Solvers

The chamber cone technique described in the introduction is a new technique that enables homo-
topy methods to preserve the underlying real topology. (The existence of such methods was a
formerly open problem.) In particular, it provides the first algorithm for finding real roots of mul-
tivariate systems of polynomial equations that is polynomial-time (in fixed dimension) with high
probability.

This section details

• notation and definitions concerning discriminants of polynomial systems (§2.1),

• the implementation of the chamber cone method (§2.3), and

• the foundations of the theory of the chamber cone method (§2.2.2).

Also of note is that the chamber cone provides a potentially new solution to Smale’s 17th Problem
[Sma00], and this is outlined in Section 2.2.2.

In summary, the primary effort so far has revolved around settling the most difficult theoretical
portions of the chamber cone method and writing preliminary implementations. This has elimi-
nated a potential bottleneck for completion, so the project has succeeded in remaining on schedule
and providing a radically new and useful algorithm for algebraic equation solving.

2.1 From Polynomials to Polyhedra and Back Again

In order to understand chamber cones in more detail, we will require a thorough discussion of
the discriminant of a polynomial system. First, let us review how polyhedra are intimately (and
inextricably) related to polynomials.

2.1.1 Amoeba and Lower Binomials

Perhaps the most direct evidence that polynomials are related to polyhedra is the Archimedean
Amoeba Theorem [GKZ94].

Example 2.1. Consider f (x,y) :=1− x2 + y− x7y5 + x6y7. Then defining

Amoeba( f ) :={(Log|x|,Log|y|) | x,y∈C\{0} , f (x,y)=0} ,

a short Matlab program reveals that Amoeba( f ) actually looks like an amoeba, and its tentacles
are precisely predicted by the exponents of f :
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In particular, if we define the Newton polygon of f , Newt( f ), to to be the convex hull3 of the
exponent vectors of f , we see that the normal vectors of the edges of Newt( f ) emanating away
from Newt( f ) are precisely in the direction of the tentacles! �

Amoebae and Newton polygons can easily be extended to arbitrary dimension, and are a basic
ingredient in our study. Part of this project advances precise theoretical statements on how the
above correspondence can be used to numerically approximate roots of polynomial systems. The
most direct evidence of a polyhedral approach to numerical solving can be found already in 1
variable.

Example 2.2. Suppose f (x) := 1− cx10 + x39, with c positive. Clearly then, the graph of f can
intersect the x axis in one of exactly three ways, depending precisely on the size of c:

c=? c>0 BIGc>0 small

In particular, we see that the existence of a degenerate root is what separates f from having no
positive roots, or two positive roots.

More than coincidentally, there is a polyhedral point of view: Let ArchNewt( f ) — the Archimedean
Newton polygon of f — denote the convex hull of the points (0,− log |1|), (10,− log |c|), and
(39,− log |1|). It is then easily checked that ArchNewt( f ) will either be a line segment or a trian-
gle, and the latter situation falls into two cases, again depending on the size of c:

of our trinomial
|c| small |c| BIG 

Archimedean
Newton Polygons

Note also that the lower hull of ArchNewt( f ) — that is, the union of edges possessing an inner
normal with positive last coordinate — naturally defines a subdivision of Newt( f ):

3i.e., smallest convex set containing...
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That this has numerical consequences can be seen rather vividly if we fix the magnitude of c and
let its phase vary randomly:
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In particular, the key ingredient connecting numerical distribution of roots to our polygonal con-
structions is the idea of a lower binomial: given a subdivision of Newt( f ), we can consider those
subsummands of f whose exponents lie in the projection of a lower edge of ArchNewt( f ). For our
example, we see that there are two possible sets of binomials for f that can be constructed in this
way: {1+x39} or {1−cx10,−cx10 +x39}. More to the point, one can easily see that the roots of f
appear to cluster around the roots of these binomials! �

Constructing simpler equations whose roots somehow approximate the roots of a harder system of
equations is exactly our main goal. However, there are many subtleties we must deal with in order
to do this rigorously. The first subtlety is that ArchNewt( f ) — as originally defined — does not
always yield “lower” binomials whose total number of real roots is the same as the number of real
roots of f . However, at least for the trinomial case, this can be corrected easily.

Definition 2.1. For any univariate trinomial f ∈C[x], written f (x)=a+bxd +cxD with 0 < d < D,
we define the normalized Archimedean Newton polygon of f , ˜ArchNewt( f ), as the convex hull
of
(

0, log D−d
|a|

)
,
(

d, log D
|b|

)
,
(

D, log d
|c|

)
. Finally, when ˜ArchNewt( f ) is not a line segment, we

define the lower binomials of f to be the subsummands of f whose exponents lie in the projection
of a lower edge of ˜ArchNewt( f ). �

Theorem 2.1. For any real univariate trinomial f , the number of positive (resp. negative) roots of
the lower binomials of f is exactly the number of positive (resp. negative) roots of f .
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This last result is easy to prove, once we have developed sufficient background. Proving a precise,
analogous statement for numerical root clustering, in complete generality, is more challenging and
remains an important focus of this project. However, we have already built (and implemented)
algorithms based on higher-dimensional extensions of Theorem 2.1 which we can already prove.
To state versions that work for arbitrary systems, however, we will need some more background.

