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Abstract 

 
Non-destructive detection methods can reliably certify that gas transfer system 
(GTS) reservoirs do not have cracks larger than 5%-10% of the wall thickness. 
To determine the acceptability of a reservoir design, analysis must show that 
short cracks will not adversely affect the reservoir behavior. This is commonly 
done via calculation of the J-Integral, which represents the energetic driving force 
acting to propagate an existing crack in a continuous medium. J is then 
compared against a material’s fracture toughness (Jc) to determine whether 
crack propagation will occur. While the quantification of the J-Integral is well 
established for long cracks, its validity for short cracks is uncertain. 
 
This report presents the results from a Sandia National Laboratories’ project to 
evaluate a methodology for performing J-Integral evaluations in conjunction with 
its finite element analysis capabilities. Simulations were performed to verify the 
operation of a post-processing code (J3D) and to assess the accuracy of this 
code and our analysis tools against companion fracture experiments for 2- and 3-
dimensional geometry specimens. Evaluation is done for specimens composed 
of 21-6-9 stainless steel, some of which were exposed to a hydrogen 
environment, for both long and short cracks. 
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1 Introduction 

 
1.1 Technical Problem and Project Goals  
 
Current non-destructive detection methods can reliably certify that gas transfer 
system (GTS) reservoirs do not have cracks larger than 5%-10% of the wall 
thickness. Hence, in order to determine the acceptability of a reservoir design, 
analysis must show that short cracks will not adversely affect the reservoir behavior. 
The current GTS Design Standard, DG10215, is undergoing revision to better 
represent and define the margins against crack extension.  This revision is part of an 
effort to demonstrate damage tolerance in reservoirs and to meet the requirements of 
the Price-Anderson Amendment Act. Finite element analysis is the conventional 
computational method by which the stress fields within components are predicted 
given mechanical loading and/or displacements at the component’s external 
boundaries. It has been long established that these stress fields, along with strain 
energy density fields and displacement field gradients, can be used to calculate the 
J-Integral, a path independent integral that evaluates the energetic driving force that 
acts to propagate an existing crack in a continuous medium. The quantity “J” is then 
compared against a critical value (Jc) representing the material’s resistance to 
fracture to determine whether crack propagation will occur and the manner of that 
propagation (i.e. stable or unstable crack growth). Jc is often referred to as a 
material’s fracture toughness. While the quantification of the J-Integral is well 
documented in both textbooks and experimental standards for long cracks, what has 
not been as rigorously determined are the length limits for short cracks at which the 
J-Integral expression loses its validity. 
 
This project’s primary goal is to establish and evaluate a methodology for performing 
J-Integral evaluations in conjunction with Sandia’s finite element analysis capabilities. 
Simulations were performed to verify the operation of a post-processing code (J3D) 
for calculating the J-Integral and to assess the accuracy of this code and our analysis 
tools against companion fracture experiments for 2- and 3-dimensional geometry 
specimens. These specimens were composed of 21-6-9 stainless steel, and half of 
the specimens were exposed to a hydrogen environment resulting in an atomic 
concentration of hydrogen of 1%. This evaluation is done for both long and short 
cracks, the latter of which is a concern in quantifying safety margins for designs of 
gas transfer system (GTS) reservoirs. Through this report, we will provide a rigorous 
assessment of our ability to use the J-Integral to predict fracture in components such 
as GTS reservoirs and provide a recommendation regarding their use in the design of 
future reservoirs as documented in the GTS design standard DG10215. 
 
Another goal of this project is to quantify the margins and uncertainties (QMU) for the 
modeling and simulation activities discussed above and throughout this report. The 
information obtained through these efforts is needed to revise the gas transfer 
systems (GTS) reservoir design standard to better represent and define the margins 
against crack extension. Project tasks have focused on addressing the issues of 
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verification and validation of the elastic-plastic constitutive model used and the 
algorithm for calculating the J-Integral using standard output from the analysis code, 
on quantifying uncertainties in the fitted parameters of the constitutive model and 
gauging their effect on the subsequent FEA and J-Integral analysis, and on 
assessing the requirements that affect the calculation of the J-Integral and the 
requirements that affect experimental measurement of the fracture toughness – the 
criteria against which the J-Integral is evaluated.  
 
 
1.2 Background Information on J-Integral 
 
The J-Integral, developed by Rice [1] and based on the work by Eshelby [2], is a path 
independent integral that evaluates the energetic driving force that acts to propagate 
an existing crack in a continuous medium. The J-Integral is a path integral defined 
with respect to a plane that intersects the front of a crack tip, as shown below in 
Figure 1. 
 

  
 

Figure 1 The J-Integral path (from Rao and Rahman, 2004[3]) 
 
 
The conventional expression for J is 
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where W is the strain energy density, n is the vector normal to the path defined by Γ 
and pointing away from the crack tip (i.e. outward normal), σij is the Cauchy stress 
field and u is the displacement field. The power of the J-Integral lies in its path-
independence; evaluation of the integral along a path far from the crack tip yields the 
correct driving force even though the tip may be surrounded by a zone in which 
complex physical mechanisms such as plastic deformation (for ductile materials), 
fiber pullout (for composite materials), or granular rotation and separation (for brittle 
polycrystalline materials) may be occurring. This driving force is related to the 
geometry of the body containing the crack, as well as the external loads applied to 
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the body. Propagation commences when the value of the J-Integral reaches a critical 
level, the fracture toughness Jc. 
 
The form of J as a path integral in a 2-dimensional body immediately presents a 
challenge for how to define J in a 3-dimensional body containing a variable-shaped 
crack front. Papers by Blackburn[4], Kishimoto et al.[5], Amestoy et al.[6] and Batte et 
al.[7] define path independent integrals that include volume terms to take into 
account fracture process zones, post-yield behavior and 3-dimensionality. For 
example, for a 3-dimesional body or a material that exhibits inhomogeneous or non-
elastic behavior, Blackburn defines J as 
 

! 

J = Wn
1
"T #

$u

$x
1

% 

& 
' 

( 

) 
* d+

+

, "Lim
-.0

$

$x
3

/ # e
3( ) #

$u

$x
1

% 

& 
' 

( 

) 
* dS

S

,
0 

1 
2 

3 

4 
5 . 

 

J in the above expression consists of the normal path integral and the limit of an 
integral over the area enclosed by the path as the area size (ρ) approaches zero. J is 
evaluated at a point along the crack front; thus, a discretization of the crack front and 
evaluation of J at these discrete locations would be necessary to model driving force 
along the entire crack front. Kishimoto et al.[5] proposed a somewhat different 
expression for a path independent integral, and for a 3-dimensional body evaluates a 
fracture process region or “plate” characterized by inner and outer contours, shown in 
Figure 2. 
 

 
 

Figure 2 A 3-dimensional crack front, fracture process plate for J-Integral calculation 
(from Kishimoto et al., 1980[5]) 

 
 
An alternative approach developed by Li et al.[8] and Shih et al.[9] was to define 
surface and volume integral expressions for J using weight functions that vary from 
zero to unity between inner and outer contour paths or surfaces, respectively. An 
example volume and defining surfaces are shown in Figure 3 for an axisymmetric 
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body. Similar methods and expressions were developed and used in papers by 
Chiarelli and Frediani[10], Meith and Hill[11], Ericksson[12], and Nguyen et al.[13]  
 

 
 

Figure 3 Three Dimensional Surface for J-Integral calculation in axisymmetric body 
(from Shih et al, 1986) 

 
 
At Sandia, Wellman developed post-processing codes J2D and J3D to calculate the 
J-Integral expression by Amestoy et al.[6] using results from finite element 
analyses[14]. The expression used,  
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is similar to the one discussed earlier by Blackburn. Wellman’s method for evaluating 
J in 3-dimensional bodies is as follows: 
 

1. First, a plane is defined that intersects the crack front. 
2. Next, at least four approximately concentric paths that enclose the crack tip 

are defined on that plane.  
3. The path integral portion of the above expression is evaluated and a different 

value of “J” is recorded for each path. Also recorded is the 2-dimensional area 
that each path defines, “A”. 

4. It can be shown that the surface integral in the Amestoy expression scales is 
proportional to A2. Hence, a least squares regression analysis is performed to 
fit the unknown coefficients in the relation: 

! 

J = C
0

+ C
1
A

2. Comparing this 
relation with the Amestoy formula, one realizes that the coefficient C0, i.e. the 
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zero area limit of the relation, yields the true J (J3D). This is consistent with the 
expression by Blackburn.  

 
 
Another concern regarding the J-Integral is its validity for short cracks. Most 
textbooks[15] and mechanical testing standards require a minimum crack length, 
relative to specimen dimensions, to define and quantify J. The rationale behind this 
requirement has to do with the effect of geometric constraint on the stress state at the 
crack tip. Mercer and Nicholas[16] noted that standard expressions for crack tip 
stress states, used in the conventional and 3-dimensional J-Integral expressions 
discussed above, do not predict fatigue fracture behavior for bodies containing short 
cracks. A more comprehensive theoretical investigation was conducted by O’Dowd 
and Shih[17, 18], who argued that J alone is insufficient for short cracks where crack 
tip stress triaxiality constraint is lost. They defined a parameter Q to describe the 
stress distribution and maximum stress, and designated that J sets the size scale for 
large stresses and strains through the expression 
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Hence, J (the driving force for crack propagation) is not sufficient to predict the 
fracture of short cracks. Rather, a combination of J and Q must be used. Put another 
way, the fracture toughness Jc can now be considered a function of the crack tip 
stress distribution, i.e. Q. This conclusion was shown in later analysis by Ainsworth 
and O’Dowd[19] and is shown in Figure 4. 
 

 
Figure 4 Fracture toughness as a function of crack tip constraint factor Q for a body 
with a short crack (from Ainsworth and O’Dowd[19]). Circles represent experimental 

measurements while the solid and dashed lines represent fits to analytic expressions. 
 
From this perspective, Matvieko and Morozov developed expressions for a 2-
parameter fracture criterion for short cracks[20]. A goal of this analysis project was to 
confirm or refute that a single value of fracture toughness is insufficient to predict 
crack propagation. 
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1.3 Approach for Technical Work 
 
As stated earlier, this project is focused on establishing a methodology for performing 
computational J-Integral evaluations. Our exploration of scientific and engineering 
literature has identified several approaches for calculating the J-Integral for 3-
dimensional geometries. We’ve also obtained several references that examine the 
usefulness of the J-Integral when crack-tip constraint is lost or has not been 
established. Several articles suggest the use of multiple criteria to predict the onset of 
crack propagation, however the necessity of this use has not been firmly established. 
As such, our project breaks-down into the following tasks: 
 

1. Develop accurate material models for the elastic-plastic deformation behavior 
of 21-6-9 stainless steel in both its annealed state and upon exposure to a 
hydrogen atmosphere resulting in the material containing 1 atomic % 
hydrogen. Parameters for these models are fit from data collected during 
uniaxial tension experiments performed by a separately funded C6 project[21]. 
Verification and optimization of these parameters is performed using notched-
tension experiments performed by the same research group.  

2. Verify the performance of our finite element analysis (FEA) simulation 
capabilities and the J3D code using standard fracture test geometries and 
comparison with semi-analytic solutions found in the ASTM Standard for 
Measurement of Fracture Toughness[22]. 

3. Validate the performance of our FEA capabilities and the J3D code through 
comparison of simulation and J calculations with fracture experiments 
performed on a 2-dimensional, Compact Tension (CT) geometry. Experiments 
were performed by the separately funded C6 project mentioned above, and 
details about these experiments can be found in [21].  

4. Validate the performance of our FEA capabilities and the J3D code through 
comparison of simulation and J calculations with fracture experiments 
performed on a 3-dimensional, axisymmetric geometry. Experiments were 
performed by the separately funded C6 project mentioned above, and details 
about these experiments can be found in [21]. Unlike the experiments for the 
2-dimensional geometry, techniques for their execution were developed here 
at Sandia, and a method to estimate the J-Integral was taken from the 
scientific literature instead of the aforementioned ASTM standard[22]. 
Experiments and simulations are performed for various crack lengths to 
examine both the 3-dimensional and short crack issues discussed previously. 

5. Perform a similar analysis and comparison with experiment for a 3-
dimensional asymmetric geometry that contains a continuum of crack lengths 
at different points along the crack front. While comparison of the load-
displacement response is conceptually straight forward, the calculation of the 
J-Integral is less so. 
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2 Fitting of Material Model 

 
As already mentioned, our project chose its focus material to be 21-6-9 stainless 
steel. This choice was made to maximize the probability of observing classic, brittle 
fracture behavior in a stainless steel alloy. This probability was further increased by 
including material exposed to a hydrogen atmosphere and “charged” to contain 1 
atomic % hydrogen. 21-6-9 exhibits a combined elastic-plastic deformation response. 
While several material models are adequate to represent this response, the model 
originally developed by Bammann, Chiesa and Johnson[23, 24] was selected for use 
in a majority of our modeling and simulation activities (an exception to this selection 
will be noted in the next chapter). The “BCJ” model, as it was originally named, has 
undergone a series of extensions and modifications since its original publication and 
is currently referred to as the Evolving Microstructural Model of Inelasticity, or 
EMMI[25]. EMMI was selected for use in this project due to our project team’s 
familiarity with the model, and because it has been implemented within the FEA code 
ADAGIO used for the fracture simulations discussed in subsequent chapters.     
 
The focus of our project required our fitted version of EMMI to accurately model only 
the elastic-plastic deformation response of 21-6-9 at a single, slow loading rate, at 
room temperature and with no unloading (for details, see [21]). As such, a simplified 
version of the EMMI model is used: 
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The first relation governs the rate at which plastic strain (εp) develops, while the 
second relation governs the rate at which kinematic hardness (κ) evolves. The 
parameters f, Y, n, H and Rd (defined in reference [25]) require fitting, as do the elastic 
properties of Young’s modulus (E) and Poisson’s ratio (ν). Fitting of these seven 
parameters is done using the computer code BFIT[26] in conjunction with uniaxial 
tension test data collected by the experimental project.  
 
 
2.1 Uncharged 21-6-9 stainless steel 
 
Parameters were first fit using the hardening portion of the tension test data for the 
annealed, uncharged (no hydrogen added) material. The uniaxial stress-strain curve 
for both the experimental data and fitted material model are shown in Figure 5. The 
fitted parameters are listed in Table 1. 
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Figure 5 Fit of EMMI model parameters to tensile test data for uncharged 21-6-9 

 
 

Table 1 EMMI parameter values for uncharged 21-6-9 
 

Parameter Units Value 

E psi 30,500,000 

ν - 0.3 

f s-1
 0.0547043749985 

n - 2,000.10895362 

Y psi 27,016.0102624 

H psi 220,553.505061 

Rd - 2.57892421411 

 
Figure 5 clearly shows that the EMMI model with fitted parameters does an excellent 
job at representing the elastic-plastic deformation of this material. The “Fitting” curve 
shown in Figure 5 is a numerical estimation assuming a uniaxial stress-strain state. 
The performance of the fitted model was verified at a basic level by constructing a 
multi-element mesh of the tension test specimen and simulating the test loading 
using FEA as implemented in ADAGIO. Results for this simulation are shown in 
Figure 6 and again show excellent agreement with the original experimental curve. 
This figure also shows that since damage-related aspects of EMMI were not included 
in the parameterization and fitting, our FEA model does not display the necking 
behavior observed in the experimental curve.  
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Figure 6 Comparison of FE analysis using fitted material model with experimental data 
for uncharged 21-6-9 

 
2.2 Hydrogen charged 21-6-9 stainless steel 
 
Parameters were next fit using tension test data for the annealed, hydrogen charged 
material. The fitted parameters are listed in Table 2, and the uniaxial stress-strain 
curve for both the experimental data and fitted material model (as demonstrated 
through an FEA simulation of the tension test) are shown in Figure 7. As with the 
uncharged material, we observe excellent agreement of the fitted model with 
experiment. This agreement does not validate our model, as the parameters were 
determined using the experimental data. However, the curves do show that our fitting 
process is consistent with expectations. 
 
 

Table 2 EMMI parameter values for Hydrogen charged 21-6-9 

Parameter Units Value 

E psi 30,500,000 

ν - 0.3
f s-1

 0.088921065 

n - 6,664.715946 

Y psi 36,303.98519 

H psi 264,799.7199 

Rd - 1.679662456 
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Figure 7 Comparison of FE analysis using fitted material model with experimental data 
for Hydrogen charged 21-6-9 

 
 
A comparison between the stress-strain responses of the uncharged and hydrogen 
charged materials was made and is shown in Figure 8. Although this Figure was 
constructed using the FEA-produced curves, a comparison of the experimental 
curves would be identical prior to load reduction.
 

Figure 8 Comparison of true stress-strain curves for FE analyses of tension test for 
uncharged (blue) and hydrogen charged (red) 21-6-9  

 
We observe that the two materials have identical elastic responses, and the plastic 
response, while qualitatively similar, differs somewhat quantitatively. Specifically, the 
hydrogen charged material exhibits a higher yield stress and a larger degree of 
kinematic hardening. This is also observed through calculation of the steady-state 
kinematic hardness: 
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Thus, not only does the hydrogen charged material yield at a higher stress than the 
uncharged material, this offset in stress changes as deformation occurs, achieving a 
maximum value in the steady-state. 
 
 
2.3 Verification and validation of material model 
 
The ADAGIO calculations discussed in the previous section do verify the consistency 
of our fitted material models but do not validate them. Validation of the material 
models was done by using the fitted parameters with ADAGIO to analyze notched 
tension test specimens and comparing the results against the experimental data 
measured by the C6 project group. Details regarding these experiments can be found 
in [21].  
 
We first consider the uncharged 21-6-9 and four notched specimens of radii 0.039”, 
0.078”, 0.156” and 0.390”. Our analysis model consists of 1/8th of the specimen, 
using appropriate symmetry boundary conditions at the side and bottom surfaces. 
Figure 9 and Figure 10 show the meshed geometry analyzed for each radius, along 
with the load-displacement responses for both the simulation and the experiment. 
 
Figure 9 and Figure 10 show that agreement between the experiment and our fitted 
model is very good for displacements up to (and in some instances beyond) the peak 
load reached. For the notched tension specimen of largest radii, we notice that the 
analysis under-predicts experiment past a certain amount of displacement just prior 
to the amount coinciding with the peak load. This discrepancy caused us to pause 
and consider two questions: At what displacement should our model no longer be 
valid? Does optimization of model parameters improve the agreement between 
analysis and experiment? 
 
To answer the first question, we examined the analysis results for the notched 
tension test of the largest radius geometry, 0.390”, and focused on the evolution of 
the Von Mises (or equivalent) stress and plastic strain in the element undergoing the 
largest amount of deformation. Our analysis showed that the point at which the load-
displacement discrepancy becomes noticeable (a displacement of approximately 
0.08”) coincides with the plastic strain going beyond the range over which the EMMI 
parameters were fitted, approximately 42%. Our analysis also shows that stress 
within the element never decreases, but rather asymptotically approaches the limit of 
Y + κss, as predicted by the underlying theory to EMMI. Hence, we attribute the drop 
off in load seen in Figure 10 to a localization of deformation in the meshed model 
corresponding to specimen thinning. Our material model indeed remains valid over 
the range of plastic strain it was fitted to. 
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Figure 9 Comparison of FEA using fitted material model for uncharged 21-6-9 with 
notched tension test data. (a) Notch radius = 0.039”, (b) Notched radius = 0.078” 

Mesh refinement and analysis was also done for each of the two larger notch radii in 
order to assess how the fidelity of the mesh affects the load-displacement behavior. 
This refinement was accomplished by dividing each element edge in half, thereby 
increasing the number of elements in each mesh by a factor of eight. No difference 
was seen in the pre-peak portion of the load-displacement curve. While mesh 
refinement did change the post-peak behavior, it is again noted that this occurs in a 
region outside that used to fit our material model and is due to localization, which is 
known to be mesh dependent. 
 
The same notched test experiments and analyses were performed for the hydrogen 
charged material. Figure 11 shows the resulting load-displacement curves for all four 
notch radii. It is observed that the fitted model over-predicts the load-displacement 
curve for smaller notch radii but under-predicts it for larger radii. Figure 12 shows the 
elemental stress-strain response observed in all four simulations, and it is indeed the 
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case that the expected response (that of the tension test the material model was fit 
to) occurs in all specimens analyzed. 
 
These observations answer our first question; our models are valid over 
displacement ranges corresponding to strain ranges over which the parameters were 
fitted. To answer the second question, in the next section we consider optimizing the 
EMMI parameters of the uncharged material and a statistical sampling study to 
characterize the sensitivity of the parameters of the hydrogen charged material. 

 

 
 
 
 
 
 

(a) 

 
 

 
 
 
 
 
 

(b) 

 
 

Figure 10 Comparison of FEA using fitted material model for uncharged 21-6-9 with 
notched tension test data. (a) Notch radius = 0.156”, (b) Notched radius = 0.390” 
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Figure 11 Comparison of FEA using fitted material model for Hydrogen charged 21-6-9 

with notched tension test data. 
 
 

 
Figure 12 Comparison of elemental stress-strain response for FEA of notched tension 

tests with tensile test data. 
 
