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Abstract 
Computational and mathematical models are developed in engineering to represent the behavior 
of physical systems to various system inputs and conditions. These models are often used to 
predict at other conditions, rather than to just reproduce the behavior of data obtained at the 
experimental conditions. For example, the boundary or initial conditions, time of prediction, 
geometry, material properties, and other model parameters can be different at test conditions than 
those for an anticipated application of a model. Situations for which the conditions may differ 
include those for which 1) one is in the design phase and a prototype of the system has not been 
constructed and tested under the anticipated conditions, 2) only one version of a final system can 
be built and destructive testing is not feasible, or 3) the anticipated design conditions are variable 
and one cannot easily reproduce the range of conditions with a limited number of carefully 
controlled experiments.  Because data from these supporting experiments have value in model 
validation, even if the model was tested at different conditions than an anticipated application, 
methodology is required to evaluate the ability of the validation experiments to resolve the 
critical behavior for the anticipated application.  The methodology presented uses models for the 
validation experiments and a model for the application to address how well the validation 
experiments resolve the application.  More specifically, the methodology investigates the trade-
off that exists between the uncertainty (variability) in the behavior of the resolved critical 
variables for the anticipated application and the ability of the validation experiments to resolve 
this behavior.  The important features of this approach are demonstrated through simple linear 
and non-linear heat conduction examples.
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Nomenclature 
 
a parameter vector for Taylor Series 
d decision variable 
d vector of decision variables 
F model validation experiments 
F vector of models for validation experiments 
G model for target application 
G vector of models for target application 
k thermal conductivity 
o convergence rate (code verification context) 
q flux 
p number of singular values retained 
q number of nonzero singular values 
r number of flux measurements, ratio of grid refinement (Appendix) 
s number of important model parameters for the application 
S matrix of singular values 
T temperature 
t time 
U orthogonal matrix 
V orthogonal matrix 
w weights 
W matrix of weights 
y spatial location 
 
Greek symbols 
� model parameters vector 
� experimental measurement 
� vector of experimental measurements 
�Cp density-specific heat product 
� standard deviation 
� sensitivity matrix: validation experiments 
� sensitivity matrix: target application 
 
Subscripts and Superscripts 
cv cross validation 
d decision variable 
f validation experiment model 
g target application model 
n number of validation measurements 
m number of decision variables 
p number of singular values retained 
q number of non-zero singular values 
r number of flux measurements 
s number of important model parameters 
� experimental measurement 
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1. Introduction 
 

Model validation is the process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the model (AIAA 

[1], ASME [2]).  In this context, a model is a mathematical and/or computational representation 

of one or more physical processes.  In engineering and science, the assessment of model validity 

is through comparisons of model predictions to experimental observations.  A general literature 

review on model validation is provided by Oberkampf and Trucano [3] and Oberkampf et al. [4].  

One of the benefits of mathematical and computational models is the ability to use these models 

to predict behavior at conditions for which one does not possess experimental results, based on 

successful comparisons between model predictions and experimental observations at other 

related conditions.  This process is often referred to as the interpolation or extrapolation of the 

model from the conditions for which the model was tested.  

 

To many researchers, interpolation in model validation is the application of a model to 

conditions bounded by supporting validation experiments.  The acquisition of sufficient 

bounding experimental data is often not practical and extrapolation is required for one or more of 

the model parameters, independent variables, or boundary conditions.  Model extrapolation in 

validation has different meanings to different investigators.  Model extrapolation may be 1) the 

extrapolation of a model outside the range of model parameters/variables tested, 2) the 

extrapolation of a model to conditions not tested (i.e., different geometries or boundary 

conditions), or in the most extreme case, 3) the extrapolation of a model to a different physical 

phenomena for which the model acts as a surrogate (for example, the use of a diffusion model for 

the spread of a disease).  

 

A search of the SciSearch Plus scientific article databases (ISI [5]) for the phrase model 

extrapolation yields few hits.  Because engineering/scientific models are generally developed for 

the purpose of providing insight for conditions other than those tested, extrapolation is a normal 

part of predictive modeling and this observation is not surprising.  The technical areas for which 

there were the most hits for model extrapolation were in the environmental and medical fields.  
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Extrapolation is an important aspect in environmental risk assessment and health fields.  This 

includes the extrapolation over different physical scales (from patch scale to landscape scale; 

Landis [6], Munns [7]), across different temporal scales (Munns [7], Kalberlah et al. [8]), and 

biological extrapolation (across levels of biological organization – Munns [7]; between animals 

and human- Bernillon and Boise [9], Kalberlah et al. [8], Vermeire et al. [10]). 

 

The ability of validation experiments/model prediction comparisons evaluated at one set of 

conditions to address the validity of a model at other conditions has received less attention and 

raises three questions.  1) Do the comparisons of experimental data and model predictions 

performed at one set of conditions adequately test a model for use at a different set of 

conditions?  2)  Can one develop metrics that properly weight the differences between 

experimental data and model predictions from one or more sets of conditions to represent how a 

model behaves at a different set of conditions?  3) Can one develop methodology that allows one 

to relate observed differences between experiment data and model predictions from one set of 

conditions to predict what the differences may be at another set of conditions?  These are three 

distinct questions.  The present paper uses the predictive models to addresses question 1, but can 

be easily extended to address question 2.  The present paper does not address question 3.  

 

Question 2 was addressed by Hills and Trucano [11] and questions 1 and 2 were addressed by 

Hills and Leslie [12] for cases where the data were obtained from one set of conditions (i.e., the 

validation experiments), with the intent of applying the model to another anticipated set of 

conditions (i.e. the target application).  Their methodology was based on first order sensitivity 

analysis of the models used to predict the validation measurements and a first order sensitivity 

analysis for the target or anticipated application model.  In both cases, the sensitivity analysis 

was performed relative to model parameters representing physics or boundary conditions 

(thermal conductivity, specific heat, parameters in equations of state, boundary temperatures, 

etc.). Specifically, they used the sensitivity analysis to develop validation metrics that weighted 

the differences between model predictions and the experimental data from the validation 

experiments in a manner that was relevant to the anticipated target application prediction 

variable.  In Hills and Trucano [11], the weights were chosen so that linear combinations of the 

differences that are not sensitive to the model parameters (hence, the corresponding physics) 
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were given zero weight.  Hills and Leslie [12] developed an approach that more thoroughly 

accounts for the relationship between a suite of differences between validation experimental 

measurements and the associated model predictions, and the application prediction variable than 

that of the method presented by Hills and Trucano [11].  The approach of Hills and Leslie is 

sufficiently general such that different levels of uncertainty in the appropriate values of model 

parameters for the models of the experiments, and for the model of the target application, can be 

accommodated.  This approach addresses the first two questions by allowing one to assess (to 

first order) whether the validation experiments can adequately represents the sensitivity of model 

predictions of the target application to associated model parameters, as well as to provide an 

application specific metric.  This approach also allows for prediction variables to be different 

quantities than those measured through the validation experiments.  While this approach is 

conceptually more complex than the first, it requires much of the same information and is not 

more difficult to implement.  Both of these approaches use the models as a basis for the 

assessment.  If the model for the application is not valid, the results for the application oriented 

validation metric will not be valid.  Thus, this approach represents a ‘best estimate’, based on the 

knowledge incorporated in the models, for the weights.  

