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Abstract

This report summarizes existing statistical engines in VTK/Titan and presents the recently par-
allelized multi-correlative and principal component analysis engines. It is a sequel to [PT08]
which studied the parallel descriptive and correlative engines. The ease of use of these parallel
engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies
the design of these engines with parallel scalability in mind; then, this theoretical property is
verified with test runs that demonstrate optimal parallel speed-up with up to 200 processors.
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1 Introduction

This report is a sequel to [PT08], which focused on the parallel descriptive and bivariate statistics
engines; please refer to this reference for a detailed presentation of these engines as well as an
assessment of their scalability and speed-up properties.

1.1 The Titan Informatics Toolkit

The Titan Informatics Toolkit is a collaborative effort between Sandia National Laboratories and
Kitware Inc. It represents a significant expansion of the Visualization ToolKit (VTK) to support
the ingestion, processing, and display of informatics data. By leveraging the VTK engine, Titan
provides a flexible, component based, pipeline architecture for the integration and deployment of
algorithms in the fields of intelligence, semantic graph and information analysis.

Figure 1. A theoretical application built with Titan.

A theoretical application built from Titan/VTK components is schematized in Figure 1. The flexi-
bility of the pipeline architecture allows effective utilization of the Titan components for different
problem domains. An actual implementation is OverView, a generalization of the ParaView sci-
entific visualization application to support the ingestion, processing, and display of informatics
data. The ParaView client-server architecture provides a mature framework for performing scal-
able analysis on distributed memory platforms, and OverView will use these capabilities to analyze
informatics problems that are too large for individual workstations.

The Titan project represents one of the first software development efforts to address the merging
of scientific visualization and information visualization on a substantive level. The VTK parallel
client-server layer will provide an excellent framework for doing scalable analysis on distributed
memory platforms. The benefits of combining the two fields are already reaping rewards in the
form of functionality such as the cell lineage application below.
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1.2 Statistics Functionality in Titan

A number of univariate, bivariate, and multivariate statistical tools have been implemented in Titan.
Each tool acts upon data stored in one or more tables; the first table serves as observations and
further tables serves as model data. Each row of the first table is an observation, while the form of
further tables depends on the type of statistical analysis. Each column of the first table is a variable.

1.2.1 Variables

A univariate statistics algorithm only uses information from a single column and, similarly, a
bivariate from 2 columns. Because an input table may have many more columns than an algorithm
can make use of, Titan must provide a way for users to denote columns of interest. Because it
may be more efficient to perform multiple analyses of the same type on different sets of columns
at once as opposed to one after another, Titan provides a way for users to make multiple analysis
requests of a single filter.

Table 1. A table of observations that might serve as input to a
statistics algorithm.

row A B C D E
1 0 1 0 1 1.03315
2 1 2 2 2 0.76363
3 0 3 4 6 0.49411
4 1 5 6 24 0.04492
5 0 7 8 120 0.58395
6 1 11 10 720 1.66202

As an example, consider Table 1. It has 6 observations of 5 variables. If the correlations between
A, B, and C, and also between B, C and D are desired, two requests, R1 and R2 must be made. The
first request R1 would have columns of interest {A,B,C} while R2 would have columns of interest
{B,C,D}. Calculating covariances for R1 and R2 in one pass is more efficient than computing each
separately since cov(B,B), cov(C,C), and cov(B,C) are required for both requests but need only
be computed once.

1.2.2 Phases

Each statistics algorithm performs its computations in a sequence of common phases, regardless
of the particular analysis being performed. These phases can be described as:

Learn: Calculate a “raw” statistical model from an input data set. By “raw”, we mean the minimal
representation of the desired model, that contains only primary statistics. For example, in
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the case of descriptive statistics: sample size, minimum, maximum, mean, and centered M2,
M3 and M4 aggregates (cf. [P0́8]). For Table 1 with a request R1 = {B}, these values are 6,
1, 11, 4.83̄, 68.83̄, 159.4̄, and 1759.8194̄, respectively.