 
 
 
 
 
 



  27 

2.4 Optimization and statistical sampling of material models 
 
2.4.1 Approach 
 
As already discussed, the analysis work thus far uses 5-parameter versions of the 
EMMI constitutive model for materials exhibiting elastic-plastic mechanical behavior. 
Simulations were performed using the ADAGIO finite element code, a component of 
the SIERRA framework. Material model parameters were originally fit to tension test 
data for 21-6-9 stainless steel. Two sets of parameters were obtained: one for 
annealed material and another for annealed material that underwent exposure to a 
hydrogen atmosphere (hydrogen charging), resulting in the steel containing 1 atomic 
% hydrogen. In addition to the tension tests, notched tension experiments were also 
performed for both uncharged and charged specimens. Four notch radii were used: 
0.039”, 0.078”, 0.156” and 0.390”. This data was used to perform statistical sampling 
study for uncertainty quantification of the charged material model and optimization of 
model parameters for the uncharged material. 
 
The quantification of uncertainty in the predicted load (as a function of displacement) 
due to uncertainty in material parameters is determined from a statistical sampling 
procedure. Specifically, in order to reduce the n-dimensional sampling space 
associated with n uncertain parameters to a tractable number of samples, we employ 
Latin hypercube sampling (LHS)[27]. In this procedure, the range of each of the n 
parameters (here, n = 5) is divided into m contiguous intervals of equal probability 
(e.g., equal intervals if the uncertainty is deemed uniform across a given range). A 
set of m sample points, each corresponding to specific values of each of the n 
parameters, is then chosen according to a randomized process that guarantees good 
coverage of the sample space. In particular, values are chosen in a specific fashion 
such that no two sample points have values of any parameter from the same interval 
(i.e., no two points lie in the same “row” or “column” of the hypercube). We note that 
because a full quadratic least-squares fit of the sample data would require a 
minimum of n2+n+1 sample points, this serves as a reasonable lower limit for the 
number m of sample points. However, a somewhat larger number (e.g., a modest 
multiple of this value) is desirable if one wishes to produce relatively smooth 
histograms of the output data. In our sample calculations described below, we 
specified m = 300 sample points in the LHS sampling algorithm. 
 
In the actual calculations, we used the DAKOTA software package[28] to generate 
the LHS points, run the simulations (one for each point in the sample space), and 
tabulate the output. This entailed the composition of a DAKOTA input file that 
specified the sampling method (LHS), set bounds and distribution properties of the 
uncertain parameters (uniform within a range of ±20% of nominally optimal values), 
and called a user-composed simulation script to launch the (parallel) simulations (four 
per sample point, corresponding to the four geometries) and post-process the results. 
The latter required the composition of a response function based on the simulation 
data. In this particular case, a response function for each of the charged notched 
tension geometries was defined as a root-mean-square error of the calculated load 
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relative to experimental values, evaluated at ten regularly spaced displacements 
between zero and the maximum in the load-displacement curve. This response 
function can be expressed as 
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where the L’s are the loads obtained from the simulations and the Lexp ’s are the 
loads measured from experiments, both obtained at each of the N displacements. A 
single composite response function was then computed as the average of the four 
response functions for each of the four geometries, which thus constituted the 
response output arising from a single sample point. The final primary output from 
DAKOTA was a table of m rows, the n+1 columns of which listed the n parameter 
values corresponding to each of the m sample points plus the corresponding 
composite response function. This table was then imported into a statistical software 
package (JMP) to facilitate the compilation of the preliminary uncertainty-
quantification results described below. 
 
In addition to sampling, optimization of the material model for the non-hydrogen-
charged material was also performed using the SGOPT pattern search method 
available within the DAKOTA software package. The same response function as 
defined above was used to perform this optimization, where N=10 displacements of 
values D =  .01, .02, … .10” were used. We minimized this objective F by varying the 
5 model parameters: c1, c3, c5, c13, and c15. These parameters correspond to 
combinations of the material model parameters f, Y, n, H and Rd. Iterative use of the 
ADAGIO analysis code within DAKOTA achieved this minimization. This optimization 
process was first applied separately to the 0.039” and 0.390” data, to determine 
optimal parameters for these particular notched tension tests, and also to the 
combined set of data from the tests for four notch radii.  
 
For clarity, we reiterate that the response function F (for either optimization or 
sampling) is constructed only for data within the pre-peak region of the load-
displacement curve. This limits the impact that material damage has on these 
analyses, an aspect not considered during the fitting of our material model. 
 
2.4.2 Optimization of EMMI parameters for uncharged material 
 
In conducting sample studies such as that described above, it is necessary to 
specify, at the very least, nominal values of the uncertain parameters to center the 
parameter distribution (such as the ±20% uniform uncertainty range in the calculation 
above). In order to aid in this specification, we also used DAKOTA to carry out 
preliminary optimization studies in which the previously defined response function is 
regarded as an objective function and parameter values are sought so as to minimize 
this objective. In this application, we include in the DAKOTA input file the 
specification of the (global) optimization method, the initial guesses and ranges for 
the parameters to be optimized, and a call to another user-composed simulation 
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script to launch the (parallel) simulations and post-process the results. In this case, 
the final outputs from DAKOTA are the values of the optimized parameters. The 
results for the uncharged case are shown in Table 3-5, where the first two tables are 
optimizations for two particular geometries, and the last is an optimization for all four 
geometries using a composite objective as described in the LHS study. In this 
example, the initial guesses based on preliminary simulations were pretty good, but 
the optimization procedure was still able to reduce the objective somewhat and 
provide improved nominal estimates for the parameters. We note that it is generally 
possible to reduce the objective by a greater percentage when restricting the 
optimization to a single geometry (Table 3, 4) as compared to an optimization over all 
4 geometries (Table 5).  
 

 
Table 3 Optimized values of EMMI parameters for uncharged 21-6-9 based on notched 

tension test data for radius = 0.039” 
 
Parameter 

R=.039” 

Initial Values 
RMS Load Error = 61.12255 

RMS Optimized Values 
RMS Error = 47.00786 (#659) 

C1 2.00000000e+03 1.97590887e+03 

C3 4.42090000e+04 4.48753487e+04 

C5 5.59399985e−02 5.68622541e−02 

C13 3.66160011e+00 3.69427593e+00 

C15 2.85920000e+05 2.80498426e+05 

 
Table 4 Optimized values of EMMI parameters for uncharged 21-6-9 based on notched 

tension test data for radius = 0.390” 
 
Parameter 

R=.390” 

Initial Values 
RMS Load Error = 94.77993 

RMS Optimized Values 
RMS Error = 34.68147 (#323) 

C1 2.00000000e+03 2.15418764e+03 

C3 4.42090000e+04 4.34179863e+04 

C5 5.59399985e−02 5.48375186e−02 

C13 3.66160011e+00 3.57702633e+00 

C15 2.85920000e+05 2.94789301e+05 

 
Table 5 Optimized values of EMMI parameters for uncharged 21-6-9 based on notched 

tension test data for all radii 
 
Parameter 
All R: .039, 

.078, 
.156, .390 

Initial Values 
RMS Load Error = 102.9047 

Individual RMS Errors: 
61.12, 51.12, 164.39, 94.78 

RMS Optimized Values 
RMS Error = 89.42621 (#115) 

Individual RMS Errors: 
(93.38, 101.12, 103.28, 48.76) 

C1 2.00000000e+03 2.04816124e+03 

C3 4.42090000e+04 4.40571908e+04 

C5 5.59399985e−02 5.65821483e−02 

C13 3.66160011e+00 3.62171598e+00 
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C15 2.85920000e+05 2.90736124e+05 

The improvement in the predicted load-displacement response for the geometry and 
optimized parameters given in Table 4, along with the corresponding prediction using 
the combined optimized values given in Table 5, is shown in Figure 13.  
 

Figure 13 Comparison of FEA analyses using original and optimized EMMI material 
parameters for notched tension test for radius = 0.390” 

Although the greatest improvement comes from using optimized parameters 
particular to the given geometry, both sets of values lead to modest improvements 
over the nominal values of the parameters. However, we note from the heading of 
the last column of Table 5 that the combined optimization produces, in this case, a 
poorer fit for the smaller notch radii relative to even the given nominal parameter 
values. 
 
 
2.4.3 Statistical sampling study of EMMI parameters for hydrogen-charged 
material 
 
Figure 14 displays a scatter plot of the composite response function, expressed as a 
decimal (rather than as a percent), for each sample point of the 300-point LHS study. 
Figure 15(a) and (b) exhibit a graphic and several fundamental statistical measures 
of the response distribution. In particular, the response mean is approximately 
0.1125, which may be interpreted as a mean predictive error of (only) 11.25% arising 
from the uniform ±20% uncertainty in the five constitutive parameter inputs. Similarly 
the sample standard deviation is 0.0591, or 5.91%, which represents a measure of 
the broadness of the error distribution.  
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Figure 14 Response-function distribution (300 sample points) 
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(a) 

Quantiles 
   

100.0% maximum 0.28659 
99.5%  0.28657 
97.5%  0.26790 
90.0%  0.20015 
75.0% quartile 0.14441 
50.0% median 0.09896 
25.0% quartile 0.06321 
10.0%  0.05156 
2.5%  0.04558 
0.5%  0.04376 
0.0% minimum 0.04360 

Moments 
  

Mean 0.1125343 
Std Dev 0.0591043 

Std Err Mean 0.0034124 
upper 95% Mean 0.1192497 
lower 95% Mean 0.105819 

N 300 
(b) 

 

Figure 15 (a) Histogram and quantile box plot for the distribution in Figure 14. (b) 
Fundamental statistical analysis for the distribution in Figure 14. 

 
The graphic itself presents the response data shown in Figure 14 in the form of a 
histogram, where the box-and-diamond above the histogram bars graphically 
summarizes the key statistical attributes of the distribution. Specifically, the two upper 
and lower diamond points spanning the box lie at the sample mean, and the range 
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between the other two diamond points within the box defines the 95% confidence 
interval of the mean (i.e., the probability, based on the statistical sample, that the 
response mean lies outside that interval is 5%). The box itself spans the interquartile 
range between the 25th and 75th quartiles, respectively (i.e., 25% of the points lie 
beyond each end of the box, and 50% lie within the box), and the horizontal lines 
(whiskers) extending beyond the box contain all points that lie within 1.5 times the 
interquartile range. Points beyond the whiskers represent possible outliers (i.e., 
points corresponding to extreme values). The vertical line across the middle of the 
box denotes the sample median, and the bracket along the edge of the box 
encompasses the shortest interval containing 50% of the response values. Figure 
15(a) and (b) thus give a preliminary uncertainty quantification of the response error 
based on the type and range of uncertainty in the input parameters.   

    
Depending on the need, additional characterizations of the response might include 
calculating more detailed statistical attributes of the output, fitting a probability 
distribution to the histogram data, computing a least-squares polynomial fit of the 
response data, and examining correlation data to determine the degree to which 
parameters are interconnected (i.e., correlated). For example, in this particular case, 
the sample correlation coefficients associated with any two parameters are all small 
(Table 6), strongly suggesting that the five constitutive parameters considered here 
are statistically independent (i.e., uncorrelated). We remark that further refinement of 
these and other measures of the predictive uncertainty could be achieved if it were 
possible to better characterize the uncertainty in the input parameters by more 
accurately specifying the nature of their statistical distributions (e.g., normal rather 
than uniform). 
 

Table 6 Sample multivariate correlation matrix for the data in Figure 14. 
 
 c1 c3 c5 c13 c15 
c1 1.0000 -0.0149 0.0251 -0.0071 -0.0186 
c3 -0.0149 1.0000 0.0021 0.0168 -0.0399 
c5 0.0251 0.0021 1.0000 0.0011 0.0098 
c13 -0.0071 0.0168 0.0011 1.0000 0.0304 
c15 -0.0186 -0.0399 0.0098 0.0304 1.0000 
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3 J3D – information and verification 

 
3.1 J3D code for calculating the J-Integral from FEA 
 
As was mentioned in Chapter 1, Wellman developed the post-processing code J3D 
to calculate the J-Integral expression by Amestoy et al.[6],  
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using results from finite element analysis[14]. Wellman’s method for evaluating J in 3-
dimensional bodies is as follows: 
 

1. First, a plane is defined that intersects the crack front. 
2. Next, at least four approximately concentric paths that enclose the crack tip 

are defined on that plane.  
3. The path integral portion of the above expression is evaluated and a different 

value of “J” is recorded for each path. Also recorded is the 2-dimensional area 
that each path defines, “A”. 

4. It can be shown that the surface integral in the Amestoy expression scales 
like A2. Hence, a least squares regression analysis is performed to fit the 
unknown coefficients in the relation: 

! 

J = C
0

+ C
1
A

2. Comparing this relation 
with the Amestoy formula, one realizes that the coefficient C0, i.e. the zero 
area limit of the relation, yields the true J (J3D). 

 
A version of the J3D code is stored on Sandia’s SHASTA institutional computing 
cluster, and instructions on how to compile and run the code appear in Appendix A. 
In addition to the J3D code, a separate Perl script was developed to define 
concentric element paths enclosing a crack tip for a given mesh and provide them to 
the J3D code. The Perl script, j3d_general_paths.pl, along with the necessary 
modules is included in Appendix B for reference. j3d_general_paths.pl takes six, 
optionally seven, inputs: 

• The input exodus file. <exodus_file> 
• The node number of the crack tip on the plane of symmetry. 

<inner_crack_node> 
• The direction from the crack tip node to look for the first element in the plane.  

Possible inputs are: +x, -x, +y and –y where these are strings. 
<crack_plane_dir> 

• The direction perpendicular to the first plane and in to the model.  Possible 
inputs are +z and –z where these are strings. <next_plane_dir> 

• The number of paths per plane. <num_paths> 
• The number of planes. <num_planes> 
• The first path offset.  This is the number of elements away from the first 

element connected to the crack tip node on the plane of symmetry in which the 
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first path should start.  This input is optional with a default of 1. 
<path_offset> 

 
Based on the input, j3d_general_paths.pl performs the following steps to determine 
the elements along a circular path around the crack tip (Figure 16 gives a graphical 
representation of the vectors in the following algorithm): 

• Find the element connected to <inner_crack_node> in the direction 
<crack_plane_dir> 

• Move in the direction, <crack_plane_dir>, <path_offset> number of 
elements. 

• Loop over the number of planes 
o Until the path search hits a boundary, do the following: 

 Calculate ray_vector for the current element in the path, 
orthogonal to search direction. 

 Calculate search direction_vector for the current element 
in the path. 

 Find the two nodes whose node_direction are most 
orthogonal to the direction_vector. 

 Find the element for whose element_vector dotted with the 
direction_vector is maximum. 

 If no dot product is larger than a given threshold (0.75 worked 
well), terminate the path loop 

o From the first element in the path, find the next element in the direction 
<next_plane_dir>. 

 

 
Figure 16 Graphical representation of path generation algorithm. 
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3.2 Performance of J3D code: Single Edge Notch Bend example 
 
Before using the J3D code to analyze simulations of the fracture experiments, we 
need to verify its performance and ensure that a reliable calculation of the J-Integral 
will be obtained. This task was done by performing an analysis of a single edge notch 
bend (SENB) fracture specimen and comparing both the load-displacement and the 
J-load responses with semi-analytical expressions used in the ASTM E-1820 
standard[22]. These expressions are developed using the Ramberg-Osgood elastic-
plastic deformation model 
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where σ is the Von Mises equivalent stress, ε is the Von Mises equivalent strain, σ0 is 
the yield strength of the material, ε0 = σ0/E, α is a dimensionless constant and n is the 
strain hardening exponent.  
 
The ASTM standard [22] uses the EPRI J-estimation procedure[15] where the 
following relationships are used: 
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In these relations, KI is the mode I stress intensity factor, E´ is the effective modulus 
(E´ = E for plane stress and E´ = E/(1-ν2) for plane strain), P is the applied load, B is 
the specimen thickness, W is the specimen width, a is crack length, aeff is an effective 
crack length, Δ is displacement at the loading line (comprised of elastic, Δel, and 
plastic, Δpl, portions), S is the span of the SENB geometry, and f(x) and ZLL(x) are 
semi-analytical functions that depend on the specimen geometry. For the Ramberg-
Osgood material model, 
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where b = W - a, P0 = 1.455Bb2σ0/S, and h1 and h3 are factors that depend on both 
geometry and the strain hardening exponent. 
 
For our analysis, we chose the values of W = 1 in, S = 4 in, B = 0.5 in, a = 0.125 in, E 
= 29.85 x 106 psi, ν = 0.3, σ0 = 30 x 103 psi, ασ0/E = 0.002, and n = 5. For the SENB 
geometry and this choice of n, h1 = 0.687 and h3 = 15. Our choice of B also dictates a 
plane strain analysis. The mesh of the SENB geometry appears below in Figure 17. 
Only half of the SENB geometry needs to be meshed, as symmetry boundary 
conditions are used on the left side face. Fixed boundary conditions are used on the 
front and back faces to emulate the plane strain condition. Also, two meshes were 
analyzed: one using normal hexahedral elements everywhere and another using 
special “collapsed” hexahedral elements for the region adjacent to the crack tip. In his 
report[14], Wellman notes that such collapsed elements are necessary for accurate 
computation of the J-Integral. 

 
Figure 17 Mesh of SENB specimen. 
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In Figure 17, we notice that 20 elements were used across the thickness of our 
geometry. We also examined the use of a single element across the entire thickness, 
as no variations of stress, displacement or strain should exist across the thickness of 
our specimen. The ADAGIO finite element code is used to simulate the loading of this 
fracture geometry. Displacements are applied along the left side face of the beam in 
increments of 0.0005” and the resulting stress and deformation fields for the FE 
system is determined at each increment. The calculation is performed using 16 
processors. 
 
Figure 18 shows the collapsed, hexahedral meshes colored by values of Von Mises 
effective stress. The 20 element mesh is shown on the left, while the single element 
mesh is shown on the right. While the maximum values of stress appear in the 
expected locations, i.e. at the crack tip and at the positions of applied loads and 
restraints, it is interesting to note that higher values of stress are apparent for the 
mesh that uses a single element across its thickness, as compared with the 20 
element mesh. However, both meshes do not display any noticeable variations 
across the thickness. This is more clearly observed Figure 19, which shows close-up 
views of the crack tip regions. 
 
Figure 20 shows the collapsed, hexahedral meshes colored by values of equivalent 
plastic strain. Again, we notice that the variation of plastic strain is quite different for 
the single element mesh as compared with the 20 element mesh, with higher values 
obtained near the applied loads/restraints and lower values obtained near the crack 
tip. 
 
In Figure 18 and Figure 20, we also notice large deformations in several regions of 
the SENB mesh. It should be noted that while collapsed elements provide the correct 
stress singularity for small-strain analysis, the use of such elements for large 
deformations should be done with caution. 
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(a) 

 

 
 
 

(b) 

 

 
 
 

(c) 

 

Figure 18 Deformed meshes of SENB geometry at three increments of load line 
displacement (a: 0.1 in, b: 0.2 in, c: 0.5 in) colored by elemental values of Von Mises 

stress. 
 

 



  39 

 
 
 

(a) 

 

 
 
 

(b) 

 

 
 
 

(c) 

 

Figure 19 Close-up views of the pictures shown in Figure 18. 
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(a) 

 

 
 
 

(b) 

 

 
 
 

(c) 

 

Figure 20 Deformed meshes of SENB geometry at three increments of load line 
displacement (a: 0.1 in, b: 0.2 in, c: 0.5 in) colored by elemental values of equivalent 

plastic strain. 
 
Figure 21 shows the load-displacement curve for the analyses of the collapsed 
element meshes. It is observed that the FEA solution for the 20 element mesh is in 
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complete agreement with the semi-analytical EPRI solution, whereas the single 
element mesh exhibits some disagreement, i.e. a lower load is required for the same 
load line displacement. This behavior was discussed with ADAGIO code developers 
and it was recommended that higher order (shape function) elements be used for the 
single element thickness analysis. However, such higher order elements were not 
available for the elastic-plastic model used in these analyses and further investigation 
on this issue is recommended for future work. 
 

 
Figure 21 Load-displacement curves for the SENB fracture specimen. Displacement 

units are inches and load units are lbs. 
 
Figure 22 shows the resulting J-load curves calculated using the J3D code. The 
curve corresponding to the 20 element mesh shows good agreement with the EPRI 
solution over the range of loads up to 11,000 lbs. A more direct comparison is shown 
in Figure 23, which displays the fractional difference between the FEA and EPRI 
estimates of J as a function of load. It is observed that the J3D code under-predicts 
the EPRI estimate of J for the range of loads in the elastic regime and at the onset of 
plastic deformation, and then over-predicts J for regimes of extensive plastic 
deformation. The error in J ranges from -40% to +40%, as seen in the Figure.  
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Figure 22 J-load curves for the SENB fracture specimen. Load units are lbs and J units 

are in-lbs/in2 
 

 
Figure 23 ΔJ/J-load curve for the 20 element mesh of the SENB fracture specimen. 
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For completeness, we present and briefly discuss our analysis results using the 
conventional hexahedral elements. Figure 24 shows the load-displacement curves 
for both coarse and refined hex meshes as compared with the curves for the 
collapsed hex meshes from Figure 21. 
 

 
Figure 24 Load-displacement curves for the SENB fracture specimen. Displacement 

units are inches and load units are lbs. 
 
This figure clearly shows a much different response of the hex mesh from the 
collapsed hex mesh. A close-up examination of the crack tip region shows radically 
different displacements and a dramatic difference in the crack tip blunting that occurs. 
The hex mesh also exhibits a deformed shape for the whole SENB geometry that 
contains non-physical features such as perturbations along the top edge of the 
specimen. While it is not apparent what causes these differences and irregularities, it 
is clear that Wellman’s advice to use collapsed elements is sound. 
 
