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Our overarching goal is to develop novel technologies to elucidate molecular 

mechanisms of the innate immune response in host cells to pathogens such as bacteria 

and viruses including the mechanisms used by pathogens to subvert/suppress/obfuscate 

the immune response to cause their harmful effects. 

Innate immunity is our first line of defense against a pathogenic bacteria or virus. 

A comprehensive “system-level” understanding of innate immunity pathways such as 
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OVERVIEW 
 

 



 

toll-like receptor (TLR) pathways is the key to deciphering mechanisms of pathogenesis 

and can lead to improvements in early diagnosis or developing improved therapeutics. 

Current methods for studying signaling focus on measurements of a limited number of 

components in a pathway and hence, fail to provide a systems-level understanding. 

We have developed a systems biology approach to decipher TLR4 pathways in 

macrophage cell lines in response to exposure to pathogenic bacteria and their 

lipopolysaccharide (LPS). Our approach integrates biological reagents, a microfluidic cell 

handling and analysis platform, high-resolution imaging and computational modeling to 

provide spatially- and temporally-resolved measurement of TLR-network components. 

The int

00 single cells can be trapped and monitored for hours, enabling 

detailed

ormed flow cytomteric assays in the PhosphoChip module.  

, ERK and RelA were measured in macrophage cells 

egrated microfluidic platform is capable of imaging single cells to obtain dynamic 

translocation data as well as high-throughput acquisition of quantitative protein 

expression and phosphorylation information of selected cell populations. The platform 

consists of multiple modules such as single-cell array, cell sorter, and phosphoflow chip 

to provide confocal imaging, cell sorting, flow cytomtery and phosphorylation assays.  

The single-cell array module contains fluidic constrictions designed to trap and hold 

single host cells. Up to 1

 statistically-significant measurements.  The module was used to analyze 

translocation behavior of transcription factor NF-kB in macrophages upon activation by 

E. coli and Y. pestis LPS. The chip revealed an oscillation pattern in translocation of NF-

kB indicating the presence of a negative feedback loop involving IKK. Activation of NF-

kB is preceded by phosphorylation of many kinases and to correlate the kinase activity 

with translocation, we perf

Phopshorylated forms of p38
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challenged with LPS and showed a dynamic response where phosphorylation increases 

with time reaching a maximum at ~30-60min. To allow further downstream analysis on 

rmation. 

urthermore, our 

ution imaging with 

ct have been presented at numerous national and 

dapted from other 

selected cells, we also implemented an optical-trapping based sorting of cells. This has 

allowed us to sort macrophages infected with bacteria from uninfected cells with the goal 

of obtaining data only on the infected (the desired) population. The various microfluidic 

chip modules and the accessories required to operate them such as pumps, heaters, 

electronic control and optical detectors are being assembled in a bench-top, semi-

automated device. The data generated is being utilized to refine existing TLR pathway 

model by adding kinetic rate constants and concentration info

The microfluidic platform allows high-resolution imaging as well as quantitative 

proteomic measurements with high sensitivity (<pM) and time-resolution (~15 s) in the 

same population of cells, a feat not achievable by current techniques. F

systems approach combining the microfluidic platform and high-resol

the associated computational models and biological reagents will significantly improve 

our ability to study cell-signaling involved in host-pathogen interactions and other 

diseases such as cancer. 

The advances made in this proje

international conferences and are documented in many peer-reviewed publications as 

listed below. Finer details of many of the component technologies are described in these 

publications. The chapters to follow in this report are also a

manuscripts that are accepted for publication, submitted or in preparation to be submitted 

to peer-reviewed journals.  

MISL- List of Publications:  

 5



 

nature Molecular 
Descriptor.” Bioinformatics 24 (2008): 225-33. 

2. Gray, G.A., Williams, P.J., Brown, W.M, Faulon, J-L., Sale K.L. “Disparate Data 
Fusion for Protein Phosphorylation Prediction.” Annals of Operations Research 
Special Volume on Data Mining, in press, 2008. 

3. Hatch A. V., AE Herr, DJ Throckmorton, JS Brennan, and AK Singh. "Integrated 
Preconcentration SDS-PAGE of Proteins in Microchips Using Photopatterned 
Cross-Linked Polyacrylamide Gels." Analytical Chemistry, 2006, 78(14), 4976 – 
4984 

4. James, C.D., Reuel, N., Lee, E.S., Davalos, R.V., Mani, S.S., Carroll-Portillo, A., 
., Martino, A., Apblett, C. “Impedimetric and Optical Interrogation of 
ells in a Microfluidic Device for Real-Time Viability and Chemical 

Response Assessment.” Biosensors and Bioelectronics

Rebeil, R
Single C

 23 (2008): 845-861. 
impt , S., Martin, S., Sw r, L., Slepoy, A., Faulon, J-L. “Sensitivity 

ion 
5. Joo, J., Pl on ile

Analysis of Computational Model of the NF-κB-IκB-A20 Signal Transduct
Network.” Ann N Y Acad Sci. 1115 (2007): 221-39. 

6. Martin, S., Zhang, Z., Martino, A. Faulon, J-L. “Boolean Dynamics of Genet
Regulatory Networks Inferred From Microarray Time Series D

ic 
ata.” 

Bioinformatics 23 (2007): 866-74. 
7. Perroud, T.D.; .Kaiser, J.N.; Sy, J.C ; Lane, T.W.; Branda, C.S.; Singh, A.K.; 

Infected 
hemistry

Patel, K.D. “Microfluidic-Based Cell Sorting of Francisella tularensis 
Macrophages using Optical Forces.” Analytical C , 2008. 

8. Sinclair, M.B, Haaland, D.M., Timlin, J.A., Jones, H.D.T. “Hyperspectr
Confocal Microscope.” 

al 
Applied Optics 45, (2006) 6283-6291. 

9. Van Benthem, M.H.  D, Keenan, M.R., avis, R., Liu, P., Jones, H.D.T., Haaland, 
 

croscope.” Journal of Chemometrics
D.M., Sinclair, M.B., Brasier, A.R. “Trilinear Analysis Of Images Obtained With
A Hyperspectral Imaging Confocal Mi , 2008. 

10. Van Benthem, M.H., Keenan, M.R. “Tucker1 Model Algorithms For Fast 
Solutions To Large Parafac Problems.” Journal of Chemometrics, 2008. 

11. Perroud, T.D.; Renzi, R.; Singh, A.K.; Patel, K.D Overlapping Wet Etch Fronts 
for 3D Hydrodynamic Focusing, Particle Concentration, and Trapping Single 
Cells, Lab Chip, 2009, in press. 

12. Jones, H.D.T., Haaland, D.M., Sinclair, M.B., Melgaard, D.K., Van Benthem, 
M.H., Pedroso, M.C. “Weighting Hyperspectral Image Data for Improved 
Multivariate Curve Resolution Results.” Journal of Chemometrics, January 2008. 

13. Patrick J. Cutler, David M. Haaland, Erik Andries, and Paul J. Gemperline, 
"Methods for Kinetic Modeling of Temporally Resolved Hyperspectral Confocal 
Fluorescence Images," Applied Spectroscopy, 2009, in press. 

14. Patrick J. Cutler, David M. Haaland, and Paul J. Gemperline, “Systematic Method 
for the Kinetic Modeling of Temporally-Resolved Hyperspectral Microscope 
Images of Fluorescently Labeled Cells,” Applied Spectroscopy, 2009, in press. 

15. David M. Haaland, Howland D. T. Jones, Mark H. Van Benthem, Michael B. 
Sinclair, David K. Melgaard, Christopher L. Stork, Maria C. Pedroso, Ping Liu, 
Allan R. Brasier, Nicholas L. Andrews, and Diane S. Lidke, “Hyperspectral 

 6



 

Confocal Fluorescence ternative Multivariate Curve 
Resolution Approaches,” 09, in press. 

 

  

Contents 

8 
y for Live Imaging of Host-Pathogen Interaction 10 

3.  Microfluidically-unified cell challenge, preparation and flow cytometry allows 
utomated phosphoprofiling of macrophage response to lipopolysaccharide 37 

70 

computational model and single cell experiment  98 

127 

165 
 

 

Imaging: Exploring Al
 Applied Spectroscopy, 20

. 

 

 

 
1.  Introduction    
2.  Microfluidic Single-Cell Arra

a
4. Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages 
using Optical Forces   
5. Dosage-dependent heterogeneous NF-kB response to LPS stimulation: 

6. Novel statistical ensemble analysis for simulating heterogeneous response in 
NF-kB signaling network   
7. Different lipopolysaccharide chemotypes provoke a common Toll-like receptor 
4 mediated response to different degrees   

             42 

 

 7



 

1.  Introduction  
 
While considerable progress has been made towards understanding signaling pathways of the 

innate immune system, as toll-like receptor (TLR) signaling (Comelis, 2002), serious gaps exist 

in our knowledge. (Janssens and Beyaert, 2003; Comelis et al., 1998) For example, the 

interconnections between pathways, the interactions between proteins, and the modifications to 

proteins that occur during signaling are incompletely understood. Moreover, the existing 

signaling pathway models lack both 

 

quantitative and kinetic information. Furthermore, existing 

techniques do not provide detailed spatial information (e.g., localization) regarding the signaling 

events inside a cell.   

To develop a molecular- and cellular-level understanding of the innate immune system, protein 

concentrations and reaction kinetics of pathway activation must be quantified at the single-cell 

level. Cells in a population do not all have the same initial physiological state or degree of 

infection.(McAdams, Arkin, PNAS, 1997; Swain et al., PNAS, 2002; Blake et al. Nature 2003).   

Consequently, measurement of the cellular signaling pathway is not accurately represented from 

data averaged over a population of cells.(Irish et al., Cell 2004; Irish et al., Nat Rev Cancer, 

2006) Further compounding the challenge are feedback characteristics (primary vs. secondary 

signaling) inherent to the innate immune system, which can be lost in population-averaged 

measurements.(e.g., Paszek et al., J Theor Biol. 2005). Thus, to construct a cellular-level 

understanding of the innate immune response, an ensemble of responses – measured at the level 

of the individual cells – is required. (Lipniacki et al., Biophys J, 2006)   

 

Our approach aims to tease apart the response of the TLR4 signaling pathway by quantifying this 

signaling network in macrophage and epithelial cells challenged with lipopolysaccharide (LPS) 

and pathogenic bacteria.  Through development of a high-throughput measurement and analysis 
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instr we 

will obtain temporal, spatial, and cell-state information comprising the basis of the innate immune 

system.  Specifically, th ements of single cells, 

i  

integrating data generated through bench top l experimentation and information acquired 

 of the nascent microengineered platform with predictive models.  In short, we 

the TLR pathway. 

 

ument capable of measuring protein concentrations, states, and interactions in host cells, 

e instrument design enables multiplexed measur

individually or as part of a population, under well-controlled conditions – something nearly 

mpossible with current bench top technologies.   Validation of the system is achieved by

 biologica

through use

propose to develop an integrated high-throughput experimental and computational approach 

that provides “system-level” quantitative spatio-temporal data with single-cell resolution for 
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2. Microfluidic Single-Cell Array for Live Imaging of 

Host-Pathogen Interactions 

Catherine S. Branda, Bryan Carson, Roberto Rebeil, Anthony Martino, Anup K. 

Singh  

construct to the transcription factor subunit RelA (GFP-RelA). This work presents the 

Conrad D. James, Matthew W. Moorman, Ronald P. Manginell, Jeffrey W. Lantz, 

Abstract: 
 
We have developed a microfluidic single cell array (SCA) device that provides host cell 

immobilization and long-term high-resolution imaging to monitor toll-like receptor 

(TLR) signaling pathways involved in host-pathogen interactions.  The device contains 

fluidic constrictions designed to trap and hold single host cells and to minimize the 

pressure gradient across trapped cells. Up to 100 single cells can be trapped and 

monitored for hours, enabling detailed statistically-significant measurements on immune 

response in host cells. The device contains the key advantage of fluidic isolation of single 

host cells by preventing direct contact between cells and eliminating interactions with 

substances secreted by neighboring cells. This provides the capability to differentiate 

between primary and secondary signaling in innate immune response. Here, we examine 

the cell trapping and fluidic isolation capabilities of the device through computational 

simulations and experimental verification. In addition, we have quantitatively measured 

the effect of lipopolysaccharide (LPS) and live pathogenic bacteria on activation of the 

TLR4 pathway in the RAW264.7 murine macrophage-like cell line. This was achieved by 

activating RAW264.7 cells with the pathogen challenge and monitoring the subsequent 

cytoplasm-to-nucleus translocation kinetics of a green fluorescent protein fusion 
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first demonstration of single host-cell infection on a microfluidic platform with live 

imaging of the infection sequence and early immune signaling events.  

 

Keywords: macrophage, immune response, microfluidics, single cell analysis, TLR4 

 

Introduction 

 

 The innate immune system represents our first line of defense against microbial 

pathogens.  In this system, sentry cells such as macrophages detect pathogen-associated 

molecular patterns (PAMPs) using single-pass integral membrane proteins called Toll-

like receptors (TLRs) [1].  Macrophages express at least ten different TLRs, each 

recognizing a particular PAMP; for instance, TLR4 is a cell-surface receptor that 

specifically recognizes lipopolysaccharide (LPS) components of the bacterial cell 

envelope [Fig. 1a].  Activation of a TLR sets in motion a signal transduction cascade that 

ultimately regulates the activity of transcription factors such as NFB, which in turn 

regulate production of effector proteins such as pro-inflammatory enzymes and secreted 

signaling molecules such as cytokines. Specifically, NFkB, which is a heterodimer of the 

proteins RelA and p50, translocates from the cytoplasm to the nucleus during host cell 

activation [2]. This sequence of events constitutes the TLR network's “primary” response 

to the PAMP.  Follow-on “secondary” responses are induced through two different 

mechanisms:  1) intracellular feedback loops, whereby proteins up-regulated during the 

primary response act directly on the TLR network; and 2) extracellular signaling, 

whereby proteins (such as cytokines) secreted by the host cell during the primary 
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response activate receptor-mediated signaling pathways that cross-talk with the TLR 

network.  Summation of these responses is thought to largely determine the macrophage's 

initial reaction to a pathogen.  Indeed, TLR networks are specifically targeted for 

subversion by F. tularensis and Y. pestis, pathogens which successfully escape being 

killed by the macrophage. 

 Due to its central importance in combating these and other pathogens, the TLR4 

networ

ct a cellular-level understanding of the innate 

mune response, an ensemble of responses – measured at the level of the individual 

Several interrogation techniques have been implemented in microfluidic systems 

in orde le living cells over time, including impedance 

spectroscopy [14, 15], electrochemical detection [16], and optical microscopy [17, 18]. 

Recently, microfluidics technology has been extended to study host-pathogen interactions 

k has been intensively studied in recent years.  Many of the protein components of 

the networks have been identified, but our current understanding of whole-network 

behavior is still lacking, especially at the level of single cell responses. Current analyses 

with conventional techniques such as microarrays, ELISAs, and westerns are all 

performed at the population level. This presents significant challenges to interpreting 

measured responses for several reasons. First, cells in a population do not all reside in the 

same initial physiological state or degree of infection [3-5], consequently, measurement 

of the cellular signaling pathway is not accurately represented from data averaged over a 

population of cells [6-11]. Second, feedback characteristics (primary vs. secondary 

signaling) inherent to the innate immune system can be lost in population-averaged 

measurements [12]. Thus, to constru

im

cells – is required [13].  

r to monitor dynamic changes in sing
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[19 In

n 

].  addition, microfluidic systems have been developed to assess the response of 

osteoblasts to secreted factors from stimulated macrophages [20], and to measure changes 

in gene transcription in HeLa cells after cytokine exposure [21]. However, all of these 

studies have utilized host cells that are pooled into common chambers where cells are in 

direct contact with or within the near vicinity of other cells. Thus, it is difficult to 

determine the role of primary vs. secondary signaling in the host cell response.  

We report here a single cell array (SCA) microfluidic chip for holding single host 

cells in pre-defined locations for long-term live-cell imaging of host-pathogen 

interactions. Host cells are prevented from having direct contact with other host cells, and 

the microfluidic architecture of the chip design prevents chemical communication 

between host cells through diffusible secreted substances. These features enable novel 

experiments to be performed in which the effects of such cell-cell interactions can be 

examined.  The device was demonstrated with RAW264.7 macrophage-like cells 

challenged with live E. coli bacteria or LPS purified from E. coli bacteria.  Host cell 

activation was measured quantitatively with a GFP-RelA fusion construct through 

optically monitoring the translocation of RelA from the cytoplasm to the nucleus upon 

pathogen-induced activation of NFB. 

 

Materials and methods 

 

Host cell and pathogen preparatio
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 RAW264.7 murine macrophage-like cells were prepared to express a GFP 

construct to visualize translocation of RelA from the cytoplasm to the nucleus. The 

pActin-EGFP-RelA construct was derived from pECFP-F-RelA, a kind gift from Dr. 

Allan Brasier (University of Texas Medical Branch).  ECFP was replaced with EGFP 

between the Age1 and BsrG1 sites, and the cytomegalovirus (CMV) promoter was 

replaced with a minimal 106bp human Actin promoter [22] cloned between the Ase1 

and Nhe1 sites to reduce the average expression below toxic levels.  The plasmid pBA-

GFP-R

50-80% confluence using a non-enzymatic cell dissociation reagent 

(CellStripper, Mediatech), and >95% viability was verified by Trypan blue staining.  

Harves ended at 5-10x105 cells/ml in complete pre-equilibrated 

(37°C, 5% CO2 in air, >30min) medium containing 250ng/ml propidium iodide (PI, 

elA was linearized with AflII (New England Biolabs) and used to transfect 

RAW264.7 murine macrophage-like cells (ATCC) by Nucleofection (Amaxa 

Biosystems).  Transfected cells were grown for 12 days in the presence of 800 ug/ml 

G418, and a clone stably expressing GFP-RelA was isolated.  For subsequent 

experiments, cells were grown on untreated polystyrene dishes in DMEM supplemented 

with 10% fetal bovine serum (ATCC), 2mM L-glutamine, 1mM sodium pyruvate, 1x 

MEM nonessential amino acids, 20mM HEPES, 100 I.U./ml penicillin, and 100µg/ml 

streptomycin (all supplements from Mediatech) at 37°C with 5% CO2.  Cells were 

harvested at 

ted cells were resusp

Calbiochem) and 2ug/ml Hoechst 33258 (Molecular Probes) dyes for live/dead cell and 

cell nucleus visualization, respectively. 

Immune response experiments on RAW264.7 cells were conducted by preparing 

E. coli LPS (Sigma Aldrich) in pre-equilibrated medium at different concentrations (1, 
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100, and 1000 nM). The first panel of Figure 1b shows a quiescent population of 

RAW264.7 cells grown on a coverslip with GFP-RelA concentrated within the 

cytoplasm. The second panel shows a different field of view on the same coverslip fifteen 

minutes after continuous incubation with 1 M E. coli LPS. By this time, the GFP-RelA 

has translocated into the nucleus. Here, we see that direct contact and diffusion of 

chemical substances between cells is difficult to eliminate using conventional 

experiments on coverslips.  

Immune response experiments with live bacteria were also performed. TOP10 E. 

coli (Invitrogen) were transformed with pAsRed2 (Clontech) and grown to stationary 

phase in LB with 100ug/ml ampicillin.  Prior to use, fresh cultures were started at 0.05 

OD600 in DMEM-10 mammalian cell culture medium without penicillin or streptomycin 

but with 100ug/ml ampicillin.  Cells were grown to mid log phase (0.4-0.8 OD600), 

pelleted at 2000xg for 10min, then resuspended in fresh DMEM-10 immediately prior to 

the experiment. After RAW264.7 cells were challenged with E. coli, GFP-RelA 

translocated from the cytoplasm to the nucleus in similar fashion to the purified LPS 

experiments. 

 

SCA Device Design  

 

 The single cell array chip is designed to capture multiple single cells in predefined 

locations for high-resolution imaging of host cell immune response to stimulants. The 

SCA architecture provides the ability to physically isolate single cells from direct contact 

with other cells, and to fluidically isolate cells from diffusible substances secreted by 
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other cells. Figure 2 shows the layout of the SCA chip. The chip contains two separate 

inlet channels with 200 m diameter inlet/outlet ports. Channels are initially 100 m 

ide and neck down to 0 m wide prior to the cell imaging regions. Both channels feed 

to a co  other side of the chip. The inlets and outlet were spaced to 

accomm e Nanoport fittings (Upchurch Scientific, Oak Harbor, WA). The multiple 

ima n

s trap 

esign has a constriction length of 5 m that will reduce the probability of cells extruding 

rough the trap into the outlet channel. This trap design will also reduce the number of 

 in traps due to the minimized length of the trap inlet. However, 

reamlines will flow easily from one trap to the next, thus compromising the fluidic 

isolatio me of a single imaging chamber is ~40 nL for a 52 

w

mmon outlet on the

odat

gi g chambers enable two experiments to be performed simultaneously. Fig. 2b 

shows the initial section of the cell trapping regions in both channels. The inlet channels 

deliver cells into a set of 50-150 triangular traps. In this design, the trap inlet is initially 

150 m at the top and over the 110 m trap length, the trap width narrows down to a 

point constriction of 3-5 m at the bottom to prevent cells from passing through the trap. 

The long trap length provides a degree of fluidic isolation for each trap, meaning that 

some portion of fluid streamlines that enter one trap exit through the trap constriction and 

are not carried to another trap. This is an important feature for investigating primary vs. 

secondary signaling and will be discussed in more detail in the following flow simulation 

section. Traps in the device are arranged in parallel between the inlet and outlet, and 

under pressure from the inlets, cells are forced into the trap constrictions. Fig. 2c shows a 

scanning electron micrograph of an alternative trap design with hemispherical structures 

to hold single cells. As opposed to the point constriction in the triangular traps, thi

d

th

extraneous cells not held

st

n between traps. The total volu
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trap device, thus enabling rapid exchange of medium within the device during 

experim

 and outlet. After 

processing, wafers were then treated with an O2 plasma to remove resist and sonicated in 

acetone. Wafe e in preparation for anodic bonding. 

No. 1.5 pyrex coverslips (Esco Products) were then bonded to silicon chips using a 

custom

ents. 

 

Device fabrication 

 

 SCA chips were fabricated using standard microfabrication techniques, starting 

with 6 inch 450 m thick double polished silicon wafers. A 30 micron deep front-side 

silicon etch was performed to define the device channels and trap structures. A through-

wafer backside etch was performed to define the device inlets

rs were then sawed into individual di

-made anodic bonder system (15 minutes, 350 C, 8 N of pressure, 1.2 kV). After 

bonding, commercial microfluidic nanoport fittings were adhered to the chip inlets and 

outlet. SCA chips were imaged with an IX70 Olympus microscope using fluorescein, 

DAPI, and rhodamine filters, and images were taken with an Olympus DP70 CCD 

camera. Cells with dim GFP signals in the cytoplasm and strong PI signals in the nucleus 

were excluded from analysis. Images were analyzed with custom scripts in Matlab. 

 

 

Results and discussion 

 

Flow simulations in the SCA 
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To analyze cell delivery and fluidic isolation of cells, simulations of the fluid flow 

in the SCA chip were performed with commercial code from Computational Fluid 

Dynamics Research Corporation (CFD ACE 2007.2.23).  Simulations were performed in 

two dimensions with a mesh density of 5-10 m between nodes near the outer walls of 

the inlet and outlet channels, and ~1.5 m between nodes within the trap regions. 

Conditions we th inlet flowrates set to 20uL/min, 1uL/min, 

250nL/min, and 10nL/min. Outlets were set to atmospheric pressure, and device designs 

with he

re set to room temperature wi

mispherical and triangular trap designs were both simulated. 

  

Pressure and fluid flow in cell traps  

 

Fig. 3a shows a simulation of a 52 trap device with a set flowrate of 10 nl/min. 

The fluid velocity magnitude, |v|, is shown for traps 1, 26, and 52. Fig. 3b shows the 

velocity and pressure profiles down the center of these three traps starting at the trap inlet 

(y = 0) and proceeding to the trap constriction (y = 110 m). Due to the large number of 

traps, the pressure gradient across each individual trap is small (< 6 mPa). Traps near the 

beginning of the device have substantial flow near the trap inlet, with flow dropping off 

in the center of the trap inlet until it increases again near the constriction. Traps in the 

middle of the device have flowrates that drop slowly as the constriction is approached. 

The last traps have low velocities at the beginning of the trap inlet which steadily 

increase as the trap constriction is approached. The differences in the flow and pressure 

profiles will lead to variations in cell trapping depending on the location within the 
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device. Cells delivered to traps within the center of the device will have an increased 

probability of settling at the constrictions due to the lower flow velocities, whereas cells 

in traps

cell located below Di in the traps, fluid will flow past the 

cell, ca

 at either ends of the device will have a greater probability of extruding through 

the constrictions to the chip outlet. This general trend has been confirmed in cell trapping 

experiments. 

 

Fluidic isolation in cell traps 

 

Streamlines were traced in the device simulations to assess flow between traps for 

fluidic isolation. Fig. 4a-b shows a simulation of fluid streamlines in the device in trap 1 

and 26 with the flowrate set to 10 nl/min. The trap depth, D, is the length of the triangular 

obstruction from the channel inlet to the trap constriction. Each trap has a depth of 

isolation, Di, defined as the distance between the trap constriction and a primary flow 

split that is closest to the constriction. For cells located above Di in the traps, secretions 

from an activated cell will be carried to the rest of the traps in the chip. The distribution 

of the secretion throughout the rest of the chip will be determined by diffusion between 

streamlines. However, for a 

rrying secretions to the chip outlet and preventing them from reaching other traps 

in the device. This fluidic isolation scheme requires the Peclet number in the system, Pe = 

Lv/D (where L is the length scale in the system, v is the flow velocity, and D is the 

diffusion constant of the secretion) to be >> 1, meaning that convective flow dominates 

the diffusion of the secretions. Secretions such as cytokines have a molecular weight 

between ~5-50 kDa, with estimated diffusion constants on the order of 10-10 – 10-11 m2/s 
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[23]. Thus with L ~ v ~ 10-5, the Peclet number is ~ 1-10. A Pe >> 1 can be ensured by 

increasing the flowrate through the device after cells have attached to the device. 