Derive: Calculate a “full” statistical model from a raw model. By “full”, we mean the complete
representation of the desired model, that contains both primary and derived statistics. For
example, in the case of descriptive statistics, the following derived statistics are calculated
from the raw model: unbiased variance estimator, standard deviation, and two estimators (g
and G) for both skewness and kurtosis. For Table 1 with a request R1 = {B}, these additional
values are 13.76̄, 3.7103, 0.520253, 0.936456, −1.4524, and −1.73616 respectively.

Assess: Given a statistical model – from the same or another data set – mark each datum of a
given data set. For example, in the case of descriptive statistics, each datum is marked with
its relative deviation with respect to the model mean and standard deviation (this amounts
to the one-dimensional Mahalanobis distance). Table 1 shows this distance for R1 = {B} in
column E.

Figure 2. An example utilization of Titan’s statistics algorithms
in OverView.

An example of the utilization of Titan’s statistical tools in OverView is illustrated in Figure 2;
specifically, the descriptive, correlative, and order statistics classes are used in conjunction with
various table views and plots. With the exception of contingency statistics which can be performed
on any type (nominal, cardinal, or ordinal) of variables, all currently implemented algorithms
require cardinal or ordinal variables as inputs.

At the time of writing, the following algorithms are available in Titan:

1. Univariate statistics:
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(a) Descriptive statistics:
Learn: calculate minimum, maximum, mean, and centered M2, M3 and M4 aggre-

gates;
Derive: calculate unbiased variance estimator, standard deviation, skewness (12 and

G1 estimators), kurtosis (g2 and G2 estimators);
Assess: mark with relative deviations (one-dimensional Mahlanobis distance).

(b) Order statistics:
Learn: calculate histogram;
Derive: calculate arbitrary quartiles, such as “5-point” statistics (quartiles) for box

plots, deciles, percentiles, etc.;
Assess: mark with quartile index.

2. Bivariate statistics:

(a) Correlative statistics:
Learn: calculate minima, maxima, means, and centered M2 aggregates;
Derive: calculate unbiased variance and covariance estimators, Pearson correlation co-

efficient, and linear regressions (both ways);
Assess: mark with squared two-dimensional Mahlanobis distance.

(b) Contingency statistics:
Learn: calculate contingency table;
Derive: calculate joint, conditional, and marginal probabilities, as well as information

entropies;
Assess: mark with joint and conditional PDF values.

3. Multivariate statistics:

These filters all accept multiple requests Ri, each of which is a set of ni variables upon which
simultaneous statistics should be computed.

(a) Multi-Correlative statistics:
Learn: calculate means and pairwise centered M2 aggregates;
Derive: calculate the upper triangular portion of the symmetric ni×ni covariance ma-

trix and its (lower) Cholesky decomposition;
Assess: mark with squared multi-dimensional Mahlanobis distance.

(b) PCA statistics:
Learn: identical to the multi-correlative filter;
Derive: everything the multi-correlative filter provides, plus the ni eigenvalues and

eigenvectors of the covariance matrix;
Assess: perform a change of basis to the principal components (eigenvectors), op-

tionally projecting to the first mi components, where mi ≤ ni is either some user-
specified value or is determined by the fraction of maximal eigenvalues whose sum
is above a user-specified threshold. This results in mi additional columns of data
for each request Ri.

10



In the following sections, we present implementation details on the parallel versions of the descrip-
tive, correlative, multi-correlative, and PCA statistics algorithms, provide a basic user manual of
these, and examine their correctness as well as their parallel speed-up properties.
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2 Parallel Statistics Classes

2.1 Implementation Details

The purpose of building a full statistical model in two phases is parallel computational efficiency.
In our approach, inter-processor communication and updates are performed only for primary statis-
tics. The calculations to obtain derived statistics from primary statistics are typically fast and sim-
ple and need only be calculated once, without communication, upon completion of all parallel
updates of primary variables. Data to be assessed is assumed to be distributed in parallel across
all processes participating in the computation, thus no communication is required as each process
assesses its own resident data.