2.2 A -Discriminants and Chamber Cones

We are essentially developing a vast generalization of the following simple fact mentioned in Ex-
ample 1.2: the polynomial ax2 +bx+ c has a 0, 1, or 2 positive roots according as its discriminant
∆ = b2− 4ac is negative, zero, or positive. Our generalization of discriminants directly incorpo-
rates sparsity4 to maximize efficiency and, aside from an occasional reference to N-dimensional
complex (resp. real) projective space PN

C (resp. PN
IR), our development will be decidedly concrete

and algorithmic.

The main algebraic geometric object underlying our algorithms will be the A -discriminant [GKZ94].
We will see how the A -discriminant is central in polynomial system solving and dictates the under-
lying algorithmic and numerical complexity. Our main new result is a polynomial-time member-
ship algorithm for signed chamber cones. We also have certain probabilistic estimates underway
that are relevant to Smale’s 17th Problem [Sma00]. First, however, let us gently introduce our
setting.

2.2.1 What is an A -Discriminant?

Definition 2.2. Consider a general set of exponents A ={a1, . . . ,am}⊂ZZn of cardinality m, and
the corresponding family of (Laurent) polynomials

FA :={c1xa1 + · · ·+ cmxam | ci∈C}
where the notations ai =(a1,i, . . . ,an,i) ∈ ZZn and xai =xa1

1 · · ·xan
n are understood. When ci 6=0 for all

i∈{1, . . . ,m} then we call A the support of f (x)=∑
m
i=1 cixai , also using the notation Supp( f ). �

Example 2.3. Taking m = 3, n = 1, (a1,a2,a3) = (2,1,0), and (c1,c2,c3) = (a,b,c), we have that
FA is our familiar family of univariate quadratic polynomials of Example 1.2. �

Definition 2.3. Let us define XA — the (projective) toric variety associated to A — to be the
closure of the parametrized subvariety {[ta1 : · · · : tam ] | t =(t1, . . . , tn)∈(C∗)n} of Pm−1

C . We then
define ∇A — the A -discriminant variety [GKZ94, Chs. 1 & 9–11] — to be the closure of the set
of all [c1 : · · · : cm]∈Pm−1

C such that the hyperplane {c1z1 + · · ·+cmzm=0} intersects a regular point
of XA with a tangency. When ∇A is a hypersurface, we define (up to sign) the A -discriminant,
∆A ∈ZZ[c1, . . . ,cm], to be the (irreducible) defining polynomial of ∇A .

Example 2.4. The preceding definition is merely a formalization of a very old idea: the solutions
of a polynomial can always be simultaneously viewed as the intersection of a hyperplane with a

4in the sense of a relatively small number of monomial terms as compared to the total polynomial degree.
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certain (parametrized) algebraic set. In particular, taking A ={0,1,2} again, we see that XA is
simply a quadratic curve in the projective plane. (The triple of affine coordinates (1, t1, t2

1) defines
a curve in C3 as we let t1 range over C. However, the triple of projective coordinates [1 : t1 : t2

1 ]
stands for an entire equivalence class of affine coordinates of the form (λ,λt1,λt2

1) where λ is any
nonzero complex number.) We leave it as an exercise, after computing the tangent space of XA at
[z1 : z2 : z3], to see that the projective line {c1z1 + c2z2 + c3z3 =0} intersects XA with a tangency
iff c2

2−4c1c3 =0. �

In essence, the A -discriminant variety consists of all those f ∈FA with f possessing a degen-
erate complex root, possibly “at infinity.” The introduction of XA then gives us a rigorous and
combinatorial means of making sense of roots at infinity.

Example 2.5. Taking A ={0,404,405,808}, we see that
FA consists simply of polynomials of the form f (x) :=
c1 + c2x404 + c3x405 + c4x808. The underlying A -
discriminant is then a polynomial in the ci having 609 mono-
mial terms and degree 1604. In particular, the standard com-
mercial computer algebra system Maple 12 (running on a
dual 2Ghz AMD Opteron system with 16Gb RAM) gives an
out of memory error before computing ∆A . However, while
∆A is unwieldy, we can still easily plot the real part of its
zero set ∇A (IR) via the Horn-Kapranov uniformization (see
Theorem 2.2 below and the illustration to the right). �

The plotted curve is then the image of the real roots of ∆A :=∆A (1,γ1,1,γ2) within Amoeba(∆A )
where, for any polynomial g∈ZZ[c1, . . . ,cm], we define its amoeba, Amoeba(g), to be

{(log |c1|, . . . , log |cm|) | g(c1, . . . ,cm)=0 and c1 · · ·cm 6=0}.