Another consideration is that the presence of the cell in the device must not 

disrupt flow substantially. Cells adhered to one surface of the device will minimally 

impact the flow streamlines, while cells attached to both sidewalls in trap constrictions 

may disrupt flow more substantially. However, given the diameter of the cells (~10 m) 

and the height of the trap constriction (30 m), we still expect the flow to be minimally 

impacted by cells trapped in the constrictions.  

Fig. 4a shows that trap 1 has a primary flow split near the center of D, with flow 

bove Di returning back to the inlet channel and on to the next trap, and flow below Di 

exiting . 4b), Di is much closer to the trap 

onstriction. A secondary flow split (red arrow) that is closer to the inlet channel is noted 

in trap 26 with an associated eddy current on the other side of the trap channel. This 

secondary flow split emerges in trap 14 and then disappears after trap 36. Since our 

obj tiv

a

 through the trap constriction. For trap 26 (Fig

c

ec e is to prevent the diffusion of cell secretions into streamlines that leave the trap 

and flow to other traps, the true isolation depth remains located at the primary split 

nearest the trap constriction. 

A plot of the fraction Di/D is shown for each trap in Fig. 4c. A minimum Di of 

~20 m occurs in the center of the device, with larger Di in the beginning and end of the 

device. The dashed line in Fig. 4c indicates the position of the secondary flow splits that 

exist only in traps 14-36. Experimental assessment of the flow in the SCA was performed 

by injecting fluorescently labeled E. coli bacteria into the device after RAW cells were 

trapped. Estimates for Di were made by examining the lowest depth reached in four traps 
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(#1, 2, 26, and 51) by bacteria that were then carried back up out of the trap and on to the 

next trap. The lowest depth reached by six bacteria in each of the four traps was averaged 

to estimate Di. Experimentally observed Di agreed well with flow simulations at the 

beginning of the device, even with RAW cells captured in some of the trap constrictions. 

The experimental estimate for Di/D at trap #26 more closely matches the secondary flow 

split position, while the largest deviation between the simulation and experimental 

assessment occurred with trap #51. This trend of an increasing divergence between the 

simulated and actual flow could be due to the cumulative effect of having trap 

constrictions partially blocked by trapped RAW cells. 

 

Live cell imaging during pathogen challenges 

 

Host cell capture in the SCA 

 

 

ruments). Syringes were connected and fluid was delivered to the 

Cell trapping experiments in the single cell array chips were performed with 

RAW cells containing the GFP-RelA construct in order to visualize the translocation of 

RelA from the cytoplasm to the nucleus following immune stimulation. Devices were 

connected to 1/32 PEEK tubing and placed on an inverted fluorescence microscope for 

live imaging. Chips were heated using a custom-made heating stage and a temperature 

controller (Warner Inst

chip using a syringe pump (Harvard Apparatus). SCA devices were first purged with 

endotoxin-free water, followed by degassed cell growth media to passivate the chip 

surfaces. Immediately prior to injection into the SCA, the cell suspension was passed 
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through a 40µm nylon mesh filter and loaded into a 3ml syringe containing two 3mm 

glass beads.  The syringe was kept rocking at room temperature during infusion at 10-

1000 nl/min until a sufficient number of cells was captured in the imaging chamber. After 

the capture procedure is complete, cells are incubated with a constant flow of growth 

media for 30 minutes to ensure RelA translocation does not occur absent the pathogen 

challenge. Fluorescence images of the GFP-RelA signal and the nuclear signal were 

taken to verify that the GFP-RelA is primarily located in the cytoplasm prior to 

stimulation. RelA activation can occur due to LPS environmental contamination, and has 

also been shown to occur due to shear stress in a fluidic environment [24]. None of the 

experimental data documented here contained translocated cells prior to pathogen 

challenge. After cell capture, the PI signal was also monitored to differentiate between 

living and dead cells. Background fluorescence from the cell growth media was used as a 

al-time indicator of continuous fluid flow in the device in that portions of the chip 

where flow wa nce due to photobleaching.   

 Figure  shows the fluorescence images of the GFP-RelA and nucleus signals in 

re

s obstructed had dimmed background fluoresce

5a

a single RAW cell captured in a triangular trap constriction. Lineplots of the signal 

intensities in Fig. 5b show that the peaks for the GFP-RelA signal and the nucleus are 

anti-coincident, indicating that the GFP-RelA is located primarily in the cytoplasm. The 

minimal PI signal, and specifically the lack of a PI-rich nucleus, indicates that this 

particular cell is alive. 

 We examined the ability to capture single cells in traps using both the triangular 

and hemispherical trap designs. The hemispherical trap design was used in five separate 

experiments, and the triangular trap design was used in four separate experiments. A total 
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of 300 cells (hemispherical devices) and 318 cells (triangular devices) were examined. In 

this data-set, a total of 150 traps were examined in the pooled data for the hemispherical 

design experiments, and 75 traps were examined in the triangular design experiments. 

Figure 5c shows the fraction of cells that are single cells in traps (s), multiple cells in 

traps (m), and cells located in the inlet channel of the imaging chamber (i). Nearly 30% 

of all cells in the hemispherical devices were single cells in traps, while only ~11% of 

cells in the triangular devices were single cells in traps. The hemispherical design also 

yields more cell aggregates in traps and less cells adhered to the inlet channel of the 

imaging chamber. The triangular design had a smaller percentage of aggregates in traps, 

but a much larger percentage of cells in the inlet channel. Currently, modified trap 

designs are being developed to optimize single cell capture and minimize cell attachment 

in the upstream inlet channel while maintaining fluidic isolation of trapped cells. 

 

GFP-RelA translocation after LPS challenge 

 

 For LPS challenge experiments, cells are trapped in the SCA and then incubated 

ith normal growth media for 30 minutes prior to LPS introduction. LPS in gas- and 

temperature-eq ctions are broken at 

e upchurch fittings in order to minimize the transit time of LPS to the cell imaging 

hambe

w

uilibrated growth media is then injected. Fluidic conne

th

c rs. Images of the RelA signal in trapped cells were taken rapidly in sequence 

throughout the entire device, with repeated imaging every 5 minutes. Fig. 6 shows an 

experiment in which a single isolated RAW cell is located in the last trap of an SCA 

device. The image in Fig. 6a was taken immediately after the 30 minute pre-incubation 
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period, with a close-up image shown in Fig. 6b.  Twelve minutes later, 1 M E. coli LPS 

was injected into the device at a flowrate of 20 nl/min. Approximately seven minutes 

after the LPS was injected, the RelA begins to translocate into the nucleus (Fig. 6c). This 

stage in the translocation process is characterized by a bright GFP-RelA signal 

throughout the entire cell with no distinct nucleus. Within a minute, translocation of RelA 

into the nucleus is complete as characterized by the annular shape of the GFP-RelA 

signal in the nucleus (Fig. 6d). Figure 6e shows intensity lineplots of the GFP-RelA 

signal at the time-points shown in Fig. 6b-d. The mean ratio of GFP fluorescence in the 

nucleus and cytoplasm is shown in Fig. 6f as a function of time. The fluorescence was 

averaged over 20 locations in the nucleus and cytoplasm at each time-point. This 

particular cell was monitored over the course of a total of two hours, and the GFP-RelA 

location and distribution within the cell remained stable after the initial translocation 

event ~20 minutes into the experiment. The mean translocation time of single cells in 

traps (n = 4) and multiple cells in traps (2 or 3 cells, n = 11) was 13.3 ± 3.9 and 14.9 ± 2.2 

min, respectively. ANOVA analysis shows the two means are not significantly different 

(p value = 0.3). 

 

GFP-RelA translocation after live bacteria challenge 

 

 A purified LPS challenge simplifies the analysis of early immune response since 

LPS-induced stimulation is initially confined to the TLR4 signaling network [25]. 

Challenges with live bacteria are more difficult to analyze due to the fact that multiple 

intersecting cell signaling pathways can be stimulated [26, 27]. However, we are 

 24



 

interested in comparing the immune response produced by purified LPS and live bacteria, 

specifically in regard to GFP-RelA translocation. Figure 7 follows the infection of a 

single RAW cell in a live E. coli bacteria challenge experiment. RAW cells were initially 

ptured and held for 30 minutes in a hemispherical trap device before bacteria 

media were flowed into the device. Within a few minutes after injection, 

acteria could be visualized interacting and becoming immobilized adjacent to captured 

AW c

ca

suspended in 

b

R ells. The bacteria were delivered continuously to the cells over the course of the 

next two hours. The peaks in the nucleus and GFP-RelA signals (inset) in the captured 

cell in Fig. 7b are offset, indicating that the GFP-RelA is initially located in the 

cytoplasm. Over the next 20 minutes, the GFP-RelA signal becomes flat as the RelA 

begins moving into the nucleus (Fig. 7c). At 37 minutes after the injection of bacteria, the 

peaks of the nucleus and GFP-RelA signals are now coincident indicating GFP-RelA 

translocation is complete (Fig. 7d). The histogram in Fig. 7e shows the number of 

translocated cells (Nt) out of a total of N0 cells as a function of time. This data is pooled 

from two separate E. coli challenge experiments with the same experimental conditions. 

In this experiment, approximately 40% of the total number of RAW cells (N0 = 59) 

underwent GFP-RelA translocation during the two hour duration of the experiment. The 

mean time of translocation for the live E. coli challenge experiments was 23.2 ± 9.4 min. 

The large spread in translocation times for the bacterial challenge is partly due to the 

uneven distribution of E. coli bacteria in the device, resulting in some cells interacting 

with multiple E. coli bacteria and some interacting with none. Also, some RAW cells 

were observed to contain fragments of red fluorescence, indicating that bacteria were 

being phagocytosed and digested within the first 20 minutes of the experiment. A last 
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consideration in these experiments is the fact that E. coli bacteria release LPS into the 

suspending medium, an explanation for the fact that some RAW cells with no E. coli 

bacteria in direct proximity were observed to undergo GFP-RelA translocation. 

  

Conclusions 

 

 We have demonstrated the first on-chip infection of multiple single host cells with 

live imaging of early immune response signaling events. Previous reports [19-21] have 

infected populations of host cells in microfluidic chambers, a condition that obscures the 

le played by cell-cell interactions on the initiation and progression of immune response. 

re not perturbed by the single cell isolation procedure, and are 

bsequently monitored over the course of several hours after challenge with pathogenic 

imula

evice 

lly less (~106). Higher pathogen concentrations in the device lead to faster 

read of the responses is likely due to clumping and adhesion of bacteria to the device, 

ferent host cells. A second 

ro

In our device, cells a

su

st nts. The metric of cell activation used here was the translocation of GFP-RelA 

from the cytoplasm to the nucleus upon stimulation with LPS and live bacteria. The 

average translocation time for cells stimulated with 1 M of purified LPS was 14.5 ± 2.7 

minutes, while the average translocation time for live E. coli bacteria challenges was later 

and with a much larger distribution (23.2 ± 9.4 min). This is may be due to the difference 

in concentration of the challenge in the device: at 1 M, there are ~1010 LPS molecules in 

a 40 nL imaging chamber, whereas the concentration of bacteria observed in the d

was substantia

interactions with host cells and thus faster immune response kinetics. The difference in 

sp

which led to broad distributions of bacteria interacting with dif
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consideration for the experimental results is in regard to the kinetics of immune response 

 single cells isolated in traps compared to multiple cells in close proximity within a 

ap. For the purified LPS experiments, the translocation time was invariant with regard 

hin a trapping structure. This was an expected result 

 cytokines  to be produced and 

nes are not 

ture work will include 

athogen concentration and source (e.g. Y. pestis and F. tularensis) will be investigated. 

ank the Microelectronics Development Laboratory staff and 

rication. We also extend our 

erformed as part of the Microscale Immune Studies Laboratory project funded by 

Laboratory Directed Research and Development program. Sandia is a 

ompany, 

. H. H. McAdams and A. Arkin, PNAS, 1997, 94, 814-819. 

in

tr

to the number of host cells held wit

due to the fact that it takes several hours (~4 hours) for

secreted from activated cells, thus cell-cell interactions through secreted cytoki

expected to impact short-term primary immune responses. Fu

longer challenge times to investigate this phenomenon. In addition, variations in 
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Figures 

Figure 1: (a) The TLR4 signaling pathway is initiated by soluble LPS and Gram-negative 
bacter ription factor NFB translocates 
from oduction and release from 

coverslip at t = 0 min and 15 min after 
athog

ia. After a series of signaling events, the transc
 the cytoplasm to the nucleus, where it initiates cytokine pr

the host cell. (b) RAW264.7 cells grown on a 
en challenge with E. coli LPS (1 M). p



 

 
 
Figure 2: (a) Single cell array (SCA) microfluidic chip design. (b) Close-up of the boxed 
region in (a), highlighting the imaging chamber inlet channel and triangular point 
constrictions for capturing cells. (c) SEM image of an alternative hemispherical cell trap 
design with 5 m long trap constrictions. 
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Figure 3: (a) Simulation of the velocity magnitude (|v|) in the SCA device at trap numbers 
1, 26, and 52 (flowrate=10 nl/min). (b) Velocity magnitude and pressure across the three 
traps along the y axis. The location of the trap constriction is noted (dashed line). 
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Figure 4: Flow streamlines (10 nL/min) in the device at (a) trap 1 and (b) trap 26. The 
trap depth (D) and the depth of isolation (Di) are noted. In (b), a secondary flow split 
further upstream in the trap is noted (red arrow). (c) The simulated (sim) and 
experimentally estimated (exp) isolation depth in m and as a fraction of the total trap 
depth for each trap. The secondary flow split points are denoted by the dashed line. 
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Figure 5: Single RAW cell captured in a triangular cell trap showing the GFP-RelA and 

ucleus signals. Scale bar = 5 m. (b) Intensity lineplots at the position shown in (a) for n
the three signals. The location of the nucleus is noted (dashed lines). (c) Fractional 
distribution of live cells in the hemispherical (hemi) and triangular (tri) trap devices 
grouped by: single cells in traps (s), multiple cells in traps (m), and cells in the imaging 
chamber inlet channel (i). 
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Figure 6: GFP-RelA translocation in a trapped RAW cell at t = 0 (a, zoom in b), 19 (c), 
nd 22 min (d). Scale bar = 30 m. (d) Lineplots (dashed line in b) of the GFP intensity a

over time, highlighting the location of the nucleus (nuc). (e) Ratio of the GFP 
fluorescence in the nucleus and cytoplasm (mean and standard deviation) as a function of 
time before and after the addition of LPS (E. coli 1 M) at t = 12 min. 
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Figure 7: GFP-RelA translocation in a trapped RAW cell at t = 0 (a), 7 min (b), 25 min 

intensities are shown in the insets. Scale bar = 10 m. (e) Discrete (bars) and cumulative 

live E. coli bacteria as a function of time. 

 

(c), and 37 min (d). Lineplots (dashed line) of the GFP-RelA (green) and nucleus (blue) 

(points) fractional number of translocated RAW cells (Nt) after a pathogen challenge with 
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3. Microfluidically-unified cell challenge, preparation and 

microfluidic technology to rapidly conduct phosphoproteomics studies from 

flow cytometry allows automated phosphoprofiling of 
macrophage response to lipopolysaccharide  

Nimisha Srivastava, J. S. Brennan, R. F. Renzi, M. Wu, S. S. Branda, Anup K. Singh and 
Amy E. Herr 

 

Monitoring of intracellular signaling events is crucial to understanding innate immune 

defense against invading pathogens. Flow cytometry, microscopy and western blot assays 

are powerful tools for signaling studies. Nevertheless, each approach is currently 

standalone and limited by numerous time-consuming, labor-intensive steps. We report a 

novel assay system that integrates fully-automated single-cell manipulation, microscopy 

and subsequent flow cytometric analysis. Our phospho Flow Chip (pFC) relies on 

monolithic 

initial chemical challenge through all preparatory steps and ensuing temporally-and 

spatially-resolved analyses. While readily adaptable, we employ pFC to monitor 

phosphorylation of MAP kinase, ERK1/2, in response to E.coli lipopolysaccharide (LPS) 

stimulation. The pFC tool permits ERK phosphorylation monitoring starting as early as 

5min after LPS stimulation with the added advantage of reduced cell aggregation and cell 

loss. The integrated pFC tool yields complementary imaging and flow cytometry data 

sets quickly and autonomously.  

To elucidate the role of cells in the immune system, new tools to characterize signaling 

epitopes engaged in early intracellular response are emerging. Until the recent advent of 

fluorescent reagents for phospho-epitope staining, most assays offered limited, static 

snapshots of inherently rapid and transitory cellular signaling events1, 2. The ability to 
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measure fleeting phosphorylation of specific protein epitopes in kinase signaling cascades 

sheds light on cell activation and dynamic response to extracellular stimuli. Phospho-

ation, handling, and analysis steps required for 

nt, and require large, expensive instrumentation. Recent strides in 

 

correlation and synchronization between distinct, yet complementary cellular events. 

epitope analysis implemented with flow cytometry supplies single cell-level information 

required to tease apart stochastic variation among large cell populations3, 4 . 

Nevertheless, the multiple sample prepar

phospho-profiling using conventional bench-top technology are labor intensive, 

inefficie

instrumentation and high-throughput sample preparation strategies (i.e., 96 well plates, 

liquid autosamplers) have yielded important intracellular phosphorylation data for large 

sample sets5. New, automated technology capable of monitoring phosphorylation levels 

of key signaling proteins with fine temporal resolution would further increase the data 

available.  

Fine temporal information regarding various intracellular signaling events can be difficult 

to obtain using bench top handling methods (i.e., petri dishes, centrifuge tubes). Species 

such as short lived nuclear phosphoproteins (e.g., c-myc protein), rapidly changing 

cytoplasmic Ca2+ levels, aggregation of surface receptors, protein phosphorylation and 

subsecond protein oscillations in platelets are particularly hard to monitor6, 7. To bridge 

the gap, new cytometry modalities are emerging8. Flow cytometry that relies on sample 

handling via high speed valves facilitates kinetic measurements with a resolution of 300 

ms9. Extending such fine temporal resolution methodologies to phosphoprofiling 

combined with completely hands-free operation of multiple preparatory steps (i.e. 

stimulation, fixation, permeabilization, antibody staining, washing) would allow
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Such a tool would provide an opportunity to quantify the concentration, location, and 

dynamic processes associated with intracellular and, perhaps, intercellular signaling.  

Use of microfluidic technologies offers compelling advantages to sample preparation, 

automation and integrated analyses. Microfluidic tools have been demonstrated at the 

proof-of-concept level for not only flow  

1 Currently at Department of Bioengineering, University of California, Berkeley CA 

94720  

cytometry10-13 and fluorescence-activated cell sorting14, 15 but also for functionality 

such as cell culture16-19 , surface patterning20, rapid stimulation21 , and single cell 

arrays22, 23 . Beyond unit analyses, we seek to exploit ready integration of microfluidic 

components to form the basis for a coherent tool optimized to monitor single-cell 

intracellular signaling. Of particular relevance to phosphoprofiling, integration of 

numerous upstream preparatory processes with flow cytometric detection on a monolithic 

platform would allow programmable control of time point selection, both for dosing of 

challenge and measurement of response. Minimal consumption of reagents, especially 

costly antibody stains, is advantageous for monitoring numerous time points in a large 

experimental design space24, 25 . While microfluidic methods have yet to prove 

competitive with the throughput of commercial flow cytometers, reductions in the overall 

time and manual intervention required for single-cell signaling studies could make 

integrated microfluidic preparation appealing. Additionally, with microfluidically-

enabled reduction in cell aggregation and losses provides the capability to perform flow 

cytometry on small cell populations, such as primary cells and hematopoietic stem cells.  
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To construct a cellular level understanding of the innate immune response, an ensemble 

of responses – measured at the level of individual cells – to exogenous signal is required 

26. The endotoxin, lipopolysaccharide (LPS), a major component of Gram-negative 

pathogenic bacteria (e.g., Yersenia pestis and Francisella tularensis) induces activation of 

mammalian macrophages through the evolutionary conserved trans-membrane surface 

protein, Toll-like receptor (TLR4) and its co-receptors, MD-2 and CD-1427, 28 . Upon 

ctivation, TLR4 associated with a key adaptor protein, MyD88 (myeloid differentiation 

h proceeds through a synchronization of molecular 

a

factor 88) mediates a pathway whic

events that encompass, among other effects, the phosphorylation of protein kinase ERK, 

activation of NFκB and eventually, the activation of key transcription factors such as c-

Fos, Elk-1 and c-Jun29, 30. This cascade induces the expression of immune activation 

genes that steer the course for immediate defense against pathogen replication – either 

directly by phagocytosis or summoning other cells to the site of the infection. The 

molecular events associated with innate immune response are categorized as “first 

responders” and typically occur in the first few seconds to minutes30 and therefore, 

necessitate fine temporal and spatial resolution.  

Here we report on the pFC assay system as a means to incorporate and automate all steps 

necessary for phospho-profiling of adherent cell populations activated through the TLR4 

signaling pathway. Pressure-driven fluid flow in quartz microfluidic devices is 

programmed to automate process steps including: pathogen challenge to host cells 

(including dosing, rapid mixing, and timed incubations), all phospho-profiling 

preparatory steps (including cell fixation, plasma membrane permeabilization, fluorescent 

immuno-staining and numerous intermediate washing steps), and subsequent flow 
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cytometry. The pFC platform is designed to be compatible with fluorescence microscopy, 

thus enabling real-time observation of cell phenotype prior to flow cytometry. We 

demonstrate utility of the pFC assay by monitoring the intracellular phosphorylation of 

the mitogen¬activated protein (MAP) kinase extracellular signal-regulated kinase 

(ERK1/2) in response to macrophage stimulation by an endotoxin found on the outer 

 pressure driven flow 

nd stopped flow intervals for reagent delivery and incubation.  

ion of macrophage cells is pressure-

membrane of Gram-negative bacteria.  

 

RESULTS The pFC assay platform  

The pFC technique exploits microfluidic technology to combine upstream cell 

preparation of select cell populations with subsequent flow cytometry (Fig. 1). Nominal 

user intervention is necessary as programmable flow controllers and valves are 

implemented to automate the multiple steps required for phosphoprofiling 31 . The core 

of the pFC technique is a planar quartz microfluidic device mated with an epi-

fluorescence microscope and single-point fluorescent detection. The pFC device was 

optimized for the analysis of adherent cells and relies on continuous

a

To initiate the phosphoprofiling assay, a suspens

delivered onto the chip from reservoirs containing a cell suspension in culture media 

(Supplemental movie S1). After the pFC device is seeded with cells, flow is stopped. 

Having a higher density than the culture media, the macrophage cells settle to the bottom 

of the spiral incubation chambers (Fig. 1). Settled cells adhere to the bottom surface of 

the channel within 5 min (data not shown). To chemically challenge the cells, pressure-

driven flow is again applied to drive a desired concentration of stimulant into the 
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incubation chamber. The challenge duration is controlled by an interval of stopped flow. 

After challenge, flow of a chemical fixative is initiated to immediately wash the stimuli 

out of the incubation chamber. Fine temporal resolution in the subsequent 

n and automated operation  

phosphorylation assays depends on the rapid fluid exchange capability. Rapid fluid 

exchanges are also useful for efficient preparatory processes.  

For phosphoprofiling, an intracellular antibody staining protocol was adapted from 

conventional flow cytometry31 . As compared to benchtop phosphoprofiling, the pFC 

method automates all cell handling – from stimulation to flow cytometry – in the 

monolithic pFC device. As mentioned and will be described in detail, the 

phosphostaining protocol requires multiple fluidic handling steps for: chemical fixation, 

permeabilization, antibody staining, and several washing steps. After staining, cell 

phenotypes are investigated using epi¬fluorescence and bright-field microscopy (Fig. 1) 

of the pFC incubation chambers. Subsequent flow cytometry is conducted after releasing 

cells from the microchannel surface using a combination of high shear rates and 

simultaneous enzyme-assisted digestion (Supplemental movie S2).  

 

pFC microdevice desig

The pFC channel network consists of two wide spirals (w = 230 µm, d = 35 µm, L = 50 

mm, V = 350 nL) that function as incubation chambers. The volume of each incubation 

chamber was chosen so as provide enough cell holding capacity for statistically relevant 

single cell assays. The pFC device holds ~2000 cells per chamber per assay. The 

incubation chambers were fluidically isolated through use of high resistance (much 

narrower channel width) spiral features. The incubation chambers were designed as 
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spirals to minimize stagnate volumes, dead volume, and cross-contamination. The 

curvature inherent to spiral geometries allowed smooth flow and lossless loading of cell 

suspensions.  

To seed macrophage cells into the incubation chamber, visual inspection is used to 

he pFC method automates the sequential introduction of the multiple reagents required 

n chambers (Fig. 1, 

determine when cells have traversed the channel network and reached the two incubation 

chambers. At that point, the flow is halted. As described, the macrophage cells settle to 

the bottom of the channel. The macrophage cell settling time is estimated to be 25 ms by 

approximating the settling velocity (v) for cells in a dilute suspension using v = 

(2/9)r2(Δρ)g/µ where Δρ is the deviation of the density of macrophages from that of the 

media, µ is the viscosity of the media, r is average size of a macrophage (10 µm) and g is 

the gravitational force. Density gradient centrifugation yields a ρ of 1.05 g/mL for 

macrophage cells. For the media, ρ is1.01 g/mL. The viscosity, µ, of the cell suspension 

was approximated to that of media owing to the low volume fraction (ø < 0.01) using the 

Einstein relationship µsuspension = µsolvent /[1+2.5ø]. Within 5 min, macrophage cells 

were observed to have attached to the channel bottom. Through in situ shear flow assays 

conducted in the incubation chambers, we measured an adhesion force greater than 1.7 

nN per cell (Fig. 2a).  

