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Abstract

Salinas provides a massively parallel implementation of structural dynamics finite element
analysis, required for high fidelity, validated models used in modal, vibration, static and shock
analysis of structural systems. This manual describes the theory behind many of the constructs
in Salinas. For a more detailed description of how to use Salinas , we refer the reader to Salinas,
User’s Notes.

Many of the constructs in Salinas are pulled directly from published material. Where pos-
sible, these materials are referenced herein. However, certain functions in Salinas are specific
to our implementation. We try to be far more complete in those areas.

The theory manual was developed from several sources including general notes, a program-
mer notes manual, the user’s notes and of course the material in the open literature.
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1 Solutions

One thing which makes Salinas somewhat unique among the many mechanics codes developed at
Sandia National Labs is that Salinas combines a variety of different solution procedures. These
range from modal superposition based solutions to nonlinear transient. As described in the User’s
Notes , these solutions can be combined (or chained) in solution cases. This section of the manual
describes the theory behind these individual solutions. For details about particular finite elements,
see section 2.

1.1 Time integration

For linear and nonlinear transient dynamics, we use a variant of the Newmark-Beta time integrator
called the generalized alpha method.

1.2 Linear transient analysis

The equations of motion of the structure are

M [(1−αm)an+1 +αman] + Ĉ [(1−α f )vn+1 +α f vn]+

K [(1−α f )dn+1 +α f dn] = (1−α f )F
ext(tn+1)+α f F

ext (tn)

(1.1)

where Fext is the external load, α f ,αm are the integration parameters for the generalized α method,
and Ĉ = C + αM + βK. That is, the damping matrix is the sum of the standard damping matrix C
plus the proportional damping terms.

In order to achieve second order accuracy and unconditional stability, we must satisfy the fol-
lowing conditions.

αm < α f <=
1
2

γn =
1
2
−αm +α f

βn ≥
1
4 +

1
2(α f −αm)

(1.2)

The code automatically computes these parameters such that they meet these criteria. Specifically,

α f = ρ/(1+ρ)

αm = (2ρ−1)/(1+ρ)

βn = (1−αm +α f ) · (1−αm +α f )/4
γn = 1/2−αm +α f

9



We note some special cases of interest. If ρ = 0, we have that α f = 0 and αm = −1. This is the
maximum damping case. If ρ = 1, we have that α f = αm = 1

2 , which yields βn = 1
4 , and γn = 1

2 . This
is similar to the classical undamped Newmark-beta method, although we note that it is a different
algorithm since α f = αm = 1

2 implies some lagging in the time-stepping procedure. The classical
undamped Newmark-beta method has α f = αm = 0.

For later use, we also define

Fext
n+1+α f

= (1−α f )F
ext (tn+1)+α f F

ext(tn) (1.3)

There are two options for evaluating F ext
n+1+α f

. More will be given on this in the next section.

The time integration scheme is defined as follows

dn+1 = dn +∆tvn +
∆t2

2 [(1−2βn)an +2βnan+1]

vn+1 = vn +∆t [(1− γn)an + γnan+1]

(1.4)

where γn,βn are the integration parameters for the Newmark method. In order to have a displacement-
based method, we solve these equations for the acceleration and velocity in terms of displacement,
which yields

an+1 =
1

βn∆t2 [dn+1−dn− vn∆t]− 1−2βn

2βn
an

vn+1 = vn +∆t [(1− γn)an + γnan+1]

= vn +∆t

[

(1− γn)an +
γn

βn∆t2 [dn+1−dn− vn∆t]− γn
1−2βn

2βn
an

]

(1.5)

Substituting these equations into the equation of motion, and collecting terms, we obtain

[

M
(1−αm)

βn∆t2 +Ĉ(1−α f )
γn

βn∆t
+K(1−α f )

]

dn+1 =

Fext
n+1+α f

−Kα f dn

−Ĉ

[

α f vn +(1−α f )

[

vn +∆t(1− γn)an +
γn

βn∆t
[−dn−∆tvn]−

γn∆t(1−2βn)

2βn
an

]]

+M

[

−αman +
1−αm

βn∆t2 [dn + vn∆t]+ (1−αm)
1−2βn

2βn
an

]

(1.6)
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There are three matrix-vector products on the right hand side of this equation, one for each of the
system matrices M, K, and C.

1.3 Prescribed Accelerations

Prescribed accelerations can be applied in Salinas to nodesets or sidesets, as described in the users
manual. Here we give a brief description of the theory behind the implementation.

To simplify matters, we consider the case when the acceleration of a single degree of freedom
is prescribed as ao f (t), where ao is the amplitude, and f (t) is the function describing the time
dependence. The extension to multiply prescribed degrees of freedom is simply a matter of an
external loop.

Given f (t), we compute two numerical integrals as follows.

a(t) = ao f (t)

v(t) = v0 +
Z t

0
a(t) = v0 +

Z t

0
ao f (t)dt = v0 +ao(i f (t))

d(t) = d0 +

Z t

0
v(t)dt = d0 + v0t +

Z t

0

Z t

0
ao f (t)dt = d0 + v0t +ao(ii f (t))

(1.7)

where we have defined i f (t) and ii f (t) to denote the first and second integrals of the function f (t),
and d0 and v0 denote the initial displacement and velocity. i f (t) and ii f (t) are computed numerically
in Salinas.

Given these functions, we can statically condense the prescribed degrees of freedom, and bring
the resulting terms to the right hand side. First, we define mi to be the column of the mass matrix
associated with the prescribed dof, and ci and ki are similarly defined for the damping and stiffness
matrices. We first write the Gset version of equation 1.1. We put subscripts of g on the system
matrices and right hand side to denote that they do not yet have prescribed BCs condensed out
(hence are Gset).

Mg [(1−αm)an+1 +αman] + Ĉg [(1−α f )vn+1 +α f vn]+

Kg [(1−α f )dn+1 +α f dn] = (1−α f )F
ext
g (tn+1)+α f F

ext
g (tn)

(1.8)

Next, we condense out the prescribed degrees of freedom and move the contributions to the right
hand side. We note that degrees of freedom that are fixed do not contribute to the right hand side.
After this process, we remove the subscripts from the system matrices, since they are now in Aset
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form. We also condense the right hand side terms, so that everything is Aset.

M [(1−αm)an+1 +αman] + Ĉ [(1−α f )vn+1 +α f vn]+

K [(1−α f )dn+1 +α f dn]

= (1−α f )F
ext(tn+1)+α f F

ext (tn)

− (1−α f )ao [ f (tn+1)mi + i f (tn+1)ci + ii f (tn+1)ki]

− α f ao [ f (tn)mi + i f (tn)ci + ii f (tn)ki]

(1.9)

This shows that prescribed accelerations result in a contribution to the right hand side that consists
of products of the time function f (t) with the column from the mass matrix corresponding to the
prescribed dof, and products of the first and second integrals of f (t) with the corresponding columns
from the damping and stiffness matrices. For statics problems, this procedure reduces to only a
contribution from the stiffness matrix, and this is also included in Salinas.

1.4 Nonlinear transient analysis

This section follows closely the nonlinear transient procedure given by Belytschko et al,1 with the
modification of using the generalized alpha integrator rather than the Newmark beta approach. In
the case of a nonlinear transient analysis, the equation of motion is

M [(1−αm)an+1 +αman] + Ĉ [(1−α f )vn+1 +α f vn]+

(1−α f )F
int
n+1 +α f F

int
n = (1−α f )F

ext(dn+1)+α f F
ext(dn)

(1.10)

where F int
n+1 and F int

n are the internal forces at the current and previous time steps, respectively. Note
that we have written the external loads as functions of displacement, since in the most general case
they could be follower loads.

Before proceeding, we note that there are two possible approaches for implementing the gener-
alized alpha method, and in equation 1.10 we have taken one of these approaches. The difference
lies in the treatment of the internal and external forces. The first approach is to evaluate them as
follows

F int
n+1+α f

= F int((1−α f )dn+1 +α f dn)

Fext
n+1+α f

= Fext ((1−α f )dn+1 +α f dn)

(1.11)

and the second is to evaluate two separate terms

F int
n+1+α f

= (1−α f )F
int(dn+1)+α f F

int(dn)

Fext
n+1+α f

= (1−α f )F
ext(dn+1)+α f F

ext(dn)

(1.12)

12



When both F ext and F int are linear functions, the two approaches are identical. For nonlinear prob-
lems, both Fext and F int could be nonlinear functions, and thus the two procedures are different.
In the limit of very small time steps, these nonlinear functions effectively linearize and the two
approaches again become the same. Thus the limiting behavior of the two approaches is the same.

We note that in most cases, the external load F ext is treated as a piecewise linear function of time,
and in those cases the two approaches yield the same result for the external load, though a couple
of exceptions are worth mentioning. First, if two consecutive time steps lie within two different
linear segments, then the two approaches above yield different loads. Second, although they are
seldom used, polynomial and loglog interpolation functions are available in Salinas in addition to
the commonly used linear interpolation, and in those cases different load vectors result from the
above procedures. For problems with very large time steps and involving polynomial interpolation,
different results are to be expected.

In Salinas we have chosen the second option, which evaluates both the internal force and exter-
nal force at both times of interest, and forms a linear combination of the two. Comparisons have
shown little difference in the results on simple test problems.

Using the tangent stiffness method, we replace F int
n+1 as

F int
n+1 = F int

n +Kt∆d (1.13)

where Kt is the tangent stiffness matrix, defined as Kt = ∂Finternal/∂u, and ∆d = dn+1−dn. Also, we
use equations 1.5, which are the same as in the linear case.

First, we substitute equations 1.5 and 1.13 into equation 1.10. This results in the following
equations, which are almost identical to the ones from the linear case

[

M
(1−αm)

βn∆t2 +Ĉ(1−α f )
γn

βn∆t
+Kt(1−α f )

]

dn+1 =

Fext
n+1+α f

−α f F
int
n − (1−α f )

[

F int
n −Ktdn

]

−Ĉ

[

α f vn +(1−α f )

[

vn +∆t(1− γn)an +
γn

βn∆t
[−dn−∆tvn]−

γn∆t(1−2βn)

2βn
an

]]

+M

[

−αman +
1−αm

βn∆t2 [dn + vn∆t]+ (1−αm)
1−2βn

2βn
an

]

Finally, we want the unknown to be ∆d = dn+1− d̂, where d̂ is the current iterate of displace-
ment. To accomplish this, we subtract the appropriate terms from both sides, which yields, after
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collecting terms

[

M
(1−αm)

βn∆t2 +Ĉ(1−α f )
γn

βn∆t
+Kt(1−α f )

]

∆d =

Fext
n+1+α f

− (1−α f )F̂
int −α f F

int
n −C [(1−α f )v̂ +α f vn]

−M [(1−αm)â +αman] (1.14)

where again hats denote current iterates of acceleration, velocity, etc. Note that we have re-defined
∆d = dn+1− d̂, which is different than the previous definition that was given. Also, we note that
F̂ int = F int

n +Kt(d̂−dn).

Upon using the Newmark beta time integrator (γn = 1
2 , βn = 1

4 , α f = αm = 0, equation 1.14
reduces to

[

M
4

∆t2 +Ĉ
2
∆t

+Kt

]

∆d = Fext
n+1− F̂ int −Cv̂−Mâ (1.15)

which is the same equation given by Belytschko et al.1

We note that equation 1.14 can be written as

A∆d = res (1.16)

where A is the dynamic matrix, ∆d is the change in displacement from the previous Newton iteration
to the current Newton iteration, and res is the residual, i.e. the amount by which the equations of
motion (equation 1.10) are not satisfied by the current iterate.

1.4.1 Damping in Nonlinear Solutions

A number of sources of damping in the solution of linear and nonlinear solutions have been iden-
tified. It is useful to list them for comparision, as in Table 1. Note in particular, that proportional
damping, common in linear systems, requires a slightly different definition in nonlinear systems,
and will also require explicit formation of a damping matrix.

1.5 Explicit Transient Dynamics

An transient dynamics capability using an explicit integrator has been developed for specialized
applications. Note that Salinas remains a small strain application, even when using the explicit
integrator. This integrator is used because it may be advantageous when interfacing with other
applications which control the time step. The implicit integrator requires no linear solve of the
stiffness matrix, and does not require a new factorization when the time step changes. It can be used
with both linear and nonlinear elements.
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Damping Source Discussion

linear dashpots Contributes directly to the C matrix described in equation 1.1.
The matrix is constant.

proportional damping Also known as Rayleigh damping,

αMo +βKo

The damping is proportional to velocity. Note that the effec-
tive damping matrix is constant. Damping is not proportional
to the tangent matrix, Kt .

linear viscoelasticity Determined by material parameters.

nonlinear energy loss Many nonlinear elements contribute to this form of damping.
It does not generate a damping matrix term, and often moves
energy from lower frequencies to higher frequencies. An ex-
ample is the Iwan element.

nonlinear material Similar to nonlinear elements.

numerical damping No damping matrix is generated. Most of the energy loss is
at frequencies above the Nyquist frequency. Controlled by
parameter RHO.

Table 1. Sources of Damping in the Solution
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1.5.1 Central Difference Operator

Consider the following equation for a spatially discretized finite element system in motion:

Ku+Cu̇+Mü = fext (1.17)

In the above equation, u represents the displacement vector, K represents the matrix of stiffness
terms, C represents the matrix of damping terms, and M represents a matrix of mass terms. The
vector fext is calculated from a system of applied loads.

The above equation of motion, Equation 1.17, is a system of ordinary differential equations
with constant coefficients. Difference expressions can be used to approximate the velocities and
accelerations in terms of the displacements appearing in the equation. A commonly used difference
expression is the central difference operator. The central difference operator is as follows:

an =

un+1−un

∆tn+1/2 − un−un−1
∆tn−1/2

(∆tn+1/2 +∆tn−1/2)/2
(1.18)

In the above equation, n+1 denotes information at time t n+1, n denotes information at time tn, and
n− 1 denotes information at time tn−1. The increment in time from tn to tn+1 is ∆tn+1/2, and the
increment in time from tn−1 to tn is ∆tn−1/2. The term an is an acceleration value in the vector ü.
The expression

un+1−un

∆tn+1/2 (1.19)

is the velocity, vn+1/2, at the half time step ∆tn+1/2. The term vn+1/2 is a velocity value in the vector
u̇. The expression

un−un−1
∆tn−1/2 (1.20)

is the velocity, vn−1/2, at the half time step ∆tn−1/2. The velocity is constant over a time step.

When a solution is known at time tn and time tn−1, the solution can be determined at time tn+1

from Equation 1.18, the central difference operator. We use the previous information to project the
solution to time tn+1. To understand how we project the solution ahead to time t n+1, we return to
the equation of motion. We use the equation of motion without the damping matrix to simplify our
discussion. The equation of motion at time tn is

Kun +Mün = fext
n . (1.21)

In the above equation, the product Kun is simply the internal force vector at time tn. The above

16



equation of motion reduces to

Mün = fext
n − fint

n . (1.22)

The acceleration vector at time tn is calculated from

ün = M−1(fext
n − fint

n ) . (1.23)

Now that we have the acceleration at time tn, we can compute the velocity at the half time step
tn+1/2 and the displacement at the time step tn+1 with the following equations:

(vn+1/2)i = (vn−1/2)i +(an)i(∆tn+1/2 +∆tn−1/2)/2 (1.24)

(un+1)i = (un)i +(vn+1/2)i∆tn+1/2 (1.25)

In the above equations, the subscript i denotes quantities associated with the ith degree of freedom.
Once the vector un+1 has been calculated, we can again advance the time step.

It is important to note that the central difference operator is conditionally stable. If the time step
∆t exceeds the value 2/

√
λ2, where λ2 is the maximum eigenvalue determined by the eigenvalue

problem

Kφ−λ2Mφ = 0 , (1.26)

the problem becomes unstable.

Typically, the mass matrix for an explicit, transient dynamics code is diagonalized (See Refer-
ence2). When the mass matrix is diagonalized, the acceleration for each degree of freedom can be
written simply as

(an)i = ( f ext
n − f int

n )i/(m)i . (1.27)

The diagonalization is done for purposes of performance. When the mass matrix is diagonalized,
the application of kinematic boundary conditions and certain constraints becomes extremely simple,
and no linear solves are required.

Note that, in our above description of the implementation of the explicit scheme, if we include
damping, the damping matrix C times the velocity vector produces a damping force vector that is
added to the right hand side of Equation 1.22.

Now that we have outlined the basics of an explicit solution technique, we will consider how
some of the basic functionality – kinematic boundary conditions, constraints, tied surfaces, and
superelements – are implemented for an explicit solver.
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1.5.2 Mass Matrix Solutions

A diagonal mass matrix simplifies the explicit integration in several ways. Most important of these
is that there is no need for a linear solve as each degree of freedom is uncoupled from the rest. Speed
of the solution is critical as the conditionally stable time step can require very small iterations. Other
factors, such as implementation of constraints and boundary conditions, may also be affected by the
form of the mass matrix. In addition, more accurate results for explicit integrators are obtained by
using a lumped mass matrix. (For an implicit scheme, the more accurate results are obtained by
using a consistent mass. See Reference.3)

Salinas is designed around an implicit iteration scheme and powerful linear solvers are available
in the package. There are several reasons to consider an approach where we do not require that the
mass matrix be fully diagonal.

1. Superelements generated by Craig-Bampton type reductions contain full mass matrices. Since
the mass matrix provides all the coupling to the generalized degrees of freedom, standard
lumping approaches cannot be used. Several other approaches are available including refor-
mulating the superelement (as is done in Abaqus), or other coordinate transformations that
simplify the solution. The most straightforward approach is to solve the linear system for
those coupled degrees of freedom.

2. Like super elements, inertias associated with rotating masses may not be easily lumped. These
are typically 6x6 matrices, so existing codes typically handle these as a special case.

3. Elements such as beams may have mass terms that can be easily lumped in the element coor-
dinate frame. Lumping in an arbitrary rotated frame may cause a dependence of the solution
on rotation. This comes about because the rotational inertia for a drilling degree of freedom
differs from that in bending. This is addressed in a variety of ways in different codes. For
example, Nastran usually eliminates the mass of rotational dofs in beams. Presto insures that
all rotational inertias are identical. In the limit as the element size goes to zero, these produce
the same solution. However, maintaining a tridiagonal inertia could greatly reduce changes
to existing code base and permit ready comparison with implicit solutions.

Recognizing the need for a rapid solution at each time step we propose lumping the mass ma-
trix where feasible, but solving equation 1.23 for the remaining mass terms. Solid elements will
have diagonal mass terms, shells and beams will be tridiagonal, mass elements will be 6x6 and
superelement mass matrices will depend on the element.

Discussions with our linear solver folks indicate that these solves should be extremely fast. In
most cases there will be little or no coupling outside the subdomain, so a sparse direct backsolve is
all that is required at each time step. The solver preconditioner will be tuned for these special
characteristics. We expect the linear solve to be much less expensive than the computation of
internal forces.

It is important that this solution strategy be compatible with follow on approaches that may not
use a full linear solve. We see no incompatibilities with the exception of the element formulations
for diagonal versus partially lumped mass matrices. For UC-2, details of applying superelements
without a system solve are to be addressed later.
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1.5.3 Kinematic Boundary Conditions

A wide variety of kinematic boundary conditions can be implemented for an explicit solution tech-
nique. These boundary conditions are similar to those that can be found in an implicit code – fixed
displacements, fixed rotations, prescribed displacement, etc. For the problem formulation in Equa-
tion 1.23, kinematic boundary conditions are enforced by adding reaction forces to the right-hand
side. The reaction forces are such that the acceleration at time t n results in the desired kinematic
behavior at time tn+1.

Suppose, for example, we want to fix the displacement component (u)i for all time. If degree of
freedom i is associated with a diagonalized mass, we can enforce the boundary condition by adding
a reaction force, ( f react

n )i at each step n that is equal and opposite to the residual term ( f resid)i, where
( f resid)i = ( f ext

n − f int
n )i. The right hand side term becomes

( f react
n )i +( f resid)i = 0 , (1.28)

and the acceleration term at time n also becomes zero. For this diagonalized mass case, the acceler-
ation is simply 0/(m)i.

As a second example, suppose we want the velocity at the half time step ∆t n+1/2 for component
i to have a value of vb. The velocity at the half time step tn−1/2 for component i has a value of
va. Again, assume degree of freedom i is associated with a diagonal mass term (m) i. Consider
Equation 1.23. The acceleration, (ap)i, required to produce the prescribed velocity at the half time
step ∆tn+1/2 is

(ap)i =
vb− va

(∆tn+1/2 +∆tn−1/2)/2
. (1.29)

If we add (− f resid
n )i +(m)i(ap)i to the residual term ( f resid)i, then the acceleration component i at

time tn becomes

( f resid
n )i− ( f resid

n )i +(m)i(ap)i

(m)i
, (1.30)

which is simply the value (ap)i that produces the prescribed velocity vb at the half time step.

As can be seen from the above examples, each kinematic boundary condition would require its
own unique set of reaction forces to enforce the correct kinematic behavior.

1.5.4 Constraints

Constraints can be enforced by applying forces that enforce the constraint conditions. We demon-
strate this by use of a specific example. Consider the simple linkage shown in Figure 1, which is
used to enforce the constraint
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Figure 1. Simple constraint problem.

ux2−ux1 = 0 , (1.31)

where ux2 is the displacement component in the x-direction at node 2 and ux1 is the displacement
component in the x-direction at node 1. Suppose we use the equation for acceleration, Equa-
tion 1.27, and Equations 1.24 and 1.25 to obtain displacements for nodes 1 and 2 at time tn+1;
the displacements at nodes 1 and 2 are (un+1)x1 and (un+1)x2, respectively. The two displacements,
(un+1)x1 and (un+1)x2, do not necessarily satisfy the constraint condition. The two displacements
may give

(un+1)x2− (un+1)x1 = g , (1.32)

where g 6= 0. If we increment the displacement (un+1)x1 by βg and decrement the displacement
(un+1)x2 by (1− β)g, then the constraint condition, Equation 1.31 is satisfied. We can adjust the
displacements at nodes 1 and 2 by applying constraint forces. If we apply a force of

fx1 = βgm1/Dt (1.33)

to node 1, this will result in a displacement increment of βg. In the above equation, m1 is the mass
at node 1 and

Dt =
∆tn+1/2

(∆tn+1/2 +∆tn−1/2)/2
. (1.34)

A force of

fx2 =−(1−β)gm2/Dt (1.35)
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at node 2 results in a displacement decrement of −(1−β)g. In the above equation, m2 is the mass
at node 2. By adding these constraint forces to the external force vector in Equation 1.23, we add
forces to help satisfy the constraint condition as we step forward with the solution.

At this point, we have only to determine the value of β. The value of β can be determined by the
use of conservation of momentum. The equation for conservation of momentum for this system is

m1v1i +m2v2i = m1v1 f +m2v2 f , (1.36)

where v1i is the initial velocity at node 1, v2i is the initial velocity at node 2, v1 f is the final velocity
at node 1, and v2 f is the final velocity at node 2. By initial, we mean before the application of
the constraint force to enforce the constraint conditions. Final means after the application of the
constraint force. The velocity terms are all in the x-direction. If we account for the constraint
forces, the change in the velocity for node 1 becomes

m1βg/∆tn+1/2 (1.37)

and the change in velocity for node 2 becomes

−m2(1−β)g/∆tn+1/2 . (1.38)

The conservation of momentum equation becomes

m1v1i +m2v2i = m1(v1i +βg/∆tn+1/2)+m2(v2i− (1−β)g/∆tn+1/2) . (1.39)

From the preceding equation we can solve for β and obtain

β = m2/(m1 +m2) . (1.40)

for the case of m1 = m2, the value for β is 1/2, which is the expected result. Each node would move
by g/2 to meet the constraint condition.

We can generalize the above process. The above approach can handle general constraint condi-
tions such as

C0u0−
n

∑
i=1,n

Ciui , (1.41)

where ui, i = 0,1,2, ...,n are displacement degrees of freedom and Ci, i = 0,1,2, ...,n are constraint
coefficients. The constraint coefficients depend on the nature of the kinematic constrains and geom-
etry. The above approach can also handle constraint conditions involving nodes with off-diagonal
mass terms.
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For conditions where constraints interact, an iterative process is required to calculated the set of
forces required to enforce the constraints.

1.5.5 Contact with Tied Surfaces

Contact refers to the interaction of one or more bodies when they physically touch. This can include
the interaction of one part of a surface against another part of the same surface, the surface of one
body against the surface of another body, and so forth. Contact capabilities are provided in Sierra
applications by the ACME module (Reference4). The contact algorithms in ACME are designed to
ensure that surfaces do not inter-penetrate in a non-physical way, and that the surface behavior is
computed correctly according to any user-specified surface model. For an explicit solver, ACME
uses a two-step process. The first step is the detection of the overlap of surfaces. The second step
is an enforcement phase to remove the overlap. Enforcement is accomplished with a kinematic
approach rather than a penalty approach. In the kinematic approach, a set of constraint equations is
calculated based on the initial penetration of one surface by another. The constraint equations are
used to calculate contact forces to remove the inter-penetration of the surfaces. (A penalty approach
can be thought of as introducing “stiff” springs between contact surfaces as a means of preventing
inter-penetration. The spring forces reduce the overlap to some small tolerance.)

One of the options in ACME is tied surfaces. For the tied surface option, a node on a surface
maintains its relative position on an opposing surface as the two surfaces deform. For tied surfaces,
the detection phase is used initially to determine a set of initial constraint conditions. The enforce-
ment phase uses these initial constraint conditions throughout the time history for the problem.

1.5.6 Superelements

Superelements consist of a reduced stiffness matrix, KR, and associated reduced mass matrix, MR.
The superelement can include both interface (physical) degrees of freedom and generalized degrees
of freedom. (The generalized degrees of freedom can be used to carry “extra” information about
the superelement, such as information about behavior at high frequencies.) As an approach to using
a super element with an explicit solver, the reduced mass matrix can be assembled into the mass
matrix appearing on the left-hand side of Equation 1.22. At each time step n, we can compute the
internal forces, (fint

n )R, for the superelement. The internal forces for the superelement are defined by

(f f int
n )R = KR(un)R , (1.42)

where (un)R is the displacement vector associated with the superelement degrees of freedom at time
n. The internal forces associated with the superelement must be assembled into the f int

n vector on
the right-hand side of Equation 1.22.

1.5.7 Stable Time Step

There are two means to arrive at a stable time step.
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1. The time step relates to the maximum eigenvalue of the system, τ = 2/ωmax, where ω2
max is

the largest eigenvalue of the system.

(K−ω2
maxM)φ = 0 (1.43)

2. an element by element method. The stable step relates to the shortest time for the signal to
pass through the model.

The system level calculation is more expensive, but is the more accurate. Eigenvalues may be
computed using the Lanczos method which is included in the ARPACK package. This is already
being used within Salinas, but the time step calculation computes only the highest eigenvalue.

From the ARPACK documentation for DSAUPD, we are looking for a solution with WHICH=’LA’
to compute the largest eigenvalues, and with method=2. The “B” matrix is ’G’, for a generalized
eigen problem. The operator required is inv(M)*K.

1.6 Time integration with viscoelastic materials

Here we describe the integration of viscoelastic structures using the generalized alpha method. For
the proper choice of the parameters of the generalized alpha method, the results below reduce to
those corresponding to the Newmark-beta method.

1.6.1 Equations of motion

The equations of motion of elastodynamics in three dimensions are given by

utt −∇ ·σ = f (x, t) Ω (1.44)
u(x, t) = 0 x ∈ ΓD (1.45)

σ(x, t) = g(x, t) x ∈ ΓN (1.46)
(1.47)

where u = (ux,uy,uz) is the vector of displacements, σ is the stress tensor, and f (x, t) is the body
force. The boundary of Ω is divided into Dirchlet ΓD and Neumann ΓN subregions.

The Dirichlet conditions lead to the space of admissible functions

V =
[

v ∈ H1(Ω),v(x) = 0,x ∈ ΓD
]

(1.48)

The equation of motion, along with boundary conditions, is cast into the weak form in the
standard way

Z

Ω
utt · v+

Z

Ω
σ ·∇svdx =

Z

Ω
f (x, t) · vdx+

Z

ΓN

g(x, t) · vds ∀v ∈V (1.49)

where an integration by parts has been carried out on the middle term, and ∇s = 1
2(∇+∇T ) denotes

the symmetric part of the gradient operator.

23



1.6.2 Constitutive equations

The representation of the time-dependent moduli for a viscoelastic material is commonly written in
the form of a Prony series

G(t) = Ginf +(G0−Ginf)ζG(t) (1.50)

ζG(t) = ∑
i

cie
− t

si (1.51)

where G0 is the glassy modulus, Ginf is the rubbery modulus, and ci,si are coefficients used to fit the
Prony series representation to the experimentally measured relaxation curve. A similar expression
holds for K(t), with different values for the constants, and possibly a different number of terms in
the series. Assuming an isotropic viscoelastic constitutive law, we only need to consider two rate-
dependent material properties. In this presentation, we will work in terms of the bulk K and shear
G moduli, since experimental data is typically given in terms of these two parameters.

The constitutive model for an elastic material can be written in terms of the shear and bulk
moduli

σ = Dε = (KDK +GDG)ε (1.52)

where DK ,DG are given in equation 9.4.7 in,5 and K, G are the bulk and shear moduli. This consti-
tutive law can be generalized to a linear viscoelastic material as follows

σ(x, t) = (G0−Ginf)DG

Z t

0
ζG(x, t− τ)

∂ε(x,τ)
∂τ

dτ+GinfDGε(x, t)+ (1.53)

(K0−Kinf)DK

Z t

0
ζK(x, t− τ)

∂ε(x,τ)
∂τ

dτ+KinfDKε(x, t)

The above expression is then used to represent the stress in the weak form of the equations of
motion, 1.49.

Given a finite dimensional subspace Vh ⊂V , we represent the approximate solution in the stan-
dard way

uh(x, t) =
n

∑
i=1

φi(x)ηi(t) (1.54)

where Vh = span(φi), and η(t) represents the unknown time dependence. We also denote Φ(x) =
[φi(x)] as the matrix having φi as the ith column. Inserting this into the equations of motion, and
rearranging, we obtain

Mη̈(t)+(G0−Ginf)K1

Z t

0
ζG(t− τ)η̇(t)dτ+

(K0−Kinf)K1

Z t

0
ζK(t− τ)η̇(t)dτ+K2η(t) = f (t) (1.55)

where
M =

Z

Ω
ρ(x)ΦT (x)Φ(x)dx (1.56)
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is the mass matrix,

K1 = (G0−Ginf)
Z

Ω
BT DGBdx+(K0−Kinf)

Z

Ω
BT DKBdx (1.57)

K2 = Ginf

Z

Ω
BT DGBdx+Kinf

Z

Ω
BT DKBdx (1.58)

are the stiffness matrices, and

f (t) =

Z

Ω
f (x, t) · v(x)dx+

Z

ΓN

g(x, t) · v(x)ds (1.59)

is the right hand side. The corresponding element matrices are defined simply by breaking the
integrals into elementwise contributions.

Equation 1.55 represents a system of Volterra integro-differential equations. Without the inertial
term, 1.55 represents a system of Volterra integral equations of the first kind. We now consider im-
plicit schemes for integrating these equations in time. The goal is to reduce the system of equations
1.55 to a system in standard form

Mη̈(t)+Cη̇(t)+Kη(t) = f̂ (t) (1.60)

where C is a constant damping matrix, and ˆf (t) is a modified right hand side that will include a
portion of the viscoelastic convolution term. We demand that C be independent of time, since this
will eliminate the need for refactoring the left hand side at each time step. The damping (integral)
term in equation 1.55 is certainly time-dependent. However, we will show that it is possible to split
this integral term into a time-dependent and a time-independent part. The time-independent parts
remain on the left hand side and become the damping matrix, whereas the time-dependent parts
can be carried to the right hand side, since they are known quantities. Once the equations 1.55 are
reduced to the system 1.60, the standard time integrators for structural dynamics can be employed.

