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ABSTRACT 

A standard and widespread approach to part-of-speech tagging is based on Hidden Markov 
Models (HMMs). An alternative approach, pioneered by Schütze (1993), induces parts of 
speech from scratch using singular value decomposition (SVD). We introduce DEDICOM as 
an alternative to SVD for part-of-speech induction. DEDICOM retains the advantages of 
SVD in that it is completely unsupervised: no prior knowledge is required to induce either 
the tagset or the associations of terms with tags. However, unlike SVD, it is also fully 
compatible with the HMM framework, in that it can be used to esti-mate emission- and 
transition-probability matrices which can then be used as the input for an HMM. We apply 
the DEDICOM method to the CONLL corpus (CONLL 2000) and compare the output of 
DEDICOM to the part-of-speech tags given in the corpus, and find that the cor-relation 
(almost 0.5) is quite high. Using DEDICOM, we also estimate part-of-speech ambiguity for 
each term, and find that these estimates correlate highly with part-of-speech ambiguity as 
measured in the original corpus (around 0.88). Finally, we show how the output of 
DEDICOM can be evaluated and compared against the more familiar output of supervised 
HMM-based tagging.  
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1 Introduction 

Traditionally, part-of-speech tagging has been 
approached either in a rule-based fashion, or 
stochastically. Harris (1962) was among the first to 
develop algorithms of the former type. The 
approach relies on two elements: a dictionary to 
assign possible parts of speech to each word, and a 
list of hand-written rules – which must generally 
be painstakingly developed for each new language 
or domain – to disambiguate tokens in context. 
Stochastic taggers, on the other hand, avoid the 
need for hand-written rules by tabulating 
probabilities of types and part-of-speech tags 
(which must be gathered from a tagged training 
corpus), and applying a special case of Bayesian 
inference (usually, Hidden Markov Models 
[HMMs]) to disambiguate tokens in context. The 
latter approach was pioneered by Stolz et al. 
(1965) and Bahl and Mercer (1976), and became 
widely known through the work of e.g. Church 
(1988) and DeRose (1988). 

A third and more recent approach, known as 
‘distributional tagging’ and exemplified by 
Schütze (1993, 1995), aims to eliminate the need 
for both hand-written rules and a tagged training 
corpus, since the latter may not always be available 
for every language or domain. Distributional 
tagging is a fully-unsupervised approach, unlike 
the two traditional approaches described above. 
Schütze’s suggestion is to analyze the 
distributional patterns of words by forming a term 
adjacency matrix, then subjecting that matrix to 
Singular Value Decomposition (SVD) to reveal 
latent dimensions. He shows that in the reduced-
dimensional space implied by SVD, tokens do 
indeed cluster intuitively by part-of-speech; and 
that if context is taken into account, something 
akin to part-of-speech tagging can be achieved. 
Whereas the performance of stochastic taggers is 
generally sub-optimal when the domain of the 
training data differs from that of the test data, 
distributional tagging sidesteps this problem, since 
each corpus can be considered in its own right. 
Two drawbacks of distributional tagging noted by 
Schütze (1995) are that the performance is 
relatively modest compared to that of supervised 
approaches, and that languages with rich 
morphology may present a challenge. We note the 
latter is also true for languages in which word 

order is relatively free – usually the same 
languages as those with rich morphology. 
Although in English word order is significantly 
constrained by part-of-speech categorizations, this 
is not as true of, say, Russian. Thus, an adjacency 
matrix formed from a Russian corpus is likely to 
be less informative about part-of-speech 
classifications as one formed from an English 
corpus. 

In this paper, we present an alternative 
unsupervised approach to distributional tagging. 
Instead of SVD, we use a dimensionality reduction 
technique known as DEDICOM, which has various 
advantages over the SVD-based approach. 
Principal among these is that, even though no pre-
tagged corpus is required, DEDICOM can easily 
be used as input to a HMM-based approach (and 
the two share linear-algebraic similarities, as we 
will make clear in section 4). Although our 
empirical results, like those of Schütze (1995), are 
perhaps still relatively modest, the fact that a 
clearer connection exists between DEDICOM and 
HMMs than between SVD and HMMs gives us 
good reason to believe that with further 
refinements, DEDICOM may be able to give us 
‘the best of both worlds’ in many respects: the 
benefits of avoiding the need for a pre-tagged 
corpus, with empirical results approaching those of 
HMM-based tagging. 