Amoebae give us a convenient way to introduce polyhedral methods, such as tropical geometry,
into our setting.

A -discriminants are notoriously large in all but a few highly restricted cases. For instance, the
polynomial ∆{0,404,405,808} defining the curve above has the following coefficient for γ808

1 γ2:
903947086576700909448402875044761267196347419431440828445529608410806270
...[2062 digits omitted]... ...93441588472666704061962310429908170311749217550336.

Fortunately, we have the following theorem, describing a one-line parametrization of ∇A .

Theorem 2.2. [The Horn-Kapranov Uniformization] (See [DFS07, Prop. 4.1] and [Kap91, PT05].)
Given A :={a1, . . . ,am}∈ZZn, the discriminant locus ∇A is exactly the closure of{

[u1ta1 : · · · : umtam ]

∣∣∣∣∣ u :=(u1, . . . ,um)∈Cm, A u=O,
m

∑
i=1

ui =0, t =(t1, . . . , tn)∈(C∗)n

}
.

Thus, once we know the right nullspace of the (n+1)×m matrix ˆA having ith column the transpose
of (1,ai), we have a formula parametrizing ∇A .
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Example 2.6. Returning to Example 2.3 with the univariate quadratic trinomial f (x) = ax2 +bx+c

where (a,b,c)∈C3, then with notation of Theorem 2.2, one has A ={0,1,2} and ˆA =
[

1 1 1
2 1 0

]
whose right nullspace is generated by (1,−2,1). Therefore, one sees from Theorem 2.2 that the
discriminant variety of f is exactly the closure of [t2 :−2t : 1] where t ∈ C∗ or, in other words, the
closure of the set of all (a,b,c) ∈ C3 such that b2−4ac = 0. One thus retrieves the usual definition
of the discriminant for the quadratic trinomial. The interested reader can do a similar calculation
to retrieve a parametric formula for the zero set of the much larger cubic discriminant polynomial.
The latter polynomial was derived in the 17th century independently by Tartaglia and Cardano. �

Example 2.7. Continuing our Example 2.5, we observe that ˆA =
[

1 1 1 1
0 404 405 808

]
has right

nullspace generated by (1,−405,404,0) and (1,−2,0,1). Theorem 2.2 then tells us that ∇A is
simply the closure of the rational surface{[

λ1 +λ2 :−405λ1−2λ2t404 : 404λ1t405 : λ2t405] ∣∣ λ1,λ2∈C, t∈C∗
}

in P3
C. Note that f and 1

c1
f have the same roots and that u 7→ u1/405 is a well-defined bijection

on IR that preserves sign. Note also that the roots of f and f̄ (y) := 1
c1

f
((

c1
c3

)1/405
y
)

differ only

by a scaling when f has real coefficients, and that f̄ is of the form 1 + γ1y404 + y405 + γ2y808. It
then becomes clear that we can reduce the study of ∇A (IR) to a lower-dimensional slice. More
precisely, intersecting ∇A with the plane defined by c1 =c3 =1 yields the following parametrized
curve in C2:

∇A :=
{(

−405λ1−2λ2
λ1+λ2

(
404λ1
λ1+λ2

)−404/405
, λ2

λ1+λ2

(
404λ1
λ1+λ2

)−808/405
) ∣∣∣∣ λ1,λ2∈C

}
.

In other words, the preceding curve describes the set of all polynomials of the form 1 + γ1x404 +
x405 + γ2x808 having a degenerate root. Our preceding illustration of the image of ∇A (IR) within
Amoeba(∆A ) thus has the following explicit parametrization:{(

log |405λ1 +2λ2|− 1
405 log |λ1 +λ2|− 404

405 log |404λ1|, log |λ2|+ 403
405 log |λ1 +λ2|− 808

405 log |404λ1|
)}

[λ1:λ2]∈P1
IR
�

2.2.2 Discriminant Chambers and the Cayley Trick

Our primary motivation is polynomial system solving over the real numbers and understanding real
zero sets. A -discriminants are crucial to fast numerical solving precisely because (a) the distance
of a polynomial to ∇A is (under mild assumptions) the reciprocal of the condition number [MR04]
and (b) the real part of ∇A determines where (in coefficient space) a real zero set changes topology.

Definition 2.4. We call any connected component of the complement of ∇A in
Pm−1

IR \ {c1 · · ·cm =0} a (real) discriminant chamber. Also, if ∇A is the intersection of ∇A with
a linear subspace H then we call the intersection of any discriminant chamber with H a reduced
discriminant chamber. �

Under mild assumptions on H, one can completely characterize discriminant chambers via re-
duced discriminant chambers. In particular, we will pick H via certain specially chosen coordinate
subspaces.
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Definition 2.5. Given any A ={a1, . . . ,am}⊂ ZZn of cardinality m≥n+1, we call a set of indices
C⊆{2, . . . ,m} an odd cell iff the n×n matrix whose ith column is ai−a1 has odd determinant. �

In essence, an odd cell allows us to pick a subset of coefficients f that we can homogenize to
1 (by rescaling variables) without losing any information about the real roots of the family of
polynomials FA . This allows us to fix a useful slice ∇A ∩H to study reduced chambers.