Therefore, in the parallel versions of the statistical engines, inter-processor communication is re-
quired only for the Learn phase, while both Derive and Assess are executed in an embarrassingly
parallel fashion due to data parallelism. This design is consistent with the data parallelism method-
ology used to enable parallelism within VTK, most notably in ParaView. Because the focus of this
report is on the parallel speed-up properties of statistics engines, we will not report on the Derive
or Assess phases, as these are executed independently from each other, on a separate process for
each part of the data partition. However, because the Derive phase provides the derived quantities
to which one is naturally accustomed (e.g., variance as opposed to M2 aggregate), the numerical
results reported here are those that are yielded by the consecutive application of the Learn and then
Derive phases.

At this point (March 2009) of the development of scalable statistics algorithms in Titan, the fol-
lowing 4 parallel classes are implemented:

1. vtkPDescriptiveStatistics;

2. vtkPCorrelativeStatistics;

3. vtkPMultiCorrelativeStatistics;

4. vtkPPCAStatistics.

Each of these parallel algorithms is implemented as a subclass of the respective serial version of
the algorithm and contains a vtkMultiProcessController to handle inter-processor commu-
nication. Within each of the parallel statistics classes, the Learn phase is the only phase whose
behavior is changed (by reimplementing its virtual method) due to the data parallelism inherent in
the Derive and Assess phases. The Learn phase of the parallel algorithms performs two primary
tasks:

1. Calculate correlative statistics on local data by executing the Learn code of the superclass.

2. If parallel updates are needed (i.e. the number of processes is greater than 1), perform
necessary data gathering and aggregation of local statistics into global statistics.
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The descriptive, correlative and multi-correlative statistics algorithms perform the aggregation nec-
essary for the statistics which they are computing using the arbitrary-order update and covariance
update formulas presented in [P0́8]. Because the PCA statistics class derives from the multi-
correlative statistics algorithm and inherits its Learn phase, we define a static method within the
parallel multi-correlative statistics algorithm to gather all necessary statistics. This function is
called from within both the parallel multi-correlative and PCA filter Learn phases to maximize
code reuse.

2.2 Usage

It is fairly easy to use the serial statistics classes of Titan; it is not much harder to use their parallel
versions. All that is required is a parallel build of Titan and a version of MPI installed on your
system.

For example, Listing 1 demonstrates how to calculate descriptive statistics, in parallel, on each
column of an input set inputData of type vtkTable*, with no subsequent data assessment. Note
that if, instead, the Assess phase were turned on with pds->SetAssess( true ) then, by default,
unsigned deviations (Mahalanobis distance) would be calculated. To obtained signed deviations,
pds->SignedDeviationsOn() should be called. The option to elect signed deviations as opposed
to the Mahlanobis distance for the assessment of data is available only for descriptive statistics as
the concepts of left and right do not extend to dimensions higher than one.

In Listing 1, requests for each column of interest are specified by calling AddColumn(), as is
done for all univariate algorithms. Bivariate algorithms need only call AddColumn() an even
number of times to unambiguously specify a set of requests. However, multivariate filters have
a slightly different usage pattern. In order to queue a request for multivariate statistics algo-
rithms, SetColumnStatus() should be called to turn on columns of interest (and to turn off any
previously-selected columns that are no longer of interest). Once the desired set of columns has
been specified, a call to RequestSelectedColumns() should be made. Consider the example
from §1.2.1 and Table 1 where 2 requests are mentioned: {A,B,C} and {B,C,D}. The code snip-
pet in Listing 2 shows how to queue these requests for a vtkPPCAStatistcs object.

The examples thus far assume that you have already prepared an MPI communicator, loaded a
dataset into the inputData object, and are running in a parallel environment. It is outside the
scope of this report to discuss I/O issues, and in particular how a vtkTable can be created and
filled with the values of the variables of interest. See VTK’s online documentation for details [vtk].

In the code example from Listing 1, the vtkMultiProcessController object passed to Foo() is
used to determine the set of processes (which may be a subset of a larger job) among which input
data is distributed. VTK uses subroutines of this form to execute code across many processes. In
Listing 3 we demonstrate that, to prepare a parallel controller to execute Foo() in parallel using
MPI, one must first (e.g. in the main routine) create a vtkMPIController and pass it the address of
Foo(). Note that, when using MPI, the number of processes is determined by the external program
which launches the application.