In the following sections, we introduce 
DEDICOM, describe its applicability to the part-
of-speech tagging problem, and outline its 
connections to the standard HMM-based approach 
to tagging. We evaluate the use of DEDICOM on 
the CONLL 2000 shared task data, discuss the 
results and suggest avenues for improvement. 

2 DEDICOM 

DEDICOM, which stands for ‘DEcomposition into 
DIrectional COMponents’, is a linear-algebraic 
decomposition method attributable to Harshman 
(1978) which has been used to analyze matrices of 
asymmetrical directional relationships between 
objects or persons. Early on, the technique was 
applied by Harshman et al. (1982) to the analysis 
of two types of marketing data: ‘free associations’ 
– how often one phrase (describing hair shampoo) 
evokes another in the minds of survey respondents, 
and ‘car switching data’ – how often people switch 
from one of 16 car types to another of the 16 types. 
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Both types of data are asymmetric and directional: 
in the first dataset, for example, the phrase ‘body’ 
(referring to shampoo) evoked the phrase ‘fullness’ 
twice as often in the minds of respondents as 
‘fullness’ evoked ‘body’. Likewise, the data from 
Harshman et al. (1982) show that in the period 
under review, 3,820 people switched from ‘midsize 
import’ cars to ‘midsize domestic’ cars, but only 
2,140 switches were made in the reverse direction. 
Another characteristic of these ‘asymmetric 
directional’ datasets is that they can be represented 
in square matrices. For example, the raw car 
switching data can be represented in a 16  16 
matrix, since there are 16 car types. 

The objective of DEDICOM, which can be 
compared to that of SVD, is to factorize the raw 
data matrices into a lower-dimensional space 
identifying underlying, idealized directional 
patterns in the data. For example, while there are 
16 car types in the raw car switching data, 
Harshman shows that under a 4-dimensional 
DEDICOM analysis, these can be ‘boiled down’ to 
the basic types ‘plain large-midsize’, ‘specialty’, 
‘fancy large’, and ‘small’ – and that patterns of 
switching among these more basic types can then 
be identified. 

If X represents the original n  n matrix of 
asymmetric relationships, and a general entry xij in 
X represents the strength of the directed 
relationship of object i to object j, then the single-
domain DEDICOM model1 can be written as 
follows: 
 

X = ARAT + E   (1) 
 

where A denotes an n  q matrix of weights of the 
n observed objects in q dimensions (where q < n), 
and R is a dense q  q asymmetric matrix 
expressing the directional relationships between 
the q dimensions or basic types. AT is simply the 
transpose of A, and E is a matrix of error terms. 
Our objective is to minimize E, so we can also 
write: 
 
                                                                 
1 There is a dual-domain DEDICOM model, which is also 

described in Harshman (1978). The dual-domain 
DEDICOM model is not relevant to our discussion, and thus 
it will not be mentioned further. References in this paper to 
‘DEDICOM’ are to be understood as references in 
shorthand to ‘single-domain DEDICOM’. 

X  ARAT   (2) 
 

As noted by Harshman (1978: 209), the fact that 
A appears on both the left and right of R means 
that the data is described ‘in terms of asymmetric 
relations among a single set of things’ – in other 
words, when objects are on the receiving end of the 
directional relationships, they are still of the same 
type as those on the initiating end. 

One difference between DEDICOM and SVD is 
that there is no unique solution: either A or R can 
be scaled or rotated without changing the goodness 
of fit, so long as the inverse operation is applied to 
the other. For example, if we let Â = AD, where D 
is any diagonal scaling matrix (or, more generally, 
any nonsingular matrix), then we can write 
 

X  ARAT = ÂD-1RD-1ÂT  (3) 
 

(since ÂT = (AD) T = DAT) 
 

(In our application, we constrain A and R to be 
nonnegative as noted below.) 

To our knowledge, there have been no 
applications of DEDICOM to date in 
computational linguistics. This is in contrast to 
SVD, which has been extensively used for text 
analysis (for applications other than unsupervised 
part-of-speech tagging, see Baeza-Yates and 
Ribeiro-Neto 1999). 