Figure 25 shows the J-load curve for the hex and collapsed hex meshes. The hex 
mesh vastly under-predicts the EPRI solution for the entire range of load values. 
Given the results shown in Figure 24, this behavior is anticipated. 
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Figure 25 J-load curves for the SENB fracture specimen. Displacement units are 

inches and load units are lbs. 
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4 Two Dimensional Compact Tension Fracture Experiments 
and Simulations 

 
In previous chapters, we have validated our elastic-plastic material model and have 
verified the performance of both our finite element code ADAGIO and the J3D code 
for calculating the J-Integral in a 3-dimensional body. We now attempt to validate the 
performance of our FEA capabilities and the J3D code through comparison of 
simulation and J calculations with fracture experiments performed on a 2-
dimensional, Compact Tension (CT) geometry. Experiments were performed by the 
separately funded C6 project mentioned above, and details about these experiments 
can be found in [21]. 
 
 
4.1 Analysis methods 
 
Figure 26 shows the geometry of the disk-shaped Compact Tension (CT) fracture 
specimen. The diameter of the specimen is 2.5”, with a distance of 1.85” between the 
load line and the far end of the disk, i.e. W. For the analysis of the uncharged 21-6-9, 
a crack length of 0.93345” is used (a/W = 0.50457), which is a mean of values from 
the two experiments for which data was collected (0.9322” and 0.9347”). For the 
analysis of the hydrogen charged 21-6-9, a crack length of 0.92275” is used, a mean 
of values from the two experiments for which data was collected (0.9185” and 
0.927”). Our mesh, like its real-world counterpart, contains side grooves along the 
expected crack propagation plane. This is done to enforce the plane strain condition 
at the crack tip and ensure uniform crack driving force along the crack front. 
 

 
 
 

 
 

(a) (b) (c) 
Figure 26 Disk-shaped Compact Tension Fracture Specimen: (a) loading configuration, 

(b) 3D FEA mesh containing ~ 300,000 elements, (c) off-diagonal solid rendering 
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The mesh analyzed is actually ¼ of the geometry shown in Figures 25(b) and (c). 
Symmetry boundary conditions are used along the crack plane and mid-way through 
the thickness. This mesh contains a total of 306,004 hexahedral elements (2,538 for 
the elastic loading-pin region and 303,466 for the elastic-plastic region) and 322,680 
nodes. To assess the mesh dependency of our results, a refined mesh was also 
analyzed that contains 968,817 hex elements (8,280 for the elastic loading-pin region 
and 960,537 for the elastic-plastic region) and 1,003,892 nodes. The typical element 
size near the crack tip was on the order of 0.003”.   
 
The ADAGIO finite element code is used to simulate the loading of these fracture 
geometries. The loading-pin regions are displaced in increments of 0.0003” and the 
resulting stress and deformation fields for the FE system is determined at each 
increment. These computations are performed using between 32 and 40 nodes on 
the SHASTA institutional computer cluster, each of which is configured with dual 3.06 
GHz Intel Xeon processors and 2GB RAM. Analyses required between 12 and 36 
hours of compute time, depending on the size of the mesh analyzed and the number 
of processors used. 
 
 
4.2 Uncharged 21-6-9 
 
Figure 27 shows the load-displacement curve for the CT specimen composed of 
uncharged 21-6-9 stainless steel. Our analysis was performed using the EMMI 
parameters originally determined (listed in Table 1), and then was redone using the 
optimized parameters (listed in Table 5). This figure includes the curves from our 
analyses along with the corresponding curves from the experiments as report in [21]. 
 
It is observed that our analyses very closely agree with the loading curves measured 
in experiment. In particular, the two sets of curves show quantitatively similar values 
in both load and displacement in the region where plastic deformation becomes 
dominant, i.e. the “bend” in the load-displacement curve. Disagreement between 
analysis and experiment at high levels of displacement (deformation) is 
understandable as localized material unloading is probably occurring in the real 
material but is not allowed in the material model chosen for this analysis. 
 
It is interesting to note that use of the optimized model parameters negligibly affects 
the resulting load-displacement curve. The two analysis curves are only noticeably 
different at very high levels of displacement, where the validity of the analysis model 
is already in question due to the issue of deformation localization.  
 
Figure 28 shows estimated error percentages in load between the analysis using the 
original parameters and the two experimental curves. From this figure, it is apparent 
that a large level of disagreement exists in the displacement range dominated by 
elastic deformation. The cause of this disagreement was unable to be determined. 
Several explanations were pursued to explain this disagreement, and the culprit is 
believed to be a difference in material orientation between the tensile test specimens 
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used to fit the material model and the CT specimens. This difference was not 
anticipated to lead to the amount of error observed, but other potential causes of the 
error were investigated, including dimensions of the side grooves and rate effects, 
but was not found to account for the observed error. Future investigations to isolate 
the effect of material orientation are warranted. 

  
Figure 27 Load-displacement curve for CT fracture experiment and analysis of 

uncharged 21-6-9. 
 

Figure 28 also shows that agreement between analysis and experiment is quite 
strong as plastic deformation begins to be dominant over elastic deformation, i.e. at 
displacements of 0.02” and higher. In this regime, the error essentially stays within 
the margins of ±5%.  
 
One of the goals of this project is to characterize the effect that variations in crack 
length have on the deformation response of a material. Figure 29 shows the load-
displacement curve for an FEA simulation of a CT specimen with a 9% longer crack, 
a = 1.0175” (a/W = 0.55). There is no particular significance to this choice of a 9% 
crack length increase; rather, the results presented here were generated for a mesh 
created early-on in the project and that was later deduced to possess a longer crack 
as compared with the experimental specimens. The elastic deformation is very 
similar to the experimental results from the specimen with the shorter crack, showing 
only a slight decrease in stiffness of the initial deformation response. Also, the shape 
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of the curve at high levels of deformation is very similar to both of the experimental 
curves; the 3 curves appear essentially parallel to one another. However, a dramatic 
reduction in the load at the onset of plastic deformation is observed with the load at 
bend reducing from a value of 4,500 lbs to 3,500 lbs, a change of over 22%. This 
example clearly shows that uncertainties in crack dimensions may result in non-linear 
changes of the deformation response, justifying the use of large safety margins to 
prevent catastrophic failure.  

 
Figure 28 Error analysis of FEA results as compared with experimental data for 

uncharged 21-6-9. 
 
4.3 Hydrogen charged 21-6-9  
 
Figure 30 shows the load-displacement curve for the CT specimen composed of 
hydrogen charged 21-6-9 stainless steel. Our analysis was performed using the 
EMMI parameters originally determined and listed in Table 2. This figure includes the 
curves from our analyses along with the corresponding curves from the experiments 
as report in [21]. 
 
It is observed that our analysis approximately agrees with the loading curves 
measured in experiment, although the agreement does not appear to be as good as 
for the uncharged material. Similar trends are noticed for the elastic dominant regime, 
the load “bend” and the plastic dominant regime. Again, disagreement between 
analysis and experiment at high levels of displacement (deformation) is 
understandable as localized material unloading is probably occurring in the real 
material but is not allowed in the material model chosen for this analysis. 
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Figure 29 Load-displacement curve for analysis of CT fracture specimen with 9% 

longer crack than shown in Figure 27. 
  

 
Figure 30 Load-displacement curve for CT fracture experiment and analysis of 

hydrogen charged 21-6-9. 
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Figure 30 also shows that while some disagreement between analysis and 
experiment exists with regard to the displacement at which the load bend occurs, the 
magnitude of the load at bend is approximately equal to 2,900 lbs for both. The error 
between analysis and experiment is more clearly shown in Figure 31. In this figure, 
the observed error is very high (almost 45%) initially, but rapidly decreases to 
between 10 and 15% at the displacement corresponding to the load bend. Upon 
further deformation, this error decreases more, and remains under 15% for the range 
of displacement simulated. As for the uncharged case, we are uncertain as to why 
our analysis overpredicts the stiffness in the elastic regime of the load-displacment 
curve. 
 

 
Figure 31 Error analysis of FEA results as compared with experimental data for 

hydrogen charged 21-6-9. 
 
As with the uncharged material, we examined an analysis variation containing a 
slightly longer crack. Figure 32 shows the load-displacement curve for an FEA 
simulation of a CT specimen with a 16% longer crack, a = 1.0715” (a/W = 0.5792). 
Again, there is no particular significance to the choice of a 16% crack length 
increase; rather, the results presented here were generated for a mesh created early-
on in the project and that was later deduced to possess a longer crack as compared 
with the experimental specimens. As before, the elastic deformation is similar to the 
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specimen with the shorter crack and exhibits a decrease in stiffness of the initial 
deformation response. Also, a dramatic reduction in the onset of plastic deformation 
is observed with the load at bend reducing from a value of 2,900 lbs to 1,900 lbs, a 
change of under 35%. This calculation again clearly shows that uncertainties in crack 
dimensions manifest in non-proportional changes in the deformation response. 
 

 
Figure 32 Load-displacement curve for analysis of CT fracture specimen with 16% 

longer crack than shown in Figure 30. 
 
 
4.4 J-Integral analysis 
 
The J3D code was used to estimate the J-Integral as a function of load using the 
load-displacement calculations shown in Figure 27 and Figure 30, along with the 
corresponding stress-strain results for those ADAGIO analyses. We first examine the 
case of the hydrogen charged material since the corresponding experiment resulted 
in brittle fracture and a value of fracture toughness (Jc) was measured to be 
approximately 1,900 in-lbs/in2. Figure 33 shows the J-load curve calculated from our 
analysis on two separate planes: one at the mid-plane of the meshed geometry and 
the other plane 10 planes away from the mid-plane (a distance of approximately 



52 

0.03”). For both planes, 8 paths are used to calculate the value of J, as discussed in 
section 3.1. These curves are compared with curves calculated from the 
experimental data using the method detailed in ASTM Standard E-1820[22]. Details 
on the experiments can be found in [21]. 
 
 

 
Figure 33 J versus load curve for CT fracture experiment and analysis of hydrogen 

charged 21-6-9 (Jc ~ 1900 in-lbs/in2). 
 
It is observed that despite the disagreement noted in the load-displacement diagram 
(Figure 30), the J3D code very closely follows the J-load quantified in experiment. 
This agreement is excellent up to and including the value of fracture toughness 
(1,900 in-lbs/in2). Beyond this value of J and load, the analysis and experimental 
curves differ considerably, an expected observation since fracture has occurred in 
the experiment but cannot be replicated in our finite element model. 
 
Figure 34 shows the J-load curves computed by J3D for the analysis of the 
uncharged material. For this case, no value of fracture toughness was quantified in 
experiment as the crack blunted and plastically deformed before any brittle-like 
propagation was observed. Comparing the analysis curves with the experimental 
ones, we note that the J3D code over-predicts the value of J for the load range 
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between 4,000 and 5,700 lbs. The load range corresponds to the deformation just 
prior to well beyond the load bend observed in Figure 27. Hence, for this range the 
J3D code conservatively overestimates the crack driving force as compared with the 
driving force measured in experiment.  The discrepancy appears to be quite large, 
roughly 100% at a load of 5,000 lbs., although the value at which the discrepancy is 
most relevant is not clear since a fracture toughness value has not been quantified 
for the uncharged material. 
 

 
Figure 34 J versus load curve for CT fracture experiment and analysis of uncharged 

21-6-9 (Jc unknown). 
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5 Three Dimensional Fracture Experiments and Simulations 
 
Three dimensional fracture specimens were modeled and analyzed in an attempt to 
further validate the use of finite element analysis and the J3d code to determine the 
feasibility of using this method to qualify GTS reservoirs.  The three dimensional 
geometries chosen are more similar to the shape and loading of a real system than 
the compact tension specimens.  As with the two dimensional specimens, both 
annealed and hydrogen charged specimens were studied.  All test specimens — 
notched tension, compact tension, and cracked round bar — were created from the 
same bar stock to avoid variations in properties due to lot differences.  
 
The symmetric specimens were circumferentially cracked round bars (CRB) with axi-
symmetric pre-cracks of varying crack ratios.  The results from the varying crack ratio 
tests and analyses will allow comparison of the accuracy of the evaluation methods 
based on crack lengths.  These specimens yielded load versus displacement data, 
and the J-integral value was calculated using analytical methods from this data to 
compare against the finite element analysis and J3d results.  These experimental 
and analytical methods and results will be documented in a separate report[21]. 
 
The asymmetric specimens were similar to the symmetric CRB specimens, but side 
notches were cut perpendicular to the cylinder from one or both sides of the bar prior 
to pre-cracking.  Pre-crack methods caused oval or sometimes completely 
asymmetric initiation profiles.  The most regular samples were chosen for analysis 
comparison of the load versus displacement relationship. 
 
A summary of the three dimensional specimens that were modeled and analyzed is 
shown in Table 7.   
 

Table 7 Definition and naming scheme for 3-d cracked round bar specimens. 
 
 Symmetric Asymmetric 
 Test # a/r Test # a/r* 

a6 0.208 
a8 0.507 Annealed 
a9 0.605 

b1 0.30/0.75 

a4 0.19 - 0.25 
a7 0.485 Hydrogen

-charged a1 0.600 
b2 0.23/0.69 

*Crack ratios for the asymmetric specimens are given in the major axes of the pre-cracked cross 
section for comparison purposes. 
 
It should be noted that the initial crack dimensions are calculated from measurements 
taken after the samples are loaded to failure, under the assumption that the crack 
ratio remained constant throughout the test.  The crack measurements are scaled for 
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the original specimen diameter, using a linear relationship.  Some of the 
discrepancies between the experimental results and the analysis results may be 
attributed to this assumption, particularly in the annealed specimens, which have 
high ductility.  As discussed in the compact tension specimen section, initial pre-crack 
assumptions have a large impact on bulk deformation behavior of the specimen. 
 
Meshes with standard hexes at the crack tip were created using Cubit.  Cubit 
currently does not have an automated method for creating collapsed elements; 
meshes with collapsed elements at the crack tip were created in TrueGrid.  All 
analyses were run using the sierra code ADAGIO on the CA institutional computing 
cluster Shasta.  Depending on the availability of resources and size of the model, 24-
48 processors were used.  The finite element models ranged from 100,000-300,000 
elements.  
 

(a) 

 

 

 
(b) 

 
Figure 35 Close up mesh of crack tip with (a) standard hex elements, and (b) collapsed 

hex elements. 
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The symmetric specimens were modeled with both standard, 8-noded hexes 
throughout and also with the collapsed hexes at the crack tip.  Crack tip meshes of 
with standard hexes and collapsed hexes are shown in Figure 35.  The region 
surrounding the crack tip with a fine, regular grid has a radius of approximately 0.031 
inches for both the collapsed and standard hex meshes.  Regions beyond the original 
regular grid have elements quickly increasing in size.  Detailed discussion of the 
collapsed elements versus conventional hex elements can be found in the SENB 
specimen section.  For our 3-dimensional geometry analyses, we observe that bulk 
load versus displacement behavior of the specimen are only slightly affected by the 
elements at the crack tip; however, J versus load behavior much more closely 
matches expected values when using the collapsed elements at the crack tip.  
 
It should be noted that mesh spacing in the radial direction is slightly (≤ 5%) smaller 
for the regular hex mesh than for the one using collapsed elements. However, 
because the number of elements in the theta direction is constant for the collapsed 
element mesh, the mesh density in that direction increases closer to the crack tip with 
elements of siginficantly larger aspect ratio than used in the regular hex mesh. 
 
For each of the cracked round bar specimens, load versus displacement and J-
integral versus load results from the finite element analysis, as well as the errors from 
the experimental results, will be presented.  Because both curves contain servere 
bends associated with the load plateau, one section of the plot will be nearly 
"vertical", yielding very high errors on any small deviation from the experimental 
curve.  These excessively large errors do not provide any useful comparisons of our 
data, and we are most interested in the plastic regime.  Thus, we will present load 
errors as a function of displacement and load errors as a function of J.  The second 
may seem counterintuitive as J is calculated from the stresses in the model, but 
calculating errors in this manner provides more useful information than calculating J 
errors as a function of load. 
 
5.1 Symmetric, Circumferentially Cracked Round Bar Specimens 
 
In order to adequately refine the mesh at the crack tip to capture the behavior in this 
region without allowing the model to become unmanageably large, the symmetric 
CRB specimens (A1, A4, A6-A9) were modeled as 30-degree sectors with cylindrical 
boundary conditions applied at the 0 and 30 degree faces.  Symmetry was also used 
across the crack plane, yielding an overall 1/24 model of the system.  The analysis 
model was meshed very finely at the crack tip, and elements further away from the 
crack tip were increasingly larger.   
 
All samples were created from 0.75-inch diameter bar stock.  The outer diameter for 
the medium and long cracked specimens was 0.75 in.  Specimens A6 and A4, with 
the short cracks, had additional machining performed after the initial pre-crack, which 
yielded an initial specimen diameter of 0.5 inches. 
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The finite element model and loading conditions for the short cracked specimens are 
shown in Figure 36.  The machined axi-symmetric groove was removed during the 
second machining process, yielding a cylindrical specimen with radius 0.25 inches, 
pre-cracked by approximately 20% of the specimen radius. 
 

 
Figure 36 Finite element mesh of a symmetric, circumferentially cracked round bar 

with a short crack (specimens A6 and A4). 
 
A sample mesh of the medium and long cracked CRB specimens (A1, A7-A9) is 
shown below in Figure 37.  The length of the initial pre-crack differs between these 
remaining specimens, but all other measurements remain constant. 
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Figure 37 Finite element mesh of a symmetric, circumferentially cracked round bar 

with medium or long crack (specimens A1, A7-A9). 
 
There is no explicit maximum number of elements per path stated in J3d manual [14]; 
however, it was determined through trial and error that there is a maximum number of 
elements per path allowed by the code.  Initial mesh refinement yielded 192 elements 
per path, which caused J3d to fail catastrophically with no meaningful results.  
Halving the number of elements per path to 96 allowed J3d to complete calculations 
without problem.   
 
5.1.1 Uncharged Symmetric 3D Specimen: Short Crack (A6) 
 
The uncharged short crack specimen had an a/r ratio of 0.208 and an initial radius of 
0.5 inches.  Figure 38 shows the stress state just beyond yielding and at the peak 
load.  The yield stress of the material is 1.6e5 psi.  
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(a) 

  

(b) 

  
Figure 38 Von Mises effective stress and axial stress states of CRB specimen with a 

short initial crack, A6, at (a) displacement = 0.025 inches and (b) displacement = 0.150 
inches.  Regions in red meet or exceed the yield stress value of 1.6e5 psi. 

  
The load versus displacement and percent error on displacement plots are shown in 
Figure 39 and Figure 40, respectively. As seen in these plots, the bulk displacement 
behavior of the short crack annealed specimen was well predicted using finite 
element models, both with the recommended collapsed elements and with the 
standard but not recommended hexes.  Both element types predict the load-
displacement behavior to within 4% of the testing.  The first few points of all of the 
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error plots can be ignored, as small deviations will yield excessively large errors 
because the plots are nearly vertical before yielding occurs.  
 

 
Figure 39 Load-displacement curve of uncharged CRB specimen with short crack, A6. 
 

 
Figure 40 Error analysis of load versus displacement behavior of FEA results as 

compared with experimental data for uncharged CRB specimen with short crack, A6. 
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The J-integral values calculated by J3d are compared against the J-integral 
calculated from the test specimens, and the comparison is shown in Figure 41 and 
Figure 42.  While the analysis slightly under-predicts the load at a given 
displacement, the J3d code significantly over-predicts the load at a given J-integral 
value. Alternatively stated, at a given load the J3d code under-predicts J as 
compared with the experimental estimate.  Also of interest is that while both models 
fairly accurately predicted the load versus displacement behavior, the standard hex 
mesh yielded significantly more errant J-integral results than the mesh with the 
collapsed hexes at the crack tip.  Neither mesh predicted J with any confidence for 
the uncharged short-crack specimen.  A 25% error on J versus load is unacceptable 
given a 4% error on load versus displacement.   
 

 
Figure 41 J versus load of uncharged CRB specimen with short crack, A6. 
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Figure 42 Error analysis of J versus load behavior of FEA results as compared with 
experimentally derived J values for uncharged CRB specimen with short crack, A6. 

 
 
5.1.2 Uncharged Symmetric 3D Specimen: Medium Crack (A8) 
 
The medium crack specimen, A8, had an a/r ratio of 0.508 and an initial specimen 
radius of 0.375 inches.  Figure 43 shows the stress state just beyond yielding and at 
the peak load.  The yield stress of the material is 1.6e5 psi.   
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(a) 

  

(b) 

  
Figure 43 Von Mises effective stress and axial stress states of CRB specimen with a 
medium initial crack, A8, at (a) displacement = 0.010 inches and (b) displacement = 

0.050 inches.  Regions in red meet or exceed the yield stress value of 1.6e5 psi. 
 
As seen in the load versus displacement and error plots in Figure 44 and Figure 45, 
respectively, the analysis predicts the specimen behavior within 11% of the test 
results.  Like the short crack specimen, the analysis of the mesh with the standard 
hexes at the crack tip yielded marginally better predictions of load versus 
displacement than the collapsed element mesh.   
 



  65 

 
Figure 44 Load versus displacement of uncharged CRB specimen with medium crack, 

A8. 
 

 
Figure 45 Error analysis of load versus displacement behavior of FEA results as 

compared with experimental data for uncharged CRB specimen with medium crack, 
A8. 
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The J versus load behavior, shown in Figure 46 and Figure 47, was significantly more 
accurate using the collapsed hexes than the standard hexes.   Since the stress 
states from the analysis are input into the J3d code, it would be reasonable to 
assume that the errors in the load-displacement response would propagate through 
to the J-integral calculations.  As seen in these plots, this assumption is supported, 
with the load is under-predicted at approximately 11% of the test value towards the 
beginning of the displacement process to under-predicting by approximately 4% as 
the applied load reaches the peak load.  The errors in the J-load behavior follow the 
same trend are approximately the same values, supporting the theory that the errors 
in the J-load curve are caused by the input, and not the J3d code itself. 
 