 

Formal methods for the extrapolation of differences observed between the model predictions and 

experimental observations (question 3), to corresponding differences in the prediction at the 

conditions of the target application have received less attention and represent a very difficult 

problem.  These differences may be simply due to statistical sampling uncertainties due to model 

or experimental uncertainties, or due to model form error (e.g., because of wrong or incomplete 

physics incorporated in the model).  A typical approach to address these issues is to calibrate the 

model using the observed differences between the experimental results and the model 

predictions, before using the resulting model for prediction.  This calibration is done using either 

the model parameters directly (i.e., properties or tuning parameters), or through the addition of a 

model corrective terms which includes tuning parameters.  A danger with the former approach is 

that if the model does not adequately represent the physics, extrapolating calibrated results far 

from the conditions of the validation experiments will also not adequately represent the physics 

and will give unreliable results. In the second case, extrapolating a model correction term to 

conditions far from the conditions of the experiment is also likely to fail since one does now 
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know the functional form of the correction model to use, if one does not possess a physical 

understanding of why the model produced the differences observed in the first place.  Examples 

of additive correction approaches include those based on Bayesian analysis and Bayesian 

networks (Hanson and Hemez [13] and Mahadevan et. al. [14]).   

 

The focus of this paper is 1) to formalize the ideas presented by Hills and Trucano [11] and Hills 

and Leslie [12] to assess the ability of models of the validation experiments to represent behavior 

of the model of the target application (question 1),  2) to extend the methodology to include both 

model parameters and independent variables relevant to the application (the previous work only 

considered model parameters), 3) to extend the methodology to second order dependency in the 

model parameters so as to capture cross coupling effects, 4) to provide an alternative solution 

technique for evaluating the weights used in the method, 5) to investigate the trade-off between 

the ability to resolve the application and the uncertainty in the results due to identified 

uncertainties in the validation experiments and corresponding models, 6) and to provide 

numerical examples based on a non-linear one-dimensional transient heat conduction equation. 

In contrast to Hills and Trucano [11] and Hills and Leslie [12], the present work does not 

demonstrate the use of the resulting weights to define a validation metric at the application level, 

based on experimental results from the validation experimental level.  Such an extension of the 

present methodology is very straight forward, as one simply substitutes the weights obtained here 

for those obtained in Hills and Leslie [12].  One of the most significant benefits of the present 

methodology is that it allows the assessment of the suitability of the validation experiments to 

test a model that will be used for a target application, given that the model is approximately 

correct. This assessment does not require actually experimental data as the assessment is based 

on only models for the actual or potential validation experiments and models for the anticipated 

application. This result can be used as part of the experimental design process for the validation 

experiments to insure that the experiments do tests all of the “modeled physics” for the target 

application.  The method does not address how (and if) differences between model predictions 

for the validation experiments and the corresponding experimental data be interpolated or 

extrapolated to corrected predictions of the application (question 3), as this issue is well beyond 

the scope of this work. 
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The examples presented were chosen to be tutorial in nature and are thus very simple.  

Application of the earlier approaches to shock physics is developed in Hills and Trucano [11].  

While not demonstrated here, the methodology was developed for applications in CFD, heat 

transfer, and shock physics (i.e., hypersonic impact, Hills and Trucano [15]).  The methodology 

is very general and can be applied to other areas in engineering and science.  
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2. Theory 
 

Multivariate validation metrics, such as those presented by Hills [15], can be used as an indicator 

of agreement between model predictions and experimental results when test conditions are the 

same as for the anticipated application.  These metrics assess differences between model 

prediction and experimental observation, accounting for the uncertainties in the measurements 

and the model parameters.  Because engineering models are generally developed to predict and 

not simply reproduce existing experimental data, a natural questions is – how should one relate 

the results from a suite of validation experimental measurements to reflect the conditions of the 

anticipated application, when such conditions are different?  A very important question that must 

be asked in the design of a model validation program is whether a suite of validation experiments 

represents the anticipated application in some appropriate fashion.  The suite of experiments may 

range over different conditions (i.e., different material properties, initial and boundary 

conditions), or over different subsets of physics for the anticipated application.  

 

The goal of the present work is to develop methodology to assess how well experiments 

performed at the validation experiment conditions resolve a prediction or decision variable for an 

anticipated application in some sense.  This relationship is developed from a model validation 

point of view which allows the result to be also used to define target application weighted 

metrics.  In developing such metrics for model validation, one generally wishes to weight most 

heavily those measurements that best represent the anticipated application.  For example, 

validation measurements that are taken at conditions closer to the anticipated application 

conditions are given more weight.  To assess how well the conditions associated with planned 

validation experiments represent the conditions of a target application, the models for both the 

validation measures and for the prediction or decision variable for the target application are used.  

These models are used because they represent our best knowledge of the systems of interest in a 

predictive sense.  Specifically, if the model for a target application is sensitive to a particular 

model parameter or independent variable, those validation measurement models that are also 

sensitive to this parameter/variable should receive more weight.  These last two statements 

suggest a mechanism for weighting validation models representing the experimental results.  
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Specifically, data weights are chosen such that the sensitivities of the model predictions for the 

validation measurements to important parameters and independent variables are the same as 

those for the anticipated application.  If the experimental conditions are similar to those for the 

application, we expect the behavior of the models for the measurement at the experimental 

conditions to be closer to those for the application.  

 

In the present context, we use the models for the validation experiments and the model for the 

anticipated application to approximate the sensitivities to the important parameters and 

independent variables.  This approach is equivalent to taking a linear combination of the models 

for each measurement, such that the combination best represents the behavior of the target 

application model with respect to the important model parameters and variables in some 

neighborhood of the application conditions.  This linear combination of validation experiment 

models will be referred to as the reconstructed model of the application decision or prediction 

variables.  One can think of the individual models for the behavior of the predicted 

measurements as forming a non-independent set (somewhat analogous to a basis) for the 

reconstructed model of the application decision or prediction variables.  The models in this set 

may not be independent as several models may represent the predictions associated with repeated 

measurements at the same experimental conditions.  Such repeated models are retained in the set 

as they have the effect of reducing variance in the reconstructed application model decision 

variables.  An important feature of this construction is if an application model is a function of an 

important parameter/variable that none of the validation experimental models in the set are, no 

linear combination of the validation experiment models can represent the sensitivity of the 

application to this parameter/variable.  In such a case, one can say that the validation 

experiments do not cover the important parameter/variable space of the anticipated application. 

 

Denote the model or models for the application by 

d=G(x,�)                             (1) 

where d is a vector of decision variables, G is a vector of the corresponding models for the 

application, � is a vector of model parameters (e.g., thermal conductivity, specific heat), and x is 

the vector of independent variables (e.g., time and position).  The parameters and independent 

variables include values for which it is important to capture the model dependence for the 
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application.  A decision variable for the target application is a predicted quantity critical to the 

success of the target application, i.e., a variable used to decide whether the application prediction 

is successful at meeting its design goal.  Examples include temperature in a temperature sensitive 

critical component, or maximum stress observed throughout a component.  A decision variable 

for an application may or may not correspond directly to quantities measured in validation 

experiments.  

 

A similar expression for the models of the validation measurements is: 

�=F(x,�,�f)      (2) 

where � represents the prediction vector of validation model outputs simulating measurements 

from a suite of experiments.  These models may represent measurements from suites of 

experiments that use different experimental apparatus to test the model for different physics, or 

similar models evaluated at different values for the independent variables and the model 

parameters, or the same models for repeated measurements at the same conditions.  F represents 

a vector of models for the various validation experimental data, each evaluated at the conditions 

of the data.  � represents the vector of model parameters important to the anticipated application 

(Eq. (1)) as discussed in the previous paragraph.  The vector �f represents those arguments in F 

whose effects are significant for the validation models, but not for the anticipated target 

application.  x is the vector of independent variables.  If one or more of the models represented 

by the vector F are not a function of the same arguments, then these arguments should appear as 

dummy variables in x, �, �f so that the total number of elements in each vector is the same 

model to model.  The sensitivity of these models to the dummy arguments will be zero.  While 

elements in x, �, and �f must represent the same arguments, the numerical values for these 

arguments need not be the same from function to function in F or G.  Note that if G is a function 

of an argument that is not a non-dummy variable in at least one of the components of F, then one 

simply cannot resolve the sensitivity of G to this argument using models representing the suite of 

the validation experiments.  In this case, we can say that the validation experiments do not span 

the modeled physics of the application.  