3 Applicability of DEDICOM to part-of-
speech tagging 

The key insight of Schütze (1993) is that – at least 
in English – adjacencies between tokens are a good 
guide to their grammatical functions. Just as that 
insight can be leveraged by SVD of a term-by-term 
adjacency matrix, we can subject the same matrix 
to DEDICOM. With DEDICOM, however, we 
constrain the solution so that, as already stated, the 
terms are a ‘single set of things’: whether a term is 
‘preceding’ or ‘following’ – or alternatively, 
whether it is in a row or a column of the matrix – 
does not affect its grammatical function. This 
constraint is as it should be. 

Given any corpus containing n types and k 
tokens, we can let X be an n  n token-adjacency 
matrix. Let each entry xij in X denote the number 
of times in the corpus that type i immediately 
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precedes type j. X is thus a matrix of bigram 
frequencies. It follows that the sum of the elements 
of X equals k – 1 (because the first token in the 
corpus is preceded by nothing, and the last token is 
followed by nothing). Any given row sum of X 
(the type frequency corresponding to the particular 
row) will equal the corresponding column sum, 
except if the type happens to occur in the first or 
last position in the corpus. X will be asymmetric, 
since the frequency of bigram ij is clearly not the 
same as that of bigram ji for all i and j. 

It can be seen, therefore, that our X represents 
asymmetric directional data, very similar to the 
data analyzed in Harshman (1978) and Harshman 
et al. (1982). If we fit the DEDICOM model to our 
X matrix, then we obtain an A matrix which 
represents types by latent classes, and an R matrix 
which represents directional relationships between 
latent classes. We can think of the latent classes as 
induced parts of speech.2 Thus, the A matrix shows 
how strongly associated each type is with the 
different induced parts of speech; we would expect 
types which are ambiguous (such as ‘claims’, 
which can be either a noun or a verb) to have high 
loadings on more than one column in A. Again, if 
the classes correlate with parts of speech, the R 
matrix will show the latent patterns of adjacency 
between different parts of speech. 

4 Connections between DEDICOM and 
HMM-based tagging 

For any HMM, two components are necessary: a 
set of emission probabilities and a set of transition 
probabilities. Applying this framework to part-of-
speech tagging, the tags are conceived of as the 
hidden layer of the HMM and the tokens (each of 
which is associated with a type) as the visible 
layer. The emission probabilities are then the 
probabilities of types given the tags, and the 

                                                                 
2 With SVD, we believe that the orthogonality of the reduced-

dimensional features militates against any attempt to 
correlate these features with parts of speech. From a 
linguistic point of view, there is no reason to believe that 
parts of speech are orthogonal to one another in any sense. 
For example, nouns and adjectives (traditionally classified 
together as ‘nominals’) seem to share more in common with 
one another than nouns and verbs. With DEDICOM, this is 
not an issue, because the columns of A are not required to 
be mutually orthogonal to one another, unlike the left and 
right singular vectors from SVD. 

transition probabilities are the probabilities of the 
tags given the preceding tags. If these probabilities 
are known, then there are algorithms (such as the 
Viterbi algorithm) to determine the most likely 
sequence of tags given the visible sequence of 
types. 

In the case of supervised learning, we obtain the 
emission and transition probabilities by observing 
actual frequencies in a tagged corpus. Suppose our 
corpus, as previously discussed, consists of n types 
and k tokens. Since we are dealing with supervised 
learning, the number of the tags in the tagset is also 
known: we denote this number q. Now, the 
observed frequencies can be represented, 
respectively, as q  n and q  q matrices: we 
denote these A* and R*. Each entry aij in A* 
denotes the number of times type i is associated 
with tag j, and each entry rij in R* denotes the 
number of times tag j immediately follows tag i. 
Moreover, we know some other properties of A* 
and R*: 

 
 the respective sums of the elements of A* and 

R* are equal to k – 1; 

 each row sum of A* (


q

x
ixa

1

) corresponds to 

the frequency in the corpus of type i; 
 each column sum of A*, as well as the 

corresponding row and column sums of R*, 
are the frequencies of the given tags in the 

corpus (for all j, 



q

x
jx

q

x
xj

q

x
xj rra

111

 ). 