 
Figure 46 J versus load of uncharged CRB specimen with medium crack, A8. 
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Figure 47 Error analysis of J versus load behavior of FEA results as compared with 

experimentally derived J values for uncharged CRB specimen with medium crack, A8. 
 
 
5.1.3 Uncharged Symmetric 3D Specimen: Long Crack (A9) 
 
The annealed long cracked specimen, A9, had an a/r ratio of 0.605 and an initial 
specimen radius of 0.375 inches.  Figure 48 shows the stress state just beyond 
yielding and at the peak load.  The yield stress of the material is 1.6e5 psi.   
 
 
 
 



68 

(a) 

  

(b) 

  
Figure 48 Von Mises effective stress and axial stress states of CRB specimen with a 
long initial crack, A9, at (a) displacement = 0.005 inches and (b) displacement = 0.020 

inches.  Regions in red meet or exceed the yield stress value of 1.6e5 psi. 
 
Similar to the behavior seen in the short and medium cracked uncharged specimens, 
the standard hex mesh and the collapsed hex mesh predict the load versus 
displacement response equally well.  Load versus displacement and error analysis is 
shown in Figure 49 and Figure 50.  The long crack specimens results were more 
disappointing and had an error of almost 20% near yielding; although the behavior 
was slightly better towards the peak load, the errors were minimum 16%.   
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Figure 49 Load versus displacement of uncharged CRB specimen with long crack, A9. 
 

 
Figure 50 Error analysis of load versus displacement behavior of FEA results as 

compared with experimental data for uncharged CRB specimen with long crack, A9. 
 
Discounting the results from the standard hex model, the J-integral values calculated 
from the stresses output from the analysis yield errors around 12%, as shown in 
Figure 51 and Figure 52.  This is slightly lower than would be expected from the 
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errors calculated in the load-displacement plot; however, the values are within reason 
and follow the expected trend of under-predicting both the load-displacement and the 
J-load curves.   
 

 
Figure 51 J versus load of uncharged CRB specimen with long crack, A9. 

 

 
Figure 52 Error analysis of J versus load behavior of FEA results as compared with 
experimentally derived J values for uncharged CRB specimen with long crack, A9. 
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5.1.4 Hydrogen Charged Symmetric 3D Specimen: Short Crack (A4) 
 
The annealed analysis sufficiently supported the recommendation by the J3d code to 
use collapsed elements at the crack tip instead of standard hex elements; thus, only 
results from collapsed element meshes will be shown henceforth.   
 
The hydrogen charged short crack specimen, A4, had a pre-crack profile that was not 
concentric with the outer diameter of the specimen, yielding a non-symmetric test 
specimen.  Figure 53 shows the cross section of A4 at the crack plane.   
 

 
Figure 53 Cross-section through the crack plane of specimen A4.  The outer circle 

represents the specimen profile, and the inner circle represents the initial crack.  The 
red "x" represents the center of the pre-crack profile. 

 
The maximum a/r, at approximately 8° from the horizontal axis in figure 53, was 0.25.  
The minimum a/r, 180° from the maximum, was 0.19.  The average between the 
minimum and maximum was a/r = 0.22.  To simplify modeling efforts, symmetric 
models similar to the other CRB models were created with the average, minimum 
and maximum crack ratios.  Results from each of the models will be discussed. 
 
A4 is the charged specimen roughly corresponding to the annealed short cracked 
specimen, A6.  Figure 54 shows the stress state just beyond yielding and at the peak 
load for the model with the average crack ratio.  The minimum and maximum cracks 
ratio models had similar stress states at these displacements.  The yield stress of the 
material is 1.6e5 psi.  
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(a) 

  

(b) 

  
Figure 54 Von Mises effective stress and axial stress states of a hydrogen charged 

CRB specimen with a short initial crack, A4, at (a) displacement = 0.005 inches and (b) 
displacement = 0.1 inches.  Regions in red meet or exceed the yield stress value of 

1.6e5 ps 
 
Load versus displacement behavior calculated from the analyses is shown in Figure 
55 and Figure 56.  Finite element analysis of the hydrogen charged CRB with a short 
crack predicted load versus displacement behavior within +/- 4% of the experimental 
values in the regions of interest. 
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Figure 55 Load versus displacement of charged CRB specimen with short crack, A4.  

Results from models with the average, maximum and minimum crack lengths are 
shown.  Specimen A4 can be compared with the uncharged specimen with short 

crack, A6. 
 

 
Figure 56 Error analysis of load versus displacement behavior of FEA results as 

compared with experimental data for charged CRB specimen with short crack, A4. 
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While the load versus displacement behavior is fairly well predicted in the case of the 
hydrogen charged short crack CRB, the J versus load predictions yield much higher 
errors than expected, as seen in Figure 57 and Figure 58.  Not only are the error 
values higher than expected, but the trend of slightly under-predicting the load for 
smaller displacements and over-predicting the load at larger displacements is not 
reflected in the J-integral calculations. 
  
 

 
Figure 57 J versus load of hydrogen charged CRB specimen with short crack, A4. 
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Figure 58 Error analysis of J versus load behavior of FEA results as compared with 

experimentally derived J values for charged CRB specimen with short crack, A4. 
 

While the hydrogen charged short crack specimen yielded slightly more accurate J-
integral values than the annealed short crack specimen, finite element analysis and 
the J3d code did not predict J-integral values with confidence for either specimen.   
 
5.1.5 Hydrogen Charged Symmetric 3D Specimen: Medium Crack (A7) 
 
The hydrogen charged medium crack specimen, A7, had an a/r ratio of 0.485 and an 
initial specimen radius of 0.375.  A7 is the charged specimen roughly corresponding 
to the annealed medium cracked specimen, A8.  Figure 59 shows the stress state 
just beyond yielding and at the peak load.  The yield stress of the material is 
1.6e5 psi.  
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(a) 

  

(b) 

  
Figure 59 Von Mises effective stress and axial stress states of a hydrogen charged 

CRB specimen with a medium initial crack, A7, at (a) displacement = 0.004 inches and 
(b) displacement = 0.020 inches.  Regions in red meet or exceed the yield stress value 

of 1.6e5 
 
Load versus displacement behavior calculated from the analysis is shown in Figure 
60 and Figure 61.  Finite element analysis of the hydrogen charged CRB with a 
medium crack predicted load versus displacement behavior fairly well, with a 
maximum of 9% error at the peak load. 
 



  77 

 
Figure 60 Load versus displacement of charged CRB specimen with medium crack, 

A7.  Specimen A7 can be compared with the uncharged specimen with medium crack, 
A8. 

 

 
Figure 61 Error analysis of load versus displacement behavior of FEA results as 

compared with experimental data for charged CRB specimen with medium crack, A7. 
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Errors in the load versus displacement behavior seem to be reflected in J-integral 
calculations, with errors around 7% for much of the curve and a maximum of 9%, as 
seen in Figure 62 and Figure 63.  These errors are in line with the errors calculated in 
the load-displacement curves.   

 
Figure 62 J versus load of hydrogen charged CRB specimen with medium crack, A7. 

 

 
Figure 63 Error analysis of J versus load behavior of FEA results as compared with 
experimentally derived J values for charged CRB specimen with medium crack, A7. 
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5.1.6 Hydrogen Charged Symmetric 3D Specimen: Long Crack (A1) 
 
The hydrogen charged medium crack specimen, A1, had an a/r ratio of 0.600 and an 
initial specimen radius of 0.375.  A1 is the charged specimen roughly corresponding 
to the annealed medium cracked specimen, A9.  Figure 64 shows the stress state 
just beyond yielding and at the peak load.  The yield stress of the material is 1.6e5 
psi.  
 

(a) 

  

(b) 

  
Figure 64 Von Mises effective stress and axial stress states of a hydrogen charged 

CRB specimen with a long initial crack, A1, at (a) displacement = 0.003 inches and (b) 
displacement = 0.012 inches.  Regions in red meet or exceed the yield stress value of 

1.6e5 psi. 
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Load versus displacement behavior calculated from the analysis is shown in the 
Figure 65 and Figure 66.  Finite element analysis predicts the load versus 
displacement relationship within 2% of the experimental results. 
 

 
Figure 65 Load versus displacement of hydrogen charged CRB specimen with long 

crack, A1. 
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Figure 66 Error analysis of load versus displacement behavior of FEA results as 

compared with experimental data for charged CRB specimen with long crack, A1. 
 

The errors calculated for the J-load curves may seem large compared with the errors 
from the load-displacement curve; however, if we ignore the errors at low J values, 
where a small deviation from the curve will yield a very large error due to the near 
horizontal nature of the curve, the expected trend of corresponding errors between 
load-displacement and J-load continues.  The analysis under-predicts the both 
curves until a load of 12,500 lb. is reached, and then proceeds to slightly over-predict 
both curves above this load value.  The error at the ultimate load for both curves is 
3%.   Plots are shown in Figure 67 and Figure 68. 
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Figure 67 J versus load of hydrogen charged CRB specimen with long crack, A1. 

 

 
Figure 68 Error analysis of J versus load behavior of FEA results as compared with 

experimentally derived J values for hydrogen charged CRB specimen with long crack, 
A1. 
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5.2 Asymmetric, Three-Dimensional Specimens 
 
The asymmetric specimens are cylindrical and have a notch cut from either one or 
both sides of the specimen.  The specimens are then pre-cracked, yielding an 
asymmetric initial crack orientation.  Of the several tests run, one annealed and one 
hydrogen charged specimen were chosen to model and compare.  Both of these 
specimens had two side notches.  Half symmetry across the crack plane was utilized, 
but because the pre-crack orientations were not perfectly symmetric across any other 
planes, a full 360-degree section was modeled.   
 
Post-test measurements of the pre-crack orientations were supplied by the 
experimental group[21].  These points were fit to a curve using Matlab, and the pre-
cracked area was scaled to represent the initial pre-crack dimensions based on the 
ratio between the original specimen radius and final specimen radius.  These 
simplified points were used to create the finite element mesh in Cubit.  Figure 69 and 
Figure 70 show the mesh of asymmetric specimens B1 and B2.  Regions in blue 
represent the initial pre-cracked geometry.   
 
 

 

 

 

  
 (a) (b) 

Figure 69 Cross-section of finite element mesh of asymmetric cylindrical specimens.  
(a) Specimen B1 is uncharged, and (b) specimen B2 is hydrogen charged.  Regions in 
blue represent the pre-cracked area. 
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Figure 70 Side view of finite element mesh of asymmetric cylindrical specimens, B1 

and B2.  Symmetry across the crack plane is used for the finite element model. 
 
For comparison purposes, the approximate crack ratios were calculated for the 
asymmetric specimens in each major axis.  The annealed asymmetric specimen, B1, 
had a/r ratios of 0.30 and 0.75 in the two major directions of the oval shaped pre-
crack, or the x- and z-directions, respectively, using the analysis coordinate axis in 
Figure 69.  The hydrogen charged asymmetric specimen, B2, had a/r ratios of 0.23 
and 0.69 in the corresponding axes.  
 
Load versus displacement plots for B1 are shown below in Figure 71 and Figure 72.  
For the annealed case, the analysis prediction matches test results fairly well below 
yield.  The analysis begins to over-predict the curve post-yield and is within 10% of 
the test results at the peak load. Results from the asymmetric charged specimen, B2, 
are shown below in Figure 73 and Figure 74.  The analysis predicts both yield and 
post-yielding behavior within a few percent error. 
 
Direct comparison of the J-Integral itself was not possible for these specimens as a 
method and analytical expression for estimating J from experimental data are not 
established for such asymmetric, three dimensional geometries.  Potentially, the J3d 
code could be used to quantify J for numerous points along the crack fronts shown in 
Figure 69.  Then, validation could be accomplished by comparing the values of J 
corresponding to values of load at which fracture occurs with any known values for 
fracture toughness Jc of the two materials (uncharged and Hydrogen charged, 
respectively).  Since accurate fracture toughness measurements were not an 
objective of this project, we defer this comparison for future work.  
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Figure 71 Load versus displacement of uncharged asymmetric CRB specimen. 

 

 
Figure 72 Error analysis of load versus displacement behavior of FEA results as 

compared with experimental data for uncharged asymmetric CRB specimen. 
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Figure 73 Load versus displacement of hydrogen charged asymmetric CRB specimen. 
 

 
Figure 74 Error analysis of load versus displacement behavior of FEA results as 

compared with experimental data for hydrogen charged asymmetric CRB specimen. 
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6. Summary and Conclusions 
 
The primary goal of this project was to determine the feasibility of using the J3d code 
in conjunction with Sandia’s Sierra mechanics codes to perform J-integral evaluations 
in geometries with short cracks.  A series of experiments and analyses was 
performed to verify and validate the process by which we determine J-integrals.  
Crack tip regions in the meshes were meshed with standard hexes and collapsed 
hexes and these results were compared with one another.  Both annealed and 
hydrogen charged specimens were tested and analyzed.  
 

• Single edge notched bend Ramberg-Osgood material model to verify J3d 
code against analytical solution published by Electric Power Research 
Institute, EPRI 

• Notched tension specimens of varying notch depths to fit material data to 
EMMI model 

• Compact tension specimen with EMMI material model 
• Symmetric circumferentially cracked round bar with EMMI model and varying 

crack depths 
• Asymmetric cracked round bar with EMMI model 

 
Experimental results and methods will be discussed in a separate report.  Using the 
J-integral values calculated from experimental results as the “actual” value, errors 
were calculated for the load versus displacement behavior as well as the J-integral 
versus load behavior. 
 
We were able to see the effects of varying crack ratios and charging in the three-
dimensional CRB series of tests and analyses.  Comparisons between results from 
the standard hex meshes and the meshes with collapsed elements at the crack tip 
support the recommendation that collapsed elements be used at the crack tip.  In 
general, we are better able to predict bulk behavior of the hydrogen charged 
specimens than of the annealed specimens. 
 
Regardless of the charging status or geometry of a specimen, it would be expected 
that errors in the load versus displacement behavior would be reflected in the stress 
profile at the crack tip, and thus propagate into the J-integral calculations with similar 
error values and trends.  For the symmetric CRB specimens with medium and long 
cracks, for both the annealed and hydrogen charged samples, this expectation is 
met.   
 
Finite element analysis of both the annealed and hydrogen charged short cracked 
CRB specimens predicted experimental results within a few percent error.  The J-
integral estimates from J3d, however, had errors that were 5-10 times greater than in 
the load versus displacement behavior.  Not only were the magnitudes of the errors 
calculated for the short cracked specimens undesirable, the trends of the behavior 
were also troubling.  It would be expected that positive errors in the bulk 
displacement prediction would correspond to positive errors in the J-integral 
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calculation, with errors changing sign at the same load value.  This is true for the 
medium and long cracked specimens, but it does not hold true for the short cracked 
specimens. Overall, we were unable to confirm that, for the case of short cracks, 
estimates of the J-integral from J3d are consistent with estimates of J obtained from 
experimental data using the standardized, semi-analytical relations. It is unclear 
whether the fault lies in the implementation of J3d, or in assumptions made during 
the development of those semi-analytical relations that are violated when applied to 
short cracks.    
 
As mentioned in the previous section, evaluation of the J3d code was not possible for 
the asymmetric, three dimensional specimens as a method and analytical expression 
for estimating J from experimental data is not established for such geometries.  
Potentially, the J3d code could be used to quantify J for numerous points along the 
crack front in such a specimen. However, it is apparent that the construction of 
suitable paths necessary for the calculation of J is an unacceptably convoluted and 
mistake-prone process. Further work to refine and automate the path selection 
process is warranted for using J3d in the analysis of complex geometries, such as 
those in gas transfer systems. 
 
Our efforts have shown that while J3d reasonably predicts J-integral values for 
medium and long cracked specimens, another method is recommended for short 
cracked specimens.  As the specimens with shorter cracks are undetectable by 
current surveillance techniques, proving a resistance to fracture by analytical 
methods becomes of utmost importance to the ability to qualify gas transfer systems 
to our own specifications. 
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Appendix A: How to Compile and Run J3D 
 
 
The following are instructions on how to compile and run the J3D code: 
 
1.  untar the tarball: tar -xvf j3d.tar 
 
2.  make sure you have ACCESS in your PATH 
 
3.  generate a makefile using the following: accmkmf 
 
4.  make the executable by tying: make 
 
5.  you now should have the j3d executable, j3dexe 
 
6.  set the following environment variables.  In bash perform: 
        export FOR007=name_of_j3d_input_file 
        export FOR011=name_of_input_exodus_file 
        export FOR012=name_of_output_exodus_file 
 
7.  run j3d: ./j3dexe 
 
8.  there are two output files from j3d: 
        J.LIS - a text file containing input information and a list  
                of the J values for each plane and each path at each 
                time step of the simulation.  It also contains the 
                zero area J value for each plane, along with regression 
                coefficients. 
        name_of_output_exodus_file - an exodus file that contains all 
                of the data from the input exodus file plus zero area J  
                values for each plane at each time step. 
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Appendix B: Path Generation Script for J3D 
 

This Appendix contains the Perl script J3d_general_paths.pl for defining concentric 
element paths enclosing a crack tip for a given mesh and provide them to the J3D 
code. It also contains a separate module, j3d_beam_subs.pm, for performing some 
of the lower level searches, and two additional modules, tims_general_subs.pm and 
tims_netcdf_subs_4_9_06.pm, for accessing information from Exodus II files. 
 
j3d_general_paths.pl 
 
#! /usr/bin/perl 
 
use strict; 
use lib "/home/alindbl/Projects/JIntegral/Perl/modules"; 
use tims_netcdf_subs_4_9_06; 
use j3d_general_subs; 
use FileHandle; 
 
######################################################################## 
# 
# Some input checking 
# 
#### Test Input 
die "Usage: j3d_paths.pl <exodus_file> <inner_crack_node> <crack_plane_dir> <next_plane_dir> 
<num_paths> <num_planes> <path_offset=1>\n" if (@ARGV > 7); 
die "Usage: j3d_paths.pl <exodus_file> <inner_crack_node> <crack_plane_dir> <next_plane_dir> 
<num_paths> <num_planes> <path_offset=1>\n" if (@ARGV < 6); 
 
## set standard out to flush after every print call 
STDOUT->autoflush(1); 
 
## grab the input arguments 
my $exo_file = $ARGV[0]; 
die "Could not find input file $exo_file\n" if (! -e $exo_file); 
my $inner_crack_node = $ARGV[1]; 
my $crack_plane_dir = $ARGV[2]; 
my $next_plane_dir = $ARGV[3]; 
my $num_paths = $ARGV[4]; 
my $num_planes = $ARGV[5]; 
my $offset = 1; 
if (@ARGV > 6) { $offset = $ARGV[6]; } 
## the output file which will be used as input for j3d 
my $out_file = "output.dat"; 
  
## do some input error checking 
die "ERROR: The plane_offset must not be < 0, you specified $offset\n" if ( $offset < 0 ); 
die "ERROR: The number of paths must be > 0, you specified $num_paths\n" if ( $num_paths < 1 ); 
die "ERROR: The number of planes must be > 0, you specified $num_planes\n" if ( $num_planes < 1 
); 
# 
# 
######################################################################## 
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######################################################################## 
# 
#### Gather Data from Exodus File 
# 
# 
my $file_id = open_exodus($exo_file); 
# get the number of nodes 
my $num_nodes = get_num_nodes($file_id); 
print STDOUT "# Nodes = $num_nodes\n"; 
 
# get the number of elements 
my $num_elems = get_num_elems($file_id); 
print STDOUT "# Elems = $num_elems\n"; 
 
# get the number of time steps 
my $num_timesteps = get_num_timesteps($file_id); 
print STDOUT "# Time Steps = $num_timesteps\n"; 
 
# get the node map, which is an array that given the internal 
# node number returns the global nodal id 
my @node_map = get_node_map($file_id); 
print STDOUT "Node Number Map Obtained\n"; 
 
# get the nodal coordinates 
my @nodal_coords = get_nodal_coords($file_id); 
print STDOUT "Nodal Coordinates Obtained\n"; 
 
# similar to the node map, this maps an internal element 
# id to the global element id 
my @elem_map = get_elem_map($file_id); 
print STDOUT "Element Number Map Obtained\n"; 
 
# this returns an array of arrays such that given an element 
# id, it gives you an array of the nodes connected to that element 
my @elem_conn = get_elem_connectivity($file_id); 
print STDOUT "Element Connectivity Map Obtained\n"; 
 
# this is a map that given a node id, it returns an array 
# of element ids it is attached to 
my @node_to_elem = make_node_to_elem_map(\@elem_conn, $num_elems, $num_nodes); 
print STDOUT "Made Node to Element Map\n"; 
close_exodus($file_id); 
# 
# 
######################################################################## 
 
#### Output Nodes and Element Conectivity to Setup File 
open(SFILE, ">$out_file") or die "Can't open $out_file: $!\n"; 
 
 
######################################################################## 
# 
## get the local index of the inner crack node 
# 
my $icn_index = -1; 
#print STDOUT "inner_crack_node = $inner_crack_node\n"; 
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for (my $i=1; $i <= $num_nodes; ++$i ) { 
    if ($inner_crack_node eq @node_map[$i]) { 
        $icn_index = $i; 
        $i = $num_nodes + 1; 
    } 
} 
die "ERROR:  Could not locate the inner crack node\n" if ($icn_index eq -1); 
# 
######################################################################## 
 
