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Abstract 
 

The motivating vision behind Sandia’s MENTOR/PAL1 LDRD project has been that 
of systems which use real-time psychophysiological data to support and enhance 
human performance, both individually and of groups.  Relevant and significant 
psychophysiological data being a necessary prerequisite to such systems, this LDRD 
has focused on identifying and refining such signals.  The project has focused in 
particular on EEG (electroencephalogram) data as a promising candidate signal 
because it (potentially) provides a broad window on brain activity with relatively low 
cost and logistical constraints.  We report here on two analyses performed on EEG 
data collected in this project using the SOBI (Second Order Blind Identification) 
algorithm to identify two independent sources of brain activity:  one in the frontal 
lobe and one in the occipital.  The first study looks at directional influences between 
the two components, while the second study looks at inferring gender based upon the 
frontal component. 

 
 

                                                 
1 The term MENTOR/PAL refers to a specific system architecture where each individual in a group charged with a 
cooperative task is supported by one personally dedicated computer (a PAL), and where one additional, central 
system is concerned with the entire group (their MENTOR). 
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1. DIRECTIONAL INFLUENCES BETWEEN TOP-DOWN AND 
BOTTOM-UP PROCESSING2 

 
 
1.1. Introduction 
 
1.1.1. SOBI 
 
Second-order blind identification (SOBI) (Belouchrani, Abed-Meraim, Cardoso, & Moulines, 
1997) is an emerging signal processing technique that can be used to facilitate source analysis 
from high-density EEG.  Similar to other ICA algorithms that have been applied to EEG data 
(Bell & Sejnowski, 1995), (Hyvarinen & Oja, 1997), SOBI can be used to isolate and remove 
ocular artifact (Joyce, Gorodnitsky, & Kutas, 2004).  In our laboratory, we have conducted 
extensive investigations to demonstrate the utility of SOBI in aiding source localization from 
high-density EEG.  Specifically, we have shown that (Belouchrani, Abed-Meraim, Cardoso, & 
Moulines, 1997) SOBI can correctly recover known noise sources (noisy sensors and artificially 
injected noise at known electrodes) and known neuronal sources (SI activation by median nerve 
stimulation) (Tang, Liu, & Sutherland, Recovery of Correlated Neuronal Sources From EEG: 
The Good and Bad Ways of Using SOBI, 2005), (Bell & Sejnowski, 1995) SOBI can increase 
signal to noise ratio leading to improved performance in single-trial ERP classification (Tang, 
Sutherland, & Wang, Contrasting Single-Trial ERPs Between Experimental Manipulations: 
Improving Differentiability by Blind Source Separation, 2006), (Hyvarinen & Oja, 1997) SOBI 
can recover neuronal sources whose activation are correlated (Tang, Liu, & Sutherland, 
Recovery of Correlated Neuronal Sources From EEG: The Good and Bad Ways of Using SOBI, 
2005); (Joyce, Gorodnitsky, & Kutas, 2004) SOBI can recover neuronal sources using EEG 
collected when the brain is in its default mode (“resting” state) (Sutherland & Tang, Blind 
Source Separation Can Recover Systematically Distributed Neuronal Sources From "Resting" 
EEG, 2006); (Tang, Sutherland, & McKinney, Validation of SOBI Components From High 
Density EEG, 2005) SOBI can recover neuronal sources during free viewing of continuous 
streams of visual information (Tang, et al., Classifying Single-Trial ERPs From Visual and 
Frontal Cortex During Free Viewing, 2006); finally, SOBI can recover weak neuronal signals 
that temporally overlay with much stronger signals (e.g. signals associated with ipsilateral 
activation of primary somatosensory cortex) (Sutherland & Tang, Reliable Detection of Bilateral 
Activation in Human Primary Somatosensory Cortex by Unilateral Median Nerve Stimulation, 
2006). 
 