13
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void Foo( vtkMultiProcessController* controller, void* arg )
{
// Use the specified controller on all parallel filters by default:
vtkMultiProcessController::SetGlobalController( controller );

// Assume the input dataset is passed to us:
vtkTable* inputData = static_cast<vtkTable*>( arg );

// Create parallel descriptive statistics class
vtkPDescriptiveStatistics* pds = vtkPDescriptiveStatistics::New();

// Set input data port
pds->SetInput( 0, inputData );

// Select all columns in inputData
for ( int c = 0; c < inputData->GetNumberOfColumns(); ++ c )
{
pds->AddColumn( inputData->GetColumnName[c] );
}

// Calculate statistics with Learn and Derive phases only
pds->SetLearn( true );
pds->SetDerive( true );
pds->SetAssess( false );
pds->Update();

}

Listing 1: A subroutine – that should be run in parallel – for calculating descriptive statistics.

vtkPPCAStatistics* pps = vtkPPCAStatistics::New();

// Turn on columns of interest
pps->SetColumnStatus( "A", 1 );
pps->SetColumnStatus( "B", 1 );
pps->SetColumnStatus( "C", 1 );
pps->RequestSelectedColumns();

// Columns A, B, and C are still selected, so first we turn off
// column A so it will not appear in the next request.
pps->SetColumnStatus( "A", 0 );
pps->SetColumnStatus( "D", 1 );
pps->RequestSelectedColumns();

Listing 2: An example of requesting multiple multi-variate analyses.
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vtkTable* inputData;
vtkMPIController* controller = vtkMPIController::New();
controller->Initialize( &argc, &argv );

// Execute the function named Foo on all processes
controller->SetSingleMethod( Foo, &inputData );
controller->SingleMethodExecute();

// Clean up
controller->Finalize();
controller->Delete();

Listing 3: A snippet of code to show how to execute a subroutine (Foo()) in parallel. In reality,
inputData would be prepared in parallel by Foo() but is assumed to be pre-populated here to
simplify the example.
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3 Results

The parallel runs have been executed on Sandia National Laboratories’ catalyst computational
cluster, which comprises 120 dual 3.06GHz Pentium Xeon compute nodes with 2GB of memory
each. This cluster has a Gigabit Ethernet user network for job launch, I/O to storage, and user
interaction with jobs, and a 4X Infiniband fabric high-speed network using a Voltaire 9288 Infini-
Band switch. Its operating system has a Linux 2.6.17.11 kernel, and its batch scheduling system
is the TORQUE resource manager [tor].

3.1 Algorithm Scalability

In order to assess speed-up independently of the load-balancing scheme, a series of (pseudo-)
randomly-generated samples is used. Specifically, input tables are created at run time by gen-
erating 4 separate samples of independent pseudo-random variables, the two first (resp. last)
variables having a standard normal (resp. standard uniform) distribution. Since our objective
is to assess the scalability of the parallel statistics engines only, equally-sized slabs of data are
created by each process in order to work with perfectly load-balanced cases. For the same rea-
son, the amount of time needed to create the input data table is excluded from the analysis. In
this test, vtkPDescriptiveStatistics, with Learn, Derive, and Assess modes on, is executed
for each of the 4 columns, and the corresponding wall clock time is reported. Subsequently,
vtkPCorrelativeStatistics, with Learn, Derive, and Assess modes turned on is executed on
a single pair of columns (standard normal ones), and the corresponding wall clock time is also
reported.

With these synthetic examples, we assess:

1. relative speed-up (at constant total work), and

2. scalability of the rate of computation (at constant work per processor).

3.1.1 Relative Speed-Up

Given a problem of size N (as measured in our case by sample size), the wall clock time mea-
sured to complete the work with p processors is denoted TN(p). Then, relative speed-up with p
processors is

SN(p) =
TN(1)
TN(p)

.

Evidently, optimal (linear) speedup is attained with p processors when SN(p) = p and, therefore,
relative speed-up results for SN may be visually inspected by plotting SN versus the number of
processors: optimal speed-up is revealed by a line, the angle bisector of the first quadrant.
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Table 2. Relative speed-up (at constant total work), with a total
sample size of N = 25,600,000.