 

If A* and R* contain frequencies, however, we 
must perform a matrix operation to obtain 
transition and emission probabilities for use in an 
HMM-based tagger. In effect, A* must be made 
column-stochastic, and R* must be made row-
stochastic. Since the column sums of A* equal the 
respective row sums of R*, this can be achieved by 
post-multiplying both A* and R* by DA, where DA 
is a diagonal scaling matrix containing the inverses 
of the column sums of A (or equivalently, the row 
sums of R). Then the matrix of emission 
probabilities is given by A*DA, and the matrix of 
transition probabilities by R*DA. 

We can now make the connection to DEDICOM 
explicit. Let A = A*DA and R = R*, then we can 
rewrite (2) as follows: 
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X  ARAT = (A*DA) R* (A*DA)T (4) 
 

X  A*DA R*DA A*T  (5) 
 

In other words, for any corpus we may compute 
a probabilistic representation of the term adjacency 
matrix X (which will contain expected frequencies 
comparable to the actual frequencies) by 
multiplying the emission probability matrix A*DA, 
the transition probability matrix R*DA, and the 
term-by-tag frequency matrix A*. (Presumably, the 
closer the approximation, the better the tagging in 
the training set actually factorizes the true 
directional relationships.) 

Conversely, for fully unsupervised tagging, we 
can fit the DEDICOM model to the term adjacency 
matrix X. The resulting A matrix contains 
estimates of what the tags should be (if a tagged 
training corpus is unavailable), as well as the 
emission probability of each term given each tag, 
and the resulting R matrix is the corresponding 
transition probability matrix given those tags. In 
this case, a column-stochastic A can be used 
directly as the emission probability matrix, and we 
simply make R* row-stochastic to obtain the 
matrix of transition probabilities. The only 
difference then between the output of the fully-
unsupervised DEDICOM/HMM tagger and that of 
a supervised HMM tagger is that in the first case, 
the ‘tags’ are numeric indices representing the 
corresponding column of A, and in the second 
case, they are the members of the tagset used in the 
training data. 

The fact that emission and transition 
probabilities (or at least something very like them) 
are a natural by-product of DEDICOM sets 
DEDICOM apart from Schütze’s SVD-based 
approach, and is for us a significant reason which 
recommends the use of DEDICOM. 

5 Evaluation 

For all evaluation described here, we used the 
CONLL 2000 shared task data (CONLL 2000). 
This English-language newswire corpus consists of 
19,440 types and 259,104 tokens (including 
punctuation marks as separate types/tokens). Each 
token is associated with a part-of-speech tag and a 
chunk tag, although we did not use the chunk tags 

in the work described here. The tags are from a 44-
item tagset. The CONLL 2000 tags against which 
we measure our own results are in fact assigned by 
the Brill tagger, and while these may not correlate 
perfectly with those that would have been assigned 
by a human linguist, we believe that the correlation 
is likely to be good enough to allow for an 
informative evaluation of our method. 

Before discussing the evaluation of 
unsupervised DEDICOM, let us briefly reconsider 
the similarities of DEDICOM to the supervised 
HMM model in the light of actual data in the 
CONLL corpus. We stated in (5) that X  
A*DAR*DAA*T. For the CONLL 2000 tagged 
data, A* is a 19,440  44 matrix and R* is a 44  
44 matrix. Using A*DA and R*DA as emission- and 
transition-probability matrices within a standard 
HMM (where the entire CONLL 2000 corpus is 
treated as both training and test data), we obtained 
a tagging accuracy of 95.6%, which is within the 
range expected for an HMM-based tagger. By 
multiplying A*DAR*DAA*T, we expect to obtain a 
matrix approximating X, the table of bigram 
frequencies. This is indeed what we found: it will 
be apparent from Table 1 that the top 10 expected 
bigram frequencies based on this matrix 
multiplication are generally quite close to actual 
frequencies. Moreover, the sum of the elements in 
A*DAR*DAA*T is equal to the sum of the elements 
in X, and if we let E be the matrix of error terms 
(X - A*DAR*DAA*T), then we find that ||E|| (the 
Frobenius norm of E) is 38.764% of ||X|| - in other 
words, A*DAR*DAA*T accounts for just over 60% 
of the data in X. 