1.1.2. Chapter Goals 
 
In this chapter, we set out to achieve three goals. First, we seek to provide further validation for 
SOBI recovered neuronal sources by investigating whether the same neuronal sources can be 
recovered from repeated EEG measures that are obtained days and weeks apart. Second, we 

                                                 
2 Substantial portions of this chapter have appeared as “Top-Down versus Bottom-up Processing in the Human 
Brain: Distinct Directional Influences Revealed by Integrating SOBI and Granger Causality”, by Akaysha C. Tang, 
Matthew T. Sutherland, Peng Sun, Yan Zhang, Masato Nakazawa, Amy Korzekwa, Zhen Yang, and Mingzhou Ding 
in Advances in Cognitive Neurodynamics ICCN 2007: Proceedings of the International Conference on Cognitive 
Neurodynamics, copyright Springer Science + Business Media, Dordrecht. 
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combine SOBI with Granger causality analysis to show distinct patterns of theta/alpha 
contribution in the feed-forward and feedback influences between the frontal and occipital 
cortices. Third, we investigate how such asymmetrical influence between the frontal and 
occipital cortices is modulated by sensory processing and by situational familiarity. 
 
1.2. Methods 
 
Eight right-handed subjects volunteered to participate in the present study. All subjects were free 
of any history of neurological or psychological disorders. The experimental procedures were 
conducted in accordance with the Human Research Review Committee at the University of New 
Mexico. Each subject was tested in three sessions at Week 0, Week 1, and Week 4 or later.  Up 
to 7 min of continuous 128-channel EEG data were collected at 1000 or 2000 Hz during: 
(Belouchrani, Abed-Meraim, Cardoso, & Moulines, 1997) eyes-closed “resting”; (Bell & 
Sejnowski, 1995) eyes-open “resting”; (Bell & Sejnowski, 1995) video-viewing (a silently 
played nature video); (Joyce, Gorodnitsky, & Kutas, 2004) listening to only the audio track of 
the video; and (Tang, Sutherland, & McKinney, Validation of SOBI Components From High 
Density EEG, 2005) forming mental images of scenes from the video. This chapter limits the 
discussion to conditions 1-3. 
 
SOBI was applied to the continuous EEG data x(t), across all conditions to extract the continuous 
time course of activation from two types of neuronal components--- anterior (A) and posterior 
(P) components.  For details on SOBI application, see (Tang, Sutherland, & McKinney, 
Validation of SOBI Components From High Density EEG, 2005). Briefly, SOBI recovers the 
underlying sources, s(t), by minimizing the sum squared cross-correlations between si(t) and 
sj(t+τ), across all pairs of sources and across multiple time delays τs. A subset of SOBI-
recovered components can be verified as neuronal sources via source localization using a 
forward model (e.g. BESA 5.0) (Hyvarinen & Oja, 1997).  Here we focused our analysis on two 
such neuronal components that correspond to focal regions within the frontal and occipital lobes. 
 
Feed-forward (FF) and feedback (FB) influences were quantified by Granger causality between 
the two components, reflecting long-distance directional influences between the frontal and 
occipital cortices. Granger causality analysis was carried out on the continuous time courses, 
si(t), for the selected components A and P according to methods detailed in  (Ding, Short-
Window Spectral Analysis of Cortical Even-Related Potentials by Adaptive Multivariate 
Autoregressive Modeling: Data Preprocessing, Model Validation, and Variability Assessment, 
2000), (Ding, Chen, & Bressler, Granger Causality: Basic Theory and Application to 
Neuroscience, 2006).  As Granger causality can be decomposed into its frequency content, we 
computed Granger causality spectrum and measured power within the theta (4-7 Hz) and alpha 
(8-14 Hz) bands using a moving window of 30-sec with 5-sec increments. Power of anterior and 
posterior components in theta and alpha bands were also computed as indicators of 
synchronization within the local networks.  
 
1.3. Results 
 
Reliable Extraction and Identification of Neuronal Components from Repeated Measures made 
Weeks Apart.  In all 8 subjects, across all 3 sessions, we were able to recover SOBI components 
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that corresponded to two distinct neuronal sources, one localized to a rather focal region within 
the frontal cortex, in or near anterior cingulate cortex (ACC) and the other to focal regions within 
the occipital lobe (occipital gyrus). Repeated- measure ANOVA revealed no statistically 
significant differences in the location of the corresponding ECD models across the 3 recording 
sessions. As no session-to-session difference was found, the average locations across the 3 
sessions are shown in Figure 1.1. ECDs for each of the 8 subjects are superimposed in the figure 
revealing a tight clustering of ECDs across subjects. This result demonstrates that SOBI can 
reliably recover components that correspond to anatomically well defined brain regions even 
when the recording sessions were made weeks apart. 
It is important to emphasize that the recovery of these two neuronal sources was achieved 
without imposing constraints of fixation and use of event-related stimulation paradigms. Instead, 
the subjects were allowed to freely move or blink their eyes as needed during the recording 
conditions. No segment of EEG data was excluded prior to the application of SOBI. These 
unique features of SOBI processing have non-trivial  