For simplicity, we consider the case of only a single Prony series term. The results for more
terms can be obtained by adding together the results for a single term. The integral in equation 1.55
can be split into two parts (considering only a single Prony series term)

Z t

0
e

t−τ
s η̇(t)dτ =

Z ti

0
e

t−τ
s η̇(t)dτ+

Z t

ti
e

t−τ
a η̇(t)dτ (1.61)

= e
∆t
s

Z ti

0
e

ti−τ
s η̇(t)dτ+

Z t

ti
e

t−τ
s η̇(t)dτ (1.62)

where the first term is a loading history term that is known at time ti. Consequently, it can be treated
as an additional load and brought to the right hand side. The remaining term can be split into two
terms, one containing coefficients of η̇, and the other containing coefficients of η̇i. The former is
unknown and thus becomes Cη̇, whereas the latter is known and thus also contributes to the right
hand side.

In order to evaluate the term
Z t

ti
e

t−τ
s η̇(t)dτ (1.63)

we first need a representation for the velocity ˙η(t) in the interval t ∈ [ti, t]. We present two choices,
both of which are second order accurate.
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1.6.3 Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes a constant acceleration
within the time step. With this assumption, the velocity must vary linearly within the time step.
Thus,

˙η(t) = ˙η(ti)+
η̈+ ¨η(ti)

2
(t− ti) (1.64)

where η̈ is the (unknown) acceleration at current time t, and ¨η(ti) is the previous acceleration.
Although equation 1.64 is the correct representation for velocity, it is inconvenient in that it would
lead to (after inserting into equation 1.63) a contribution to the mass matrix. This is undesirable,
since it would interfere with the use of a lumped mass matrix. Thus, we re-write the velocity
distribution in an equivalent form

η(t) = ˙η(ti)+
η̇− ˙η(ti)

∆t
(t− ti) (1.65)

We note that equations 1.64 and 1.65 are equivalent representations of the velocity. By inserting
equation 1.65 into equation 1.63 we obtain

Z t

ti
e

t−τ
s η̇(t)dτ =

[

s+
s2

∆t

(

e
∆t
s −1

)

]

η̇+

[

−se
−∆t

s +
s2

∆t

(

1− e
−∆t

s

)

]

η̇i (1.66)

The first term involves a coefficient times the unknown η̇, which is the unknown velocity at the
current time, and thus it must remain on the left hand side as a damping term contribution. The
damping matrix implied by this term is

C = cK(sK +
s2

K

∆t
(e
−∆t
sK −1))BTDKB+ cG(sG +

s2
G

∆t
(e
−∆t
sG −1))BTDGB (1.67)

The second term is known, and thus it can be added to the load vector.

1.6.4 Midpoint Representation of Velocity

A second implicit scheme can be derived simply by using the midpoint rule on the velocity in the
viscoelastic term. The only difference from the linear approach described above is in equation 1.66.

η̇(t) =
η̇+ ˙η(ti)

2 (1.68)

This leads to
Z t

ti
e

t−τ
s η̇(t)dτ =

s
2

(

1− e
∆t
s

)

η̇+
s
2

(

1− e
∆t
s

)

η̇i (1.69)

In the same way as for the linear velocity approach, we use the term involving η̇ to construct a
damping matrix, and the remaining known terms are carried to the right hand side.

It should be noted that the midpoint scheme is inconsistent in that a different discretization
scheme is used for the viscoelastic term than was used for the overall time integration. The lin-
ear representation of velocity is a consistent scheme. However, both approaches are second order
accurate.
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1.7 Linear Eigen Analysis

Linear Eigen analysis is a solution of the equation,

(K−λM)φ = 0 (1.70)

The equation is considered linear in the sense that λ appears only to the first power. Solution of
the equations involved is definitely not linear. Practically, there are many linear solves typically
associated with a given eigen pair.

A number of approaches can be used to solve this system. We refer you to an excellent com-
parison report for a few of the iterative methods available (see 6). Direct methods such as the QR
algorithm or Jacobi transformations are not scalable to very large systems. In any event, they do not
parallelize well. In Salinas, we rely on the shifted and inverted Lanczos algorithm as implemented
in ARPACK. Further, since the linear solvers that we have at our disposal are ensured convergent only
for positive definite systems, we require a negative shift. Documentation on this method is available
in the ARPACK package (see 7).

1.8 Random Vibration

Details of random vibration analysis are included in a number of papers1 . These few paragraphs
document what was implemented.

1.8.1 algorithm

The first step in the calculation is computation of a modal spatial contribution, Γqq, which is per-
formed in ComputeGammaQQ. This is accomplished as follows.

Let the modal frequency response be defined as,

qi( f ) =
1

ω2
i −ω2 +2 jωωiγi

The modal force contribution from load a is,

Fia( f ) = ∑
k

φik f a
k sa( f )

= Zi
asa( f )

where f a
k is the k component of the force vector associated with load a, and sa( f ) contains all of

the frequency content of the force, but none of the spatial dependence. We have defined Z i
a for each

load that represents the sum of all the spatial contributions for mode i. It represents the frequency
independent component of the force for load a.

Zi
a = ∑

k

f a
k φik

1see for example, reference 8.
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A transfer function to an output degree of freedom, k, from the input load a, may be written as a
modal sum.

Hka( f ) = ∑
i

Fia( f )qi( f )φik

where φik is the eigenvector of mode i.

1.8.2 Power Spectral Density

The displacement power spectral output (at a single location) is a 3×3 matrix.

Gmn( f ) = ∑
a,a′

H∗ma( f )Hna′( f )

= ∑
i, j

∑
a,a′

F∗ia( f )q∗i ( f )φimF∗ja′( f )q j( f )φ jn

= ∑
i, j

∑
a,a′

q∗i ( f )q j( f )φimφ jnZi
aSa,a′( f )Z j

a′

Here Sa,a′( f ) is the complex cross-correlation matrix between loads a and a′, and the superscript ’*’
denotes complex conjugate. The subscripts m and n are applicable to the 3 degrees of freedom at a
single location.

By summing over the loads we may reduce the power spectral expression to a sum on modal
contributions.

Gmn( f ) = ∑
i, j

φimφ jnGi j( f ) (1.71)

where
Gi j( f ) = q∗i ( f )q j( f )∑

a,a′
Zi

aZ j
a′S

a,a′( f ) (1.72)

Note that with the exception of the Z i
a (which may be computed only once and are a fairly small

matrix), all the terms in equation 1.72 are completely known on each subdomain.

1.8.3 RMS Output

The RMS output for degree of freedom m is given by,

Xrms =

√

Z

Gmm( f )d f

=

√

Z

∑
i, j

φimφ jmGi j( f )d f

=
√

∑
i, j

φimφ jmΓi j
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where Γi j =
R Gi j( f )d f .

The parallel result can be arrived at by computing Z i
a on each subdomain, and then summing

the contributions of each subdomain. Note that Z i
a contains the spatial contribution of the input

force. At boundaries that interface force must be properly normalized just as an applied force is
normalized for statics or transient dynamics by dividing by the cardinality of the node. Once Z has
been summed, Γi j may be computed redundantly on each subdomain. The only communication
required is the sum on Z (a matrix dimensioned at the number of loads by the number of modes).

The acceleration power spectral density is just Gmm(ω)ω4. Subsection 2.21.5 provides details
about transforming power spectra to an output coordinate system.

1.8.4 RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is included in the
reference at the beginning of this chapter. Two methods are available, but both use the integrated
modal contribution Γi j as the basis for their computation. The more complete method relies on a
singular value decomposition. Portions of that method are touched on below

1.8.5 matrix properties for RMS stress

Since S( f ) is Hermitian, it follows that Γqq is also necessarily hermitian. It will not in general be
real. Therefore, the svd() must be computed using complex arithmetic. We use the zgesvd routine
from arpack. The results from the svd of an hermitian matrix are real eigenvalues (stored in X ),
and complex vectors, stored in Q.

At the element level another svd must be performed. In this case we are computing the singular
values of the matrix C.

C = XQ†BQX

where,
B = ΨT AΨ

Obviously, B is symmetric. It can be shown that Q†BQ is hermitian. If we examine a single element
of C we can see that it contains the sum over all the terms in an hermitian matrix. That sum is
necessarily real, since it can be computed by adding the lower half with it’s transpose and then
summing the diagonal. Let,

Ai j = ∑
m,n

Q∗miBmnQn j = ∑
m,n

ai j

But,
A∗ji = ∑

m,n
Qm, j ∗BmnQ∗ni = ∑

m,n
Qn jBmnQ∗mi = ∑

m,n
a∗i j

We therefore only need use the real svd routines to compute the results at each output location.
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1.8.6 model truncation

The svd calculations provide the information needed for model truncation. In general, if the size
of the model grows, the number of modes required for an analysis also grows. The relationship
is very model dependent. However, the computational time for calculating the svd varies as the
cube of the dimension of the matrix. Since the svd(Γ) is only computed once, it is not terribly
important. However, the computation of each decomposition of C occurs at each output location
and can significantly affect performance. In the model problem where the dimension of C was
allowed to remain the same as the number of modes, increasing the number of modes from 20 to
100 changed the time for the analysis by factor of more than 100 (close to the 53 one might expect).
Clearly, this is unacceptable especially as the desired models may have many hundreds of modes.

The svd(Γ) provides important information about the number of independent processes. Note
that C includes the svd values from this calculation. We truncate by computing all the nmodes x
nmodes terms in B, but only retaining Cdim columns of Q, where Cdim is chosen so the values of
X are not too small. Thus, X [(Cdim)]/X[0] > 10

−14. This restricts the dimension of C to a fairly
small number, while retaining all components that contribute significantly to its value. As a result,
the entire calculation appears to scale approximately linearly with the number of modes.

1.9 Modal Frequency Response Methods

The Salinas implementation of the modal acceleration method is described in this section. Separate
cases are considered when the structure does and does not have rigid body modes.

1.9.1 No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.

(−ω2M + jωC +K)û = f̂ (1.73)

Consider the modal approximation

û≈
N

∑
i=1

φiqi (1.74)

where N is the number of retained modes, φi is the i’th mode shape, and qi is the i’th modal dof. For
modal damping, one obtains the uncoupled equations

(−ω2mi + jωci + ki)qi = φT
i f̂ (1.75)

for i = 1, . . . ,N where

mi = φT
i Mφi (1.76)

ci = φT
i Cφi (1.77)

ki = φT
i Kφi (1.78)

(1.79)
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are the modal mass, modal damping, and modal stiffness of the i’th mode. Solving equation 1.75
for qi leads to

qi = (φT
i f̂ )/(−ω2mi + jωci + ki) (1.80)

Replacing (−ω2M + jωC)û in equation 1.73 with the modal approximation

(−ω2M + jωC)
N

∑
i=1

φiqi (1.81)

leads to

Kû = f̂ +(ω2M− jωC)
N

∑
i=1

φiqi (1.82)

Recall that the mode shapes satisfy the eigenproblem

Kφi = ω2
i Mφi (1.83)

where ωi is the circular frequency of the i’th mode. Provided ωi 6= 0, one obtains

K−1Mφi = φi/ω2
i (1.84)

In addition, see Eq. (18.14) of Craig, the damping matrix C can be expressed as

C =
N

∑
i=1

(

2ζiωi

mi

)

(Mφi)(Mφi)
T (1.85)

where ζi is the damping ratio of the i’th mode. Substituting equations 1.84 and 1.85 into equation
1.82 and solving for û leads to

û = K−1 f̂ +
N

∑
i=1

(ω2/ω2
i −2ζi jω/ωi)φiqi (1.86)

The acceleration frequency response, â, can be obtained by multiplying equation 1.86 by −ω2.

1.9.2 Rigid Body Modes

The procedure outlined here describes how the modal acceleration method can be used in the case
when the structure has rigid body modes. The main difference between the approach presented
here and Craig’s method9 (pp. 368-371) is in the way that the flexible response is computed using
the singular stiffness matrix. Craig removes the rigid body modes from the stiffness matrix using
constraints. In our approach, we first orthogonalize the right hand side with respect to the rigid body
modes, and then use an iterative solver such as FETI to solve the singular system directly. Although
the two methods are equivalent the latter is much more convenient from the implementation point of
view. Note, however, that the implementation is likely to fail on a single processor since the direct
solvers in Salinas are unable to manage a singular stiffness matrix.

The equations of interest are the frequency domain equations of motion

−ω2Mu+ jωCu+Ku = f (1.87)
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Since the stiffness matrix may be singular, we first split the solution into a rigid body part and a
flexible part.

u(ω) = uR(ω)+uE(ω) (1.88)
= ΦRqR(ω)+ΦEqE(ω) (1.89)

where the subscript R refers to rigid body mode contributions, and E refers to contributions from
flexible modes. We define N as the total number of degrees of freedom, NR as the number of rigid
body modes and NE the number of flexible modes, where N = NR + NE . Then, ΦR is an NxNR

matrix of rigid body eigenvectors, ΦE is an NxNE matrix of flexible eigenvectors, qR is a vector of
dimension NR, and qE is a vector of dimension NE . We assume mass normalized eigenvectors.

We now substitute equation 1.89 into equation 1.87, and premultiply both sides by ΦT
R and ΦT

E .
This yields two sets of equations, after using orthogonality and the fact that KΦR = 0.

−ω2qR + jωCRqR = ΦT
R f (1.90)

−ω2qE + jωCEqE +KEqE = ΦT
E f (1.91)

where CR,CE are diagonal matrices containing the modal damping contributions, and KE is a diag-
onal matrix containing the eigenvalues. In particular, the ith diagonal entry of CE is 2ωiζEi , and the
ith diagonal entry of CR is 2ωiζRi . For most applications, CR is null. Solving these equations we
obtain the component-wise values of the coefficients

qRi =
ΦT

Ri
f

−ω2 + jωCRi

(1.92)

qEi =
ΦT

Ei
f

−ω2 + jωCEi +ω2
Ei

(1.93)

Equation 1.91 can be solved for qE , and substituting this into equation 1.89, we obtain

u = ΦRqR +ΦEK−1
E ΦT

E f +ω2ΦEK−1
E qE− jωΦEK−1

E CEqE (1.94)

The first term in equation 1.94 is known. The third and fourth terms of equation 1.94 can be com-
puted by modal truncation, and in fact these are the same as the second and third terms of equation
1.86. The second term in equation 1.94 is the static correction, and is not readily computable in the
present form since all of the flexible modes would have to be known to compute it.

In order to compute the second term in equation 1.94, we note that the matrix aE = ΦEK−1
E ΦT

E
is the inverse of the elastic stiffness matrix, that is, the stiffness matrix without the rigid body
components. Craig gives a procedure of constraining the rigid body modes in the stiffness matrix in
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order to compute the product aE f . This procedure would require re-sizing the global stiffness matrix
midway through the modalfrf solution procedure, and this is tedious from the code development
standpoint.

A more convenient approach is to use FETI to solve the system Ku = fE , where fE is obtained
by orthogonalizing the right hand side f with respect to the rigid body modes, via Gram Schmidt.
We note that FETI can solve problems of the form Ku = f even if K is singular, provided that the
right hand side f is orthogonal to the rigid body modes.

The procedure is to first apply Gram Schmidt orthogonalization to obtain fE . Then, we use
FETI to solve the system KuE = fE , where K is singular. Finally, to be sure uE is orthogonal
to the rigid body modes, we apply Gram Schmidt one more time to uE . Though in theory uE is
already orthogonal to the rigid body modes after the FETI solve, numerical roundoff may result in a
small loss of orthogonality (especially if the solver tolerance is loose), and thus we apply this final
orthogonalization to uE to be on the safe side. The resulting solution we again denote by uE . Then,

uE = ΦEK−1
E ΦT

E f (1.95)

and thus all of the terms in equation 1.94 are known. Thus the modal frequency response can be
computed using equation 1.94.

We note that the orthogonalizations referred to above involve only the standard dot products.
That is, in order to make f orthogonal to one rigid body mode φi, the Gram Schmidt factor is

α =
φT

i f

φT
i φi

(1.96)

and then
fE = f −αφ (1.97)

The dot products appearing in these expressions do not involve the mass matrix. They are the
standard dot products.

1.9.3 Example

Finally, we present an example of the performance of this method as compared to the standard
modal displacement method. The example is a beam composed of 320 hex8 elements. The beam
is free-free, so that all rigid body modes are present. The frequency response is computed up to
9000 Hz, and 15 modes are used in the modal expansions. The 15th mode had a frequency of 11362
Hz. In Figure 2, the two methods are compared with the direct frequency response approach. It is
seen that the modal acceleration method gives a significantly improved performance over the modal
displacement method.

1.10 Fast Modal Solutions

Because modal based solutions such as modaltransient do not require a linear solve, they can
greatly accelerate the solution of linear problems. However, in the standard approach, these solu-
tions may not show the performance that could be achieved. This is because the standard approach
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Figure 2. A comparison of the modal displacement, modal acceler-
ation, and direct frequency response approaches. The modal accelera-
tion method gives a better approximation to the direct approach than the
modal displacement method.
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1. Compute the full eigen problem, (K−λM)Φ = 0

2. Compute the applied load (in modal coordinates) at each time. f i =

∑k ΦkiFext
k

3. Compute the modal system response from equation 1.101.

4. Expand from modal to full physical space.

X k
n+1 =

Nmodes

∑
i

qi
n+1Φki

5. Collapse the physical space to the output degrees of freedom.

x̃ = subset(X)

The parallel data (matrices and
vectors Φ and X ) are partitioned
by processor. ���������������������������
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Figure 3. Standard Modal Transient Algorithm. Note that while the
output is required on only a small part of the model, a calculation of
data on all degrees of freedom is performed first, and results are then
collapsed back to the reduced model.

manipulates a lot of data when the model size is large, see Figure 3. We here address a method for
much higher performance provided that output is required on a very limited data set and that the
force is simple.

1.10.1 Modal Solution Summary

Using the trapezoidal rule, Newmark-Beta integrator2 equation 1.6 may be condensed to,

[

4
∆t2 M +

2
∆t

Ĉ +K

]

dn+1 = Fext
n+1 +Ĉ

[

vn +
2
∆t

dn

]

+M

[

4
∆t2 dn +

4
∆t

vn +an

]

(1.98)

2 This implies that αm = α f = 0, βn = 1/4, and γn = 1/2.
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Also,

vn+1 = −vn +
2
∆t

(dn+1−dn) (1.99)

an+1 = −an +
4

∆t2 (dn+1−dn)−
4
∆t

vn (1.100)

With the usual modal transformation, dk = ∑i Φkiq, λi = ΦT
i KΦi, and ΦT MΦ = I, we may write the

equivalent modal equations.
aiq

i
n+1 = qi

n + f i
n+1 + f̃ i (1.101)

where

ai =
4

∆t2 +
2
∆t

γi +λi

f i
n+1 = ∑

k

ΦkiF
ext
k

f̃ i = q̈n +

(

4
∆t

q̇n +
4

∆t2 qn

)

+ γi

(

q̇n +
2
∆t

qn

)

and,
γi is the modal damping

These equations are now uncoupled, i.e. the solution for each modal coordinate is independent of
any other.

1.10.2 Parallel Fast Modal

In many cases the analyst is interested only in the data in a very reduced set (such as data in the
history file). In these cases, large amounts of data are processed, only to reduce the data at each
time step to a the reduced system. The parallel computer processing is being expended to process
large vectors that are not really needed, and for which no useful output is provided. If the reduced
set may easily fit on a single processor, and if the modal force may be adequately determined, then
a streamlined algorithm may be used.

The fast algorithm is illustrated in Figure 4 for transient dynamics, and in Figure 5 for modal
frequency response. The same set of equations are now solved, but since the entire physical model
exists on all processors, we can compute the sum of terms in parallel.

1.10.3 Determination of Modal Force

The fast algorithm outlined in the previous section depends on determination of the modal force
vector, f i(t). But, the physical loads may be applied to degrees of freedom other than those in the
limited output set, so that the eigenvector, Φ of the full system would be required.
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1. Begin with eigenvalues, λ, and reduced eigen vectors, φ. We also need the
generalized components of modal force, ζs

i (ω) = ∑k ΦkiF̂s
k (ω).

2. Compute the time response of the modal system response in parallel. Each
processor gets only a subset of modes, and solves equation 1.101 indepen-
dently.

3. Compute the response on the physical space using the sum of modes as a sum
across processors. NOTE: this is restricted to the reduced physical space.

x̃k =
Nproc

∑
p

Nmodesproc

∑
i

φkiqi

Figure 4. Fast Modal Transient Algorithm

1. Begin with eigenvalues, λ, and reduced eigen vectors, φ. We also need the
generalized components of modal force, ζs

i (ω) = ∑k ΦkiF̂s
k (ω).

2. Compute the frequency response of the modal system response in parallel.
Each processor gets only a subset of modes, and solves the following equa-
tion independently.

qi(ω) =
f q
i (ω)

ω2−ω2
i −2 jγiωωi

where ω =
√

λi and j =
√
−1.

3. Compute the response on the physical space using the sum of modes as a sum
across processors. NOTE: this is restricted to the reduced physical space.

x̃k =
Nproc

∑
p

Nmodesproc

∑
i

φkiqi

Alternatively, each processor may be assigned the computation of a fre-
quency range, and compute all the modal contributions to that range. A
processor sum would gather all the results for output.

Figure 5. Fast Modal Frequency Response Algorithm
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However, in most cases,3 the force in the physical coordinates is computed as a sum of spatial
and temporal terms.4

Fext(x, t) =
Nsets

∑
s

F̂s(x)δs(t)

Typically each spatial function F̂s is determined by a nodeset, sideset or body load input, while the
temporal term, δs(t), is a multiplier defined in a FUNCTION section. We may thus write,

f i(t) = ∑
k

ΦkiF
ext(xk, t) (1.102)

= ∑
k

Φki

Nsets

∑
s

F̂s(x)δs(t)

=
Nsets

∑
s

ζi
sδ

s(t) (1.103)

where,
ζi

s = ∑
k

ΦkiF̂
s

k (1.104)

Thus, a necessary part of the preparation for a fast modal solution includes calculation of the gener-
alized components of force, ζi

s.

1.11 Complex Eigen Analysis - Modal Analysis of Damped Structures

1.11.1 Modal Analysis of Damped Structures

Salinas will solve the eigenvalue problems for structures with some types of damping. The al-
gorithms are designed for internally damped structures such as from viscoelastic materials. The
package is called Ceigen, and the parameters to be aware of are eig tol, nmodes, and viscofreq.
The first two parameters, eig tol and nmodes will be familiar to Salinas users that solve eigenvalue
problem for undamped structures. eig tol is the convergence tolerance for the eigenvalues, and
nmodes is the number of requested eigenvalues. viscofreq approximates the first flexible mode of
the structure. The default value for eig tol is 1.e−8.

The complex eigen value problem which we solve is also known as the quadratic eigenvalue
equation.

[

K +λD+λ2M
]

φ = 0 (1.105)
where,

K = the stiffness matrix
D = the damping matrix
M = the mass matrix
λ = the complex frequency.

3 If user defined functions of space are included, this situation is violated, and the fast algorithm cannot be used.
4 What is described here for time applies equally well for functions in the frequency domain. They are products of

spatial and frequency components.
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All of the matrices are independent of frequency. Note that we are solving for λ = iω+ γ, not ω2.

1.11.2 Input File Specification

The Salinas input file specification is similar to the specification for transient simulations. To change
a working Salinas input file for a transient problem into a Salinas input file for Ceigen, change the
Solution and Parameters blocks. The example below illustrates how the Solution and Parameter
blocks are modified for modal analyses.

SOLUTION
case ceig
ceigen nmodes 20
viscofreq=1.e+4
END
PARAMETERS
eig_tol 1.E-5
wtmass=0.00259
END

The parameter wtmass is an example of a parameter that was was needed for the transient simulation,
and is still needed for modal analyses.

1.11.3 Output File Format

The output is very similar to the output for the undamped eigenvalue problem. The results file
contains any requested data. Supplemental information is written to the screen that is useful for
algorithm development.

The Results file foo.rslt tabulates the values λ/(2π) for (λi) that solve equation (1.106).
Pure real eigenvalues are not written to the Results file.5 If λi has been found with i in the range,
1≤ i≤ 24,27 ≤ i≤ 34, then the missing eigenvalues (λi)25≤i≤26 are real eigenvalues that are omit-
ted. The number of eigenvalues written in the Results file is less than or equal to nmodes.

As is the case with the undamped eigenvalue problem, Salinas will print a table to the screen.
The table is titled “Ritz values (Real, Imag) and direct residuals”, and has four columns of real
numbers. The number of eigenvalues that are actually computed may be larger or smaller than
the number requested. Some real eigenvalues may appear among the converged eigenvalues. The
table will contain any converged real eigenvalues (zero in column two). Columns three and four
are two different residual norms for each eigenvalue. Eigenvalues with large residual norms are
not converged. The residual norm in the third column is less sensitive to the linear system relative
residual norm bound than the residual norm in the fourth column is After each implicit restart, all
the approximate eigenvalues are printed to the screen.

5Real modes correspond to an overdamped mode with no oscillatory component. These are usually generated from
numerical artifacts discussed below, and are seldom of practical value

39



1.11.4 Some Back Ground

The eigenvalue problem for an undamped structure

KΦ = MΦΩ2, ΦT MΦ = I,

Ω =⊕iωi, has been discussed elsewhere in this document. Salinas returns the frequencies ω/(2π).
Ceigen solves a similar problem. Ceigen solves the quadratic eigenvalue problem

[Mλ2 +Dλ+K]u = 0, uT u = 1. (1.106)

In the undamped case, D = 0, λ = iω.

A second order linear differential equation is the same as a first order system. Similarly a
quadratic eigenvalue problem is the same as a matrix eigenvalue problem of twice the size.

Linear problems such as matrix eigenvalue problems are solvable in that it is possible to find all
of the solutions. For matrix eigenvalue problems the key idea is deflation. One big subspace is used
to compute all of the eigenvalues. Small eigenvalues tend to be computed early and are deflated
from the problem. The reward for deflation is that the gravest remaining eigenvalues are much more
likely to be computed next. For general nonlinear eigenvalue problems on the other hand, no robust
algorithms are known to the author.

1.11.5 Viscoelasticity

The eigenvalue problem for viscoelastic problems10 in the most simple case (one term Prony series)
has the form

[Ms2 +D(s)s+K]u = 0. (1.107)
K = BE∞, D(s)s = B(Eg−E∞) f (s),

f (s) = s/(s+a) = 1− (s/a+1)−1.

Prony series damping in the time domain10 creates a frequency domain problem with real eigenval-
ues that are not physical.10 Some care is needed to avoid the real eigenvalues in computations.

Here is a sketch of justification that the Prony series problem has real eigenvalues. The eigen-
value problem has a closed form solution in terms of the eigenvalues of the undamped problem. The
one term Prony series damping increases the degree of the characteristic equation from two to three,
and the third root must be real.

1.11.6 Viscofreq

The eigenvalue problem in equation (1.107) is not a quadratic eigenvalue problem (M,D,K). The
obvious approximation is to evaluate D(s) at some fixed so near to the wanted eigenvalues. The user
parameter viscofreq= ω is a real number such that so = iω. In a later release so = r + iω for some
internally computed value r.

Using a value of viscofreq that is much too small may degrade performance. As viscofreq
increases, the eigenvalues do change, and Salinas converges more quickly. The cluster of real
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eigenvalues moves left, away from zero, and it becomes possible to compute more of the complex
eigenvalues. Over-estimates of viscofreq are safer than underestimates.

Suppose that so = r + iω. A different quadratic eigenvalue problem is used.10 Both D and K
are modified. The approximation is more accurate for problems in which r is much more accurate
than ω. Also (M,D,K) are all real matrices. The eigenvalues and eigenvectors come in complex
conjugate pairs.

Important to be aware that no constant damping matrix inherits the property of D(s) that

lim
s→∞

D(s) = 0.

Physically, this means that the eigenvalues in equation (1.106) that are far from viscofreq are over-
damped. If for a given mode shape, so is closer to the real eigenvalue of equation (1.107) than either
complex conjugate pair, then Ceigen may return the real eigenvalue. For example equation (1.107)
has many real eigenvalues clustered left of −a.

1.11.7 Trust Regions and Real Modes

The eigenvalue problem is solved using ARPACK. The convergence criteria in the ARPACK pack-
age use a trust region. CEigen will compute the right-most eigenvalues of the eigenvalue problem in
equation (qevp). If the k-th mode does not satisfy the convergence tolerance, and k ≤nmodes, then
ARPACK is not converged, no matter how many other eigenvalues are converged.

The authors have gone to great lengths to filter out real eigenvalues. Nonetheless in problems
with a cluster of real eigenvalues among the right-most eigenvalues, it is very difficult to compute
eigenvalues high into the frequency range. If such a problem arises, increase eig tol (multiply by
ten), increase nmodes (add ten), and most importantly increase viscofreq (double).

1.11.8 ViscoFreq - Approximating the Response of Viscoelastics

The viscoelastic mass matrix can be considered to be independent of frequency. However, the
damping and stiffness matrices can be functions of frequency, depending on the formulation. There
are two possible formulations. The first one results in a complex, frequency dependent damping
matrix, and a real-valued, frequency independent stiffness matrix. The second results in a frequency-
dependent, real-valued damping matrix and a frequency-dependent, real valued stiffness matrix. We
chose the second formulation since the complex-valued damping matrix is somewhat difficult to deal
with in quadratic eigensolvers. The two formulations are the same up to the order of the linearization
error.

Consider the simplest possible viscoelastic material, characterized by a single term of the Prony
series. The equation of motion for a 1D system with this material is given below. The full 3D case
is similar, except that it has separate terms for the bulk and shear components.

[

K∞ + sD(s)− s2M
]

u = f (s) (1.108)
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Here, s is the Laplace transform frequency, f (s) is the frequency dependent force, and the damping
matrix is now a function of frequency.

D(s) = (EG−E∞)
1

s+1/τ
B (1.109)

with E∞, the Young’s modulus for high frequencies, EG the modulus for low (or glassy) frequencies,
τ is the Prony series relaxation time, and K∞ = E∞B is the stiffness at high frequencies.

We now return to equation 1.108, and consider different ways of linearizing the relation, since
for the quadratic eigenvalue problem, we may only solve equations of the form in equation 1.105,
i.e. quadratic in λ or s.

User Specified frequency of linearization We define viscofreq, ω and sω = r + iω, which is the
complex number about which the linearization takes place. In the current methodology, r is zero.

First, we split D(sω) into its real and imaginary components by multiplying by (r+1)−iωτ
(r+1)−iωτ .

D(s) = (EG−E∞)
1

s+1/τ
B (1.110)

= (EG−E∞)
τ

iωτ+(rτ+1)
B (1.111)

=
τ((rτ+1)− iωτ)
(rτ+1)2 +ω2τ2 (EG−E∞)B (1.112)

Then we also temporarily replace the s in front of sD(s) with sω. This gives,

sD(s) = (iω+ r)D(iω+ r) (1.113)

=
τ(iω+ r)+ω2τ2 + r2τ2

(r +1)2 +ω2τ2 (EG−E∞)B (1.114)

Finally, we replace iω + r with s to go back to the quadratic eigenvalue problem. This results in a
contribution to the the stiffness matrix, and a real damping matrix.
[(

E∞ +(EG−E∞)
ω2τ2 + r2τ2

(r +1)2 +ω2τ2

)

B+ s

(

τ
(r +1)2 +ω2τ2

)

(EG−E∞)B+ s2M

]

φ = 0 (1.115)

Thus we see that the damping matrix is purely real, but the stiffness matrix gets an additional
(positive) real contribution.

Practically of course, the systems are far more complex. Typically there is more than one
material, and that material has a number of Prony terms. Equation 1.115 is modified, but the overall
effect is the same, i.e. the stiffness matrix is increased by a viscoelastic term, and the damping term
is also modified. Effectively we have the following.

K̃(r + iω) = ∑
elem

K̃elem(r + iω) (1.116)
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where K̃elem is the modified stiffness matrix.

K̃elem(r + iω) = Kelem + imag(Delem(r + iω))

Likewise,
D̃elem(r + iω) = real(D(r + iω)) (1.117)

We now solve the linearized eigenvalue equation for λ,

[

K̃(r + iω)+ iλD̃(r + iω)−λ2M
]

φ = 0 (1.118)

A Simple Error Estimate This question is now how well the eigenvalues computed from equation
1.115 approximate the true eigenvalues of equation 1.108.

First, we define the distance from a given computed eigenvalue, sc, to the point of linearization,
sω as δ.

δ = sc− sω (1.119)

Note that δ is a complex-valued quantity.

Next, we define the residual as the vector resulting from inserting sc and the corresponding
computed eigenvalue, φc, into equation 1.108.