Theorem 2.3. [BRS08] Suppose C is an odd cell of A ⊂ZZn, H :={[c1 : · · · : cm] | ci∈C with c j =
1 ⇐⇒ j ∈ {1} ∪C}, and ∇A is the image of ∇A ∩H under the natural projection forgetting
coordinates in {1, . . . ,m}\C. Then:
1. f ∈FA \∇A implies that there is a reduced A -discriminant chamber C̄ and a polynomial

f̄ (x)=
(
∑i∈{1}∪C xai

)
+∑i∈{2,...,m}\C cixai∈ C̄ such that the real zero sets of f and f̄ are

diffeotopic.
2. Suppose C̄ is any reduced A -discriminant chamber and f̄ , ḡ∈C . Then the real zero sets of

f̄ and ḡ are smooth, and diffeotopic to one another. In particular, if A ⊂ZZ1 then f̄ and ḡ
have the same number of positive (resp. negative) roots.

Example 2.8. As observed earlier in Example 2.7, it suffices to study polynomials of the form
f̄ (x)=1+ γ1x404 + x505 + γ2x808 to study the real roots of real polynomials in F{0,404,405,808}. So
Example 2.7 merely carried out the special case (A ,C) = ({0,404,405,808},{3}) of Theorem
2.3. �

Studying reduced chambers still requires keeping track of signs but our preceding amoeba illus-
tration lost this information. Nevertheless, we can still visualize reduced chambers correctly by a
simple modification of the definition of amoeba.

Example 2.9. Let us glue together 4 truncated and refl-

ected copies of IR2 (one for each possible pair of signs
(±,±)) and plot (± log |γ1|,± log |γ2|) as (γ1,γ2) ranges over
the roots of ∆{0,404,405,808}, with the signs on a plotted point
given by (sign(γ1),sign(γ2)). The illustration to the right
shows this gluing, with the dark cross separating the copies
of IR2, and the lighter thicker region indicating the deletion
of sufficiently large coordinates, i.e., limits at infinity. �

2+2−

0+0−

0+2−

0+2− 0+2−

1+1− 1+1−

not to scale
−−−−−−

−+−+−+

+−+−+−

++++++

It is worth noting that all reduced chambers in our last illustration are unbounded: 3 merely appear
to be bounded because of our truncation of large coordinates. We thus see that ∇A (and the
coordinate cross) separates the coefficient space into 8 reduced chambers. More to the point, the
number of real roots of f̄ is constant on any reduced discriminant chamber, as indicated by the
numbered labels. (The reduced chamber bounded by the small spike consists of polynomials with
exactly 3 positive roots and exactly 1 negative root.) Furthermore, one can prove that any f̄ close
enough to ∇A has roots that are poorly separated. For example, the vertex of the lower left spike
is
(γ∗1,γ

∗
2)=

(
−405 405√404·808·403404

4042 ,−405 405√4042·8082·403403

4·4044

)
≈(−1.0166671...,−.0000015832063...)

and f̄ ∗(x) :=1+ γ∗1x404 + x405 + γ∗2x808 has a root of multiplicity 3 at
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r := 403
√

−405
404·808·γ∗2

≈1.0166733769...

So, by basic complex analysis, as f̄ −→ f̄ ∗, f̄ will have 3 distinct roots converging toward r.

To numerically approximate all the real roots of a polynomial system, one must first know how
many there are. The crucial question is then:

Q1: How do we know which chamber we are in, and the number of
real roots for the polynomial systems in a given chamber?

Both parts of the question require some care, as our next example illustrates. However, we will first
need to introduce the Cayley Trick, in order to use A -discriminants to study systems of multivariate
polynomials.

Definition 2.6. Given any finite points sets A1, . . . ,Ak⊂ZZn, we define their Cayley embedding,
Cay(A1, . . . ,Ak)⊂ ZZn+k−1, to be (A1×{0}k−1)∪ (A2× en+1)∪ ·· · ∪ (Ak × en+k−1) where ei
denote the ith standard basis vector. �

The following example (quoted from [DRRS07]) shows that bounded chambers can occur, and
extremal examples can reside in exceedingly small bounded chambers. Our example also reveals
the existence of codimension ≥2 pieces for ∇A (IR).

Example 2.10. Consider the 2×2 family of system of trinomials

Fa,b :=


f1(x,y) := x6

1 + γ1x3
2− x2

f2(x,y) := x6
2 + γ2x3

1− x1

discovered by Rusek and Shih in [DRRS07]. This system also has a well-defined discriminant,
obtainable via the A -discriminant and the Cayley embedding: defining A to be
Cay(Supp( f1),Supp( f2)), and abusing notation by writing A as a matrix whenever convenient,
we have

A =

6 0 0 0 3 1
0 3 1 6 3 1
0 0 0 1 1 1

.