T

for infection and the phospho-flow protocol. Dual spiral incubatio

spirals 1 and 2) allow a control experiment to be executed concurrently with a challenge 

assay. The low volume of the incubation chamber (V = 350 nL) and the accessible 

volumetric flow rates (Q =5 µL/min) enabled rapid fluid exchange (t = V/Q = 4 s) for 

stimulation with high temporal resolution (Fig. 2c). Shear stress (100 dyne/cm2) resulting 
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from high volumetric flow rates (Q = 50 µL/min) neither detached macrophages from the 

glass surface nor were substantial enough to activate the cells (Fig. 2a, b). The shear 

stress exerted on the attached cells is comparable to shear experienced during routine 

pipeting of cells and reagents.  

After predetermined stimulation at 37oC (see Supplemental Methods and Fig S2 for 

detailed operation of the pFC), cells in both incubation chambers were fixed, 

permeabilized, and stained. Fixation required 2 min, chemical permeabilization required 

2 min, and conservative buffer exchange steps required 5 min each. Bright field and 

fluorescence imaging were conducted just prior to high shear rate and trypsin digestion 

release, while the cells were still attached to the channel surface. After imaging, 

phosphostained cells were again fixed with paraformaldehyde prior to trypsin treatment 

to prevent any damage to intracellular targets. On-chip flow cytometry proceeded by 

using hydrodynamically focused sheath flow (Fig. 1, bottom channel). Volumetric flow 

rates were controlled so as to achieve a 10:1 focusing of the sample flow enabling high 

throughput (100cells/min) flow cytometric detection. For validation and characterization 

purposes, released cells were also collected from the waste reservoir and analyzed via 

conventional flow cytometer (see Supplemental Methods).  

 

Characterization of improved cell handing using pFC assay system  

We conducted a series of experiments designed to characterize the handling cell loss and 

the tendency of the macrophage cells to aggregate during and after phosphostaining in the 

pFC device. While introduced in suspension, the pFC cell preparation protocol employs 

adhesion of macrophage cells to the glass floor of the incubation chambers. The 
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attachment of the cells to the chamber floor acts to localize the cells for stimulation, 

phospho-staining, and microscopy (Fig. 3). Microscopy-based inspection of macrophage-

seeded incubation chambers prior to challenge introduction (Fig. 3a) to the same regions 

after challenge and all subsequent phosphostaining steps reveals negligible cell loss. We 

attribute the minimal cell losses to both the use of macrophage immobilization during the 

seeding step and the low dead volumes in the pFC fluid device. Further, after the trypsin 

release step we observe no retained macrophage cells on the glass surface. Compared to 

pFC preparation, benchtop phosphostaining protocols resulted in losses of up to ~15% 

cells during each centrifugation-based washing step. Hemocytometer counts revealed that 

bench-top preparation resulted in a total loss of up to 75% of cells, especially during the 

numerous washing steps required after permeabilization of cells.  

To characterize the impact of pFC manipulation on generation of debris and large cell 

aggregates, we compared bench-top flow cytometry preparatory protocols with our pFC 

reparatory techniques. For minimally manipulated cells fresh from culture, usable single 

fter analysis, the population 

p

cells comprised 80 % of the total cell population (Fig. 3b). A

was split and stimulated, immunostained, and analyzed. One population was manipulated 

using bulk bench-top preparation and the second population was handled using the pFC 

method (Fig. 3b). After conventional bench-top preparation, flow cytometry side scatter 

vs. forward scatter analysis revealed that 45+6 % of the cells obtained were single cells in 

suspension. In contrast, 70+9 % of the cells obtained by pFC preparation were present in 

a single cell suspension. Associated flow cytometry histogram data gated on the single 

cell distribution (R1) for each population shows that bench top preparation led to a 

fluorescence intensity coefficient of variation (CV) of 46 %. For cells prepared using the 
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pFC approach, the fluorescence intensity CV was 29 % (Fig. 3b). The fluorescence 

intensity CV arising from the pFC method closely resembles the population spread of the 

starting untreated sample (CV~32 %). The favorable coefficient of variation resulting 

from pFC preparation is attributed to reduced aggregation of activated adherent 

macrophages, uniform cell-to-cell immunostaining, and elimination of repeated 

centrifugation-based cell washing steps. Bright field images of the macrophage cells 

qualitatively reveal and confirm larger cell aggregates with the bench-top preparation, as 

compared to the on-chip preparation (Fig. 3c). The pFC instrument design enables 

multiplexed measurements of single cells, individually or as part of a population, under 

well-controlled, optimized conditions – something nearly impossible with current bench 

top preparatory technologies. Such an approach, with reduced cell aggregation and losses, 

will likely appeal to the single-cell analysis of small populations such as primary and 

stem cells.  

 

pFC analysis of Toll Like Receptor-4 intracellular signaling  

As a step towards understanding how the innate immune system responds to LPS and 

pathogens, we have developed and optimized assays for analyzing phosphorylation of 

ERK1/2, a key intracellular kinase protein in the MyD88 pathway of the macrophage 

TLR-4 response to Gram-negative pathogens. We chose to initiate work using the 

MyD88 pathway, as the most detailed understanding of signaling pathway engagement 

by TLRs has come from the study of MyD88, a universal adaptor protein32 . 

Approximately 5x106 cells/mL were introduced into the pFC device and localized to the 

incubation chambers, as described previously. Cells in the first chamber were stimulated 
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with 1 µM smooth E. coli LPS at 37oC. The second chamber was not challenged with 

LPS. At each post-stimulation time point of interest, macrophage cells in both chambers 

were fixed, permeabilized, immuno-stained, enzymatically released, hydrodynamically 

focused and analyzed using flow cytometry – all on the same pFC platform with minimal 

user intervention. Flow cytometry histograms show significant increases in the level of 

phosphorylated ERK1/2 at 15 min and 30 min post-LPS exposure (Fig. 4a). Bench-top 

immuno-staining protocols yield flow cytometry and Western blot results that 

qualitatively display similar macrophage response to LPS over the chosen time course. 

To assess temporal resolution available from the pFC technique, macrophage cells were 

challenged using the pFC device with 10 µME. coli LPS for 5 s, 5 min, 10 min, and 15 

min (Fig. 4b). At the earliest time point (5 s), the pFC analysis revealed no detectable 

phosphorylation of ERK1/2. At later time points, pFC analysis revealed that 

phoshphorylated ERK1/2 peaked faster for the higher concentration of E. coli LPS at 

37oC (10 min for 10µM LPS vs. 15 min for 1µM LPS). As previously shown, the range 

f shear rates applied during the ERK phosphoprofiling assays did not lead to activation 

ge cells (Fig. 2c). Researchers have recently begun to appreciate that 

o

of the macropha

different levels of ERK1/2 activity directly impact the expression of pro-inflammatory 

mediators and cytokines29 .  

In addition to temporally resolved analysis via flow cytometry, spatial localization of 

MAP kinases can also be obtained using the pFC assay system. The pFC was operated 

mounted on an inverted microscope with DIC, phase contrast and fluorescence imaging 

capabilities to allow real-time monitoring of cell phenotype during the short term culture 

and challenge steps (Fig. 1, middle panel of the pFC monolith). As has been reported, 
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cells in a population do not all have the same initial physiological state or degree of 

infection 33, 34 35 . Fluorescence imaging of macrophage cells after phosphostaining and 

prior to their release for flow cytometry, revealed that under certain challenge conditions 

(e.g., 10 µM LPS, 5min), pERK1/2 was localized entirely in the cytoplasm (top image). 

Different challenge conditions (e.g., 10 µM LPS, 10min) resulted in a large fraction of 

the intracellular pERK1/2 having translocated into the nucleus (bottom image on the 

middle panel). Once in the nucleus, pERK regulates the levels and activities of critical 

transcription factors. Bright field imaging revealed that roughly 80% of the macrophage 

cell population in the incubation chamber were elongated and spread out on the planar 

surface. The cells also developed cytoplasmic filaments and filamentous bridges – 

possibly for inter-cell communication (data not shown). The observed phenotype is 

consistent with healthy, adherent cells. Further morphological assessment of the 

macrophage cells was made though visualization of the shape of the nucleus, as well as 

number of vacuoles and nucleoli inside the nucleus.  

 

DISCUSSION  

The pFC technique reported offers advantages over conventional bench top cell 

preparation methods for flow cytometry. Relying on microfluidic technologies, the pFC 

approach integrates preparatory processes required for phosphoprofiling studies relevant 

to characterizing intracellular signaling pathways. The pFC design exploits fine fluid 

control to manipulate and analyze small, yet statistically significant, numbers of cells 

(~2,000). The cell-preparation steps demonstrated with the pFC approach include: 

programmable duration cell-challenge periods, chemical fixation of cells, plasma 
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membrane permeabilization, fluorescent immunostaining and numerous intermediate 

buffer exchange and washing steps. To our knowledge, the pFC method is the first report 

of a comprehensive microfluidics-based tool integrating sophisticated cell challenge and 

preparation, imaging, and flow cytometric analyses. The pFC approach enables 

automated, multi-step preparatory protocols – thereby reducing the necessary manual 

intervention, making fine temporal investigations (~ seconds) accessible, and potentially 

improving the reproducibility of cell signaling measurements as reported in the present 

study.  

Owing to the small length scales of the microdevice, efficient sample preparation and 

processing is possible. Low fluid and sample volumes are required, as less than 10 µL of 

sample is necessary to complete the reported analysis – roughly 0.1% of the volume 

required for conventional flow cytometry. The pFC-based pERK monitoring study 

required a fraction of the time needed to complete the analysis using conventional 

preparatory methods with flow cytometry (30 min plus infection vs. 120 min plus 

infection with conventional preparation).  

To demonstrate monitoring of intracellular signaling after short LPS stimulation periods, 

we analysed pERK1/2 response in macrophage cells at 5 s post-stimulation. Stimulation 

periods on the order of a few seconds are difficult to implement with bench top cell 

handling methods, yet the 5 s period reported here was readily achievable using facile 

fluid handing enabled by microfluidic technology. In the TLR-4 signaling examined here, 

we do not expect nor do we observe pERK after a 5 s LPS stimulation interval, as 

ERK1/2 phosphorylation is reported to initiate no earlier than 5min36, 37. At earlier 

stimulations intervals (e.g., 2min), phosphorylated levels of ERK1/2 were not detected in 
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lipopolysaccharide stimulated macrophges36 . After slightly longer LPS stimulation 

intervals, we do observe both phosphorylation and dephorphorylation of ERK1/2, as 

would be expected. The shortest stimulation duration attainable using the pFC technology 

is determined by the time required for fluid exchange in the incubation chambers (i.e., 

volume of chamber, flushing volumetric flow rate). Based on the geometry of the fluidic 

network and the hardware used, the pFC tool could support flow rates an order of 

magnitude higher than the 5 s duration used in the present study. Employing such rapid 

fluid exchange conditions should yield an ultra-short incubation period of ~100 ms. That 

said, such high flow rates and short stimulation periods may not be appropriate for all 

systems. The latter consideration applies to pERK monitoring in the murine macrophage-

LPS system currently under study.  

An important aspect of the pFC tool design is elimination of conventional centrifuge-

based cell washing steps required for phophoprofiling. To eliminate centrifuge-based 

washing, the pFC approach used in the present study employs channel surfaces (i.e., 

quartz) that allow macrophage cells to remain adherent under flowing fluid conditions. 

Such an approach is readily adaptable to other adherent cell types that includes but not 

limited to HepG2 (heptocellular carcinoma), HUVEC (vascular endothelium) and HeLa 

(cervical epithelial cells). While not designed for analysis of non-adherent cell types, 

design modifications to the pFC tool would allow preparation and analysis of non-

adherent cell types. One such design modification under development by our group is 

incorporation of on-chip filters as a means to confine non-adherent cells to incubation 

chambers while allowing reagent exchange38 . Alternatively, surfaces functionalized 

with extracellular matrix (ECM) proteins such as fibronectin, collagen and laminin have 
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been used to enhance adherence of suspension cell lines. For instance, several suspension 

cell lines such as rat basophilic leukemia (RBL-2H3) used for in vitro studies on mast 

cells and basophils have responded favorably to ECM coatings39 . Elimination of 

centrifugation reduced cell losses and aggregate formation – making the pFC method 

attractive for the analysis of small populations of precious cells (i.e., primary cells, stem 

cells). Cell clumping, disintegration and cell loss due to centrifugation have been reported 

to be major obstacle to single cell studies especially in picoeukaryotic cells 40 . 

Centrifuge-free processing is attractive to low-resource environments (i.e., no centrifuges 

available). Host-pathogen interaction studies requiring biohazard specialized, space-

limited facilities (i.e., Biosafety level 3 or 4 laboratories) could benefit from the 

monolithic devices demonstrated in this work.  

icroscopy is 

The pFC technology provides phenotype characterization (i.e., morphology, protein 

translocation, nuclear-cytoplasmic ratio, co-localization of multiple markers) of 

individual cells in addition to the end-point detection of “averaged” fluorescence 

permitted by flow cytometry. In-chip imaging using standard epi-m

performed on cells that are subsequently analyzed by flow cytometry, thus allowing 

correlation between cell phenotype and the biochemical response of the population. Rich 

data provided by the complementary methods integrated in the hybrid pFC tool make 

possible detailed characterization of confounding responses, such as bistability within a 

cell population. A bistable cell response is difficult to characterize using bulk 

measurement methods (i.e., Western blots, enzyme linked immunosorbent assays). The 

pFC approach was optimized to monitor and quantitate sub-cellular localization and time-

response of intracellular protein phosphorylation events key to macrophage response to 
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LPS infection. Analysis of intracellular phosphorylation of other key signaling pathway 

proteins, the process of phagocytosis, and the formation of surface receptor complexes is 

underway using the pFC tool. Engagement of multiple intracellular signaling pathways 

defines the specificity, intensity and duration of gene expression that governs the innate 

and subsequent adaptive immune responses to pathogen challenge 29 . Further studies 

regarding LPS recognition by macrophage cells promise to contribute to developing 

novel strategies for therapeutic intervention (e.g., endotoxin shock). That said, the generic 

and versatile nature of pFC, with the capability of automation, controlled dosages, fast 

mixing, precisely timed incubation and selective routing of reagents and waste – makes 

the pFC tool applicable to exploring a wide variety of cell biology, immunology, and 

loss by axial dispersion in the tubing. An in-house designed shut¬off 

lectronic valve (response time < 1s, dead volume ~20 nL) was used inline with the 

d, the PEEK tubing was immersed in an airtight 

sample/reagent reservoir. The reservoir was pressurized using house Nitrogen and 

cancer biology questions.  

METHODS Microfluidic chip design, fabrication, assembly and fluidic control: Chip 

designs were made in-house using AutoCAD 2000 (Autodesk Inc., San Rafael CA), 

photomasks were generated at Photo Sciences (Torrance, CA) and quartz microfluidic 

devices were fabricated by Caliper Life Sciences (Hopkinton, MA).  

An array of eight holes (500 µm diameter) provided for fluid inlet. Fluidic connection to 

the inlet holes was made using an in-house designed plastic (delrin) manifold and PEEK 

tubing (125 µm ID, 1/32 in OD, Upchurch Scientific). Small ID of the PEEK tubing (125 

µm) allowed for low residence time during reagent and cell delivery – which was critical 

in reducing cell 

e

PEEK tubing. On the other en
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electronic pressure controllers (Parker Hanifin, Cleveland OH) in order to load 

sample/reagent into the chip. Typically pressures ranging from 0.2 to 5 psi were used 

during device operation. Higher pressures, up to 15 psi, were used if necessary to remove 

bubbles and during cleaning cycles. Each quartz chip could be used repeatedly with an 

appropriate cleaning protocol. Extreme care was taken during chip design and plumbing 

to minimize dead volume. All hydrophobic components of the plumbing interface i.e., 

PEEK tubing, valves, manifold etc. were primed with methanol and DI water to wet the 

surface and removes any air bubbles trapped inside. Finally, the microfluidic channels as 

well as the inlet holes were completely filled with DI water before the fluidic connections 

were made.  

Microscopy and image analysis: Bright field, epifluorescent and phase contrast images 

were captured at 10X and 40X magnification on an Olympus IX71 inverted microscope 

equipped with a CoolSNAP HQ CCD camera (Photometrics) and Image-Pro software. In 

order to measure the aggregation index for onchip and offchip cells, images were further 

analyzed on ImageJ. A typical image processing algorithm would involve – background 

subtraction (rolling ball radius = 50, with white background unchecked), setting lower 

and upper levels on the threshold to convert to a binary image, and finally analyzing the 

particles based on size and circularity to show outlines for single cells and for aggregates. 

The analyze particles plugin in ImageJ was used to measure the number of single cells 

and aggregates.  

 

SUPPLEMENTAL METHODS  
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Cell culture, passaging and phosphorylation assay: RAW 264.7 murine macrophage cell 

line was bought from ATCC (Manassas, VA) and was used for all studies. Macrophages 

oller (TC¬24-12, TE Technology 

Inc). A temperature sensing thermistor is directly attached to the quartz chip to provide 

were cultured in growth medium consisting of 450 mL DMEM, 50 mL FBS (gemcell), 5 

mL HEPES, 5 mL glutamine (200 mM) and 1:100 Penicillin /Strap. 5*106 cells/mL stock 

concentration was used to load cells on the chip. All on-chip assays were validated with 

conventional benchtop setups such as the BD FACScan. For these benchtop assays, 

macrophages were challenged with smooth E. coli LPS (Sigma-Aldrich, # L4524) inside 

an incubator (37 oC, 5% CO2). At various pre-determined incubation time points (i.e., 5 

s, 15 min, 30 min, 60 min), the LPS challenged macrophage cells were fixed (temporally 

and spatially) using 2% Paraformaldehyde (Electron Microscopy Sciences, Hatfield PA) 

at RT for 10 min, washed, permeabilized with 100% Methanol (Electron Microscopy 

Sciences, Hatfield PA) at RT for 20 min, washed and labeled with fluorescently tagged 

phospho-specific monoclonal antibodies (Cell Signaling Technology, Inc #4374) for 20 

min at RT. After two more washes, the labeled cells were analyzed on a FACScan (BD 

Biosciences) equipped with a 488nm Argon ion laser & three detection channels (FL1-

green, FL2-yellow & FL3-red). Washing is performed by forming a pellet using 

centrifugation at 400g for 5min & then re-suspending the pellet in phosphate-buffered 

saline (pH 7.4) solution.  

Temperature Control on the pFC platform: The pFC platform is mounted on a thermal 

control setup to achieve the desired temperature regulation during cell culture and 

stimulation. The thermal control setup consisted of a thermoelectric hot plate (CP-036, 

TE Technology Inc) and a proportional integral contr
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temperature feedback to the controller. The setup is capable of maintaining temperatures 

from 0 oC to 100 oC within an accuracy of + 0.1 oC.  

Step-by-step operation of the device for phosphorylation assay: A typical protein 

phosphorylation assay consists of the following steps (see supplemental Fig. 2). Each of 

the eight ports on the pFC device (Fig 1b) are connected to external electronic valves to 

selectively turn them on or off on demand. First, macrophage cells are delivered to the 

device with only ports 1 and 8 open while the valves to all the ports (2 -7) are shut off. 

Once the two spiral chambers (1 and 2) are populated with cells in growth media, the 

flow is stopped. Another 5 min is allowed to allow the cells to settle, spread and adhere to 

the surface. Precise timed exposure of the macrophages to the stimulus is achieved by 

controlled, stopped flow conditions. The stimulant flows such that only the cells in spiral 

1 are exposed to the stimulus. After pre-determined timed incubation, the remaining 

reagents (2 % paraformaldehyde, methanol, PBS buffer, antibody staining solution) are 

serially injected from port 2 to port 8, thus treating macrophage cells in both the spiral 

incubation chambers. Once the cells have been labeled, a second fixation with 3% 

paraformaldehyde was necessary before trypsin treatment to prevent damage to the 

intracellular target proteins. Finally, a combination of high shear rates (3,000 s-1) and 

purified trypsin (0.5 mg/mL) is used to detach cells – first in the second incubation 

chamber and then in the first incucbation chamber. As the cells detach and flow towards 

the waste port, they are pinched by sheath fluid (1X PBS buffer) to hydrodynamically 

focus them for fluorescent detection. The cells may also be collected from the waster 

reservoir in port 8 and analyzed on the BD FACScan.  
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Fluorescent detection for on-chip flow cytometry: The in-house microfluidic detection 

platform for on-chip flow cytometry was developed to emulate the performance, accuracy 

 filter cubes with a dichroic mirror (505 DRLP (green) & 650 DRLP 

d using a Hamamatsu H5784 PMT 

terface/Controller. In addition, the scatter signal from an optical fiber positioned on top 

 was relayed to a third Hamamatsu Photomultiplier tube. The 

e peak of the raw signal traces from the PMT 

reen, red and scatter) with a polynomial fit returning the peak amplitude and width. A 

s then computed and overlaid for each peak in the raw trace for 

visual validation to make sure that the polynomial fit was accurate. Once the parameters 

& capabilities of a conventional BD flow cytometer. The fluorescence illumination was 

derived from an air-cooled 15 mW argon ion laser (Melles Griot) with a single 

wavelength emission at 488 nm. The optical train consisted of a series of adjustable 

mirrors and a 60X air objective for epifluorescence illumination through which the laser 

beam was introduced to the on-chip detection window. The microfluidic device was 

placed on a mechanical stage with precise horizontal (x & y) and vertical (z) control. The 

emitted light from the hydrodynamically focused stream of cells was collected through 

two fluorescence

(red) by Omega Optical, Inc) and associated emission filters (535 AF45 (green), 695 

AF55 (red)). The collected light from each filter cube was relayed to two Hamamatsu 

Photomultiplier tubes and the PMT gain was tune

In

surface of the quartz device

real-time signal from the PMT was collected using a computer equipped with National 

Instruments CompactRIO programmable automation controller (PAC). The data was 

further analyzed using Peak Finder in LabVIEW (National Instruments) to construct 

population histograms of time resolved phosphorylation assays. The Peak Finder program 

uses the LabVIEW Peak Fit routine to fit th

(g

model Gaussian peak i
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that accurately fit the raw PMT traces have been optimized, the amplitudes of the peak is 

then used to build histograms in Matlab.  

Adhesion assay: Since special coatings were not necessary to promote cell-substrate 

adhesion, bare quartz was used in all assays. Owing to the accessible operating range of 

the pFC flow controllers, 1.7 nN was the highest force measurable. Flow rate (Q) on the 

device is measured using a flow sensor (Nano Flow Sensor, Upchurch) from which the 

mean velocity (v = Q/(w*d)) is calculated. We then calculate the corresponding shear 

rates (γ =6v/d) and shear stress (τ = µγ). The average force (F = τA) on an individual cell 

was determined by approximating the surface area (A) of the cell that was exposed to the 

shear stress (τ).  

Cleaning protocol: After each assay, the quartz based pFC device was cleaned with 10 % 

bleach (20 min) at 95 oC (to completely eliminate LPS) and DI water (10 min) and 

reused with no loss in efficiency or reproducibility.  
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FIGURE CAPTIONS  
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Figure 1 | Microfluidic pFC technique enables streamlined, automated phosphoprofiling 

of macrophage response to LPS on a monolithic platform. A schematic of the pFC 

protocol (left) and analogous benchtop paradigm (right) are shown for comparison. 

Device operation and benchtop protocol proceed from top to bottom of the schematic. 

Smooth spiral geometries in the pFC allow ready integration of the pressure-driven and 

stopped flow conditions to automate single-cell preparation and analysis via imaging and 

o orders of magnitude. (b) Flow cytometric analysis reveals that levels of 

phosphorylated ERK in macrophage cells that handled high shear rates on the pFC was 

flow cytometry. Cells are added into the top left pFC well and the automated pFC 

intracellular phosphorylation assay proceeds as: i) cell culture and infection, ii) 

phosphostaining (2% paraformaldehyde fixation, cold methanol permeabilization, 

washing, and staining with phospho-specific antibodies) iii) flow cytometry (bottom 

channel). Microscopy images (middle panel) from the spiral incubation chambers show 

macrophages that were intracellularly labeled with phospho-specific ERK antibodies. 

Fluorescence images show the time-resolved recruitment of phosphorylated ERK (pERK) 

to the nucleus. The two wide spirals (1 and 2 on pFC image, left) enable simultaneous 

infection and control (i.e., no drugs) experiments. Cells are collected for further analysis 

from bottom right well. For detailed operation of the device, see supplementary Fig S2. 

Scale bards indicate: 1 mm, 200 µm, 10 µm, 100 µm(clockwise).  

Figure 2 | Firm Adhesion and Rapid reagent Exchange on the pFC tool (a) Shear flow 

assays in spiral chambers (labeled 1 and 2 in Fig. 1) indicate macrophage cell adhesion to 

quartz exceeds 1.7 pN, the maximum force available in the device (flow rate of 50 

µL/min). Stars indicate > 99% of cells attached to channel wall as the shear rate was 

increased by tw

 58



 

comparable to that from unstimulated (no LPS infection) cells (c) Rapid reagent 

exchange within the spiral chambers requires less than 5 s to replace reagent A 

(fluorescent antibody solution) with reagent B (a non-fluorescent buffer solution) at 5 

µL/min flow rate. The arrow indicates the start of the reagent flushing assay. Error bars 

represent single standard deviation from three different experimental runs. For some data 

points, the error bars are smaller than the symbols used.  

Figure 3 | pFC enables high-quality cell preparation via well-controlled cell handling.(a) 

) and fluorescence images of macrophage cells in spiral incubation 

mbe ing 

ot reveal that 70+9 % of cells prepared using 

 of the 

ter spread of fluorescence intensity from pFC cells is attributed to uniform 

tion, the 

) Bright field images 

Bright field (BF

cha r after stimulation (10 min with 10 µM E.coli LPS), after the phosphostain

process, and after trypsin release. Cells are well-spread and confined to the incubation 

chamber with minimal cell release until addressed with trypsin. Scale bar, 20µm. (b) 

FACscan side & forward scatter density pl

the pFC tool were present as single cells (R1) compared to 45+6 % from conventional 

preparation (n = 8). Error denotes a 96 % confidence interval. Histogram plots

fluorescence intensity from the cells in region R1 has a higher coefficient of variation for 

benchtop prepared cells (46 %), as compared to cells prepared using the pFC tool (29 %). 