(

s2
cM + scD(sc)+K

)

φc = res (1.120)

The residual, as defined in equation 1.120, is a computable quantity. Obviously, if the residual
is large, then the error in the computed eigenvalue and eigenvector is large. However, the more
interesting question from the analyst’s perspective is how large may δ be for one to expect accurate
eigenvalues.

1.12 SA eigen

The quadratic eigenvalue problem which we address in this solution method is given by the equation
below.

(

K +λC +λ2M
)

φ = 0 (1.121)

where, K is the stiffness matrix,
C is a damping and coupling matrix, and
M is a mass matrix.

More specifically, for a structural acoustic system.
([

Ks 0
0 Ka

]

+λ
[

Cs L
−ρaLT Ca

]

+λ2
[

Ms 0
0 Ma

])[

φs

φa

]

= 0 (1.122)

Here the subscripts refer to structural or acoustic domains, ρa is the density of the fluid and L is a
coupling matrix. Note that for this formulation, φa represents the acoustic velocity potential, which
relates to the time derivative of the acoustic pressure, φa = ∇u̇a.
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Table 2. Potential Basis Functions for Subdomain Reduction

Name Basis Function

Free-Free modes The unconstrained eigenvectors of each subdomain are
computed and used as the columns of T . When the number
of columns in T equals the number of rows, this basis is
complete.

Craig-Bampton The eigenvectors of each subdomain are computed with
the interface fixed. These eigenvectors are supplemented
with constraint modes computed by fixing all the interface
degrees of freedom except one. That dof receives a unit
static deformation. This method has been shown to con-
verge near optimally for structure/structure interactions.

The matrix C will be completely asymmetric if it contains only coupling terms. In this case it
is called gyroscopic, and it can be shown that the system is Hermitian, and has real eigenvalues.
However, if there is additional damping in the system, as from ρC damping on the acoustic domain,
then C is of mixed symmetry, and the eigenvalues and eigenvectors are complex. The stiffness
matrix is symmetric positive semi-definite, while the mass matrix is symmetric positive definite.

While various methods are available for solving the generalized, linear eigenvalue problem,6

solution of the quadratic eigenvalue problem is more challenging. The approach followed here
is to transform the problem into a reduced space, solve the corresponding dense matrix system
completely, and project back out to the original space. The challenge, of course, is to properly
choose that space.

In general, if the eigenvector, φ, can be written in terms of generalized coordinates, q, then this
approach may be taken. For a given transformation matrix, T , which determines φ given q, we have
the following.

φ = T q (1.123)
T † (K +λC +λ2M

)

Tq = 0 (1.124)
(

k̃ +λc̃+λ2m̃
)

q = 0 (1.125)

Note that the only restriction on T is that we may adequately write φ = Tq. In other words, T must
span the space of the eigenvectors. In particular, T need not be unitary or even orthogonal. However
for the transformation to be useful for a model reduction, there must be many fewer columns than
rows in T . Note that T † is the transpose, complex conjugate of T , and that the left and right
eigenvectors of equation 1.122 are complex conjugates of each other.

The structural/acoustics problem may be viewed as a two subdomain problem.7 There are a
variety of basis functions that have been examined for connecting such subdomains. Two common
sets are listed in Table 2.

6The generalized linear eigenvalue problem is (K−λM)φ = 0.
7There is no requirement that each of these subdomains be topologically connected in any special way.
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We here investigate only the free-free method. Though this method has proved to converge
rather slowly for structure/structure problems, the coupling between the structural and acoustic
domains is often rather weak, so this may be adequate. For the problems of interest, a full Craig-
Bampton type solution is almost certainly overkill, and will result in a dense matrix too large for
standard solution methods. We may find it advantageous to augment the free-free modes by adding
basis functions near the surface. Some thoughts that have been considered include the following.

• A uniform pressure mode could be added to both the acoustic and structural responses.

• We could consider the static acoustic modes that are generated by the deformations of the
structural eigen analysis. We anticipate that the structural deformations will have a larger
control over acoustic modes, so we may not need to be as concerned about the impact of
the acoustic pressures on the structure, but we may want to include some of these as well.
Perhaps some methods could be used to identify a subset of modes that would best aid in
model completeness and convergence.

• Spline or boundary expansions are possible.

1.13 Quadratic Modal Superposition

Consider the system
Mü+Cu̇+Ku = f (t) (1.126)

where M, C, and K are the mass, damping, and stiffness matrices. Standard methods may be used to
solve the eigenvalue equation derived from 1.126 only in the case where the eigenvectors of K and M
also diagonalize C (as in proportional damping for example). Unfortunately, such cases are usually
not physical, and are rare in practice. For a general damping matrix, no procedures are available to
directly solve the eigen equation. For an excellent survey article on quadratic eigenvalue systems,
see the article by Tisseur.11

However, the second order system may be transformed to a larger, first order system which does
have a known solution. We linearize the system as follows. Define,

w =

[

u
u̇

]

(1.127)

If we consider the eigenvalue problem corresponding to equation 1.126, we would set the right hand
side f (t) to zero. Then, there are many options for the linearization, but the one chosen for QEVP
is

[

−K 0
0 M

]

w =

[

C M
M 0

]

ẇ (1.128)

We assume a solution of the form w = φeλt , and arrive at the eigenvalue problem,

Aφ = λBφ (1.129)

where
A =

[

−K 0
0 M

]

, (1.130)
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and

B =

[

C M
M 0

]

(1.131)

Equation 1.129 yields the “right” eigenvectors. As is seen later, we also need the “left” eigenvectors,
which correspond to the eigenvalue problem,

ψ†A = λψ†B (1.132)

We denote the left eigenvectors as ψi to distinguish them from the right eigenvectors φi.

1.13.1 Diagonalization and Modal Superposition

Symmetric system matrices are always diagonalizable, using the matrix formed by their eigenvec-
tors. However, when nonsymmetric matrices, such as those of equation 1.128, may be impossible
to diagonalize. This has significant implications for modal superposition techniques, since if A and
B cannot be diagonalized by pre and post multiplying by matrices of eigenvectors, then the reduced
(modal) equations of motion will be coupled. The primary advantages of modal superposition would
be lost.

As discussed in the literature,11, 12, 13 one case where the matrices A and B are diagonalizable is if
all of the eigenvalues are distinct. If there are repeated eigenvalues, then the matrix is still diagonal-
izable, as long as the eigenvectors corresponding to repeated eigenvalues are linearly independent.
This can be summarized by the theory of geometric and algebraic multiplicities of eigenvalues, as
follows:14

• The algebraic multiplicity of an eigenvalue is defined as the number of times that this eigen-
value is repeated in the list of eigenvalues of the matrix.

• The geometric multiplicity of an eigenvalue is the dimension of the space spanned by its
eigenvectors. Thus, for an eigenvalue with an algebraic multiplicity of 2, the geometric mul-
tiplicity would be 2 if the corresponding eigenvectors are linearly independent, and 1 if they
are linearly dependent.

• An n× n matrix is diagonalizable if and only if the geometric multiplicity is equal to the
algebraic multiplicity for every eigenvalue λ.

In short, for the matrix to be diagonalizable, the eigenvectors corresponding to repeated eigenvalues
must be linearly independent. If the eigenvalues are all distinct, then the matrix is always diagonal-
izable.

It is also interesting to discuss the circumstances under which the eigenvalues and eigenvectors
of A and B come in complex conjugate pairs. When this is the case, significant savings in storage
and computational time can be achieved. The general rule is quite simple to prove.15 If the entries
in a matrix are all real-valued, then any complex eigenvalues or eigenvectors that arise must come
in complex conjugate pairs. In order to prove this, we note that for a matrix with all real- valued
entries, the determinant must be a real number. On the other hand, the determinant is also equal to
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the product of the eigenvalues. Thus, if some of the eigenvalues are complex, the only way that the
product

det(A) = λ1λ2...λn (1.133)
can be a real number is if all complex eigenvalues have a conjugate pair. For example, if λn and
λn+1 are complex conjugates, then we have

λnλn+1 = (λr
n + jλi

n)∗ (λr
n− jλi

n) = [λr
n]

2 +
[

λi
n

]2 (1.134)

The last expression after the equal sign is a real number. We can also conclude that if a matrix has
any complex entries, then the eigenvalues and eigenvectors are not necessarily complex conjugates.

To diagonalize A and B, we define a matrix corresponding to the right-eigenvectors that are
computed from equation 1.129.

W = [φ1φ2...φ2n] (1.135)
We can also define a matrix corresponding to the left-eigenvectors from equation 1.132.

U = [ψ1ψ2...ψ2n] (1.136)

Representing the solution as w = ∑2n
i=1 ziφi, and the loading as,

g(t) =

[

f (t)
0

]

(1.137)

we have11

−αizi(t)+βiżi(t) = ψ†
i g(t) (1.138)

where αi = ψ†
i Aφi and βi = ψ†

i Bφi. When modes are mass normalized, βi = 1 and αi = λi. We note
that the † symbol represents a conjugate transpose, and not just a transpose. This is a complex-
valued uncoupled scalar equation for each degree of freedom in the system, which can be integrated
in time. We note that this is a first order system in time, rather than second order, and thus different
methods are required for the numerical integration than are used for real-valued modal superposi-
tion. Superposition must be performed on the linearized system, as we have no general solution of
the original second order system.

Time Domain Superposition

Equation 1.138 can be integrated numerically, using first-order time integrators. However, another
approach is to use the analytical solution.

zi(t) =

Z t

0
ψ∗i g(τ)e−λi(t−τ)dτ (1.139)

Finally, given the solution for each zi(t), we compute w = ∑2n
i=1 ziφi, and extract the solution u(t)

from the upper half of w(t). We note that in the time domain, the final solution w(t) must be real-
valued, even though both φi and zi are, in general complex. It is easy to show that this is the case.
First, as noted earlier, we recall that the eigenvectors φi come in complex conjugate pairs. Equation
1.138 implies that zi also comes in conjugate pairs. We note that

w =
2n

∑
i=1

ziφi =
n

∑
i=1

[

ziφi + z̄iφ̄i
]

(1.140)

Noting that ziφi + z̄iφ̄i is a real number, we see that the total summation is also a real number.
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Frequency Domain Superposition

For the frequency domain solution, we assume a time-harmonic loading and response.

g(t) = g0eiωext (1.141)
zi(t) = zie

iωext (1.142)
(1.143)

where ωex is the frequency of the external excitation, and g0 is a spatial vector of loadings at that
frequency. Substituting these relations into equation 1.138, we obtain the equations for complex
modal frequency response

[−αi + iωβi]zi = ψ†
i g0 (1.144)

This can also be written as,

zi =
ψ†

i g0
−αi + iωβi

(1.145)

We note that the denominator will go to zero if αi = iωβi, as is expected, in the case of resonance. A
standard approach16 of stabelizing the solution near resonances is to add a small amount of modal
damping. In state space, this corresponds to a adding a real-valued term in the denominator of
equation 1.145. Thus, when αi = iωβi this additional term would prevent a singular response. This
additional real term takes the form

zi =
ψ†

i g0
γi−αi + iωβi

(1.146)

where γi is the modal damping, and is a real number.

As before, the solution of the displacement degrees of freedom is a superposition of modal
solutions.

w(ω) =
2n

∑
i=1

zi(ω)φi (1.147)

=
2n

∑
i=1

φiψ†
i g0

γi−αi + iωβi
(1.148)

1.13.2 Theory for modal superposition with sa eigen

In the case of the sa eigen solution case, the eigenvalue problem is solved in a reduced space.
Recalling equation 1.126, and the transformation u = Tû, we can transform equation 1.126 into a
reduced space as

m̂ ¨̂u+ ĉ ˙̂u+ k̂û = f̂ (1.149)

where m̂ = T T MT , ĉ = T TCT , k̂ = T T KT , and f̂ = T T f . We note that the superscriptˆ is used from
here on to denote the reduced space. If we then define

q̂ =

[

û
˙̂u

]

(1.150)
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As was done for the full system for the QEVP method, we project this into the first order system8.

Âq̂− B̂ ˆ̇q = ˆg(t) (1.151)

where

Â =

[

0 I
−k̂ −ĉ

]

(1.152)

B̂ =

[

I 0
0 m̂

]

(1.153)

ĝ =

[

0
− f̂

]

(1.154)

Assuming a solution of the form q̂ = φ̂eλt , we arrive at the eigenvalue problem

Âφ̂ = λB̂φ̂ (1.155)

where we emphasize that φ̂ is in the state-space form of the reduced problem. This eigenvalue
problem is solved with the DGGEV algorithm from LAPACK.

Once the eigenvalue problem 1.155 is solved, methods of the previous section can be applied for
solution of the scalar modal equations of the linearized system and projection back to the reduced
space and finally to physical space.

We transform equation 1.151 into the frequency domain.

Âq̂− iωexB̂q̂ = ĝ(ω) (1.156)

where ωex is the frequency of the external excitation. We assume that the solution can be represented
as q̂ = ∑2n

i=1 ẑiφ̂i. Substituting this into equation 1.156, and premultiplying by the left eigenvectors
ψ̂i, we obtain

α̂iẑi− iβ̂iωexzi = ψ̂i
†ĝ (1.157)

where α̂i = ψ̂i
†Âφ̂i and β̂i = ψ̂i

†B̂φ̂i. This scalar equation, 1.157 can be solved for ẑi. The solution
in reduced space, q̂ can be obtained from q̂ = ∑2n

i=1 ẑiφ̂i. Given q̂, û can be extracted from the upper
half of q̂, as per equation 1.150. Finally, once û is known, the original solution u can be computed
from the relation u = Tû.

8 also known as a state space solution
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1.13.3 Discussion of Eigenvectors and Superposition

There are several important points to consider for the eigenvectors of this problem.

• The left and the right eigenvectors of the linearized system diagonalize the characteristic
matrices A and B. However, the eigenvectors do not diagonalize the matrices of the original
second order equation, 1.126. This means that the modal equations are coupled in the second
order system, and most simplifications for superposition are available only on the linearized,
first order system.

• Both the left and the right eigenvectors of the linearized system can be written as displacement
and velocity components, where the velocity component is just just rescaled. Specifically,

φ j =

[

φu
j

λ jφu
j

]

, (1.158)

where φu is the displacment component of the eigenvector.

• The left eigenvectors can be computed from the solution of the transposed equation. Thus,
for symmetric systems, left and right eigenvectors are identical.

• Eigenvectors of the linearized, nonsymmetric systems are often not normalized as expected.
In many cases the eigenvectors are not even completely orthogonal, even when they may be
linearly independent.

1.13.4 Complex Eigenvector Orthogonalization

When the eigenvalues of a system are redundant, the eigenvectors are not fully defined, but can
be arbitrary linear combinations. Some solvers, such as DGGEV don’t guarantee orthogonality of
these vectors. If such orthogonalization is required, the procedure in Figure 6 may be followed to
orthogonalize two eigenvectors with a common eigen value.

1.14 Component Mode Synthesis

Component mode synthesis in Salinas follows the Craig-Bampton method. In this method the model
is reduced using fixed interface modes and constraint modes. The method is outlined in some detail
in Craig’s book, (Chapter 19 of 9). It is summarized below. Note that in Salinas we do not permit
any flexibility in the interface boundary options. Only fixed interface modes are supported.

CMS is typically applied to eigenvalue analysis, but it may be used in other solution methods
as well. Here we describe only the eigen analysis application. Within Salinas only a subset of the
standard CMS method is available. Salinas may reduce an entire model to a set of interface degrees
of freedom with the corresponding system matrices and transfer matrices. Salinas may also read in
a reduced system for solution within its framework.

CMS by these methods is always a linear model, with support for linear elasticity only. The
reduction is based on an eigen reduction and linear superposition.
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Given two modes with a common eigenvalue, λ, and with left and right
eigenvectors, ψi and φ j , we orthogonalize with respect to a matrix B.

ψ†
1Bφ1 = β11 (1.159)

ψ†
1Bφ2 = β12 (1.160)

ψ†
2Bφ1 = β21 (1.161)

We modify ψ2 and φ2 to ensure that β12 = β21 = 0. Let ψ̂ be the corrected
eigenvector.

ψ̂2 = ψ2− εψ1

We require that ψ̂†
2Bφ1 = 0. Then,

0 = ψ̂†
2Bφ1 (1.162)

= (ψ2− εψ1)
†Bφ1 (1.163)

= β21− εβ11 (1.164)

Thus,
ψ̂2 = ψ2−

β21
β11

ψ1 (1.165)

For the right eigenvector,

φ̂2 = φ2−
β12
β11

φ1 (1.166)

Figure 6. Complex EigenVector orthogonalization
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1.14.1 Reduction of superelement matrices

The entire model of a structure may be reduced to the interface degrees of freedom and generalized
degrees of freedom associated with internal modes of vibration. Consider the general eigenvalue
problem, with the system matrices partitioned into interface degrees of freedom, C, and the comple-
ment, V .

([

Kvv Kvc

Kcv Kcc

]

−λ
[

Mvv Mvc

Mcv Mcc

])[

uv

uc

]

= 0 (1.167)

Within Salinas we consider only the cases where Kvv is nonsingular. For the Craig-Bampton method
this implies that clamping the interface degrees of freedom removes all zero energy modes from the
structure.

The Craig-Bampton method reduces the physical degrees of freedom, u, to generalized coordi-
nates, p, using a set of preselected component modes, Ψ.

u = Ψp (1.168)

The component modes are selected as follows. We let Ψ = [Φ ψ], where Φ is a set of eigen
modes of the fixed interface, i.e.,

(Kvv−λMvv)Φ = 0

We retain only a subset of the modes in this system. In addition, we define the constraint modes, ψ,
as the static condensation of the problem. Each column of ψ is the solution of the static problem
where one interface degree of freedom has unit displacement, and all other interface degrees of
freedom are fixed. As shown in Craig,

ψ =−K−1
vv Kvc (1.169)

Note that since we require that Kvv be positive definite, all these solutions are well defined. The
matrix need be factored only once for all the modes.

Reduced System

As shown in Craig, the reduced system matrices can be written as follows.

µ =

[

µkk µkc

µck µcc

]

(1.170)

and,

κ =

[

κkk κkc

κck κcc

]

(1.171)
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where,

µkk = Ikk

µkc = µT
ck = φT (Mvvψ+Mvc) (1.172)

= φT Mvvψ+(Mcvφ)T

µcc = ψT (Mvvψ+Mvc)+Mcvψ+Mcc

= ψT Mvvψ+(Mcvψ)T +Mcvψ+Mcc

and,
κkk = Λkk

κkc = κck = 0 (1.173)
κcc = Kcc−KcvK−1

vv Kvc

= Kcc +Kcvψ

Note that the coupling between the modal and interface portion of the system matrix occurs only in
the mass matrix.

Parallelization Issues

The discussion above applies simply for direct solvers for which a system matrix is generated.
Parallelization issues are straightforward, and cover 3 main areas 1) computation of fixed interface
modes, 2) computation of constraint modes, and 3) matrix vector products.

1. Fixed Interface Modes. Since the process of computation of the eigensystem is independent
of the particular solver, there are no parallelization issues with respect to the eigenvalue prob-
lem. It is easily shown that parallel solvers result in the same eigen pairs as serial solvers.
There is no reason to expect that any finite precision issues would be more important here
than in other modal based solutions.

2. Constraint Modes. The constraint modes are different, in that we do not currently have a
capability to compute enforced displacement in parallel. Recall that the constraint mode is the
displacement on space “V” that is computed when a unit displacement is applied to a single
degree of freedom on the interface. The serial equations are as follows.

[

Kvv Kvc

Kcv Kcc

][

uv

uc

]

=

[

0
R

]

(1.174)

Equation 1.169 uses the first of these only to solve for uv = ψ. For a domain decomposition
problem, the system matrices are written differently. We examine a two subdomain problem
for clarity.













K1vv K1vc 0 0 CT
1v

K1cv K1cc 0 0 CT
1c

0 0 K2vv K2vc CT
2v

0 0 K2cv K2cc CT
2c

C1v C1c C2v C2c 0

























u1v

u1c

u2v

u2c

µ













=













0
0
0
0
R













(1.175)
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We extract only the first and third rows to arrive at,

[

K1vv 0 CT
1v

0 K2vv CT
2v

]





u1v

u2v

µ



=

[

f1
f2

]

(1.176)

Here fi = Kivcuic. This system is the standard system of equations that is solved by the domain
decomposition solver. The RHS is just the sum of the individual subdomain terms.

3. Matrix Vector Products. There are two primary issues involved in the matrix vector products
computed in parallel. First, there is the issue of duplication of some nodal quantities on the
subdomain interfaces. Second, there is the issue of multipoint constraint handling.
The products required in computing the reduced matrices of equations 1.170 through 1.173
are all of the form, aT Bc, where a and c are vectors and B is a matrix. These are equivalent
to element by element summations like those used in computing the total energy. Thus, the
quantities must be summed on the interface. There is no need to divide by the number of
shared interface degrees of freedom.
The issue of multipoint constraints is a little trickier. The system is now divided using la-
grange multipiers, χ. Equation 1.167 may be so expressed.









Kvv Kvc CT
v

Kcv Kcc CT
c

Cv Cc 0



−λ





Mvv Mvc 0
Mcv Mcc 0

0 0













uv

uc

χ



= 0 (1.177)

where χ are the lagrange multipliers. But, we want these multipiers to be reduced out of the
system (i.e. they should be in the “V” space), so it is useful to reorder the rows and columns
of this equation.

([

K̃vv K̃vc

K̃cv Kcc

]

−λ
[

M̃vv M̃vc

M̃cv Mcc

])[

ũv

uc

]

= 0 (1.178)

where,

K̃vv =

[

Kvv CT
v

Cv 0

]

,

K̃vc =

[

Kvc

CT
c

]

,

M̃vv =

[

Mvv 0
0 0

]

and,

ũv =

[

uv

χ

]

The matrix products are readily computed.

M̃vvũv = Mvvuv

M̃cvũv = Mcvuv

K̃cvũv = Kcvuv +CT
c χ
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Thus, all of the mass products are simple – they do not require any special lagrange multiplier
treatment, but the stiffness product may require some such contribution. Note that if Cc is
zero (as occurs if there is no constraint tied to the superelement interface) then the stiffness
terms are likewise unchanged.

4. Accuracy Issues. The accuracy of the null space is determined by the sum of two large
quantities (see equation 1.173). With iterative solvers, this may not be determined accurately
enough to insure stability of subsequent time history integration. Even unconditionally stable
integration schemes like the trapezoidal Newmark Beta methods can become unstable if the
stiffness matrix is indefinite.
Our experience has shown that inaccurate solves lead to corruption of the zero energy modes
with little impact on the remaining elastic modes. Thus, it seems reasonable to eliminate the
error in a post processing step. Two methods are used. The simpler method removes negative
modes from the reduced matrix without affecting the eigenvector basis of the matrix. How-
ever, if the eigenvectors can be accurately determined using geometric means, then a better
approach uses these known eigenvectors to correct both the eigenvalues and eigenvectors of
the reduced matrix.
To correct eigenvalues alone, we use the following algorithm.

(a) We extract the interface portion of the reduced system matrix, κcc. Note that the portion
of the matrix associated with generalized degrees of freedom (i.e. the fixed interface
modes) should be positive definite.

(b) We perform an eigen analysis of this matrix.

κcc = V∆V T

where V ji is the eigenvector, and ∆i is the eigenvalue of mode i.
(c) We determine a corrected matrix,

κ̃cc = κcc−
negativemodes

∑
j

Vj∆ jV
T
j

To correct both eigenvalues and eigenvectors of the corrupted null space, the algorithm is a
little more involved. Details of the algorithm are presented in Figure 7. Most of the operations
in the algorithm operate on matrices of order 12 or smaller, so the computational cost is fairly
minimal. The method does require very accurate determination of the zero energy modes.

1.15 A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approaches for a posteriori error estima-
tion of eigen analysis. The first is an explicit error estimator,17 ,18 and the second is a quantity of
interest approach.19 The explicit approaches are described in chapter 2 of,20 and the quantity of
interest approaches are described in chapter 8 of the same book. However, since we are interested
in the eigenvalue problem, the methodologies are somewhat different than the approaches described
in,20 though there are many similarities. Both the explicit and the quantity of interest approaches
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1. Determine rigid body modes, R, of the interface. This is done geometrically.
These are normalized so that RT R = I. Typically there are 6 such vectors.

2. Let, A = RT κccR.

3. Compute a error vector, U = κccR−RA. Note that RTU = 0

4. Perform a QR factorization of the error vector. U = SB. Matrix S has orthonor-
mal columns.

5. Define Q = [R S]

6. Compute the norm of the matrix composed of A and B.

µ =

∥

∥

∥

∥

[

A
B

]∥

∥

∥

∥

7. Compute the eigenspectrum of A.

(A−λI)φa = 0

8. Compute G = µ2I−λ2.

9. W = φa
√

GφT
a

10. D =−BW−1AW−1BT

11. define,

H =

(

A BT

B D

)

note that ||H||= µ.

12. Compute the correction,
κ̃cc = κcc−QHQT

Figure 7. Eigenvalue and Eigenvector corrections of Craig-Bampton
reduced models
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have the same goal - to use the computed solution to compute upper and lower bounds on the dis-
cretization error for the eigenvalues and eigenvectors. A drawback to the explicit approach is that
unknown constants are present in the bounds, making final determination of the error more diffi-
cult. Because of this, explicit estimators are more frequently used as element indicators to drive
adaptivity algorithms, rather than as error estimators. The quantity of interest approach avoids the
unknown constants, but is more work in terms of implementation.

1.15.1 Preliminaries

We seek a posteriori bounds on the error of the finite element solution of the eigenvalue problem for
elasticity

−ρλu = (Λ+µ)∇(∇ ·u)+µ∇2u = ∇ ·σ(u) (1.179)

or
A1(u) =−λA2(u) (1.180)

where where A1(u) and A2(u) are the partial differential operators implied by equation 1.179, λ and
u are the unknown eigenvector and eigenvalue, and Λ and µ are the Lamé elasticity constants. We
note that the right hand side of equation 1.179 can be written either in terms of displacement, as in
the first representation, or in terms of stress, as in the second representation of the right hand side
of the equation. The weak formulation of equation 1.179 is constructed by multiplying by a test
function, and integrating by parts, with homogeneous boundary conditions. This leads to the weak
formulation: Find (λ,u) ∈V ×R such that

B(u,v) = λM(u,v) ∀v ∈V (1.181)

where
B(u,v) =

Z

Ω
σ(u)ε(v)dx (1.182)

and
M(u,v) =

Z

Ω
ρuvdx (1.183)

After defining a finite element discretization, this reduces to: Find (uh,λh) such that

Ku = λMu (1.184)

where (uh,λh) are the finite element approximations of the eigenvector and eigenvalue, and K, M,
are the assembled stiffness and mass matrices.

1.15.2 Approach I - explicit error estimator

In Larsen17 and Rannacher,18 two independently derived error estimates are presented for the
Laplace equation. While the two estimates differ slightly, both incorporate an unknown constant,
C, an element diameter term, he, and an element residual function, ρ̄. In what follows we extend
these estimates to the elasticity problem. The following two error estimates are given in17 and18

respectively. In what follows we use Larsen’s results (equation 1.185) exclusively. 9

9Equation 1.185 applies to elements with linear shape functions. The more general expression may be found in
equation 1.235 or the reference.
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|λ−λh| ≤ cλCe,0

(

Ne

∑
e=1

h4
e ρ̄(uh,λh)

2

) 1
2

(1.185)

|λ−λh| ≤C2
Ne

∑
e=1

h2
e ρ̄(uh,λh)

2 (1.186)

where he is the element diameter, and

ρ̄(uh,λh)
2 =

Z

Ωe

(

|A1uh +λhA2uh|+R f lux
)2

dΩe (1.187)

The first term on the right hand side is the interior element residual, which is the differential stiffness
operator A1, defined in equation 1.180, applied to the computed element displacement combined
with the computed eigenvalue times the differential mass operator A2, also defined in equation
1.180, applied to the computed element displacement. This term is computed by representing the
eigenvector as a summation

uh(x) =
N

∑
i=1

aiNi(x) (1.188)

where ai is the ith entry in the eigenvector, and Ni(x) is the ith shape function, and then simply
applying the gradient and divergence operators from equation 1.179 to the summation in equation
1.188.

We note that the quantity A1uh + λhA2uh is expressed in the strong form, and thus is not the
same as Kuh−λhMuh, though both expressions are on the element level. The difference can be seen
by observing the first term A1uh

A1uh = ∇ ·σ(uh) (1.189)

That is, A1uh is the divergence of the stress (which is computed from the finite element displacement
uh). This is not the same as Kuh, since Kuh is in the weak form, and has been evaluated by integrating
over the element against a test function. For example, if we consider linear elements, we have
A1uh = ∇ ·σ(uh) = 0, since the stress is constant over the element. On the other hand, Kuh is not
zero.

The second term is the boundary or flux residual.

R f lux = (hevol(e))−1/2
[

Z

Γe

R2dΓe

]1/2
(1.190)

It has two different integrands depending on whether the face in question lies on a part of the
boundary where traction or pressure boundary conditions are applied, or whether it is an interior
face. When it lies on a boundary loaded face,

R = g−σi jn j (1.191)

where g is the applied traction or pressure load. Note that g = 0 for eigen problems. When the face
is an interior face,

R = [σi jn j] = σa
i jn j−σb

i jn j (1.192)
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where σa and σb are the stress tensors in the two adjacent elements, element ’a’ and element ’b’.
Note that because the integrand is squared, computing the flux residual in parallel requires parallel
communication.

We note the intuitive nature of the upper bound in equation 1.185. As the element size he tends
to zero, the right hand sides of the estimate goes to zero, due to the multiplication by the element
sizes he. Keep in mind also that the ρ̄ term includes an integral over a volume and that ∑Ne

e=1 ‖const‖
is a constant.

There are two important issues in applying the results in Larsen’s reference to general elasticity
problems. The first of these is the the extension to elasticity. The second is the extension to multiple
materials. These are covered in the following sections.

1.15.3 Extension of Estimators to Elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scaling the Laplace
equation to the elasticity problem. It addresses issues of both mass and stiffness scaling. A similar
development was provided by Clark Dohrmann. The development herein builds upon Larsen’s
development 17, and uses quantities defined there.

We consider the eigenvalue problem

−µ∆u− (Λ+µ)∇(∇ ·u) =−∇ ·σ(u) = θρu in Ω (1.193)
u = 0 on ∂Ω (1.194)

where the Lamé constants Λ and µ satisfy

Λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

(1.195)

We define also a weak formulation: find (u,θ) ∈ V×R

a(u,v) = θb(u,v), ∀ v ∈ V (1.196)
b(u,u) = 1 (1.197)

where

a(u,v) =
Z

Ω
σ(u) · ε(v)dx (1.198)

and

b(u,v) =

Z

Ω
ρu ·vdx (1.199)

We follow the approach in the paper by M. Larson to derive a posteriori error estimators. We use
most of his notation.
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Residual

The definition (3.7) for the residual becomes, on a triangle τ,

R(uh,θh)|τ =
1√ρ
|∇ ·σ(uh)+θhρuh|+

√

1
h vol(τ)

Z

∂τ\∂Ω

(

n ·
[

σ(uh)

2√ρ

])2
(1.200)

Note that we have
R(uh,θh)≡ R(uh,θh,ρ,E,ν) (1.201)

and that R satisfies the following scaling properties

R(
uh√

α
,
θh

α
,αρ,E,ν) =

1
α

R(uh,θh,ρ,E,ν) (1.202)

R(uh,αθh,ρ,αE,ν) = αR(uh,θh,ρ,E,ν) (1.203)

Stability estimates

The equation (3.10) becomes

||D2+sv|| ≤Ce,s

√

√

√

√b

(

(−1
ρ

∇ ·σ
)1+s/2

(v),

(−1
ρ

∇ ·σ
)1+s/2

(v)

)

(1.204)

Note that
Λ+µ =

E
2(1+ν)(1−2ν)

,
µ

Λ+µ
= 1−2ν (1.205)

Then, we get

Ce,s = c
ρ(1+s)/2

(Λ+µ)(2+s)/2 (1.206)

Note that we have
Ce,s ≡Ce,s(ρ,E,ν) (1.207)

and that Ce,s satisfies the following scaling properties

Ce,s(αρ,E,ν) = α(1+s)/2Ce,s(ρ,E,ν) (1.208)

Ce,s(ρ,αE,ν) =
1

α(2+s)/2Ce,s(ρ,E,ν) (1.209)

A posteriori estimates

We make also the assumption (2.6) : there are 0≤ δ < 1 and h0 > 0 such that

max
θi 6∈Θ

∣

∣

∣

∣

θh−θ
θi−θ

∣

∣

∣

∣

≤ δ , ||QΘuh||2 ≤ δ (1.210)
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for all meshes such that maxh(x) ≤ h0. Using p = 1, k = 2, β0 = 0, and β1 = 1, the final estimate
on the eigenvalues becomes

θh−θ
θ
≤ c

1−δ
Ce,0
√

ρ||h2R(uh,θh)|| (1.211)

The estimates on the error in the discrete eigenvector are now

√

b(eΘ,eΘ) ≤ c
1−δ

Ce,0(1+max
θi 6∈Θ

θ
|θi−θ|)

√
ρ||h2R(uh,θh)|| (1.212)

√

a(eΘ,eΘ) ≤ c
√ρ

1−δ
(Cc +Ce,0 max

θi 6∈Θ

θθ1/2
i

|θi−θ|hmax)||hR(uh,θh)|| (1.213)

where Cc is related to the coercivity constant

||Dv|| ≤Cc

√

a(v,v) (1.214)

In Ciarlet’s book (“The finite element method for elliptic problems”), the coercivity constant is given

a(v,v) ≥ 2µ||Dv|| ⇒ Cc =
c√
2µ

(1.215)

1.15.4 Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit error estimator to multiple
materials. We don’t believe that there are significant issues, and present the approach used in Salinas
here. There are two main constraints from the explicit error estimator formulations that must be
maintained.