N/p p Descriptive Correlative MC (8) PCA (8)
(sec. / SN(p)) (sec. / SN(p)) (sec. / SN(p)) (sec. / SN(p))

25,600,000 1 69 / 1.00 55 / 1.00 53.4 / 1.00 65.9 / 1.00
12,800,000 2 35 / 1.99 28 / 2.00 26.9 / 1.98 33.5 / 1.97
6,400,000 4 18 / 3.93 15 / 3.80 14.4 / 3.70 16.8 / 3.93
3,200,000 8 9.0 / 7.65 7.0 / 7.92 6.9 / 7.73 8.4 / 7.81
1,600,000 16 4.6 / 14.91 3.7 / 15.01 3.7 / 14.60 4.7 / 13.90
800,000 32 2.3 / 29.95 1.8 / 30.51 1.8 / 29.85 2.2 / 29.95
400,000 64 1.3 / 54.43 0.9 / 58.13 1.0 / 54.52 1.1 / 59.89

In the first series of test runs, in order to assess relative speed-up, the a sample is subdivided into
4 columns of size 25,600,000. Thus, the input data of the entire test case contains a total of
N = 102,400,000 values. The values of p were chosen to be increasing powers of 2, for conve-
nience only: making use of other values did not modify speed-up results. The results obtained on
catalyst are provided in Tables 2 and plotted in Figure 3.

As expected based on the embarrassingly parallel nature of the algorithms, the measured relative
speed-up is optimal (within ±10% fluctuations attributable to OS jitter and such), until total wall
time measurements become too small to remain accurate (less than 1 sec.), and the decreasing
amount of work per processor ultimately results in a situation where overheads, even small in
absolute terms, become dominant as compared to the amount of actual computational work. In
this current example, it appears that with 32 processors, minimal reliably measurable wall clock
time has been or is almost reached. Note that this corresponds to a per processor load of N/p =
3,200,000 points per processor.

3.1.2 Rate of Computation Scalability

The rate of computation is defined as

r(p) =
N(p)

TN(p)(p)
,

where N(p), the sample size, now varies with the number of processors p. We then measure
its scalability by normalizing it with respect to the rate of computation obtained with a single
processor, as follows:

R(p) =
r(p)
r(1)

=
N(p)TN(1)(1)
N(1)TN(p)(p)

,
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Figure 3. Relative speed-up at constant total work with a total
data size of N = 102,400,000.

In particular, if the sample size is made to vary in proportion to the number of processors, i.e., if
N(p) = pN(1), then

R(p) =
pTN(1)(1)
TpN(1)(p)

=
pTN(1)(1)
pTN(1)(p)

=
TN(1)(1)
TN(1)(p)

,

and thus, optimal (linear) scalability is also attained with p processors when R(p) = p. Note
that without linear dependency between N and p, the latter equality no longer implies optimal
scalability. Hence, under the above assumptions, scalability can also be visually inspected, with a
plot of R versus the number of processors, where optimal scalability is also indicated by the angle
bisector of the first quadrant. In order to assess rate of computation scalability (at constant work
per processor), increasingly large samples are created, containing np quadruples, where n = 106

and p ∈ {1,2,4,8,16,32,64} respectively denote the number of sample points per processor, and
the number of processors, thus resulting in a total sample size of N(p) = 4np. Note that whether
one or two cores per node are occupied by the np processes in each case is left for the scheduler to
decide; forcing all cluster nodes to utilize either exactly one, or exactly two of their cores dit did
not result in a measurable difference.

In each case, a table of size n× 4 is created by each process. Corresponding wall clock times
measured on catalyst are given in Table 3 (for multi-correlative statistics) and Table 4 (for PCA
statistics), and plotted in Figure 4 ; these clearly exhibit optimal scalability (again within ±10%
fluctuations attributable to OS jitter and such), thus experimentally verifying the embarrassingly
parallel nature of these algorithms. It is also worth noting that using 1 or 2 cores per node did not
result in any measurable difference.
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Table 3. Rate of computation scalability (at constant load per
processor), vtkPMultiCorrelativeStatistics.