The tigh

antibody staining among the cell population. Even with the same antibody titra

fluorescence intensity (AF488) levels in the histogram for pFC preparation is higher – we 

attribute this to the fact that the cells are adherent on the pFC tool (c

of prepared cells confirm lower aggregation index (0.17 vs. 0.91) for pFC prepared cells. 

Bar, 100 µm.  
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Figure 4 | pFC phosphorylation assay of ERK1/2 shows time-dependent response to E. 

coli LPS stimulation.(a) Flow cytometry detects the phosphorylation states of ERK after 

tion 

, D.B., Kobrinsky, E., Juhaszova, M. & Sollott, S.J. Examining intracellular 

, D.A. & Nolan, G.P. Causal protein-

com.  

 During Platelet Activation by Adp 

challenge with E. coli LPS (1 µM) at 15 min and 30 min by both conventional and pFC 

preparation. Western blot analysis shows ERK1 and ERK2 phosphorylation as a func

of time. (b) Phosphorylation of ERK1/2 occurs by 5 min post-challenge under high E. 

coli LPS (10 µM) challenge. Significant ERK1/2 phosphorylation is not detected at ultra 

short challenges of 5 s.  
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Figure 4 
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4.  Microfluidic-Based Cell Sorting of Francisella 

tularensis Infected Macrophages using Optical Forces 

Thomas D. Perroud, Julie N. Kaiser, Jay C. Sy, Todd W. Lane, Catherine S. 

Branda, Anup K. Singh, and Kamlesh D. Patel  

icrofluidic 

device.  This micro fluorescence-activated cell sorter ( FACS) uses a near-IR laser to 

laterally deflect cells into a collection channel.  Green-labeled macrophages were sorted 

from a mixture at a throughput of 14-22 cells/s for 30 min and achieved a sorting purity 

as high as 97% with recovery yields between 55% and 63%.  To rule out potential photo-

induced cell damage during optical deflection, we investigated the response of mouse 

macrophage to brief exposures (< 4 ms) of focused 1064-nm laser light (9.6 W at the 

eration, activation 

state, and functionality be

functionality was assessed in a similar manner, but after a lipopolysaccharide challenge. 

To demonstrate the selective nature of optical sorting, we isolated a subpopulation of 

Abstract:  

We have extended the principle of optical tweezers as a noninvasive technique to actively 

sort hydrodynamically focused cells based on their fluorescence signal in a m



sample).  We found no significant difference in viability, cell prolif

tween IR-exposed and unexposed cells. Activation state was 

measured by the phosphorylation of ERK and nuclear translocation of NF-B while 
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highly infected macrophages with the fluorescently labeled pathogen Francisella 

tularensis subsp. novicida. A total of 10,738 infected cells were sorted at a throughput

of 11 cells/s with 93% purity and 39% recovery. 

 

 

Introd

tists 

00 

ed 
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iscovery platform with multiple integrated functionalities that guarantees a 

sterile e hogen 

,8, 9 

elation polymer;11 

uction  

Since the development of fluorescence-activated cell sorting (FACS),1 scien

have been able to perform multi-parametric cell separations at sorting speeds of 10,0

cells/s. Such rapid and efficient analysis of heterogeneous cell suspensions has position

benchtop FACS systems as an important diagnostic tool for hematology and oncology. 

However, benchtop FACS systems are used cautiously when working with infectious

agents or with live human cells. These droplet-based sorters become a serious biohaza

because of the aerosols generated.2, 3 Moreover, their large footprint and 

required maintenance make these instruments impractical for routine use in BSL3 and 

BSL4 facilities. Given the recent advent of microfluidic-based system biology,4 a 

compact d

nvironment and improved biosafety is highly desired for studying host-pat

interactions. In particular, the integration of FACS functionality into microfluidic chips 

(FACS) provides a critical link between upstream cell preparation and 

downstream single-cell analysis of specific subpopulations.   

 Numerous proof-of-concept sorting strategies for microfluidic-based cell sorters 

have been reported in the literature. Key examples include electrokinetic flow 

switching;5, 6 hydrodynamic flow switching using on-chip valves,7 off-chip valves

MEMS-based micro-T switches,10 and a thermoreversible g
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dielectr

 

 within 

ed on 

where 

relative to the 

surroun

 

itionally, this sorting mechanism is 

disconnected from the chip fabrication simplifying its integration with other on-chip 

functionalities and making it more affordable for single use.  Optical sorting can be based 

ei  the cells (passive) or on fluorescent markers (active) 

si

a high-

ophoretic forces on tagged12 or untagged cells,13, 14 and on droplets;15 lastly, 

optical forces using a passive holographic lattice,16 active trapping and binning into a

single channel17, 18 or multiple channels,19 and placing/removing individual cells

an array of microwells.20, 21  

 The use of photonic forces to deflect living cells in a fluidic channel is bas

the early work of optical trapping of cells.22 To prevent damage to the cell by light 

absorption, most trapping lasers operate in the near infrared (780-1330 nm), 

biological material is quasi-transparent.23  A tightly focused laser beam creates strong 

gradient forces that trap a cell at its center, hence the term optical tweezers.  The strength 

of the trap depends on the laser power, the refractive index of the cell 

ding media, and the numerical aperture of the focusing lens. For cell sorting, 

trapping is not required since only lateral deflection matters, allowing the use of lower 

numerical aperture lenses (< 0.6).17  Moreover, the longer depth of focus increases the

likelihood of deflecting a cell regardless of its vertical position within the microfluidic 

channel. 

The noninvasive nature of cell sorting based on optical forces makes it an 

attractive approach when handling pathogens.  Add

ther on the intrinsic properties of

milar to conventional FACS.24  Notably, Wang et al.18 have shown that a microfluidic-

based optical cell sorter could actively sort GFP-expressing HeLa cells at 

throughput rate relative to other FACS (20-100 cells/s).  
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Given the above-mentioned advantages of cell sorters based on optical forces for 

host-pathogen studies, we have adapted this technique to isolate a subpopulation of 

macrophages infected by the pathogen Francisella tularensis, a Gram-negative 

coccobacillus. Francisella tularensis subspecies tularensis is considered to be a potential 

bioweapon because of its high virulence, low infectious dose, and ease of aerosol 

dissemination.25  It has the ability to survive phagocytosis by macrophages, key sentry 

cells of the innate immune system, and can multiply in and escape from the 

phagososome. Since Francisella tularensis subsp. novicida displays little or no ab

infect humans but is fully virulent in mouse macrophages, it represents a safe surrogate t

validate our microfluidic-based cell sorter for host-pathogen studies.  

In the present article, we describe our microfluidic-based optical sorter for cell

analysis.  A gage of the overall performance of our FACS is presented by sorting dye-

labeled macrophages from a mixture.  In addition, we investigate the effects of brief 

exposure to high-level of near-infrared laser light on the viability, proliferation, activation 

state, and functionality of mouse macrophages.  Finally, we apply our technology to 

isolate a subpopulation of mouse macrophages infected by a fluorescently labeled 

pathogen, Francisella tularensis subsp. novicida.  

   

ility to 

o 

ular 

   

by Caliper 

EXPERIMENTAL SECTION  

Chip fabrication and packaging.  Microfluidic chips are custom-fabricated 

Life Sciences (Mountain View, CA) using conventional wet-etching and 

photolithographic processes. Specific to their process, microchannels (30-m deep and 
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70-m wide) are isotropically etched in 0.75-mm-thick fused-silica base wafers (Figure 

1B).  Fluid access holes (2-mm diameter) are drilled into a cover wafer before being 

visually aligned and thermally bonded to the base wafer with the combined wafers

into individual 22.6 × 37.2 mm chips.  To prevent cell adhesion, the channels were coat

with a thin PEG-silane film.  This protocol is described in detail elsewhere,26 with the 

exception of 3% polyethylene glycol acrylate (469823; Sigma) as a monomer and 0.5% 

(w/v) 2,2'-azobis[2-methylpropionamidine] dihydrochloride (992-11062; Wako 

Chemicals, Richmond, CA) as a photoinitiator.  A Delrin polymeric microfluidic 

manifold with integrated O-ring seals provides the interface between the chip and fluid 

reservoirs.27  Fluid is delivered to each port of the manifold through 1/32” O.D. 0.005” 

I.D. PEEK tubing (Upchurch Scientific, Oak Harbor, WA) and swaged in place w

1/32" TubeTite fittings (Labsmith, Livermore, CA). 2.0 mL screw-cap microcentri

tubes (89004-302; VWR, West Chester, PA) fitted with custom-machined caps serve as 

fluid reservoirs.  The caps have two ports to allow the delivery of N2 gas to pressurize 

headspace in the vial and push the fluid through a PEEK tube placed below the liquid 

level into the chip.  All four fluid reservoirs are pressurized by individual electroni

pressure control units (VSO-EP; Parker, Cleveland OH) to ensure precise control of 

hydrodynamic focusing, cell velocity, and cell positioning.  

 

Optical cell sorter.  The cell sorter is based on a modified two-stage inverted 

microscope (TE-2000U; Nikon Instruments, Melville, NY) with an automated 

micropositioning stage (MS-2000; ASI, Eugene, OR), a monochrome fast CCD camera 

on the front port (1000 fps UF-1000CL; Uniq Vision, Santa Clara, CA), and a blue

 diced 

ed 

ith 

fuge 

the 

c 

 and 
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infrared CW lasers coupled to the back of the microscope (Figure 1A).  The 20 mW

nm solid-state laser (Cyan; Newport, Irvine, CA) is split into two beams, which are then 

focused by a cylindrical lens at the back-aperture of a 20X 0.45 N.A. 

 488-

microscope 

objective (Plan Fluor ELWD; Nikon Instruments).  The two beams not only detect and 

in

 

 

l 

XR 

pass 

 

, Palo Alto, CA), provided that the voltage 

peak exceeds a preset minimum threshold.  The time delay (2.4 ms) corresponds to the 

tim

terrogate cells, but also measure their velocities.  The 20 W 1064-nm Ytterbium fiber 

laser (YLM-20; IPG Photonics, Oxford, MA) is coupled to an acousto-optical modulator

(AOM ATD-274HD6; IntraAction, Bellwood IL) before being focused by the same 20X

objective.  Transmission losses along the optical path of the near-IR laser reduce the tota

power to 9.6 W at the sample (75% transmission for AOM, 64% for 20X objective23).  

Forward scattering of the blue laser is detected through an optical fiber (JTFSH 600-m 

core; Polymicro Technologies, Phoenix, AZ) and a bandpass filter with blocker 

(488NB2.6; Omega, Brattleboro, VT) connected to a photomultiplier (H5784-20; 

Hamamatsu, Bridgewater, NJ).  Laser-induced fluorescence emission is split (600DC

longpass filter; Chroma, Rockingham, VT) into a green channel (D527/30m band

filter) and a red channel (HQ610/30m bandpass filter) before being detected by two 

photomultipliers.  All three photomultipliers voltages (scatter, green, and red) are 

recorded by a data acquisition module (NI 9401; National Instruments, Austin, TX).  In 

addition, these voltages are processed by a custom-made digital counter to register each

event and select the sorting decision signal.  This signal initiates a precise time-delayed 

TTL pulse (DG535; Stanford Research System

e defined by the distance between the two blue laser spots (approximately 50 m) and 

by the velocity of the cells (approximately 21 mm/s).  This TTL pulse is sent to a 
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function generator with a pre-loaded 250 Hz negative ramp function (HP33120A; 

Agilent, Santa Clara, CA) connected to the AOM (DE-272), which turns on the infrared

laser and rasters it across the microfluidic channel at a 13 d

 

eg angle. 

ded 

s 

 / 

s 

M SNARF-1 AM ester (C1272, red) and mixed at 

appropriate ratios. For live cells, all washing steps were performed at 400 g for 5 min. 

U r 

  

 

Cell culture and reagents.  Mouse macrophage cell line RAW 264.7, kindly provi

by the Seaman lab (UCSF, San Francisco, CA), was grown on non-treated sterile flask

and maintained in growth media: DMEM (0.87X) supplemented with 1:100 Penicillin

Streptomycin, L-glutamine (2 mM), 10% FBS, and HEPES (20 mM).  To prevent cell

from settling to the bottom of the reservoir during a sorting experiment, the growth media 

was supplemented with 14% Optiprep.  The pActin-EGFP-RelA construct was derived 

from pECFP-F-RelA, a kind gift from Dr. Allan R. Brasier (University of Texas Medical 

Branch, Galveston, TX).  ECFP was replaced with EGFP between the Age1 and BsrG1 

sites, and the cytomegalovirus promoter was replaced with a minimal 106bp human 

Actin promoter28 cloned between the Ase1 and Nhe1 sites.  Macrophages were 

challenged with smooth E. coli LPS (L4524; Sigma-Aldrich, St Louis, MO) for 45 min 

inside an incubator (37°C, 5% CO2).  Macrophages were labeled with either 5 M 

Calcein-AM (3100MP, green), or 5 

nless specified, all dyes were purchased from Invitrogen and other reagents from Fishe

Scientific. 

 

Cell viability and proliferation studies.  Cell viability was assessed using a live-dead 

assay containing both 1 µM calcein AM and 2 µM ethidium homodimer dyes (L3324).
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Cell growth was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,-5-diphenyltetrazolium 

bromide assay (MTT; Sigma) according to the manufacturer’s instructions after a 4

incubation period in growth media at 37°C and 5% CO2.  

 

Immunostaining assays and flow cytometry.  The intracellular phospho-protein 

staining methodology is described elsewhere.29 Briefly, cells were fixed for 10 m

8 h 

in at 

room temperature with 1.5% paraformaldehyde (Electron Microscopy Sciences, Fort 

W

ashed 

hospho-

xa-

 

 

e 

 h.  Ten 

m liters of the culture is pelleted at 4300 rpm for 10 min and resuspended in 0.6 mL 

ashington, PA).  Cells were then washed and permeabilized by resuspending them 

vigorously in 100% ice-cold methanol.  To determine ERK activation, cells were w

twice at 3000 g for 10 min with staining buffer and resuspended in a solution of P

p44/42 MAPK (Thr202/Tyr204) (E10) mouse monoclonal antibody conjugated to Ale

488 at a 1:50 dilution (Cell Signaling Technology, Danvers, MA).  After a 1 h incubation

period at 4°C in the dark, cells were washed at 3000 g for 10 min and resuspended in 

PBS.  All flow cytometry measurements were performed on a BD FACScan (BD 

Biosciences, San Jose, CA) equipped with a 488-nm argon ion laser and three detection 

channels (FL1-H green, FL2-H yellow, and FL3-H red). Data was analyzed using FlowJo 

software (Tree Star, Ashland, OR).  

 

Pathogen growth and labeling with Alexa Fluor 488. Francisella tularensis subsp.

novicida strain Utah 112 (NR-13; BEI Resources, Manassas, VA) is grown in tryptic soy 

broth (BBL 211768) supplemented with 0.1% L-cysteine (TSBC).  An overnight cultur

is diluted 1:50 into 25 mL TSBC and grown at 37°C with shaking (200 rpm) for 4

illi
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st a-488 

 

 

 

05 

uot of Alexa-488 labeled bacteria was thawed and opsonized in 50% 

mouse complement serum (IMS-COMPL; Innovative Research, Novi, MI) for 30 min at 

37

 antibiotic-free growth media.  The coverglasses were 

centrifuged at 300 g for 10 min to increase the contact between bacteria and 

m rophages.  After a 3 h incubation at 37°C in 5% CO2, adherent cells were gently 

washed 4 tim  following a 5 min incubation with 0.5 mL 

B; Millipore, Billerica, MA).  DPBS was added up to 10 

g for 5 min; cells were resuspended in 

phenol red f

erile DPBS (14190-144; Invitrogen) containing 0.1 M sodium bicarbonate. Alex

dye (A20000) was resuspended in DMSO to 20 mg/mL, and was added to the cell 

suspension (0.4 mg dye per 10 mL of a mid-log culture), which was then rotated in the

dark for 1 h at room temperature.  The labeled cells were washed three times with 1 mL

DPBS, resuspended in 2.5 mL TSBC containing 20% glycerol, and aliquoted into 250 L 

freezer stocks.  Bacterial titers were determined by plate counts on TSBC agar.  

 

Macrophage infection.  The infection method for RAW264.7 mouse macrophages 

with F. tularensis subsp. novicida U112 is adapted from Lauriano et al.30 Briefly,

macrophages were seeded onto 2-wells chambered coverglasses (155379; Nunc, 

Rochester, NY) in antibiotic-free growth media one day prior to infection at 3.5x1

cells/well.  An aliq

°C and was resuspended in antibiotic-free growth media immediately prior to use.  

Macrophages were infected with subsp. novicida U112 at an input ratio of 200 bacteria 

per macrophage in 1 mL per well of

ac

es with DPBS and dissociated

cell dissociation solution (S-014-

mL, and the suspension was centrifuged at 300 

ree antibiotic-free growth media with 14% Optiprep for cell sorting. 
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Confocal microscopy.  Macrophages were imaged by laser-scanning confocal 

microscopy (MRC1024ES; Biorad, Hercules, CA).  For imaging, adherent macrophage

were infected on 4-wells chambered coverglasses (154526; Nunc), and stained with 5 

µg/mL CellMask Deep Red plasma memb

s 

rane dye (C10046) for 5 min at 37°C.  After 

one wa by 

o 

  

sh with PBS, cells were fixed with 2% paraformaldehyde for 30 min, followed 

three PBS washes.  Coverslips were mounted with ProLong Gold Antifade Reagent 

(P36934; Invitrogen) and allowed to dry overnight before imaging. The cell membrane 

stained with Deep Red plasma membrane dye was excited by the 635 nm laser line, while 

the pathogen labeled with Alexa-488 was excited at 488 nm. Three-dimensional 

reconstruction consisted of the acquisition of sequential 0.5-µm confocal images from an 

individual macrophage of 10-µm-thick section using 3D Doctor software (Able, 

Lexington, MA). 

   

Safety considerations.  Class IV lasers are dangerous and standard personal protective 

equipment should be used, including protective eyewear.  BSL2 practices were followed 

in handling the pathogenic sample. 

     

 

RESULTS AND DISCUSSION  

 

Principle and performance of µFACS 

As shown in Figure 1C, the center channel of our µFACS design is divided int

two distinct regions: an upstream flow cytometry and a downstream cell-sorting region.

 79



 

The sample stream entrained with cells is focused by two neighboring sheath flows into

10- to 15-

 a 

µm-wide vertical plane.  This planar focusing aligns the cells in a single-file 

manner  

ot of 

 

ze the interaction time between 

the lase ):  an 

a 

e 

aser spot 

tory, 

.  As a result, each cell is detected and analyzed sequentially by an interrogation

laser and then sorted by a near-IR laser.   

To illustrate the sorting principle and the decision-making process outlined in 

Figure 2, a sequence of four bright-field images are extracted from a high-speed movie 

(Supplemental Figure 1).  A hydrodynamically focused macrophage traversing the sp

the interrogation laser generates a forward-scattering signal detected by a photomultiplier

tube (Figure 2A).  This signal is compared to a threshold voltage, which serves as the 

decision-making criteria for sorting.  Crossing this threshold, the signal generates a TTL 

pulse after a predetermined delay (8 ms), corresponding to a 6 mm/s cell velocity to 

travel from the 488-nm laser spot to the near-IR laser spot.  This TTL pulse triggers a 

function generator sending a negative ramp function to the AOM, which rasters the near-

IR laser.  The shape of the function is important to maximi

r and the cell.  The function consists of four events (Supplemental Figure 2

immediate rise to turn on the near-IR laser at the center of the focused-sample stream; 

plateau to hold the beam in place until the cell arrives; a negative slope to translate the 

beam at a defined angle (22 deg) for a distance of 54 m; and a rapid fall to turn off th

laser resetting it for the next sorting event.  When the cell enters the near-IR l

(Figure 2B), the laser starts translating at the same speed, but with a different trajec

than that of the cell.  This difference results in gradient forces that deflect the cell 

laterally (Figure 2C).  The overall effect is a displacement of a macrophage from the 

center of the channel to a neighboring flow stream (Figure 2D).  The laminar nature of 
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fluid flows in microfluidics ensures that the cell will stay on this path for downstream 

binning.  

The 150-m-wide central channel is bifurcated into 80-m-wide waste and 70-

m-wide collection channels (Figure 1C).  The channel lengths and widths have been 

optimized in COMSOL finite elemental analysis software such that the hydrodynamica

focused flow is directed into the waste c

lly 

hannel allowing only deflected cells to enter the 

collecti

ry.  

ts 

to 

e 

t 

f 

itive 

 into a collection 

hannel.  All inputs and outputs (sample, waste, and collection) are analyzed off-chip by 

sorting put, we 

on channel.  Although the exact split geometry is not critical for sorting, the 

configuration shown in Figure 1C is preferred to a symmetrical T- or Y-type geomet

The side-split geometry is more tolerant for sorting partially deflected cells and preven

aggregates from entering the collection channel.  In addition, this design is less likely 

have cells lodged irreversibly at the sorting interface, which ultimately increases chip 

lifetime.  Further improvements to the sorting efficiency can be gained by adjusting th

pressure balance at the outlet ports in real-time, thereby refining the exact location of the 

focused sample stream with respect to the split geometry. 

Cell sorters are commonly characterized by three metrics: (1) throughpu

represents the average number of cells analyzed and sorted during a defined period o

time; (2) recovery is the ratio between the number of cells that were sorted and the total 

number of cells that should have been sorted; and (3) purity is the fraction of pos

cells in the collected sample.  To measure all three metrics for our system, a 

predetermined ratio of green-labeled to red-labeled cells is sorted

c

fluorescence microscopy and by a benchtop FACScan flow cytometer, which requires 

 tens of thousands of cells with our device.  To achieve sufficient through
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favored high initial cell densities (4 x 106 cell/mL), fast cell velocities (21 mm/s), and a 

small angular deflection (13 deg).  The first two factors result in small distances between 

successive cells and in large drag forces, increasing the probability of a miss and thus 

decreasing recovery.  A small angular deflection results in a small cell displaceme

increasing chances that unwanted cells accidentally enter the collection channel (false 

positive) and decreasing overall purity. 

Three different ratios of green-labeled to red-labeled macrophages (10/90, 40

and 90/10) were tested on our optical cell sorter (Table 1). We sorted green-labeled 

macrophages from a 40/60 ratio and all inputs and outputs were analyzed off-chip by 

microscopy imaging (Figure 3A). A total of 38,877 cells were sorted at a throughput 

of 22 cells/s with 93% purity and 60% recovery.  The high purity achieved is further 

confirmed by FACScan flow cytometry, where only the green cells subpopulation is 

detected in the collection channel (Figure 3B). Overall, cell throughput ranges from 14

nt, thus 

/60, 

 to 

22 cells phage 

al tweezers. 

 

/s.  Variation in throughput between experiments is likely caused by macro

aggregation and settling in the fluid reservoir.  This effect limited each sorting 

experiment to a period of 30 min.  As expected, purity increases with an increasing 

fraction of green cells in the initial mixture since the probability of a false positive is 

weighted by the fraction of green cells in the initial sample. For all three sorting 

experiments, the key feature of our optical cell sorter is the high purity achieved; a 

characteristic of a sorting mechanism based on optic

Effect of IR laser on viability, activation, and functionality of mouse macrophages  

  To efficiently overcome the drag forces associated with a macrophage 
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cell (diameter 10-15 m) and achieve rapid cell sorting (~20 cells/s), high near-IR 

power is required at the sample (9.6 watts).  We believe that macrophages should not be 

damaged by this intense laser light for three reasons: (1) at 1064 nm, most of the ligh

refracted into the cell and its surrounding avoiding heat-related damages through 

absorbance;23 (2) each cell is briefly exposed to the laser (< 4 ms) minimizing the amount 

of energy delivered (< 37 mJ/cell); (3) similar optical manipulation of HeLa18 and BaF

cells21 have resulted in no obvious cell damage.  Nevertheless, macrophages are the 

primary sentry cells for the immune system; and in their role, macrophages are highly 

sensitive cells that can respond directly and indirectly to a number of stimuli, in

cytokines,31 virus,31 peptides,32 and ionizing radiation.33 It is therefore essential to ensure 

that exposure of macrophages to this intense laser light does not affect the signaling 

mechanism of the cell.  To answer this question, we compared the viability, prolifer

activation state, and functionality of IR-exposed and unexposed mouse macrophage

The viability of macrophages sorted through our device was assessed by a 

conventional live-dead assay, where calcein AM detects intracellular esterase activity and

ethidium homodimer checks for membrane integrity. The difference in viability between 

IR-exposed (91%) and unexposed cells (95

laser 

t is 

3 

cluding 

ation, 

s. 

 

%) was found not to be significant (p < 0.05).  

Cell pr

as found 

 

he Toll-

oliferation was assessed in triplicates 48 h after laser light exposure by an MTT 

colorimetric assay, which measures mitochondrial activity. Cell proliferation w

to be similar in both samples (> 85% viable cells).  

MAP kinases ERK, a specialized intracellular signal relay protein, and NF-κB, a

multi-subunit transcription factor, are considered important activation nodes of t

like receptor 4 pathway, relevant to hematopoietic immune cells activation such as 
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macrophages and dendritic cells.34  We investigated activation of IR-exposed and 

unexpo  

ith 

y 

 (LPS), a component of Gram-negative bacterial cell walls 

and a potent stimulator of macrophages, was used as a positive (+ LPS) and negative 

try 

showed

his 

ce of 

 was confirmed by conventional flow cytometry (Figure 4C).  