 
######################################################################## 
# 
# currently this script spits out a default youngs modulus 
# and poisson ratio... this can be changed in the output file 
print SFILE "YOUNGS 30.e6\n"; 
print SFILE "POISSON 0.3\n\n\n"; 
######################################################################## 
 
 
######################################################################## 
# 
# Some pre looping set up: 
# 
# Determine the beginning element in the first plane and the first path  
# Determine the crack tip nodes 
# Calculate the center point between the two crack tip nodes 
# 
## get the z value of the inner crack node 
my $icn_loc = $nodal_coords[$icn_index]; 
my $curr_z = $icn_loc->[2]; 
 
## get the number of elements the seed node is connected to 
my $num_conn_elem = $#{$node_to_elem[$icn_index]} + 1; 
 
## if the inner crack tip node is not connected to 1 or 2 elements, die 
## if the mesh has collapsed elements, the inner crack node will only be  
## connected to 1 element, if the elements are not collapsed it will be 
## connected to 2 elements 
die "ERROR:  The seed node passed in must only be connected to 2 element.\n 
The node passed in is connected to $num_conn_elem elements\n 
Please try again.\n" if( $num_conn_elem != 1 && $num_conn_elem != 2 ); 
 
## get the index number of the one/two elements who share the starting node 
my $elem_1 = $node_to_elem[$icn_index][0]; 
my $elem_2 = $node_to_elem[$icn_index][1]; 
print STDOUT "elem_1 = $elem_1\n"; 
print STDOUT "elem_2 = $elem_2\n"; 
 
## determine which of those elements is in the direction of the crack plane 
my $next_elem = get_first_elem( \@elem_conn, \@nodal_coords, $elem_1, $elem_2, 
$crack_plane_dir  ); 
 
## determine the first element of the first path of the first plane 
my $next_plane_seed_elem = $next_elem; 
for ( my $i = 0; $i < $offset; ++$i ) { 
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    $next_plane_seed_elem= get_next_elem( \@node_to_elem, \@elem_conn, \@nodal_coords, 
$next_plane_seed_elem, $num_elems, $crack_plane_dir  ); 
} 
print STDOUT "next_plane_seed_elem = $next_plane_seed_elem\n"; 
 
## get the crack tip nodes for the first plane 
## assume crack tip lies along the z-axis 
my $crack_tip_node_1 = $icn_index; 
my $crack_tip_node_2 = get_next_crack_tip_node( $crack_tip_node_1, \@nodal_coords, 
\@{$elem_conn[$next_elem]}, \@node_map ); 
print STDOUT "crack_tip_node_1 = $crack_tip_node_1\n"; 
print STDOUT "crack_tip_node_2 = $crack_tip_node_2\n"; 
 
## get the middle point between these two nodes 
## this is used to determine direction vectors for the path around the crack tip nodes 
my @center = (0.0, 0.0, 0.0); 
$center[0] = $nodal_coords[$node_map[$crack_tip_node_1]][0] + 
$nodal_coords[$node_map[$crack_tip_node_2]][0]; 
$center[1] = $nodal_coords[$node_map[$crack_tip_node_1]][1] + 
$nodal_coords[$node_map[$crack_tip_node_2]][1]; 
$center[2] = $nodal_coords[$node_map[$crack_tip_node_1]][2] + 
$nodal_coords[$node_map[$crack_tip_node_2]][2]; 
$center[0] /= 2.0; 
$center[1] /= 2.0; 
$center[2] /= 2.0; 
print STDOUT "center = $center[0], $center[1], $center[2]\n"; 
# 
# 
######################################################################## 
 
######################################################################## 
# 
# The main loop 
# 
# This will determine the elements for all paths in all planes  
#  
## a counter, used to introduce line breaks in the input deck.  Since the supes library 
## truncates input to 132 characters we need to introduce a line continuation before this 
## to ensure proper inputs to j3d 
my $elem_counter; 
## the number of elements that will cause a path description to become longer than 128 char 
## this is really dependent on how many elements are in the mesh, but 15 seems to work well ,  
## even with meshes that have over a million elements 
my $max_num_elem_per_path = 15; 
 
## keeps track of the number of elements in each path 
my $path_elem_count = 0; 
 
## loop over the number of planes  
for (my $i = 1; $i <= $num_planes; ++$i) { 
    print STDOUT "Working on plane $i\n"; 
    my $first_path_elem = $next_plane_seed_elem; 
    print SFILE "PLANE\n"; 
 
    ## write the crack tip information 
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    print SFILE "CRACK TIP NODES $node_map[$crack_tip_node_1] 
$node_map[$crack_tip_node_2]\n"; 
    print STDOUT "CRACK TIP NODES $node_map[$crack_tip_node_1] 
$node_map[$crack_tip_node_2]\n"; 
    
    ## loop over the number of paths per plane 
    for (my $j = 1; $j <= $num_paths; ++$j ) { 
        ## reset the element counter 
        $elem_counter = 0; 
        print STDOUT "Finding path $j for plane $i."; 
        my $steps_in_y = $j + $offset; 
        my $steps_in_x = 2*($offset + $j) - 1; 
        my $path_elem = $first_path_elem; 
        print SFILE "PATH "; 
 
 
        ## for each path we keep looking until we hit the "stop" number 
        while ( $path_elem != -9999999999 ) { 
            print SFILE "$elem_map[$path_elem] "; 
            $path_elem = get_next_arc_elem( \@node_to_elem, \@elem_conn, \@nodal_coords, 
$path_elem, $num_elems, \@center, \@node_map );  
            print STDOUT "."; 
 
            ## increment the counters 
            $elem_counter++; 
            $path_elem_count++; 
            if ( $elem_counter > 15 ) { 
                print SFILE " *\n"; 
                $elem_counter = 0; 
            } 
        } 
 
        print SFILE "\n"; 
        print STDOUT "\n"; 
        print STDOUT "Number of elements in path = $path_elem_count\n"; 
        $path_elem_count = 0; 
        ## get next starting path elem 
        $first_path_elem = get_next_elem( \@node_to_elem, \@elem_conn, \@nodal_coords, 
$first_path_elem, $num_elems, $crack_plane_dir ); 
    } 
     
    ## determine the new information for the next crack plane: 
    #     first element 
    #     crack tip nodes 
    #     center of the two crack tip nodes 
    print SFILE "END PLANE\n\n"; 
    if ( $i < $num_planes ) { 
        ## get the next plane seed element 
        $next_plane_seed_elem = get_next_elem( \@node_to_elem, \@elem_conn, \@nodal_coords, 
$next_plane_seed_elem, $num_elems, $next_plane_dir ); 
        ## get the next crack tip node 
        $next_elem = get_next_elem( \@node_to_elem, \@elem_conn, \@nodal_coords, $next_elem, 
$num_elems, $next_plane_dir ); 
        print "next_elem = $next_elem\n"; 
        $crack_tip_node_1 = $crack_tip_node_2; 
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        $crack_tip_node_2 = get_next_crack_tip_node( $crack_tip_node_1, \@nodal_coords, 
\@{$elem_conn[$next_elem]}, \@node_map  ); 
        $center[0] = $nodal_coords[$crack_tip_node_1][0] + $nodal_coords[$crack_tip_node_2][0]; 
        $center[1] = $nodal_coords[$crack_tip_node_1][1] + $nodal_coords[$crack_tip_node_2][1]; 
        $center[2] = $nodal_coords[$crack_tip_node_1][2] + $nodal_coords[$crack_tip_node_2][2]; 
        $center[0] /= 2.0; 
        $center[1] /= 2.0; 
        $center[2] /= 2.0; 
    } 
} 
 
# finish the file 
print SFILE "EXIT\n"; 
close SFILE; 
print STDOUT "Done \n"; 
 
exit; 
 
j3d_beam_subs.pm 
 
#! /usr/bin/perl  
 
use strict; 
use NetCDF; 
use tims_general_subs; 
 
sub get_next_elem { 
    my $elem_conn_ref = $_[0]; 
    my $nodal_coords_ref = $_[1]; 
    my $curr_elem = $_[2]; 
    my $num_elems = $_[3]; 
    my $dir_str = $_[4]; 
    my $max_min = $_[5]; 
    my @elem_conn = @$elem_conn_ref; 
    my @nodal_coords = @$nodal_coords_ref; 
    my $num_match = 0; 
    my $curr_node; 
    my $curr_elem_conn = $elem_conn[$curr_elem]; 
    my $result; 
    my $curr_elem_val; 
    my $dir; 
    my @match_list = (); 
 
    if ( $dir_str eq "x" ) { 
        $dir = 0; 
    } elsif ( $dir_str eq "y" ) { 
        $dir = 1; 
    } elsif ( $dir_str eq "z" ) { 
        $dir = 2; 
    } else { 
        die "ERROR: Did not specify a supported direction when calling 'get_next_elem'.  Must be 'x', 'y' 
or 'z'.\n";  
    } 
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    my $elem_val = get_max_or_min_elem_coord( $dir, $max_min, \@{$elem_conn[$curr_elem]}, 
\@nodal_coords ); 
 
 
    for ( my $i = 1; $i <= $num_elems; ++ $i ) { 
        if ( $i == $curr_elem ) { 
            next; 
        } 
        for my $j ( 0 .. $#{$elem_conn[$i]} ) { 
            $curr_node = $elem_conn[$i][$j]; 
            for my $k ( 0 .. $#{$elem_conn[$curr_elem]} ) { 
                if ( $curr_node == $elem_conn[$curr_elem][$k] ) { 
                    $num_match++; 
                    push @match_list, $curr_node; 
                    last; 
                } 
            } 
        } 
 
        if ( $num_match == 4 ) { 
            ## get the normal vector of the plane of matching nodes 
            my @s = ( ); 
            $s[0] = $nodal_coords[$match_list[1]][0] - $nodal_coords[$match_list[0]][0]; 
            $s[1] = $nodal_coords[$match_list[1]][1] - $nodal_coords[$match_list[0]][1]; 
            $s[2] = $nodal_coords[$match_list[1]][2] - $nodal_coords[$match_list[0]][2]; 
            my @t = ( ); 
            $t[0] = $nodal_coords[$match_list[3]][0] - $nodal_coords[$match_list[0]][0]; 
            $t[1] = $nodal_coords[$match_list[3]][1] - $nodal_coords[$match_list[0]][1]; 
            $t[2] = $nodal_coords[$match_list[3]][2] - $nodal_coords[$match_list[0]][2]; 
 
            my @n = cross_prod( \@s, \@t ); 
 
            my $max_dir; 
            $n[0] = abs($n[0]); 
            $n[1] = abs($n[1]); 
            $n[2] = abs($n[2]); 
            if ( $n[0] >= $n[1] && $n[0] >= $n[2] ) { 
                $max_dir = "x"; 
            } elsif ( $n[1] >= $n[2] && $n[1] >= $n[0] ) { 
                $max_dir = "y"; 
            } elsif ( $n[2] >= $n[0] && $n[2] >= $n[1] ) { 
                $max_dir = "z"; 
            } 
 
 
            $curr_elem_val = get_max_or_min_elem_coord( $dir, $max_min, \@{$elem_conn[$i]}, 
\@nodal_coords ); 
            if ( ($max_min eq "max" && $curr_elem_val > $elem_val && $max_dir eq $dir_str) || 
                 ($max_min eq "min" && $curr_elem_val < $elem_val && $max_dir eq $dir_str) ) { 
                $result = $i; 
                last; 
            } 
        } 
        $num_match = 0; 
        @match_list = (); 
    } 
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    return $result; 
} 
 
 
sub get_max_or_min_elem_coord { 
    my $dir = $_[0]; 
    my $max_min = $_[1]; 
    my $elem_conn_ref = $_[2]; 
    my $nodal_coords_ref = $_[3]; 
    my @elem_conn = @$elem_conn_ref; 
    my @nodal_coords = @$nodal_coords_ref; 
    my $result; 
    my $val = $nodal_coords[$elem_conn[0]][$dir]; 
    $result = $val; 
 
#    print "$nodal_coords[$elem_conn[0]][0] $nodal_coords[$elem_conn[0]][1] 
$nodal_coords[$elem_conn[0]][2]\n"; 
    for my $i ( 1 .. $#elem_conn ) { 
#        print "$nodal_coords[$elem_conn[$i]][0] $nodal_coords[$elem_conn[$i]][1] 
$nodal_coords[$elem_conn[$i]][2]\n"; 
        $val = $nodal_coords[$elem_conn[$i]][$dir]; 
        if ( ($max_min eq "max" && $val > $result) || 
             ($max_min eq "min" && $val < $result) ) { 
            $result = $val; 
        } 
    } 
     
    return $result; 
} 
 
sub get_next_crack_tip_node { 
    my $node_1 = $_[0]; 
    my $nodal_coords_ref = $_[1]; 
    my $next_elem_conn_ref = $_[2]; 
    my @nodal_coords = @$nodal_coords_ref; 
    my @next_elem_conn  = @$next_elem_conn_ref; 
    my @dir = (); 
    my $result; 
    my $node_1_index; 
 
    for my $i ( 0 .. $#next_elem_conn ) { 
        my $node_index = $next_elem_conn[$i]; 
        if ( $node_index == $node_1 ) { 
            $node_1_index = $i; 
            last; 
        } 
    } 
    if ( $node_1_index < 4 ) { 
        $result = $next_elem_conn[$node_1_index+4]; 
    } else { 
        $result = $next_elem_conn[$node_1_index-4]; 
    } 
 
    return $result; 
} 
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sub get_next_arc_elem { 
    my $node_to_elem_ref = $_[0]; 
    my $elem_conn_ref = $_[1]; 
    my $nodal_coords_ref = $_[2]; 
    my $curr_elem = $_[3]; 
    my $num_elems = $_[4]; 
    my $center_ref = $_[5]; 
    my @node_to_elem = @$node_to_elem_ref; 
    my @elem_conn = @$elem_conn_ref; 
    my @nodal_coords = @$nodal_coords_ref; 
    my @center = @$center_ref; 
    my $num_match = 0; 
    my $curr_node; 
    my $curr_elem_conn = $elem_conn[$curr_elem]; 
    my $result; 
    my $curr_elem_val; 
    my $dir; 
    my @curr_elem_conn = @{$elem_conn[$curr_elem]}; 
 
    ## get the centroid of the element 
    my @centroid = (0.0, 0.0, 0.0); 
 
    for my $i ( 0 .. $#curr_elem_conn ) { 
        $centroid[0] += $nodal_coords[$curr_elem_conn[$i]][0]; 
        $centroid[1] += $nodal_coords[$curr_elem_conn[$i]][1]; 
        $centroid[2] += $nodal_coords[$curr_elem_conn[$i]][2]; 
    } 
    $centroid[0] /= ($#curr_elem_conn+1); 
    $centroid[1] /= ($#curr_elem_conn+1); 
    $centroid[2] /= ($#curr_elem_conn+1);     
 
    ## determine the ray vector from the center to the centroid 
    my @ray_vec = (0.0, 0.0, 0.0); 
     
    $ray_vec[0] = $centroid[0] - $center[0]; 
    $ray_vec[1] = $centroid[1] - $center[1]; 
    $ray_vec[2] = $centroid[2] - $center[2]; 
     
    @ray_vec = unit_Vector( \@ray_vec ); 
 
    ## determine the dir vector, which is perpendicular to the  
    ## ray vector in the direction of interest 
    my @dir_vec = ( -$ray_vec[1], $ray_vec[0], 0.0 ); 
     
    ## find the nodes on the face in the direction of the dir vector 
    my ($node_1, $node_2, $node_3); 
 
    ($node_1, $node_2, $node_3) = get_arc_face_nodes( \@centroid, \@dir_vec, 
\@{$elem_conn[$curr_elem]}, \@nodal_coords ); 
     
    ## find the element that shares these nodes 
    my $node_1_elems = $node_to_elem[$node_1]; 
    my $node_2_elems = $node_to_elem[$node_2]; 
    my $node_3_elems = $node_to_elem[$node_3]; 
    my $my_next_elem = -9999999999; 
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    for my $i ( 0 .. $#{$node_1_elems} ) { 
        my $n1e = $node_to_elem[$node_1][$i]; 
 
        for my $j ( 0 .. $#{$node_2_elems} ) { 
            my $n2e = $node_to_elem[$node_2][$j]; 
 
            if ( $n1e == $n2e && $n1e != $curr_elem ) { 
                for my $k ( 0 .. $#{$node_3_elems} ) { 
                    my $n3e = $node_to_elem[$node_3][$k]; 
 
                    if ( $n2e == $n3e ) { 
                        $my_next_elem = $n3e; 
                        last; 
                    } 
                } 
                if ( $my_next_elem == $n2e ) { 
                    last; 
                } 
            } 
        } 
        if ( $my_next_elem == $n1e ) { 
            last; 
        } 
    } 
    $result = $my_next_elem; 
    return $result; 
} 
 
sub get_arc_face_nodes { 
    my $centroid_ref = $_[0]; 
    my $dir_ref = $_[1]; 
    my $elem_conn_ref = $_[2]; 
    my $nodal_coords_ref = $_[3]; 
    my @centroid = @$centroid_ref; 
    my @dir_vec = @$dir_ref; 
    my @elem_conn = @$elem_conn_ref; 
    my @nodal_coords = @$nodal_coords_ref; 
    my $result; 
    my $node_1; 
    my $node_2; 
    my $node_3; 
 
    my $i; 
    my @node_dir = (0.0, 0.0, 0.0); 
    my $dot_val; 
    my @result = (0, 0, 0); 
    my $index = 0; 
    my @max_dot = (0.0, 0.0, 0.0 ); 
 
    for $i ( 0 .. $#elem_conn ) { 
        $node_dir[0] = $nodal_coords[$elem_conn[$i]][0] - $centroid[0]; 
        $node_dir[1] = $nodal_coords[$elem_conn[$i]][1] - $centroid[1]; 
        $node_dir[2] = $nodal_coords[$elem_conn[$i]][2] - $centroid[2]; 
        @node_dir = unit_Vector( \@node_dir ); 
 
        $dot_val = dot_prod( \@node_dir, \@dir_vec ); 
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        if ( $dot_val > $max_dot[0] ) { 
            $result[2] = $result[1]; 
            $result[1] = $result[0]; 
            $result[0] = $elem_conn[$i]; 
            $max_dot[2] = $max_dot[1]; 
            $max_dot[1] = $max_dot[0]; 
            $max_dot[0] = $dot_val; 
        } elsif ( $dot_val > $max_dot[1] ) { 
            $result[2] = $result[1]; 
            $result[1] = $elem_conn[$i]; 
            $max_dot[2] = $max_dot[1]; 
            $max_dot[1] = $dot_val; 
        } elsif ( $dot_val > $max_dot[2] ) { 
            $result[2] = $elem_conn[$i]; 
            $max_dot[2] = $dot_val; 
        } 
    } 
    return @result; 
} 
 