N(p) p Correlative MC (4) MC (6) MC (8)
(million) (sec. / R) (sec. / R) (sec. / R) (sec. / R)

4 1 9 / 1.00 9 / 1.00 13 / 1.00 17 / 1.00
8 2 9 / 2.01 9 / 1.98 13 / 2.00 17 / 2.02
16 4 9 / 4.11 10 / 3.89 13 / 3.93 17 / 3.89
32 8 9 / 8.09 10 / 7.68 13 / 7.81 18 / 7.48
64 16 10 / 13.7 10 / 15.5 14 / 14.21 18 / 14.76
128 32 9 / 31.0 10 / 30.0 14 / 28.37 20 / 27.05
256 64 9 / 61.2 11 / 52.6 14 / 57.26 20 / 53.21
512 128 10 / 117 11 / 112 14 / 115.7 19 / 112.60

Table 4. Rate of computation scalability (at constant load per
processor), vtkPPCAStatistics.

N(p) p Correlative PCA (4) PCA (6) PCA (8)
(million) (sec. / R) (sec. / R) (sec. / R) (sec. / R)

4 1 9 / 1.00 8 / 1.00 14 / 1.00 21 / 1.00
8 2 9 / 2.01 8 / 2.01 13 / 2.02 21 / 2.02
16 4 9 / 4.11 8 / 3.98 14 / 3.98 22 / 3.78
32 8 9 / 8.09 8 / 7.77 14 / 7.92 21 / 7.95
64 16 10 / 13.7 8 / 15.4 14 / 15.19 21 / 15.86
128 32 9 / 31.0 9 / 29.2 15 / 28.45 24 / 28.36
256 64 9 / 61.2 10 / 52.7 15 / 59.08 24 / 54.94
512 128 10 / 117 9 / 117 15 / 116.2 24 / 111.77
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Figure 4. Rate of computation scalability at constant work per
processor of N(p)/p = 4,000,000.
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3.2 Algorithm Correctness

In order to assess algorithm correctness, we make use of the same test cases as § 3.1, for which
we inspect the numerical results obtained by both the vtkPMultiCorrelativeStatistics and
vtkPPCAclasses. More precisely, we examine the statistical models obtained when both Learn
and Derive options are turned on. Since the statistical properties of the test cases are known, we
can immediately compare them to the calculated results. Note that this is the same metholody as
the one we followed in [PT08] to verify the correctness of vtkPDescriptiveStatistics and
vtkPCorrelativeStatistics.

Relatively large input sets are used (n = 106), in order to mitigate the risk of statistical bias due
to insufficient sampling. In addition, the test case is run 100 times for each random variable, and
we examine the statistical dispersion of the results of the ensemble of these runs. We compare the
results obtained with the Learn and Derive option of the statistical engines to the theoretical values
of the random variables which serve as models for the pseudo-random inputs, namely, N (0,1)
and U (0,1). This comparison is done by simple visual inspection of the numerical results, by:

1. comparing the sample mean of the quantity of interest (e.g., mean) across the a number nr
of runs to the corresponding theoretical quantity (e.g, expectation), and

2. examining the variability of the results by checking the standard deviation of the quantity of
interest across the nr runs.

Table 5. Means of 8 pseudo-random independent samples of 4
standard normal and 4 standard uniform distributions, averaged
across 100 runs, versus theoretical values. The last column indi-
cates the standard deviation of the means across the 100 runs.

Sample Expectation Average of Standard deviation of
(theoretical mean) sample means sample means

N (0,1)0 0 0.0000328 0.000194
N (0,1)1 0 0.0000181 0.000159
N (0,1)2 0 −0.0000278 0.000173
N (0,1)3 0 0.0000278 0.000178
U (0,1)4 0.5 0.4999987 5.448978 ·10−5

U (0,1)5 0.5 0.4999961 6.079136 ·10−5

U (0,1)6 0.5 0.5000044 5.586889 ·10−5

U (0,1)7 0.5 0.5000030 5.306256 ·10−5

Using this methodology with either nr = 100 runs over 32 processors, the results provided in
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Table 5 show that pseudo-random input samples possess the desired first-order statistics, with
egligible variation across the 100 runs.