 
 
Figure 1.1 Equivalent current dipole (ECD) locations for the SOBI recovered anterior and 

posterior neuronal components.  
 
implications for the study of mental disorders and the study of early development or aging where 
subjects are often unable to conform to typical experimental constraints.   
Theoretically, this result implies that SOBI’s ability to recover anatomically well-defined 
neuronal sources does not depend upon the use of any event-related stimulation paradigm. Thus, 
fast brain electrical activity in the default mode (Gusnard & Raichle, 2001) can be investigated in 
terms of neuronal signals originating from specific focal cortical areas.  In comparison to the 
default mode brain activity revealed by fMRI, the default mode activity revealed with SOBI and 
EEG will offer a temporal resolution of millisecond, allowing the characterization of default 
mode brain dynamics within a new temporal domain. 
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Figure 1.2 Median power spectra of two SOBI-neuronal components as a function of 

repeated exposures to the same experimental situation. Session 1: week 0; Session 2: 
week 1; Session 3: week 4+.  

 
Local Network Synchrony Shows Distinct Patterns of Change across 3 Repeated Exposures to 
the same Experimental Situation.  For each of the 3 recording sessions, power spectra from the 
component time course were computed for ~5-min segments during which the subjects had their 
eyes-closed (red), eyes-open (blue), or viewed a nature video (green), respectively Figure 1.2. 
The anterior component had peak power within the theta band while the posterior component had 
peak power within the alpha band, indicated by a significant main effect of Region on the theta-
to-alpha ratio (F(1,7) = 52.12, p<0.001, partial eta2 = 0.88). This is consistent with the well 
established fact that the posterior and anteiro parts of the brain are major sources of alpha and 
theta generators respectively.   
Power spectra in these two components were differentially modulated by sessions and 
experimental conditions [interaction effect: Region x Session (contrast coefficients: 1, -1, 0) x 
Condition (1, 0, 1), F(1,7) = 3.52, p = 0.05, 1-tailed, partial eta2=0.33)]. For the posterior 
component, the power spectra revealed a systematic effect of session and experimental condition. 
Across the 3 repeated exposures to the same experimental conditions, peak alpha power 
decreased as the testing situation became increasingly familiar.     
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Across the 3 experimental conditions, the highest peak alpha power was associated with the eyes 
closed condition and the alpha peak power was successively reduced when the demand for visual 
processing increased from the eyes-closed to the eyes-open and video-viewing conditions. This 
latter observation is consistent with the known observation that visual processing suppresses 
alpha band activity.  In contrast, for the anterior component, the power spectra showed a relative 
insensitivity to repeated exposures to the same experimental conditions and little modulation by 
the eyes-closed, eyes-open, and video-viewing conditions.  
 
Differential Modulation of Theta/Alpha Contribution to Feed-Forward and Feedback Influences 
by Situational Familiarity and Visual Processing  FF(posterior-to-anterior)  
and FB (anterior-to-posterior) influences were measured by Granger causality in the theta and 
alpha band activity separately.  FF and FB Granger causality measures were plotted as a function 
of time Figure 1.3.  For the FF influence, when the eyes were  

 
Figure 1.3 Theta dominance over alpha in the anterior-to-posterior feedback influence 
and its reversal in the posterior-to-anterior feed-forward influence (shown for a single-

subject). 
 