 

As stated earlier, the approach of the present analysis is to develop weights on the models for the 

validation experimental data to best represent the model for the decision variable of the target 
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application in some sense.  This weighted combination of models will be used to assess several 

features related to the ability of the validation models (i.e., experiments) to represent the 

anticipated target application.  The basic assumption in choosing the weights in the present 

analysis is to choose these weights such that the changes in the weighted combination of the 

validation model predicted measurements, ��i, are equivalent to changes in the predicted 

decision variables, �dj, relative to the target application model arguments.  These changes are 

due to changes in the model parameters α and independent variables x about the nominal values 

of these parameters and independent variables for each simulated experimental measurement and 

for each modeled decision variable.  Specifically, the weights w are chosen for element j of G 

such that  

mjγwd i

n

i jij 1,...,;ΔΔ
1

=≅∑ =
    (3) 

where m is the number of decision variables in the vector d and n is the number of measurement 

predictions across all suites of experiments in vector �.  Expanding Eq. (3) in a Taylor’s series 

of the parameters, α, and of G and F (i.e., Eqs. (1) and (2)) and requiring that Eq. (3) be satisfied 

up to second order leads to   
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where s is the number of parameters in �.  Note that one is requiring equivalence up to second 

order for only the parameters that are deemed important for the target application.  Note also that 

different sets of weights are defined for each decision variable j.  We also require equivalence in 

sensitivity to the independent variables as follows:  Define the � sensitivity matrix as: 

[ ]αΦΦΦ x=       (6) 

where 
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Eq. (6a) accounts for independent variables.  A complete set of first and second order derivatives 

are not included in Eq. (6a).  Only the derivatives in (6a) that correspond to derivatives up to the 

order of those in the equation or equations governing the application are used.  For the case 

presented here, only first derivatives in time, t, and first and second derivations in space, y, are 

used, corresponding to these terms in the model for one-dimensional, non-linear, heat conduction 

presented in a later section.  The corresponding equivalence requirements are  
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where W is the matrix representation of the weights in Eqs. (3)-(5).  Define the � sensitivity 

matrix as follows. 
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The second derivative terms in �α and �α are multiplied by ½ to be consistent with the 

corresponding terms in the Taylor series expansion.  For example, the truncated, second order 

Taylor series expansion of G about (x, �) (without cross derivative terms for x and higher order 

derivatives for time as described previously) is given by 

)(Ψa)x(GxxG 9,),( +≅Δ+Δ+ ααα  

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

αa

a
a x          (10) 

( )[ ]Ttyy ΔΔΔ 2=xa        (10a) 

( ) ( )[ ]Tss ααααααα 2
21

2
121 ΔΔΔΔΔΔΔ LK=αa   (10b) 

 

Note that the coupling between � and x is also ignored. 

 

The equations associated with the sensitivity equivalence requirements (Eq. 7) can be 

represented as a single matrix equation as follows: 
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)(WΦΨ 11≅  

where wji are the elements of W.  While Eq. (11) can be used to define the weights, care must be 

taken in evaluating W as � and � can be, and typically are, rank deficient.  Dependencies 

between columns may exist due to arguments appearing in naturally occurring dimensionless 

groups associated with the governing equations or due to the governing equations themselves.  

For example, a linear one-dimension heat conduction model will result in the second and third 

columns in each of Eqs. (6a) and (8a) being dependent due to the governing equation.  One 

generally wishes to use as many measurement points as possible to define W so that the variance 

of the results is reduced.  Since the number of measurements predictions often exceeds the 

number of independent columns of � or �, (11) can also be over determined.  Singular Value 

Decomposition (SVD) is used to address these issues.  The SVD decomposition of � is 

TUSVΦ =      (12) 

where U and V are orthogonal matrices, and S is a diagonal matrix comprised of singular values.  

Eq. (12) can be approximated as  

T
pppp VSUΦ ≅   (13) 

where Sp is a pxp diagonal matrix comprised of all or a subset of the p largest non-zero singular 

values, and Up and Vp are orthogonal matrices containing the corresponding eigenvectors.  

Substitution of the reduced system, �p, from Eq. (13) into Eq. (11), and post-multiplying both 

sides by a pseudoinverse of �p, denoted by �p
+, yields  

++ ≅ ppp ΦWΦΨΦ        (14) 

where 

+−+ = pppp USVΦ 1        (15) 

 

As discussed by Jackson [16], the product �p�p
+ in Eq. (14) may only approximate the identity 

matrix.  This matrix is related to the “resolving” matrix of Jackson (note that the transpose of Eq. 

(11) gives the usual matrix form �T W T ≈ �T where the rows of W are the unknowns – the form 

considered by Jackson).  For the case where � has fewer independent rows than columns, �p�p
+ 

does give an identity matrix, and in this case, the target application decision variables can be 

fully resolved.  However, stability of the resulting W cannot be guaranteed (see Jackson) and the 

sensitivity of the reconstructed decision variable to parameter uncertainty may be very large.  If 
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� has more independent rows than columns, the �p�p
+ product will only approximate the 

identity matrix and the target application decision variable will not be fully resolved.  In this 

case, one obtains the normal least-squares solution, and the sensitivity of the resulting least 

squares approximation for the decision variable to uncertainty in the model parameters may be 

less.  Take �p�p
+ to be approximately an identity matrix.  In this case, Eq. (14) gives an 

approximation for W. 

+≈ pΨΦW       (16) 

If the inverse of � exists, Eq. (16) can be written as  

1−= ΨΦW       (17) 

The approximation sign in Eq. (16) will be dropped and Eq. (16) will be used as the definition of 

W.  The impact of this approximation will later be evaluated through direct comparison of the 

decision variable model behavior to the reconstructed decision variable model behavior, rather 

than through the use of the resolving matrix as discussed by Jackson.  Use of SVD and the 

pseudoinverse is an important aspect of the current work.  The key feature of the process is that it 

allows for the trade-off between uncertainty in the reconstructed decision variable, and ability to 

resolve the target application using the validation experiments to be characterized.  This trade-off 

is based on the selection of the number of the largest non-zero singular values, q, and the 

corresponding eigenvectors used in the evaluation of Eq. (15).   

 

Eqs. (16) or (17) define the weights to be applied to the models for each of the validation 

measurement points such that the behavior of perturbations in the reconstructed model 

predictions due to perturbations in the parameters � and independent variables x about the 

experimental conditions represented by the validation measurements, is approximately equal (or 

equal in the case of Eq. (17)) to the behavior of perturbations of the target application model 

decision variable due to perturbations in the parameters � and independent variables x about the 

target application conditions.  The accuracy of this reconstructed representation in some 

neighborhood of � and x can be evaluated by direct comparison between the reconstructed 

model prediction for the decision variables and the predicted decision variable produced by the 

model for the original target application as follows (see Eqs. (3) through (10)): 

( ) ( ) mjFFwGGe iijijjj ,1,;),,(),,(),(),(
n

1i
L=Δ+Δ+−−Δ+Δ+−= ∑ = ff αααxxααxααxxαx

   (18) 
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As discussed later, a Box Behnken experimental design [17] will be used to define �� and �x.  

The incremental size of �� will be based on the uncertainty in these parameters and the 

incremental size in �x will be based on the finite difference grid size in space and time.  The 

vectors x and �f are evaluated at their expected or nominal values. 