1; 

 
tims_general_subs.pm 
 
#! /usr/bin/perl 
 
use strict; 
 
sub get_lines { 
        ### Returns an Array of Lines from the File given 
        ### @lines = get_lines("file"); 
        ### 
        my $file = $_[0]; 
        die "Could not find file $file\n" if (! -e $file); 
        my @lines = (); 
        open(INPUTFILE,"$file") or die "Unable to open $file"; 
        @lines = <INPUTFILE>; 
        chomp(@lines); 
        close(INPUTFILE); 
        return @lines; 
} 
 
sub write_lines { 
        ### Writes an Array of Lines to the File 
        ### write_lines("file",\@lines); 
        ### 
        my $file = $_[0]; 
 my $lines_ref = $_[1]; 
        my @lines = @$lines_ref; 
        open(INPUTFILE,">$file") or die "Unable to open $file"; 
 foreach my $line (@lines){ 
  print INPUTFILE "$line\n"; 
 } 
        close(INPUTFILE); 
 return 1; 
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} 
 
sub get_corresponding_string { 
 ### Search @a for $a_val and return value of @b at that location 
 ### $b_val = get_corresponding_string($a_val,\@a,\@b); 
 my $a_val = $_[0]; 
 my $aref = $_[1]; 
 my $bref = $_[2]; 
 my @a = @$aref; 
 my @b = @$bref; 
 my $bval; 
 for (my $i=0; $i<=$#b; ++$i) { 
  if ($a[$i] =~ m/^$a_val$/) { 
   if ($b[$i]) { 
    $bval = $b[$i]; 
    return $bval; 
   } 
  } 
 } 
 die "Failed to find $a_val in array or array b has no value" 
    ." at that location.\n" unless ($bval); 
} 
 
sub search_and_substitue { 
 ### Search through @lines for things in @find 
 ### and replace with @replace 
 ### search_and_substitue(\@lines,\@find,\@replace); 
 my $lines_ref = $_[0]; 
 
 my $find_ref = $_[1]; 
 my $replace_ref = $_[2]; 
 my @find = @$find_ref; 
 my @replace = @$replace_ref; 
 my $j = 0; 
 foreach my $line_compare (@$lines_ref) { 
  my $i=0; 
  foreach my $find_in (@find) { 
   if ($line_compare =~ m/$find_in/) { 
    $line_compare =~ s/$find_in/$replace[$i]/g; 
   } 
   ++$i; 
  } 
  $$lines_ref[$j]=$line_compare; 
  ++$j; 
 } 
 return 1; 
} 
 
sub contain_atleast { 
 ### Search through @a and return @b with the values that 
 ### contain atleast $string 
 ### @b = contain_atleast(\@a,$string); 
 my $a_ref = $_[0]; 
 my $string = $_[1]; 
 my @b = (); 
 foreach my $content (@$a_ref) { 
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  if ($content =~ m/$string/) { 
   push(@b,$content); 
  } 
 }  
 return @b; 
} 
 
sub maxABS { 
 ### Returns Maximum Absoulte Value of Array 
 ### $max = maxABS(\@a); 
 my $a_ref = $_[0]; 
 my $max = 0; 
 foreach my $val (@$a_ref) { 
  if (abs($val) > $max) { 
   $max = abs($val); 
  } 
 } 
 return $max; 
} 
 
sub maxVAL { 
        ### Returns Max Value of Array 
        ### $max = maxVAL(\@a); 
        my $a_ref = $_[0]; 
        my $max = -1.0e20; 
        foreach my $val (@$a_ref) { 
                if ($val > $max) { 
                        $max = $val; 
                } 
        } 
        return $max; 
} 
 
sub minVAL { 
        ### Returns Min Value of Array 
        ### $min = minVAL(\@a); 
        my $a_ref = $_[0]; 
 my $min = 1.0e20; 
        foreach my $val (@$a_ref) { 
                if ($val < $min) { 
                        $min = $val; 
                } 
        } 
        return $min; 
} 
 
sub scaleVEC { 
        ### Returns Scaled Vector 
        ### @b = scaleVEC(\@a,$scale); 
        my $a_ref = $_[0]; 
        my $scale = $_[1]; 
 my @b = (); 
        foreach my $val (@$a_ref) { 
  push(@b,$val*$scale); 
 } 
 return @b; 
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} 
 
sub sumVEC { 
        ### Returns Sum of Vector Values 
        ### $sum = sumVEC(\@a); 
        my $a_ref = $_[0]; 
        my $sum = 0; 
        foreach my $val (@$a_ref) { 
  $sum = $sum + $val; 
        } 
        return $sum; 
} 
 
 
sub addVEC { 
        ### Returns Vectors Added Together 
        ### @c = addVEC(\@a,\@b); 
        my $a_ref = $_[0]; 
        my $b_ref = $_[1]; 
 my @a = @$a_ref; 
 my @b = @$b_ref; 
        my @c = (); 
        foreach my $val (@a) { 
                my $val2 = shift(@b); 
  push(@c,($val+$val2)); 
        } 
        return @c; 
} 
 
sub point_to_point_distance { 
 ### Return Distance Between Two Points 
 ### $dist = point_to_point_distance(\@p1,\@p2); 
 ### 
 my $p1_ref = $_[0]; 
 my $p2_ref = $_[1]; 
 my @p1 = @$p1_ref; 
 my @p2 = @$p2_ref; 
 my $dist = 0; 
 my $num = @p1; 
 for (my $i=0;$i<$num;++$i) { 
  $dist = $dist + ($p1[$i]-$p2[$i])*($p1[$i]-$p2[$i]); 
 } 
 $dist = sqrt($dist); 
 return $dist; 
} 
 
sub magnitude_Vector { 
 ### Return Magnitude of Vector 
 ### $mag = magnitude_Vector(\@a); 
 my $a_ref = $_[0]; 
 my @a = @$a_ref; 
 my $mag = 0; 
 foreach $a (@a) { 
  $mag = $mag + $a*$a; 
 } 
 $mag = sqrt($mag); 
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 return $mag; 
} 
 
sub unit_Vector { 
 ### Return Unit Vector 
 ### @unitV = unit_Vector(\@a); 
 my $a_ref = $_[0]; 
 my @a = @$a_ref; 
 my $mag = magnitude_Vector(\@a); 
        my @unitV = ( $a[0], $a[1]. $a[3] ); 
        if ( $mag > 0.0 ) { 
            @unitV = scaleVEC(\@a,(1/$mag)); 
        } 
 return @unitV; 
} 
   
sub point_to_point_SQdistance { 
        ### Return Square Distance Between Two Points 
        ### $dist = point_to_point_SQdistance(\@p1,\@p2); 
        ### 
        my $p1_ref = $_[0]; 
        my $p2_ref = $_[1]; 
        my @p1 = @$p1_ref; 
        my @p2 = @$p2_ref; 
        my $dist = 0; 
        my $num = @p1; 
        for (my $i=0;$i<$num;++$i) { 
                $dist = $dist + ($p1[$i]-$p2[$i])*($p1[$i]-$p2[$i]); 
        } 
        return $dist; 
} 
 
sub point_to_plane_distance { 
 ### Return Distance between point and plane 
 ### $dist = point_to_plane_distance(\@point,\@plane); 
 ### 
 my ($point_ref,$plane_ref) = @_; 
 my ($x,$y,$z) = @$point_ref; 
 my ($a,$b,$c,$d) = @$plane_ref; 
 my $dist = ($a*$x+$b*$y+$c*$z+$d)/(sqrt($a*$a+$b*$b+$c*$c+$d*$d)); 
 return $dist; 
} 
 
sub closest_point_on_plane { 
 ### Return Closest Point on Plane to given Point 
 ### @p = closest_point_on_plane(\@point,\@plane); 
 my ($point_ref,$plane_ref) = @_; 
        my ($x,$y,$z) = @$point_ref; 
        my ($a,$b,$c,$d) = @$plane_ref; 
 my @p0 = ($x,$y,$z); 
 my $dist = ($a*$x+$b*$y+$c*$z+$d)/(sqrt($a*$a+$b*$b+$c*$c+$d*$d)); 
 my @n = ($a,$b,$c); 
 my $magn = magnitude_Vector(\@n); 
 my @n = scaleVEC(\@n,-1*($dist/$magn)); 
 my @p = addVEC(\@n,\@p0); 
 return @p; 
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} 
  
sub construct_Vector { 
 ### Return Vector Made from Two Points 
 ### @V = construct_Vector(\@tip,\@tail); 
 my ($tip_ref,$tail_ref) = @_; 
 my @tip = @$tip_ref; 
 my @tail = @$tail_ref; 
 my @V = (); 
 my $ntip = @tip; 
 my $ntail = @tail; 
 die "ERROR: Vectors not same length.\n" if ($ntip != $ntail); 
 for (my $i = 0;$i<$ntip;++$i) { 
  push(@V,$tip[$i]-$tail[$i]); 
 } 
 return @V; 
} 
 
sub construct_Plane { 
 ### Create and Return a Plane made of 3 points 
 ### @plane = construct_Plane(\@p1,\@p2,\@p3); 
 ### 
 my ($p1_ref,$p2_ref,$p3_ref) = @_; 
 my ($x,$y,$z) = @$p1_ref; 
 my @V1 = construct_Vector($p1_ref,$p2_ref); 
 my @V2 = construct_Vector($p2_ref,$p3_ref); 
 my @plane = cross_prod(\@V1,\@V2); 
 my ($a,$b,$c) = @plane; 
 my $d = (-1*$a*$x-$b*$y-$c*$z); 
 push(@plane,$d); 
 return @plane; 
} 
  
sub cross_prod { 
 ### Return Cross Product of @a and @b 
 ### @c = cross_prod(\@a,\@b); 
 my ($a_ref,$b_ref) = @_; 
 my @a = @$a_ref; 
 my @b = @$b_ref; 
 my @c = (); 
 $c[0] = $a[1]*$b[2]-$a[2]*$b[1]; 
 $c[1] = $a[2]*$b[0]-$a[0]*$b[2]; 
 $c[2] = $a[0]*$b[1]-$a[1]*$b[0]; 
 return @c; 
} 
 
sub dot_prod { 
 ### Return Dot Product of @a and @b 
 ### $c = dot_prod(\@a,\@b); 
        my ($a_ref,$b_ref) = @_; 
        my @a = @$a_ref; 
        my @b = @$b_ref; 
        my $c = 0; 
 for (my $i=0; $i<@a; ++$i) { 
  $c = $c + $a[$i]*$b[$i]; 
 } 
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 return $c; 
} 
 
 
1; 

 
tims_netcdf_subs_4_9_06.pm 
 
#! /usr/bin/perl 
 
use strict; 
use NetCDF; 
use tims_general_subs; 
 
sub open_exodus { 
 ### Open Exodus File and return $file_id 
 ### open_exodus("filename.e"); 
 my $exo_file = $_[0]; 
 die "Could not find file $exo_file\n" if (! -e $exo_file); 
        my $file_id = NetCDF::open($exo_file, NetCDF::NOWRITE); ### Open as Read Only 
        die "ERROR: Could not open exodus file $exo_file\n" if ($file_id == -1); 
 print "Opened $exo_file.\n"; 
 return $file_id; 
} 
 
sub open_exodus_for_write { 
        ### Open Exodus File and return $file_id 
        ### open_exodus("filename.e"); 
        my $exo_file = $_[0]; 
        die "Could not find file $exo_file\n" if (! -e $exo_file); 
        my $file_id = NetCDF::open($exo_file, NetCDF::WRITE); ### Open with Write Priviliges 
        die "ERROR: Could not open exodus file $exo_file\n" if ($file_id == -1); 
        print "Opened $exo_file with write priviliges.\n"; 
        return $file_id; 
} 
 
sub close_exodus { 
        ### Close Exodus File 
        ### close_exodus("filename.e"); 
 my $file_id = $_[0]; 
        my $error = NetCDF::close($file_id); 
        die "ERROR: Problem closing exodus file\n" if ($error == -1); 
 print "Closed exodus file.\n"; 
 return $error; 
} 
 
sub exodus_info { 
        ### Get Number of Dimensions, Variables, Attributes, and ID of Unlimited Dimension 
 ### returns ($ndims,$nvars,$natts,$unldim) 
 ### exodus_info($file_id); 
 my $file_id = $_[0]; 
        my ($ndims,$nvars,$natts,$unldim); 
 my $error; 
        $error = NetCDF::inquire($file_id,$ndims,$nvars,$natts,$unldim); 
        die "ERROR: Problem inquiring exodus file\n" if ($error == -1); 
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 return ($ndims,$nvars,$natts,$unldim); 
} 
 
sub get_dim_names { 
 ### Gets the Dimension Names 
 ### return @names  
 ### @names = get_dim_names($file_id); 
 my $file_id = $_[0]; 
 my ($ndims,$nvars,$natts,$unldim); 
 ($ndims,$nvars,$natts,$unldim)=exodus_info($file_id); 
 my ($num_dims); 
 my $curname; 
 my @names = (); 
 for (my $i=0;$i<$ndims;++$i) { 
  my $error = NetCDF::diminq($file_id,$i,$curname,$num_dims); 
         die "ERROR: Problem inquiring for dimension names\n" if ($error == -1); 
  $names[$i]=$curname; 
 } 
        return @names; 
} 
 
sub get_var_names { 
        ### Gets the Variable Names 
        ### return @names 
        ### @names = get_var_names($file_id); 
        my $file_id = $_[0]; 
        my ($ndims,$nvars,$natts,$unldim); 
        ($ndims,$nvars,$natts,$unldim)=exodus_info($file_id); 
 my ($data_type,@dim_ids); 
        my $curname; 
        my @names = (); 
        for (my $i=0;$i<$nvars;++$i) { 
                my $error = NetCDF::varinq($file_id,$i,$curname,$data_type,$ndims,\@dim_ids,$natts); 
                die "ERROR: Problem inquiring for variable names\n" if ($error == -1); 
                $names[$i]=$curname; 
        } 
        return @names; 
} 
 
sub get_num_nodes { 
 ### Get the Number of Nodes in mesh 
 ### returns $num_nodes 
 ### get_num_nodes($file_id); 
 my $file_id = $_[0]; 
        my $dimid; 
        my $num_nodes; 
        my $dim_name="num_nodes"; 
        $dimid = NetCDF::dimid($file_id,$dim_name); 
        die "ERROR: Problem getting $dim_name 's dimension id\n" if ($dimid == -1); 
 my $dim_name2; 
        my $error = NetCDF::diminq($file_id,$dimid,$dim_name2,$num_nodes); 
        die "ERROR: Problem inquiring. $dim_name = $dim_name2 ?\n" if ($error == -1); 
 return $num_nodes; 
} 
 
sub get_num_elems { 
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        ### Get the Number of Elements in mesh 
        ### returns $num_elems 
        ### get_num_elems($file_id); 
        my $file_id = $_[0]; 
        my $dimid; 
        my $num_elems; 
        my $dim_name="num_elem"; 
        $dimid = NetCDF::dimid($file_id,$dim_name); 
        die "ERROR: Problem getting $dim_name 's dimension id\n" if ($dimid == -1); 
        my $dim_name2; 
        my $error = NetCDF::diminq($file_id,$dimid,$dim_name2,$num_elems); 
        die "ERROR: Problem inquiring. $dim_name = $dim_name2 ?\n" if ($error == -1); 
        return $num_elems; 
} 
 
sub get_dim_size { 
        ### Get the Number of Dimensions 
        ### returns $num_dims; 
        ### get_dim_size($file_id,"dimension"); 
        my $file_id = $_[0]; 
        my $dim_name=$_[1]; 
        my $dimid; 
        my $num_dims; 
        $dimid = NetCDF::dimid($file_id,$dim_name); 
        die "ERROR: Problem getting $dim_name 's dimension id\n" if ($dimid == -1); 
        my $dim_name2; 
        my $error = NetCDF::diminq($file_id,$dimid,$dim_name2,$num_dims); 
        die "ERROR: Problem inquiring. $dim_name = $dim_name2 ?\n" if ($error == -1); 
        return $num_dims; 
} 
 
sub get_num_timesteps { 
        ### Get Number of Time Steps 
 ### returns $num_timesteps 
 ### get_num_timesteps($file_id); 
 my $file_id = $_[0]; 
        my $num_timesteps; 
        my $unl_dim_name; 
 my ($ndims,$nvars,$natts,$unldim)=exodus_info($file_id); 
        my $error = NetCDF::diminq($file_id,$unldim,$unl_dim_name,$num_timesteps); 
        die "ERROR: Problem inquiring exodus file about Number of Time Steps\n" if ($error == -1); 
        if ($unl_dim_name =~ m/time_step/) { 
                ##print "Last Time Step = $last_time_step\n"; 
        } else { 
                print "Unlimited dimension name not time_step as expected.\n"; 
                exit; 
        } 
 return $num_timesteps; 
} 
 
sub get_node_map { 
 ### Get Node Number Map that is used for Variables 
 ### and Coordinates 
 ### returns $node_map[$num_nodes]=$node_id; 
 ### get_node_map($file_id); 
 my $file_id = $_[0]; 
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        my $error; 
        my $num_nodes=get_num_nodes($file_id); 
        my @var_names = get_var_names($file_id); 
        my @map_names = contain_atleast(\@var_names,"map"); 
        my @node_map_names = contain_atleast(\@map_names,"node"); 
        my @node_map=(); 
        if ($#node_map_names+1 != 1) { 
            for ( my $i=0; $i <= $num_nodes; ++$i ) { 
                $node_map[$i] = $i; 
            } 
        } else { 
            print "Node map name = $node_map_names[0]\n"; 
            my $node_num_map_id = NetCDF::varid($file_id,$node_map_names[0]); 
            die "ERROR: Problem getting node_num_map variable id\n" if ($node_num_map_id== -1); 
            my @start=(0); 
            my @count=($num_nodes); 
            $error = NetCDF::varget($file_id,$node_num_map_id,\@start,\@count,\@node_map); 
            die "ERROR: Problem getting variable values\n" if ($error == -1); 
            die "ERROR: Node Map not equal in length to Number of Nodes.\n" if ($num_nodes != 
$#node_map+1); 
            unshift(@node_map,0); 
        } 
        return @node_map; 
} 
 
sub get_nodal_varibles { 
 ### Get Array with Nodal Values of a Variable at Time Step 
 ### returns values[$num_nodes]=$node_value 
 ### get_nodal_varibles($file_id,$time_step,$var_name); 
 my $file_id = $_[0]; 
 my $time_step = $_[1]; 
 my $var_name = $_[2]; 
 my @values = (); 
 my $error; 
 my $num_nodes=get_num_nodes($file_id); 
 my $varstorid = NetCDF::varid($file_id,"vals_nod_var"); 
 die "ERROR: Problem getting vals_nod_var variable id\n" if ($varstorid == -1); 
        my $varid = NetCDF::varid($file_id,"name_nod_var"); 
 my $node_var_num = check_names($file_id,$varid,$var_name); 
 die "ERROR: Could not find $var_name in nodal varibales\n" if ($node_var_num == -1); 
 my @start=($time_step,$node_var_num,0); 
 my @count=(1,1,$num_nodes); 
 $error = NetCDF::varget($file_id,$varstorid,\@start,\@count,\@values); 
 die "ERROR: Problem getting variable values\n" if ($error == -1); 
 die "ERROR: Number of Variables not equal in length to Number of Nodes.\n" if ($num_nodes 
!= $#values+1); 
 unshift(@values,0); 
 return @values; 
} 
 
sub replace_nodal_varibles { 
        ### Replace the Nodal Values of a Variable at Time Step 
        ### replace_nodal_varibles($file_id,$time_step,$var_name,\@values); 
        my $file_id = $_[0]; 
        my $time_step = $_[1]; 
        my $var_name = $_[2]; 
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        my $value_ref = $_[3]; 
 my @values = @$value_ref; 
 my $topval = shift(@values); 
 die "ERROR: Shifted nodal variables and top value was not what expected.\n" if ($topval != 0); 
        my $error; 
        my $num_nodes=get_num_nodes($file_id); 
 die "ERROR: Number of Variables not equal in length to Number of Nodes.\n" if ($num_nodes 
!= $#values+1); 
        my $varstorid = NetCDF::varid($file_id,"vals_nod_var"); 
        die "ERROR: Problem getting vals_nod_var variable id\n" if ($varstorid == -1); 
 my $varid = NetCDF::varid($file_id,"name_nod_var"); 
        my $node_var_num = check_names($file_id,$varid,$var_name); 
        die "ERROR: Could not find $var_name in nodal varibales\n" if ($node_var_num == -1); 
        my @start=($time_step,$node_var_num,0); 
        my @count=(1,1,$num_nodes); 
        $error = NetCDF::varput($file_id,$varstorid,\@start,\@count,\@values); 
        die "ERROR: Problem putting in variable values\n" if ($error == -1); 
        return 1; 
} 
 
sub get_nodal_coords { 
        ### Get Array with Nodal Coordinates 
        ### returns $coords[$num_nodes]=\@loc 
 ### where @loc=($x,$y,$z); 
        ### get_nodal_coords($file_id); 
        my $file_id = $_[0]; 
        my @coords = (); 
        my $error; 
        my $num_nodes=get_num_nodes($file_id); 
        my $coordstorid = NetCDF::varid($file_id,"coord"); 
        die "ERROR: Problem getting coord variable id\n" if ($coordstorid == -1); 
 my $num_dim = get_dim_size($file_id,"num_dim"); 
 die "ERROR: Only support 3d models and num_dim != 3\n" if ($num_dim != 3); 
 my (@x,@y,@z); 
        my @start=(0,0); 
        my @count=(1,$num_nodes); 
        $error = NetCDF::varget($file_id,$coordstorid,\@start,\@count,\@x); 
        die "ERROR: Problem getting coord values\n" if ($error == -1); 
        my @start=(1,0); 
        $error = NetCDF::varget($file_id,$coordstorid,\@start,\@count,\@y); 
        die "ERROR: Problem getting coord values\n" if ($error == -1); 
        my @start=(2,0); 
        $error = NetCDF::varget($file_id,$coordstorid,\@start,\@count,\@z); 
        die "ERROR: Problem getting coord values\n" if ($error == -1); 
        die "ERROR: Number of Xcoords not equal in length to Number of Nodes.\n" if ($num_nodes != 
$#x+1); 
 die "ERROR: Number of Ycoords not equal in length to Number of Nodes.\n" if ($num_nodes 
!= $#y+1); 
 die "ERROR: Number of Zcoords not equal in length to Number of Nodes.\n" if ($num_nodes 
!= $#z+1); 
 for (my $i=0; $i < $num_nodes; ++$i) { 
  my @loc = ($x[$i],$y[$i],$z[$i]); 
  $coords[$i]=\@loc; 
 } 
 unshift(@coords,0); 
        return @coords; 
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} 
 
sub get_elem_map { 
        ### Get Elem Number Map 
        ### returns $elem_map[$num_elems]=$elem_id; 
        ### get_elem_map($file_id); 
        my $file_id = $_[0]; 
        my $error; 
        my $num_elems=get_num_elems($file_id); 
        my @var_names = get_var_names($file_id); 
        my @map_names = contain_atleast(\@var_names,"map"); 
 my @elem_map_names = contain_atleast(\@map_names,"elem"); 
        my @elem_map=(); 
 if ($#elem_map_names+1 != 1) { 
            for ( my $i=0; $i <= $num_elems; ++$i ) { 
                $elem_map[$i] = $i; 
            } 
        } else { 
            print "Element map name = $elem_map_names[0]\n"; 
            my $elem_num_map_id = NetCDF::varid($file_id,$elem_map_names[0]); 
            die "ERROR: Problem getting elem_num_map variable id\n" if ($elem_num_map_id== -1); 
            my @start=(0); 
            my @count=($num_elems); 
            $error = NetCDF::varget($file_id,$elem_num_map_id,\@start,\@count,\@elem_map); 
            die "ERROR: Problem getting variable values\n" if ($error == -1); 
            die "ERROR: Elem Map not equal in length to Number of elems.\n" if ($num_elems != 
$#elem_map+1); 
            unshift(@elem_map,0); 
        } 
        return @elem_map; 
} 
 