The flu  

sed macrophages by the phosphorylation of ERK and the nuclear translocation of

NF-κB.  The phosphorylation of ERK was measured by staining macrophages w

fluorescently labeled phosphospecific antibody followed by off-chip flow cytometr

analysis.29  Lipopolysaccharide

control (- LPS) to show relative shifts in fluorescence distribution.  Flow cytome

 no difference in the degree of ERK phosphorylation between IR-exposed and 

unexposed cells (Figure 4A).  Additionally, IR-exposed cells showed a similar 

fluorescent distribution as the negative control suggesting that the ERK pathway stays 

inactive.  To monitor nuclear translocation of NF-κB, RelA, one of the subunits of NF-

κB, was tagged with GFP in a stably transfected macrophage cell line.  RelA-GFP 

expressing cells were sorted and imaged off-chip using conventional fluorescence 

microscopy.  The presence of RelA in the cytosolic part of sorted cells showed that NF-

κB was not translocated into the nucleus following optical deflection (Figure 4B).  T

result indicates that macrophages were not activated and is consistent with the absen

ERK phosphorylation after IR exposure.  

Finally, we verified that the functionality of signaling pathways is conserved in 

IR-exposed macrophages by subjecting them to a 45-min LPS challenge.  The 

phosphorylation of ERK

orescence distribution of LPS challenged IR-exposed macrophages shows good

overlap with the positive control (+ LPS, unexposed). Furthermore, GFP-RelA 

translocated into the nucleus thus ruling out any passivation of the signaling pathway 
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(Figure 4D). 

Overall, we are confident that brief exposure (< 4 ms) of powerful near-IR laser 

light (9.6 watts) does not affect the viability, proliferation, activation state, and 

functionality of mouse macrophages thus validating optical deflection as a sorting 

mechanism for macrophages. 

   

Infection of mouse macrophages by Francisella Tularensis subsp. novicida  

sella 

 does not affect the pathogen viability 

as asses

al 

n 

-

e phagocytic capacity of RAW 264.7 macrophages for F. tularensis subsp. 

vicida labeled externally with Alexa-488 was characterized by laser-scanning confocal 

w cytometry.  The macrophage membrane was stained with a red 

To isolate a subpopulation of highly infected mouse macrophages, Franci

tularensis subsp. novicida was labeled with the amine-reactive Alexa-488 succinimidyl 

ester. This labeling strategy is derived from fluorescein isothiocyanate labeled bacteria 

used for phagocytosis studies.35 Alexa-488 labeling

sed by dilution plating (data not shown).  RAW 264.7 mouse macrophages were 

infected at 37°C for 3 h at a 200:1 multiplicity of infection (MOI), the ratio of bacteri

cells to macrophages. Such high MOI might be surprising given the fact that as few as 

10 organisms of the subspecies tularensis can cause severe diseases.25 It is however 

consistent with previous results showing that a 500:1 MOI is required to achieve an 

averaged uptake of 2 attenuated live vaccinate strain bacteria derived from F. tularensis 

subsp. holarctica per J774 mouse macrophage.36 Similarly, Bolger et al.37 have show

that a 400:1 MOI is needed for this bacteria to infect 50% of the murine bone marrow

derived macrophages.  

Th

no

microscopy and flo
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amphip

face-

d 

e 

er macrophage 

igure 5B).  This variability is illustrated in Figure 5C, where fluorescence microscopy 

ows three, one, or no labeled pathogen per cell.  

our microfluidic-based optical cell sorter for host-pathogen 

ell 

 

wer than 

evertheless, the 93% purity 

chieved in the collected sample confirms the high selectivity of the method.  

   

athic dye prior to the infection with the green-labeled pathogen. The 3D 

reconstruction of the infected pathogen shows both an internalized as well as a sur

adherent bacteria (Figure 5A). To assess the extent of bacteria internalization, we 

performed a flow cytometry assay with Trypan blue, a vital stain that quenches Alexa-

488 fluorescence of surface-adherent bacteria.35  The addition of Trypan blue (0.12%) di

not significantly shift the fluorescence histogram, suggesting that the majority of th

bacteria are located inside the macrophages (data not shown).   

Flow cytometry on infected macrophages results in a broad fluorescence 

histogram indicating a wide variation in the number of labeled pathogens p

(F

sh

As an application of 

studies, we isolated a subpopulation of highly infected mouse macrophages from an 

initial mixture of uninfected and infected macrophages (Figure 6).  This mixture as w

as the samples recovered from the waste and collection channels were analyzed off-chip

by a FACScan flow cytometer. A total of 10,738 cells were sorted at a throughput of 11 

cells/s with 93% purity and 39% recovery. The throughput and recovery were lo

that of the green and red mixture of macrophages (see Table 1) due to the increased 

tendency of infected macrophages to form aggregates. N

a

   

CONCLUSIONS  
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 Microfluidic-based cell sorter using optical deflection as a sorting mechanism is

 approach for selecting a subpopulation of live, unstressed, and functional 

 a 

proven

macrop es infected with Francisella tularensis 

p. f 

ecomes 

ell 

cal 

cell sorting an enabling technology towards multiplexed measurements on an integrated 

platform ty. 
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FIGURE LEGENDS 

 

Figure 1. Schematic of FACS based on optical forces. A) Instrument layout with laser-

induced fluorescence (LIF) excitation and emission paths, forward scattering detection, 

optical tweezers, and world-to-chip interface; B) Microfluidic chip of two independent 

rting modules with inlets on the left and outlets on the right; C) Close-up on flow 

ytometry and sorting regions of chip where sample (blue dye) is hydrodynamically 

focused by two neighboring sheath flow (yellow) and split between a waste (left) and 

collection channel (right). The two hairpin turns reorient both channels into to the field of 

view to visually confirm sorted cells. 

 

 

so

c
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Figure 2. Principle and illustration of FACS based on optical forces. A 

hydrodynamically focused macrophage is: A) detected by forward scattering; B) enters 

the near-IR laser spot; C) is deflected by optical gradient forces; D) and finally released 

in a different laminar flow stream. The corresponding high-speed movie can be found in 

the Supplemental Information. 
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Figure 3. Characterization of FACS performances by fluorescence microscopy (A)

flow cytometry (B). A mixture of 40% green-labeled and 60% red-labeled macrophages 

(A1), is sorted into a collection channel with 93% purity (A2), and into a waste channel

with 60% recovery (A3). Benchtop FACScan flow cytometry confirms high purity in the 

collection channel (solid line). 
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Figure 4. Activation state and functionality of mouse macrophages briefly (< 4 ms) 

exposed to 1064-nm laser light (9.6 W at the sample). Phosphospecific immunostaining 

followed by flow cytometry analysis shows that ERK remains unphosphorylated 

Fluorescence microscopy confirms that GFP-RelA is located in the cytosol (B). 

LPS challenge, ERK is phosphorylated (C) and nuclear translocation of GFP-RelA occur

(D). 

(A).  
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Figure 5. Infection of mouse macrophages by Alexa-488 labeled Francisella tularens

subsp. novicida. A) 3D reconstruction of stacked confocal images showing internalized 

as well as surface-adherent bacteria.  B) Broad fluorescence histogram taken by 

FACScan flow cytometer indicating variability in the number of pathogens per 

macrophage.  C) Variability in the number of pathogens (green) per m

is 

acrophage shown 

by fluorescence microscopy.  
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Figure 6. Isolation of a subpopulation of macrophages highly infected by Alexa-488 

labeled Francisella tularensis subsp. novicida. Off-chip FACScan flow cytometry data 

for: initial mixture of infected and uninfected macrophages (red); waste channel (gre

and collection channel (blue). A total of 10,738 cells were sorted at a throughput of 11 

cells/s

en); 

 with 93% purity and 39% recovery. 
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Table 1. FACS performances at different ratios of green- to red-labeled macrophages. 

e initial cell density was set at 4x106 cells/mL before loading the cells into the chip. 

d by fluorescence m

Th

Recovery and purity were determine icroscopy (errors set as the 

asured in real 

e. 

21,698 

standard deviation of 5 fields of view); throughput and cell number were me

tim

Green cells / red cells Throughput [cells/s] Recovery [%] Purity [%] Cell number 

90/10 16 55 ± 5 97 ± 3 

40/60 22 60 ± 10 93 ± 3 38,8

10/90 14 63 ± 9 75 ± 10 24,847 
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5. Dosage-dependent heterogeneous NF-kB response to
LPS stimulation: computational model and single cell 

 

, Bryan Carson, and Anup Singh  

gy the understanding has been prevalent, that a biological response 

ictable, robustly uniform and 

mogeneous. However, due to very recent technical advances in single cell level 

 to understand the probabilistic nature of the biological response. In fact, 

e see that these responses are rather uncertain, heterogeneous, and individualistic at the 

ing 

tants. 

 patterns, 

anslocation dynamic patterns are much more mixed, 

us more heterogeneous, with low dosage (1 nM) stimulation than with high dosage 

e a 

experiment 
Jaewook Joo, Jens Poschet, Cathy Branda

 

Abstract:  

Introduction: In biolo

to a known stimulus should be absolutely pred

ho

studies, we begin

w

level of single cells, when confronted with a specific challenge. We study NF-B 

translocation dynamics as a response to different stimulatory dosages of E. Coli LPS in 

single macrophages (RAW264.7 cells). Here, we present the dosage-dependent 

characteristics of NF-B translocation patterns, predicted and explained by a 

computational model and corroborated and verified by a single cell fluorescence imag

technique.  

Methods: To make the model specific to LPS stimulation, we incorporate into the 

computational model the following signaling pathways: TLR4-MyD88-NF-B, TNF-R 

and TNF autocrine positive feedback loop. In addition, our computational model is 

designed to simulate heterogeneous NF-B response in single cells, by taking into 

account the cell-to-cell variability in key protein copy numbers and kinetic rate cons

Results: First, the NF-B translocation dynamic pattern in single cells is found to be 

quite heterogeneous; some cells show damped oscillations, some single-peaked

and others rising patterns. These tr

th

stimulation (100 nM). Second, for high dosage stimulation, a majority of the 

translocation patterns are highly oscillatory, which is in contrast to the previously 

published work by Covert et al. Third, for low dosage stimulation, most of the cells tak
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rising pattern. Using the model only, we demonstrate that this rising pattern is due to the 

TNF autocrine signaling effect.  

Conclusion: This work will contribute to a novel and profound understanding on how 

single cells respond to different stimulatory dosage, using the computational modeling 

and bench-top experimental techniques.  

Key Words: single cell behavior; protein dynamics; NF-kappaB translocation; extrinsic

noise; cell-to-cell variability; TNF alpha autocrine signaling; computational model; 

fluorescence imaging  

Target Journal: Molecular Systems Biology 

  

I. Introduction 

 

Integration of computation and single cell fluorescence imaging technique to 

unravel single-cell behavior: A computational model, if corroborated with experimental 

data, can be transformed into a powerful analytic and predictive tool and can be used to

decipher "counter intuitive"

 

 

 signaling and/or gene-regulatory phenomena and to redirect 

e biological research by predicting new biological phenomena with novel insights. 

tor 

his new 

mulus 

 al 

imulus-responsive pleiotropic regulator of gene control and plays significant roles on 

th

Advancement in single cell fluorescence imaging technique makes possible to moni

the protein dynamics within single cells (Nelson et al 2004; Lahav et al 2004). T

technique enables us to revisit, reinterpret, and even challenge previously well-accepted 

deterministic viewpoint prevalent in biology: a biological response to a known sti

should be absolutely predictable, robustly uniform and homogeneous. In this paper we 

investigate dosage-dependent NF-B response to E. Coli Lipopolyssachride (LPS) 

stimulation and re-examine the findings reported in the previous studies (Werner et

2005; Covert et al 2005), employing both computational model and single cell 

fluorescence imaging technique.  

 

Importance of NF-B nucleo-cytoplasmic translocation dynamics: NF-B is a 

st

various parts of the immune system such as differentiation of immune system such as 

differentiation of immune cells, development of lymphoid organs, and immune activation 
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(Hoffmann et al., 2006; Verma and Stevenson, 2006). NF-B shuttling between nu

and cytoplasm is directly related to the control of the expression of NF-B target gene

and thus bears physiological importance. This shuttling is auto-regulated by IKK- NF-

B-IB-A20 signaling module, which consists of four proteins, inhibitor B (IB; the

are at least three isoforms of it), IB kinase (IKK), A20, and NF-B. In the abs

external stimulus, IB forms a heterodimeric complex with NF-B, preventing NF-B 

from entering into the nucleus. Stimulation induces the nucleo-localization of NF-

IKK is phosphoryled, phosphorylated IKK catalyses the ubiquitin-assisted degradation 

IB from IB: NF-B complex, and as a result, NF-B is freed up to shuttle into the 

nucleus, initiating transcription of NF-B target genes such as inflammatory cytoki

(TNF , IL-1, IL-6), chemotactic cytokines (MIP-1), anti-apoptic (IAPs), and lastly bu

most importantly NF-B signal termination (IB isoforms and A20) (reference). NF-B 

signal terminating proteins (IB isoforms and A20) form time-delayed negative feedba

loops and NF-B can readily oscillate between nucleus and cytoplasm in its own right 

(Novak and Tyson 2008).  

  

NF-B translocation dynamics at a population of cells and at single cells when 

stimulated by TNF: TNF stimulation induces a damped oscillatory NF-B 

translocation pattern in a population of the wild type (embryonic mouse fibroblast) cells 

(Hoffmann et al 2002). When the mutant cells with IB and IB double genes 

cleus 

s 

re 

ence of 

B: 

of 

nes 

t 

ck 

nocked-out are stimulated by TNF, NF-B dynamics averaged over the millions of 

 

l in ref. 

 

k

cells is highly oscillatory whereas in a population of the mutant cells with either other

IB double genes knocked-out or A20 gene knocked-out, NF-B dynamics is non-

oscillatory (or single-peaked). On the contrary, Nelson et al reported that, when 

fluorescence reporters of RelA and IB proteins are constructed into the wild type 

human AS-SK cells, NF-B translocation dynamics at those single cells take a quasi-

sustained oscillatory pattern, which lasts about 12 hours after TNF stimulation.  

 

NF-B response at a population of cells when stimulated by LPS: Covert et a

(Covert et al. 2005) showed that when stimulated by LPS the NF-B dynamics averaged
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over a population of the murine macrophages takes a non-oscillatory pattern (or a 

monotone increasing pattern). They conjectured that the source of this stable NF-B 

response is a time difference (anti-phase) between two signals reaching IKK: one sign

comes directly from TLR4-MyD88 dependent signaling pathway and another comes 

indirectly after time-delay from TNF-R signaling pathway activated by TNF 

synthesized by the activated pathway of TLR4-TRIF-IRF3. Werner et al in ref. (Werner 

et al 2005) presented the comparative study between the TNF-stimulated NF-B 

dynamics and the LPS-stimulated NF-B dynamics: For TNF stimulation, both IKK 

and NF-B profiles quickly die out after their single strong peak. For LPS stimulation, 

however, the level of IKK and NF-B profiles increase over two hours. They also 

conjectured that LPS-induced NF-B dynamics is due to the TNF autocrine signa

(or the effect of (+) feedback loop). Bosisio et al in ref. (Bosisio et al 2006) monitored 

NF-B-bound IB promoter activity. The promoter activity upon TNF stimulation 

shows a strong first pulse followed by very weak subsequent pulses: TNF-R pathway

quickly inactivated right after TNF

al 

ling 

 is 

 stimulation. However, the promoter activity upon 

PS stimulation demonstrates the first pulse followed by the stronger second pulse: 

prolonged 

with 

Bβ and IBε make the NF-B dynamics more damped (Hoffmann et al., 

L

TLR4 pathway activation is maintained for a prolonged duration for the case of LPS 

stimulation. All the previous studies agree that LPS stimulation may maintain 

pathway activation and induce a rising NF-B profile, conjecturing that TNF autocrine 

signaling may contribute to this characteristic of LPS stimulation.  

 

Computational studies of NF-B signaling: None of previous computational work 

modeled TNF autocrine signaling. Based upon accumulated knowledge of NF-B 

signaling, Hoffmann et al built up a complex biochemical network model of IKK-NF-

B-IB signaling (Hoffmann et al., 2002). This model was particularly corroborated 

their experimental data to prove the functional roles of three isoforms of IB: IB is 

responsible for sustained oscillatory translocation of NF-B between cytoplasm and 

nucleus while I

2002). Lipniacki et al adds a negative regulator of A20 to the previous model of 

Hoffmann et al with an assumption that A20 inactivates NF-B signaling by inhibiting 
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IKK phosphorylation (Lee et al 2000; Lipniacki et al., 2004). They reaffirmed the 

experimental findings of Lee et al that the A20 knocked-out mutant shows the hyper-

activity of NF-B. Hoffmann’s group later on modified their model in various minor 

manners, but all of their variants share the same core components with their original 

model (Werner et al 2005; Cheong et al; other references). While the previous modeling 

efforts have been mainly focused on the deterministic methods (neglecting noise)

and Jayapra

, Hayot 

kash used a stochastic model of NF-B signaling network to investigate the 

ffect of both intrinsic and extrinsic noise on NF-B translocation dynamics (Hayot and 

stic 

ics. In 

lators of 

nents 

p on 

, 

  

e

Jayaprakash 2006). They showed that averaging over many realizations of the stocha

NF-B signaling system could unravel the discrepancy between oscillatory behaviors at 

single cells and damped-oscillation at a population of the cells. They also partially 

studied the effect of extrinsic noise (kinetic parameter variations) on protein dynam

addition, we investigated the intrinsic noise-induced oscillation of NF-B and 

demonstrated its robustness against fluctuations in kinetic parameters (interpreted as 

extrinsic noise) (Joo et al 2008a). 

 

Our intention to study the effect of TNFa autocrine signaling to NFKB response: As 

shown in Fig. 1 and discussed in details in methods section, we make a novel 

comprehensive NF-B signaling network model consisting of the negative regu

A20 and three isoforms of IB. Moreover, we add TNFα autocrine signaling compo

to the comprehensive NF-B network and investigate the effect of (+) feedback loo

NF-B dynamics. (+) feedback loops are prevalent in biology: for example, cell-cycle

p53, and developmental mechanisms (reference). (+) feedback loop in EGFR pathway 

induces bistability (or hysteresis) and a combination of (+) and (-) feedback loops brings 

about relaxation oscillation (Kholodenko Nature Mol. Cell. Biol. 2006). In a system 

equipped with both (+) and (-) feedback loops, (+) feedback provides the (-) feedback 

loop-generated oscillation with tunable period and robustness (Tsai et al Science 2008).  

 

LPS-stimulated NF- B response at single cells: As TNF -stimulated NF- B response 

differ between at a population of the cells (Hoffmann et al Science 2002) and at the single 
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cells (Nelson et al Science 2005), LPS-stimulated NF-B response at single cells is

expected to be quite different from the previously reported data at a population o

cells (covert el al science 2005; Werner et al Science 2005; Bosisio et al EMBO 2006). 

The previous conjecture about the effect of (+) feedback loop on the NF-B dynamics 

needs to be validated both experimentally and theoretically at the level of single cells. In 

addition, this effect on NF-B dynamics is expected to depend on the dosage of 

stimulant.  

 

Summary of our results: In this paper, we study NF-B translocation dynamics in 

single macrophages (RAW264.7 cells) as a response to two different dosages (1 nM a

100 nM) of E. Coli Lipopolyssachride (LPS), especially the effect of TNFautocrine 

signaling on NF-B response. To make the computational model specific to LPS 

stimulation and inclusive of TNF autocrine signaling, we incorporate into the 

computational model the signaling pathways of TLR4-MyD88-NF-B, TNF-R, and

TNF autocrine signaling (a positive feedback loop). In addition, our compu

 

f the 

nd 

 

tational 

odel is designed to simulate heterogeneous NF-B response in single cells, by taking 

the extrinsic noise-driven cell-to-cell variability. We predict and explain the 

osage-dependent characteristics of NF-B translocation dynamics at single cells by 

e of the 

arameter values in the TNF-R signaling pathway. The low equilibrium level of nuclear 

re 

uces 

w 

m

into account 

d

using the computational model, and corroborate and verify them by single cell 

fluorescence imaging experiments. First, using the computational model alone, we 

present that the TNF autocrine signaling induces the bistability, resulting in two 

equilibrium levels of nuclear NF-B and extracellular TNF in a broad rang

p

NF-B is four orders of magnitude times smaller than the high level. Assuming that the 

signaling system can have either one of two equilibrium levels of nuclear NF-B befo

LPS stimulation, we demonstrate that only the system with the low level of nuclear NF-

B exhibits noticeable NF-B response to the low (1 nM) dosage stimulation and the 

system with the high level is not responsive at all. For the high (100 nM) dosage 

stimulation, however, the system with either high or low level of nuclear NF-B ind

a similar dynamical response. Second, both the experiments and the computations sho
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that the LPS stimulation induces three heterogeneous dynamic patterns of NF-B 

translocation (single-peaked, damped oscillatory, and rising patterns) and their 

distribution is dosage-dependent. The high dosage (100 nM) stimulation induces more 

homogeneous dynamic patterns than the low dosage (1 nM). Third, both experiments a

computations reveal that, for the high (100 nM) dosage stimulation, both the majority an

their population average of the nuclear NF-B profiles at the level of single ce

nd 

d 

lls are 

ighly (under-damped) oscillatory, which is in contrast to the previous findings of Covert 

e 

 

 

 

l 

h

et al. On the contrary, the low (1 nM) dosage stimulation induces non-oscillatory 

dynamics (a rising pattern) of NF-B in the population average and almost a half of th

cells. Fourth, by using only the computational model, we validate the conjecture: the

TNF autocrine signaling is responsible for a rising pattern of NF-B. When stimulated 

by the low dosage (1nM), the TNF knocked-out computational model doesn’t give rise

to the rising pattern. Lastly, we use the real time quantitative PCR of A20 mRNA and 

IB mRNA to demonstrate the correlation between the dosage-dependent NF-B 

translocation dynamics and the expression profiles of NF-B target genes.  

 

II. Results  

 

A. Short summary: To unravel the underlying mechanisms of how the low and the high

LPS dosages induce different dynamic response of NF-B at the level of single cells, we 

employ the computer model to generate testable predictions of the characteristics of NF-

B dynamic response and verify them by single cell fluorescence imaging.  

 

B. Construction of a computational model to include TNF autocrine signaling: One 

of the NF-B target genes is TNF. A newly synthesized TNF followed by NF-B 

nuclear localization is released extracellularly and activates TNF pathway. This results 

in the activation of canonical NF-B signaling pathway and thus forms (+) feedback 

loop. A minimally required set of the activated pathways to model LPS-stimulated NF-

B dynamics should include TLR4-MyD88 dependent pathway, canonical NF-B 

pathway, TNF autocrine pathway, and TNF-R pathway. The computational mode
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network (detailed in method section) consists of TNF autocrine signaling (positive 

feedback loop) as well as (-) feedback loops by A20 and IB isoforms. The NF-B 

dynamics on this network is determined by the interplay between (+) and (-) feedback 

loops. The NF-B in the delayed (-) feedback loop oscillates in a restricted parameter 

space (Sneppen 2007; Joo et al 2008a) and It is expected that TNF (+) feedback loop 

can make this oscillation amplified and robust (Novak and Tyson 2008).  

 

C. Computational model predicts that TNF autocrine signaling induces the 

bistability and two equilibrium levels of nuclear NF-B before LPS stimulation:

TNF autocrine signaling, (+) feedback loop, gives rise to the bistability of NFKB 

response. For the analysis of the bistability, we consider only the TNF-R, ca

B, and TNF autocrine signaling pathways as shown in Fig. 1A. For the simplicity of 

our analysis, we suppose 

 

nonical NF-

that NF-B nuclear localization leads to the mRNA and protein 

nthesis of TNF followed by the export of intracellular TNF proteins without any 

ack 

 

 In 

F-B regulates the synthesis of TNF. As presented in Supporting 

ig. 1, as the strength of (+) feedback increases, both stationary levels of extracellular 

y at a 

s 

sy

additional regulatory mechanisms (reference from Bryan Carson). In the absence of 

external stimulus, nuclear NF-B level will ever increase if there exists only a (+) 

feedback loop. But, because our model system composes of both (+) and (-) feedb

loops, their interplay stabilizes the system. Moreover, (+) feedback loop introduces its 

well-known characteristics into the (-) feedback loop controlled system: bistability and 

amplification of the (-) feedback-driven behavior such as oscillation. To demonstrate the

existence of the bistability in our model system, we choose one of the kinetic reactions in 

TNF-R pathway, the activation of IKK by IKKKa as shown in Fig. 1A, and vary its rate 

to simulate the varying strength of (+) feedback loop. Both steady state levels of 

extracellular TNF and nuclear NF-B depend on the strength of (+) feedback loop.

fact, the extracellular level of TNF is inter-related with the nuclear level of NF-B 

because the nuclear N

F

TNF and nuclear NF-B discontinuously jump from a low to a high value sharpl

strength of (+) feedback. Likewise, as this strength decreases, both steady state response

discontinuously drop down from a high to a low value at the lower strength of (+) 
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feedback. This discontinuity is a signature of the bistability, but the bistable range of (+) 

feedback strength is too small to be recognizable in Supporting Fig. 1. Moreover, the 

levels of nuclear NF-B and TNF remains almost invariant across the four orders of 

magnitude of the change in (+) feedback loop strength except at the discontinuity: For a 

weak (+) feedback, the equilibrium level of nuclear NF-B is in order of 0.001 nM wh

it is in order of 10 nM for a strong (+) feedback. This leads us to conjecture that the 

canonical NF-B signaling system supplemented/amplified by TNF autocrine signaling 

can have either low or high equilibrium level of nuclear NF-B and its response to 

external stimulus can be dramatically different, depending on which strength of (+) 

feedback the signaling system possesses, or in the other words, wh

ile 

ich equilibrium level 

o 

le of 

es 

1000 replicate systems 

s shown in Fig. 2.  

amic 

s: 

B 

of nuclear NF-B the system has before the stimulation. This possibility is 

computationally explored and presented at a later section, but remains subject to future 

experimental validation. 