 

Note that the weights are determined with Fi and Gi evaluated at the mean or nominal parameter 

values with the uncertainties in these parameters not considered.  In contrast, the evaluation of 

the uncertainty in the reconstructed decision variables does require that the uncertainties in these 

parameters be included.  Here a first order analysis is used to evaluate the uncertainty in the 

reconstructed decision variable due to the uncertainty in the parameters.  Changes in the 

predicted measurements and in the predicted decision variables can be related to changes in the 

parameters as follows: 

 fαα ΔαFΔαFΔγ
f

∇+∇≈  (19) 

 'ΔαGΔαGΔd αα ∇+∇≈  (20) 

where Δα’ corresponds to changes in the model parameters associated with G.  The uncertainties 

in the model parameters for the application G are often larger than those for the models of the 

validation experiments F, requiring the inclusion of this additional term in Eq. (20).  The 

requirement that Eq. (11) be true leads to the following approximation to first order.  Since Eq. 

(11) must be true column by column, and assuming no uncertainties in the values for the 

independent variables, one can write 

 fααα ΔαFWΔαFWΔαG
f

∇+∇≈∇  (21) 

Using (21) in (20) leads to 

 'ΔαGΔαFWΔαFWΔd αfαα f
∇+∇+∇≈  (22) 

If the uncertainties in α are independent of those in αf, and the uncertainties in αf are 

independent of those in α’, the covariance of d can be approximated as follows:  

   ( ) ( ) ( ) ( ) ( ) ( )TTT )'cov()cov()cov()cov( GαGFWαFWFWαFWd αααfααα ff
∇∇+∇∇+∇∇≈   (23) 

Denote the contribution due to uncertainties in the parameters in F to be 

 ( ) ( ) ( ) ( )TT )cov()cov()(cov FWαFWFWαFWd
ff αfαααF ∇∇+∇∇≈   (24) 

Eq. (23) can be now be written as 
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 ( ) ( )T)'cov()(cov)cov( GαGαd ααF ∇∇+≈   (25) 

 

Eqs. (24) and (25) define the uncertainty in the reconstructed decision variable vector, given the 

uncertainty in the model parameters for the validation experiments and the uncertainty in the 

model parameters for the target application.  Note that the last term in Eq. (25) represents the 

uncertainty in the target application model prediction of the decision variable.  Thus, the 

uncertainty in the reconstructed variable will always be greater than the uncertainty in the target 

application model due to the added uncertainties in the validation model parameters.  If a 

parameter has negligible uncertainty, the corresponding row and column in the covariance matrix 

is set to zero.   
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3. Examples 
 

Several examples are presented to demonstrate important features of the methodology. The first 

example is for steady-state, one-dimensional, linear, heat conduction, which leads to a very 

simple analytical solution. The remaining examples are based on non-linear, transient, heat 

conduction, which requires the use of numerical solutions. In each case, the models for the 

validation experimental measurements and target application decision variables are given. 

3.1 Linear Steady Heat Conduction 
 
For the first example case, take the models for the validation experiment and the target 

application to be 

 

Validation Experiment Model                                           Application Model 

             d2T/dx2=0        d2T/dx2=0             (26a,b) 

 T(0)=T0=�1      T(0)=T0=�1  (27a,b) 

 T(1)=T1=�2      T(1)=T1=�2  (27c,d) 

     d=-k dT(1)/dx                  (28) 

  �1=T(0.25)                  (29) 

  �2=T(0.75)             (30) 

 

Note that the validation experiment and the target application have the same geometry and 

material properties. Internal temperature measurements from the validation experiment are used 

to assess the ability to extrapolate to surface heat flux for the target application. Characterize the 

uncertainty in the parameters for the validation experiment model by the standard deviation ��. 

Assume that parameter uncertainties are uncorrelated. The covariance matrix for the validation 

model parameters is thus (I identity matrix) 

                                                      Iα 22

10

01
)cov( αα σσ =⎥

⎦

⎤
⎢
⎣

⎡
=        (31) 

Assume that there are no other sources of uncertainty considered. For this case, the parameter 

vectors are 
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                                    � = [T1   T2]
T,   �f = 0                                          

(32) 

The analytical solutions to this idealized problem and the corresponding uncertainty analysis is 

presented in Section 4.  

3.2 Non-linear transient heat conduction  
 
To illustrate the methodology for a more complex problem, a series of examples or cases are 

presented demonstrating the important features of the methodology based on the nonlinear, one-

dimensional transient heat conduction equation. In contrast to the previous example (as will be 

shown later), the validation experiments are not be able to fully resolve the target application and 

the trade-off between resolution and uncertainty will be considered. Specifically, these examples 

are used to investigate the capability to resolve the application model for T (temperature) and q=-

k�T/�y (flux) predictions at the boundary with validation experiments.  For Case 1, the 

validation experiment measurements are temperatures at various spatial and temporal locations.  

The reconstructed decision variable for the application is boundary temperature.  In Case 2, the 

same validation temperature measurements are used.  The model decision variable for Case 2 is 

flux at the boundary.  Case 2 was chosen to test the ability of the methodology to reconstruct a 

decision variable that is physically different from the measurements.  Case 3 uses the same 

validation temperature measurements as Case 2, with two flux measurements added.  The Case 3 

reconstructed decision variable is flux at the boundary.  Case 3 was included to assess the 

improvements in evaluating the time dependence of a decision variable when one can measure 

that variable at a few discrete times.  The following models for the validation experimental 

measurements and target application decision variables are used.   

 

Validation Experiment Model    Application Model 

�Cp�T/�t =�/�y(k(T)�T/�y)    �Cp�T/�t =�/�y(k(T)�T/�y) 

 (33a,b) 

 k(T)=ko(1+ktT)      k(T)=ko(1+ktT)   (34a,b) 

 T(y,0)=0      T(y,0)=0   (35a,b) 

 T(0,t)=T1      T(0,t)=T1   (36a,b) 

 T(1,t)=T2      T(1,t)=T2   (37a,b) 
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Case 1:  

        dj=T(1, tj), j=1, …, m  (38) 

 �j=T(0.25,tj), j=1, …, n/2        (39) 

 �j=T(0.75,tj), j=n/2+1, …, n        (40) 

Case 2:  

        dj=-k�T(1,tj)/�y, j=1, …, m (41) 

 �j=T(0.25,tj), j=1, …, n/2        (42) 

 �j=T(0.75,tj), j=n/2+1, …, n        (43) 

Case 3:  

        dj=-k�T(1,tj)/�y), j=1, …, m (44) 

 �j=T(0.25,tj), j=1, …, (n-r)/2        (45) 

 �j=T(0.75,tj), j=(n-r)/2+1, …, n-r       (46) 

 �j= -k�T(1,tj)/�y, j=n-r +1,...n        

 (47) 

 

where n is the total number of measurements and where r is the number of flux measurements.  

For the cases considered below, n will be 10 or 12 and r 0 or 2.  The decision variable will be 

evaluated at m=10 times for the three cases.  Thermal conductivity is assumed linear in 

temperature (kt a constant).  For the present cases, assume that the dependencies in parameters 

T1, T2, �Cp, ko, and kt, and the independent variables y and t are important to the application.  