 



 9

Term 1 Term 2 Actual 
frequency 

Expected 
frequency 

of the 1,421 1,202.606 

in the 1,213 875.822 

for the 553 457.067 

to the 445 415.524 

on the 439 271.528 

the company 383 105.794 

a share 371 32.447 

that the 315 258.679 

and the 302 296.737 

to be 285 499.315 

Table 1. Actual versus expected frequencies for 10 
most common bigrams in CONLL 2000 corpus 

 
Having confirmed that there exists an A 

(=A*DA) and R (=R*) which both satisfies the 
DEDICOM model and can be used directly within 
a HMM-based tagger to achieve satisfactory 
results, we now consider whether A and R can be 
estimated if no tagged training set is available. 

We start, therefore, from X, the square 19,440  
19,440 (sparse) matrix of raw bigram frequencies 
from the CONLL 2000 data. Using Matlab and the 
Tensor Toolbox (Bader and Kolda 2006, 2007), we 
computed the best rank-44 non-negative 
DEDICOM3 decomposition of this matrix using the 
2-way version of the ASALSAN algorithm 
presented in Bader et al. (2007), which is based on 
iteratively improving random initial guesses for A 
and R. As with SVD, the rank of the 
decomposition can be selected by the user; we 
chose 44 since that was known to be the number of 
items in the CONLL 2000 tagset, but a lower 
number could be selected for a coarser-grained 
part-of-speech analysis. As already mentioned, 
there are indeterminacies of rotation and scale in 
DEDICOM. As Harshman et al. (1982: 211) point 
out, ‘when the columns of A are standardized… 
the R matrix can then be interpreted as expressing 
relationships among the dimensions in the same 
units as the original data. That is, the R matrix can 

                                                                 
3 Non-negative DEDICOM imposes the constraint not present 

in Harshman (1978, 1982) that all entries in A and R must 
be non-negative. This constraint is appropriate in the present 
case, since the entries in A* and R* (and of course the 
probabilities in A*D and R*D) are by definition non-
negative. 

be interpreted as a matrix of the same kind as the 
original data matrix X, but describing the relations 
among the latent aspects of the phrases, rather than 
the phrases themselves’. Thus, if DEDICOM is 
constrained so that A is column-stochastic (which 
is required in any case of the matrix of emission 
probabilities), then the sum of the elements in R 
should approximate the sum of the elements in X. 
R is therefore comparable to R* (with some 
provisos which shall be enumerated below), and to 
obtain the row-stochastic transition-probability 
matrix, we simply multiply R by a diagonal matrix 
DR whose elements are the inverses of R’s row 
sums. 

With A as an emission-probability matrix and 
RDR as a transition-probability matrix, we now 
have all that is needed for an HMM-based tagger 
to estimate the most likely sequence of ‘tags’ given 
the corpus. However, since the ‘tags’ here are 
numerical indices, as mentioned, to evaluate the 
output we must look at the correlation between 
these ‘tags’ and the gold-standard tags given in the 
CONLL 2000 data. One way this can be done is by 
presenting a 44  44 confusion matrix (of gold-
standard tags against induced tags), and then 
measuring the correlation coefficient (Pearson’s R) 
between that matrix and the ‘idealized’ confusion 
matrix in which each induced tag corresponds to 
one and only one ‘gold standard’ tag. Using A and 
RDR as the input to a HMM-based tagger, we 
tagged the CONLL 2000 dataset with induced tags 
and obtained the confusion matrix shown in Table 
2 (owing to space constraints, only the first 20 
columns are shown). The correlation between this 
matrix and the equivalent diagonalized ‘ideal’ 
matrix is in fact 0.4942, which is quite high (and 
could not have occurred by chance). 
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Table 2. Partial confusion matrix of gold-standard tags against DEDICOM-induced tags for CONLL 2000 dataset 

 

It should be noted that a lack of correlation 
between the induced tags and the gold standard 
tags can be attributed to at least two independent 
factors. The first, of course, is any inability of the 
DEDICOM model to fit the particular problem and 
data. Clearly, this is undesirable. The other factor 
to be borne in mind, which works to DEDICOM’s 
favor, is that the DEDICOM model could yield an 
A and R which factorize the data more optimally 
than the A*D and R* implied by the gold-standard 
tags. There are three methods we can use to try and 
tease apart these competing explanations of the 
results, two quantitative and the other subjective. 
Quantitatively, we can compare the respective 
error matrices E. We have already mentioned that 
 

38764.0
||X||

||ADRDAX|| T*
A

*
A

*




(6) 

Similarly, using the A and R from DEDICOM we 
can compute 

24078.0
||X||

||ARAX|| T




 (7) 

The fact that the error is lower in the second case 
implies that DEDICOM allows us to find a part-of-
speech ‘factorization’ of the data which fits better 
even than the gold standard, although again there 
are some caveats to this; we will return to these in 
the discussion. 