Table 6. Cholesky decomposition of covarance matrix for 4 in-
dependent standard normal (top) and uniform (bottom) samples,
averaged across 100 runs. Theoretical values are those of the iden-
tity matrix I4.

Standard Normal

1.000005
0.000009 0.999989
0.000015 -0.000007 1.000006
-0.000005 0.000028 0.000001 1.000013

Standard Uniform

0.288670
0.000003 0.288675
−0.000008 −0.000003 0.288678
−0.000003 −0.000011 −0.000005 0.288674

Table 6 shows the Cholesky decompositions of the covariance matrices that were calculated by
vtkPMultiCorrelativeStatistics with, respectively, the standard uniform and standard nor-
mal pseudo-random inputs. We observe that the numerical results are in statistical agreement
with their theoretical counterparts, up to at least 5 significant digits, in a manner consistent with
the fluctuations of the pseudo-random inputs. In particular, and as expected due to the mutual
independence of the input samples, only diagonal terms are non-zero–up to the aforementioned
precision–in the Cholesky decompositions of the covariance matrices.

It is not necessary to conduct a verification of the calculation of the covariance matrix, and subse-
quent Cholesky decomposition, with vtkPPCAStatistics for this segment the parallel principal
component analysis is simply inherited from vtkPMultiCorrelativeStatistics. It is, however,
necessary that we verify that the PCA decomposition itself is correct, which we are doing by using
a slightly modified input, comprising 4 pseudo-random samples of the following distributions:

1. 2 independent standard normal variables, denoted X0 = N (0,1)0 and X1 = N (0,1)1;

2. 2 variables obtained as the following linear combinations of the above: X2 = X0 + X1, and
X3 = 2X0−3X1.

The statistical correlations of the input variables should be reflected in the output of the princi-
pal component analysis; in fact, it is trivial, based on elementary properties of Gaussian random
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variables, to demonstrate that the random vector X = (X1,X2,X3,X4) is Gaussian, centered, with
covariance matrix:

cov(X) =



1 0 1 2

0 1 1 −3

1 1 2 −1

2 −3 −1 13


for, if Xi and X j are two random variable with respective distributions N (µi,σ

2
i ) and N (µ j,σ

2
j),

then, for any arbitrary pair of reals (a,b), the random variable aXi +bX j is Gaussian with distribu-
tion N (aµi +bµ j,a2σ2

i +b2σ2
j). The off-diagonal terms of the covariance matrix are obtained by

using the linearity of the expectation:

E(Xi× (aX j +bXk)) = aE(XiX j)+bE(XiXk).

As predicated by the definition of the components of X , its covariante matrix is singular, with rank
2. Accordingly, it has only two non-zero eigenvalues, which can be approximated as λ1 ≈ 14.1 and
λ2 ≈ 2.91. We are not discussing the eigenvectors here, as evincing them once the eigenvalues are
known is trivial, and left to the reader as an exercise. The two zero eigenvalues are indeed retrieved
with vtkPPCAStatistics, and the values for the two non-zero ones, averaged over nr = 100
runs are shown in Table 7. We observe again agreement with the theoretical values, up to the
fifth significant digit; this is in fact a better agreement that what we expected, considering the
fact that the successive truncation errors of the covariance, Cholesky, and eigenvalue calculations
are coumpounded with the fact that the pseudo-random samples do not exhibit perfect statistical
properties, as illustrated by their means in Table 5 and covariances in Table 6. Jitter, as measured
by standard deviation across all 100 runs, is essentially insignificant.

Table 7. Means of the non-zeroeigenvalues of 4 pseudo-random
independent samples of 2 standard normal distributions, and 2 lin-
ear correlations thereof, averaged across 100 runs, versus approx-
imated theoretical values. The last column indicates the standard
deviation of the means across the 100 runs.

Eigenvalue Average of Standard deviation of
(approx. theoretical) eigenvalues eigenvalues

14.0902 14.0906 0.011465
2.90983 2.90958 0.0023212
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