1. The eigenvectors, uh must be unit normalized, i.e.‖uh‖= 1. This is important for mass scaling
so that a change of units does not affect the fractional error in the solution. It is an essential
part of both Larsen’s development and Ulrich’s extension to elasticity. See equation 1.197.

2. The extensions must maintain finite element consistency so that as h goes to zero there is no
inconsistency.

The second of these can be evaluated by examination of the residuals (as in equation 1.187).
Both the internal and the flux terms of the residuals are unaffected by most scaling operations
provided that materials remain constant within an element. Note that the evaluation of the flux
jump (equation 1.190) is unaffected by multiple materials since the normal component of stress
discontinuity should go to zero even for disparate materials.

Eigenvector normalization could be addressed in several ways. The eigenvectors computed in
Salinas are mass normalized, i.e. uT Mu = I. We renormalize for error estimation in the following
manner.

1. A unitless mass matrix, M̄ is computed using unit density material.
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2. We compute a scale factor
mα = uT M̄u (1.216)

3. The eigenvectors are renormalized as u← u/
√

mα.

In addition to eigenvector renormalization, we move the evaluation of the scaling constant, Ce,s,
from equation 1.206 inside the summation of equation 1.185. This maintains the proper scaling
with respect the element stiffness terms.

A recent paper by Bernardi and Verfurth21 has shown that explicit estimators can be used in
the presence of multiple materials. For static Laplace equation, he derived multiplicative constants
for the interior and flux contributions that make the multiplicative constant in front of the estimator
independent of jumps in material properties. In what follows we extend this approach to the eigen-
value problem, and to elasticity problems. We will follow the same approach as in that paper, i.e.
first constructing the lower bound, and then the upper bound. The proper choices for the coefficients
will result from the upper and lower bound estimates.

First, we note a commonly used form for explicit estimators.

‖uh−u‖α ≤ c∑
K

(

h‖Ri(uh,θh)‖2
L2(K) +

√
h‖ [σn(uh)]

2
‖2

L2(∂K)

) 1
2

(1.217)

where Ri(uh,θh) = |∇ ·σ(uh)+θhρuh|, [σn(uh)] is the jump in stress across the element boundary
∂K, and ‖ · ‖α is the energy norm. This estimator can be shown to give both an upper and a lower
bound on the error. As written, this estimator does not fully account for discontinuous material
properties, since the constant c in front of the estimator would depend on the jumps in material
properties.

We note that the estimator, written in this form, is essentially the same as the one proposed by
Larson. For example, by writing the boundary term as an integral of a constant function, scaled by
the volume of the element, then we can write equation 1.217 in the form

‖uh−u‖α ≤ c∑
K

(

‖hRi(uh,θh)+

√
h

Vol(K)

[σn(uh)]

2 ‖2
L2(K)

) 1
2

(1.218)

which is the same expression given by Larson in the case of linear elements. We note that this
estimator is in terms of the energy norm, whereas Larson gives his results in terms of the L2 norm.
This results in the difference of one power of h in equation 1.218.

The approach in Bernardi is to replace the estimator in equation 1.217 by

‖uh−u‖α ≤ c∑
K

(

µK
2‖Ri(uh,θh)‖2

L2(K) +µe‖
[σn(uh)]

2 ‖2
L2(∂K)

) 1
2

(1.219)
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where µK and µe are chosen in such a way that the resulting estimator is both an upper and lower
bound on the error, and the constant c is independent of the jumps in material properties.

Before beginning, we redefine the original PDE as follows

−∇ ·σ
ρ

= θu (1.220)

the corresponding bilinear forms as

a(u,v) =

Z

Ω

1
ρ

σ(u) · ε(v)dx

b(u,v) =
Z

Ω
u ·vdx

and the corresponding interior residual as

Ri(uh,θh) = |∇ ·σ(uh)

ρ
+θhuh| (1.221)

By dividing through by ρ, we include the density in the energy norm. This will be important later
on when the coefficients in equation 1.219 are selected.

As in Bernardi, we need the following identities, which follow from equation 1.181

a(u−uh,v) = θb(u,v)−a(uh,v) (1.222)

θb(u,v)−a(uh,v) = ∑
K

Z

K

(

θu+
1
ρ

∇ ·σ(uh)

)

vdx−

∑
e

Z

e

[

1
ρ

σn(uh)

]

·vdτ (1.223)

where the summation ∑e is over all edges (in 2D) or over all faces (in 3D). We also use equations
2.11 in Bernardi’s paper.

The lower bound will be considered first. We set wK = ΨKRi(uh,θh), where ΨK comes from
equation 2.11 in Bernardi’s paper. We will also make use of the following inequality for the bilinear
form

a(u,v)K ≤ ‖u‖α‖v‖α (1.224)
≤ αK‖u‖1‖v‖1 (1.225)

where αK = CK
ρK

, and CK is the maximum eigenvalue of the material property matrix, and ρK is the
density of the element.
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For the interior part of the residual, we have

‖Ri(uh,θh)‖2
L2(K) ≤ γ2

1

Z

K

[

1
ρ

∇ ·σ(uh)+θhuh

]

·wKdx

= −γ2
1

Z

K

1
ρ

σ(uh) · ε(wK)dx+ γ2
1

Z

K
θhuh ·wK

= γ2
1a(u−uh,wK)K− γ2

1θ
Z

K
u ·wKdx+ γ2

1θh

Z

K
uh ·wKdx

≤ γ2
1

[

‖u−uh‖α(K)γ2h−1
K α

1
2
K +‖θhuh−uθ‖L2(K)

]

× ‖Ri(uh,θh)‖L2(K) (1.226)

where we note that, since ΨK is a bubble function, the boundary terms vanish in the integration by
parts on the second line of the above equation.

This implies that

‖Ri(uh,θh)‖α(K) ≤ γ2
1

[

‖u−uh‖α(K)γ2h−1
K α

1
2
K +‖θhuh−uθ‖L2(K)

]

or, multiplying through by µK ,

µK‖Ri(uh,θh)‖α(K) ≤ γ2
1

[

‖u−uh‖α(K)µKγ2h−1
K α

1
2
K +µK‖θhuh−uθ‖L2(K)

]

Now is where a critical assumption comes into play. We assume here that the computed
eigenvalue θh and eigenvector uh are closer to the exact solution θ and u than any other eigen-
value/eigenvector pair. This assumption is also made by Larson, in equation 2.6. With this assump-
tion, the term ‖θhuh−uθ‖L2(K) is a higher order term compared with ‖u−uh‖α(K), and thus will
decay to zero at a faster rate. This was also shown in the paper by Duran.22 Thus, we select µK based
on the term ‖u−uh‖L2(K) only. If we select µK = hKα−

1
2

K then the right hand side is independent of
the jumps in material properties.

For the boundary term, we first choose we = Ψe

[

1
ρ σn(uh)

]

, where again Ψe comes from equa-
tion 2.11 in Bernardi. Then, using equation 1.226 we have
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‖
[

1
ρ

σn(uh)

]

‖2
L2(e) ≤ γ2

3

Z

e

[

1
ρ

σn(uh)

]

·wedτ

= γ2
3 ∑

K

Z

K

(

∇ · 1
ρ

σ(uh)+θhuh

)

·we− γ2
3 ∑

K

a(u−uh,we)

+ γ2
3 ∑

K

Z

K
(θu−θhuh) ·we

≤ cγ2
3

(

∑
K

γ5h
1
2
e ‖Ri(uh,θh)‖L2(K) +∑

K

γ4h
− 1

2
e α

1
2
K‖u−uh‖α

+ γ5h
1
2
e ∑

K
‖uθ−uhθh‖L2(K)

)

‖
[

1
ρ

σn(uh)

]

‖L2(e)

≤ cγ2
3

[

∑
K

h
− 1

2
e α

1
2
K‖u−uh‖α +∑

K

h
1
2
e ‖θhuh−θu‖L2(K)

]

× ‖
[

1
ρ

σn(uh)

]

‖L2(e) (1.227)

where in the above equation, ∑K denotes a summation over elements, but only those elements that
border the edge e. Also, in the previous estimate we collected constants involving γ and combine
with the constant c, where possible.

This implies that

µ
1
2
e ‖
[

1
ρ

σn(uh)

]

‖L2(e) ≤ cγ2
3µ

1
2
e

[

∑
K

h
− 1

2
e α

1
2
K‖u−uh‖α +∑

K

h
1
2
e ‖θhuh−θu‖L2(K)

]

We see that if we choose µe = he max (αK1,αK2)
−1, where subscripts 1 and 2 denotes the two neigh-

boring elements that contain the edge or face e, then the right hand side (neglecting the higher order
term) is independent of the jumps in material properties.

Now we construct the upper bound. We start with a few identities that will be needed along the
way.

Z

Ω

(

1
ρ

∇ ·σ(uh)+θu
)

· (w−wh) =−a(uh,w−wh)+

∑
e

[

1
ρ

σn(uh)

]

· (w−wh)+

Z

Ω
θu(w−wh)

(1.228)
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This implies that

a(uh,w−wh) = ∑
e

[

1
ρ

σn(uh)

]

· (w−wh)

+

Z

Ω
θu · (w−wh)−

Z

Ω

(

1
ρ

∇ ·σ(uh)+θρu
)

· (w−wh) (1.229)

We will use the previous result in the upper bound on the energy norm of the error. Let w = u−uh.
Then

‖u−uh‖2
α = a(u−uh,w) = a(u−uh,w−wh) (1.230)

where the last equality follows from Galerkin orthogonality. Breaking the previous expression into
element-wise quantities, and using equation 1.229, we obtain

‖u−uh‖2
α = ∑

K

a(u−uh,w−wh) (1.231)

= ∑
K

a(u,w−wh)−∑
e

[

1
ρ

σn(uh)

]

· (w−wh)

− ∑
K

Z

K
θu · (w−wh)+∑

K

Z

K

(

∇ · 1
ρ

σ(uh)+θu
)

· (w−wh)

= ∑
K

Z

K

(

∇ · 1
ρ

σ(uh)+θu
)

·w−wh−∑
e

[

1
ρ

σn(uh)

]

· (w−wh)

≤ ∑
K

µK‖∇ ·
1
ρ

σ(uh)+θu‖L2(K)µ
−1
K ‖w−wh‖L2(K)

+ ∑
e

µ
1
2
e ‖
[

1
ρ

σn(uh)

]

‖L2(e)µ
1
2
e ‖w−wh‖L2(e)

≤
[

∑
K

µ2
K‖∇ ·

1
ρ

σ(uh)+θu‖2
L2(K) +∑

e
µe‖
[

1
ρ

σn(uh)

]

‖2
L2(e)

] 1
2

×
[

∑
K

µ−2
K ‖w−wh‖2

L2(K) +∑
e

µ−1
e ‖w−wh‖2

L2(e)

] 1
2

We now use equation 2.16 in Bernardi’s paper, which shows that

[

∑
K

µ−2
K ‖w−wh‖2

L2(K) +∑
e

µ−1
e ‖w−wh‖2

L2(e)

] 1
2

≤ c‖w‖α (1.232)

With this result, we have

‖u−uh‖α ≤ c

[

∑
K

µ2
K‖∇ ·

1
ρ

σ(uh)+θρu‖2
L2(K) +∑

e
µe‖
[

1
ρ

σn(uh)

]

‖2
L2(e)

]
1
2

(1.233)
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which is the desired upper bound. We note that we would also obtain higher order terms in the
above expression by adding and subtracting terms of the kind

R

K θhuhdx, but the same argument
could be made as before.

1.15.5 Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the following steps. These
steps have to be carried out for each eigenvalue separately.

1. Renormalize the eigenvectors as in section 1.15.4, equation 1.216.

2. Loop through all elements in the mesh. Compute the surface flux residuals for each face.
Share that residual vector at each surface gauss point with neighboring elements to deter-
mine the stress jump 1.192. Integrate over all faces (by summing at surface gauss points) to
determine R f lux (eq 1.190).

3. Loop through all elements in the mesh. At each interior gauss point of each element,

(a) Compute the interior residual,

a1 = |A1(uh)+λhA2(uh)|

(b) Compute the integrand,
(a1 +R f lux)

2

Note that R f lux is a constant over the element.
(c) Sum at gauss points to obtain the element contribution,

ρ̄2 =
Z

Ωe

(a1 +R f lux)
2dΩe

≈
Ngauss

∑
i

wi(a1(xi)+R f lux)
2

4. Compute the global contribution to the error. For elements with linear shape functions, this
may be written,

|λ−λh|
λ

≤ c

(

Ne

∑
e=1

(Ce,0h2
e ρ̄)2

) 1
2

. (1.234)

Where (as shown in section 1.15.3, equation 1.206),

C2
e,0 =

ρ
(Λ+µ)2

and ρ, Λ and µ are the material density and the Lamé constants respectively. The more general
expression for elements of order p is,

|λ−λh|
λ(p+1)/2 ≤ c

(

Ne

∑
e=1

(Ce,p−1h(p+1)
e ρ̄)2

) 1
2

. (1.235)

We note that although the constant, c, in equation 1.234 is not known completely, it is usually
estimated to be of order 1. The constant depends on the details of the mesh, and in particular
on the minimum angle in the elements.

67



1.15.6 Approach II - quantity of interest estimator

In,19 an error estimator is derived for the elasticity equation, using the eigenvalues as the quantity
of interest. The estimate is of the form

ηλ
low = −η2

upp (1.236)
ηλ

upp = −η2
low (1.237)

where ηλ
low is a lower bound on λ− λh, and ηλ

upp is an upper bound on λ− λh. Note that both
quantities are necessarily negative,10 since the computed eigenvalues are always larger than the
exact ones.

The quantities ηupp and ηlow are computed using the so-called element residual method. This
method involves solving a small linear system on each element to obtain an error representation
for that element, and then the element contributions are accumulated to obtain the total errors. The
element residual method involves solving the following linear system on each element

−B(ΦK ,v) = R(v,0)+
Z

∂K
gγ,Kvds ∀v ∈WK (1.238)

or
Kba = f (1.239)

where a is the vector of coefficients that represent the function ΦK . In other words, ΦK = ∑Nshapebubble
i=1 aiNi,

where Ni is the ith bubble shape function. The left hand side Kb is the element stiffness matrix, but
evaluated using bubble functions rather than the standard element shape functions. This is necessary
since the standard element stiffness matrix is singular and thus equation 1.239 would otherwise not
be solvable. The right hand side consists of two terms, an interior residual term for the interior of the
element, and a stress jump term on the element boundary. This is similar to the interior and bound-
ary residual terms that were encountered in the explicit error estimator, though the exact formulas
for these terms are somewhat different. The first term is simply

R(v,0) = B(uh,v)−λhM(uh,v) (1.240)

Equation 1.240 can be most efficiently evaluated using the following method.23 We evaluate the
first term first.

B(uh,v) =

Z

K
BT

bubbleσ(x)dx (1.241)

where BT
bubble is the standard ’B’ matrix, or the matrix of derivatives of the element shape functions,

except that it is using the bubble shape functions rather than the standard shape functions. Note that
the result of equation 1.241 is a vector of length 3xNshapebubble , where Nshapebubble is the number
of bubble shape functions. We note that the routine ForceFromStress in IsoSolid.C already performs
the computation needed for equation 1.241, with the only change being the use of the matrix BT

bubble
rather than the standard BT , and thus this code could be re-used.

10for consistent mass only.
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The second term can be evaluated in a similar way.

M(uh,v) =

Z

K
uh(x)v(x)dx (1.242)

Note that uh(x) is a known function. This term is also a vector of length 3xNshapebubble . The three
entries corresponding to the ith bubble shape function are as follows

Z

K
u1h(x)φi(x)dx (1.243)

Z

K
u2h(x)φi(x)dx (1.244)

Z

K
u3h(x)φi(x)dx (1.245)

(1.246)

where u1h, u2h, and u3h are the x, y, and z components of uh, and φi is the ith bubble shape function.

The boundary term consists of the following. gγ,K is simply the traction on the element boundary,
or

Z

∂K
gγ,Kvds =

Z

∂K
[σi jn j]vds (1.247)

where [σi jn j] denotes the averaged stress on the element faces. For two adjacent elements, element
’a’ and element ’b’, it is the average of their stress traction vectors.

[σi jn j] =
1
2

(

σa
i jn j +σb

i jn j

)

(1.248)

Again, the test (shape) function in this case, ’v’ is the bubble function rather than the standard
element shape function. We note that the boundary integral term in equation 1.238 and equation
1.247 is over all faces of the element in question. Thus, if the implementation of this term proceeds
one face at a time, then there will be a nodal summation step to get the complete right hand side
vector corresponding to the boundary integral term. We could also write this term as

Z

∂K
gγ,Kvds =

N f aces

∑
i=1

Z

∂Ki

gγ,Kvds (1.249)

where ∂Ki is the ith face of element ’K’. Note that the test functions, v become the element shape
functions when restricted to an element. Thus, for a given element bubble shape function φbubble,
and a given face, we can write the previous equation as

Z

∂Ki

gγ,Kφbubbleds (1.250)

Note that gγ,K is a 3-vector, and so for a given bubble shape function, and a given face,
R

∂Ki
gγ,Kφbubbleds

is also a 3-vector. We then take this 3-vector and project it into the element right hand side. After
looping through all faces and all bubble shape functions, we end up with a vector that is of length
3∗Nshapebubble .

69



Once the linear systems 1.239 are solved on each element, the upper bound, ηup from equation
1.237 can be computed as follows

ηupp =
√

∑
K

B(ΦK ,ΦK) (1.251)

This equation can also be written as follows. If we represent the function ΦK as a summation of
coefficients multiplied by the bubble shape functions,

ΦK =
Nshapebubble

∑
i=1

aiNi (1.252)

then
ηupp =

√

∑
K

B(ΦK ,ΦK) =
√

∑
K

aT Kba (1.253)

Finally, using equation 1.237, we have an upper bound on the error in the eigenvalue.

A lower bound on the error in the eigenvalue can also be computed. This is described in detail
in,19 and we summarize here.

First, we define a function χ ∈V , which we will define shortly. Once the function χ is defined,
the lower bound can be computed as follows

ηlow =
|Rp(χ,0)|
√

B(χ,χ)
(1.254)

The quantities in both the numerator and denominator can be computed by looping through all
elements and computing the corresponding element-wise quantities (using equation 1.240), and
then summing globally.

Summarizing, in order to implement the quantity of interest approach for eigenvalue error esti-
mation, we have the following steps. These must be carried out for each eigenvalue.

1. Loop over all elements. Construct the bubble stiffness matrix, Kb in equation 1.239, in the
same way that standard element stiffness matrix is constructed, but using the bubble shape
functions.

2. Loop over all elements. Construct the right hand side of equation 1.239. This consists of the
interior part, equation 1.240, and the boundary part, equation 1.247.

3. Loop over all elements and solve the linear systems 1.239, to obtain the error functions ΦK .

4. Compute the upper bound on the error in the eigenvalue using equation 1.253.

5. Compute the lower bound on the error in the eigenvalue using equation 1.254.
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2 Elements

Structural dynamics is a rich and extensive field. Finite element tools such as Salinas have been
used for decades to describe and analyze a variety of structures. The same tools are applied to
large civil structures (such as bridges and towers), to machines, and to micron sized structures. This
has necessarily led to a wealth of different element libraries. Details of these element libraries are
presented in this section. For information on the solution procedures that tie these elements together,
please refer to section 1.

2.1 Isoparametric Solid Elements. Selective Integration

The following applies to any solid isoparametric element, but is implemented in the code on ele-
ments with linear shape functions (such as hex8 or wedge6). This discussion addresses calculation
of relevant operators on the shape functions and eventual integration into the stiffness matrices. 11

2.1.1 Derivation

We begin with the separation of the strain into deviatoric and dilitational parts so that their contri-
butions to the stiffness matrix can be computed separately. This is part of the strategy for avoiding
overstiffness with respect to bending.

The strain energy density in the case of an isotropic, linearly elastic material is:

p =
1
2
(2Gε+λtr(ε)I)• ε (2.1)

with some re-arrangement, this can be shown to be:

p = Gε̂• ε̂+
1
2β(tr(ε))2 (2.2)

where ε̂ = ε− 1
3 tr(ε)I.

Having separated the part of the strain energy density due to deviatoric part of the strain from
the part of the strain energy density due to the dilitational part of the strain, we shall integrate them
separately. First, we must determine how to express the strains in terms of nodal degrees of freedom.

We know that the deformation field is linear in the nodal degrees of freedom and that the dis-
placement gradient is also, so we should be able to expand each of those quantities as follows.

Let Pj be the node associated with the jthe degree of freedom and let s j be the direction associ-
ated with that degree of freedom. The displacement field is:

~u(x) = ÑPj(x)u
Pj
s j~es j (2.3)

where summation takes place over the degree of freedom j.
11This development is based on work by Dan Segalman.
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Similarly, the displacement gradient is:

~∇~u(x) = (
∂

∂xk
)ÑPj(x)u

Pj
s j~es j~ek (2.4)

We now define the shape deformation tensor W j corresponding to the j th nodal degree of
freedom:

W j(x) = (
∂

∂u
Pj
s j

)~∇~u(x) (2.5)

which, with Equation 2.4 yields:

W j(x) = (
∂

∂xk
)ÑPj(x)~es j~ek (2.6)

The symmetric part of this tensor is:

S j(x) =
1
2
(W j(x)+W j(x)T ) (2.7)

and the strain tensor is
ε(x) = S j(x)u

Pj
s j (2.8)

From the above, we construct the dilitational and deviatoric portions of the strain in terms of the
nodal displacement components:

tr(ε(x)) = b j(x)u
Pj
s j (2.9)

where
b j(x) = tr(S j(x)) (2.10)

Similarly,
ε̂(x) = B̂ j(x)u

Pj
s j (2.11)

where
B̂ j(x) = S j(x)− 1

3b j(x)I (2.12)

The stiffness matrix is evaluated using the constitutive equation (Equation 2.2) and the following
definition:

Km,n =
∂2

∂uPm
sm ∂uPn

sn

Z

volume
p(x)dV (x) (2.13)

This plus our expressions for strain in terms of the nodal degrees of freedom yield us the following
expression for element stiffness:

Km,n = G
Z

volume
(B̂m(x))T • B̂n(x)dV (x)

+β
Z

volume
bm(x)bn(x)dV (x) (2.14)
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2.2 Implementation

From the above it is seen that once the shape deformation tensor W j is found, the rest of the cal-
culation follows naturally. The calculation of the components of that tensor is presented here. The
components of W j are

W j
mn = ~em ·W j ·~en (2.15)

= δm,s j(
∂

∂xn
)ÑPj(x) (2.16)

The partial derivative ( ∂
∂xn

)ÑPj(x) is calculated from

(
∂

∂xn
)ÑPj(x(ξ)) = (

∂
∂ξα

)NPj(ξ)J−1
α,n (2.17)

where
Jm,γ =

∂
∂ξγ

xm(ξ) (2.18)

and
N(ξ) = Ñ(x(ξ)) (2.19)

The issue of selective integration in the elements is discussed in Appendix B. The formulation
discussed there applies to all the isoparametric solid elements.

2.3 Mean Quadrature Element with Selective Deviatoric Control

In this section we discuss the implementation of the mean quadrature element in Salinas. This work
is a result of a collaboration with Sam Key.24

We first examine the element stiffness matrix resulting from a fully integrated element

K =

Z

V
BTCBdV (2.20)

where K is the stiffness matrix, V is the volume of the element, B is the standard strain-displacement
matrix, and C is the matrix of material constants. When implemented in the standard way, this
element behaves very poorly for nearly-incompressible materials, and is too stiff even on materials
with moderate poisson ratios.

A standard approach for softening the element formulation in the presence of nearly incom-
pressible materials is to replace the matrix B with its mean quadrature counterpart, B̃,

B̃ =

Z

V
BdV (2.21)

This alleviates problems associated with nearly incompressible materials, but the resulting stiffness
matrix exhibits hourglass modes. These modes can be removed either through hourglass control
methods, or by adding in some of the missing deviatoric components. In the approach described
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here, we use the latter method. We note that both B and B̃ can be decomposed into their volumetric
and deviatoric components, i.e.

B̃ = B̃V + B̃D (2.22)
B = BV +BD

With these decompositions, we define

B̂ = B̃V + B̃D + sd(BD− B̃D) (2.23)

where sd is a parameter between 0 and 1. When sd = 0, the element corresponds to a mean quadra-
ture element. When sd = 1, the element corresponds to mean quadrature on the volumetric part, but
with full integration on the deviatoric component.

With this new definition of B̂, we can define the stiffness matrix for this element as

K =

Z

V
B̂TCB̂dV (2.24)

2.4 Bubble Element

Low order finite elements tend to behave poorly when subjected to bending loads. The bubble
hex elements have been shown to give much better bending performance, without increasing the
number of degrees of freedom in the element,25,26.27 In this section we give a brief review of the
theory behind this element.

The representation of displacement at the element level in the standard hex8 element is

u =
8

∑
i=1

uiNi(ξ) = uTN (2.25)

where u is the element displacement, Ni is the ith shape function, N is the vector of shape functions,
and ξ is the vector of reference element coordinates. The bubble element augments the standard
finite element basis functions with additional bubble functions. The representation of displacement
at the element level for the bubble element takes the form

u =
8

∑
i=1

uiNi(ξ)+
3

∑
i=1

aiPi(ξ) = uTN+aTP (2.26)

where Pi(ξ) are the bubble functions, P is the vector of bubble functions, ai are the unknown coeffi-
cients for the bubble functions, and a is the vector of unknown coefficients for the bubble functions.
The corresponding expression for element strain is given as

ε = Bu+Ga (2.27)

where B and G are the appropriate derivatives of the shape functions. We note that B is a 6x24
matrix, whereas G is a 6x9 matrix. See,2526 for the exact forms of these matrices.
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The corresponding element stiffness and load terms can be assembled into a 2x2 system
[

K ET

E H

][

u
a

]

=

[

f
0

]

(2.28)

where K =
R

e BTCBdV is the 24x24 element stiffness matrix corresponding to standard element
shape functions, H =

R

e GTCGdV is the 9x9 stiffness matrix corresponding to bubble shape func-
tions, E =

R

e GTCBdV is the 9x24 matrix corresponding to products of bubble and standard shape
functions, and f is the element load vector. Since the bubble unknowns a are local to each element,
they can be condensed out, which yields a modified element stiffness matrix

K̂ = K−ET H−1E (2.29)

Note that K is still a 24x24 matrix.

It has been shown that the bubble hex element does not pass the patch test unless a correction
is made to the element formulation. There are two options for this correction. The first25 involves
evaluating the matrix G at the centroid of the element rather than at the Gauss points. The second
approach26 consists of subtracting from the matrix G its average value. Both approaches yield an
element that passes the patch test, and thus convergence is assured.

In Salinas, we have taken the second approach. A new G matrix is defined, Ĝ, that is constructed
by subtracting the average value of G from G.

Ĝ = G− 1
Ve

Z

e
GdV (2.30)

Then, we simply replace G with Ĝ in the above equations. We note that, in the implementation of
this element in Salinas, it was found that after implementing the correction described above, the
element passed the patch test. Without the correction, the element failed all of the patch tests.

With the bubble element, the stresses vary through the thickness. In order to compute the stresses
at any particular point within the element, we need to recover the strains. These are given in equation
2.27. However, an additional task is to compute the bubble degrees of freedom, since only the
displacement degrees of freedom are calculated during the solution procedure. From equation 2.28,
the bubble degrees of freedom can be computed from the displacements as

a = H−1Eu (2.31)

where u is the element displacement vector. Given a, we can then compute the strains from equation
2.27, and then the stresses can be computed in the standard way.

2.4.1 Nonlinear analysis with bubble element

The bubble element can be used in nonlinear analysis. A brief description of the procedure is given
in.26 More details will be given here. In,26 an assumed strain approach was used rather than the
assumed displacement method, but the two reduce to the same procedure.

We will give the necessary modifications for a nonlinear static analysis. The equations that need
to be satisfied are

F int (u,α) = Fext (2.32)
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More specifically, this breaks down to two separate equations

F int
1 =

Z

Ω
BT σdΩ = Fext (2.33)

F int
2 =

Z

Ω
GT σdΩ = 0 (2.34)

(2.35)

The stress is given by σ = Cε, where ε is given by equation 2.27.

Next, we expand the expressions for internal force in a Taylor series, and truncate after the first
two terms. In the following, the quantities u and α denote the unknowns, and û and α̂ represent the
current iterates of displacement and bubble unknowns.

F int
1 (u,α)≈ Fint

1 (û, α̂)+
∂Fint

1

∂u
u+

∂Fint
1

∂α
α (2.36)

F int
2 (u,α)≈ Fint

2 (û, α̂)+
∂Fint

2

∂u
u+

∂Fint
2

∂α
α (2.37)

(2.38)

We define

KT =
∂F int

1
∂u

(2.39)

ET =
∂F int

1
∂α

(2.40)

HT =
∂F int

2
∂α

(2.41)

(2.42)

where the subscript T denotes tangent matrices that are computed at the current configuration. Using
these definitions and substituting equations 2.38 into equations 2.35, we obtain

[

KT (ET )T

ET HT

][

∆u
∆a

]

=

[

Resu

Resα

]

(2.43)

where

Resu = Fext −F int
1 (û, α̂) (2.44)

Resα =−F int
2 (û, α̂) (2.45)

(2.46)

More detailed expressions for the tangent matrices will now be given. We note that, for example,
in equation 2.35, both σ and the matrix B depend on displacement u and bubble unknowns α. Thus,

76



the chain rule is needed to compute the following expressions.

KT =
∂

R

Ω BT σdΩ
∂u

=

Z

Ω

∂BT

∂u
σdΩ+

Z

Ω
BT ∂σ

∂u
dΩ (2.47)

ET =
∂

R

Ω BT σdΩ
∂α

=
Z

Ω

∂BT

∂α
σdΩ+

Z

Ω
BT ∂σ

∂α
dΩ (2.48)

HT =
∂

R

Ω GT σdΩ
∂α

=

Z

Ω

∂GT

∂α
σdΩ+

Z

Ω
GT ∂σ

∂α
dΩ (2.49)

(2.50)

In each of these expressions, the first term on the right hand side represents a geometric stiffness
term, whereas the second term represents the material stiffness term. Next, in order to evaluate
terms like ∂BT

∂u and ∂BT

∂α , we use the deformation gradient. We use the notation x = u+X, where x is
the current configuration, u is the displacement, and X is the initial configuration.

e =
1
2
(FT F− I) (2.51)

B =
∂ε
∂u

= F
∂F
∂u

(2.52)

∂B
∂u

= F
∂2F
∂u2 +

∂F
∂u

∂F
∂u

=
∂F
∂u

∂F
∂u

(2.53)

(2.54)

where the last identity follows from the fact that ∂2F
∂u2 = 0. This can be seen from the following

relations.