Another way to evaluate the output of 
DEDICOM is by comparing the number of part-of-
speech tags for a term in the gold standard to the 
number of classes in the A matrix with which the 
term is strongly associated. We test this by 
measuring the Pearson correlation between the two 
variables. First, we compute the average number of 
part-of-speech tags per term using the gold 
standard. We refer to this value as ambiguity 
coefficient; for the CONLL dataset, this is 1.05. 
Because A is dense, if we count all non-zero 
columns for a term in the A matrix as possible 
classes, we obtain a much higher ambiguity 
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coefficient. We therefore set a threshold and 
consider only those columns whose values exceed 
a certain threshold. The threshold is selected so 
that the ambiguity coefficient of the A matrix is the 
same as that of the gold standard. For a given term, 
every column with a value exceeding the threshold 
is counted as a possible class for that term. We 
then compute the Pearson correlation coefficient 
between the number of classes for a term in the A 
matrix and the number of part-of speech tags for 
that term in the CONLL dataset as provided by the 
Brill tagger. We obtained a correlation coefficient 

of 0.88, which shows that there is indeed a high 
correlation between the induced tags and the gold 
standard tags obtained with DEDICOM. 

Finally, we can evaluate the output subjectively 
by looking at the content of the A matrix. For each 
‘tag’ (column) in A, the ‘terms’ (rows) can be 
listed in decreasing order of their weighting in A. 
This gives us an idea of which terms are most 
characteristic of which tags, and whether the 
grouping into tags makes any intuitive sense. 
These results are given in Table 3. 

 