 

D. Computational model simulates extrinsic noise-driven cell-to-cell variability and 

heterogeneous NF-B response in single cells: We use a statistical ensemble analysis t

simulate the extrinsic noise and its effect on NF-B dynamics in the single cells 

(reference: Joo et al 2008b). To say about the analysis briefly, extrinsic noise is modeled 

as fluctuations in the network parameters such as the copy number of key proteins and 

kinetic rate constants. A population of the single cells is represented by an ensemb

1000 replicates of the signaling system and the network parameters of individual replicate 

are sampled from the uniform distribution defined uniquely by both the reference valu

of the kinetic rate constants and the universal interval size . For this paper, the 

heterogeneity measure is set to =30%. This statistical ensemble analysis generates 

heterogeneous NF-B dynamics collected from the ensemble of 

a

 

E. Computational model predicts dosage-dependent distribution of dyn

patterns and the lower dosage induces the more heterogeneous dynamic pattern

Each NF-B temporal profile is different from one replicate to anther. Individual NF-
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profiles, however, can be simply classified into one of four dynamic patterns: under-

damped oscillation, sustained oscillation, single-peaked pattern, or hyperbolic pattern. 

We stimulate the ensemble of the signaling system with two different stimulant streng

classify the resulting profiles of NF-B dynamics, and measure the percent of the profil

belonging to the class of a dynamic pattern for each dosage. High dosage stimulatio

(LPS=100

ths, 

es 

n 

 nM) leads to a skew distribution of the dynamic patterns: a majority of the 

 

on 

B transloca

lA 

 

 the maximum nuclear GFP 

tensity from a single movie shot. (We present only nuclear GFP intensity because the 

two to 

on, 

intensity in an individual cell. We take the average nuclear GFP-RelA intensity over 

those 40 cells captured in the field of microscopic observation. This average corresponds 

the millions of the cells in typical experimental measurements.  

 

nuclear NF-B profiles are oscillatory patterns. But, low dosage stimulation (LPS=1 nM)

induces the evenly distributed dynamic patterns and the more heterogeneous distributi

of the dynamic patterns. Thus, extrinsic noise drives cell-to-cell variability in NF-B 

response and high dosage stimulation suppresses this variability.  

F. Single cell fluorescence imaging enables us to monitor NF- tion 

patterns in single cells in real time: As discussed in method section, we tag the Re

protein with green fluorescent protein (GFP) and monitor the RelA translocation patterns

in the single cells in real time for four hours after LPS stimulation. The time-varying 

nuclear GFP intensity per cell is quantified and normalized by

in

cytoplasmic GFP intensity remains non-dynamical and invariant.) We take at least 

three movie replicates for each dosage and confirm that for the same dosage stimulati

the GFP-RelA dynamics is consistent between replicates. In Fig. 3A and 3B, about 40 

individual time-series are presented for each of two different E. Coli LPS dosage 

stimulations, 1 nM and 100 nM. Each curve represents the normalized nuclear GFP-RelA 

to a population level behavior, though the number of the cells is quite small compared to 

 

G. Single cell fluorescence imaging data verify dosage-dependent cell-to-cell 

variability in GFP-RelA dynamic response: Low dosage induces more 

heterogeneous response than high dosage. We calculate the standard deviation of 

nuclear GFP-RelA temporal profiles away from their average for low and high LPS 

dosage stimulations. The standard deviation decreases in time (until 160 minutes and then
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begins to increase at later times) for low LPS dosage stimulation while it increases for 

high LPS dosage stimulation as shown in the top panels in Fig. 3A and 3B. In addition,

each individual curve is classified into one of three dynamic patterns: under-damp

oscillation, rising pattern, and single-peaked pattern. This classification shows that the 

distribution of the dynamic patterns of GFP-RelA protein is dependent on the LPS 

dosage.  

Low dosage induces evenly distributed dynamic patterns while when stimulated by high

LPS dosage, about 75% of cells exhibit a single dynamic pattern, damped-oscillatory 

response. So we experimentally verify the model prediction that low dosage induce

more heterogeneous response in single cells than high dosage does. The above 

observation can be quantified by entropy measure, defined as H= Pi log Pi

i

 

ed 

 

s 

  where Pi  is 

mic pattern, which is a good indicator of heterogeneity of the 

ynamic patterns. The entropy amounts to H=0.33 for high dosage and H=0.46 for low 

re 

. 

ibrium 

g 

ty of the ensemble 

nd their ensemble average regardless of the strength of (+) feedback. In other words, the 

ibution 

a fraction of ith dyna

d

dosage. The higher entropy for lower dosage indicates that the dynamic patterns are mo

disordered and heterogeneous for lower dosage stimulation.  

 

H. Computational model predicts that high dosage induces highly oscillatory 

response: The computational model assumes that the LPS stimulation activates first 

TLR4-MyD88 dependent pathway and subsequently the (+) feedback loop consisting of 

canonical NF-B signaling, TNF autocrine signaling, and TNF-R signaling pathway

Before the LPS stimulation, the signaling system can reach either one of two equil

levels of nuclear NF-B, a low level for a weak (+) feedback and a high level for a stron

(+) feedback. We find that, upon high dosage stimulation (LPS=100 nM) to TLR4-

MyD88 dependent pathway, both weak and strong (+) feedback strengths induce the 

similar NF-B response. As shown in Fig. 3A, high dosage stimulation (LPS=100 nM) 

induces a highly (under-damped) oscillatory pattern in both a majori

a

ensemble consisting of the copy systems with different (+) feedback strengths and the 

resulting equilibrium levels of nuclear NF-B exhibits the fairly homogenous distr

of the NF-B dynamic response, which shoots up in less than one hour, followed by the 
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subsequent pulses with decreasing peak amplitudes. The underlying mechanism of the 

high dosage-stimulated NF-B behavior indifferent of  (+) feedback strength is rather

simple. The high dosage stimulation (LPS=100 nM) is strong enough to override 

whatever may be the pre-existing condition of the ensemble. The system with the high 

equilibrium level of nuclear NF-B, i.e., the one with strong (+) feedback, also have the 

high level of negative regulators of A20 and IB isoforms, which readily su

 

ppresses the 

uclear translocation of NF-B. On the one hand, if we were to observe the noticeable 

ial increase of nuclear NF-B level. In contrast to the oscillatory NF-

B response from high dosage stimulation, the low dosage induces a non-oscillatory 

F 

n

dynamic response of NF-B, the signal strength should be high enough to override the 

pre-existing strong negative regulation. On the other hand, we can expect that the 

sufficiently low dosage stimulation can induce quite a different NF-B response in the 

ensemble of the systems with weak (+) feedback strength than that with strong (+) 

feedback strength.   

 

I. Computational model predicts that low LPS dosage induces a rising pattern of 

nuclear NF-B: Upon low dosage stimulation (LPS=1 nM), the ensemble with strong 

(+) feedback strength exhibits totally different NF-B dynamic response from the 

ensemble with weak (+) feedback strength. As shown in Fig. 2, the former ensemble 

barely exhibits any noticeable change in nuclear NF-B level while the latter ensemble 

shows the substant



rising pattern of nuclear NF-B but only in the ensemble with weak (+) feedback 

strength. Both the majority of the individual profiles and their average show this rising 

pattern: The second peak of nuclear NF-B profile is as high as the first peak and the 

subsequent peaks increase in time until the nuclear NF-B level reaches its equilibrium 

level determined by the interplay of (-) and (+) feedbacks. The rising pattern of nuclear 

NF-B follows the rising profile of extracellular TNF in Fig. 2B.  

 

J. Computational model validates the conjecture that the TNF autocrine signaling 

is responsible for low dosage-induced rising pattern: We demonstrate that the 

underlying mechanism of this low dosage-induced rising pattern originates from TN
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autocrine signaling. To prove our assertion, we employ a standard biology technique of 

knocking out TNF and comparing two NF-B profiles, one from the wild type and 

another from the mutant. When TNF is knocked out, the rising trend of nuclear NF-B 

evidently present in the wild type disappears at once as shown in Fig. 2B. This in silico

knocked-out experiment partially confirms the undeniable effect of TNF (+) feedback 

loop on the rising pattern of nuclear NF-B upon low dosage stimulation.   

 

K. Single cell imaging data verify that high LPS dosage induces highly oscillatory 

NF-B response while low dosage induces a rising pattern: As shown in Fig. 3A,

high (100 nM) E. Coli LPS dosage stimulation, the majority of GFP-RelA profiles and

their average take an under-damped oscillatory pattern. The most common characteristic

of the individual GFP-RelA responses is the strong first peak followed by the weak 

second peak. As expected, the individual profiles of nuclear GFP-RelA in the single

are not at all similar to the monotone-increasing nuclear NF-B profile at the population

level reported in ref. (Covert et al 2005). On the contrary, the low (1 nM) E. Coli LPS

dosage stimulation induces a rising response of nuclear NF-B in both a majorit

GFP-RelA profiles and their average as shown in Fig. 3B. A characteristic of this rising 

pattern is the increasing peak amplitude of GFP-RelA: the large second pe

 

 upon 

 

 

 cells 

 

 

y of 

ak follows the 

all first peak.   

. Biological relevance of NF-B dynamic response is partially established by 

d A20:  

ssion 

he 

points 

sm

 

L

correlation between nuclear NF-B profile and mRNA profiles of IB an

We investigate the relationship between the NF-B dynamic response and the expre

of NF-B target genes. For this purpose, we use the quantitative RT-PCR to measure t

induction level of IB mRNA, A20 mRNA, and RelA mRNA at multiple time 

with and without stimulation with two different LPS dosages. The mRNA profiles are 

presented in Fig. 3C for 100 nM E. Coli LPS and in Fig. 3D for 1 nM E.Coli LPS. 

Without stimulation, the induction levels of all three mRNAs remain close to the level of 

house keeping genes with small fluctuations. In regard to the dynamic pattern, mRNA 

profiles show LPS-dosage independent behavior. For both 1 nM and 100 nM LPS 
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stimulations, two distinctive peaks are observed at the time points of 45 and 120 minutes, 

for both A20 mRNA and IB mRNA and the second peak is substantially smalle

the first peak. Upon high LPS dosage stimulation, the mRNA profile in Fig. 3C is nicely 

correlated with the NF-B response in Fig. 2A. The timing of the first and the second 

peaks of the mRNA profiles of A20 and IB correspond to the peaks of the nu

B, taking into consideration of about half an hour delay for mRNA synthesis. But, for 

low LPS dosage stimulation, the rising pattern of nuclear NF-B in Fig. 2B is not 

correlated with the mRNA profile in Fig. 3D: the source of the second peak of mRNA 

profile cannot be identified from the rising pattern of nuclear NF-B profile whose 

second peak occurs one hour after the occurrence of the second peak of mRNA. (This 

paradox seems to stem from our problematic comparison of the single cell level NF-B 

data with the population level mRNA data as well as their quite different temporal 

resolution (two minutes for NF-B and half an hour for mRNA) But, the ma u

induction level of A20 and IB depends on the LPS dosage. As shown in Fig. 3C and 

3D, the first peaks of A20 and IB mRNA profiles are substantially higher for the 

larger LPS dosage. In addition, RelA mRNA induction level is hardly changed 

throughout the course of stimulation except some fluctuations. This invariant RelA level 

confirms our assumption of a conservation of total NF-B copy number.  

 

III. Discussion 

 

r than 

clear NF-

xim m 

Significance of heterogeneous protein dynamics at the single cells: We 

its robustness and uniformity. Two points that are worth to mention are the source of this 

A. 

demonstrate that the NF-B protein dynamics in the identical cells under the same 

environmental conditions take not a uniform dynamic pattern, but a few well-defined 

heterogeneous dynamic patterns. This non-uniform cellular behavior among the 

individual cells cannot be easily derived from the population level measurements, and 

dramatically different from the previous assumptions about the biological dynamics, i.e., 

cell-to-cell variability in protein dynamics and its physiological consequence. Regarding 

the source, it remains still open what can derive this large cell-to-cell variability. Intrinsic 
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noise, defined as randomness of the collisions between biochemical species, alone ca

explain this heterogeneity because the observed dynamic patterns are much more 

heterogeneous than what intrinsic noise can generate (Hayot and Jayaprakash 2004; Joo 

et al 2008b). The other source is termed as extrinsic noise that originates from the

of the signaling system through the coupling of the system with the fluctuating 

environmental

nnot 

 outside 

 conditions and other noisy signaling and/or regulatory modules. Extrinsic 

oise affects all genes simultaneously and can be modeled as fluctuations in kinetic rate 

 to 

er, 

 

ample, Alon’s group exhibited the heterogeneous 

ynamics of a few proteins that are related to drug resistance (Uri Alon Science 2008). 

is 

rs 

e 

n

constants that influence fluctuations in the copy number of key proteins. Assuming that 

this extrinsic noise can certainly generate heterogeneous protein dynamics (Paulsson 

2004; Joo et al 2008a and 2008b), we proposed a novel statistical ensemble analysis

deal with the extrinsic noise-driven heterogeneity in ref. (Joo et al 2008b). In this pap

we validate our proposal by demonstrating that computationally simulated extrinsic noise 

can reproduce the experimentally observed heterogeneous dynamics of NF-B. 

Concerning physiological effect of extrinsic noise, this cell-to-cell variability in protein

dynamics significantly affects the cell-fate decision and can be a prominent source of 

drug resistance (reference). For ex

d

Because NF-B plays an important role in not only so many biological functions such as 

apoptosis, inflammation, immune cell differentiation but also cancer angiogenesis and 

chemotherapy, the observed large cell-to-cell variability in NF-B translocation 

dynamics should significantly affect the normal and the abnormal cellular functions. Th

connection needs to be investigated in the future.   

 

B. LPS induced NF-B response at a population level vs. at the level of single cells:  

Some of our results at the single cell level are in contrast to the previous observations at 

the population level (Covert et al 2005; Werner et al 2005). The difference between ou

and the previous studies arises from two sources: (1) the noise-driven dynamics in th

single cells and (2) the LPS dosage. Both Covert et al and Werner et al reported that, 

when the single murine macrophages are stimulated by LPS, the nuclear NF-B profile 

averaged over a population of the cells takes a monotone increasing pattern. They used 

two low LPS dosages, 0.1 g/ml (0.2 nM) and with 0.5 g/ml (1 nM). Consequently, 
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their nuclear NF-B profile resembles the rising pattern of nuclear NF-B profile, a 

characteristic dynamic profile of LPS 1 nM stimulation, as shown in Fig. 3B. Based on 

the high LPS dosage stimulation data from the single cells, homogeneous and oscillatory

NF-B dynamics, we speculate that the nuclear NF-B profiles averaged over a 

population of the cells will show oscillatory behavior when stimulated by high enough 

LPS dosage.  

 

. Significance of dosage-dependent protein dynamics: Our studies indicate that the 

ulant plays a significant role in the activation of inflammatory response 

nd/or cell apoptosis. We show that stimulant dosage is correlated with the nucleo-

s a 

 

t 

 space. It 

lso lacks the understanding of the potential dynamics that this network can give rise to. 

 

ps: 

 

n 

obust, and tunable. (Novak 

and Tyson 2008; Tsai et al 2008). In addition to those already known mechanisms, it is 

 

C

dosage of stim

a

cytoplasmic shuttling dynamics of a transcriptional protein NF-B, which is in turn  

related with its target gene expression profile. It has been taken granted that dosage ha

threshold behavior, i.e., response can occur only if the dosage is above the threshold

value. But, in our paper, we relate low/high LPS dosage not with on/off response, bu

with different protein dynamics. We emphasize that each pattern of protein dynamics 

must have message/information.  

 

D. Analysis of network motif consisting of both (+) and (-) feedback loops: We admit 

that our computational analysis is impartial and incomplete. The network is complex, 

large, and consists of many unknown parameters. Most of our conclusions are drawn 

from numerical simulations of the network only in a very restricted parameter

a

One possible solution to overcome this shortcoming is to reduce the complexity of the

model and analyze the dynamics in the reduced network. The network shown in Fig. 1A 

can be reduced to a simple network motif consisting of both (+) and (-) feedback loo

IB inhibits nuclear NF-B, nuclear NFKB inhibits IB through TNF autocrine 

signaling, NF-B activates mRNA IB which in turn activates protein IB. This

regulatory motif is equivalent to the “incoherently amplified negative feedback loop” 

(Novak and Tyson 2008). This delayed (-) feedback loop is known to oscillate in its ow

right and (+) feedback loop makes the oscillation amplified, r
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desirable to investigate (1) how its dynamics (or oscillatory behavior) depends on the 

namics 

t of both 

 

NF-B 

. Computational network model: A computational model consists of three modules, 

 

ay. 

f 

ops. 

R) 

l 

he above simplified description of TNF receptor signaling pathway was first 

dopted by Cho et al (reference), mimicking the MAPK signal cascade. This model is 

used by Lipniacki et al in their stochastic model (reference). 

LPS dosage at the different strength of (+) and (-) feedback loops, (2) how its dy

depends on the time-delay imposed on (+) and (-) feedback loops, (3) the effec

intrinsic and extrinsic noise on the NF-B dynamics in this reduced network, and (4) how

extracellular TNF contributes to homogenization and/or synchronization of the 

dynamics at a population of the single cells.  

 

 

IV. Methods 

 

1

one for the canonical NF-B signaling pathway shown in Fig. 2B, one for the TNF-R 

signaling pathway as shown in Fig. 2A, and one for the Toll like receptor 4 (TLR4-

MyD88-dependent) signaling pathway as shown in Fig. 2A. The TNF-R and TLR4

signaling pathways converge to IKK, placed on the entrance of the canonical NF-B 

signaling pathway. E. Coli LPS stimulates TLR4-MyD88-dependent signaling pathway. 

The signal propagates through this pathway and activates the canonical NF-B pathw

Then the activated NF-B translocates into the nucleus and initiates the transcription o

NF-B target genes. The newly synthesized TNF stimulates TNF-R signaling pathway 

and the NF-B signaling pathway, forming a positive feedback loop. Both A20 and IB 

isoforms are negative regulators and form multiple negative feedback lo

 

1a. TNF receptor signaling pathway: As shown in Fig. 2A, TNF receptors (TNF

become activated to be TNFR*, when bound by extracellular TNF proteins. TNFR* can 

be reversed to TNFR when unbound. Activated TNF receptors (TNFR*) transform 

inactive IKK kinase into activated IKK kinase (IKKKa), which in turn activates neutra

IB kinase (IKKn) into activated IKK (IKKa). This initiates the canonical NF-B 

signaling. T

a
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1b. TLR4-MyD88-dependent pathway: As shown in Fig. 2A, activation and 

inactivation of TLR4 occurs when LPS is bound or unbound to the receptors, 

respectively. Once LPS is bound to TLR4, the signal passes through a linear chain of the 

MyD88-dependent pathway and TAK can induce the activation of IKK (IKKa), 

activating the canonical NF-B signaling pathway. The linear chain model of TLR4 

signaling pathway was first used by Salvarjoo (FEBS Lett). This linear chain of multiple

proteins is greatly simplified to a single super node by Covert et al. The only difference 

here is that we impose the conservation of the TLR4 mass in time: the sum of TLR4 and 

TLR4* should equal to a constant.   

 

1c. Canonical NF-B signaling pathway (IKK-NF-B-IB-A20 signaling pathway): 

The NF-B signaling pathway shown in Fig. 2B represents a new comprehensive model, 

i.e., the up-to-dated network c

 

omprising IB kinase (IKK), NF-B, both negative 

gulators of A20 and IB isoforms (IB, IB, IB), and the protein complexes 

twork 

s 

erner et al., 2005).  

Ft is then 

 

re

formed by two or three of the constituents (Hoffmann et al., 2002; Lipniacki et al., 2004; 

Lipniacki et al., 2006; Cheong et al., 2006; Covert et al., 2005; Barken et al., 2005; 

Kearns et al., 2006; Nelson et al., 2005; Werner et al., 2005). This signaling pathway 

model also includes mRNA and protein syntheses of A20 and IB isoforms. The ne

consists of 70 kinetic rate constants and one initial concentration of NF-B, whose value

are taken from the literature (Lipniaki et al 2004; W

 

1d. TNF autocrine signaling: As shown in Fig. 2A, TNF-mediated autocrine 

signaling is modeled as follows: the synthesis rate of mRNA TNF (TNFt) depends on a 

saturating function of [NF-Bn] just as A20 mRNA and IKB mRNA do. TN

translated to intracellular TNF protein (TNFi). TNFi diffuses to extracellular space, 

becoming extracellular TNF (TNFe), which is bound to TNF-R, making it activated

TNF-R*.   
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2. Parameterization of the computational model with experimental data: The 

nominal values of most of the kinetic rate constants of the canonical NF-B signaling 

athway are taken from the literature (Lipniaki et al 2004; Werner et al., 2005). The 

rated 

. 

me 

e 

mputational model results should reproduce (Werner et al; 

 

 reporter construct: The pActin-EGFP-RelA construct was derived from 

ECFP-F-RelA, a kind gift from Dr. Allan Brasier (University of Texas Medical Branch).  

s replaced with a minimal 106bp human Actin 

t RAW264.7 

 

p

synthesis rates and the degradation rates of A20 mRNA and IB mRNA are calib

to reproduce the induction levels of the Q-PCR generated A20 mRNA and IB mRNA

The most significantly correlated parameter with NF-B translocation dynamics is total 

NF-B concentration and its value is taken from the literature (reference). The volu

ratio of cytoplasm to nucleus is the second most significantly correlated parameter with 

NF-B response and its average and variation are measured from ten RAW 264.7 murin

macrophage-like cells by Hyper-spectral imaging technique (reference). Other available 

experimental data, e.g., both the IKK temporal profiles and the IB promoter-bound 

NF-B profiles resulting from stimulation by either TNF or LPS, are used as the 

qualitative patterns that our co

Covert et al; (Bosisio et al).  

 

3. Numerical simulation of the computational network model: The network in Fig. 2A 

is translated to a system of ordinary differential equations (ODE). These equations are 

simulated with the initial values of total NF-B concentration and zero concentrations of 

all the other biochemical species. We simulate the ODE system until it reaches its 

equilibrium (33 hours) and then constantly stimulate the system and measure/record the

temporal profiles of various biochemical species.  

 

5. EGFP-RelA

p

ECFP was replaced with EGFP between the Age1 and BsrG1 sites, and the 

cytomegalovirus (CMV) promoter wa

promoter (1) cloned between the Ase1 and Nhe1 sites to reduce average expression 

levels.  The plasmid pBA-GFP-RelA was linearized and used to transfec

murine macrophage-like cells (ATCC) by Nucleofection (Amaxa Biosystems). 
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Transfected cells were grown for 12 days in the presence of G418, and a clone stably 

expressing GFP-RelA was isolated and named RG16.   

antitative RT-PCR: Total RNA is isolated from either 

90, 120, 180, and 240min. The total RNA 

med using Qiashredder, RNAeasy, 

bundances of A20 and IκBα mRNA are measured using TaqMan® qRT-PCR 

are 

 

ruvate, 

g/ml 

py, 3x105 cells are plated in 35mm glass coverslip bottom 

icroscope 

 air. 

  

S, Elowitz MB, Siggia, ED (2002) Intrinsic and extrinsic contributions to 

-637. 

 

6. RNA isolation and Qu

RAW264.7 or RG16 murine macrophages stimulated with 0nM, 1nM or 100nM E.coli 

LPS at the following timepoints: 0, 30, 45, 60, 

isolation is repeated on subsequent days to obtain two biological replicas for each 

experimental condition. Total RNA extraction is perfor

and DNase on-column kits from Qiagen.  RNA integrity is tested using a Bioanalyzer. 

Relative a

with 50ng RNA per reaction. Probes, primers, and one step reagents are purchased from 

ABI and reactions are run in triplicate using an ABI 7500 instrument. Abundances 

calculated relative to eukaryotic 18S rRNA using SDS v1.3 software (ABI). 

 

7. Cell Culture, Transfection, and Imaging: RAW 264.7 cells are grown in DMEM

supplemented with 10% fetal bovine serum, 2mM L-glutamine, 1mM sodium py

1x MEM nonessential amino acids, 20mM HEPES, 100 I.U./ml penicillin, and 100µ

streptomycin. For microsco

dishes 18-24 hours prior to stimulation and imaging.  Dishes are placed in a m

stage-top humidified microincubator at 37°C with continuous flow 5% CO2 in

Stimulation is initiated by addition of growth medium containing lipopolysaccharide.

Images are collected every 2-10 minutes for 4-6 hours. 
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igure Caption: 

igure 1: Extended network model of TNF-R, canonical NF-kappaB, and TLR4-MyD88 

ependent signaling pathway. In (A) the activation of TLR4-MyD88-dependent pathway 

y LPS leads to the activation of a canonical NF-kappaB signaling pathway, which in 

rn activates the TNF-R pathway through TNF autocrine signaling. (B) shows IKK-

appaB-NF-kappaB-A20 signaling pathway model.  
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Figure 2: Computational model prediction of the distribution of individual temporal 

profiles of the key biochemical species and their averages (thick solid lines) upon large 

dosage stimulation (LPS=100 nM) for (A) and small stimulation (LPS=1 nM) for (B).  

Top panel: nuclear NF-kappaB concentration. Bottom panel: extracellular TNFalpha 

concentration.   

 

Figure 3: Single cell fluorescence imaging data for the profiles of nuclear GFP-RelA 

protein and mRNA A20 and mRNA IkappaB alpha. (A) and (C) are for 100 nM dosage 

nd (D) are f nM L d e. In (A) an )

ution of indi l tem a files of nuclear GFP-RelA, 

 their st rd de io lack thick dashed lines); 

tte  risin tt and single k

m ) a ent th u

 m  obt  -PC f

d after stimulation (red li

ops u lity a w

F-kappaB. 

of LPS stimulation while (B) a or 1 PS osag d (B , top 

panels present both the distrib vidua por l pro

their averages (red thick lines), and anda viat ns (b

three panels show damped-oscillatory pa rns, g pa erns, -pea ed 

patterns, om the  second top to the bottofr . In (C nd (D) we pres e ind ction 

levels of IkappaBalpha mRNA and A20 RNA ained from Q-RT R be ore 

stimul ion (bat lack lines) an nes).  
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Table I. Biochemical reactions & associate action es ut a

aling network. Column I is the kinetic parameter, II is its units, 

 from the reference, IV is the rence d ur nomin a

led with  [1] are from Re ], th la ] are fr R

 use an average value betw those R & Ref. , 

ef. [Salvarjoo FEBS Lett], and those labeled from [5] are from Ref. 