Also assume that the uncertainty corresponding to the additional model parameters �f are not 

significant (and hence not important) for these examples.  The components in the argument 

vectors are thus  

   � = [T1   T2   �Cp   ko   kt ]
T,  �f =0, and x=[y t] T    (48) 

Table 1 lists the nominal parameter values used for these examples. Figure 1 illustrates the time 

history for the temperature at the measurement locations, y = 0.25, 0.75; and the corresponding 

flux history at y = 1.0.  For illustrative purposes, assume that the uncertainties for these 

parameters are independent with the statistics listed in Table 1.  Note that the uncertainties in the 

boundary temperatures for the validation experiments were assumed negligible relative to those 

in the thermal properties.  In contrast, it is assumed that there is significant uncertainty in these 

boundary temperatures for the application as the conditions for such applications are typically 
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not controlled or known as well as they are for more carefully controlled validation experiments.  

As stated earlier, the independent variables y and t are assumed to possess no uncertainty. 
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Figure 1.  Temperature and Flux Histories 

 

3.3 Code verification 
 
Eqs. (33)-(47) are solved using the second order Crank-Nicholson finite difference algorithm.  A 

two-step process was used to verify the solution, as presented in the Appendix.  First, the method 

of manufactured solutions (Knupp and Salari [18]) was used to verify that the solution converges 

to a known solution to the nonlinear problem.  Application of the algorithm to the verification 

problem resulted in a maximum difference between the nodal values and the corresponding 

analytical solution of O(10-3), using 41 spatial nodes and �t=.0000625.  Second, analysis using 

the Richardson Extrapolation technique (Roache [19]) confirmed that the code converges with 

approximated second order accuracy, as is appropriate for the Crank-Nicholson method when 

applied to a nonlinear problem. 
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Table 1. Model Parameters and Measurement Uncertainty 
 

Standard Deviation 
Parameter/Measurement Mean Value Application Model Validation Model 

T1 10 2 0 
T2 20 2 0 

�Cp 1 .1 .05 
ko 1 .05 .05 
kt .05 .0025 .0025 
�   .25 

 

 

3.4 Parameter Setup and Sensitivity Matrix 
Calculations 
 
Table 2 lists the measurement times and locations and corresponding model predictions using the 

mean parameter values listed in Table 1.  The partial derivatives for the � and � sensitivity 

matrices defined by Eqs. (6) and (8) are estimated with central differences, using perturbations of 

±0.5% of the mean parameter values.  Cross derivatives relative to the model parameters (no 

cross derivatives with respect to the independent variables) were evaluated using central 

differences of central differences.  The sensitivity matrices contain first and second derivatives 

for the five important model parameters, plus �T/�y, �2T/�y2, and �T/�t.  This results in � 

and � containing 5 first derivatives with respect to the model parameters, 15 second derivatives, 

including cross derivatives, and 3 first or second derivatives with respect to the independent 

variables, for a total of 23 columns.  With 10 simulated measurements from the validation 

experiments for Case 1 (5 times at 2 locations) and 10 measurement prediction times for the 

target application, � and � are each 10x23.  For Case 2, there are also 10 measurement 

predictions (5 times at 2 locations).  As with Case 1, the Case 2 � is 10x23, and � is 10x23.  For 

Case 3, � is 12x23 (5 times at two locations, plus two flux measurements), and � remains 

10x23. 
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The �T/�y, �2T/�y2, and �T/�t terms are estimated for a point through central differences 

using the nodal values associated with the finite difference approximation of the PDE at that 

point.  The flux measurements, q=-k�T/�y at the y=1 boundary used in both the validation 

measurements and the application model predictions were evaluated from the finite difference 

solution.  The �T/�y term in the flux calculation was evaluated using a quadratic through the 

three temperature values at the two spatial nodes nearest the boundary and at the boundary node.  

The resulting quadratic expression was then evaluated at y=1.  The � sensitivity matrix requires 

second derivatives of flux.  With q=-k�T/�y, k= k(T)=ko(1+ktT), y=1, and the quadratic in the 

form T=a1+a2y+a3y
2, the second derivative term with respect to y in Eq. (8a) is 

( )2
3322

2

26 aaakk
y

G
to +−=

∂
∂

    (49) 

   

Table 2. Measurements 
 

Case 1 and Case 2 
Time y T  (i.e. γ) 
0.10 0.25 9.51 

0.25 0.25 12.53 

0.50 0.25 12.78 

0.75 0.25 12.79 

1.00 0.25 12.79 

0.10 0.75 15.08 

0.25 0.75 17.54 

0.50 0.75 17.75 

0.75 0.75 17.75 

1.00 0.75 17.75 

Case 3: Same Measurements as above, plus Fluxes: 

0.10 1.00 -38.75 

0.75 1.00 -17.50 

Other Fluxes used for Cross Validation 

0.25 1.00 -19.25 

1.00 1.00 -17.50 
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The �T/�y, �2T/�y2, and �T/�t terms are estimated for a point through central differences 

using the nodal values associated with the finite difference approximation of the PDE at that 

point.  The flux measurements, q=-k�T/�y at the y=1 boundary used in both the validation 

measurements and the application model predictions were evaluated from the finite difference 

solution.  The �T/�y term in the flux calculation was evaluated using a quadratic through the 

three temperature values at the two spatial nodes nearest the boundary and at the boundary node.  

The resulting quadratic expression was then evaluated at y=1.  The � sensitivity matrix requires 

second derivatives of flux.  With q=-k�T/�y, k= k(T)=ko(1+ktT), y=1, and the quadratic in the 

form T=a1+a2y+a3y
2, the second derivative term with respect to y in Eq. (8a) is 

( )2
3322

2

26 aaakk
y

G
to +−=

∂
∂

    (37) 
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4.  Results 
 
The results are divided into three sections.  The first describes the results obtained from the 

idealized, one-dimensional, steady, heat conduction problem presented in Section 3.1. The 

remaining sections address the non-linear, transient heat conduction problem presented in 

Section 3.2. Specifically, Section 4.2 describes the use of cross validation to verify the 

methodology by focusing on simulated data from a single experiment.  This approach allows one 

to evaluate whether the methodology has been implemented correctly.  Section 4.3 illustrates the 

methodology when applied to the various cases described in 3.2. 

4.1 Steady Heat Conduction  
 
The solutions of Eqs. (26) and (27) are given by 
      Experiment       Application 

   T= �1(1-x)+ �2x    T = �1(1-x)+ �2x  (50a,b) 

The measurements and decision variables are thus given by  

   �1= 0.75�1+0.25�2    d = k (�1-�2)   (51a,b) 

�2= 0.75�1+0.25�2           (52c) 

Performing a second order sensitivity analysis as discussed in Section 3 yields 
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ΨΦ  (53) 

Because the models are linear in the parameters, the second derivatives are zero and have been 

dropped from the matrices.  For this full rank case, Eq. (17) can be used directly leading to  

[ ]kk 221 −=≅ −ΨΦW      (54) 

Because the columns of � are independent, �-1 exists, and the experiment can resolve the 

decision variable of the target application,  Using these results of Eq. (54) in Eq. (3) gives 

5.0

)25.0()75.0(

5.0
12 TT

kk
Δ−Δ

−=
Δ−Δ

−=Δ=Δ
γγ

γWd     (55) 

Note that Eq. (55) provides the first order finite difference approximation to the flux.  Because 

the present problem is steady, the flux in the interior is equal to the flux at the surface and one 
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should expect to obtain the corresponding finite difference approximation to flux if the present 

methodology is appropriate. Given these weights, the uncertainty in the reconstructed decision 

variable is given by Eq. (24). Note that the only source of uncertainty considered is due to the 

validation model parameters (i.e., cov(αf) = 0).  Also, note that Fα∇ is the same as � for this 

simplified example. 

( ) ( ) 22T 2)cov()(cov ασk=∇∇≈ FWαFWd ααF     (56) 

The variance in the reconstructed target application decision variable is twice the conductivity-

squared times the variance of the validation model parameters. 