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+αT DP
DX

(2.55)

∂F
∂u

=
DN
DX

(2.56)

∂2F
∂u2 = 0 (2.57)

(2.58)

Similarly, we can construct these equations for the bubble functions

e =
1
2
(FT F− I) (2.59)

G =
∂ε
∂α

= F
∂F
∂α

(2.60)

∂G
∂α

= F
∂2F
∂α2 +

∂F
∂α

∂F
∂α

=
∂F
∂α

∂F
∂α

(2.61)

(2.62)
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where similar identities have been used

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+αT DP
DX

(2.63)

∂F
∂α

=
DP
DX

(2.64)

∂2F
∂α2 = 0 (2.65)

(2.66)

For the cross terms, we have

e =
1
2(FT F− I) (2.67)

B =
∂ε
∂u

= F
∂F
∂u

(2.68)

∂B
∂α

= F
∂2F

∂u∂α
+

∂F
∂u

∂F
∂α

=
∂F
∂u

∂F
∂α

(2.69)

(2.70)

where, again we justify that the second term vanishes as follows

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+αT DP
DX

(2.71)

∂F
∂u

=
DN
DX

(2.72)

∂2F
∂u∂α

= 0 (2.73)

(2.74)

In a similar manner as was done for the linear element, the bubble degrees of freedom can be
condensed from equations 2.46. This results in the equation

(KT −ET
T H−1

T ET )∆u = Resu−ET
TH−1

T Resα (2.75)

Thus, the full tangent operator for the bubble element is given by

KT −ET
T H−1

T ET (2.76)

the internal force is given by
F int

1 (û, α̂)−ET
T H−1

T F int
2 (û, α̂) (2.77)

and the residual is given by two terms

Resu−ET
T H−1

T Resα (2.78)

These equations fully describe the nonlinear analysis of the bubble element.
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2.5 Quadratic Isoparametric Solid Elements

Quadratic elements (elements with bilinear or higher order shape functions) such as the Hex20 and
Tet10 are naturally soft and do not need to be softened by positive values of G and β (see section
2.1 and Appendix B for definitions of G and β.) Therefore, G=0 and β=0 are good values for such
elements.

2.6 Wedge elements

2.6.1 Shape Functions

The shape functions are given explicitly in Hughes, (ref. 28). These are provided as bi-linear
polynomials in r, s, t, and ξ, where r and s are independent coordinates of the triangular cross-
subsections, t = 1− r− s, and ξ is the coordinate in the third direction. For our purposes, it is
necessary to expand the shape functions as polynomials in r, s, and ξ:

Nk = Ak
0 +Ak

1r +Ak
2s+Ak

3ξ+Ak
4rξ+Ak

5sξ (2.79)

The shape functions and the coefficients are given in the following table:

Shape Function A0 A1 A2 A3 A4 A5
N1 = 1

2(1−ξ)r 1
2 - 1

2
N2 = 1

2(1−ξ)s 1
2 − 1

2
N3 = 1

2(1−ξ)t 1
2 - 1

2 - 1
2 - 1

2
1
2

1
2

N4 = 1
2(1+ξ)r 1

2
1
2

N5 = 1
2(1+ξ)s 1

2
1
2

N6 = 1
2(1+ξ)t 1

2 - 1
2 - 1

2
1
2 - 1

2 - 1
2

2.6.2 Quadrature

Three reasonable quadratures for wedges that come to mind are indicated in the following table:

No. Points r s ξ
1 1/3 1/3 0
2 1/3 1/3 -1/

√
3

1/3 1/3 1/
√

3
6 1/6 1/6 -1/

√
3

1/3 1/6 -1/
√

3
1/6 1/3 -1/

√
3

1/6 1/6 1/
√

3
1/3 1/6 1/

√
3

1/6 1/3 1/
√

3
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2.7 Tet10 elements

The 4-point integration is given in Hughes (see 29), and the 16-point integration is given in Jinyun.
It is believed that a higher order integration is needed for the mass matrix than the stiffness matrix
and that the reason is that the mass matrix involves higher degree polynomials. (Using 4-point
integration to try to estimate the mass matrix of a natural element resulted in a 30 by 30 mass matrix
with several zero eigenvalues.)

2.8 Calculating shape functions and gradients of the Hex20 element

Using a 3D Pascal’s triangle, we can construct 20 polynomials of the form,

pi = εri
1 εsi

2 εti
3

where the ri, si and ti (i = 1, . . . ,20) are integers satisfying,

r2
i + s2

i + t2
i ≤ 7

These terms may be constructed with the following loop.12

count=0
for I = 0 to 7

for J = 0 to 7
for K = 0 to 7

if Iˆ2 + Jˆ2 + Kˆ2 <= 7
count = count + 1

r(count) = I
s(count) = J
t(count) = K

endif
endfor

endfor
endfor

We require 20 shape functions Ni, with i = 1, . . . ,20, that satisfy the conditions that Ni = 1 at node
i and Ni = 0 at every other node. This results in 20 equations at each node. Expressing the Ni as
linear combinations of the pi, we can write,

~N = A~p (2.80)

where A is a 20x20 matrix. We want to find the 400 term A−matrix values. For each node, we
have 20 equations and there are 20 nodes; so, there are 400 equations for the 400 unknowns. Let ~εi

denote the natural coordinate value at the ith node. We have A~p(~ε1) =~e1 ≡ (1,0,0, . . . ,0)T , and, in
general, A~p(~εi) =~ei. So,

[~ε1,~ε2, . . . ,~ε20] = [A][~p(~ε1),~p(~ε2), . . . ,~p(~ε20)]

12 This is how the rst matrix in Hex20.C was created.
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or,
I = AP

or,
A = P−1

This matrix A is the matrix “hc20” in Hex20.C.

Not only can the shape functions be expressed as a linear combination of the p i, but so can the
derivatives, ∂~N

∂ε j
, ( j = 1,2,3). Differentiating equation 2.80, we have

∂~N
∂ε j

= A
∂~p
∂ε j

but the ∂~p/∂ε j may be written as a linear combination of the pk via the following three equations.

∂pi

∂ε1
= riεri−1

1 εsi
2 εti

3 (2.81)

∂pi

∂ε2
= siεri

1 εsi−1
2 εti

3 (2.82)

∂pi

∂ε3
= tiεri

1 εsi
2 εti−1

3 (2.83)

while noting that equations 2.81, 2.82 and 2.83 are zero if ri, si, or ti is zero, respectively. We would
like to find the matrix B j with j = 1,2,3 such that,

∂~N
∂ε j

= B j~p.

Evaluating ∂~N/∂ε j and ~p at all 20 nodes, we have,
[

∂~N
∂ε j

(~ε1),
∂~N
∂ε j

(~ε2), . . . ,
∂~N
∂ε j

(~ε20)

]

= B j [~p(~ε1),~p(~ε2), . . . ,~p(~ε20)] (2.84)

Matrix equation 2.84 can be inverted to solve for B j with j = 1,2,3. In Hex20.C, AB1 is B1 , AB2 is
B2, and AB3 is B3.

2.9 Anisotropic Elasticity

Anisotropic elasticity requires special care in the rotation of the matrix of material parameters when
those parameters are given in some coordinate system other that in which the element matrices are
calculated. A derivation of the formulae for rotating those matrices is given in A.

2.10 Triangular Shell Element

The triangular shell element (TriaShell) is derived as follows. The bending d.o.f. (w,θx,θy) and
the membrane d.o.f. (u,v,θz) are decoupled. The idea is to obtain the membrane response using
Allman’s triangle and the bending response using the discrete Kirchoff triangular (DKT) element.
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2.10.1 Allman’s Triangular Element

Using the formulation given in Ref. 30 and replacing cos(γi j) =
y ji

li j
and sin(γi j) =

−x ji

li j
, we get

u = u1ψ1 +u2ψ2 +u3ψ3 +
1
2y21(ω2−ω1)ψ1ψ2 +

1
2y32(ω3−ω2)ψ2ψ3 +

1
2y13(ω1−ω3)ψ3ψ1

(2.85)

v = v1ψ1 + v2ψ2 + v3ψ3 +
1
2

x21(ω2−ω1)ψ1ψ2−
1
2

x32(ω3−ω2)ψ2ψ3−
1
2

x13(ω1−ω3)ψ3ψ1

(2.86)

The stiffness and mass matrices ([K]AT , [M]AT ) are found using general finite element proce-
dures. Unfortunately, a mechanism exists for this element if the deformations are all zero and the
rotations are all the same value. Cook et al.5 have a “fix” for this which has been implemented to
avoid undesirable low energy modes produced by this mechanism.

2.10.2 Discrete Kirchoff Element

As for the DKT31 element, things are not so simple. The nine d.o.f. element is obtained by trans-
forming a twelve d.o.f. element with mid-side nodes to a triangle with the nodes at the vertices only.
This is obtained as follows. Using Kirchoff theory, the transverse shear is set to zero at the nodes.
And the rotation about the normal to the edge is imposed to be linear. Using these constraints, a
nine d.o.f. bending element is derived (DKT) using the shape functions for the six-node triangle.
Unfortunately, the variation of w over the element cannot be explicitly written. Therefore, the w
variation over the element needs to be calculated before the mass matrix can be obtained.

As stated, the equation for w is not explicitly stated over the element in the derivation by Batoz
at al.. Using a nine d.o.f. element, a complete cubic cannot be written, since 10 quantities would
be needed to get a unique polynomial. The strategy taken here is that the stiffness matrix produced
using for the DKT element provides reasonable results, and the derivation of the mass matrix is not
as critical. So, the equation for w is taken from Ref. 32, as

w = α1ψ1 +α2ψ2 +α3ψ3 +α4ψ1ψ2 +α5ψ2ψ3 +α6ψ3ψ1 +α7ψ1
2ψ2 +α8ψ2

2ψ3 +α9ψ3
2ψ1
(2.87)

For the AT and DKT elements, the stiffness and mass matrices are derived with the help of
Maple. The consistent mass matrix is derived using “normal” finite element procedures. If a lumped
mass matrix is requested then the mass matrix terms associated with the translation d.o.f. are found
in the “normal” sense. However, mass matrix terms for the rotational d.o.f. are set to 1

125 of the
translation terms.

In summary, the code has been written which uses the AT and DKT element use in combination
as a shell element. The stiffness matrices are calculated without complication. The mass matrix
for the AT element is also derived without complication. The mass matrix for the DKT element is
derived using an incomplete polynomial, but the results obtained should not be effected very much.
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DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z -1.405 × 10−2 -1.398 × 10−2 -1.398 × 10−2

θx 3.337 × 10−2 3.337 × 10−2 3.337 × 10−2

θy 3.106 × 10−2 3.089 × 10−2 3.089 × 10−2

θz 0.000 0.000 0.000

Table 3. Comparison of deflections at Node 2

DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 1.949 × 10−2 1.955 × 10−2 1.955 × 10−2

θx 3.363 × 10−2 3.363 × 10−2 3.363 × 10−2

θy -2.686 × 10−2 -2.702 × 10−2 -2.702 × 10−2

θz 0.000 0.000 0.000

Table 4. Comparison of deflections at Node 3

2.10.3 Verification and Validation

The AT element is verified by comparing calculated results with the results published by Allman in
Ref. 30. The square plate in pure bending and a cantilevered beam with a parabolic tip load are used
as verification examples. The mass matrix is not verified except to note that the mass is conserved
in the u,v directions.

The DKT element is validated by using the experimental data published by Batoz et al. in Ref.
31 for a triangular fin. The first 10 eigenvalues for the triangular fin (cantilever) match very well. In
addition, the DKT element is verified by using a cantilevered beam and matching deflection results
at the tip. If ν = 0, then results should match very closely with Euler-Beam theory results, and they
did.

Finally, the AT/DKT element is verified by comparing with published results from Ref. 33.
Tables 3 and 4 show that our elements match exactly with ABAQUS to the number of digits shown.
The first column is the result produced by Ertas et al., the second column is the result produced by
ABAQUS, and the third column is the result produced by SALINAS using this DKT/AT element.
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2.11 Triangular Shell - Tria3

The triangular shell used most in Salinas is the Tria3 element developed by Carlos Felippa of the
University of Colorado in Boulder. This element is very similar to the TriaShell element presented
in section 2.10. Full details of the theory behind the element is out of the scope of this document,
but details may be found in references 34, 35 and 36.

2.12 Two Node Beam

This is the definition for a Beam element based on Cook’s development (see pp 113-115 of reference
5).

The beam uses underintegrated cubic shape functions. Only isotropic material models are sup-
ported. Torsional affects are accounted for in the axis of the beam. The beam is uniform in area and
bending moments, i.e. they are not a function of position in the beam.

The following parameters are read from the exodus file.

1. The cross subsectional area of the beam (Attribute 1)

2. The orientation of the beam (Attributes 2, 3 and 4)

The orientation should not be aligned with the beam axis. In the event of an improperly spec-
ified orientation, a warning will be written, and a new orientation selected. The orientation
is an x,y,z triplet specifying a direction. It does not need to be completely perpendicular to
the beam axis, nor is it required to be normalized. The orientation vector, and the beam axis
define the plane for the first bending direction.

3. The first bending moment, I1. (Attribute 5).

4. The second bending moment. I2. (Attribute 6).

5. The torsional moment, J. (Attribute 7).

2.13 Truss

This is the definition for a Truss element based on pages 214-216 of Cook (ref 5).

The truss uses linear shape functions. Unlike the truss elements used by Nastran, there is no
torsional stiffness. The truss is uniform in area, i.e. the area is not a function of position in the truss.

The following parameters are read from the exodus file.

1. The cross subsectional area of the truss (Attribute 1)
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2.14 Springs

The Spring element is the simplest one dimensional element. It has no mass. Entries in the stiffness
matrix are added by hand. Note the following.

• The force generated in a Spring element should be colinear with the the nodes. Typically
spring elements connect coincident nodes so that no torques are generated.

• Springs attach 3 degrees of freedom. In the event that some of the spring constants are zero,
there is no effective stiffness for that associated degree of freedom. However, the degree of
freedom will remain in the A-set matrices. This will be a problem if the other degrees of
freedom are not attached to other elements which provide stiffness entries connecting them to
the remainder of the model. For an understanding of the various solution spaces (such as the
A-set), see section 4.1.

The data for spring elements is entered in the input file. Three values are given, Kx, Ky, and Kz.
This results in a 6x6 element stiffness matrix,

K′ =

















Kx 0 0 −Kx 0 0
0 Ky 0 0 −Ky 0
0 0 Kz 0 0 −Kz

−Kx 0 0 Kx 0 0
0 −Ky 0 0 Ky 0
0 0 −Kz 0 0 Kz

















(2.88)

Notice that K ′ is blocked. It could be written more simply,

K′ =

(

K′11 −K′11
−K′11 K′11

)

The rotation matrix for the two endpoints is block diagonal.13 As a result, the stiffness matrix
in the basic coordinate system can be written,

K =

(

K11 K12
K12 K11

)

where,
Ki j = RT K′i jR

and R is the 3x3 rotation matrix of subsection 2.20.
13 In other words, the displacments in a rotated frame are related to the unrotated frame by a transformation matrix of

the form,
[

u1
u2

]

= [T ]

[

ũ1
ũ2

]

where,

T =

[

R1 0
0 R2

]

Here, Ri is a 3x3 rotation matrix, and because the two nodes of the spring must rotate together, R1 = R2
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2.15 Gap Elements

The Gap element is a nonlinear spring which has a stiffness matrix that is dependent on displace-
ment. In the element coordinate frame, the stiffness matrix has the same form as the matrix in
equation 2.88 with the following replacements.

Spring Gap
Open Closed

Kx KU KL
Ky KT ×KU/KL KT
Kz KT ×KU/KL KT

Note that typically KL� KU .

Also, like the spring, the two nodes of the gap element must rotate together and the matrix
transforms exactly as the matrix for a spring element.

2.16 Multi-Point Constraints, MPCs

A description of MPCs is contained in the users manual. This subsection discusses the coordinate
system dependencies.

MPCs may be defined in any coordinate system. However, all nodes in the MPCs are defined
in the same system. This is done for convenience in parsing, and not for any fundamental reason.
Consider a constraint equation where each entry in the equation could be specified in a different
coordinate system.

∑
i

Ciu
(ki)
i = 0

where Ci is a real coefficient, and u(ki)
i represents the displacement of degree of freedom i in degree

of coordinate system ki. We can transform to the basic coordinate system using u(ki)
i = ∑ j R(ki)

ji u(0)
j ,

where R(ki) is the rotation matrix for coordinate system ki. Then we may write,

∑
i, j

CiR
(ki)
ji u(0)

j = 0

or,

∑
i

C(ki)
i u(0)

i = 0

where C(ki)
i = ∑ j R(ki)

i j C j. Note however, that in this analysis, we have assumed that the dimension
of C is 3. Thus, rotation into the basic frame will likely increase the number of coefficients.

Salinas is designed to support constraints through at least two methods. These include a con-
straint transform method and Lagrange multipliers. Lagrange multiplier methods are used for all
the parallel solvers. The serial solver uses constraint transform methods.
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2.16.1 Constraint Transforms

Constraints may be eliminated using the constraint transform method. This is described in detail in
Cook, chapter 9 (ref 5). In this method, the analysis set is partitioned into constrained degrees of
freedom and retained degrees of freedom. The constrained dofs are eliminated.

Unlike many Finite Element programs, Salinas does not support user specification of constraint
and residual degrees of freedom. The partition of constrained and retained degrees of freedom is
performed simultaneously in the “gauss()” routine. This routine performs full pivoting so the con-
strained degrees of freedom are guaranteed to be independent. Redundant specification of constraint
equations is handled by elimination of the redundant equations and issue of a warning. User selec-
tion of constrained dofs in Nastran has led to serious difficulty to insure that the constrained dofs
are independent and never specified more than once.

For constraint elimination we have a constraint matrix C = CcCr, where Cc is a square, nonsin-
gular matrix and Cr is the solution. We wish to solve for,

Crc =−[Cc]
−1Cr

This is equivalent to the Gauss-Jordan elimination problem for Kx = b if we let Cr = b, Cc = K
and x =−Crc. There is one additional wrinkle: we have mixed the rows of C so Cc is intermingled
with Cr. However, we only require that CC be non-singular. Therefore if we do a gauss elimination
with full pivoting we should simultaneously obtain an acceptable reordering of C, and obtain Crc.

In practice, it is not even necessary that Cc be non-singular. It is not uncommon for two identical
constraints to be specified. The program issues a warning and continues.

Constraint transform methods do not currently support recovery of MPC forces.

The Gaussian elimination is presently being performed with a sparse package called ”SuperLU,”
instead of a dense gaussian elimination, to speed up the time to create Crc. On some platforms, e.g.,
sgi and dec, the blas routine dmyblas2.c in the CBLAS directory of of the SuperLU directory (need
superlu-underscore-salinas.tar to create this) should be the one and only routine whose object file
is placed into the SuperLU-blas library (presently called libblas-underscore-super.a) to be linked
in to create the salinas executable. Failure to include this routine will cause failures of the type
”Illegal value in call to DSTRV” on the above platforms, and including more than just dmyblas2.c
can cause slow performance on many platforms as the SuperLU-CBLAS could override the built-in
blas routines. (The built-in routines are almost always faster.)

2.17 Rigid Elements

Salinas supports standard pseudoelements for rigid bodies. These include,

• RRODs - a rigid truss like element, infinitely stiff in extension, but with no coupling to bend-
ing degrees of freedom.

• RBARS - a rigid beam, 6 degrees of freedom deleted
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• RBE2 - a rigid solid. 6(n−1) degrees of freedom deleted, where n is the number of nodes

• RBE3 - an averaging type solid. This connects to many nodes, but removes only 6 dofs.

All of the rigid elements are stored and applied internally as MPC equations. The RBE2 is a
special case of RBAR (actually just multiple instances). Note, that unlike MPC equations, these
rigid elements do activate (or touch) degrees of freedom. In general, an MPC equation will not
activate a degree of freedom. In the case of a rigid element however, it is necessary to activate
the degrees of freedom before constraining them. Otherwise the rigid elements do not act like real
elements.

Rigid elements are input into Salinas using exodus beam elements. A block entry is then pro-
vided in the input file indicating what type of rigid element is required. There is no stiffness or mass
matrix entry for any type of rigid elements (only the MPC entries described above).

2.17.1 RROD

An RROD is a pseudoelement which is infinitely stiff in the extension direction. The constraints
for an RROD may be conveniently stated that the dot product of the translation and the beam axial
direction for a RROD is zero. There is one constraint equation per RROD.

2.17.2 RBAR

An RBAR is a pseudoelement which is infinitely stiff in all the directions. The constraints for an
RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

It is apparent that the last two of these constraints may be specified mathematically by requiring
that the translation be the cross product of the rotation vector and the bar direction.

~T = ~R×~L

where ~T is the translation difference of the bar (defined as ~U2−~U1),

~R is the rotation vector, and

~L is the vector from the first grid to the second.

The three constraints in the cross product, together with the three constraints requiring identical
rotations at both ends of the bar form the six required constraint equations.
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2.17.3 RBE3

The RBE3 element behavior is taken from Nastran’s element of the same name. Earlier implemen-
tations of the RBE3 differed significantly from the MSC/Nastran implementations (see appendix C).
The revised element should act like a nastran RBE3 for most applications14 . The element is used to
apply distributed forces to many nodes while not stiffening the structure as an RBE2 or RBAR does.
The RBE3 uses the concept of a slave node. The theory follows the MSC documentation included
in the appendix.

Characteristic Length. An element characteristic length is computed to allow scaling the equa-
tions. The distance between the reference point (subscript q) and a connected point (subscript i) is
expressed by the components

Li,x = xi− xq (2.89)
Li,y = yi− yq (2.90)
Li,z = zi− zq (2.91)

Li =
√

L2
i,x +L2

i,y +L2
i,z (2.92)

The characteristic length of the element is the average of these lengths,

Lc =
Nc

∑
i=1
|Li|/Nc, (2.93)

where Nc is the number of connected points. If Lc is computed as a binary zero it is changed to a
value of unity.

To insure that the element is invariant to a change of scale, the weighting functions w1 through
w6 provided by the user are modified to produce a connected grid point’s weighting matrix.

W =

















w1
w2 0

w3
w4L2

c
0 w5L2

c
w6L2

c

















(2.94)

That is, the rotational DOF coefficients are scaled by the square of the characteristic length.

14The Salinas element is not as flexible as the nastran element in all respects. In particular, there is no flexibility to
apply node specific weighting. Weights may be applied by degree of freedom, but these weights are applied uniformly to
all nodes in the pseudo element.
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Figure 8. Equilibration of loads

q

i

Li,x

Li,y

A force of−ê1 at point i is equivalent to
a force of−ê1 and a moment of τz = Li,y

at point q.

Equilibration. Conventional equilibration equations are applied. These equations relate a force
applied at the reference point to an equivalent force and moment applied at the slave node as il-
lustrated in Figure 8. The loads at the connection point, i, relate to the loads at the slave point.

Pq = S′iqPi (2.95)

Where,

Siq =

















1 0 0 0 Li,z −Li,y

1 0 −Li,z 0 Lx

1 Li,y −Li,x 0
1 0 0

0 1 0
1

















(2.96)

Assembled Constraint. As shown in Appendix C (equation C.1), the loads on the set of all con-
nection nodes may be computed from the load on the slave node.

Pi = G′qiPq (2.97)

Where,
Gqi = A−1S ′W (2.98)

here S is a concatenation of the individual Siq,

S =









S1,q

S2,q

...
SNc ,q









, (2.99)

Similarly,

W =









W1
W2

...
Wc









(2.100)
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and A is a 6 by 6 weightings matrix.
A = S ′W S (2.101)

We require that A be nonsingular, which corresponds to a requirement that the RBE3 be non-
mechanistic. The constraint relation follows directly from Gqi, i.e. define the 6 by (6+6Nc) matrix,

C = [ −Iqq Gqi ] (2.102)

and apply the constraint,

C
[

uq

ui

]

= 0. (2.103)

Each row of C contains the constraint coefficients for one of the six possible constraints in the
RBE3.

2.17.4 RBE3 – old version

The RBE3-old elements behavior is taken from Nastran’s element of the same name. Note however,
that the precise mathematical framework of the Nastran RBE3 element is not specified in the open
literature. This element should act like an RBE3 for most applications. The element is used to apply
distributed forces to many nodes while not stiffening the structure as an RBE2 or RBAR would. The
RBE3-old uses the concept of a slave node. Constraints are specified as follows.

1. The translation of the slave node is the sum of translations of all the other nodes in the element.

2. The rotation of the slave node is the weighted average of all the other nodes about it. This is
determined by the nodal translations, not by their rotations.

While the first of these constraints is easy enough to apply using multi-point constraints, the
second is a little more difficult. We seek a least squares type solution.

slave

X1

X2

X3

Let ~Di = ~Ui−~Uslave,
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~Li = ~Xi−~Xslave

The L represent a vector from the “origin” to the point i, while the Di represent the differential
displacement of the same points. Note that the origin is at the location of the slave node, and will
not in general be at the centroid of the structure.

We will use least squares to compute the rotational vector of the slave node. This is equivalent
to computing a rotational inertial term and requiring a similar net rotation for the centroid.

The displacement at the centroid should be given by,

~Di = ~R×~Li

or, in the least squares sense we seek to minimize E .

E = ∑
i

(~Di−~R×~Li) · (~Di−~R×~Li)

Take the derivative of E with respect to a component of R, rk.

dE
drk

= 0 = 2∑
i

(êk×~Li) · (~R×~Li)−~Di · (êk×~Li)

Now, let R = ∑m rmêm. We substitute for R in the previous equation to obtain,

∑
m

∑
i

rm(êk×~Li) · (êm×~Li)−~Di · (êk×~Li) = 0

Now, if we write Li as a column vector then the expression (êk×~Li) · (êm×~Li) can be written as
LT

i Li · I−LiLT
i . If the sum on i is performed for the first term, we may write,

∑
m

rmAmk−∑
i

êk · (~Li×~Di) = 0

where

Amk =

(

n

∑
i

|Li|2
)

δmk−Lm
i Lk

i

This provides three equations (one for each k) in the 3 unknowns, rm. Note that Lm
i represents the m

component (1-3) of the vector Li.

The solution is found by looping once through all i to fill in the A matrix, and simultaneously
to fill out the coefficients for the three equations involving Di. Once the loop has been completed,
the coefficients of R are known, and the three components of rm can be added for each of the three
equations. Each equation has 3 components of R, 2n components of Ui and 2 components of Uslave

for a total of 2n+5 equations.

2.18 Shell Offset

Consider a shell offset, with an offset vector,~v. Notice that~v could be defined at each nodal location
in what follows, but for this development, we assume a single offset ~v which applies to all nodes.
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Define a coordinate system at the node, with variables u. On the offset beam the coordinate system
is ũ.

Now, u is related simply to ũ. The constraint of a constant offset may be stated that the dis-
placement difference of the two systems must be orthogonal to ~v, i.e. (u− ũ) =~v×~κ, where ~κ is
the rotation at the nodes. Notice that the rotation is the same at both nodes.

Thus we can write,
(

ũ
κ

)

= [L]

(

u
κ

)

(2.104)

where L is a constant matrix which depends only on the geometry. We can use this transformation
matrix to eliminate the degrees of freedom associated with ũ. The energy of the shell can be written,

Estrain = 0.5
{

ũ
κ

}T
[

K̃
]

{

ũ
κ

}

(2.105)

But with this substitution,

Estrain = 0.5
{

u
κ

}T
[

LT K̃L
]

{

u
κ

}

(2.106)

If we let K = LT K̃L, then,

Estrain = 0.5
{

u
κ

}T

[K]

{

u
κ

}

(2.107)

Thus, ũ has been eliminated, and the equations may be rather simply put in terms of the output
variables.

2.19 Notes on Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Element Analysis by Cook
et al.,

{re}=

Z

Ve

[B]T [E]{ε0}dV −
Z

Ve

[B]T{σ0}dV +

Z

Ve

[N]T{F}dV +

Z

Se

[N]T{Φ}dS (2.108)

where each of these terms are defined in Subsection 4.1 of the above mentioned reference. The load
vector, {re}, is composed of four parts in Eqn. 2.108. In this document, only the last part, which is
the contribution of the surface tractions to the load vector, will be considered. Rewriting,

{re}=

Z

Se

[N]T{Φ}dS (2.109)
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Here, the integral is calculated over the surface of the element on which the surface traction, {Φ},
is applied. Therefore,

{Φ}= [ΦxΦyΦz]
T (2.110)

and [N] is the shape function matrix of the element on which the surface tractions, {Φ}, are applied.
In Salinas, {Φ} can be applied within PATRAN by applying a spatial field to a specified side set. As
a result, when calculating the load vector, this field must be accounted for. In Salinas however, this
spatial field values will be available only at the nodes of the element. Using the nodal values of this
surface traction, the value inside must be defined using an interpolation function over the surface or
side of the element. Since only one value per node may be specified on the side set in Salinas, a
surface traction may be applied only in one direction at a time. Therefore, {Φ} will be defined as

{Φ} =







nx

ny

nz







Φ(x,y,z) (2.111)

2.19.1 Salinas Element Types

The following 3-D and 2-D elements have consistent loads implemented:

• Hex8

• Hex20

• Wedge6

• Tet4

• Tet10

• Tria3

• TriaShell

• Tria6 (four Tria3s)

• QuadT (two Tria3s)

• Quad8T (1 QuadT and 4 Tria3s)

2.19.2 Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Φ} =







nx

ny

nz







Φ(x,y,z) (2.112)
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where [nx,ny,nz]
T is the normal to the element face. Hence, the consistent loads can be calculated

as,

{re}=
Z

Se

[N]T{Φ}dS =
Z

Se

[N]T Φ(x,y,z)(~a×~b)dSe (2.113)

Here,

~a = [
∂x
∂r

,
∂y
∂r

,
∂z
∂r

]T (2.114)

~b = [
∂x
∂s

,
∂y
∂s

,
∂z
∂s

]T (2.115)

where Φ is the pressure load, and (x,y,z) are the physical coordinate directions, and (r,s) are the
local element directions for the face of the element. Notice, taking the cross-product of~a and ~b, the
normal is obtained.

2.19.3 Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence, shape functions
for quads and triangles could be used to evaluate the consistent loads. If the shape functions for
the 3-D elements are used, it will reduce code and “fit” better into the current finite element class
structure. This is what is currently implemented. This requires a “mapping” of the 3-D elements’
faces to a 2-D plane. The additional overhead for using the 3-D elements is that each face of the
element must have this “mapping” which states how the elements’ 3-D shape functions will map
to a 2-D element. For example, for a Hex20, the element coordinates (η1,η2,η3) are defined in a
particular way. For each face of the Hex20, defined by a side id, the face will have a local coordinate
system (r,s). The “mapping” will define how (r,s) are related to (η1,η2,η3). This will also help
defined how 2-D Gauss points are mapped to the 3-D face. These mappings are done for all the 3-D
elements.

2.19.4 Shell Elements - consistent loads

All the 2-D elements (shell elements) are based on the Tria3. The consistent loads calculations
for the Tria3 can be “copied” to the TriaShell. This way all the shell elements will use the same
consistent loads implementation. Since Carlos Felippa designed the Tria3, his consistent loads im-
plementation is used. The portion for linearly varying pressure loads is shown here. If the loads are
aligned along an edge, {q}, they need to be decomposed into (qs,qn,qt). Where (s,n, t) are coordi-
nate directions along the element edge. Coordinate s varies along the element edge tangentially, n
is normal to the element edge, and t is tangent to the element edge in the transverse direction, i.e.,
in the direction of the thickness. Once, the edge load is decomposed, the equations for consistent
loads are
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f 1
s =

1
20

(7qs1 +3qs2)L21 f 2
s =

1
20

(3qs1 +7qs2)L21 (2.116)

f 1
n =

1
20 (7qn1 +3qn2)L21 f 2

n =
1

20 (3qn1 +7qn2)L21 (2.117)

f 1
t =

1
20

(7qt1 +3qt2)L21 f 2
t =

1
20

(3qt1 +7qt2)L21 (2.118)

m1
s = m2

s = 0 (2.119)

m1
n =− 1

60 (3qt1 +2qt2)L
2

21 m2
n =

1
60 (2qt1 +3qt2)L

2
21 (2.120)

m1
t =− 1

40
(3qn1 +2qn2)L

2
21 m2

t =
1
40

(2qn1 +3qn2)L
2

21 (2.121)

where qs1 is the value of q in the s direction at node 1 of the edge, L12 is the length of the edge. The
superscripts 1,2 are the node numbers of the edge. Note, it is assumed here that the load q is per
unit length, but this is not assumed when creating the sideset in PATRAN for example. Therefore,
this distributed load is multiplied, in Salinas, by the thickness of the triangle.