M-1s-1, for [b] are o  are M s-1  re 

d re  rat  in our comp ation l model of 

the NF-κB sign III is its 

nominal value  refe , an  V is o al v lue. The 

reaction rates labe f. [39 ose beled [2 om ef. [45], 

those labeled [3] een  in ef. [39]  [45] those 

labeled [4] are from R

[Cho et al]. The units for [a] are s-1, f r [c] , and for [d] a

M. 

Reactions I II III IV V 
IKKa + IB

IBβ + NF-

a  IKKa_IBα Aα [a] 0.2 [1] 0.1813 
IKKa + IB

B  IBβ-NF-B Hβ [a] 0.5 [2] 0.7753 
IBε + NF-

b  IKKa_IBβ Aβ [a] 0.05 [3] 0.02997 
IKKa + IBe  IKKa

B  IBε-NF-B Hε [a] 0.5 [2] 0.2895 
IBαn + NF

_IBε Aε [a] 0.05 [3] 0.04244 
IKKa+IkBα-NF-B  IK

-Bn  IBαn-NF-Bn Hα [a] 0.5 [2] 0.4593 
IBβn + NF

Ka-IBα-NF-B .024 Bα [a] 1 [1] 1
IKKa+IkBβ-NF-

-Bn  IBβn-NF-Bn Hβ [a] 0.5 [2] 0.7753 
IBεn + NF-Bn  I

B  IKKa-IBβ-NF-B  .3683 Bβ [a] 0.25 [3] 0
IKKa+IkBε-NF-B 

Bεn-NF-Bn Hε [a] 0.5 [2] 0.2895 
NF-B  NF-Bn I1 [b] 0.00

 IKKa-IBε_NFkB  .42 Bε [a] 0.25 [3] 0
NF-Bn  NF-B

25 .003037 [1] 0
NF-Bn  NF-B K01

n + A20t 00005 .000000506 C1 [b] 0.00 [1] 0
0  A20t C2 [c] 0 [1] 0

 005 .00005537 [b] 0.00 [3] 0
IKKn  IKKa K1 [b] 0.00

 
A20t  0 C3 [b] 0.00

25 .003273 [1] 0
A20 +IKKa  A2

04 .0002438 [1] 0
A20t  A20t + A20 C4 [b] 0.5 [1] 0

0 + IKKi .07075 K2 [a] 0.1 [1] 0
IKKa  IKKi K3 [b] 0.00

.5807 
A20  0 C5 [b] 0.0003

15 .00202 [1] 0
0  IKKn Kpro

 .0003769 [1] 0
IKKa-IB  IKK

d 0025 .000009752 [c] 0.00 [1] 0
IKKn, IKKa, or IKKi 

a + IBα 5 .002046 Dα [b] 0.0012 [2] 0
IKKa-IBβ  IKKa + IBβ Dβ [b] 0.0017

 0 g 0125 .0001561 Kde [b] 0.00 [1] 0
Volume ratio of cytoplasm 

5 .0005609 [2] 0
IKKa-IBε  IKKa

to nucleus ariable Kv 1 5 [1] V
IBαn-NF-Bn 

 + IBε 5 .002142 Dε [b] 0.0017 [2] 0
IKKa-IBα-NF-B  IKK

 IBα-NF-B .013979 Lα [b] 0.01 [1] 0
IBβn-NF-Bn  IBβ-NF-

a + IBα-NF-B 5 .002046 Dα [b] 0.0012 [2] 0
IKKa-IkBβ-NF-B  IKKa +

B .001567 Lβ [b] 0.005 [3] 0
IBεn-NF-Bn  I

 IBβ-NF-B 5 .000561 Dβ [b] 0.0017 [2] 0
IKKa-IBε-NF-

Bε-NF-B .006583 Lε [b] 0.005 [3] 0
IBα-NF-B  NF-B Mα [b] 0.0000

B  IKKa + IBε-NF-B 5 .002142 Dε [b] 0.0017 [2] 0
IKKa-IBα-NF

25 .00002837 [1] 0
IBβ-NF-B  NF-B Mβ [b] 0.0000

-B  IKKa-IBα + NF-B 01 .00000144 Eα [b] 0.0000 [2] 0

25 .00003609 [3] 0
IBε-NF-B 

Ka-IBβ-NF-B  IKKa-IBβ + NF-B Eβ [b] 0.000001 [2] 0.00000124 IK

 NF-B 25 .00000866 Mε [b] 0.0000 [3] 0
IKKa-IBα-NF-B  IKKa + NF-B .12928 Pα [b] 0.1 [1] 0

IKKa-IBε-NF-B  IKKa-IBε + NF-B Eε [b] 0.000001 [2] 0.00000064 
Ka-IBβ-NF-B  IKKa + NF-B Pβ [b] 0.05 [3] 0.06454 IK

IKKa-IBα + NF-B  IKKa-IBα-NF-B Fα [a] 0.5 [2] 0.3789 
IK

Ka-IBε-NF-B  IKKa + NF-B Pε [b] 0.05 [3] 0.08434 IK

Ka-IBβ + NF-B  IKKa-IBβ-NF-B Fβ [a] 0.5 [2] 0.2135 
IBαn  IBα Qα [b] 0.0005 [1] 0.0005123 

IKKa-IBε + NF-B  IKKa-IBε-NF-B Fε [a] 0.5 [2] 0.3528 
I

IBα-NF-B  NF-B + IBα Gα [b] 0.000001 [2] 0.00000064 
I

Bβn  IBβ Qβ [b] 0.0005 [3] 0.0007398 
IkBεn  IkBε Qε [b] 0.0005 [3] 0.0002184 

Bβ-NF-B  NF-B + IBβ Gβ [b] 0.000001 [2] 0.00000044 
Ka-IBα  IKKa Rα [b] 0.1 [1] 0.123 IK

IBε-NF-B  NF-B + IBε Gε [b] 0.000001 [2] 0.00000069 
IK

IBαn-NF-Bn  NF-Bn + IBαn Gα [b] 0.000001 [2] 0.00000064 
I

Ka-IBβ  IKKa Rβ [b] 0.1 [3] 0.03837 
IKKa-IBε  IKKa Rε [b] 0.1 [3] 0.1571 

Bβn-NF-Bn  NF-Bn + IBβn Gβ [b] 0.000001 [2] 0.00000044 
IBαn-NF-Bn  NF-Bn Sα [b] 0.000001 [2] 0.00000037 

IBεn-NF-Bn  NF-Bn + IBεn Gε [b] 0.000001 [2] 0.00000069 
I

IBα + NF-B  IBα-NF-B Hα [a] 0.5 [2] 0.4593 

Bβn-NF-Bn  NF-Bn Sβ [b] 0.000001 [2] 0.000001131 
IBεn-NF-Bn  NF-Bn Sε [b] 0.000001 [2] 0.000001037 
NF-Bn  NF-Bn + IBαt Uα [b] 0.0000005 [1] 0.000000279 
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F-Bn  NF-Bn + IBβt Uβ [b] 0 [2] 0 N
NF-Bn  NF-Bn + IBεt Uε [b] 0.00000005 [3] 0.000000059 
IBα  IBαn Vα [b] 0.001 [1] 0.0009786 
IBβ  IBβn Vβ [b] 0.001 [3] 0.0004871 
IkBε  IkBεn Vε [b] 0.001 [3] 0.00147 
IBα, IBαn  0 Wα [b] 0.0001 [1] 0.000132 
IBβ, IBβn  0 Wβ [b] 0.0001 [3] 0.000133 
IBε, IBεn  0 Wε [b] 0.0001 [3] 0.000042 
IBαt  IkBαt + IkBα Xα [b] 0.5 [1] 0.4552 
IBβt  IBαt + IBβ Xβ [b] 0.5 [3] 0.3828 
IBεt  IBαt + IBε Xε [b] 0.5 [3] 0.3304 
0  IBαt Yα [c] 0.00000005 [3] 0.000000084 
0  IBβt Yβ [c] 0.000000005 [3] 0.00000000414 
0  IBεt Yε [c] 0.000000005 [3] 0.00000000508 
IBαt  0 Zα [b] 0.0004 [1] 0.0003375 
IBβt  0 Zβ [b] 0.0004 [3] 0.0002031 
IBεt  0 Zε [b] 0.0004 [3] 0.0004742 

NFBo  [d] 0.06 [1] Variable Total NF-B amount 
LPS + TLR4  TLR4* Q1  [a] 0.1 [4]  
TLR4*  TLR4 Q2 [b] 0.1 [4]  
TLR4*  MyD88 Q3 [b] 0.1 [4]  
MyD88  IRAK Q4 [b] 0.1 [4]  
IRAK  TRAF Q5 [b] 0.1 [4]  
TRAF  TAK Q6 [b] 0.1 [4]  
TAK + IKKn  IKKa Q7 [a] 0.1 [4]  
TNFe + TNFR  TNFR* K1 [a] 0.025 [5]  
TNFR*  TNFR K2 [b] 0.025 [5]  
TNFR* + IKKKn  IKKKa K3 [a] 0.025 [5]  
IKKKa  IKKKn K4 [b] 0.025 [5]  
IKKKa + IKKn  IKKa K5 [a] 0.025 [5]  
NF-Bn  NF-Bn + TNFt K6 [b] 0.025 [5]  
TNFt  TNFi K7 [b] 0.025 [5]  
TNFi TNFe K8 [b] 0.025 [5]  
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Figure 2 
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Figure 3 

 

 

 

 126



 

6. Novel statistical ensemble analysis for simulating 

heterogeneous response in NF-B signaling network 

Jaewook Joo, Steven Plimpton, Jean-Loup Faulon 
 

Abstract: 

Introduction: A protein dynamics in a cell signaling system is usually modeled by a 

eins and the kinetic rate constants. But, 

ation, though critical, oftentimes is unattainable. Moreover the cellular 

ghly heterogeneous and individualistic due to 

sic noise. Here, taking into account only the 

del 

ly 

ble 

ild 

dynamical system, either a system of ordinary different equations or a stochastic 

simulator. These dynamic models require the precise knowledge of the associated kinetic 

data, e.g., both the copy numbers of the key prot

this inform

response at the single cells is known to be hi

the strong influence by extrinsic and intrin

effect of extrinsic noise on the cellular response, we are concerned about how to mo

the extrinsic noise-induced heterogeneous response at the single cells under the 

constraints of experimentally obtained population-averaged response, but without much 

kinetic information.  

Methods: We propose a novel statistical ensemble scheme: extrinsic noise is regarded as 

fluctuations in network parameters and such fluctuations are modeled by random

sampling the kinetic rate constants from the uniform distribution. Then we consider a 

large number of signaling system replicates, each of which has an identical network 

topology, but a uniquely different set of kinetic parameters. A protein dynamic response 

from each replicate represents the dynamics in a single cell and the statistical ensemble 

average response is regarded as a population-level response averaged over a population 

of the single cells. We devise an optimization algorithm to find the uniform distribution 

of the network parameters, which produce the correct statistical distribution of the 

response whose ensemble average and distribution agree well with the population-level 

experimental data and the desired dynamic heterogeneity, respectively.  

Results: We apply this statistical ensemble analysis to NF-B signaling system and (1) 

validate our approach by showing a good agreement between the statistical ensem

averages of the NF-B response and the population-level experimental data for both w
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type and mutant cases, (2) predict two distributions of the NF-B dynamic response a

the single cells: the distribution of the heterogeneous dynamic patterns (either oscill

or non-oscillatory) and of the dynamic features (period or maximum amplitude), (3) 

predict that both the distribution and the statistical ensemble average of the NF-

dynamic response depends sensitively on the dosage of stimulant, (4) lastly exhibit th

sigmoidally shaped dose-response in both the statistical ensemble average and the 

individual replicates.  

Key Words: Statistical ensemble; extrinsic noise; NF-B signal transduction 

Target Journals: PLoS Comp. Biol; Biophys. J; Physical Biology; BMC Systems 

Biology; IET Systems Biology 

 

I. INTRODUCTION 

 

Evidence of heterogeneous cellular response and its effect on cell fate decision

Technical advances in fluorescence imaging have sparkled and generated a surge

interest in cellular response at the single-cell level (Elowitz 2002; Blake 2003; Cohen et 

al 2008). This technique has alre

t 

atory 

B 

e 

: 

 of 

ady uncovered significant cell-to-cell variation in both 

ne expression (Elowiz 2002; Blake 2003; Raser and O’Shea 2005; Raj et al 2006) and 

nd 

t al 

vel 

ge

protein dynamics (Cohen et al 2008; Lahav et al 2005). Recent theoretical and 

experimental work revealed that this cell-to-cell variability originates from both intrinsic 

(McAdams and Shapiro 1995; Arkin et al 1998; Thattai and van Oudenaarden 2001) a

extrinsic noise (Swain 2002; Rosenfeld et al 2005). Noise critically affects cell-fate 

decision in developmental processes (Arkin et al 1998) and drug resistance (Cohen e

2008). Moreover, response averaged over a population of the cells is oftentimes 

noticeably disparate from that in the single cells. The rational link between these two 

quantities needs to be established. Here, we propose a novel statistical method to unra

noise-induced discrepancy between single cell level and population level responses and 

to model the noise-driven heterogeneous cellular response at the single cells.  

Criticism: The current modeling framework utilizes the dynamic, either deterministic or 

stochastic, models to unravel and predict the dynamic response of the biological 

networks. Most of the dynamic models contain many unknown kinetic rate constants, 
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which need to be parameterized. A conventional parameterization scheme primarily 

focuses on identification of a single set of network parameters, which optimize the 

distance between the experimental data and the model prediction. As a result, the cellular 

ork 

a 

e 

esponse at the single cell level is 

eterogeneous and must be represented by a distribution of those heterogeneous 

 small 

 

ise 

 

response of the model is typically represented by a single dynamic pattern. This 

parameterization approach is a consequence of a strong influence by a deterministic 

viewpoint prevalent in biology: a biological response to a known stimulus should be 

robustly homogeneous and uniform and absolutely predictable. “Sloppy Cell”, however, 

identifies a large number of the sets of the kinetic parameters of the biological netw

under the relaxed constraint that the model prediction is fitted to the experimental dat

within the experimental errors (Brown et al 2004). This is a clever fitting algorithm, but 

is still based on the same “homogeneous response” assumption and isn’t designed to 

model the single cell behaviors. But, with the advancement and the availability of th

single-cell level imaging techniques, the assumptions behind the above modeling 

methods are proven to be incorrect; the cellular r

h

responses. Therefore, the current modeling method needs to be modified to incorporate 

this single cell level property.   

  

Modeling of extrinsic noise and previous efforts: In general, both intrinsic and 

extrinsic noises are the source of the heterogeneous cellular responses. The intracellular 

signaling networks are stochastic generators because they typically consist of a

copy number of their constituents and are constantly under a large fluctuation in the copy

number of their constituents. Moreover, the signaling networks are exposed to time-

varying environmental conditions and/or coupled to other unknown stochastic signaling 

networks. The former is called intrinsic noise because it is related only to a randomness 

of the reaction events. The effect of intrinsic noise on the cellular response is widely 

studied (Arkin et al 1998). The latter is extrinsic noise and its origins are unknown, but 

the few known origins are cell cycle (Rosenfeld et al 2005) and fluctuations in the copy 

number of transcriptional regulators in the upstream (Volfson et al 2006). Extrinsic no

affects all the constituents of the signaling network simultaneously and in a correlated 

manner. Several attempts were made to model extrinsic noise: to name a few, extrinsic
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noise is modeled as fluctuations in the network parameter values (Paulsson 2004) and the 

Gillespie’s standard stochastic simulation algorithm (Gillespie 1997) is modified 

into account the time-varying kinetic rate constants (Swain’s group 2008).  

Uncertainty in network parameter values: Most of the biological dynamic models 

require the knowledge of a functional form and a kinetic rate constant of the

reaction in a biological network. The lack of this critical kinetic information is one o

main drawbacks of the dynamic models and hampers their predictability. Thus, there

great need to devise a modeling scheme, which doesn’t require the precise k

information of a biological network. Extrinsic noise and the resulting heterogeneous 

response suggest that the kinetic rate constants should reflect uncertainty in their values

partly because of uncertainty in experimental measurements and partly because of th

connection to the external fluctuations with unknown origins. Taking into account 

extrinsic noise, we can readily relax a strict constraint imposed to the parameterization o

the kinetic parameters of the dynamic models.   

 

Novel statistical ensemble analysis: We propo

to take 

 associated 

f the 

 is a 

inetic 

, 

eir 

f 

se a statistical ensemble (SE) approach, 

hich not only overcomes the lack of precise knowledge of network parameter values, 

 

e of 

den 

r 

w

but also provides a way to model extrinsic noise-driven heterogeneous cellular dynamic 

responses. We find a concept of the SE in the statistical physics useful in describing

extrinsic noise and its effect on the resulting cellular responses. In our view, a biological 

system should be regarded as a complex system comprising a large number of 

components and elementary interactions among them and only the macroscopic stat

such a complex bio-system is observable while its microscopic kinetic details are hid

and unknown to the observers. Taking extrinsic noise as fluctuations in kinetic paramete

values (Paulsson Nature 2004), we propose a novel SE analysis. First, a population of the 

cells is modeled with a SE of a bio-system, i.e., a large number of the copies of identical 

system. Second, we assume that individual cells influenced by extrinsic noise operate and 

function in a biologically feasible range of kinetic parameter values. To simulate extrinsic 

noise, different values of kinetic parameters are sampled from a biologically feasible 

distribution and assigned to each system copy. Each copy corresponds to an individual 

single cell influenced by extrinsic noise. Each copy is unique in its kinetic parameter 
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values and thus responds to the same stimulus diversely. The resulting dynamic response 

is no longer a single output but is represented by a distribution of heterogeneous 

responses from a SE of the system. We assign the same weight to each copy to calculate

macroscopic state and obtain the SE average of the system's response, which should be 

regarded as experimental data averaged over a population of the cells. The 

macroscopically observable response, the SE average, may take a simply behaving 

dynamic pattern. But, individual cell behavior can be very irregular, dissimilar, and

diverse. The sum function (the SE average) annihilates any individualistic, 

heterogeneous, and non-smooth behavior. Thus, this SE analysis not only unravel the 

extrinsic noise-driven disparate behaviors between single cells and a population of the 

cells, but also can predict individual cell behaviors constrained by the experimental 

population level data. An important technical question is how to identify the biologically

feasible and true distribution of extrinsic noise, which the kinetic parameters should be 

sampled from. Here we simplify the distribution to be uniform and our task to find the 

location and the interval size of this uniform distribution. We apply this statistical 

ensemble analysis to NF-B signaling system. 

 

6. Application of statistical ensemble analysis to NF-B signaling system: NF-B is a 

pleiotropic regulator of gene control and plays significant roles on various cellular 

functions such as differentiation of immune cells, development of lymphoid organs, and 

immune activation (Hoffmann et al., 2006; Verma and Stevenson, 2006

 a 

 

 

). NF-B 

uttling between nucleus and cytoplasm is auto-regulated by the NF-B signaling 

lyses 

 

sh

module, which consists of IB (inhibitor B), IKK (IB kinase), and NF-B. In the 

absence of stimulus, IB forms a hetero-dimeric complex with NF-B, preventing NF-

B from entering into the nucleus. Upon stimulation, the phosphorylated IKK cata

the degradation of IB from the IB-NF-B complex and frees up NF-B whose nuclear 

localization initiates transcription of NF-B target genes such as inflammatory cytokines 

(TNF, IL-1, IL-6), chemotactic cytokines (MIP-1a), Th1 and Th2 response activation

(IFN and IL-10), and lastly but most importantly negative regulators (IB, IB, IB, 

and A20) which terminates the NF-B signaling. Based upon the up-to-dated knowledge 
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of NF-B signaling, Hoffmann et al constructed a complex biochemical reaction netw

of NF-B signaling consisting of IKK, NF-B, and three IB isoforms and transformed

into a set of ordinary differential equations with dozens of unknown kinetic parameters 

(Hoffmann et al., 2002). After identifying a single set of parameter values yielding the 

best fitting of the model to population level experimental data, they used their model to 

corroborate their argument about the role of each of three IB isoforms: IB induces 

oscillatory shuttling of NF-B while IB and IB make the oscillation damped 

(Hoffmann et al., 2002). Lipniacki et al. computationally demonstrated that an addit

negative regulator A20 has a definitive role as NF-B signal terminator, assuming that 

A20 inactivates IKK phosphorylation (Lee et al., 2002; Lipniacki et al., 2004). Using the

single cell fluorescence imaging

ork 

 it 

ional 

 

, Nelson et al showed a remarkable phenomena at the 

vel of single cells: some cells exhibits sustained oscillatory shuttling of NF-B while 

-oscillatory patterns, i.e., heterogeneous cellular response (Nelson et al. 

005; Lahav et al. 2004). Though NF-B shuttling patterns are sustained-oscillatory at 

se 

ulation of the cells masks oscillations at individual cells. However, 

arken et al argued that, with the supportive experimental data, NF-B dynamic 

mble 

 

B signaling system is generated by the 

Statistical Ensemble Generation method. This NF-B network ensemble is stimulated by 

le

others does non

2

the single cells, their population level response is highly damped-oscillatory becau

averaging over a pop

B

responses at individual cells are highly synchronized and homogeneous (Barken et al., 

2005). Hayot and Jayaprakash showed that intrinsic noise can unravel the mechanism 

behind the discrepancy between the oscillatory behaviors at single cells and the damped-

oscillation at a population of the cells (Hayot and Japaprakash 2006).  

  

7. Summary: We thoroughly investigate the effect of extrinsic noise on key protein 

dynamics in IKK-NF-B-IB-A20 signaling system. This signaling network is presented 

in Fig. 1 and consists of IKK, cytoplasmic and nuclear NF-B, and two groups of 

negative regulators such as three isoforms of IB and A20. Using the statistical ense

analysis, we demonstrate that extrinsic noise, modeled as fluctuations in network kinetic 

parameters, derive the large deviation of the individual cell-level response away from

their ensemble average. An ensemble of the NF-
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either large or small signal strength. In section II.1 we demonstrate that the statistical 

ensemble average of the individual profiles of each key biochemical species of the NF-

B signaling network is well fitted to experimental population level data for wild typ

and various mutant cases. In section II.2, we present a statistical analysis of the individual 

nuclear NF-B profiles from the ensemble of a wild type and the mutants: the distribut

of the dynamic characteristics such as dynamic patterns and dynamic features. In secti

II.3, we make a prediction about the dosage-dependent NF-B response at the single cell 

levels: dosage-dependent statistical ensemble average behavior, dosage-dependent 

distribution of dynamic patterns, and that of dynamic features. Lastly, in section II.4, we 

show that both statistical ensemble average of dose-response curve and each individual 

curve are sigmoidally shaped.  

 

II. RESULTS 

 

1. Fitting population level experimental data with their SE average of NF-B 

signaling network  

 

A. Wild ty

e 

ion 

on 

pe case: For the wild type case, we demonstrate that the SE scheme generates 

ificant cell-to-cell variability in protein dynamics, while successfully making the 

NF-B profiles in Fig. 2 (a), the individual timings of the first peak are almost identical 

dividua  up 

the sign

SE averages agree well with the population-level experimental data (EMSA or western 

blot or northern blot) of the key biochemical species as shown in Fig. 2. For the nuclear 

while the in l amplitudes of the first peak vary significantly with the deviation

to 100 % of its SE average. However, both the timings and amplitudes of the subsequent 

peaks exhibit a very significant cell-to-cell variability, consequently causing its SE 

average to take a damped oscillatory pattern with an outstanding peak followed by 

rapidly decaying amplitudes of subsequent peaks. Thus, the extrinsic noise produces “the 

masking effect of averaging over a population of asynchronous curves" just like the 

intrinsic noise does (Hayot et al JTB 2006).  
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B. Fluctuations in IKK and IB concentration as source of cell-to-cell variability in 

wild type case: The large variation in the first peak amplitude of the nuclear NF-

shown in Fig. 2(a) originates from the IKK profile in Fig. 4 (b) where the individual 

curves of IKK concentration look a lot alike, yet with a great difference in their first peak 

amplitude which is laterally transferred to the large variation in the first valley of IB 

isoforms as shown in Fig. 2 (b) and (c). Thus, the cell-to-cell variation in kinetic rate

constants regulating the levels of both the pre-activated IKK (IKKn) and the ac

IKK (IKKa) is the source of the cell-to-cell variation in the first peak of nuclear NF-

Likewise, the asynchronous behavior of the individual nuclear NF-B profiles after two 

hours as shown in Fig. 2(a) originates from the cell-to-cell variability in various kinet

reactions: for example, it is cause by the variation in the second peak of the IB isoforms

as shown in Fig. 2 (b)-(d), which is caused by the variations in both the

B as 

 

tivated of 

B. 

ic 

 

 pre-stimulated 

vel of IB isoforms, by the variation in the first valley of IB isoforms due to the cell-

case of 

F-B are 

han 

he SE 

the 

lation 

 

2.5 hours, and 4 hours. For the IB and IB knocked-out and the IB and IB 

le

to-cell variability in IKK, and by the variation in the kinetic rate constants regulating the 

formation of NF-B-IB complex. We demonstrate that the dynamic characteristics of 

heterogeneous individual profiles of nuclear NF-B is due to the extrinsic fluctuations in 

kinetic rate constants regulating the levels of IKK, IB, IB, IB, NF-B-IB 

complex.  