 

What do these results suggest?  First, the sensitivity of the target decision variable to the model 

parameters can be represented by a linear combination of first order models for the sensitivities 

of the predicted validation measurements. A weighting of the validation experiment 

measurement perturbations can be defined to represent the perturbations of the target application 

decision variable. In fact, the weights correspond to the finite difference approximation of flux, 

which is appropriate for the present case.  The variance in the reconstructed decision variable is 

2k2 times the variance of the model parameters.  If the acceptable level of uncertainty in the 

decision variable for the actual target application is, say k2, then the validation experiment must 

be designed so that the corresponding variance in the model parameters is less than 0.5, i.e.; 

5.02 2222 <⇒< αα σσ kk     (57) 

 

4.2 Cross Validation Applied to One Experiment 
 
Prior to evaluating the use of validation measurement models and weights to assess application 

model results, a cross-validation exercise was used to verify the weighting methodology for the 

nonlinear cases.  This is done by using the methodology to predict behavior at one measurement 

location based on the remaining locations.  Because the measurements are from a single 

simulated experiment, the predicted measurement for the decision variable at the selected 

measurement location and time should be approximately reproduced, when the remaining 

observed validation measurements are used with the weights developed by the methodology.  

The procedure is to generate of a vector of predicted validation measurements, 
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�=F(x, �, �f)         (2) 

and then select one of the measurement locations and time, say that for measurement k, and using 

the remaining measurements to represent behavior for the kth measurement.  

�k= dcv =G(�, yk)cv                            (58) 

where the subscript cv indicates cross validation.  The remaining predicted validation 

measurements are  

�cv = [�1,…,�k-1,�k+1,…,�j ]
T = F(x, �, �f) cv             (59) 

 

Simulated measurements are generated (listed in Table 2) using the nominal values of the 

parameters listed in Table 1. The previous defined procedure is used to evaluate the weights and 

the error associated with representing behavior at one location/time using model behavior at the 

remaining times.  The cross-validation difference, ecv, which is the difference between the 

decision variable d and the reconstructed decision variable (denoted dcv ) is defined as  

Error = ( ) maxcvfcvmaxcv /),,(),(γ/ γcv ααxFWαxGe −=       (60) 

The quantity maxγ is a normalization constant with the value 20.0 for the case of a reconstructed 

temperature and -38.75 for the reconstructed flux (see Table 2).  Each of these values 

corresponds to the maximum specified temperature for the boundaries, or measured flux, 

respectively.  Figure 2 shows representative results.  Refer to point 1 for illustration.  Point 1 

represents the normalized error in the reconstructed value for the temperature, T=9.51, at y=0.25, 

and t=0.10 (see Table 2).  The results shown for Points 2 through 10 are reconstructed 

temperatures for the nodes and times shown.  Points 11 and 12 are reconstructed fluxes at y=1, at 

times 0.10 and 0.75, respectively.  The cross validation process progresses as follows: 

1. Create a vector from the predicted measurement (i.e., results from Table 2), �=F(x,�,�f) 

(Eq. (2)) and corresponding �n (Eq. (6)).  �n has n rows, one row per measurement 

(n=12 for this case). 

2. Take point 1 out of � from step 1.  Treat point 1 as d=G(x,�)  (Eq. (1)), where d is the 

reconstructed value corresponding to measurement location/time 1.   

3. � will contain all rows of �n, except for row 1.  � will correspond to row 1 of �n. 

4. Evaluate a weight matrix, Wcv, using Eq. (16).  

5. Evaluate how well the reconstructed difference is estimated for point 1, using Eq. (60).  

The Eq. (53) error, ecv scaled by �max,, is -0.1717 (see Figure 2). 
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6. Repeat steps 2 through 5 for the other measurement locations and times. 

The case shown has ten simulated temperature measurements and two simulated flux 

measurements (i.e. based on Case 3).  The first flux measurement is at t=0.1, during transient 

behavior.  The second flux measurement is at t=.75, toward steady state.  The cross validation 

results in Figure 2 indicate the accuracy with which the methodology can reconstruct the 

conditions at the various measurement locations and time, using experimental/prediction 

differences at the remaining measurement locations.  The example problem involves a fast 

transition to a long period of steady state behavior.  The largest deviations in Figure 2 are for the 

flux predictions.  The first flux prediction involves a situation where transient flux condition at 

t=0.1 is predicted by multiple temperatures measured over a time frame spanning transient to 

steady state and a single flux measurement at steady state.  The second flux prediction involves 

the same temperature measurements, but now the steady state flux is predicted using a transient 

flux condition as the only other flux involved.  The maximum relative error for this case is about 

-1.80 at point 12.  Figure 3 shows results for a case using the flux measurements at t=.1 and t=.25 

(both times prior to steady state).  For this case, the maximum relative error is less than .8.  

Figure 4 shows results for a case using the flux measurements at t=0.75 and t=1.0 (both times 

during steady state).  The maximum relative error is 0.15, and occurs not for the two flux 

predictions but for the temperature predictions at points 1 and 6.  These are the temperatures at 

t=.1 and y=[.25, .75] shown in Table 2.  The largest errors for temperature predictions occur 

when steady state fluxes are in the � measurements described in Step 1 above.  The largest 

errors for flux predictions occur when the � measurements include a steady state flux predicting 

a transient flux, and vice versa.  Overall, the cross validation results show that the methodology 

predicts the steady state conditions better than the early transient behavior.  The ability to predict 

normalized flux also appears to be less than that to predict temperature, unless near steady state 

fluxes are used to predict near steady state fluxes.   
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Figure 2. Cross Validation 1.  Case 3,  2nd Order Sensitivities, 1 transient flux, 1 

steady state flux.  p=11 
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Figure 3. Cross Validation 2.  Case 3, 2nd Order Sensitivities, transient fluxes.  p=11 
 

4.3 Resolution and Accuracy for Multiple Experiments 
 
One of the objectives of the current work is to investigate the use of second order sensitivity 

matrices to increase the ability to resolve the decision variable.  To form a bases for comparison, 

a first order sensitivity approach was used.  In the case of a first order sensitivity matrix, there 

are 7 first order terms for each measurement prediction:  5 terms for each of the parameters �i, 

and two terms for the independent variables y and t.  Here, each of Cases 1, 2, and 3 are 

considered utilizing four (i.e., the four largest) singular values to a complete set of seven for the 

� sensitivity matrix.  The weights as a function of measurement time for Case 3 for the first 

order approach (i.e., no second derivatives were included in � and �) using all seven singular 

values are listed in Table 3 for the case of flux measurements at t = 0.1, 0.75. 
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Figure 4. Cross Validation 3.  Case 3, 2nd Order Sensitivities, steady state fluxes, 

p=11 
 

 

Equation (18) is used to assess the quality of the reconstructed target application decision 

variable over an argument space in the neighborhood around the expected or nominal values of 

� and x.  Specifically, a Box-Behnken experimental design [17], as implemented by the MatLab 

[20] routine ‘bbdesign’, is used to produce the test points for Eq. (18).  For the parameters, �, 

the Box-Behnken experimental design points were scaled the standard deviations listed in Table 