Now if the pressure load is on the face of the Tria3, the equations become,

f 1
x = f 1

y = m1
z = f 2

x = f 2
y = m2

z = f 3
x = f 3

y = m3
z = 0 (2.122)

f 1
z = (

8
45 p1 +

7
90 p2 +

7
90 p3)A (2.123)

f 2
z = (

7
90

p1 +
8

45
p2 +

7
90

p3)A (2.124)

f 3
z = (

7
90

p1 +
7

90
p2 +

8
45

p3)A (2.125)

m1
x =

A
360 [7(y31 + y21)p1 +(3y31 +5y21)p2 +(5y31 +3y21)p3] (2.126)

m1
y =

A
360

[7(x13 + x12)p1 +(3x13 +5x12)p2 +(5x13 +3x12)p3] (2.127)

m2
x =

A
360 [(5y12 +3y32)p1 +7(y12 + y32)p2 +(3y12 +5y32)p3] (2.128)

m2
y =

A
360

[(5x21 +3x23)p1 +7(x21 + x23)p2 +(3x21 +5x23)p3] (2.129)

m3
x =

A
360 [(3y23 +5y13)p1 +(5y23 +3y13)p2 +7(y23 + y13)p3] (2.130)

m3
x =

A
360 [(3x32 +5x31)p1 +(5x32 +3x31)p2 +7(x32 + x31)p3] (2.131)

where yi j = yi− y j and xi j = xi− x j, A is the area of the triangle, pi is the value of the pressure load
at node i, and (xi,yi) are coordinates of the triangle in 2-D space.
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Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by using Tria3s require a little extra
overhead. For example, the Quad8T is composed of 1 QuadT and 4 Tria3s. However, since it is
defined as a Quad8T, it will have distribution factors at its 8 nodes, and these distribution factors
have to be mapped to the 1 QuadT and the 4 Tria3s. The number of distribution factors will be 3
however, if the load is applied to its edge. Therefore, this extra coding can be seen in the ElemLoad
method of the shells’ classes.

2.20 Coordinate Systems

Coordinate systems are provided for a number of applications including:

1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see subsection 2.14).

5. specification of output coordinate systems (in history files only).

There are some applications for coordinate systems which we do NOT intend to support. These
include,

1. specification of nodal locations,

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be defined. In the
case of noncartesian systems, the XZ plane is used for defining the origin of the θ direction only.

Each coordinate system carries with it a rotation matrix. It is important to clarify the meaning
of that matrix. Specifically,

X ′ = RX

Where X ′ is the new system of coordinates, R is the rotation matrix and X is the basic coordi-
nate system. For cartesian systems, the rotation matrix is static. Curvilinear systems will require
computation of a new rotation matrix at each location in space.

The usual identity on rotation matrices applies, namely:

X = RT X ′ (2.132)

and
RT R = RRT = I

As an example, consider a cartesian system as shown in Figure 9.

The new system (marked by primes) is rotated θ from the old system with the new X ′ axis in the
first quadrant of the old system. The rotation matrix is,
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- X

6

Y
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X ′

I

Y ′

θ

Figure 9. Original, and rotated coordinate frames

R =





cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1





2.21 Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system. We here describe the
transformation equations and implications for general constraints in any coordinate system. The
implications of this use in Salinas are also outlined.

Consider a constraint equation,

C′u′ = Q (2.133)

where the primes indicate a generalized coordinate frame. The frame may be transformed to the
basic coordinate system using equation 2.132, and

u′ = Ru (2.134)

We can now rewrite equation 2.133,

C′Ru = Q
Cu = Q

(2.135)

where C = C′R.

Thus a general system of constraint equations may be easily transformed to the basic system.
Further, the rotational matrix is a 3x3 matrix which may be applied to each node’s degrees of
freedom separately.
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2.21.1 Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained and retained
degrees of freedom, and describe the constrained dofs in terms of its Schur complement.

u =

[

ur

uc

]

(2.136)

The whole constraint equation may be similarly partitioned.

[

Cr Cc
]

[

ur

uc

]

= [Q] (2.137)

Note that Cr is an cxr matrix, Cc is cxc, and Q is a vector of length c. Under most conditions Q is
null.

This may be solved for uc,
uc = C−1

c Q−C−1
c Crur (2.138)

We must be concerned with cases where Cc may be either singular or over constrained. The former
case occurs if we try to eliminate c equations, but the rank of C is less than c. This could occur
if the equations are redundant. We can over constrain the system only if Q is nonzero. Both these
situations need attention, but both can be dealt with.

We may also write the solution using a transformation matrix, T .

[

ur

uc

]

= [T ] [ur]+ Q̃ (2.139)

where
T =

[

1
Crc

]

(2.140)

Crc =−C−1
c Cr (2.141)

and
Q̃ =

[

0
C−1

c Q

]

=

[

0
Q̆

]

(2.142)

2.21.2 Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statics are then,
[

Krr Krc

Kcr Kcc

][

ur

uc

]

=

[

Rr

Rc

]

(2.143)

or,
[K] [T ]ur +[K]

[

Q̃
]

= R (2.144)
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and
T T KTur = T T {R−KQ̃

}

= R̃ (2.145)

We can define the reduced equations,

K̃ = T T KT = Krr +KrcCrc +CT
rcKcr +CT

rcKccCrc (2.146)

and,

R̃ = T T R−T T

[

KrcQ̆
KccQ̆

]

= Rr +CT
rcRc−KrcQ̆−CT

rcKccQ̆
(2.147)

The solution in the retained system is

K̃ur = R̃ (2.148)

The system may now be solved using the reduced equations, and the constrained degrees of
freedom may be solved using equation 2.138. Much of this is detailed in Cook, but without the
constrained right hand side.

For eigen analysis the mass matrix may be transformed exactly as the stiffness matrix in equation
2.146. There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. The force vector and
force vector corrections may be time dependent. There is currently no structure to store these time
dependent terms in Salinas.

2.21.3 Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited to the basic coordinate
system. In that system the equations decouple, Cc is unity and Crc is zero. Then equations 2.146
and 2.147 reduce to elimination of rows and columns.

To properly account for the coupling that occurs when the constraints are not applied in the basic
coordinate system, we must generate all the constraint equation on the node. This may be up to a
6x6 system. I believe that there is no real conflict in first applying constraints in the basic system,
then adding additional constraints in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system (equation 2.133).

2. Transform the constraint equation to the basic coordinate system (equation 2.134).

3. Determine the constraint degrees of freedom. It may need to be done in concert with the next
step to keep from degrading the matrix condition.

4. Compute the two transformation matrices C−1
c and Crc from equations 2.137 and 2.141.
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5. Compute the corrections to the force vector from equation 2.147. We currently do not have a
structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 2.146.

7. Eliminate the constraint degrees of freedom from the mass and stiffness matrix.
In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint degrees of freedom (equa-
tion 2.138).

A few words about post processing could also prove useful. In the first implementation of
Salinas, constraints were applied only in the basic coordinate system. The degree of freedom to
eliminate was obvious from the exodus file, and it’s value was a constant (usually zero). In this later
version, a more general approach must be used. We use the following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly. This is done by setting
the G-set vector to zero before merging in the A-set results. There is no storage cost for this.

2. Other degrees of freedom are managed using an spc info object. An array of these objects will
be stored globally. Each object contains the degree of freedom to fill, an integer indicating
the number of other terms, a list of dofs/coefficients, and a constant. This facilitates solutions
of the form,

uspc = constant +
retained dofs

∑
i

uiCi (2.149)

2.21.4 Multi Point Constraints

The application to multipoint constraints is very straight forward. The only difference is that the
whole system of equations must be considered together. This changes the linear algebra significantly
because the matrices must now be stored in sparse format. However, the steps that are applicable
for single point constraints apply here as well. Subsection 2.16 deals more explicitly with MPCs.

2.21.5 Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [37]. We identify how to transform
output PDS.

Let H( f ) denote a frequency response function vector for a given input (in the global system)
expressed as,

H( f ) = H1( f )e1 +H2( f )e2 +H3( f )e3

where ei represents the unit vectors of this space. Note that H( f ) is an output vector at a single
location in the model. H( f ) can also be expressed using an alternate set of unit vectors, ẽi.

H( f ) = H̃1( f )ẽ1 + H̃2( f )ẽ2 + H̃3( f )ẽ3
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Taking the dot product of these two equations and equating the results, we have,

H̃1( f ) =
3

∑
k=1

ckiHk( f ) (2.150)

where
cki = ek · ẽi

The spectral density function Gi j( f ) (for a given input and at a single output location) can be ex-
pressed as,

Gi j( f ) = αH∗i ( f )H j( f ) (2.151)

where α is a constant and superscript * denotes complex conjugate. Similarly for the alternative
coordinate frame,

G̃i j( f ) = αH̃∗i ( f )H̃ j( f )

We may use equation 2.150 to express G̃ in terms of the Hi. We may then use the spectral definition
in equation 2.151 to provide the transformation of spectral densities.

G̃i j( f ) = α

(

3

∑
k=1

ckiH
∗
k ( f )

)(

3

∑
m=1

cm jHm( f )

)

=
3

∑
k=1

3

∑
m=1

ckicm jGkm (2.152)

This can be expressed in matrix notation as G̃ = CT GC.

2.22 HexShells

Hexshells are provided to give the analyst an element with performance similar to a standard shell,
but with the mesh topography of a brick. Thus, thin regions of the model can be meshed with
hexshells, without concern for the bad aspect ratio of the elements, and with topography consistent
with a solid mesh.

The element is documented extensively in the description by Carlos Felippa (see reference 38).
The paragraphs in this document summarize the limitations of the shells and the possible usage.

Because hexshells have an inherent thickness direction, it is important to be able to identify that
direction. There are (at least) four methods to accomplish this.

natural The natural ordering of the nodes in the element can determine the thickness direction.
This is the method used by Carlos in developing the element. I believe that the connectivity
for the element will indeed have to be modified to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements uniquely iden-
tifies the thickness direction.
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topology Usually the topology can be used to identify the thickness direction. The hexshell should
be used in a sheet. If the hexshells are considered alone, only the free surfaces of the sheet
are candidates for the thickness direction. Further, once the thickness direction is established
for one element, it must propagate to the neighbors. (Note that this implies that we can’t have
a self intersecting sheet).

projection The thickness direction could be determined by the closest projection to a coordinate
direction.

We will try to support all of the above methods. The topology method puts the least burden on the
analyst. It is the least explicit however, and the most work to implement (especially in parallel).
The next simplest (for the analyst) is the projection method. Sideset methods are burdensome for
both the analyst and the code development team. The natural method is the easiest to implement,
but can be next to impossible for the analyst to use.

Input will be structured as follows. Keywords are associated with each method. Only one of the
four keywords above can be entered. If no keyword is entered, then topology is assumed.

Block 9
HexShell
orientation sideset=’1,2’
material=9

end

or,

Block 10
HexShell
orientation topology
material=9

end

2.23 Membrane

In this section we provide the theory behind the tangent stiffness matrix for the quad membrane
element in Salinas. This element has stiffness in the in-plane directions, but has no stiffness out-
of-plane. Also, it has no rotational degrees of freedom. We note that the formulation given here is
identical to the membrane used in Abaqus.39

To begin, we define two orthogonal surface directions in the plane of the membrane l and m,
and a normal vector n. Given these unit vectors, a local coordinate system (l,m,n) is implied. Then,
we consider the weak formulation of the internal force term for the membrane in the deformed
configuration1

δWint =
Z

Ω
δD : σdΩ (2.153)
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where Wint is the virtual work, Ω is the domain of the membrane, σ is the stress tensor, and L =
∂u
∂x = D+W is the deformation gradient. The rate-of-deformation D and spin tensors W are defined
as

D =
1
2

[

(

∂u
∂x

)

+

(

∂u
∂x

)T
]

(2.154)

W =
1
2

[

(

∂u
∂x

)

−
(

∂u
∂x

)T
]

(2.155)

Note that we are using an updated Lagrangian formulation here, and thus the integral in equation
2.153 is over the current (deformed) configuration of the membrane.

We note that we can also write equation 2.153 as

δWint =

Z

Ω
δL : σdΩ (2.156)

since W is a skew-symmetric tensor, and the tensor product of a skew-symmetric tensor with a
symmetric tensor (i.e. σ) is zero.

Equation 2.156 is written in terms of the global coordinate system. In the formation of the
tangent stiffness matrix, we wish to use the fact that all stress components normal to the plane of
the membrane are zero. Hence, when considering equation 2.153 in terms of the (l,m,n) coordinate
system of the membrane, we can eliminate the out-of-plane terms and write as

δWint =

Z

Ω
δLlm : σlmdΩ (2.157)

where l,m = 1,2 are the indices for the in-plane coordinate system of the membrane, L lm = ∂ul
∂xm

, and
σlm is the 2x2, in-plane stress tensor.

Next, we need to relate the derivatives in the plane of the element to those in the global coor-
dinate system. This is because the numerical integration of the tangent stiffness matrix takes place
in the plane of the element (and hence involves derivatives with respect to in-plane coordinates),
whereas the derivatives in equation 2.157 are in terms of global coordinates. We can express the
in-plane displacement in terms of the out-of-plane displacement as

ul = ul̇ (2.158)
um = uṁ (2.159)
un = uṅ (2.160)

(2.161)

Then, the relationship between the derivatives can be computed

∂u
∂xl

=
∂u
∂x

∂x
∂xl

=
∂u
∂x

el (2.162)

where el is the unit vector in the l direction. Similar expressions hold for the other components.
Taking the dot product of both sides of the previous equation with the unit vector in the m direction,
em, we arrive at

∂um

∂xl
= em

∂u
∂x

el (2.163)
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Next, we consider the expression given for the tangent operator in39

Z

Ω
δD : C : dD+σ :

(

δLT ·dL−2δD ·dD
)

dΩ (2.164)

Since there is no stress in the out-of-plane direction, and nothing varies through the thickness, the
thickness can be pulled out, and this can be written simply as an area integral

t
Z

A
δD : C : dD+σ :

(

δLT ·dL−2δD ·dD
)

dA (2.165)

The first term is recognized as the material stiffness, and the second is the geometric stiffness term.
In particular, the material stiffness term is precisely the same as the standard form of the material
stiffness in three dimensions, expect that now it is restricted to two dimensions. The geometric
stiffness term is more involved, and so we elaborate some more on that.

First, we consider the deformation gradient in the plane of the element

Llm = el
∂u

∂xm
(2.166)

Then, we have

δLlm = el
∂δu
∂xm

(2.167)

δLT
lm =

(

∂δu
∂xm

)T

eT
l (2.168)

(2.169)

We also note that

LT L =

(

∂u
∂xm

)T

eT
l em

∂u
∂xl

=

(

∂u
∂xm

)T ∂u
∂xl

(2.170)

since eT
l em = δlm.

The rate of deformation D is simply the symmtric part of L. Thus, we can write

Dlm =
1
2

(

el
∂u

∂xm
+ em

∂u
∂xl

)

(2.171)

With these relations, we can expand the expression for the geometric stiffness, as

t
Z

A
σlm

(

∂δu
∂xm

)T ∂u
∂xl
− 1

2

(

el
∂δu
∂xm

+ em
∂u
∂xl

)(

el
∂δu
∂xm

+ em
∂u
∂xl

)

(2.172)

The material stiffness term can be integrated with a selective deviatoric approach, in much the
same was as for a volumetric element. First, we note that after finite element discretization, the
material stiffness term in equation 2.165 can be written as

Kmat =

Z

V
BTCBdV (2.173)
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where K is the stiffness matrix, V is the volume of the element, B is the two-dimensional strain-
displacement matrix

We define the mean quadrature counterpart to B,

B̃ =

Z

V
BdV (2.174)

We note that both B and B̃ can be decomposed into their volumetric and deviatoric components, i.e.

B̃ = B̃V + B̃D (2.175)
B = BV +BD

With these decompositions, we define

B̂ = B̃V + B̃D + sd(BD− B̃D) (2.176)

where sd is a parameter between 0 and 1. When sd = 0, the element corresponds to a mean quadra-
ture element. When sd = 1, the element corresponds to mean quadrature on the volumetric part, but
with full integration on the deviatoric component.

With this new definition of B̂, we can define the stiffness matrix for this element as

K =

Z

V
B̂TCB̂dV (2.177)

This is the approach taken for integrating the material stiffness term in equation 2.165
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3 Loadings

3.1 Matrices from Applied Forces

In addition to the standard mass and stiffness matrices that arise in linear structural dynamics, force-
based matrices are also common. The most common include follower stiffness matrices from ap-
plied pressures, and coriolis/centrifugal matrices in rotating structures. These notes describe the
design of the interface for these additional matrices. We will focus on the following three terms

1. Follower stiffness matrix from applied pressure. This is a nonsymmetric term, but is sym-
metrized, and becomes part of the stiffness matrix.

2. Centrifugal stiffness in rotating structures. This is a symmetric term, and becomes part of the
stiffness matrix.

3. Coriolis matrix in rotating structures. This is a skew-symmetric term that becomes part of the
damping matrix.

3.2 Theory of Modal Analysis of Rotating Structures

The finite element modal analysis of rotating structures has been studied by many authors. There
are two different approaches to this problem, with each approach being limited to certain appli-
cations. In the first approach, a rotating coordinate system is constructed that rotates with the
structure.40, 41, 42 Then, relative deformations about that rotating coordinate system are sought. In
the second approach, an Eulerian (ALE) formulation is used, in which the structure rotates through
an Eulerian mesh, and then Lagrangian deformations are considered about the Eulerian configura-
tion.43, 44

The first approach is not appropriate for modal analysis when contact surfaces are present, since
the boundary conditions in the contact patch would change with time. On the other hand, the
second approach is applicable to modal analysis with contact, but requires the structure to have a
radial symmetry. In either case, the formulation leads to a gyroscopic eigenvalue problem, which
can then be solved using a quadratic eigenvalue solver.

In these notes, we derive the finite element eigenvalue formulation corresponding to three-
dimensional finite elements.

We begin by considering the homogeneous equations of motion of a solid body in three dimen-
sions

ρü−∇ ·σ = 0 (3.1)

where ü is the particle acceleration, ρ is the material density, and σ is the stress tensor. We only
consider the homogeneous (no forcing) equation here, since we are mainly interested in eigenvalue
analysis. This equation holds relative to a fixed, inertial reference frame. The term inertial reference
frame is typically used to describe a reference frame that is not accelerating.

We now consider a reference frame that has the same origin as the inertial one described above,
but is rotating at some angular velocity Ω = (ω1,ω2,ω3). We wish to formulate the eigenvalue
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problem in an Eulerian framework, in which the displacement, velocity, and acceleration are all
written as relative quantities, i.e. relative to the rotating coordinate system. Once the equations
are written in terms of these relative quantities, we will be able to consider the small deformation
eigenvalue problem about this rotating state.

We first note that the position vector of a point on the structure can written in terms of both
the stationary coordinate system, i.e. r = (x,y,z), or the rotating (relative) coordinate system, i.e.
rrel = (xrel ,yrel ,zrel). It is clear that r = rrel , even though the individual components in these vectors
are different.

The relationships between the velocities and accelerations in the two coordinate systems are a
bit more complex. Standard textbooks on rigid body dynamics45 give the following expressions for
the velocity u̇ and acceleration ü in terms of the relative velocity u̇rel and relative acceleration ürel

u̇ = u̇rel +Ω× r (3.2)

and
ü = ürel +2Ω× u̇rel +

dΩ
dt
× r +Ω×Ω× r (3.3)

where r = x+u and x are the position vector and coordinates of a point.

We can now rewrite the first term in equation 3.1 as

ρütt = ρ
[

ürel +2Ω× u̇rel +
dΩ
dt
× r +Ω×Ω× r

]

(3.4)

In our case, we are only interested in the case where the structure is rotating at a fixed angular
velocity, and thus dΩ

dt = 0.

Having the equations of motion in the rotating coordinate system, we now proceed to construct
the weak formulation. This can be done by multiplying equation 3.1 by a test function v and inte-
grating by parts

ρ
[

Z

V
ürel · vdV +2

Z

V
(Ω× u̇rel) · vdV +

Z

V
(Ω×Ω× r) · vdV

]

+

Z

V
σ : ∇vdV +

Z

S
σnvdS = 0 (3.5)

We note that since r = x+u, the term involving x will simply become part of the load vector. Since
we are interested in eigenvalue analysis only, we can drop this term. Also, we will subsequently
drop the rel subscripts from the above equation, since all quantities are now in the relative (rotating)
coordinate system. Thus, the weak formulation becomes

ρ
[

Z

V
ü · vdV +2

Z

V
(Ω× u̇) · vdV +

Z

V
(Ω×Ω×u) · vdV

]

+
Z

V
σ : ∇vdV +

Z

S
σnvdS = 0 (3.6)

For the purposes of eigenvalue analysis, we can also drop the boundary term
R

S σnvdS, since it will
contribute to the load vector. Thus, we have

[

Z

V
ü · vdV +

Z

V
(Ω× u̇) · vdV +

Z

V
(Ω×Ω×u) · vdV

]

+
Z

V
σ : ∇vdV = 0 (3.7)

The first and last terms in the above equations correspond to the mass and stiffness matrices, respec-
tively. The second term is the skew-symmetric coriolis term, and the third term is the symmetric
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centrifugal term. We note that the stiffness term includes both the initial (material) stiffness asso-
ciated with the material properties, as well as the geometric stiffness associated with the stresses.
This stress state comes from the solution of the steady-state rolling problem, which includes the
additional stresses associated with the inertial forces.

It is easy to show that the centrifugal term is symmetric, whereas the coriolis term is skew-
symmetric. For the centrifugal term, we note the following identity for the triple cross product

a× (b× c) = b(a · c)− c(a ·b) (3.8)

Using this for examining the coriolis term, we have
Z

V
(Ω×Ω×u) · vdV =

Z

V
(Ω · v)(Ω ·u)− (u · v)(Ω ·Ω)dV (3.9)

By switching u and v in the above expression, the same result is obtained, since the dot product is
commutative. Thus, this term is symmetric.

For the coriolis term, we first write out the cross product term in terms of its components

Ω× u̇ = (−Ω3u̇2 +Ω2u̇3,Ω3u̇1−Ω1u̇3,−Ω2u̇1 +Ω1u̇2) (3.10)

Then, we have

(Ω× u̇) · v = v1(−Ω3u̇2 +Ω2u̇3)+ v2(Ω3u̇1−Ω1u̇3)+ v3(−Ω2u̇1 +Ω1u̇2) (3.11)

Similarly, we can show that

(Ω× v) · u̇ = u̇1(−Ω3v2 +Ω2v3)+ u̇2(Ω3v1−Ω1v3)+ u̇3(−Ω2v1 +Ω1v2) (3.12)

Comparing terms, we see that equation 3.11 is precisely the negative of equation 3.12. Thus, the
coriolis term

Z

V
(Ω× u̇) · vdV (3.13)

is skew-symmetric.

We can now construct the finite element discretization of this equation by adopting the usual
expansions, u = Niui, u̇ = Niu̇i, and ü = Niüi. We will generate the forms of the matrices corre-
sponding to the interactions a single node (node i) with another single node (node j). These will be
3× 3 matrices, which thencan be projected into the global matrices. First, we note the form of the
expansion for displacement

u = Niui (3.14)

Since the displacement is a vector of dimension 3, each shape function can be represented as a
dimension-3 vector of the form

Ni = (φi,0,0) (3.15)

where φi is the ith shape function. Although we write the shape function in the first entry of the
3-vector Ni, it is actually placed in the k entry, where k = mod(i,3). With this notation, the 3× 3
coriolis submatrix corresponding to the interaction between nodes i and j can be evaluated by setting
u = Niui, and v = N j. Then, the (i, j)submatrix is given by

Z

V
(Ω×Ni) ·N jdV (3.16)
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After doing some simplifications, we find that the 3× 3 matrix corresponding tonodes i and j is
given by

Z

V
φiφ j





0 Ω3 Ω2
−Ω3 0 Ω1
−Ω2 −Ω1 0



dV (3.17)

As observed earlier, this matrix is skew-symmetric.

Next, we derive the form of the 3× 3 submatrix corresponding to the centrifugal term. Again,
using the expansion u = Niui and setting v = N j, we have the 3×3 matrix

Z

V
(Ω×Ω×Ni) ·N jdV = (3.18)

Z

V
(Ω ·N j)(Ω ·Ni)− (Ni ·N j)(Ω ·Ω)dV = (3.19)

Z

V
φiφ j(ΩkΩm−δkm)dV (3.20)

where δkm is the 3× 3 identity matrix, k = mod(i,3), and m = mod( j,3). Switching k and m, we
see that the matrix is the same. Hence, we conclude that the centrifugal term is symmetric.
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4 Linear Algebra Issues

4.1 Solution Spaces

There are a number of different dimensions in Salinas. These will be summarized here with a
focus on using the data within the matlab framework. Examples of how to convert data from one
dimensionality to another will be given.

The subject of matrix dimensions is an important one. Salinas has a fairly simple set of dimen-
sions compared to more complex systems like Nastran. However, it is critical that these be well
understood if we wish to manipulate the data.

As an example, I consider an eigen analysis of a structure with 9938 nodes. This structure is
made of shells and solids. There are no boundary conditions, but there are 9 mpcs applied. I look at
only the serial file sizes.

To get the required maps and other m-files, we must select ’mfiles’ in the output section. To get
the eigenvector data, we must also write the exodus file with ’disp’ selected in the output section.

For this model, we have the following important dimensions.

1. #nodes=9938

2. external set= #nodes * 6 dofs/node = 59628

3. G-set = # active dofs before boundary conditions = 42708

4. A-set = analysis set = # equations to be solved = 42699

5. reduced external set = #nodes * 3 = 29814

There are 3 dofs/node for solid elements, but shells and beams have 6. In aggregate, the total dofs is
42708 before boundary conditions and mpcs are applied. There are no BCs in the model, but there
are 9 MPC equations, each of which eliminates 1 dof, so the Aset is reduced to 42699.

Unfortunately, the eigen disp*.m files are written in the reduced external set since this is what
the analysts typically want. The bad news is that these m-files are useless to us. The good news is
that all the data is available in either m-files or in the exodus output.

The matrices Mssr and Kssr contain the mass and stiffness matrices in the A-set. They are
symmetric matrices and only one half of the off diagonal is stored. To get the complete matrix
within matlab,

>>> K = Kssr + Kssr’ - speye(size(Kssr)).*Kssr;

The full eigenvectors (in the external set) are available in the output exodus file. To get them use the
seacas command exo2mat.
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> exo2mat example-out.exo

Within matlab, the data can be converted to a properly shaped matrix.

>>> load example-out
>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (0:nnodes-1)*6;
>>> phi(tmp+1,:)=nvar01;
>>> phi(tmp+2,:)=nvar02;
>>> phi(tmp+3,:)=nvar03;
>>> phi(tmp+4,:)=nvar04;
>>> phi(tmp+5,:)=nvar05;
>>> phi(tmp+6,:)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector. However, phi is
dimensioned at 59628 x 10 for this example. We clearly can’t multiply phi by K for example - the
dimensions don’t match. To do this we need a map.

We have two maps in our directory. FetiMap a.m is the map from the external set to the A set.
Thus we can reduce phi to the A-set by combining it with Fetimap a. If the G-set is desired
instead of the A-set, replace FetiMap a with FetiMap.

>>> p2=zeros(max(max(FetiMap_a)),nsteps);
>>> for j=1:nnodes*6
>>> i=FetiMap_a(j);
>>> if ( i > 0 )
>>> p2(i,:)=phi(j,:);
>>> end
>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mapp1=FetiMap_a+1;
>>> tmp=zeros(max(max(mapp1)),nsteps);
>>> tmp(mapp1,:)=phi;
>>> p2=tmp(2:max(max(mapp1)),:);

Now we can do all the neat things like p2’*K*p2.

To get back to the external set, we again use this map. For example, if we have a vector of
dimension 42699,

>>> x=1:42699’;
>>> XX = zeros(59628,1);
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>>> for i=1:59628
>>> if ( FetiMap_a(i)>0 )
>>> XX(i)=x(FetiMap_a(i));
>>> end
>>> end

Obviously, similar shortcuts can be made to make this more efficient. One that appears to work is
shown here.

>>> xtmp=[ 0 x’];
>>> X2=xtmp(mapp1);

4.2 Matrix Dimensions: Revision

The previous section is pretty confusing, and worse than this, it does not correspond well with
other documentation. Let me make another stab at it. The various spaces are listed in Table 5. A
discussion of each follows.

Space Description
Full-set biggest possible set. 8 * number of nodes

Output-set 6 * number of nodes
This is the space that is written to exodus.

Assembly-set This is the space to which we assemble matrices. It represents
those DOFS that have been “touched” by elements.

S-set degrees of freedom eliminated by SPC
M-set degrees of freedom eliminated by MPC
A-set Analysis set.

Table 5. Salinas solution spaces

Full-set This space is referenced by many of our solvers. We then provide a map from this space
to the A-set using Feti-map. Every node has 8 degrees of freedom (3 translations, 3 rotations,
acoustic and generalized).

Output-set This is identical to the full-set except that acoustic and generalized dofs have been
eliminated. It is used for output to exodus files, and contains all the structural dofs of the
model.

Assembly-set The assembly set is the space to which matrices are assembled. It includes dofs that
may later be eliminated by SPC or MPC.

Assembly-set = A-set∪S-set∪M-set

Currently the only map to the assembly set is found in the NodeArray.

S-set This is the list of degrees of freedom that are eliminated by single point constraints (SPC).
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M-set This is the list of degrees of freedom that are eliminated using multipoint constraints (or
MPCs). This space is non-null only if we are using constraint elimination in serial.

A-set The analysis set is the matrix dimension that will be sent to the solver. Note that it may
depend on the solver. With constraint elimination, the M-set may not be empty, while solvers
that use Lagrange multipliers will always have an empty M-set.

G-set Unfortunately, while the sets above are well defined, the G-set is not. At various times it has
been used to refer to the Full, output or assembly set. This confusion spreads throughout the
documentation and the comments in the notes.

4.3 Rotational Degrees of Freedom

In addition to the three translational degrees of freedom common in solid elements, beams, shells
and some other specialty elements use rotational degrees of freedom. These degrees of freedom per-
mit direct application of moments and allow efficient computations of structural element response
such as bending. Rotational degrees of freedom are also important for management of rigid bodies.
There are two methods of managing rotational degrees of freedom in our applications. Full rota-
tion tensors are used for large deformation nonlinear response, while infinitismal rotation angles are
typically used for small strain, linear response such as eigen analyis.

4.3.1 Euler Angles

In standard texts on classical mechanics, the rotation of a rigid body is often described using a
rotation tensor complete with Euler angles. However, there are a variety of definitions of these
angles, and the order by which they are applied does matter. From the wikipedia:
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Euler angles are a means of representing the spatial orientation of any frame of
the space as a composition of rotations from a reference frame. In the following
the fixed system is denoted in lower case (x,y,z) and the rotated system is denoted
in upper case letters (X,Y,Z).
The definition is Static. The intersection of the xy and the XY coordinate planes
is called the line of nodes (N).

α is the angle between the x-axis and the line of nodes.

β is the angle between the z-axis and the Z-axis.

γ is the angle between the line of nodes and the X-axis.

This previous definition is called z-x-z convention and is one of several common
conventions; others are x-y-z and z-y-x. Unfortunately the order in which the
angles are given and even the axes about which they are applied has never been
“agreed” upon. When using Euler angles the order and the axes about which the
rotations are applied should be supplied.
Euler angles are one of several ways of specifying the relative orientation of two
such coordinate systems. Moreover, different authors may use different sets of
angles to describe these orientations, or different names for the same angles.
Therefore a discussion employing Euler angles should always be preceded by
their definition.