closed, alpha band activity clearly dominates as indicated by the alpha waveforms (black) having 
greater area underneath the curve than the theta waveforms (grey).  This alpha dominance was 
clearly reduced when the eyes were open and was further reduced to nearly non-existence when 
the subjects viewed a video. For the FB influence, the pattern of alpha dominance over theta was 
reversed showing uniform theta dominance over alpha across all 3 experimental conditions. 
Using the area underneath the curve as a dependent measure, we summarize results from all 8 
subjects across all three recording sessions in Figure 1.4. To determine whether theta and alpha 
band activity contribute differentially to the FF and FB influences and how such differential 
contribution is modulated by situational familiarity and sensory processing, we performed an 
ANOVA on the theta/alpha ratio.   
Theta/alpha ratio differed significantly between the FF and FB influences with a greater ratio for 
FB influence than for the FF influence (main effect of Direction, F(1,7) = 34.64, p<0.001, partial 
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eta2 = 0.83), i.e. a theta dominance in FB influence. This can be seen by the higher measures for 
the theta band activity than the alpha band activity for the FB influences in most of the 9 
conditions and clear reversal or reduction of this theta dominance in the FF influence Figure 1.4.     

 
Figure 1.4 Cumulative Granger Causality (area underneath the curve in Figure 1.3) in the 

theta and alpha band as a function of situational familiarity (repeated sessions) and a 
function of visual processing (eyes-closed, eyes-open, video-viewing). 

 
This reversal of theta dominance from FF and FB influences was significantly modulated by the 
familiarity of the situation [Direction x Session (contrast coefficients: 1, -1, 0), F(1,7) = 11.97, p 
= 0.005, 1-tailed, partial eta2=0.63]. The reversal is more prominent when the situation was novel 
(Week 0) than n became more familiar (Week 1 and 4+).  This is best seen in the case of eyes-
closed condition. The magnitude of reversal is clearly reduced from Week 0 to Week 4+. 
For the eyes-open condition, the theta dominance was reversed in Week 0 and 1 and reduced in 
Week 4+. For the video-viewing condition, the reversal of theta dominance does not appear to be 
influenced by the increasing situational familiarity. These patterns indicate that the FF / FB 
contrast is dependent upon the amount of visual information processing involved. When the 
subjects were engaged in visual perception during the viewing of the video, theta dominance in 
the FB influence and theta-alpha balance in the feed-forward influence are maintained across 
recording sessions.  This visual processing-dependent effect is supported by a significant 3-way 
interaction (Direction x Session (1, -1, 0) x Condition (1, 0, -1), F(1,7) = 7.13, p = 0.02, 1-tailed 
partial eta2=0.63). 
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Within Week0 when the recording situation was novel (which is comparable to most studies that 
do not deal with the issue of task familiarity), theta dominance in the FB influence was 
maintained despite varying demand for visual processing. In contrast, the alpha dominance in the 
FF influence in the case of eyes-closed condition was reduced by increasing demand for sensory 
processing. In fact, visual processing was accompanied not only by a reduction in alpha but an 
increase in theta band activity in the FF influence. We speculate that this increase in theta band 
activity serves to “match” the theta-dominance in the FB influence to mediate the dynamic two-
way communication between the posterior and anterior parts of the brain. 
 
1.4. Discussion 
 
We analyzed high-density EEG data collected from 8 subjects in three sessions of recording that 
were weeks apart, each including a period of resting with eyes-closed, resting with eyes-open, 
and visual perception while free viewing a nature video.  We extracted neuronal signals from 
focal brain regions within the frontal and occipital lobes and showed that such extraction can be 
achieved under free viewing conditions and from recordings made weeks apart.  As many 
intervening events must have taken place during the intersession intervals, the reliable extraction 
of the same neuronal sources raises the possibility that such a wide range of variations may be 
overcome by the use of SOBI in longitudinal experimental designs necessary for developmental 
and aging studies. 
Applying Granger causality analysis to the time courses of the frontal and occipital SOBI 
components, we presented evidence indicating distinct patterns of theta/alpha band activity in the 
FF and FB influences between the two components, with a theta dominance characterizing the 
FB influence and an alpha dominance in the FF influence.  By comparing the feed-forward and 
feedback influences under varying degrees of situational familiarity (sessions) and under 
conditions of varying degrees of visual processing (eyes-closed, eyes-open, and video viewing), 
we presented evidence that the balance in theta-alpha band activity between the FF and FB 
influences is modulated by two factors.  First, situational familiarity can reduce the degrees of 
theta and alpha dominance in the FB and FF influences respectively (as in the case of eyes-
closed).  Second, the amount of sensory processing increases the theta band contribution and 
decreases alpha band contribution to FF influence but has little effect on FB influence.  Finally, 
situational familiarity and sensory processing jointly determine the theta-alpha balance.  
Increasing familiarity and increasing visual processing both increases theta band contribution to 
FF influence.  In contrast, for FB influences, increasing familiarity decreases theta band 
contribution when there is little demand for visual processing (Eyes-closed) and has no effect on 
theta band contribution when there is high demand for visual processing (Visual). 
Together, these findings demonstrate a novel non-invasive approach to the assessment of top-
down and bottom-up influences in the human brain.  These findings may particularly benefit 
those clinicians and researchers who are interested in how bottom-up and top-down influences 
interact in both diseased and normal brains.  Future work will extend this analysis to networks 
involving more functionally distinct brain regions. 
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2. DETERMINING GENDER FROM LOCAL NETWORK 
SYNCHRONIZATION IN THE FRONTAL CORTEX3 