sub get_elem_connectivity { 
 ### Return Element Connectivity Map 
 ### returns $elem_con[$num_elems]=\@nodeids; 
 ### where @nodeids contains the internal id locs 
 ### that make up the connectivity of the element 
 ### get_elem_connectivity($file_id); 
 my $file_id = $_[0]; 
 my @elem_con = (); 
        my $error; 
        my $num_elems=get_num_elems($file_id); 
 my @dim_names = get_dim_names($file_id); 
 my @var_names = get_var_names($file_id); 
 my @connect_names = contain_atleast(\@var_names,"connect"); 
 my ($curname,$data_type,$ndims,@dim_ids,$natts); 
 foreach my $connect_name (@connect_names) { 
  my $varid = NetCDF::varid($file_id,$connect_name); 
  die "ERROR: Problem getting variable id\n" if ($varid== -1); 
  $error = 
NetCDF::varinq($file_id,$varid,$curname,$data_type,$ndims,\@dim_ids,$natts); 
                die "ERROR: Problem inquiring for variable names\n" if ($error == -1); 
  die "ERROR: Number of dimensions used for defining connectivity unexpected.\n" if 
($ndims != 2); 
  print "$connect_name ( $dim_names[$dim_ids[0]] , $dim_names[$dim_ids[1]] ) \n"; 
  my $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
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  my $dim2_size = get_dim_size($file_id,$dim_names[$dim_ids[1]]); 
  for (my $i = 0; $i < $dim1_size; ++$i) { 
   my @start = ($i,0); 
   my @count = (1,$dim2_size); 
   my @nodeids=(); 
   $error = NetCDF::varget($file_id,$varid,\@start,\@count,\@nodeids); 
          die "ERROR: Problem getting connectivity nodes\n" if ($error == -1); 
   push(@elem_con,\@nodeids); 
  } 
 } 
 die "ERROR: Connectivity Map length not equal to number of elems.\n" if ($num_elems != 
$#elem_con+1); 
 unshift(@elem_con,0); 
 return @elem_con; 
} 
 
sub check_names { 
 ### Return Id of Matching name or -1 if not found 
 ### $id = check_names($file_id,$varid,"name"); 
 ### 
 my $file_id = $_[0];  
 my $varid = $_[1]; 
 my $name = $_[2]; 
 my ($varname,$data_type,$ndims,@dim_ids,$natts); 
 my @dim_names = get_dim_names($file_id); 
 
 my $error = NetCDF::varinq($file_id,$varid,$varname,$data_type,$ndims,\@dim_ids,$natts); 
 die "ERROR: Problem inquiring for variable names\n" if ($error == -1); 
 die "ERROR: Number of dimensions used when checking names unexpected.\n" if ($ndims != 
2); 
        print "$varname ( $dim_names[$dim_ids[0]] , $dim_names[$dim_ids[1]] ) \n"; 
 my $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
 my $dim2_size = get_dim_size($file_id,$dim_names[$dim_ids[1]]); 
        for (my $i = 0; $i < $dim1_size; ++$i) { 
  my @start = ($i,0); 
  my @count = (1,$dim2_size); 
  my @NameArray = ("\0" x $dim2_size); 
  $error = NetCDF::varget($file_id,$varid,\@start,\@count,\@NameArray); 
                die "ERROR: Problem getting variable name\n" if ($error == -1); 
                my $cur_name = ""; 
                for (my $j = 0; $j < $dim2_size; $j++) { 
                        my $chr = chr($NameArray[$j]); 
                        last if( $chr eq "\0" || $chr eq "\\" ) ; 
                        $cur_name .= $chr ; 
                } 
                if ($cur_name =~ m/^$name$/) { 
                        return $i; 
                } 
 } 
 return -1; 
} 
 
sub get_side_set { 
        ### Return Sidset $sides[$num_sides]=\@nodeids 
        ### where @nodeids contains the internal id locs 
        ### that make up the sides 
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        ### get_side_set($file_id,$surface_num,\@elem_conn); 
        my $file_id = $_[0]; 
 my $surface_num = $_[1]; 
 my $elem_con_ref = $_[2]; 
 my $topval = $$elem_con_ref[0]; 
        die "ERROR: Shifted element connectivty passed into sideset routine " 
   ."was not what expected.\n" if ($topval != 0); 
 my @sides=(); 
 my @side_element=(); 
 my @side_face=(); 
 my @var_names = get_var_names($file_id); 
        my @ss_names = contain_atleast(\@var_names,"ss"); 
 my @prop_names = contain_atleast(\@ss_names,"prop"); 
 die "ERROR: Can not find sideset id properties.\n" if ($#prop_names+1 != 1); 
 print "Sideset ID Properties found in $prop_names[0]\n"; 
 my $ss_prop_id = NetCDF::varid($file_id,$prop_names[0]); 
 my @ss_ids=(); 
        my ($varname,$data_type,$ndims,@dim_ids,$natts); 
        my @dim_names = get_dim_names($file_id); 
        my $error = 
NetCDF::varinq($file_id,$ss_prop_id,$varname,$data_type,$ndims,\@dim_ids,$natts); 
 die "ERROR: Problem inquiring variable\n" if ($error == -1); 
 die "ERROR: Unexpected Number of Dimensions for sideset id properties\n" if ($ndims != 1); 
 my $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
 my @start=(0); 
        my @count=($dim1_size); 
        $error = NetCDF::varget($file_id,$ss_prop_id,\@start,\@count,\@ss_ids); 
        die "ERROR: Problem getting variable values\n" if ($error == -1); 
 my $surface_index = 0; 
 my $found = -1; 
 foreach my $surface_id (@ss_ids) { 
  if ($surface_id == $surface_num) { 
   $found = 0; 
   last; 
  } 
  ++$surface_index; 
 } 
 die "ERROR: Side Set $surface_num not found in side sets.\n" if ($found == -1); 
 my @elem_names = contain_atleast(\@ss_names,"elem"); 
 my $elem_ss_var = $elem_names[$surface_index]; 
 my $elem_ss_id = NetCDF::varid($file_id,$elem_ss_var); 
 print "Sideset Elements held in variable: $elem_ss_var\n"; 
 $error = 
NetCDF::varinq($file_id,$elem_ss_id,$varname,$data_type,$ndims,\@dim_ids,$natts); 
        die "ERROR: Problem inquiring variable\n" if ($error == -1); 
 die "ERROR: Unexpected Number of Dimensions\n" if ($ndims != 1); 
 $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
 @start=(0); 
 @count=($dim1_size); 
 $error = NetCDF::varget($file_id,$elem_ss_id,\@start,\@count,\@side_element); 
 
 my @side_names = contain_atleast(\@ss_names,"side"); 
 my $side_ss_var = $side_names[$surface_index]; 
 my $side_ss_id = NetCDF::varid($file_id,$side_ss_var); 
        print "Sideset Sides held in variable: $side_ss_var\n"; 
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 $error = 
NetCDF::varinq($file_id,$side_ss_id,$varname,$data_type,$ndims,\@dim_ids,$natts); 
        die "ERROR: Problem inquiring variable\n" if ($error == -1); 
        die "ERROR: Unexpected Number of Dimensions\n" if ($ndims != 1); 
        $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
        @start=(0); 
        @count=($dim1_size); 
        $error = NetCDF::varget($file_id,$side_ss_id,\@start,\@count,\@side_face); 
  
 die "ERROR: Number of Face does not match number of Elements.\n" if ($#side_face != 
$#side_element); 
  
  
 for(my $i = 0; $i <= $#side_face; ++$i) { 
  my $eid = $side_element[$i]; 
  my $fid = $side_face[$i]; 
  ##print "Converting face def: Element $eid, Face $fid\n"; 
  my $connect_ref = $$elem_con_ref[$eid]; 
  ##print join( ',', @$connect_ref ); 
  ##print "\n"; 
  my @facenodes = face_id_to_nodes($fid,$connect_ref); 
  ##print "Face Nodes: "; 
  ##print join( ',',@facenodes); 
  ##print "\n"; 
  push(@sides,\@facenodes); 
 } 
  
        return @sides; 
} 
 
sub face_id_to_nodes { 
 ### Convert Face ID to Face Nodes 
 ### @facenodes = face_id_to_nodes($fid,\@node_ids); 
 ### 
 my $fid = $_[0]; 
 my $nodes_ref = $_[1]; 
 my @node_ids = @$nodes_ref; 
 my @facenodes = (); 
 die "ERROR: Only Convert Face ID to Nodes for 8 node Hex Elements.\n" if ( $#node_ids+1 
!= 8); 
 if ($fid == 1) {  
  @facenodes=($node_ids[0],$node_ids[1],$node_ids[5],$node_ids[4]); 
  return @facenodes; 
 } 
        if ($fid == 2) { 
                @facenodes=($node_ids[1],$node_ids[2],$node_ids[6],$node_ids[5]); 
                return @facenodes; 
        } 
        if ($fid == 3) { 
                @facenodes=($node_ids[2],$node_ids[3],$node_ids[7],$node_ids[6]); 
                return @facenodes; 
        } 
        if ($fid == 4) { 
                @facenodes=($node_ids[0],$node_ids[4],$node_ids[7],$node_ids[3]); 
                return @facenodes; 
        } 
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        if ($fid == 5) { 
                @facenodes=($node_ids[0],$node_ids[3],$node_ids[2],$node_ids[1]); 
                return @facenodes; 
        } 
        if ($fid == 6) { 
                @facenodes=($node_ids[4],$node_ids[5],$node_ids[6],$node_ids[7]); 
                return @facenodes; 
        } 
 die "ERROR: = (); Face ID $fid not converted.\n" if ( 1 == 1); 
} 
 
 
sub get_side_sets { 
        ### Return Sidsets @sidesets=(\@side_set_ids,\@side_faces) 
 ### where @side_set_ids contains the side sets ID 
 ### and $side_faces[$num_side_sets]=\@nodeids 
        ### where @nodeids contains the internal id locs 
        ### that make up the faces 
        ### ($side_set_ids_ref, $side_faces_ref) = get_side_sets($file_id,\@elem_conn); 
        my $file_id = $_[0]; 
 my $elem_con_ref = $_[1]; 
 my $topval = $$elem_con_ref[0]; 
        die "ERROR: Shifted element connectivty passed into sideset routine " 
   ."was not what expected.\n" if ($topval != 0); 
 my @side_set_ids =(); 
 my @side_faces = (); 
 my @var_names = get_var_names($file_id); 
        my @ss_names = contain_atleast(\@var_names,"ss"); 
 my @prop_names = contain_atleast(\@ss_names,"prop"); 
 die "ERROR: Can not find sideset id properties.\n" if ($#prop_names+1 != 1); 
 print "Sideset ID Properties found in $prop_names[0]\n"; 
 my $ss_prop_id = NetCDF::varid($file_id,$prop_names[0]); 
        my ($varname,$data_type,$ndims,@dim_ids,$natts); 
        my @dim_names = get_dim_names($file_id); 
        my $error = 
NetCDF::varinq($file_id,$ss_prop_id,$varname,$data_type,$ndims,\@dim_ids,$natts); 
 die "ERROR: Problem inquiring variable\n" if ($error == -1); 
 die "ERROR: Unexpected Number of Dimensions for sideset id properties\n" if ($ndims != 1); 
 my $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
 my @start=(0); 
        my @count=($dim1_size); 
        $error = NetCDF::varget($file_id,$ss_prop_id,\@start,\@count,\@side_set_ids); 
        die "ERROR: Problem getting variable values\n" if ($error == -1); 
 my $surface_index = 0; 
 foreach my $surface_id (@side_set_ids) { 
  my @elem_names = contain_atleast(\@ss_names,"elem"); 
  my $elem_ss_var = $elem_names[$surface_index]; 
  my $elem_ss_id = NetCDF::varid($file_id,$elem_ss_var); 
  print "Sideset Elements held in variable: $elem_ss_var\n"; 
  $error = 
NetCDF::varinq($file_id,$elem_ss_id,$varname,$data_type,$ndims,\@dim_ids,$natts); 
         die "ERROR: Problem inquiring variable\n" if ($error == -1); 
  die "ERROR: Unexpected Number of Dimensions\n" if ($ndims != 1); 
  $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
  @start=(0); 
  @count=($dim1_size); 
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  my @side_element=(); 
  $error = NetCDF::varget($file_id,$elem_ss_id,\@start,\@count,\@side_element); 
  my @side_names = contain_atleast(\@ss_names,"side"); 
  my $side_ss_var = $side_names[$surface_index]; 
  my $side_ss_id = NetCDF::varid($file_id,$side_ss_var); 
         print "Sideset Sides held in variable: $side_ss_var\n"; 
  $error = 
NetCDF::varinq($file_id,$side_ss_id,$varname,$data_type,$ndims,\@dim_ids,$natts); 
  die "ERROR: Problem inquiring variable\n" if ($error == -1); 
  die "ERROR: Unexpected Number of Dimensions\n" if ($ndims != 1); 
         $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
         @start=(0); 
         @count=($dim1_size); 
  my @side_face = (); 
         $error = NetCDF::varget($file_id,$side_ss_id,\@start,\@count,\@side_face); 
  die "ERROR: Number of Face does not match number of Elements.\n" if ($#side_face 
!= $#side_element); 
  my @sides = (); 
  for(my $i = 0; $i <= $#side_face; ++$i) { 
   my $eid = $side_element[$i]; 
   my $fid = $side_face[$i]; 
   ##print "Converting face def: Element $eid, Face $fid\n"; 
   my $connect_ref = $$elem_con_ref[$eid]; 
   ##print join( ',', @$connect_ref ); 
   ##print "\n"; 
   my @facenodes = face_id_to_nodes($fid,$connect_ref); 
   ##print "Face Nodes: "; 
   ##print join( ',',@facenodes); 
   ##print "\n"; 
   push(@sides,\@facenodes); 
  } 
         push(@side_faces,\@sides); 
  ++$surface_index; 
 } 
 my @return_vals = (\@side_set_ids,\@side_faces); 
 return @return_vals; 
} 
 
sub get_elem_block_id_map { 
 ### Return Element Block ID Map 
 ### returns $elem_ids[$num_elems]=$block_id; 
 ### @elem_block_id_map = get_elem_block_id_map($file_id); 
 my $file_id = $_[0]; 
 my @elem_block_id_map = (); 
        my $error; 
        my $num_elems=get_num_elems($file_id); 
 my @dim_names = get_dim_names($file_id); 
 my @var_names = get_var_names($file_id); 
 my @connect_names = contain_atleast(\@var_names,"connect"); 
 my ($curname,$data_type,$ndims,@dim_ids,$natts); 
 my @block_ids = (); 
        my @var_names = get_var_names($file_id); 
        my @eb_names = contain_atleast(\@var_names,"eb"); 
        my @prop_names = contain_atleast(\@eb_names,"prop"); 
        die "ERROR: Can not find block id properties.\n" if ($#prop_names+1 != 1); 
        print "Block ID Properties found in $prop_names[0]\n"; 
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        my $eb_prop_id = NetCDF::varid($file_id,$prop_names[0]); 
        my ($varname,$data_type,$ndims,@dim_ids,$natts); 
        my @dim_names = get_dim_names($file_id); 
        my $error = 
NetCDF::varinq($file_id,$eb_prop_id,$varname,$data_type,$ndims,\@dim_ids,$natts); 
        die "ERROR: Problem inquiring variable\n" if ($error == -1); 
        die "ERROR: Unexpected Number of Dimensions for Block id properties\n" if ($ndims != 1); 
        my $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
        my @start=(0); 
        my @count=($dim1_size); 
        $error = NetCDF::varget($file_id,$eb_prop_id,\@start,\@count,\@block_ids); 
 die "ERROR: Problem getting block IDS\n" if ($error == -1); 
 my $block_id_index = 0; 
 foreach my $connect_name (@connect_names) { 
  my $varid = NetCDF::varid($file_id,$connect_name); 
  die "ERROR: Problem getting variable id\n" if ($varid== -1); 
  $error = 
NetCDF::varinq($file_id,$varid,$curname,$data_type,$ndims,\@dim_ids,$natts); 
                die "ERROR: Problem inquiring for variable names\n" if ($error == -1); 
  die "ERROR: Number of dimensions used for defining connectivity unexpected.\n" if 
($ndims != 2); 
  my $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
  my $dim2_size = get_dim_size($file_id,$dim_names[$dim_ids[1]]); 
  for (my $i = 0; $i < $dim1_size; ++$i) { 
   push(@elem_block_id_map,$block_ids[$block_id_index]); 
  } 
  ++$block_id_index 
 } 
 die "ERROR: Element Block ID Map length not equal to number of elems.\n" if ($num_elems 
!= $#elem_block_id_map+1); 
 unshift(@elem_block_id_map,0); 
 return @elem_block_id_map; 
} 
 
 
sub get_elem_varibles { 
        ### Get Array with Element Values of a Variable at Time Step 
        ### returns values[$num_elems]=$elem_value 
        ### @elem_values = get_elem_varibles($file_id,$time_step,$var_name); 
        my $file_id = $_[0]; 
        my $time_step = $_[1]; 
        my $var_name = $_[2]; 
        my @values = (); 
        my $error; 
        my $num_elems=get_num_elems($file_id); 
 
        my $varid = NetCDF::varid($file_id,"name_elem_var"); 
        my $elem_var_num = check_names($file_id,$varid,$var_name); 
        die "ERROR: Could not find $var_name in element varibales\n" if ($elem_var_num == -1); 
 ++$elem_var_num; 
        my @dim_names = get_dim_names($file_id); 
        my @var_names = get_var_names($file_id); 
 my $varstor_name = "vals_elem_var".$elem_var_num; 
        my @ebvar_names = contain_atleast(\@var_names,$varstor_name); 
        my ($curname,$data_type,$ndims,@dim_ids,$natts); 
        foreach my $ebvar_name (@ebvar_names) { 
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                my $varid = NetCDF::varid($file_id,$ebvar_name); 
                die "ERROR: Problem getting variable id\n" if ($varid== -1); 
                $error = NetCDF::varinq($file_id,$varid,$curname,$data_type,$ndims,\@dim_ids,$natts); 
                die "ERROR: Problem inquiring for variable names\n" if ($error == -1); 
                die "ERROR: Number of dimensions used for defining element variable unexpected.\n" if 
($ndims != 2); 
                print "$ebvar_name ( $dim_names[$dim_ids[0]] , $dim_names[$dim_ids[1]] ) \n"; 
  if ($dim_names[$dim_ids[0]] =~ m/^time_step$/) { 
   ## Do Nothing 
  } else { 
   die "ERROR: Dimension 1 not = time_step as expected.\n" if ( 1 == 1); 
  } 
                my $dim1_size = get_dim_size($file_id,$dim_names[$dim_ids[0]]); 
                my $dim2_size = get_dim_size($file_id,$dim_names[$dim_ids[1]]); 
                my @start = ($time_step,0); 
                my @count = (1,$dim2_size); 
  my @cur_vals=(); 
                $error = NetCDF::varget($file_id,$varid,\@start,\@count,\@cur_vals); 
  die "ERROR: Problem getting element values\n" if ($error == -1); 
  push(@values,@cur_vals); 
        } 
        die "ERROR: Element Variable lenngth not equal to number of elems.\n" if ($num_elems != 
$#values+1); 
        unshift(@values,0); 
        return @values; 
} 
 
sub make_node_to_elem_map { 
        ### Makes Node to Element Map 
        ### returns $node_elem_map[$num_nodes] = \@elem_ids 
 ### where @elem_ids contains the internal element ids of the elements 
 ### containing the internal node id. 
        ### @node_elem_map = make_node_to_elem_map(\@connectivity,$num_elems,$num_nodes); 
 my $con_ref = $_[0]; 
 my $num_elems = $_[1]; 
 my $num_nodes = $_[2]; 
 my @connectivity = @$con_ref; 
 my @node_elem_map = (); 
 for (my $i=1;$i<=$num_elems;++$i) { 
  my $elem_nd_ids_ref = $connectivity[$i]; 
  my @elem_nd_ids = @$elem_nd_ids_ref; 
  foreach my $nd_id (@elem_nd_ids) { 
   if (defined($node_elem_map[$nd_id])) { 
    my $elem_ids_ref = $node_elem_map[$nd_id]; 
    my @elem_ids = @$elem_ids_ref; 
    push(@elem_ids,$i); 
    $node_elem_map[$nd_id]=\@elem_ids; 
   } else { 
    my @elem_ids = ($i); 
    $node_elem_map[$nd_id]=\@elem_ids; 
   } 
  } 
 } 
 ##my $node1elemmap_ref = $node_elem_map[1]; 
 ##print "Internal Node Id 1 is part of internal element Ids:\n"; 
 ##foreach my $eid (@$node1elemmap_ref) { 
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 ## print "$eid, " 
 ##} 
 ##print "\n"; 
 return @node_elem_map;  
} 
 
sub elem_var_to_node_var { 
 ### Convert Element Variable to Nodal Varaible by Weighted Average 
 ### returns @nodal_values  
 ### @nodal_values = 
elem_var_to_node_var(\@node_elem_map,$num_nodes,\@elem_values,\@elem_weights); 
 ### 
 my $node_elem_map_ref = $_[0]; 
 my @node_elem_map = @$node_elem_map_ref; 
 my $num_nodes = $_[1]; 
 my $elem_values_ref = $_[2]; 
 my @elem_values = @$elem_values_ref; 
 my $elem_weights_ref = $_[3]; 
 my @elem_weights = @$elem_weights_ref; 
 my @nodal_values = (); 
 for( my $i=1;$i<=$num_nodes;++$i) { 
  ##print "Getting Nodal Value for Node $i\n"; 
  my $eles_ref = $node_elem_map[$i]; 
  my @eles = @$eles_ref; 
  my $weight_sum = 0; 
  my $cur_value = 0; 
  foreach my $elem (@eles) { 
   ##print "Element $elem 's weight = $elem_weights[$elem]\n"; 
   ##print "Element $elem 's value = $elem_values[$elem]\n"; 
   $weight_sum = $weight_sum + $elem_weights[$elem]; 
   $cur_value = $cur_value + $elem_values[$elem]*$elem_weights[$elem]; 
  } 
  ##print "Summed Weights = $weight_sum\n"; 
  $cur_value = $cur_value/$weight_sum; 
  ##print "Value = $cur_value\n"; 
  $nodal_values[$i]=$cur_value; 
 } 
 return @nodal_values; 
} 
 
sub elem_var_to_node_var_distance_weighted { 
        ### Convert Element Variable to Nodal Varaible by Inverse of Center Distance Weights 
        ### returns @nodal_values 
        ### @nodal_values = 
elem_var_to_node_var_distance_weighted(\@node_elem_map,\@elem_values,\@nodal_coords,\@el
em_centers); 
        ### 
        my $node_elem_map_ref = $_[0]; 
        my @node_elem_map = @$node_elem_map_ref; 
        my $elem_values_ref = $_[1]; 
        my @elem_values = @$elem_values_ref; 
        my $nodal_coords_ref = $_[2]; 
        my @nodal_coords = @$nodal_coords_ref; 
 my $elem_centers_ref = $_[3]; 
 my @elem_centers = @$elem_centers_ref; 
        my @nodal_values = (); 
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        for( my $i=1;$i<@nodal_coords;++$i) { 
                my $eles_ref = $node_elem_map[$i]; 
                my @eles = @$eles_ref; 
  my $node_point_ref = $nodal_coords[$i]; 
                my $weight_sum = 0; 
                my $cur_value = 0; 
                foreach my $elem (@eles) { 
   my $elem_cen_ref = $elem_centers[$elem]; 
   my $dist = point_to_point_distance($node_point_ref,$elem_cen_ref); 
                        $weight_sum = $weight_sum + (1/$dist); 
                        $cur_value = $cur_value + $elem_values[$elem]*(1/$dist); 
                } 
                $cur_value = $cur_value/$weight_sum; 
                $nodal_values[$i]=$cur_value; 
        } 
        return @nodal_values; 
 