1.  For independent variables, x=[y t], the design points were taken to be the neighboring nodal 

points based on the finite difference grid (over time and space).  The upper plot in Figure 5 

shows the normalized errors, ej, for the Case 3 presented in Tables 2 and 3.  The errors are 

normalized by the maximum absolute value for flux (i.e, γmax = qmax=38.75).  Case 1 results are 

normalized by the maximum temperature in the system (i.e., γmax = Tmax=20).   
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Table 3. Case 3 Weights.  p=7,  First Order Sensitivity Matrices 
 

tf  

0.100 0.250 0.500 0.750 1.000 
tg Weights for temperature Measurements 

0.1250 0.3579 5.0149 -1.9008 -2.2060 -2.2125 

0.2500 -0.1489 4.0456 -1.2102 -1.4436 -1.4486 

0.3750 -0.0612 0.8635 -0.2368 -0.2862 -0.2873 

0.5000 -0.0120 0.1725 -0.0497 -0.0601 -0.0603 

0.6250 -0.0017 0.0212 -0.0056 -0.0074 -0.0074 

0.7500 0.0002 -0.0027 0.0011 0.0007 0.0007 

0.8750 0.0004 -0.0060 0.0020 0.0018 0.0018 

1.0000 0.0005 -0.0065 0.0022 0.0020 0.0020 

10.0000 0.0005 -0.0065 0.0022 0.0020 0.0020 

y=0.25 

100.0000 0.0005 -0.0065 0.0022 0.0020 0.0020 

0.1250 0.4149 4.5682 -1.1782 -1.4315 -1.4368 

0.2500 -0.1073 3.4499 -0.9158 -1.1095 -1.1136 

0.3750 -0.0525 0.7252 -0.1940 -0.2351 -0.2360 

0.5000 -0.0085 0.1521 -0.0394 -0.0481 -0.0483 

0.6250 -0.0017 0.0234 -0.0060 -0.0076 -0.0076 

0.7500 -0.0003 0.0033 -0.0007 -0.0012 -0.0012 

0.8750 -0.0001 0.0005 -0.0000 -0.0003 -0.0003 

1.0000 -0.0000 0.0001 0.0001 -0.0002 -0.0002 

10.0000 -0.0000 0.0001 0.0001 -0.0001 -0.0001 

y=0.75 

100.0000 -0.0000 0.0001 0.0001 -0.0001 -0.0001 

 Weights for flux Measurements 

0.1250 0.4651   0.7876  

0.2500 0.0368   1.0186  

0.3750 0.0077   0.9944  

0.5000 -0.0009   1.0033  

0.6250 -0.0000   1.0003  

0.7500 0.0000   1.0000  

0.8750 0.0000   1.0000  

1.0000 0.0000   1.0000  

10.0000 0.0000   1.0000  

y=1.0 

100.0000 0.0000   1.0000  
 



   

  41

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time

e/
γ m

ax
Normalized Error

e =  (see Equation 18)

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time

σ
F (

flu
x)

Uncertainty in the Reconstructed Decision Variable

σF= (see Equation 24)

 
 
Figure 5. Case 3 Results.  First Order Sensitivities, p=7 



   

  42

Standard deviations of the reconstructed decision variable as a function of time are evaluated 

using Eqs. (24) and (25).  The standard deviation for each measurement time is given by the 

square root of the diagonal elements in the corresponding covariance matrices of Eqs. (24) and 

(25). The resulting standard deviations for Case 3 for the weights as defined in Table 3, are listed 

in Table 4.  The second column is the contribution due to uncertainty in the validation 

parameters �, Eq. (24).  The third column is the contribution due to uncertainty in the target 

application model parameters �’ (last term on RHS of Eq. (25)), and the last column lists the 

total uncertainty.  In contrast, Figure 5 (lower plot) results reflect only Eq. (24) to evaluate the 

standard deviation of the decision variable as reconstructed by the models for the validation 

measurements.  It is important to note that the standard deviations of the target application 

models parameters �’ are not used to develop the weights W or to study the trade-off between 

accuracy and resolution of the reconstructed decision variables.  These uncertainties are used 

only if one wishes to assess the significance of target application model parameter uncertainty 

relative to the effects of parameter uncertainty for the validation experimental models.  Note that 

the total uncertainty in the reconstructed decision variable is greatest at early times and decreases 

toward steady state.  The major contribution to the total uncertainty is the uncertainty due to the 

model parameters associated with the target application rather than validation experiment model 

parameter uncertainty.  At early prediction time, this uncertainty is due to uncertainty in the 

target application thermal diffusivity and the boundary temperatures.  At late time, the 

uncertainty approaches steady state with impact of the uncertainty associated with the target 

application thermal diffusivity becoming less.  The contribution to total uncertainty due to 

uncertainty in validation parameters for this case is significantly less than for the target 

application.  Refer to Table 1 for comparisons between the validation experiment and the 

application prediction values used for standard deviations for the boundary temperatures and the 

density-specific heat product.  The minimum uncertainty due to validation parameters (�F 

column in Table 4) occurs at t = 0.25.  This suggests that at this time, the effect of the surface 

flux at y=1 at the internal temperature measurement locations is significant to maximize the 

ability to resolve this flux with a minimum sensitivity to parameter uncertainty.  Note that the 

ability to represent the target application surface flux improves as the time of interest approaches 

steady state.  The ability to resolve the target application decision variable over the Box-Behnken 

design space (upper plot of Figure 5) increases rapidly as steady state is approached.  This is not 
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surprising considering that the information contained in the earlier internal temperatures should 

be reflected in the reconstructed decision variable at later times. 

 

Table 4. Uncertainty in the Reconstructed Decision Variable.  Case 3. p=7.  
First Order Sensitivity Matrices 

 
 

t �F �’ �d 

0.1250 1.4510 5.9175 6.0928 

0.2500 0.7447 5.0769 5.1313 

0.3750 0.8945 5.0743 5.1525 

0.5000 0.9424 5.0866 5.1732 

0.6250 0.9504 5.0890 5.1770 

0.7500 0.9517 5.0894 5.1776 

0.8750 0.9519 5.0894 5.1777 

1.0000 0.9519 5.0894 5.1777 

10.0000 0.9519 5.0894 5.1777 

100.0000 0.9519 5.0894 5.1777 

 

Trade-off exists in the ability to resolve the target application behavior using the models for a set 

of validation experimental measurements.  Generally, as one attempts to better resolve the 

application decision variables using more singular values, the results are increasingly sensitive to 

uncertainty in the model parameters.  Figure 6 illustrates this effect.  The plots in the left column 

of Figure 6 illustrate the trade-off between uncertainty in the reconstructed decision variable for 

a single time, t=0.375, when only the first order terms are retained in � and �.  The numbers in 

the circles represent the number of singular values (i.e., p largest singular values) retained in the 

evaluation of Eq. (15).  The second column of Figure 6 reflects the results obtained when second 

order terms are utilized in � and �.  For Case 1, with only the first order terms used, the trade-

off suggests that the best result is obtained with p=5.  This value of p results in the lowest 

maximum error in the reconstructed decision variable over the Box-Behnken design points, 

while maintaining a minimal sensitivity to uncertainty.  Figure 7 (upper plot) shows the results 

obtained for this case, as a function of t, for each of the design points of the Box-Behnken  
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Figure 6. σF vs. Error at t=0.375 for Reconstructed Decision Variable.  p shown in 
markers 
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Figure 7. Case 1 Results.  First Order Sensitivities, p=5 
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design.  Note that the normalized error does not go to zero for large time.  On the other hand, the 

uncertainty in the reconstructed decision variable at larger times is considerably smaller than it 

was for Case 3 (see Figure 5, lower plot). 