Whatever definition is used, Euler angles use a series of 3 rotations about 3 different axis to
represent the orientation of a body in space. For example, in the case of the z-x-z convention, these
angle define the following rotation matrix.

[R] =





cosα −sinα 0
sinα cosα 0

0 0 1









1 0 0
0 cos β −sinβ
0 sinβ cos β









cos γ −sinγ 0
sinγ cosγ 0

0 0 1





Because matrix multiplication is not commutative, the solution depends on the order of rotion.
Rotation of a vector by this angle is a tensor product with this matrix. i.e. v ′ = Rv.

4.3.2 Infinitismal Rotational Angles

Most linear, small deformation FE applications apply the small angle approximation. We expand
all trigonometric functions as polynomials of their arguments and retain only first order terms in
the angles. Thus, sin(θ) = θ, and cross terms are eliminated. With these approximations, the
order of rotation becomes unimportant, and the component contributions to the rotation matrix are
commutable. For a rotation about x,y, z of α,β,γ we have:

[R] =





1 −γ β
γ 1 −α
−β α 1





This formulation is extremely convenient, because the coordinates are completely independent
of each other. There are obvious limitations, as the approach does not conserve length for larger
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rotations. This is often apparent in animation of mode shapes; the modes are computed under a
small angle approximation, but are often displayed with a finite deformation.

4.3.3 Quaternions

The Euler angles of the previous sections can properly define the rotations of a body. However,
the three ordered matrix operations required are not very convenient from a computational point of
view. The quaternion provides an alternate form of algebra which is equivalent to the full Euler
rotations, and is much more elegant (and efficient) for this type of computation. Within Salinas,
we use the full rotation tensor, while other sierra solid mechanics codes use quaternions. They are
mathematically equivalent.

4.3.4 Salinas Implementations

Linear vs. Nonlinear Solutions

Very simply put, all linear solutions use the infinitesmal rotation angle formulations. All nonlinear
solutions maintain a large rotation capability and use the full rotation tensor. Nonlinear solutions
using linear elements (or linearized tangent stiffness matrix terms) require conversion between these
forms.

Mixed Variable Solutions

Many linear element have been constructed which are quite adequate for use in some parts of non-
linear applications. For example, a large ship may be include a linearized model of an engine as part
of the model. As long as the engine is undergoing small deformations, it is reasonable to employ
such a linearized model, even if another part of the ship is subject to large strain and large rotation.
In general, Salinas allows the user to specify that certain material blocks in a model are linear, even
in a nonlinear analysis. This necessitates translation between these alternate (and non-equivalent)
forms.

Incremental Angular Update

Update of the rotation tensor following an incremental solution of a small deformation is accom-
plished as follows. Let us call the initial rotation tensor, Rinit . We compute a small rotation incre-
ment expressed in terms of its small rotation angles, < α,β,γ > . From the rotation increment, we
compute a rotation increment quaternion as follows.

1. θ =
√

(α2 +β2 + γ2)

2. q1 = cos(θ/2)

3. c = sin(θ/2)/θ
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4. q2 = cα

5. q3 = cβ

6. q4 = cγ

7. The quaternion is normalized.

The quaternion is then converted to a rotation tensor,

R∇ =





2(q2
1 +q2

2)−1 2(q2q3−q4q1) 2(q2q4 +q3q1)
2(q2q3 +q4q1) 2(q2

1 +q2
3)−1 2(q3q4−q2q1)

2(q2q4 +−q3q1) 2(q3q4 +q2q1) 2(q2
1 +q2

4)−1





The updated rotation tensor is,
Rupdate = R∇Rinit

Thus, the rotation increment is treated as a full angle update.

4.3.5 Consequence for Linear Elements in nonlinear solutions

The consequence of this update is that there may be significant differences between a nonlinear
solution and a linear solution, even when both are applied to a linear element. The approximations
applied for infinitismal rotations are signficant, and are not reciprocal, i.e. information is lost in
that approximation. Nonlinear solutions should permit large rotations with most elements. Linear
solutions are valid only in the range of small deformations.

4.4 Orthogonality of MPC to Rigid Body Vectors

There are many requirements on multipoint constraints (MPCs). One that is essential is that the con-
straints must be orthogonal to rigid body rotations. By this we mean that the multipoint constraints
must not constrain the system in a way that eliminates rigid body motion. This can be easily seen
in modal analysis. An ungrounded system with MPCs must retain 6 rigid body modes. Transient
and static analysis has the same kind of issues, but here the problem may not be as obvious. Note
that there are a variety of means of arriving at the weights for a set of constraints. For example,
an inconsistent tied constraint may be constructed with a node on face approach. Alternatively a
mortar method can accomplish the same thing with a different set of constraints. The weights for
these systems may differ, but all must allow the body to freely rotate. It is clear that each constraint
equation must satisfy this orthogonality independently.

4.4.1 Beam Example

I take an an example a simple two node beam to which a single node is constrained as is illustrated
in Figure 10. The beam is of unit length, in the X direction. Point 3 is located a distance ε from
point 1.
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Figure 10. Node Constrained Directly to Beam.

The displacement vector is defined as,

U = [u1x u1y u2x u2y u3x u3y] (4.1)

With a linear shape function, the typical constraints required to keep point 3 on the line are,

[(1− ε) 0 ε 0 −1 0] (4.2)
[0 (1− ε) 0 ε 0 −1] (4.3)

The three orthogonal rigid body vectors are,15





1 0 1 0 1 0
0 1 0 1 0 1
0 −θ 0 θ 0 (2ε−1)θ



 (4.4)

It can be seen that the constraints are orthogonal to the rigid body vectors.

4.4.2 Offset Example

With an offset, such as that shown in Figure 11, the rigid body vectors change. They become,




1 0 1 0 1 0
0 1 0 1 0 1
0 −θ 0 θ −Lθ (2ε−1)θ



 (4.5)

What is important here is that the rotation rigid body mode gains an extra term. Rotation of this X
axis beam about the Z axis now has a term in X . These rotational rigid body modes are no longer
orthogonal to the original constraints, 4.3.

L1 2

3

ε� -

Figure 11. Node Constrained Offset to Beam.

15 We are using infitismal rotations where sin(θ) = θ.
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4.4.3 Orthogonalization

A simple orthogonalization step can make the constraint weights once again orthogonal. We com-
pute,

n = ~C ·~Ri/||~Ri||2 (4.6)
~C ← ~C−n~Ri (4.7)

where ~C represents the constraint equation, and ~Ri represents one of the orthogonalized rigid body
modes. Without loss of generality, we can restrict ~R to the nodes in the constraint interaction. In
general, this operation must be performed for all rigid body modes on each constraint.

4.5 Mass Properties

Mass properties are computed using the method of Baruch and Zemel.46 The total mass, location of
the center-of-gravity, and the moment of inertia tensor are all calculated for most element types us-
ing the mass matrix and a set of rigid-body vectors. However, acoustic elements and superelements
use a slightly different procedure. Both methods are discussed below.

4.5.1 Mass Property Calculations for Most Element Types

The mass properties are computed using rigid-body vectors. At a node, the translational rigid-body
vectors are

{Rx}=































1
0
0
0
0
0































{Ry}=































0
1
0
0
0
0































{Rz}=































0
0
1
0
0
0































(4.8)

and the rotational rigid-body vectors are

{Rrx}=































0
−z
y
1
0
0































{Rry}=































z
0
−x
0
1
0































{Rrz}=































−y
x
0
0
0
1































(4.9)

where x, y, and z are the location of the node in the global coordinate system. These vectors are
actually assembled on an element level. As an example, for a three-node triangle element, {Rrx}
takes the form

{Rrx}T =
{

0 −z1 y1 1 0 0 0 −z2 y2 1 0 0 0 −z3 y3 1 0 0
}

.
(4.10)
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The total mass for an element can be computed as

Melement = {Rx}T [Me]{Rx} (4.11)
= {Ry}T [Me]{Ry} (4.12)
= {Rz}T [Me]{Rz} (4.13)

where [Me] is the mass matrix for the element. The total mass for the model is computed by summing
over all the elements

Mtotal =
Nel

∑
i=1
{Rx}T [Me]{Rx}. (4.14)

Note that the x, y, and z-direction equations produce the same result. Salinas uses the x-direction
equation.

In a similar manner, the location of the center-of-gravity can be found by

xcg =
1

Mtotal

Nel

∑
i=1
{Rrz}T [Me]{Ry}, (4.15)

ycg =
1

Mtotal

Nel

∑
i=1
{Rrx}T [Me]{Rz}, (4.16)

zcg =
1

Mtotal

Nel

∑
i=1
{Rry}T [Me]{Rx}. (4.17)

The components of the inertia tensor are computed as

Ixx =
Nel

∑
i=1
{Rrx}T [Me]{Rrx}, (4.18)

Iyy =
Nel

∑
i=1
{Rry}T [Me]{Rry}, (4.19)

Izz =
Nel

∑
i=1
{Rrz}T [Me]{Rrz}, (4.20)

Ixy =
Nel

∑
i=1
{Rrx}T [Me]{Rry}, (4.21)

Ixz =
Nel

∑
i=1
{Rrx}T [Me]{Rrz}, (4.22)

Iyz =
Nel

∑
i=1
{Rry}T [Me]{Rrz}. (4.23)

This procedure for computing mass properties applies to hex8, hex20, wedge6, wedge15, tet4,
tet10, beam2, Obeam, Nbeam, truss, tri3, tri6, tria, quad4, quad8, quadM, and conmass elements.
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4.5.2 Mass Property Calculations for Acoustic Elements and Superelements

Although acoustic element blocks are made up of element types listed above, acoustic elements
only have 1 degree-of-freedom per node. Thus, the rigid-body vectors presented above cannot be
used without modification. Similarly, superelement can have any number of degrees-of-freedom
depending on how the element was formed. Because of this, a different method is used to compute
mass properties for superelements and acoustic elements.

The mass properties for these elements can be computed with somewhat less accuracy than the
method presented above by lumping the mass matrix of each element, then summing the contribu-
tion from each node. This is the method implemented in Salinas .

The total mass is

Mtotal =
Nnode

∑
i=1

Mi (4.24)

where Mi is the mass at node i. The center-of-gravity is

xcg =
1

Mtotal

Nnode

∑
i=1

Mixi, (4.25)

ycg =
1

Mtotal

Nnode

∑
i=1

Miyi, (4.26)

zcg =
1

Mtotal

Nnode

∑
i=1

Mizi (4.27)

where xi, yi, and zi, are the global coordinates of node i. The components of the inertia tensor are

Ixx =
Nnode

∑
i=1

Mi(y
2
i + z2

i ), (4.28)

Iyy =
Nnode

∑
i=1

Mi(x
2
i + z2

i ), (4.29)

Izz =
Nnode

∑
i=1

Mi(x
2
i + y2

i ), (4.30)

Ixy =−
Nnode

∑
i=1

Mixiyi, (4.31)

Ixz =−
Nnode

∑
i=1

Mixizi, (4.32)

Iyz =−
Nnode

∑
i=1

Miyizi. (4.33)
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5 Constraints and Contact

5.1 Tied Friction

The work on tied surfaces with friction is under development. Details are maintained in our design
documentation.

5.2 Mortar Methods

Mortar methods are an active area of research. Details are part of our design documentation (in-
cluding theory and implementation).
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A Anisotropic Materials

Here we discuss how anisotropic elasticity is implemented in Salinas.16 The approach is reason-
ably standard, but a documentation here is necessary to specify which of the many conventions
of material parameter numbering is used in Salinas. Further, it is useful to present the theoretical
development for those who may do maintenance on this part of the code.

A.1 Linear Anisotropic Elasticity

Linear elasticity asserts that the stress is a linear function of the strain:

σi j = C4
i jklεkl (A.1)

Where C4
i jkl are the Cartesian components of the fourth order constitutive tensor and the Einstein

convention of summation on repeated indices is used.

A.2 Stress Vectors

By definition, the strain is symmetric. Further, we make the usual constitutive assumption that the
stress is symmetric. This permits the representation of the 3x3 stress matrix and the 3x3 strain
matrix each by a column vector having six rows.

s =































σ11
σ22
σ33
σ23
σ13
σ12































(A.2)

and,

e =































ε11
ε22
ε33

2ε23
2ε13
2ε12































.

This is the Voigt notation. Note that this mapping from σ to s and from ε to e is not universal. This
is the numbering used in Malvern and seems to be popular in the materials science world, but it
differs from the numbering used in NASTRAN and from the numbering in ABAQUS. Further, note
that though the above are usually referred to as “stress vectors” and “strain vectors”, they are not
vectors in the sense that they map from one coordinate system to another as true vectors do. How
that mapping is done is discussed in a later section.

16 This is a transcription of Dan Segalman’s framemaker document, “aniosConst.frm”.
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We use the above to map the fourth-order tensor C4
i jkl into a 6x6 matrix of material parameters.

This is done with the aid of the matrices that formally map σ to s and from ε to e.

en = Eni jεi j (A.3)

and
εi j = enFni j (A.4)

where

E1 =





1 0 0
0 0 0
0 0 0



 E2 =





0 0 0
0 1 0
0 0 0



 E3 =





0 0 0
0 0 0
0 0 1





E4 =





0 0 0
0 0 1
0 1 0



 E5 =





0 0 1
0 0 0
1 0 0



 E6 =





0 1 0
0 0 0
0 1 0



 (A.5)

and

F1 =





1 0 0
0 0 0
0 0 0



 F2 =





0 0 0
0 1 0
0 0 0



 F3 =





0 0 0
0 0 0
0 0 1





F4 =





0 0 0
0 0 1/2
0 1/2 0



 F5 =





0 0 1/2
0 0 0

1/2 0 0



 F6 =





0 1/2 0
0 0 0
0 1/2 0



 (A.6)

We note that the stress mappings are also achieved with the above third order quantities:

sn = Fni jσi j (A.7)

and
σi j = snEni j (A.8)

From Equations A.3 and A.4 or Equations A.7 and A.8 we see that,

Emi jFni j = δmn (A.9)

Substituting Equations A.4 and A.8 into Equation A.1 and simplifying with Equation A.9, we
find

sm = Cmnen (A.10)

where
Cmn = Fmi jC

4
i jklFnkl (A.11)

Though above shows how to find the 6x6 matrix Ci j in terms of the fourth order tensor components
C4

i jkl , the material description is usually provided directly in terms of the components of Ci j .
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A.3 Strain Energy and Orientation

We now address the situation where the matrix of material parameters of are provide in a Cartesian
coordinate system different from the coordinate system (usually the global system) in which strains
are calculated. Because stress and strain are tensors, they transfer from one coordinate system to
another by:

σi j = Raiσ̂abRb j (A.12)

and
εi j = Raiε̂abRb j (A.13)

where σi j and εi j are the stress and strain components calculated in some other (global) Cartesian
system and Rai are the components of the rotation matrix that rotates the basis vectors in that global
system to that with respect to which the material properties are defined. A basis vector b̂a in the
local, material frame is expressed in terms of the basis vectors of the global system by:

b̂a = Raibi (A.14)

where b1, b2, and b3 are the basis vectors of the global frame.

From Equations A.7, A.8, and A.11, we find following

sm = (Fmi jEnabRaiRb j)ŝn. (A.15)

From Equations A.3, A.4, and A.13, we find the more useful relationship

em = (Emi jFnabRaiRb j)ên. (A.16)

The above two transformations are simplified:

s = T T ŝ (A.17)

and
e = T ê (A.18)

where the 6x6 transformation matrix, T , is defined

Tnk = Eni jFkabRaiRb j = tr
(

ET
n RFkRT) (A.19)

Noting that
s = Ĉê, (A.20)

and substituting Equations A.17 and A.18 into Equation A.20, we further find

s = T TĈTe. (A.21)

Comparing the above with Equation A.10, we finally find that

C = T TĈT (A.22)

which was the main point of this exercise.
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Note also that the components of arrays En and Fn are mostly zero, with the rest either 1 or 1/2.
After using Maple to simplify the product matrix,we find that T has a fairly simple form.

T =

[

T11 T12
T21 T22

]

(A.23)

where

T11 =





R2
11 R2

12 R2
13

R2
21 R2

22 R2
23

R2
31 R2

32 R2
33



 , (A.24)

T12 =





R13R12 R13R11 R13R11
R23R22 R23R21 R23R21
R33R32 R33R31 R33R31



 , (A.25)

T21 =





2R21R31 R22R32 R23R33
2R11R31 R12R32 R13R33
2R11R21 R12R22 R13R23



 , (A.26)

and

T22 =





R23R32 +R22R33 R23R31 +R21R33 R22R31 +R21R32
R13R32 +R12R33 R13R31 +R11R33 R12R31 +R11R32
R13R22 +R12R23 R13R21 +R11R23 R12R21 +R11R22



 . (A.27)

Note that T defined above is the transformation matrix N in of Equation 3.34 in Auld’s “Acoustic
Waves in Solids, Volume I” (reference 47), which is used in the same way.

The Maple code to perform the above calculations follows.

with(linalg);
E[1] := matrix(3,3,[ [1,0,0],[0,0,0],[0,0,0]]);
E[2] := matrix(3,3,[ [0,0,0],[0,1,0],[0,0,0]]);
E[3] := matrix(3,3,[ [0,0,0],[0,0,0],[0,0,1]]);
E[4] := matrix(3,3,[ [0,0,0],[0,0,1],[0,1,0]]);
E[5] := matrix(3,3,[ [0,0,1],[0,0,0],[1,0,0]]);
E[6] := matrix(3,3,[ [0,1,0],[1,0,0],[0,0,0]]);
F[1] := E[1];
F[2] := E[2];
F[3] := E[3];
F[4] := (1/2)*E[4];
F[5] := (1/2)*E[5];
F[6] := (1/2)*E[6];
R := matrix(3,3);

for k from 1 to 6 do
FRR[k] := matrix(3,3);
FRR[k] := evalm ( R &* F[k] &*transpose(R));
od;
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T := matrix(6,6);
for k from 1 to 6 do
for n from 1 to 6 do
T[n,k] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
T[n,k] := T[n,k] +evalm(FRR[k][i,j])*E[n][i,j];
od; od;
od; od;

readlib(C);
C(T);

read("/home/djsegal/Maple/tools/maple2mif.mpl");
M := maple2mif();
fprintf("/home/djsegal/MPP/notes/temp.mif",’%s’,M(eval(T))) ;
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B Integration of Isoparametric Solids

We show below how one achieves effective selective integration of isoparametric solids in a manner
that satisfies the standard conditions (such as the patch test) and also accommodates anisotropic
materials.17

We begin with the definition of the strain vector. For computational convenience defines the
stress and strain vectors:

s =































σ11
σ22
σ33
σ23
σ13
σ12































(B.1)

and,

ν =































ε11
ε22
ε33
2ε23
2ε13
2ε12































. (B.2)

These are related through the matrix of elastic constants.

s = Cν (B.3)

We now take a look at virtual work, since it is from virtual work that the stiffness matrix is
derived.

δW =

Z

V
sT δνdV =

Z

V
νTCδνdV (B.4)

If we select the above volume to be that of an element and use the strain-displacement matrices
associated with each nodal degree of freedom,

ν(x) = ∑
j

B j(x)u j (B.5)

where u j is the jth nodal degree of freedom, the virtual work becomes

δW = u jδuk

Z

V
B j(x)

TCBk(x)dV (B.6)

Since the element stiffness matrix is defined by

δW = u jδKi j (B.7)
17 This is a transcription of Dan Segalman’s framemaker document, “IsoInt.frm”.
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we conclude that
Ki j =

Z

V
B j(x)

TCBk(x)dV (B.8)

The next step is to decompose the strain-displacement vectors into deviatoric and dilatational com-
ponents.

B j(x) = BD
j (x)+BV

j (x) (B.9)

where,

BV
j (x) = d j(x)

















1
1
1
0
0
0

















(B.10)

and 3d j(x) is the sum of the first three rows of B j(x). BD
j (x) is defined by Equation B.9. Substitution

of Equation B.9 into Equation B.8 yields:

Ki j =
Z

V
BD

j (x)
TCBD

k (x)dV +
Z

V
BV

j (x)
TCBV

k (x)dV + · · ·

+

Z

V
BV

j (x)
TCBD

k (x)dV +

Z

V
BD

j (x)
TCBV

k (x)dV (B.11)

For isotropic materials, the deviatoric and dilatational portions of the strain are orthogonal with
respect to the matrix of material constants, so the last two integrals in the above equation are zero.
It is sometimes common to integrate the contributions of each to the stiffness matrix using separate
strategies. Such approaches can produce elements with slightly less susceptibility to parasitic shear.
Such an approach does not work for elements of anisotropic material, so the following approach has
been developed.

B.1 Uniform Strain-Displacement Matrices

At this point it is useful to define the element averaged strain displacement matrices.

B̄k =
1
V

Z

V
Bk(x)dV (B.12)

For hex elements, these are the strain-displacement matrices of the Flanagan and Belytschko, and
are known as “uniform strain” elements. Elements formed by the above strain/displacement matri-
ces are very “soft”, having properties similar to elements formed by single point integration. Hex
elements of this sort display extraneous zero-energy modes. In what follows, we consider linear
combinations of this strain-displacement matrix formulation with the consistent formulation pre-
sented in Equation B.5.

The uniform strain matrices are also separable into dilatational and deviatoric parts.

B̄k = B̄V
k + B̄D

k (B.13)
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B.2 Mixed Integration

The approach presented here builds on one presented by Hughes.28 We can achieve the effect of
softening elements by forming the strain displacement matrices from combinations of the consistent
strain-displacement and the uniform strain displacement matrices.

B̂k(x) = αB̄V
k +(1−α)BV

k (x)+βB̄D
k +(1−β)BD

k (x) (B.14)

(14) Note that for all values of α and β, the above correctly captures uniform strains. It is in
how the non-uniform strains contribute to the stiffness matrix that the particular values of α and β
make a difference. By setting values of α and β according to the following table, we recover the
standard integration forms:

α β Integration
1 1 Flanagan and Belytschko
0 0 Full Integration
1 0 Selective Integration

We note that setting α = 1 and using an intermediate value of β, we can achieve performance
almost as good as that of the Flanagan and Belytschko element but without admitting hour-glass
modes.
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C MSC documentation of Nastran’s RBE3 element

This documentation is provided by MSC from their web page.48 It has been reformatted for math
type formatting in TEX.

C.1 Abstract: Mathematical Specification of the Modern RBE3 Element

Solution#: 4494 Last Modified Date: 06/01/00 09:06:19 AM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN (1002 or 1004)

Product Version: Product Feature:
Article Type: FAQ Publish: Y

C.1.1 Extended Description

The RBE3 element is a volume or surface spline element similar to the RSPLINE line spline el-
ement. The purpose of this memorandum is to develop a method for computing the terms in the
equations of constraint generated by the element.

A sample Bulk Data Entry for the element is :

$ EID [blank] REFGRID REFC WT1 C1 G1,1 G1,2
RBE3 15 5 123456 1.0 123 10 20

$ G1,3 G1,4 WT2 C2 . .
, 30 40

$ UM G1 C1 G2 C2 . . .
, UM 10 123 20 23 30 3

The grid points 10 through 40, entered in the Gi,j fields on the entry, are connected to a reference
grid point (number 5). The number of connected points, Nc, is unlimited. The physical principle
used to generate the constraint equation coefficients is that the motion of a body connected to the
reference grid point produces a weighted least-squares best fit to the actual motions at the other
connected grid points. The reference point is connected by 1 through 6 DOFs (REFC specification).
The connected points are also connected by 1 through 6 DOFs (Ci specification) with a weighting
factor Wti. The UM data is optional, and is explained below.

The reference is the original design document for this element. Over the years some changes
have been made in the interests of better theory and increased numerical robustness. Those changes
are incorporated in this document as though this were the original design document, to avoid the
awkwardness of first explaining older behaviors and then the present behavior. The original equa-
tions of the reference are derived with conventional variational principles applied to displacement
variables. The derivation used here is based on force variable principles. This has proven to be
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more intuitive and better understood by some engineers. The results derived by the displacement
method theory and force method theory are identical. The reference is not available in machine-
readable format. A fax copy may be requested from the MSC/NASTRAN Development Secretary,
Jan.McLaughlin@MSCSOFTWARE.COM. It is primarily of historical interest now.

REFERENCE: Mathematical Specification for the RBE3 Element, MAG-4, 15 April 1975 (Also
known as MAG-81).18

C.1.2 GENERATION OF UNIT WEIGHTING FUNCTIONS

The element is designed to allow use of any coordinate system at any connected grid point, the
global coordinate system in NASTRAN parlance. In the interests of clarity the equations are first
developed for a system where all variables are defined in one common coordinate system (the basic
coordinate system), then modified to allow global coordinates. An element characteristic length is
computed to allow scaling the equations. The distance between the reference point (subscript q) and
a connected point (subscript i) is expressed by the components

Li,x = xi− xq

Li,y = yi− yq

Li,z = zi− zq

Li =
√

L2
i,x +L2

i,y +L2
i,z

The characteristic length of the element is the average of these lengths, Lc = ∑c
i=1 |Li|/c, where

c is the number of connected points. If Lc is computed as a binary zero it is changed to a value of
unity.

The weighting functions w1 through w6 provided by the user are modified for reasons to be
motivated later to produce a connected grid point’s weighting matrix, a diagonal matrix shown here
as a vector. Let w̃i = wiL2

c . Then,

W = [w1 w2 w3 w̃4 w̃5 w̃6]

That is, the rotation DOF coefficients are scaled by the characteristic length squared, but not the
translation DOF coefficients.

18 This TAN is known in MSC’ s internal filing system as MAG-102.
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Conventional equilibrium equations are developed,

Siq =

















1 0 0 0 z −y
1 0 −z 0 x

1 y −x 0
1 0 0

0 1 0
1

















This matrix expresses the loads that must be applied to the reference point to react loads applied at
a connected point,

Pq = S′iqPi

The equilibrium matrix can also be used to generate a loading pattern on the connected points due
to a load on the reference point. Let Pqin be a set of arbitrary loads on the reference point. When
this load is applied, it is “beamed out” as loads on the connected points,

Pi =









P1
P2
...
Pc









=









W1
W2

...
Wc

















S1
S2
...
Sc









XPqin = WSiq

X is a 6 by 6 matrix to be determined. The criterion used in its determination is that the load
distribution mechanism should be in equilibrium. The equilibrium condition is that

Pqout =
[

S′1 S′2 ... S′c
]

Pi = S′iqPi

Then
Pqout = S′iqW SiqXPqin

If Pqout = Pqin, then
X = [S′iqWSiq]

−1 = A−1

and,
Pi = W SXPq = G′qiPq

Where for convenience we define,
G′qi = WSX (C.1)

Transformation. The direction cosine matrix Ti expresses the transformation between ui, the val-
ues in basic coordinates, and ũi, the values in global coordinates:

ui = Tiũi

The transformed equilibrium equations and weighting matrices are
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Siq =









T1S1
T2S2
...

TcSc









The transformed weighting matrix in global coordinates is

Wi = T ′i WiTi

The transformed A matrix is
Ai = S′iqWiSiq

A = ∑
i

Ai

It is shown in the reference that the introduction of global coordinates modifies Gqi as shown:

Gqi = TiA
−1[Siq]Wi

This implies the dual relationship between displacements

uq = Gqiui

Cast in the Nastran convention of constraint equations,

Rqi = [ −Iqq Gqi ]

and,

Rqi

[

uq

ui

]

= 0.

Rqi is the rows of the matrix of MPC coefficients for one RBE3 element.

C.1.3 SELECTION OF DEPENDENT DOFS (OPTIONAL)

The default selection for dependent DOFs (m-set) are the REFC DOFs listed for the REFGRID.
There are modeling applications where it is convenient to use these DOFs in a set exclusive from the
dependent set, such as the analysis set (a-set). The dependent DOFs may be moved to the connected
DOFs with the optional UM data. The number of DOFs must match the number of REFC DOFs,
and the selected DOFs in the UM data must have non-zero weighting functions. If the subset of Rgi
associated with these DOFs is named Rmm, the Rqi matrix is pre-multiplied by the inverse of this
quantity,

Rqi = R−1
mmRqi = [−Imm|R−1

mmRmn]

The user is required to select a UM set that produces an Rmm matrix that is stable for inversion.
There are TANs that describe techniques for selection of a good set of UM variables. The uncoupling
of the dependent equations allows some of them to be discarded, as described in the next section.
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C.1.4 EQUATION SELECTION

The total Rqi is generated above. It has 6 rows. Six or less rows are transmitted to the system
constraint matrix Rmg, depending on the REFC data. This data consists of a packed integer with up to
6 numbers in the range of 1 to 6, and describes which rows are to be passed to Rmg. The remaining
rows are discarded.

C.1.5 FEATURES FOR DIMENSION INDEPENDENCE

A good finite element should produce the same results regardless of the units of measure used in the
model. That is, the same structure modeled in millimeters, centimeters, or inches should provide
identical results. The RBE3 gains this valuable characteristic by scaling the rotation weights with
an element characteristic length,Lc, as described above. The effect of this scaling is demonstrated
here by an example. In the interests of simplicity all geometry is in the basic coordinate system and
the only non-zero offsets are in the z direction. The T matrix is then an identity matrix, and need not
be listed in these equations. Consider the problem, defined by the Siq matrix above and Wi matrices
below, where

x = xi− xq = 0,

y = yi− yq = 0,

z = zi− zq >< 0

The user inputs up to six weighting factors w1 through w6. The weighting factors for rotation are
multiplied by Lcsq = Lc2, the square of the characteristic lengths of the element. These modified
terms are underlined in the matrix below, for example, w̃4 = L2

cw4. The modified weighting factor
matrix is then

W =

















w1
w2

w3
w4L2

c
w5L2

c
w6L2

c

















The contribution for grid point i to the equilibrium matrix A is

A = S′W S =

















w1 0 0 0 w1z 0
w2 0 −w2z 0 0

w3 0 0 0
L2

cw4 + z2w2 0 0
Sym L2

cw5 + z2w1 0
L2

cw6
















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The diagonal terms for rotation (for example A55) have the form L2
cwi + z2w j, where wi is the rota-

tional weighting term, and w j the translation term active in rotation weighting because of offsets.
The motivation for modifying the rotation term can be seen in this addition of effects. Both L2

c and
z2 are in the same units of measure. When a model is changed from centimeters to millimeters, for
example, the ratio of rotation effects to offset effects is unchanged. This modification of the rotation
term allows the solution in the area of the RBE3 element to be the same for all units of measure.
As z and Lc are related by a common factor the ratio of moment terms coming in directly from
applied moments (L2

cw5) stays in constant ratio to the moment terms from offsets (z2w1) regardless
of whether lengths are measured in centimeters, millimeters, or inches. This modification of the
moment weight term provides dimension independence.

This example also provides an opportunity to discuss another counter-intuitive behavior of the
RBE3 element, the difference between the user-supplied weighting functions and the actual values
used in the corresponding coefficients of the constraint matrix. Let us simplify the expression of
A above by setting zi = 0.0. A becomes a diagonal matrix, which when inverted and multiplied by
W to form G, becomes an identity matrix. That is, the weighting factors, whatever they are, are
scaled to provide equilibrium. There may be little correlation between the values in the weighting
matrix and the values in the coefficients of the constraint matrix. The requirements for equilibrium
may change these values radically. Similarly, it shows that the significance of the weighting factors
is mainly in their ratio to one another. If all are multiplied by 10, for example, the inversion of
the A matrix, used to impose equilibrium, removes this factor of 10 so that the coefficients of the
constraint matrix are unchanged.

C.1.6 STABILITY ISSUES

The solution requires the inverse of A. It may be ill-conditioned for linear equation solution. It is
first equilibrated to make the inversion more stable. Let Ad be the diagonal terms of A. It is pre- and
post-multiplied by the inverse of Ad ,

A = A−1
d AA−1

d

This makes all of the diagonal terms of A unity. Any term multiplied by A is first multiplied
by Ad . A matrix decomposition subroutine is used that provides an inverse conditioning number.
As this number approaches zero the solution becomes more ill-conditioned. A belt-and-suspenders
check that is less mathematical and more engineering-oriented is made by also computing the largest
term in [A−1A− I], which should be a computational zero, and outputting this value when it passed
a certain threshold. If the element is determined to be pathologically ill-conditioned it causes a user
fatal error exit.