Moreover, using the odd cell C = {3,4,6}, the resulting ∇A describes exactly those (a,b)∈C2

where Fa,b has a degenerate complex root (possibly at infinity). The image of ∇A (IR) within
Amoeba(∆A ) (save for 3 isolated points), and its unfolded version, are shown below:
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In particular, there is a bounded chamber C̄ (too small to see) in the lower left quadrant that is the
only chamber containing Fa,b having exactly 5 positive roots. (All other Fa,b have exactly 3 or 1
positive roots.) Furthermore, ∇A (IR) contains exactly 3 isolated points (not shown) and they lie
in the third quadrant [DRRS07]. Note that the isolated points do not affect the connectivity of the
reduced chambers. �

The tiny chamber in our last example required an extensive computation search. Since it is thus
not trivial to determine chamber membership, it is important to approximate chambers by simpler
polyhedral objects.

2.2.3 From Chambers to Chamber Cones

Perhaps the simplest observation one can make from our preceding chamber illustrations is that
there are large chambers and small chambers, and that “extremal” topological behavior (such as
possessing a large number of real roots) appears to occur in extremal chambers. Such a sentiment
can in fact be made rigorous.

Definition 2.7. We call a discriminant chamber C with log |C | unbounded an unbounded cham-
bers. We also call the smallest polyhedral cone containing log |C | a chamber cone. �

Example 2.11. Returning to our 2×2 system of trinomials from the last section, we see that there
are exactly 6 unbounded chambers, shown in the left-hand illustration. (There are also exactly 9
bounded chambers.) The red lines indicate 6 chamber cones. Note in particular how these cones
can overlap and not share common vertices.
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Slice of NablaA(R) plotted on log paper, for the family
 x[6 0 0]+c2x[0 3 0]+x[0 1 0]+x[0 6 1]+c5x[3 0 1]+x[1 0 1]

Slice of NablaA(R) plotted on log paper, for the family
 x[6 0 0]+c2x[0 3 0]+x[0 1 0]+x[0 6 1]+c5x[3 0 1]+x[1 0 1]

�

A useful corollary of the Horn-Kapranov Uniformization is the fact that chamber cones always
exist and admit simple explicit formulae. This fact could be seen as surprising, considering that
A -discriminants are generally intractably large.

Theorem 2.4. Suppose A ⊆ZZn has cardinality m and let us abuse notation by also considering
A to be an n×m matrix with ith row αi and ith column ai. Then every unbounded A -discriminant
chamber lies in a unique chamber cone. In particular, every chamber cone has facets (called
walls), there are exactly m walls, and each wall can be written in the form {x∈IRm |Ni(x−si)=0}
where Ni = (N1,i, . . . ,Nm,i) is any generator of the right null space of the (m−1)×m matrix

Wi :=



0 · · · 0 1 · · · 1 0 · · · 0 0 0 · · · 0
0 · · · 0 0 1 · · · 1 0 · · · 0 0 · · · 0

0 · · · 0 . . . . . . . . . 0 · · · 0

0 · · · 0 0 · · · 0 0 1 . . . 1 0 · · · 0
α1
...

αn
0 · · · 0 1 · · · · · · 1 0 · · · 0


;

there are exactly m− n− 2 rows preceding the rows containing α1, . . . ,αn; row j of Wi has 1s
in positions i + j− 1 through i + j + m− n− 4 (mod m), and si has jth coordinate 0 or log |N j,i|
according as N j,i is 0 or not.

An important consequence of Theorem 2.4 is that while the underlying A -discriminant polyno-
mial ∆A may have huge coefficients, the walls of ∇A admit a concise description involving few
bits, with the exception of the transcendental coordinates coming from the “shift” si. Another
complication with working with chamber cones is that while there are just m walls, the various
intersections of walls can easily produce Ω(mn) chamber cones in general. Nevertheless, via some
care applied to approximations of logarithms and linear forms therein [Ber03, Nes03, BRS08],
given a single polynomial system, we can quickly find which chamber cone contains it via linear
programming.
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Theorem 2.5. Following the notation above, let τ denote the maximum bit size of any coordinate
of A , and suppose f ∈FA . Then we can determine the unique chamber cone containing f — or
correctly decide if f is contained in 2 or more chamber cones — within a number of arithmetic
operations polynomial in m, n, and τ. Furthermore, assuming Baker’s refinement of the ABC-
Conjecture, we can also attain bit-complexity polynomial in m, n, and τ.

At this point, we will not enter into a discussion of the ABC-Conjecture, which would take us too
far afield into Diophantine Approximation. (A full discussion of the necessary can be found in
[Bak77].) So let us move to the principal result of our project so far.