 

Using second order derivatives for Case 1 (Figure 6, top-right plot) does not result in improved 

ability to resolve the decision variable.  For this case, nothing is gained by using second order 

derivatives in � and �.  The Case 2 results (Figure 6, middle plots) indicate that the second 

order method can provide reduced sensitivity for uncertainty when the largest 4 singular values 

are retained.  This comes at the expense of a minor degradation in the ability to resolve the 

decision variable as indicated by the larger ratio of normalized error.  Comparison of the results 

for Cases 1 and 2 indicate that the ability to resolve surface flux (Case 2) using internal 

temperature measurements is less than the ability to resolve surface temperature using these 

measurement times and locations.  It is interesting to note that this is the only case where the 

decision variable is different from all of the quantities measured during the validation 

experiments.  Case 3 reflects the impact of the addition of two surface flux measurements to the 

set of validation measurements.  Note that we are simultaneously incorporating two types of 

measurements, temperature and flux.  Comparison of the Case 2 and Case 3 results, as illustrated 

in Figure 6, shows a significant improvement in the ability to resolve surface flux at a time 

different from the surface flux measurements, with generally less sensitivity to uncertainty in the 

model parameters.  The p=7 results for first order derivatives and p = 9 case for second order 

derivatives appear optimum for the t=0.375 reconstructed flux for Case 3.  The corresponding 

time histories are illustrated in Figures 5 and 8.  Note that the inclusion of the second order 

sensitivities increased the maximum normalized error for time less than 0.5 (upper figures), 

without a significant change in the uncertainty of the reconstructed decision variable (lower 

figures).  
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Figure 8. Case 3 Results 2.  Second Order Sensitivities, p=9 
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5.  Summary and Discussion 
 
The availability of experimental data to test a model at the anticipated target application 

conditions is very desirable from a model validation point of view.  Unfortunately, such data is 

not always available, and methodology is required to relate information gained from data 

obtained under different conditions or for different variables to the conditions and variables for 

the target application.  The key benefit of the present methodology is its ability to assess whether 

a set of validation experiments can “represent” a target application.  As the results illustrate, the 

ability to resolve the target application depends directly on the level of uncertainty in the model 

parameters used to model the experiments as well as the uncertainty in the model parameters for 

the target application.  The present methodology provides a means to quantify the trade-off that 

exists between the ability to resolve the target application decision variables, and the impact that 

model parameter uncertainty has on this ability.  

 

Specifically, the methodology develops weights that are applied to model predictions for the 

validation data to represent the model predictions at the target application conditions.  First, a 

sensitivity analysis is used to develop a reconstructed target application decision variable for the 

validation experiments, and then the tradeoff between resolution and accuracy is investigated.  

This effort shows that, at least for the cases considered, inclusion of second order sensitivities 

generally do not produce better results.  In the case of a model more non-linear in the parameters, 

or the case of increased uncertainty in the validation experimental parameters (i.e., the Box-

Behnken design [17] would utilize parameter values farther from the nominal values for this 

case), one may obtain an improvement in the ability to resolve the design variables using second 

order analysis.  However, this increased ability to resolve the design variables may result in an 

increase in sensitivity to the model parameter uncertainties.  In general, if one finds that the 

reconstructed model is too sensitive to uncertainties in the parameters for the validation and 

target application models, then one should acquire more data to reduce the standard deviation of 

the reconstructed decision variable, redesign validation experiments to have less uncertainty, or 

acquire data from experiments closer to the target application conditions and measurement type.  

It should be noted that the resulting trade-offs between resolution and accuracy are very system 
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specific.  The choice of the number of singular values to retain is also system specific and must 

be done after the trade-offs have been characterized.  

 

The weights developed here can be used to evaluate whether validation prediction/experimental 

differences are consistent, weighted for the target application, using a validation metric as 

discussed in Hills and Leslie [12].  Caution must be exercised since the methodology is based on 

an existing model for the target application, tested at conditions different from the target 

application conditions.  A more rigorous test would be to test the target application model at the 

target application conditions, but this is not always possible.   

 

The example problems presented were based on a sensitivity analysis about the nominal values 

for the parameters used in the models to simulate validation measurements and about the 

anticipated values for the parameters for the target application.  If data from validation 

experiments are available, then one can consider using these data to calibrate the model 

parameters to provide a better representation of the conditions of the individual experiments.  

This may improve the ability of the reconstructed decision variable model to represent the 

decision variable.  While this approach has some value for use in assessing the coverage of the 

target application model by the validation experiments, it should not be used if the purpose is to 

develop target application relevant metrics that use the observed differences between the data 

from the validation experiments and the model predictions of this data.  The data used for 

validation metrics must be independent of the data used to calibrate models for the metrics to be 

viable.  Otherwise, there is a danger that one is evaluating how well a model can be made to ‘fit’ 

the data, rather than how well the model can predict the data. 

 

Full system models for a complex multi-physics target applications can contain tens to hundreds 

of model arguments and these models often are computational expensive.  For the approach 

presented here to be useful, one should use judgment, coupled with targeted sensitivity analysis, 

to evaluate which model arguments have the most significant effect on the model predictions and 

include only those sensitivities in the sensitivity matrices used here.  Once the sensitivity 

matrices are evaluated, the tradeoff between the resolution and accuracy, through the retention of 

a subset of the singular values, does not require further model runs and is not computational 
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expensive.  Another approach that can be used is to evaluate the target application model at 

points sampled from a space filling experimental design (such as Latin Hypercube Monte Carlo 

sampling).  The validation experimental models can also be evaluated at these points and a 

concept analogous to that provided here can be used to evaluate the weights.  In this case, the 

rows of the matrices will not be sensitivities, but model predictions at the various sampling 

points about the nominal values for the model parameters and arguments.  The weights can be 

developed from these matrices and the resolution/accuracy analysis performed using these 

weights.  This approach has the disadvantage that it may not capture the important behavior of 

the models (especially if a limited number of samples are used) but has the advantage that the 

weights are developed using predictions at the design points rather than first and second 

derivatives at the nominal points.  As a result, this approach may better represent off nominal 

value behavior of the models.  A case where this may be so is when the estimated standard 

deviations in the model parameters for the validation experimental models are sufficiently large 

such that a first or second order Taylor series cannot capture the behavior.  The second author 

has used, but not reported, this sampling approach with some success. 

 

Finally, we wish to emphasize that the purpose of the reconstructed model for the decision 

variables is to assess how well this reconstruction can represent the target application behavior.  

This reconstruction should not be used as a substitution for the target application model for 

prediction. 
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Appendix.  Code Verification 
 

Because the thermal diffusivity, k, is a function of T, Eqs. (33 a, b) are nonlinear in temperature.  

These equations are solved using the second order Crank-Nicholson finite difference algorithm.  

To verify the solution, both code verification and solution verification is used.  We begin by 

applying the method of manufactured solutions, as presented by Knupp and Salari [18].  In the 

present application, the manufactured solution chosen is as follows: 
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With this known analytical solution for temperature, Eq. (33) becomes 
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and Eqs. (35), (36), and (37) become 

21)(41,0)( −−= yyTm      (63)  
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Using the model parameters shown in Table 1, the Crank-Nicholson algorithm is applied to Eqs. 

(62) through (65) and the results are compared to the manufactured solution given by Eq. (61).  

In this case, the maximum difference between any nodal value and the corresponding analytical 

value is O(10-3) using 41 spatial nodes and a time step of .0000625.   

 

Analysis using the Richardson Extrapolation as presented by Roache [19] confirms that the code 

has second order convergence, as intended.  Roache [19] defines a convergence rate, o, as 

follows: 
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where u1, u2, u3 are solutions at some common points for grid resolutions h1, h2, h3.  The “r” in 

the ln(r) term is the ratio of grid refinement between successive grids.  Comparing results at 

common spatial points between cases with 21, 41, and 81 spatial nodes corresponds to r=2.  With 

time steps of 0.00025, 0.0000625, and 0.000015625, respectively, the result for o as a function of 

time and space is shown in Figure A1.  Note that the method demonstrated second order 

convergence at all locations and time, except at time zero at the boundary conditions, where a 

step change in temperature occurs. 
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Figure A1.  Richardson Extrapolation Observed Order of Convergence. 
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