C.1.7 UPWARD COMPATIBILITY

The RBE3 element prior to V70.7 had a more primitive theory that does not provide dimension
independence. Its theory is identical to that above if a value of 1.0 is substituted for the characteristic
length Lc. A system cell is provided to obtain this theory in V70.7. Its use allows computation of
the same answers that were provided in earlier systems.
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System Cell 310 Value Action
0 (default) Use new theory.
1 Use old theory.

The name of this system cell is OLDRBE3. For example, either entry below will cause the old
theory to be used:

NASTRAN OLDRBE3=1 $ or
NASTRAN SYSTEM(310)=1 $

Changes to the RBE3 element for V70.7 are summarized in TAN 4155.

C.1.8 TOPICS FOR FUTURE WORK

The present order of operations requires that at first six equations be generated that allow meeting
equilibrium conditions, then some equations (rows of Rqi) may be discarded, at the user’s option.
This makes modeling of planar elements, for example, awkward. There are now enough numerical
tools such as Singular Value Decomposition (SVD) that would allow a different order of operations
where only the equations required would be generated. There would then be no requirement to
make the element stable for 6 DOFs, then, only for the number of equations actually used.

At present all dependent DOFs must either be totally on the reference grid point(default action),
or on the connected grid points (UM data). There have been some unsolvable modeling problems
due to singular Rmg matrices uncovered by clients having to do with interconnected RBE3 elements
in a field of very regular geometry. If the geometry is perturbed slightly the equations are solvable,
a disquieting feature when small changes in the model move it from a stable to an unstable state. It
was shown in breadboard work that the problem is solvable if some of the reference point DOFs and
some of the connected DOFs can both be in the Um data. The present rule that dependent DOFs
must all be on the reference point or all on connected DOFs was done merely for programming
convenience. The rule could readily be changed to allow mixed sets of dependent freedoms.

There are now enough mathematical tools to allow the dependent set for all MPC equations to
be picked automatically, without the requirement for user input. There have been some unsuccessful
attempts to do so in the past, but the lessons learned there, and the new mathematical tools available
today, (particularly the SVD) offer promise for successful research in this area.

C.2 Abstract: RBE3 ELEMENT CHANGES IN VERSION 70.7

Solution#: 4155 Last Modified Date: 04/17/00 02:50:26 PM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN Basic (1003)

Product Version: 70.7 Product Feature: ELEM
Article Type: FAQ Publish: Y
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C.2.1 Extended Description

1. The theory used for the RBE3 element has been modified so that the element is now independent
of the units of measure. For example, a structure modeled in centimeters will now provide the same
results when modeled in millimeters. This was not true for certain cases in systems prior to Version
70.7. A system cell provides the capability available prior to Version 70.7.

Ref. Tan 3280 for Version 70.6

2. THEORY The modeler inputs a reference grid point, its connectivity, a weighting factor for
other connected grid points, their connectivity, and the connected grid point ids. An RBE3 element
used for testing this new capability of the form

$ EID [blank] REFGRID REFC WT C G1 G2
RBE3, 123, , 4 123456 1.0 123456 1 2
$ G3
, 3

The modeler’s intent here is to connect grid point 4, for all 6 of its DOFs to the 1, 2, and 3 grid
points, for all of their DOFs, with a uniform weighting factor for all. The element divides forces
applied to point 4 to the other grid points in a manner that is influenced by their geometry and
weighting factors, in a manner that maintains equilibrium. Define a line from the reference point to
a connected point as an arm of the element. In the revised theory, a characteristic length, Lc of the
element is calculated from the average length of its arms. The square of this length is used to modify
the weighting of the connected rotation DOFs. The theory for the element is rather involved. The
derivation is given in TAN 4494. Some of the results of that derivation are used here. The constraint
equation terms applied to a connected point ui and the reference point uq are

uq = Gqiui

The constraint matrix itself has the following components:

Gqi = TiA
−1SiqWi

Ti is a rotation matrix that is an identity matrix when GIDi and GIDq are in parallel coordinate
systems. It will be dropped from this discussion. Siq is the traditional matrix for transmitting rigid
body motion between point “i” and point “q”. It has unit terms on the diagonal, and offset lengths
on coupling terms between translation and rotation in the upper triangle. Wi is the user-supplied
weighting functions, and A a matrix used to force the element to meet equilibrium requirements.
All MSC/NASTRAN constraint-type (R-) elements must meet an equilibrium condition, to avoid
any possibility of internal constraints in the element. It is instructive once in one’s lifetime, if
tedious, to work out a simple example by hand, for a simple geometry. We will instead just look at
typical terms, to avoid some of the tedium.

The A matrix is generated by finding the resultants of loads applied at the connected points,
measured at the reference point. The 5,5 term for a single connected point is shown in the referenced
TAN to be

A55 = w5 + z2
i w2.
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When A is inverted, this term operates on the corresponding Siqwi term

Giq55 = w5/(w5 + z2
i w1)

If zi is zero, the effects of this normalization is to ”wash out” the w5 weighting term, so that the
coefficient is 1.0. If zi is not zero, the ratio of translation load effects z2

i w1 to rotation loads effects
w5 is

Ratio = w5/(z
2
i w1)

This leads to a dimensional dependence, in that the ratio changes when the model is converted from
millimeters to centimeters, for example. This undesirable behavior is eliminated by multiplying the
rotation weighting factors by the square of the characteristic length, Lc,

Ratio = L2
c ∗w5/(z

2
i w1)

If zi (and Lc) have their units of measure changed, the ratio stays constant. If this modified
weighting constant is used on the 5,5 term

Giq55 = L2
cw5/(L

2
cw5 + z2

i w1)

If zi = 0.0 the weighting terms wash out. If it is non-zero the denominator of this quantity is constant
with changes in units of measure.

Note that answers will change only when rotations are given connectivity for the connected
DOFs, and then only when the rotations at the connected DOFs are part of a redundant load path.
This is because the element is required to meet equilibrium conditions to avoid internal constraints,
that is, single point constraints that do not appear in the SPCFORCE output. If the load path is stat-
ically determinate the equations used to impose equilibrium will adjust the values of internal loads
in the element as needed to meet equilibrium, regardless of the value of the weighting functions.
Always meeting equilibrium requirements insures that there will be no internal SPC forces in the
element.
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D Theory Notes for Acoustics and Structural Acoustics

Finite element analysis of acoustic and structural acoustic phenomena has become a common prac-
tice in both academia and industry. Excellent review articles can be found in,49.50

In this section, we present the theory and equations behind the acoustic implementations in
Salinas. This section is a work in progress, but still is a good start. We start with linear acoustics,
on conforming and nonconforming structural acoustic meshes. Then, we describe the nonlinear
acoustic work in Salinas.

D.1 Conforming and Nonconforming Linear Structural Acoustics

Having the same mesh density in the acoustic fluid and solid may be very inefficient, since the
two domains typically require significantly different mesh densities to achieve a given level of dis-
cretization accuracy. Perhaps more importantly, it is also impractical in many applications since the
mesh generation process may be performed separately for the two domains. Generating conforming
meshes on the wet interface may be very difficult, if not impossible, even given the most sophis-
ticated mesh generation software. Excellent examples include the hull of a ship, or the skin of an
aircraft. In these cases, the structural and fluid meshes are typically created independently, and have
very different mesh density requirements. Joining them into a single, monolithic mesh is usually
impractical.

Although methods for joining dissimilar meshes are well-known in structural mechanics,51, 52, 53, 54

very few papers exist in the area of dissimilar structural acoustic meshes. Mandel55 considered
parallel domain decomposition techniques for structural acoustics in the frequency domain, on mis-
matched fluid/solid meshes. Nonconforming discretizations on the wet interface were handled by
duplicating acoustic and structural degrees of freedom on either side of the wet interface, and im-
posing coupling equations that enforce continuity of pressure and displacement. The duplicated
degrees of freedom were then included in a dual-primal, parallel domain decomposition strategy.
Only two-dimensional, frequency-domain problems were considered. Flemisch et al.56 studied
both fluid-fluid and structure-fluid coupling on mismatched meshes. For fluid-fluid coupling, a
mortar approach was taken, whereas for structural acoustic coupling, the coupling matrices were
assembled in normal fashion and used across the wet interface to coupled the fluid-solid responses.
Only time-domain, serial solutions were considered.

Several recent references considered a displacement-based acoustic formulation, which was then
coupled to an elasticity formulation on mismatched fluid/solid meshes. Alonzo57 used an adaptive
method with error estimation to refine the fluid/solid meshes accordingly. The error estimator de-
manded different mesh densities on the fluid and solid interface, as expected. Bermudez58 also
considered a displacement-based acoustic formulation, but used an integral constraint on the wet in-
terface, along with a static condensation procedure to eliminate the acoustic degrees of freedom. In
both of the preceding references, Raviert-Thomas elements were needed to avoid spurious modes
in the fluid. These modes would have been automatically eliminated with the use of a potential
formulation in the fluid.

Here we present a new technique for acoustic and structural acoustic analysis in the case of
nonconforming fluid/solid interface meshes. We first construct a simple method for coupling mis-
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matched fluid/fluid meshes, based on a set of linear constraint equations. Using static condensation,
we show how these constraint equations can be eliminated from the final system of equations. We
then demonstrate that the same approach can be taken to couple mismatched fluid/solid meshes,
provided that the coupling matrices that are typically used for conforming fluid/solid meshes are
calculated on the structural side of the interface, and that extra (“ghost”) acoustic degrees of free-
dom are introduced on the structural side of the wet interface. With this arrangement, the structural
acoustic coupling resembles a conforming method on the structural side of the wet interface, and
then the fluid degrees of freedom on both sides are coupled with the same approach that was used
for the nonconforming fluid-fluid meshes. The coupling operators ensure a weak continuity of par-
ticle velocity and stress between the structural degrees of freedom and the ghost acoustic degrees of
freedom, and then the linear constraints ensure continuity of acoustic pressure between the two sets
of acoustic degrees of freedom.

Although we do not consider more sophisticated methods for nonconforming acoustic/acoustic
meshes, such as mortar methods, our approach allows such methods to be readily applied to noncon-
forming structural acoustic meshes, since the wet interface coupling involves only acoustic degrees
of freedom. Also, in the case that the fluid/solid meshes are conforming, our approach reduces to
standard methods for conformal structural acoustic coupling.

D.2 The Governing Equations and Their Discretizations

In this section, we review the governing equations of acoustics and structural acoustics, along with
their corresponding weak formulations, and then we present our approach for the nonconforming
discretization. We will begin with the case when all meshes are fully conforming, and then we will
extend this to the nonconforming case.

D.3 Conforming Structural Acoustics

We will begin by constructing a weak formulation of the linear acoustic wave equation for conform-
ing meshes. Subsequently, we will consider conforming structural acoustics.

The linear acoustic wave equation is given by

1
c2

∂2ψ
∂t2 −∆ψ = 0, (D.1)

where ψ is the velocity potential (ψ = ∇u̇, where u̇ is the particle velocity), and c is the speed of
sound. Note that this implies we neglect volume (body) forces on the fluid.

A weak formulation of equation D.1 can be constructed by multiplying with a test function and
integrating by parts. We denote the fluid domain by Ω f and its boundary by ∂Ω = ∂Ωn

S

∂Ωd , where
the subscripts n and d refer to the portions of the boundary where Neumann and Dirichlet boundary
conditions are applied. We also assume that the fluid is initially at rest, i.e. ψ(x,0) = ψ̇(x,0) = 0,
which is sufficient for most applications.

Denoting by V f (Ω f ) the function space for the fluid, the weak formulation can be written as
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follows. Find the mapping ψ : [0,T ]→V f (Ω f ) such that

1
c2

Z

Ω
ψ̈φdx+

Z

Ω
∇ψ ·∇φdx =−

Z

∂Ωn

ρ f u̇nφds

∀φ ∈Vf (Ω f ), where u̇n is the prescribed velocity on the Neumann portion of the fluid boundary.

Inserting a finite element discretization φ(x) = ∑N
i=1 φiNi(x) into equation D.2 results in the

system of equations

Mψ̈+Kψ = fa, (D.2)

where N is the vector of shape functions, M =
R

Ω f

1
c2 NNT dx is the mass matrix, K =

R

Ω f
∇N ·

∇NT dx is the stiffness matrix, and fa =
R

∂Ωn
ρ f u̇nNT dx is the external forcing vector from Neumann

boundary conditions.

For structural acoustics, the second order equations of motion for the solid and the wave equation
for the fluid are

ρsutt −∇ ·σ = f ,

1
c2

∂2ψ
∂t2 −∆ψ = 0.

(D.3)

Here u corresponds to the displacement of the structure, σ is the structural stress tensor, ρs is the
density in the solid, and f denotes body forces on the solid. Subsequently, subscripts s and f refer
to solid and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface,
which is designated by ∂Ωwet ), are

∂ψ
∂n

= −ρ f u̇n,

σn = −ψ̇n̂,

(D.4)

where ρ f is the density of the fluid, and n̂ is the surface normal vector. These boundary conditions
correspond to continuity of velocity and stress at the wet interface.

The weak formulation of the coupled problem is constructed by multiplying the two partial
differential equations in equation D.3 by test functions and integrating by parts. Denoting by Vs(Ωs)
and Vf (Ω f ) the function spaces for the solid and fluid, respectively, we have the following weak
formulation.
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Find the mapping (u,ψ) : [0,T ]→Vs(Ωs)×Vf (Ω f ) such that

Z

Ωs

ρsüwdx+
Z

Ωs

σ : ∇swdx−
Z

∂Ωwet

σnwds =
Z

Ωs

f wdx+
Z

∂Ωn

σnwds,

1
c2

Z

Ω f

ψ̈φdx+

Z

Ω f

∇ψ ·∇φdx+

Z

∂Ωwet

∂ψ
∂n

φds

=
Z

∂Ωn

∂ψ
∂n

φds

(D.5)

∀w ∈Vs(Ωs) and ∀φ ∈V f (Ω f ), where ∂Ωn is the portion of the solid and fluid boundaries that has
applied loads, and f is used to denote body forces on the solid. Also, ∇s = 1

2
(

∇+∇T
)

is the
symmetric part of the gradient operator. If Dirichlet boundary conditions were applied to part of
the structure, or if the fluid had a portion of its boundary subjected to Dirichlet conditions, then
the Sobolev spaces Vs(Ωs) and V f (Ω f ) would be modified accordingly to correspond to spaces that
have those same boundary conditions. We also note that in the integration on the wet interface, the
normal is defined to be positive going from solid into the fluid.

Next, we insert the boundary conditions from equation D.4, and we define σn = g on the solid
portion of ∂Ωn, and ∂ψ

∂n = −ρ f u̇n on the fluid portion of ∂Ωn. This leads to the following weak
formulation. Find the mapping (u,ψ) [0,T ]→Vs(Ωs)×Vf (Ω f ) such that

Z

Ωs

ρsüwdx+

Z

Ωs

σ : ∇swdx+

Z

∂Ωwet

ψ̇n̂wds =

Z

Ωs

f wdx+

Z

∂Ωn

gwds,

1
c2

Z

Ω f

ψ̈φdx+

Z

Ω f

∇ψ ·∇φdx−ρ f

Z

∂Ωwet

u̇nφds =

−ρ f

Z

∂Ωn

u̇nφds (D.6)

∀w ∈Vs(Ωs) and ∀ψ ∈V f (Ω f ).

Assuming a linear constitutive model for the solid, and inserting the spatial discretizations u =

∑uiNi and φ = ∑φiNi into equation D.6 yields the following semidiscrete system of linear ordinary
differential equations in time

[

Ms 0
0 M f

][

ü
ψ̈

]

+

[

Cs L
−ρ f LT C f

][

u̇
ψ̇

]

+

[

Ks 0
0 K f

][

u
ψ

]

=

[

fs

f f

]

, (D.7)

where Ms, Cs, and Ks denote the mass, damping, and stiffness matrices for the solid, and M f , C f ,
and K f denote the same for the fluid. The coupling matrices are denoted by L and LT . Coupling
between fluid and structure, as well as any damping in the fluid or solid separately, is accounted for
by the damping matrices. The quantities fs and f f denote the external forces on the solid and fluid,
respectively.

D.4 Nonconforming Structural Acoustics

In the case of nonconforming fluid/solid discretizations, equations D.5 and D.6 contain some extra
technicalities. In this section we will first describe a simple procedure for coupling two acoustic
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domains which share a common boundary, but with nonconforming discretizations. This method
will then serve as a stepping stone to the case of nonconforming structural acoustics.

In order to enforce continuity of appropriate field variables between the two different surfaces,
the degrees of freedom and element surfaces involved in the coupling need to be known a priori.
Given the surface meshes of the fluid and solid, this information is non-trivial to obtain, especially
in parallel, since adjacent element surfaces may reside on different processors.

The ACME package4 has been developed as a tool to determine surface contact conditions
between general surfaces in three dimensions. These surfaces can take the form of boundaries of
finite element discretizations, as in our case, or they can be analytic surfaces. In either case, search
algorithms are employed to determine node-to-face interactions between the opposing surfaces,
based on user-defined normal and tangential search tolerances. A given node is determined to
be in contact with a given face of the adjacent surface if the distance from the node to the adjacent
element face is within the user-specified search tolerance. The ACME package can compute contact
conditions between most of the standard three-dimensional finite elements, including hexahedral,
tetrahedral, and prismatic elements. Once these interactions are defined, one can devise enforcement
algorithms to enforce continuity of the appropriate field variables. For the purposes of our work,
we use ACME only to determine the node-to-face interactions on the wet interface. Once these are
known, we derive our own enforcement algorithms, as explained below.

We consider the situation shown in Figure D.1. Here there are 2 interacting acoustic domains,
and two contact surfaces. We adopt a master-slave approach, where one of the two interacting
surfaces is designated as a master, and the other as the slave. We denote surface 1 as master,
and surface 2 as slave. For a transient acoustic simulation involving the two meshes shown in
Figure D.1, we would have to solve the system of equations given in D.2, which would involve
degrees of freedom from both acoustic domains, subject to the constraint that the velocity potential is
continuous across the nonconforming interface. The extra equations corresponding to this constraint
can be derived from a simple consideration of the contact geometry.

In Figure D.2, node x from surface 1 is impinging on element face y of surface 2. If ACME
determines that the distance from node x to element face y is within the user-defined search toler-
ance, a constraint relation will be needed to enforce continuity of velocity potential. The constraint
relation for this interaction can be written in the form

ψa =
4

∑
i=1

ciψb
i , (D.8)

where ψa is the velocity potential at node x on surface 1, and ψb
i are the velocity potentials at the four

nodes of element face y on surface 2. The coefficients ci are determined from the position of node x
relative to the positions of the nodes on element face y on surface 2. For example, in the special case
that face y is square and node x lies at the center of the face y, the coefficients c i would all be equal
to 1

4 , indicating that the constraint is simply an average. We use this approach, commonly referred
to as inconsistent tied contact, for all of the nodes/elements on the interacting surfaces. This results
in a set of linear constraints that enforces continuity of velocity potential at discrete points between
the two acoustic meshes. These constraint equations can be written mathematically as follows

CΦ = 0, (D.9)

where C is a matrix that contains all of the constraint coefficients from all of the node-face interac-
tions, and vector Φ contains nodal velocity potentials from all of the nodes involved in the constraint
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Figure D.1. Two interacting acoustic domains, with nonconforming
meshes at the common interface. In this case surface 1 is defined to be
the master surface, and surface 2 is the slave.

Figure D.2. A node-face interaction on the structural acoustic interface.
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equations. Φ can be partitioned into master and slave components

Φ =

[

Φm

Φs

]

. (D.10)

With this partition, the matrix C can also be split into master and slave components, and equation
D.9 can be written as

[Cm ,Cs]

[

Φm

Φs

]

= 0. (D.11)

Also, if we define Cms =−C−1
s Cm, we can condense the slave degrees of freedom from the stiffness

matrix in equation D.2.

K̃ = Kmm +KmsCms +CT
msKsm +CT

msKssCms (D.12)

Similar condensation expressions hold for the mass and damping matrices.59 After condensing out
the slave acoustic degrees of freedom in equation D.2, we obtain a modified system of equations

M̃ψ̈+ K̃ψ = f̃a, (D.13)

where the tilde superscripts indicate that the slave constraints have been condensed out. Note that
the vector ψ now only contains the interior degrees of freedom (corresponding to nodes that are
not on the interacting surfaces), and the master degrees of freedom on the contact surface, since the
slave degrees of freedom have been eliminated. Equations D.13 can also be solved in the frequency
domain, as follows

[

s2M̃ + K̃
]

ψ = f̃a, (D.14)

where s is the frequency parameter that comes from the Laplace transform.

In the case of structural acoustics, the algorithm just described for the nonconforming fluid/fluid
meshes can be used as a stepping stone to the nonconforming solid/fluid meshes. In this approach,
acoustic degrees of freedom are added to the nodes on the adjacent structural side of the wet in-
terface. We subsequently refer to these as the ghost acoustic degrees of freedom. Subsquently,
the acoustic and structural meshes are matching on the structural side of the wet interface, and the
nodes on that side have four degrees of freedom instead of three. Next, the two surface integrals
in equation D.6, i.e.

R

∂Ωwet
ψ̇n̂wds and ρ f

R

∂Ωwet
u̇nφds, are both evaluated on the structural side of

the wet interface. Finally, the mismatched acoustic meshes (the “true” acoustic surface nodes and
their ghost counterparts) are tied together using the same set of linear constraint equations that was
developed for the nonconforming acoustic/acoustic case.

In addition to equations D.7, we have a set of linear constraint equations that couple acoustic
variables across the wet interface. As in the fluid/fluid case, these constraint equations represent the
relations between the master and slave acoustic degrees of freedom, and they take the form

CΦ = 0. (D.15)

Upon condensing these constraints out of the system of equations, D.7, we obtain a modified system
of equations

[

M̃s 0
0 M̃ f

][

ü
ψ̈

]

+

[

C̃s L̃
−ρ f L̃T C̃ f

][

u̇
ψ̇

]

+

[

K̃s 0
0 K̃ f

][

u
ψ

]

=

[

f̃s

f̃ f

]

, (D.16)
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where again the tilde superscripts represent the matrices with constraints condensed out. Note
that, in this case, even the structural matrices (and coupling matrices) must be modified during the
constraint removal process, even though the constraints involve only acoustic degrees of freedom.
This is because of the coupling matrices L and LT , which couple the acoustic and structural degrees
of freedom on the structural side of the wet interface. The fact that these other matrices are also
modified is an essential part of the overall fluid/solid coupling scheme. To solve this system of
equations, we use the generalized alpha time integration method,60 which is a generalization of the
Newmark-beta method.

In addition to the transient analysis formulation outlined above, an advantage of our coupling
procedure is that it can be applied equally well to nonconforming structural acoustic problems for
both eigenvalue analysis, and frequency domain analysis. This can be seen simply by transforming
equation D.16 to the frequency domain.

s2
[

M̃s 0
0 M̃ f

][

u
ψ

]

+ s

[

C̃s L̃
−ρ f L̃T C̃ f

][

u
ψ

]

+

[

K̃s 0
0 K̃ f

][

u
ψ

]

=

[

f̃s

f̃ f

]

, (D.17)

where s is the frequency parameter that comes from the Laplace transform. The same constraint
equations that were used for the transient problem would also apply to the eigenvalue problem.
Equations D.17 constitute a quadratic eigenvalue problem, which could be solved for the coupled
modes. Note that the forcing terms would need to be set to zero in that case. Alternatively, if the
frequency response (Helmholtz) problem was of interest, it could be obtained simply by setting
s = iω in the above equations, where ω is the frequency of interest. This would result in following
complex-valued system of equations

−ω2
[

M̃s 0
0 M̃ f

][

u
ψ

]

+ iω
[

C̃s L̃
−ρ f L̃T C̃ f

][

u
ψ

]

+

[

K̃s 0
0 K̃ f

][

u
ψ

]

=

[

f̃s

f̃ f

]

. (D.18)

Our method can be summarized by the diagram in Figure D.3. As shown the structural nodes on
the wet interface are augmented with acoustic degrees of freedom. Consequently, these nodes each
have four degrees of freedom. These “ghosted” acoustic degrees of freedom are then constrained
by the acoustic degrees of freedom on the adjacent side of the wet interface. The structural acoustic
coupling operators, which come from the weak formulation, are both evaluated on the structural
side of the wet interface.

D.5 Acoustic Scattering

Acoustic scattering refers to the interaction of plane acoustic waves with solid bodies which are
immersed in an infinite acoustic fluid. The plane waves are assumed to originate from infinity, and
after impinging on the solid body, they continue to propagate to infinity. In scattering simulations,
the velocity potential is decomposed into a sum of the incident potential, and scattered potential

ψtot = ψin +ψsc (D.19)

where ψtot is the total potential, ψin is the incident potential, and ψsc is the scattered potential. The
incident potential is a known quantity, and the scattered potential is unknown. Thus, in the final
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Constraint equations join acoustic degrees of
freedom on both sides of wet interface

Acoustic subdomain Solid subdomain

1 degree of freedom per node

4 degrees of freedom per node

3 degrees of freedom per node

Figure D.3. Illustration of our method for structural acoustic meshes
with nonconforming interfaces. Ghost acoustic degrees of freedom are
added to the structural side of the wet interface, and then connected to
the adjacent acoustic surface with constraint equations.
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formulation, the incident potential becomes part of the right hand side forcing function, and the
scattered potential remains on the left hand side as an unknown.

The incident potential satisfies the wave equation, and for a plane wave takes the form

ψin = Aei[ωt−k·x] (D.20)

where ω = 2π f is the circular frequency of the wave, f is the frequency in Hz, k is the vector wave
number, and x is the vector coordinates of a point in space. The vector wave number has three
components, k = (kx,ky,kz), which define the direction of propagation of the wave. For example,
for a wave propagating strictly in the x direction, we would have k = (kx,0,0), where kx = ω

c would
be the standard wave number from one-dimensional wave propagation. The parameter A is a scalar
constant that defines the magnitude of the wave. Although A can be made to vary with frequency,
we will only consider the case where A is a scalar constant. This simply implies that all incoming
plane waves have the same amplitude (but different frequencies). In the frequency domain, the time
portion of the expression in equation D.20 drops out, and we are left with

ψin = Aeik·x (D.21)

We consider a three-dimensional elastic body, which is immersed in an infinite acoustic fluid,
and subjected to impinging plane waves from infinity in the frequency domain. The equations of
motion of the coupled system are given in terms of equations D.18. The left hand side of these
equations will remain unchanged, but the right hand side will need special attention to impose the
plane wave conditions on both the fluid and the solid.

First, we recall that the portion of the acoustic load fa that comes from Neumann boundary
conditions can be written in the form (see equations D.5)

fa =−ρ f

Z

∂Ωn

u̇nφds =

Z

∂Ωn

∂ψin

∂n
φds (D.22)

where ρ f u̇n = ∂ψin

∂n . Given equation D.21, we define n = (nx,ny,nz) to be the surface normal of
the solid body. We also let k · x = kdotx, k = ω

c (dirx,diry,dirz), where (dirx,diry,dirz) define the
direction cosines of the direction of propagation of the indicent plane wave, this can be computed
as

∂ψin

∂n
= ∇ψin ·n = i

ω
c

[nxdirx +nydiry +nzdirz]Aeikdotx (D.23)

Inserting this expression into equation D.22, and integrating, we obtain the loading on the acoustic
fluid due to scattering.

For the loading on the structure, we recall the expression for loading on the structure due to
Neumann boundary conditions (see equations D.5)

fs =
Z

∂Ωn

σnwds (D.24)

where σn = nψ̇in = inωψin = inωAei(kdotx) . Inserting this expression into equation D.24, and inte-
grating, we obtain the loading on the solid body due to scattering. Inserting the expressions for fa

and fs from equations D.22 and D.24 into equations D.18, we can solve for the responses of the
acoustic fluid and solid body to incident plane waves. Note that the solution to equations D.18 will
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give the scattered acosutic potential. In order to compute the total acoustic potential, we would need
to add the incident and scattered potentials together, as in equation D.19.

Finally, we examine the complex-valued loads presented in equations D.22 and D.24. We make
two observations regarding these loads.

1. These loads have real and imaginary parts, and thus even for a single plane wave, they cannot
be combined into a single vector, even though they have the same multiplication factor A.
Currently, Salinas combines load vectors that have the same time function into a single array.
For the case of complex loads in the frequency domain, this translates into combining the real
and imaginary parts into a single array if they have the same “time” function, which in this
case corresponds to the multiplication factor A. A temporary work-around is to use distinct
time functions for the real and imaginary parts in the input deck. (even if the time functions
themselves are identical). Otherwise, if the same time function is used, the real and imaginary
parts would be combined into a single vector in Salinas.

2. We have considered the case where the coefficient A is a scalar constant, but we could also
consider the case where A = A(ω) is a function of frequency. This would correspond to mul-
tiple plane waves of different amplitudes impinging on the structure. Since the spatial parts
of these loads varies with frequency, they could not be computed by adding the spatial parts
together before multiplying by the coefficent A(ω). Thus, we would have an inconsistency
with the current approach in Salinas of adding the spatial parts together before multiplying
by the time function (which in this case would be A(ω)).

D.6 Absorbing Boundaries

The need to truncate acoustic domains arises in exterior problems, where the fluid or solid domain is
infinite or semi-infinite. In these cases, the domain could be truncated either with infinite elements,
or absobing boundary conditions. We describe below the simple absorbing boundary conditions that
have been implemented in Salinas. A description of infinite elements will be added at a later time.
We describe the cases of an acoustic space and an elastic space separately.

D.6.1 Acoustic Space

The implementation of absorbing boundary conditions begins by considering the weak formulation
of the equations of motion, in equations D.5. On an absorbing boundary, one needs to consider the
term

Z

∂Ωn

∂ψ
∂n

φds, (D.25)

which arises from the integration by parts on the acoustic space. Absorbing boundary conditions are
typically derived by applying impedance matching conditions to equation D.25, in such a way that
the boundary absorbs waves of a given form exactly. For example, the simplest absorbing boundary
conditions consist of plane wave and spherical wave conditions, which can be written as follows50

∂ψ
∂n

=
−1
c f

∂ψ
∂t

(D.26)
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∂ψ
∂n

=
−1
c f

∂ψ
∂t
− 1

R
ψ (D.27)

where R is the radius of the absorbing spherical boundary.

Inserting equation D.26 into equation D.25, we obtain a term propotional to ψ̇, which becomes
a damping matrix. Inserting equation D.27 into equation D.25, we obtain two matrix terms, one that
contributes to the damping matrix, and another that contributes to the stiffness matrix. Note that
in the limit of large R, the spherical wave condition reduces to the plane wave condition, since for
large enough radius, the spherical wave begins to resemble a plane wave.

Both conditions D.26 and D.27 are implemented in Salinas.

D.6.2 Elastic Space

In the case of an elastic space, very similar absorbing boundary conditions can be applied as were
in the acoustic space, except now the boundary has to absorb both pressure and shear waves. In the
case of an acoustic medium, only pressure waves are of interest. Thus, the elastic space is slightly
more complicated.

The equation of motion for an elastic space can be written as

ρutt −∇ ·σ = f (D.28)

where ρ is the material density, utt is the second time derivative of displacement, σ is the stress, and
f is the forcing. A weak formulation of this equation can be constructed by multiplying with a test
function and integrating by parts.

Z

V
ρutt wdV +

Z

V
σ : ∇wdV −

Z

∂V
σswdS =

Z

V
f ·wdV (D.29)

where w is the test function, and σs is the traction vector on ∂V , the boundary of volume V . The
absorbing boundary condition is imposed on the portions of ∂V that point into the infinite space. In
this derivation, we assume that this includes the entire boundary ∂V . If only part of the boundary
pointed into the infinite space, the derivation would be exactly the same.

Considering the term
Z

∂V
σswdS (D.30)

we note that the traction vector σs can be decomposed into its normal and tangential components,
i.e. σs = σn +σt . Then, we apply the conditions

σn = ρcL
∂vn

∂t
(D.31)

σt = ρcT
∂vt

∂t

where cL and cT are the longitudinal and shear wave speeds in the medium, and vn, vt are the normal
and tangential components of velocity vectors on the surface. Inserting these relations into equation
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D.30 yields two absorbing boundary matrices. Since these matrices involve the velocities, they
become part of the overall damping matrix of the structure.
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