Theorem 2.6. Following the notation above, let us write f (x)=∑
m
i=1 cixai and define nanewt( f )

to be the convex hull of {(ai,vi− log |ci|) | i∈{1, . . . ,m}}, where (v1, . . . ,vm) is the vertex of the
unique chamber cone containing f . (We set (v1, . . . ,vm)=(0, . . . ,0) should there be not be a unique
cone containing f .) Then the real zero set of f has the same topology as the limit of the real zero set
of f̂t as t −→ 0, where f̂t(x) :=∑

m
i=1 cit−vixai . In particular, when f is the Cayley embedding of an

n×n polynomial system F and f lies in a unique chamber cone, then there is a natural collection
of lower binomial systems whose roots approximate the roots of F. Moreover, the number of roots
of the resulting collection of lower binomial systems in any orthan O correctly counts the number
of roots of F in O .

The quality of the numerical approximations obtained via lower binomial systems and chamber
cones appears to be excellent in our experiments so far. Nevertheless, we are devoting considerable
effort toward finding a precise and provable statement so we can rigorously certify the output of
our algorithms. So far, we have already found preliminary estimates for the probability that f lies
in a unique chamber cone. Such probabilistic estimates will form an important part of our future
deliverables.

Let us now briefly describe how we determine chamber cone membership efficiently.

2.3 Implementation of the Chamber Cone Method

In summary, the chamber cone method has been fully implemented in Matlab by Rojas, and will be
converted to C++ in the coming weeks. Further integration of the method into numerical homotopy
code, and incorporating lower binomials, will also be done in the coming weeks. We also point
out that the chamber cone method has been verified extensively in the special case m≤n +3, and
that code for lower binomials has been completed for univariate polynomials and 2×2 polynomial
systems with bidegree structure.

So, to conclude our discussion of the chamber cone method, we now detail our Linear Program-
ming (LP) approach. The basic idea is to observe that wherever an f ∈FA lies in coefficient space,
and regardless of which chamber f lies in, f also lies in a unique cell of a half-plane arrange-
ment. In particular, due to the structure of the underlying A -discriminant amoeba, the chamber
cones are actually determined not by hyperplanes, but by halves of hyperplanes. For instance, in
our last example, we saw 6 rays determining 6 chamber cones — not 6 lines.
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In general, the ith half-plane is determined by Ni, si, and an additional datum Ii: the ith Inequal-
ity Vector. In particular, the ith half-plane consists simply of those points in the ith wall having
sufficiently large inner product with Ii. Much like Theorem 2.4, Ii also admits a simple explicit
formula.

There is a well-established combinatorial theory of hyperplane arrangements, but the fact that we
deal instead with half-planes complicates matters slightly. So our first algorithm has an initial
phase that deals with the underlying hyperplane arrangement, and then has a final phase to deal
with half-planes. Here is a high-level description:

Input: A subset A ⊂ZZn and a polynomial f ∈FA . (Note: For polynomial systems, the Cayley
Embedding defined earlier in Definition 2.6 gives us an easy way to convert into the format at
hand.)
Output: The vertex v of the unique chamber cone containing f (assuming f lies in an unbounded
m-dimensional cell of H ), or a correct declaration that f does not lie in any unbounded m-
dimensional cell of H , where H is the underlying hyperplane arrangement defined by the walls
of ∇A .

1. For all i∈{1, . . . ,m}, determine which side of the hyperplane Wi :={Ni(x− si)=0} contains
f . (If f lies on some Wi then stop and report.) This defines a unique m-dimensional cell C in
H containing f .

2. Observe that C is the feasible set of a collection S of linear inequalities.

3. (Removing Misoriented Cell Walls)
Using LP unboundedness checks, determine if there is a wall W with its corresponding half-
plane not contained in C. Remove all inequalities from S that define such walls.

4. (Removing Redundant Constraints)
Using LP feasibility, remove all inequalities from S corresponding to walls that do not
intersect C.

5. (Finding Enough Walls to Get a Vertex) Using LP unboundedness checks, determine if
there are ≥m− n− 1 (properly oriented) half-planes in the boundary of C. If so, compute
their intersection v and stop. Otherwise, report failure.

A preliminary implementation worked quite successfully in the special case m = n + 3, and an
extension to arbitrary m was completed during the writing of this report. So far, we have success-
fully experimented with high degree 3×3 systems of trinomials and 4×4 quadratic systems. The
speed of the implementation looks promising and we are about to pursue more realistic examples
involving 5×5 systems.
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3 Generating Statistical Models

In the introduction, we mentioned that a list of observations O is generated with realizations of
a random variable. We would like to learn as much as we can about the realizations produced
by the random variable. This is typically done by modeling the random variable as one or more
probability distributions. In this section, we will discuss techniques for generating and calibrating
models; and then we will apply these techniques to some preliminary shock response data. Many
of these models have been developed in some form for other MLE techniques – the discussion
below is simply meant to show which of these techniques can be used to generate polynomial
systems and how to do so.