 
 
 
2.1. Introduction 
 
In this chapter, we report results from attempting to distinguish between male and female 
subjects based solely upon data from the frontal cortex neuronal component introduced in the 
previous chapter.  Using a Support Vector Machine (SVM) for classification, we measured 
powers in four distinctive frequency bands from many 10 sec time windows of the time series of 
the frontal cortex signals and used these power values as feature dimensions of inputs to the 
SVM.  With data from all four bands, classification accuracy was found to be above 90%. 
 
This problem is interesting because it may shed light on how the dynamics of ongoing brain 
activity independent from any goal or task differ between the male and female brains.  Such 
differences in the local ongoing network dynamics may reveal gender differences at a more 
fundamental level of neural processing than could be revealed under specific task conditions. 
 
 
2.2. Methods and Results 
 
Support Vector Machines (SVM).  SVM is a powerful methodology for solving problems in 
nonlinear classification, function estimation and density estimation, which has also led to many 
other recent developments in kernel based methods in general. On many practical problems, 
SVM has shown superior performance over other classification algorithms, including multilayer 
neural networks (Muller, Krauledat, Dornhege, Curio, & Blankertz, 2004).   
 
Originally, SVM was introduced within the context of statistical learning theory and structural 
risk minimization. It guarantees the generalization ability by finding the maximum margin 
separating hyper-plane; in addition, the solution is given by convex optimization, typically 
quadratic programming, therefore there is a global optima, not like the multilayer neural 
networks suffering local minima problem. We consider data points of the form:  
 

      )1,1(,,,,,,,, 2211  i
N

inn cxcxcxcx  , 
 
where the ci is either 1 or −1, a constant denoting the class to which the point xi belongs. Each xi 
is a p-dimensional vector. We denote the separating hyper-plane by W. Least Squares Support 
Vector Machines (LS-SVM) finds the optimal separating hyper-plane by solving the following 
minimization problem: 
                                                 
3 Substantial portions of this chapter have appeared as “Determining Gender from Local Network Synchronization 
in the Frontal Cortex” by P. Sun, Z. Yang, A. Korzekwa, M. T. Sutherland, and A. C. Tang in Proceedings of the 7th 
International Conference on Independent Component Analysis and Signal Separation (ICA 2007), copyright 
Springer-Verlag GmbH Berlin Heidelberg. 
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where we introduce slack variables, ei, which measure the degree of misclassification of the 
datum xi;  is a nonlinear mapping function that transform original feature space to higher 

dimensional space. A very common kernel is Radial Basis Function:  22
2exp),( yxyxK  . The 

mapping function  is given by Mercer’s condition, that is )()(),( yxyxK  .  
 
Data.  We apply this LS-SVM to the problem of classifying gender based on a very short 
segment of brain electrical signal originating from the frontal cortex.  For SOBI-aided extraction 
of frontal neuronal signals from high density EEG and the localization of the frontal signal 
source, (Tang, et al.),  (Tang, Sutherland, & McKinney, Validation of SOBI Components From 
High Density EEG, 2005).The time series of each of 16 subjects’ (8 males and 8 females) 
identified frontal source is truncated into short overlapping windows (10 sec window with 8 sec 
overlap); for each window, the power level for each of the following four frequency bands is 
calculated: theta 3-7Hz, alpha 8-12Hz, beta 13-20Hz, and gamma 21-35Hz. These four quantities 
set up the feature space for the classification problem; each time window produces a 4-
dimensional vector to feed into the SVM.  
 