} 
 
sub calculate_elem_centers { 
 ### Calculate and Retrun the Element Centers 
 ### @elem_centers = calculate_elem_centers(\@elem_conn,\@nodal_coords); 
 ###  
 my $elem_conn_ref = $_[0]; 
 my $nodal_coords_ref = $_[1]; 
 my @elem_conn=@$elem_conn_ref; 
        my @nodal_coords=@$nodal_coords_ref; 
 my $num = @elem_conn; 
 $num = $num -1; 
 print "Calculating $num centers\n"; 
 my @elem_centers = (); 
 for (my $i=1;$i<=$num;++$i) { 
  my @center = (0,0,0); 
  my $conn_ref=$elem_conn[$i]; 
  my @nod_ids=@$conn_ref; 
  my $num_nods = @nod_ids; 
  foreach my $nod (@nod_ids) { 
   my $point_ref = $nodal_coords[$nod]; 
                 my @point = @$point_ref; 
   @center = addVEC(\@point,\@center); 
  } 
  @center = scaleVEC(\@center,(1/$num_nods)); 
  $elem_centers[$i]=\@center; 
 } 
 return @elem_centers; 
} 
 
sub calculate_elem_max_diagonal { 
        ### Calculate and Retrun the Elements Max Diagonal 
        ### @elem_diags = calculate_elem_max_diagonal(\@elem_conn,\@nodal_coords); 
        ### 
        my $elem_conn_ref = $_[0]; 
        my $nodal_coords_ref = $_[1]; 
        my @elem_conn=@$elem_conn_ref; 
        my @nodal_coords=@$nodal_coords_ref; 
        my $num = @elem_conn; 
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        $num = $num -1; 
        print "Calculating $num Max Diagonals\n"; 
        my @elem_diags = (); 
        for (my $i=1;$i<=$num;++$i) { 
                my $conn_ref=$elem_conn[$i]; 
                my @nod_ids=@$conn_ref; 
  my @diags = (0,0,0,0); 
  $diags[0] = 
point_to_point_SQdistance($nodal_coords[$nod_ids[0]],$nodal_coords[$nod_ids[6]]); 
  $diags[1] = 
point_to_point_SQdistance($nodal_coords[$nod_ids[1]],$nodal_coords[$nod_ids[7]]); 
  $diags[2] = 
point_to_point_SQdistance($nodal_coords[$nod_ids[2]],$nodal_coords[$nod_ids[4]]); 
  $diags[3] = 
point_to_point_SQdistance($nodal_coords[$nod_ids[3]],$nodal_coords[$nod_ids[5]]); 
  my $max_sq_diag = maxVAL(\@diags); 
  $elem_diags[$i] = sqrt($max_sq_diag); 
   
        } 
        return @elem_diags; 
} 
 
sub find_natural_coords { 
 ### Find Natural Coordinates of x,y,z location inside element 
 ### returns @nc and an $error_code 
 ### $error_code = -2 -> Not in Natural Domain and Iteration Limit Reached 
 ### $error_code = -1 -> Not in Natural Domain 
 ### $error_code = 0 -> Successful 
 ### $error_code = 1 -> Iteration Limit Reached 
 ### (\@nc,$error_code) = 
find_natural_coords(\@xyz,$elemid,\@elem_conn,\@nodal_coords); 
 ### 
 my($xyz_ref,$elemid,$elem_conn_ref,$nodal_coords_ref)=@_; 
 my @xyz=@$xyz_ref; 
 my @elem_conn=@$elem_conn_ref; 
 my @nodal_coords=@$nodal_coords_ref; 
 my $conn_ref=$elem_conn[$elemid];  
 my @nod_ids=@$conn_ref; 
 die "Can only use hex elements when getting Natural Coordinates.\n" if ( 8 != @nod_ids); 
 my @x=(); 
 my @y=(); 
 my @z=(); 
 for (my $i = 0; $i < 8; ++$i) { 
  my $point_ref = $nodal_coords[$nod_ids[$i]]; 
  my @point = @$point_ref; 
  $x[$i] = $point[0]; 
  $y[$i] = $point[1]; 
  $z[$i] = $point[2]; 
 } 
        ##print "Element Coordinates:\n"; 
        ##print "x = ".join(', ',@x); 
        ##print "\n"; 
        ##print "y = ".join(', ',@y); 
        ##print "\n"; 
        ##print "z = ".join(', ',@z); 
        ##print "\n"; 
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 my @alpha = (-1,1,1,-1,-1,1,1,-1); 
 my @beta =  (-1,-1,1,1,-1,-1,1,1); 
 my @gamma = (-1,-1,-1,-1,1,1,1,1); 
 ####  Solve Loop 
 my $error_tol = 1.0e-16; 
 my $error = 1; 
 my @nc0 = (0,0,0); 
 my $iter = 0; 
 while ($error >= $error_tol) { 
  my @f0 = @xyz; 
  my $addtoX = 0; 
  my $addtoY = 0; 
  my $addtoZ = 0; 
  for (my $i = 0; $i < 8; ++$i) { 
   $addtoX = $addtoX 
+(1+$alpha[$i]*$nc0[0])*(1+$beta[$i]*$nc0[1])*(1+$gamma[$i]*$nc0[2])*$x[$i]; 
   $addtoY = $addtoY 
+(1+$alpha[$i]*$nc0[0])*(1+$beta[$i]*$nc0[1])*(1+$gamma[$i]*$nc0[2])*$y[$i]; 
   $addtoZ = $addtoZ 
+(1+$alpha[$i]*$nc0[0])*(1+$beta[$i]*$nc0[1])*(1+$gamma[$i]*$nc0[2])*$z[$i]; 
  } 
  $f0[0]=$f0[0]-0.125*$addtoX; 
  $f0[1]=$f0[1]-0.125*$addtoY; 
  $f0[2]=$f0[2]-0.125*$addtoZ; 
  ##print "f0 = "; 
  ##print join(', ',@f0); 
  ##print "\n"; 
  $error = maxABS(\@f0); 
  ##print "Max Error = $error \n"; 
  ### Calculate Jacobian Elements 
  my ($j1,$j2,$j3,$j4,$j5,$j6,$j7,$j8,$j9) = (0,0,0,0,0,0,0,0,0); 
  for (my $i = 0; $i < 8; ++$i) { 
   $j1 = $j1 - 
(1/8)*$x[$i]*$alpha[$i]*(1+$gamma[$i]*$nc0[2])*(1+$beta[$i]*$nc0[1]); 
   $j2 = $j2 - 
(1/8)*$x[$i]*$beta[$i]*(1+$gamma[$i]*$nc0[2])*(1+$alpha[$i]*$nc0[0]); 
   $j3 = $j3 - 
(1/8)*$x[$i]*$gamma[$i]*(1+$beta[$i]*$nc0[1])*(1+$alpha[$i]*$nc0[0]); 
                        $j4 = $j4 - (1/8)*$y[$i]*$alpha[$i]*(1+$gamma[$i]*$nc0[2])*(1+$beta[$i]*$nc0[1]); 
                        $j5 = $j5 - (1/8)*$y[$i]*$beta[$i]*(1+$gamma[$i]*$nc0[2])*(1+$alpha[$i]*$nc0[0]); 
                        $j6 = $j6 - (1/8)*$y[$i]*$gamma[$i]*(1+$beta[$i]*$nc0[1])*(1+$alpha[$i]*$nc0[0]); 
                        $j7 = $j7 - (1/8)*$z[$i]*$alpha[$i]*(1+$gamma[$i]*$nc0[2])*(1+$beta[$i]*$nc0[1]); 
                        $j8 = $j8 - (1/8)*$z[$i]*$beta[$i]*(1+$gamma[$i]*$nc0[2])*(1+$alpha[$i]*$nc0[0]); 
                        $j9 = $j9 - (1/8)*$z[$i]*$gamma[$i]*(1+$beta[$i]*$nc0[1])*(1+$alpha[$i]*$nc0[0]); 
  } 
  ##print "Jacobian Elements = "; 
  ##print "$j1,$j2,$j3,$j4,$j5,$j6,$j7,$j8,$j9\n"; 
  ### Jacobian Determinant  
  my $jdet = -$j3*$j5*$j7+$j2*$j6*$j7+$j3*$j4*$j8-$j1*$j6*$j8-$j2*$j4*$j9+$j1*$j5*$j9; 
  ##print "Jacobian Determinant = $jdet\n"; 
  ### Inverse Jacobian 
  my ($jI1,$jI2,$jI3,$jI4,$jI5,$jI6,$jI7,$jI8,$jI9) = (0,0,0,0,0,0,0,0,0); 
  $jI1 = (1/$jdet)*(-$j6*$j8+$j5*$j9); 
  $jI2 = (1/$jdet)*($j3*$j8-$j2*$j9); 
  $jI3 = (1/$jdet)*(-$j3*$j5+$j2*$j6); 
  $jI4 = (1/$jdet)*($j6*$j7-$j4*$j9); 
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  $jI5 = (1/$jdet)*(-$j3*$j7+$j1*$j9); 
  $jI6 = (1/$jdet)*($j3*$j4-$j1*$j6); 
  $jI7 = (1/$jdet)*(-$j5*$j7+$j4*$j8); 
  $jI8 = (1/$jdet)*($j2*$j7-$j1*$j8); 
  $jI9 = (1/$jdet)*(-$j2*$j4+$j1*$j5); 
                ##print "Inverse Jacobian Elements = "; 
  ##print "$jI1,$jI2,$jI3,$jI4,$jI5,$jI6,$jI7,$jI8,$jI9\n"; 
  ### Adjust @nc0 
  my @nc_del = (); 
  $nc_del[0] = -1*($jI1*$f0[0]+$jI2*$f0[1]+$jI3*$f0[2]); 
  $nc_del[1] = -1*($jI4*$f0[0]+$jI5*$f0[1]+$jI6*$f0[2]); 
  $nc_del[2] = -1*($jI7*$f0[0]+$jI8*$f0[1]+$jI9*$f0[2]); 
  ##print "Natural Coordinates Adjustment = "; 
                ##print join(', ',@nc_del); 
                ##print "\n"; 
  @nc0 = addVEC(\@nc_del,\@nc0); 
  ##print "Natural Coordinates = "; 
                ##print join(', ',@nc0); 
                ##print "\n"; 
  ++$iter; 
  if ($iter > 50) { 
   $error = maxABS(\@nc0); 
   if ($error > 1) { 
    return (\@nc0,-2); 
   } else { 
    return (\@nc0,1); 
   } 
  } 
 } 
 $error = maxABS(\@nc0); 
 if ($error > 1) { 
  return(\@nc0,-1); 
 } 
 return (\@nc0,0); 
 #### 
} 
 
sub value_at_natural_coords { 
        ### Return Value at Natural Coordinates inside element 
        ### returns $val 
        ### $val = value_at_natural_coords(\@nc,$elemid,\@elem_conn,\@nodal_values); 
        ### 
        my($nc_ref,$elemid,$elem_conn_ref,$nodal_values_ref)=@_; 
        my @nc=@$nc_ref; 
        my @elem_conn=@$elem_conn_ref; 
        my @nodal_values=@$nodal_values_ref; 
        my $conn_ref=$elem_conn[$elemid]; 
        my @nod_ids=@$conn_ref; 
        die "Can only use hex elements when getting Natural Coordinates.\n" if ( 8 != @nod_ids); 
        my @alpha = (-1,1,1,-1,-1,1,1,-1); 
        my @beta =  (-1,-1,1,1,-1,-1,1,1); 
        my @gamma = (-1,-1,-1,-1,1,1,1,1); 
 my $val = 0; 
        for (my $i = 0; $i < 8; ++$i) { 
  $val = $val +(1+$alpha[$i]*$nc[0])*(1+$beta[$i]*$nc[1])* 
   (1+$gamma[$i]*$nc[2])*$nodal_values[$nod_ids[$i]]; 
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 } 
 $val = ($val/8); 
 return $val; 
} 
 
sub place_in_bins_by_ID { 
 ### Bin IDs in x,y,z bins 
 ### returns Bins with Ids in them and Bin Information 
 ### 
($xbins,$ybins,$zbins,\@bin_centers,\@bin_xyz_maximums,\@bin_xyx_minimums,\@bins) = 
 ### place_in_bins_by_ID(\@centers,\@diameters,$mult); 
 ### 
 my $centers_ref = $_[0]; 
 my $diameters_ref = $_[1]; 
 my $mult = $_[2]; 
 my @centers = @$centers_ref; 
 my @diameters = @$diameters_ref; 
 my ($xbins,$ybins,$zbins,@bin_centers,@bin_xyz_maximums,@bin_xyx_minimums,@bins); 
 my $num_c = @centers; 
 my $num_d = @diameters; 
 die "ERROR: Number of Centers not equal to number of Diameters\n" if ($num_c != $num_d); 
 
 ## Seperate Centers 
 my @x = (); 
 my @y = (); 
 my @z = (); 
 for (my $i=1;$i<$num_c;++$i) { 
  my $point_ref = $centers[$i]; 
  my @point = @$point_ref; 
  $x[$i]=$point[0]; 
  $y[$i]=$point[1]; 
  $z[$i]=$point[2]; 
 } 
 ## Determine Bin Domain 
 my $pad = 1.2; 
 my $max_diameter = maxVAL(\@diameters); 
 my $max_x =  maxVAL(\@x); 
 $max_x = $max_x + $pad*$max_diameter; 
 my $max_y =  maxVAL(\@y); 
        $max_y = $max_y + $pad*$max_diameter; 
 my $max_z =  maxVAL(\@z); 
        $max_z = $max_z + $pad*$max_diameter; 
 my $min_x =  minVAL(\@x); 
        $min_x = $min_x - $pad*$max_diameter; 
        my $min_y =  minVAL(\@y); 
        $min_y = $min_y - $pad*$max_diameter; 
        my $min_z =  minVAL(\@z); 
        $min_z = $min_z - $pad*$max_diameter; 
 print "Bin Domain:\nMin X,Y,Z = $min_x, $min_y, $min_z\n"; 
 print "Max X,Y,Z = $max_x, $max_y, $max_z\n"; 
 ## Set Spacing 
 my $spacing = $mult*$max_diameter; 
 ## Get Bin Dimension Info 
 ## X 
 my @xmin_bin_info= (); 
 my @xmax_bin_info= (); 
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 my @xcenter_bin_info= (); 
 my $xmin_bin = $min_x; 
 my $xmax_bin = $min_x + $spacing; 
 while ($xmin_bin < $max_x) { 
  push(@xmin_bin_info,$xmin_bin); 
  push(@xmax_bin_info,$xmax_bin); 
  push(@xcenter_bin_info,($xmin_bin+($spacing/2))); 
  $xmin_bin = $xmin_bin + $spacing; 
  $xmax_bin = $xmin_bin + $spacing; 
 } 
 $xbins = @xmax_bin_info; 
 ## Y 
        my @ymin_bin_info= (); 
        my @ymax_bin_info= (); 
        my @ycenter_bin_info= (); 
        my $ymin_bin = $min_y; 
        my $ymax_bin = $min_y + $spacing; 
        while ($ymin_bin < $max_y) { 
                push(@ymin_bin_info,$ymin_bin); 
                push(@ymax_bin_info,$ymax_bin); 
                push(@ycenter_bin_info,($ymin_bin+($spacing/2))); 
                $ymin_bin = $ymin_bin + $spacing; 
                $ymax_bin = $ymin_bin + $spacing; 
        } 
        $ybins = @ymax_bin_info; 
 ## Z 
        my @zmin_bin_info= (); 
        my @zmax_bin_info= (); 
        my @zcenter_bin_info= (); 
        my $zmin_bin = $min_z; 
        my $zmax_bin = $min_z + $spacing; 
        while ($zmin_bin < $max_z) { 
                push(@zmin_bin_info,$zmin_bin); 
                push(@zmax_bin_info,$zmax_bin); 
                push(@zcenter_bin_info,($zmin_bin+($spacing/2))); 
                $zmin_bin = $zmin_bin + $spacing; 
                $zmax_bin = $zmin_bin + $spacing; 
        } 
        $zbins = @zmax_bin_info; 
 print "$xbins X bins, $ybins Y bins, $zbins z bins\n"; 
 ## Slice with X 
 print "Sorting in X\n"; 
 my @xslice = (); 
 for (my $i=0; $i<$xbins; ++$i) { 
  my @xIDS = (); 
         for (my $p=1;$p<$num_c;++$p) { 
   my $rad = $diameters[$p]/2; 
   my $pmax = $x[$p] + $rad; 
   my $pmin = $x[$p] - $rad; 
   if ($pmax <= $xmax_bin_info[$i] && $pmin >= $xmin_bin_info[$i]) { 
    push(@xIDS,$p); 
   } 
  } 
  push(@xslice,\@xIDS); 
 } 
 ## Slice with Y 
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 print "Sorting in Y\n"; 
 my @yslice = (); 
 for (my $i=0; $i<$xbins; ++$i) { 
  my $IDS_ref = $xslice[$i]; 
  my @IDS = @$IDS_ref; 
  my @yIDS = (); 
  for (my $j=0; $j<$ybins; ++$j) { 
   foreach my $p (@IDS) { 
    my $rad = $diameters[$p]/2; 
                         my $pmax = $y[$p] + $rad; 
                         my $pmin = $y[$p] - $rad; 
                         if ($pmax <= $ymax_bin_info[$i] && $pmin >= $ymin_bin_info[$i]) { 
     push(@yIDS,$p); 
    } 
   } 
   $yslice[$i][$j] = \@yIDS; 
  } 
 }  
 ## Slice with Z  
 print "Sorting in Z\n"; 
 for (my $i=0; $i<$xbins; ++$i) { 
  for (my $j=0; $j<$ybins; ++$j) { 
   my $IDS_ref = $yslice[$i][$j]; 
   my @IDS = @$IDS_ref; 
   my @zIDS = (); 
   for (my $k=0; $k<$zbins; ++$k) { 
    foreach my $p (@IDS) { 
     my $rad = $diameters[$p]/2; 
                                 my $pmax = $z[$p] + $rad; 
                                 my $pmin = $z[$p] - $rad; 
                                 if ($pmax <= $zmax_bin_info[$i] && $pmin >= $zmin_bin_info[$i]) { 
                                         push(@zIDS,$p); 
                                 } 
                         } 
    my @bincenter = ($xmin_bin_info[$i]+$spacing, 
     $ymin_bin_info[$j]+$spacing,$zmin_bin_info[$k]+$spacing); 
    my @bin_maxs = 
($xmax_bin_info[$i],$ymax_bin_info[$j],$zmax_bin_info[$k]); 
    my @bin_mins = 
($xmin_bin_info[$i],$ymin_bin_info[$j],$zmin_bin_info[$k]); 
    $bins[$i][$j][$k] = \@zIDS; 
    $bin_centers[$i][$j][$k] = \@bincenter; 
    $bin_xyz_maximums[$i][$j][$k] = \@bin_maxs; 
    $bin_xyx_minimums[$i][$j][$k] = \@bin_mins; 
   } 
  } 
 } 
 ## Return Results 
 return 
($xbins,$ybins,$zbins,\@bin_centers,\@bin_xyz_maximums,\@bin_xyx_minimums,\@bins); 
} 
   
  
1; 
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