3.1 Drawing samples

There are two classes of problems we will address and the distinction between them is the form
that the log-likelihood ` = logL takes on.

3.1.1 Continuous-parameter inference

The first class of problem places 2 requirements on `:

• it must generally be a product of terms without any addition (because log(a+b) may not be
simplified without resulting in terms that do not yield a polynomial system), and

• the parameters of interest must be continuous variables (because we will be differentiating `
with respect to each parameter).

The general approach is to simplify ` using logarithmic identities and then differentiate ` with
respect to the parameters of interest.
Example 3.1. An example of this class of problem is approximating O as realizations from a normal
distribution whose mean µ and variance σ2 we wish to infer. In this case,

L = ∏
i

(
1

σ
√

2π
exp
(
−(xi−µ)2

2σ2

))Ci

where i is an index over the outcomes of O, Ci is the multiplicity of outcome i in O, and xi is the
outcome itself. Taking the logarithm yields

` = ∑
i

log
(

Ci

σ
√

2π

)
−Ci(xi−µ)2

2σ2 (3.1)

Now suppose that we expect the mean µ to vary as 2 input parameters di and δi (which are specified
with each observation in O) vary so that

µ = α0 +diα1 +δiα2 +δidiα3 (3.2)
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We can now take the derivative of ` with respect to α0, α1, α2, α3, and σ. Since these are all
continuous variables, the derivatives exist and we may solve the polynomial system to obtain the
best parameter values. �

Several distributions whose probability density functions are compatible with this approach are
presented in §3.2.1, §3.2.2, and §3.2.3.

3.1.2 Mixture model and discrete-parameter inference

The second class of problems works when ` is composed of a sum of logarithms, as in Equation 1.1.
This typically arises when dealing with mixture models and the parameters inferred are the relative
frequencies with which observations are drawn from different distributions.

Inferring model parameters other than mixture frequencies with this approach does not involve
taking the derivative of the log-likelihood function with respect to distribution parameters so even
integer-valued parameters may be inferred. However, the number of variables in the resulting
system is related to the number of parameters and the number of discrete values each parameter
takes on so it is difficult to consider a large number of parameter values. To be specific, if we are
mixing M models and have q parameters to vary, with each parameter taking on ni distinct values
(i ∈ {1,2, . . . ,q}), a total of

Nv = (M−1)+
q

∑
i=1

(ni−1)

variables will be required. Consider the case where we wish to mix a normal and a binomial
distribution with 3 possible values for µ and 2 possible values for each of σ, n, and p. Then
Nv = (2−1)+(3−1)+3(2−1) = 6.

This pattern of variables is evinced because we consider the choice of a value for each parameter i
to be independent of the choice of any another. We use q simplices ∆ni−1 to model the frequency
with which each parameter is chosen and one additional simplex ∆M−1 to model the frequency
with which a particular distribution is chosen. This in turn manifests itself as the logarithm of a
product which simplifies to a sum of logarithms.

While multiplicative distributions are not common, it is possible they could occur. For example,
if each observation of an experiment was in fact a realization of several independent processes.
In this case, the product of several independent distributions is taken to be a single overall model.
If parameters of component distributions in the overall model need to be inferred, this may be
accomplished using the same procedure as a single distribution in §3.1.1.

Now that we’ve outlined the two major modeling techniques (a single distribution or a mixture
model), we’ll provide more details on probability distributions of interest.

• Single ”primitive” distribution or product of ”primitive” distributions:

– Distributions of interest: Normal, Log-Normal, Poisson, binomial, Weibull.
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– Adding complexity (and flexibility) by making parameters functions of input variables.

• Shock response spectra

– Physical phenomena involved.

– Administrivia: normalizing and scaling inputs and outputs.

– SRS example. MLE of Gaussian w/ mu a function of 1 or 2 vars.

• Generic mixture model formulation.

– Terminology, notation, generic formula.

– SRS example.

3.2 Distributions of interest

One advantage of performing MLE in this setting is that it is possible to infer parameters for
distributions other than Gaussians. While some parameters (notably integer-values parameters in
discrete probability distributions) cannot be inferred using the method of §3.1.1 because the gra-
dient is not well-defined, this still leaves many useful parameters. The following sections present
the total differentials of the log-likelihood for several distributions of interest so that modelers can
derive their own MLE equations. In the simplest case, this simply involves setting each term of
the total differential to 0 and solving. For models that are products of distributions or whose pa-
rameters should be modeled as polynomials in terms of other variables of interest, more work is
required.

3.2.1 Poisson distribution

The Poisson distribution is discrete with semi-infinite support and has a probability mass function

mPoisson(k;λ) =
e−λλk

k!

where k ∈ {1,2, . . .} and the differential of its log is

d(log(mPoisson(k;λ))) =
(
−1+

k
λ

)
dλ.