Ta
g 

Top 10 terms (by weight) with weightings 

1 million share said . year billion inc. corp. years quarter 

0.0246 0.0146 0.0129 0.0098 0.0088 0.0069 0.0064 0.0061 0.0058 0.0054 

2 company u.s. new first market share year stock . government 

0.0264 0.0136 0.0113 0.0095 0.0086 0.0086 0.0079 0.0077 0.0065 0.006 

3 the a new an other its any addition their 1988 

0.2889 0.1194 0.0121 0.0094 0.0092 0.0085 0.0067 0.0062 0.0062 0.0057 

4 . be 's sell make buy pay get do have 

0.1409 0.0800 0.0345 0.0224 0.0211 0.0190 0.0162 0.0160 0.0157 0.0155 

5 to a or from it -rrb- yesterday however said says 

0.0983 0.0278 0.0252 0.0247 0.0172 0.0172 0.0119 0.0112 0.0111 0.0111 

6 of . on over for into to at that from 

0.3092 0.0709 0.0519 0.0227 0.0224 0.0204 0.0187 0.0182 0.0170 0.0160 

7 . increase based stake interest decline rise drop used gain 

0.1180 0.0272 0.0179 0.0144 0.0143 0.0138 0.0125 0.0124 0.0098 0.0082 

8 the its his about those their all u.s. . this 

0.0935 0.0462 0.0208 0.0160 0.0096 0.0095 0.0088 0.0077 0.0074 0.0071 

9 and says a or he it mr. but we said 

0.0611 0.0392 0.0339 0.0319 0.0304 0.0271 0.0269 0.0222 0.0201 0.0175 

10 . have that is expects spokesman need move and put 

0.4932 0.0126 0.0111 0.0081 0.0060 0.0048 0.0045 0.0043 0.0041 0.0038 

Table 3. Term weightings in A matrix, by tag 
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Many groupings in Table 3 do make sense: for 
example, the fourth tag is clearly associated with 
verbs, while the two terms with significant 
weightings for tag 2 are both determiners. By 
referring back to Table 2, we can see that many 
tokens in the CONLL 2000 dataset tagged as verbs 
are indeed tagged by the DEDICOM tagger as ‘tag 
4’, while many determiners are tagged as ‘tag 3’. 
To understand where a lack of correlation may 
arise, however, it is informative to look at apparent 
anomalies in the A matrix. For example, it can be 
seen from Table 3 that ‘new’, an adjective, is 
grouped in the third tag with ‘a’ and ‘the’ (and 
ranking above ‘an’). Although not in agreement 
with the CONLL 2000 ‘gold standard’ tagging, the 
idea that determiners are a type of adjective is in 
fact in accordance with traditional English 
grammar. Here, the grouping of ‘new’, ‘a’ and 
‘the’ can be explained by the distributional 
similarities (all precede nouns). It should also be 
emphasized that the A matrix is essentially a ‘soft 
clustering’ of terms (meaning that terms can 
belong to more than one cluster). Thus, for 
example, ‘u.s.’ (the abbreviation for United States) 
appears under both tag 2 (which appears to have 
high loadings for nouns) and tag 8 (with high 
loadings for adjectives). 

We have alluded above in passing to possible 
methods for improving the results of the 
DEDICOM analysis. One would be to pre-process 
the data differently. Here, a variety of options are 
available which maintain a generally unsupervised 
approach (one example is to avoid treating 
punctuation as tokens). However, variations in pre-
processing are beyond the scope of this paper. 

Another method would be to constrain 
DEDICOM so that the output more closely models 
the characteristics of A* and R*, the emission- and 
transition-probability matrices obtained from a 
tagged training set. In particular, there is one 
important constraint on R* which is not replicated 
in R: the constraint mentioned above that for all j, 





q

x
jx

q

x
xj rr

11

 . We note that this constraint can be 

satisfied by Sinkhorn balancing (Sinkhorn 1964)4, 
although it remains to be seen how the constraint 
                                                                 
4 It is also worth noting that Sinkhorn was motivated by the 

same problem which concerns us, that of estimating a 
transition-probability matrix for a Markov model. 

on R can best be incorporated into the DEDICOM 
architecture. Assuming that A is column-
stochastic, another desirable constraint is that the 
rows of A(DR)-1 should sum to the same as the 
rows of X (the respective type frequencies). With 
the implementation of these (and any other) 
constraints, one would expect the fit of DEDICOM 
to the data to worsen (cf. (6) and (7) above), but 
incurring this cost could be worthwhile if the 
payoff were somehow linguistically interesting (for 
example, if it turned out we could achieve a much 
higher correlation to gold-standard tagging). 

6 Conclusion 

In this paper, we have introduced DEDICOM, an 
analytical technique which to our knowledge has 
not previously been used in computational 
linguistics, and applied it to the problem of 
completely unsupervised part-of-speech tagging. 
Theoretically, the model has features which 
recommend it over other previous approaches to 
unsupervised tagging, specifically SVD. Principal 
among the advantages is the compatibility of 
DEDICOM with the standard HMM-based 
approach to part-of-speech tagging, but another 
significant advantage is the fact that terms are 
treated as ‘a single set of objects’ regardless of 
whether they occupy the first or second position in 
a bigram. 

By applying DEDICOM to a tagged dataset, we 
have shown that there is a significant correlation 
between the tags induced by unsupervised, 
DEDICOM-based tagging, and the pre-existing 
gold-standard tags. This points both to an inherent 
validity in the gold-standard tags (as a reasonable 
factorization of the data) and to the fact that 
DEDICOM appears promising as a method of 
inducing tags in cases where no gold standard is 
available. 

We have also shown that the factors of 
DEDICOM are interesting in their own right: our 
tests show that the A matrix (similar to an 
emission-probability matrix) models term part-of-
speech ambiguity well. Using insights from 
DEDICOM, we have also shown how linear 
algebraic techniques may be used to estimate the 
fit of a given part-of-speech factorization (whether 
induced or manually created) to a given dataset, by 
comparing actual versus expected bigram 
frequencies. 
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In summary, it appears that DEDICOM is a 
promising way forward for bridging the gap 
between unsupervised and supervised approaches 
to part-of-speech tagging, and we are optimistic 
that with further refinements to DEDICOM (such 
as the addition of appropriate constraints), more 
insight will be gained on how DEDICOM may 
most profitably be used to improve part-of-speech 
tagging when few pre-existing resources (such as 
tagged corpora) are available. 
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