Training and testing.  We adopted the Radial Basis Function (RBF) as the kernel of the SVM, 
which is nonlinear and mapping the original 4-dimensional feature space to infinite dimensional 
space.  During the training phase of the SVM, 10% of the data from each of the subjects was 
randomly selected to make up the training set and the remaining 90% as the testing data set.  
This process is repeated either 50 (Exp 1) or 100 times (Exp 2) in different experiments and 
average and standard error of means of the accuracy over these repeated sampling will be 
reported in the table. A two-fold cross-validation method was used to search for the optimal 
regularization parameters,  and . A grid search was first performed over a range of the 
parameter values using half of the training set to find the optimal separating hyper-plane, and the 
other half to evaluate the performance of the hyper-plane in classification.  The final values of 
the parameters are set as the ones that yielded the best classification accuracy o the training set.   
 

Table 2.1 Classification accuracy using data collected while the subject is resting with 
eyes closed or engaged in more active. 

 
Condition Active Processing Resting (eyes-closed) 
Accuracy 87% +/- 3% 92% +/- 3% 

 
Classification experiment one.  To determine whether neuronal signals from more active 
mental states can help improve gender classification based on signals from passive resting state, 
we compared classification accuracy using 5 minutes of EEG data collected while the subject 
was at rest with eyes closed with the accuracy of classification using additional data collected 
when the subject is at rest with eyes open, is viewing a nature video, and forming mental images 
of the video.  Table 2.1 shows that with only 5 minutes of signal from a resting state, an accuracy 
of 92% can be achieved.  Surprisingly, with 4 times of that data lengths and additional 
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information from more active processing states, accuracy was not improved.  We suspect that 
this decrease may have to do with increased commonality during active processing. 
 
Classification experiment two.  To determine whether neuronal signals in a specific frequency 
band are particularly useful for gender classification, we compared classification accuracy across 
all sub-spaces of the 4-dimensional feature space.  This experiment was performed using only 
data from eye-closed resting condition.  Table 2.2 shows when single band power was used as 
input, i.e. a single feature was used to represent each 10 sec window, classification accuracy 
ranged between 63%--73%, with the highest accuracy resulting from Gamma band power as the 
sole feature.  Table 2.3 shows that when combinations of 2 band power were used, classification 
accuracy increased to 69%--88%.  Interestingly, the highest accuracy was reached by gamma-
theta and gamma-alpha combinations.  Finally, using a 3 band combination, classification 
accuracy further increased to 86%--91%.  Once again, the higher accuracy values involved 
power in the gamma band as one of the feature dimensions.  
 

Table 2.2 Classification accuracy (%) as function of single frequency band. 
 

Band θ  α  β  γ  
Accuracy 63+/-0.4 66+/-0.6 69+/-0.9 73+/-0.5 

 
 

Table 2.3 Classification accuracy (%) as a function of 2 band combination. 
 

Band θ , α  θ , β  θ , γ  α , β  α , γ  β , γ  
Accuracy 69+/-0.8 81+/-0.6 88+/-0.6 84+/-0.6 87+/-0.5 78+/-0.9 

 
 

Table 2.4 Classification accuracy (%) as a function of 3 band combination. 
 

Band θ , α , β  θ , α , γ  θ , β , γ  α , β , γ  
Accuracy 86+/-0.6 89+/-0.4 90+/-0.6 91+/-0.5 

 
2.3. Summary 
 
We showed that using 10% of 5 minutes of SOBI pro-processed data as training set and using 
only the powers of theta, alpha, beta, and gamma band as input dimensions to the SVM 
classifier, short 10 sec of waves of electrical signals from the frontal cortex can be classified 
according the gender of the brain with an accuracy greater than 90%.  We found that using more 
EEG data collected during active cognitive processing did not lead to improvement in 
classification accuracy and that the gamma band power appeared to be the most important 
feature in classifying male and female brain signals.  
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