Note that k may not be inferred using our MLE approach but this may not generally be necessary
because k will typically be used for a model output.

This distribution is useful for modeling the probability of an event occurring when the rate of
events λ is constant between observations.
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3.2.2 Binomial distribution

The binomial distribution is discrete and compact and has a probability mass function

mbinomial(k; p,N) =
(

N
k

)
pk(1− p)k

where k ∈ {0,1,2, . . . ,N} and the differential of its log is

d(log(mbinomial(k; p,N))) =
(

k
p
− k

1− p

)
dp.

Note that N may not be inferred using our MLE approach but this may not generally be necessary.
Because k will typically be used for a model output (whose likelihood we are estimating) that must
be normalized by N, inferring N would involve additional work should k = k(N).

This distribution is useful for modeling the probability of an event occurring when the chance of
an event between observations is equal to the chance that k choices (with replacement) from a pool
of n are identical.

3.2.3 Normal (Gaussian) distribution

The normal distribution is continuous with infinite support and has a probability density function

dnormal(x;µ,σ) =
1

σ
√

2π
exp
(
−(x−µ)2

2σ2

)
where x ∈ IR and the differential of its log is

d(log(dnormal(x;µ,σ))) =
(
− 1

σ
− (x−µ)2

σ3

)
dσ+

(
x−µ
σ2

)
dµ.

You may not infer both x and µ for the obvious reason that the gradient will not produce a system
of equations with full rank.

It is useful for modeling the probability of an event occurring when many small, independent,
additive effects contribute to the occurrence of an event. If the effects are multiplicative and not
additive, then a log-normal distribution should be used.

3.3 Modeling Shock Response Spectra

We will be analyzing 2 types of data: experimental data and simulation data. If we attempt to
summarize simulation data with a statistical model, the variance present in the model will be due
to the model’s inability to completely capture the physics being simulated because the model is
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either incomplete (meaning it does not embody the physical model that the simulation does at
the level of detail of the simulation) or incorrect (meaning that the statistical model contains an
expression which contradicts the physical model in the simulation) or both.

When summarizing experimental data with a statistical model, the variance present in the model
may be due to its inability to capture the physics of the experiment (again, this may be because
the model is incomplete, incorrect, or both), or because of aleatoric or epistemic uncertainty in the
experiment itself.

As a final case to consider, we may attempt to use statistical models to analyze the difference
between simulations and experimental data. These statistical models might contain variance due
to any of the above plus differences between the physical phenomena driving the simulation and
those dominating the experimental results and simulation calibration error.

3.3.1 MLE of SRS

As a first model, consider an ensemble of runs used to verify physics packages by simulating the
response of an elastic bar to an impact load. The initial displacement of the bar δ and the distance
from the end of the bar where the load was applied d are both varied and the shock response spectra
(SRS, first developed by Biot [Bio33]) is measured. The first few peak frequencies and magnitudes
of the SRS are determined. Theoretical results as well results from several simulation packages
are obtained and yield a distribution of magnitude and frequency values.

We expect the magnitude M of the first SRS peak to decrease linearly with distance d and to
increase linearly with the initial displacement δ. Because of truncation error and other parameters
which we do not take into account the SRS magnitudes observed are a distribution of values.
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Equation 3.1 thus seems like a good candidate for MLE. The resulting set of equations is

0 = −

(
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i
CiMi
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+
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i
Ci

)
α0 +
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i
Cidi

)
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i
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α2 +
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i
Cidiδi
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α3
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Here, i is an index into a set of all distinct combinations of (M,d,δ) that occur in the ensemble
of simulations and Ci is the number of times each distinct combination is observed. The system
of equations has 5 variables and 5 unknowns. The first 4 equations have 5 monomials each while
the final equation has 16 monomials. The ensemble of runs contains 2660 observations with 910
unique outcomes and this system results
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0 = −2.5422×107 +2.6600×103
α0 +7.9800×103

α1 +3.9900×101
α2 +1.1970×102

α3

0 = −7.5473×107 +7.9800×103
α0 +2.5796×104

α1 +1.1970×102
α2 +3.8694×102

α3

0 = −4.2377×105 +3.9900×101
α0 +1.1970×102

α1 +6.6500×10−1
α2 +1.9950×100

α3

0 = −1.2580×106 +1.1970×102
α0 +3.8694×102

α1 +1.9950×100
α2 +6.4490×100

α3

0 = 2.8128×1011−2.6600×103
σ

2

−5.0844×107
α0−1.5095×108

α1−8.4753×105
α2−2.5160×106

α3 +
2.6600×103

α
2
0 +2.5796×104

α
2
1 +6.6500×10−1

α
2
2 +6.4490×100

α
2
3 +

1.5960×104
α0α1 +2.3940×102

α1α2 +3.9900×100
α2α3 +

7.9800×101
α0α2 +7.7388×102

α1α3 +2.3940×102
α0α3
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