 

C. IB isoforms double knocked-out and A20 knocked-out mutants:  For the 

IB isoforms double knocked-out and A20 knocked-out mutants, we set the synthesis 

rate of the IB isoforms and A20 mRNA to zero, respectively. For the IB and IB 

knocked-out mutant as shown in Fig. 3(a), the individual profiles of nuclear N

much more oscillatory (about a half of the curves are sustained oscillatory in Fig. 8) t

those of wild case (only less than 10 % are sustained-oscillatory in Fig. 8). But, t

average takes a damped oscillatory pattern and is a little more dynamical than that of 

wild type case. This is mainly due to” the masking effect of averaging over a popu

of asynchronous curves”. The peaks of the SE average correspond to the peaks from

population level experimental data by Electro Mobility Shift Assay (EMSA) at 15 min, 
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knocked-out mutants as shown in Fig. 3(b) and 3(c), both SE averages of nuclear NF-B 

take the similar looking "single-peaked" patterns as the population level EMSA 

easurements. For these two mutants, all the individual curves look alike to each other 

iation 

rge as the 100 % of the SE average. 

or the A20 knocked-out mutant as shown in Fig. 4, both the SE averages of all the 

y, 

e nuclear NF-

re: In 

 

e 

d 

heavily under-damped oscillatory. Because the higher  value assumes the larger 

dynamic patterns: some are sustained oscillatory while others are single-peaked. Thus, if 

m

and each curve differ from the others only in its nuclear NF-B level while the dev

of the individual curves from the SE average is as la

F

biochemical species take a single-peaked pattern just like the population level 

experimental data do. Though individual profiles are very alike, the deviation of the 

individual curves from its SE average is as large as 100 % of its SE average. In summar

for all the knocked-out mutants, both the individual profiles and their SE average of 

nuclear NF-B take a uniform single-peaked pattern, but the variation in th

B is very large among the individual profiles due to extrinsic noise.  

 

D. Dependence of the SE average of nuclear NF-B on the heterogeneity measu

Fig. 5 we show how the population level experimental measurements can place a strict

restriction on the choice of the heterogeneity measure , defined as the interval size of th

uniform distribution from which each kinetic parameter is sampled. While fixing the 

kinetic rate constants at their reference values, we increase the heterogeneity measure an

observe how heterogeneous the individual profiles of nuclear NF-B become. The SE 

average of nuclear NF-B becomes much less oscillatory for the higher value of 

heterogeneity measure as shown in Fig. 5. For a small value of heterogeneity measure in 

Fig. 5 (a) (=10 %), we can clearly see that all individual curves are in phase with each 

other, making its SE average highly oscillatory too. For the higher values of 

heterogeneity measure in Fig. 5 (c) (=50 %) and 5 (d) (=70 %), a large fraction of 

individual curves are sustained oscillatory, but they are largely out of phase and 

asynchronous to each other and the resulting SE average is no longer oscillatory, but 



sampling space, individual curves of nuclear NF-B take the more heterogeneous 
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the population level experimental measurements exhibit the oscillatory response, this da

can place a strict restriction on the choice of the heterogeneity measure.  

 

2. Prediction of the SE distribution of the dynamic patterns and the dynamic 

features for both the wild type and the mutants 

 

ta 

. Distribution of the dynamic features: In Fig. 6 we demonstrate that the SE analysis 

n about 

d 

he 

, and 

 

 

A

can capture the distribution of the dynamic features (see methods) of the individual 

cellular responses and its variation upon the knocked-out of the genes. It is also shown 

that there is a significant amount of overlap between the distribution of the wild type and 

that of the other mutants. This implies that if we rely on the conventional 

parameterization scheme which identifies a single set of parameters and present a single 

representative response, we can easily fall into a deceptively incorrect conclusio

the effect of gene knocked-out on the cellular response. To avoid such a pitfall, we 

represent the single cell level dynamic response with the distribution of their dynamic 

features and observe any significant change in the distribution when genes are knocked 

out. For Fig. 6 (a), the distributions of the First Maximum are invariant between the 

mutants and the wild type. This dynamic feature shouldn’t be chosen as an indicator of 

the physiological defects due to gene knocked-out. For Fig. 6 (b), the A20 knocked-out 

mutant increases the average value of the First Translocation Time while the IB an

IB knocked-out mutant decreases it. But, the wild type and two other mutants share t

similar distribution. In Fig. 6 (c), only the wild type and the IB and IB knocked-out 

mutant have their averages of the First Period at about 2.2 and 2 hours respectively

the other mutants have too broadly distributed First Period to define their averages. In Fig

6 (d), the ratio of the First Minimum to the First Maximum indirectly measures the 

spikiness of the oscillations defined as the deep valley between two adjacent maxima: 

The smaller this ratio gets, the spikier the temporal profile becomes. Only the wild type 

and the IB and IB knocked-out mutant exhibit the spiky responses. In Fig 7 (f), the 

ratio of the Steady State to the First Maximum provides useful information about the 

relative magnitude and strength of the negative regulators of IB isoforms and A20. 

Remembering that the distributions of the First Maximum are invariant between the wild

 136



 

type and the mutants, we conclude that the smaller steady state level of nuclear NF-B 

means the stronger negative feedback. We list the mutants in order of the steady state 

level: A20 knocked-out mutant < IB and IB knocked-out mutant < IB and IB 

knocked-out mutant < IB and IB knocked-out mutant < wild type. Now the order of 

the strength of the negative regulators can be inferred from the above ordered list: A20 > 

IB > IB > IB. This order is determined by our choice of the kinetic rate constants.

 

B. Distribution of the dynamic patterns: The individual time-series of the nuclear NF-

B concentration can be classified into one of four dynamic patterns as shown in Fig. 7

damped oscillation, sustained oscillation, single peaked pattern, and hyperbolic pat

The underlying mechanism for each dynamic pattern is rather simple: The hyperbolic (or

over-damped) pattern originates from the strong strength of the negative feedback loops. 

while the single-peaked pattern comes fr

 

: 

tern.  

 

om the weak negative feedback loops. 

scillatory pattern arises from a moderate strength of negative feedback loops. But, it 

llular physiological condition. 

or the cases of the wild type and the mutants, we generate and stimulate the SE of the 

ssify a 

s 

e 

f 

nd 

th 

 

are 

equally probable dynamic response. The damped-oscillatory patterns in this mutant are 

O

remains open to correlate each dynamic pattern with a ce

F

NF-B network with the same signal strength (TR=1), respectively. Then we cla

thousand individual temporal profiles into one of four dynamic patterns. The distribution

of the dynamic patterns are represented by the bar graphs in Fig. 7 and show that the SE 

of the wild type or the mutant takes at least two different dynamic patterns under th

same stimulation. For wild type case, the distribution of the nuclear NF-B profiles is 

very skewed to a single pattern, the damped-oscillatory pattern, while a less than 10 % of 

the profiles are sustained-oscillatory. This indicates that for the wild type case the 

damped oscillation is the most probable pattern and is robust against the perturbation o

the network parameter values. For the A20 knocked-out mutant, both single-peaked a

damped-oscillatory patterns are almost equally probable. But, those damped oscillatory 

profiles are very much like a single-peaked pattern. In other words, for this mutant, the 

damped-oscillation occurs at a particular region of the parameter space where the streng

of the negative regulators is not strong enough to induce the oscillatory pattern. For IB

and IB knocked-out mutant, sustained-oscillatory and damped-oscillatory patterns 
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very different from those in the A20 knocked-out mutant and are similar to a sustain

oscillation. The fraction of the sustained oscillation (about 50 %) dramatically increases 

in comparison to the wild type case (less than 10 %). For both IB and IB knocked-

out and IB and IB knocked-out mutants, their respective distributions are similar to

that of A20

ed-

 

 knocked-out mutant in Fig. 7. As evidently shown in Fig. 3 (b) and 3 (c) and 

ig. 4 (c), both the individual profiles and the statistical ensemble average of the nuclear 

y, 

 

 

(g). 

, the 

 

KK profiles drop down to their steady state levels, the cytoplasmic IB 

vels recover back to their equilibrium levels in a damped oscillatory manner as shown 

F

NF-B concentration for the A20 knocked-out, the IB and IB knocked-out, and the 

IB and IB knocked-out mutants share the similar single peaked pattern. In summar

there are two distinctive groups exhibiting two respective dynamic patterns of nuclear 

NF-B profiles: the first group, the wild type and the IB and IB knocked-out 

mutant, show the highly oscillatory pattern and the second group, the A20 knocked-out, 

the IB and IB knocked-out and the IB and IB knocked-out mutants, shows the 

(non-oscillatory) single-peaked pattern. 

 

3. SE analysis of dosage-dependent NF-B behavior 

 

A. Dosage-dependent SE average and individual profiles of nuclear NF-B 

concentration: The SE of NF-B network is stimulated with either the large (TR=1) or

the small (TR=0.01) signal strength, respectively. The dosage-dependent behavior of both

the SE average and the individual temporal profiles of the biochemical species are 

presented in Fig. 8. The small dosage induces either monotone-increasing (hyperbolic) or 

single peaked IKK individual profiles as shown in Fig. 8 (b) while the large dosage make 

them take the single-peaked pattern possessing a prominent peak as shown in Fig. 8 

This dosage-dependent IKK profiles are directly transferred to the cytoplasmic IB 

profiles. For the small dosage, the hyperbolic IKK profiles induce the exponentially 

decaying IB profiles as shown in Fig. 8 (c). On the contrary, for the large dosage

noticeable peaks of the IKK profiles suppress the cytoplasmic IB levels and, when the

peaks of the I

le

in Fig. 8 (h).  The nuclear NF-B profiles follow the IB profiles but in an exactly 
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opposite way: the cytoplasmic IB sequesters NF-B in the cytoplasm, inhibiting 

nuclear localization of NF-B. Since the mRNA synthesis rate of the NF-B target genes 

is assumed to be linearly dependent on the nuclear NF-B concentration, the profiles of 

both A20 mRNA and IB mRNA follow the nuclear NF-B profile after half an hour 

time lag.  

 

B. Dosage-dependent distribution of the dynamic features: After stimulating the SE of

the NF-B system with the large (TR=1) or the small (TR=0.01) dosage, we obtain the 

distribution of each dynamic feature from a thousand nuclear NF-B profiles as shown 

Fig. 9. In Fig. 9 (a

 

in 

) and (c), both the First Maximum and the First Period share the similar 

sage-dependent behavior: the smaller dosage induces the distribution mode located at 

lf maximum width 

f the distribution is independent of the dosage. But, for both the First Translocation 

 

e 

her 

. Dosage-dependent distribution of the dynamic patterns: As shown in Fig. 10, 

when stimulated by the small (TR=0.01) dosage, 80 % of the nuclear NF-B profiles are 

do

the smaller First Maximum or the smaller First Period while the full ha

o

Time and the Ratio of the First Minimum to the First Maximum, the dosage-dependent 

behavior is opposite to the previous case as shown in Fig. 9 (b) and 9 (d): the larger 

dosage induces the distribution peaked at the earlier First Transition Time or at the 

smaller First Minimum level. Moreover, the larger dosage makes their distributions the 

more narrowly distributed. This indicates that the larger dosage induces the earlier and 

spikier response and the smaller dosage induces the more heterogeneous First Maximum

and First Minimum levels of nuclear NF-B. Lastly, both the ratios of the Second 

Maximum to the First Maximum and of the Steady State to the First Maximum share the 

similar dosage-dependent behavior as shown in Fig. 9 (e) and 9 (f): the smaller dosage 

induces the mode of the distribution at the larger values, i.e., closer to one. In other 

words, when stimulated by the smaller dosage, the levels of the First Maximum, of th

subsequent maxima, and of the Steady State are the same, i.e., NF-B profiles take eit

monotone-increasing pattern or single-peaked pattern with low peak amplitude. In 

addition, the full half maximum width of the distribution is unaffected by the change of 

the dosage.   

 

C
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damped-oscillatory whereas only 20 % of them are single-peaked. But, those damped 

scillatory patterns are a lot like a single-peaked pattern. The distribution induced by the 

ofiles of 

 

ge 

 

re 

f 

em is stimulated with a persistent signal strength for 30 hours duration and 

e average (quasi-) steady state level of nuclear NF-B concentration between 20 and 30 

e 

eater than the inflection point, the stationary 

ickly reaches a plateau. Lastly, the SE average of those individual dose-response 

o

large dosage (TR=1) corresponds to that of the wild type case in Fig. 7. We note that the 

distribution of the dynamic patterns, the SE ensemble average, and individual pr

nuclear NF-B concentration upon the small (TR=0.01) dosage stimulation in Figs. 8 and

10 are very similar to those from the IB and IB knocked-out mutant upon the lar

(TR=1) dosage stimulation in Figs. 3 and 7. When the heterogeneity measure  increases

from its present value =30 % to =70 %, the small dosage stimulation generates mo

heterogeneous dynamic patterns, i.e., more equally distributed dynamic patterns of the 

nuclear NF-B.  

  

4. Sigmoidally shaped SE average of the dose-response curves 

 

We numerically investigate the distribution of the dose-response curves from the SE o

the NF-B system. We generate the SE of the NF-B system with only 50 replicates 

because of high computational cost to get one dose-response curve. The SE of NF-B 

signaling syst

th

hours after stimulation is measured. To test for the presence of the hysteresis effect, we 

compute the dose-response curve twice, i.e., increase the signal strength from TR=0.1 to 

TR=0 in a step-like manner and then decrease it from TR=0.1 to TR=0. For each replicat

in the SE, both forward and backward dose-response curves look exactly the same and 

this indicates the absence of hysteresis effect in the NF-B signaling system and take a 

sigmoidal shape as shown in Fig. 11. The steady state nuclear NF-B levels change 

dramatically at the inflection points of the sigmoidal curves in Fig. 11. For the signal 

strength smaller than the inflection point of each curve, the stationary nuclear NF-B 

level is very low while for the signal just gr

level qu

curves is sigmoidally shaped. 
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III. DICUSSION 

 

New predictions: In this paper, we devise a novel statistical method to mimic the

dynamics in a population of the cells under the influence of extrinsic noise. We 

demonstrate, after making the SE average to match with a population level experimental 

data, that the SE of the signaling system produces several experimentally observable 

distributions of the dynamic characteristics of the protein profiles. The main predictions 

are listed as follows: (a) under the same experimental condition, the nuclear NF-B 

profiles are expected to take the heterogeneous dynamic patterns at the single cell level, 

(b) the larger dosage induces the more oscillatory dynamic patterns of the nuclear NF-B

while the smaller dosage does the single-peaked patterns, (c) the larger (smaller) dosage 

makes the First translocation time narrowly-distributed (broadly-distributed) and the pe

of its distribution shifted to the earlier (later) time, and (d) the shape of the dose-respons

curves both at the single cell level and the population level is sigmoidal. Most of our 

predictions, e.g., (a) – (c), have been verified by our colleagues (

 protein 

 

ak 

e 

reference). We hope to 

licit more experimental efforts to verify the above predictive dynamic behavior in the 

 Monte 

start with 

e

single cells.  

 

Novel viewpoint of statistical ensemble analysis: We like to emphasize that the novelty 

of our SE analysis lies not on the technical part, but on the new viewpoint on the cellular 

response. All the previous papers focus mainly on the analysis of the dynamic behavior 

of the model dynamic systems in a restricted parameter space by the usage of the

Carlo sampling of the kinetic parameter values and the classification and/or sensitivity 

analysis of the resulting dynamic response (reference; Joo et al 2007). But, we 

a totally different viewpoint that the protein dynamics of the individual cells are 

intrinsically heterogeneous because they are exposed mainly to extrinsic noise and likely 

to have large fluctuations in the kinetic parameters controlling the abundance of the 

biochemical species in the cells.  

 

Sigmoidally shaped dose-response curve: The sigmoidal shape of the dose-response 

curve reveals two important properties of the NF-B signaling: the switching behavior 
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and the monostability (no hysteresis). The inflection points of the individual sigmoidal 

curves can play the role of the activation threshold of the NF-B signaling pathway. As 

shown in Fig. 11, the NF-B response is so little to the signal strength below the 

threshold while its response significantly increases for the signal strength just above the 

threshold. Knowing that some of the NF-B target genes are the inflammatory cyto

and overly expressed inflamm

kines 

atory response is adversary to the host, we can speculate 

at the NF-B signaling network employs this sigmoidal dose-response curve to down-

 

 

 

 

ur results on the monostability.  

 of extrinsic noise: Our statistical analysis of the protein dynamics 

epends on how biologically and realistically the computationally generated SE of the 

ent 

g to which 

 

 cells 

tistically dependent simply because 

e cellular energy resource must be limited: e.g., as one kinetic process gets accelerated, 

en the others should decrease in order to balance the cellular energy consumption. To 

mulate the protein dynamics in the real single cells, first, it is highly required to devise 

th

regulate the excessive inflammatory response, i.e., turn it on only if the danger level is 

significantly high, otherwise shut it down. However, the amplitude and the timing of the

first peak of the inflammatory cytokines such as TNF are known to be critical to elicit 

the timely and effective immune response (Mann et al 2002). In this case, we’d better to

measure the dosage-dependent transient dynamic response of NF-κB target genes and

investigate the shape of the dose-(transient dynamic) response. Lastly, TNF autocrine

signaling forms the (+) feedback loop in the NF-B signaling network and can induce the 

bistability, which may modify o

 

True distribution

d

NF-B system represents a population of the individual cells. This question is equival

to what is the true distribution of extrinsic noise, i.e., the distribution accordin

the kinetic parameters should be sampled. In this paper, we simplify this problem greatly

by assuming that this distribution is a uniform one. We devise a heuristic fitting 

algorithm to find the interval of the uniform distribution of the kinetic parameters by 

minimizing the discrepancy between the SE analysis and the population level 

experimental data. But, to make the sampling more biological, it should be taken into 

account that the distribution of extrinsic noise can change in time periodically as the

undergo cell cycle. Moreover, though we assume no correlation between any pair of the 

kinetic parameter values, the parameters may be sta

th

th

si

 142



 

the single cell experimental techniques from which we can infer this true distribution of 

extrinsic noise. Second, the optimization proble

the distribution of the kinetic parameters of the dynamic network which minimizes

difference between the SE average and the population-level experimental measurem

and simultaneously reproduce the experimentally observed h neous protein 

dynamics in the single cells.  

 

m needs to be solved rigorously: to find 

 the 

ents 

eteroge

 Our choice of only four dynamic patterns of nuclear NF-B profiles 

reference, we present a scaled ratio, i.e., the level of the first minimum, the second 

maximum, and the steady state normalized by the first maximum. The distributions of the 

5. Classification:

greatly simplifies the statistical analysis and helps us observe clearly the change of the 

distribution upon gene knocked-out perturbations. Our choice is based on the dynamical 

and mathematical characteristics of the protein profile. However, it is possible that this 

simplification neglects the other biologically important details of the nuclear NF-B 

profiles. If we go by a different choice of the dynamic patterns, e.g., classification by 

period or by steady state level, it may change the distribution of the dynamic patterns and 

its change upon perturbations.  

 

IV. METHODS 

 

Six dynamic features of nuclear NF-B profile: We define six dynamic features to 

represent the "unique" characteristics of temporal profiles of nuclear NF-B 

concentration. As shown in Supporting Figure 2, the first translocation time depicts the 

time when the first peak occurs; the first period measures the time between the first two 

peaks; the first and the second maxima define the peak amplitudes of the first and the 

second peaks; the first minimum means the amplitude of the first valley; the steady state 

refers to the amplitude level at sufficiently long time. Making the first maximum level the 

dynamical features are presented in Figs. 6 and 9.  
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Generation of the SE of NF-B signaling network: Each kinetic rate constant listed in 

Table 1 is randomly sampled from an interval ( )1(),1( 00   xx ) where 0x  is the 

reference value and  is a heterogeneity measure. To enhance the efficacy of the 

sampling in the high dimensional space, we employ the Latin Hypercubic sampling 

method discussed in methods section. For this paper, we set 3.0 . To generate the SE

consisting of N replicates, we simply make N sets of randomly sampled kinetic 

parameters.  

 

t 

 

Algorithm to fit the SE average to population level experimental data: We will no

attempt to fit the SE average to the entire time-series data. To try to do so results in 

notorious over-fitting: much more parameters to fit much less data. Moreover, biology 

data are rather qualitative than quantitative. Also, we learn that there are only a handful 

number of the kinetic parameters in the NF-B signaling network whose variation 

significantly affects the temporal profile of the nuclear NF-B concentration (Joo et al 

2007). Our fitting algorithm is to fit the dynamic features of the SE average to those of 

the experimental time-series data. Based on our previous studies (Joo et al 2007), we 

choose two kinetic parameters most highly correlated with each dynamic feature and vary 

them until the dynamic features between the SE average and the experimental time-series 

data are matched. Here are the actual steps that we take: For step 1, use an educated guess 

for kinetic parameters and set the heterogeneity measure to 9.0 . For step 2, generate 

the SE and the resulting protein dynamic profiles and calculate the deviation of the six 

dynamic features of the SE average from the target dynamic features. For step 3, identify 

the most deviated dynamic feature and modify two kinetic parameters associated with

that dynamic feature. For step 4, repeat the steps one through three until the dynamic 

features get close to the target values. Fro step 5, when the good fitting is not achieva

with the pre-set value of

 

ble 

 , we decrease it in a step-like manner. All the Figures 2 

through 5 are obtained through the above fitting algorithm.   

 

Numerical simulation of the NF-B signaling network: A system of ordinary 

ifferential equations is derived from the NF-B signaling network in Fig. 1 and the d
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kinetic parameters in Table 1. Using the Runge-Kutta 4th order, we numerically solve the 

 sampled kinetic parameters and with the initial conditions: the 

ero concentrations of all the other biochemical species and a sampled total concentration 

s 

 non-zero value to TR, where TR stands for the dosage of a stimulant.  

LHS is a constrained Monte Carlo sampling 

 

pling repeatedly 

g the 

ution of the response of the computer model can be 

 

rge. However, since a large sample size requires a 

n alternative approach, Latin Hypercube sampling, can be used. 

Suppose that the computer model has K 

ch 

ariable is divided into N non-

 random with respect to the assumed probability density in the interval. The N 

 These 

, until N K-tuplets are formed. These N K-tuplets are 

e K kinetic rate variables to be used on the ith run of the 

computer model (Swiler et al 2004). 

 

dynamic model with the

z

of cytoplasmic NF-B. Before stimulating the system (TR=0), the dynamic system run

for 33 hours until its constituents reach their equilibrium values. Then, we simulate the 

persistent stimulation by turning on the reaction, IKKn  IKKa with a rate TR K1, i.e., 

by assigning a

 

Latin Hypercube sampling (LHS): 

scheme. The Monte Carlo sampling scheme is a conventional approach and a common

choice for the uncertainty assessment of a computational model. By sam

from the assumed joint probability function of the input variables and evaluatin

response for each sample, the distrib

estimated. This approach yields reasonable estimates for the distribution of the response

if the number of samples is quite la

large number of computations from the computer model (a potentially very large 

computational expense), a

LHS yields more precise estimates with a smaller number of samples, and is designed to 

address the above concern (Swiler et al 2004). 

kinetic rate variables and we want N samples. LHS selects N different values from ea

of K kinetic rate variables such that the range of each v

overlapping intervals on the basis of equal probability. One value from each interval is 

selected at

values thus obtained for the first kinetic rate variable are paired in a random manner 

(equally likely combinations) with the N values of the second kinetic rate variable.

N pairs are combined in a random manner with the N values of the third kinetic rate 

variable to form N triplets, and so on

the same as the N K-dimensional input vectors where the ith input vector contains 

specific values of each of th
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Figure Captions  

 

Figure 1: Biochemical network model for IKK-IB-NF-B-A20 signaling module. Top 

anel: A schematic description of our comprehensive network model of NF-B signaling. 

r degradation of proteins while red (blue) arrows denote 

RNA (protein) synthesis. 

eft 

B, IB, and IB proteins. 

n) 

 

B and IB knocked-out 

ant.  

 (right column) and a A20 knocked-out mutant (left column). 

omputational simulation results are compared with the population-level experimental 

p

The arrows indicate activation and the perpendicular lines denote inhibition. In the 

bottom panel, the comprehensive network model consists of IKK (IB kinase), IB 

isoforms (IBi, i=, , ), and A20. NF-Bn and IBin denote their nuclear components. 

Squares are for proteins and hexagons are for mRNA. Black arrows indicate either 

association or dissociation o

m

 

Figure 2: Individual time-series curves and their ensemble average of key protein 

concentrations are obtained from the computer-generated ensemble of 1000 replicates of 

a wild type NF-B signaling system. We compare the computational results with the 

population-level experimental data from Ref. (Hoffmann et al 2002) side by side. Top l

panel: nuclear concentration of NF-B. The other remaining panels: cytoplasmic 

concentration of I

 

Figure 3: Individual time-series curves and their ensemble average of key protein 

concentrations are obtained from the computer-generated ensemble consisting of 1000 

replicates of a IB double gene knocked-out mutant. Computational simulation results 

(left column) are compared with the population-level experimental data (right colum

from Ref. (Hoffmann et al. 2002). Top panel: IB and IB knocked-out mutant. Mid

panel: IB and IB knocked-out mutant. Bottom panel: I

mut

 

Figure 4: Individual time-series curves and their ensemble average of key protein 

concentrations are obtained from the computer-generated ensemble consisting of 1000 

replicates of a wild type

C
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data from Ref. (Lee et al 2000) side by side. Top panels: nuclear concentration of NF

Bottom panel: IKK concentration. Other key biochemical species profiles are 

-B. 

presented 

IB genes knocked-out 

utant on the heterogeneity measure  (i.e., the interval size of the uniform distribution). 

igure 6: Distributions of six dynamic features of nuclear NF-B profiles are obtained 

 

f the 

d 

igure 7: Distributions of the dynamic patterns of the individual time-series curves of 

uclear NF-B profiles are obtained from the ensemble of 1,000 replicates of a wild type, 

20 knocked-out mutant, and three IB double genes knocked-out mutants. Top panel 

emonstrates four dynamic patterns: (A) single-peaked pattern, (B) under-damped 

scillation, (C) hyperbolic pattern, and (D) sustained oscillation. Each individual time-

ries curve is classified into one of four dynamic patterns.  

igure 8: Individual time-series curves and their ensemble average of the key protein 

oncentrations are obtained from the computer-generated ensemble consisting of 1000 

plicates of a wild type system upon stimulation by small dosage (left column) or large 

osage (right column). 

igure 9: Distributions of six dynamic features of nuclear NF-B profiles are obtained 

in supporting figure 1.  

 

Figure 5: Dependence of the individual time-series curves and the statistical ensemble 

average of nuclear NF-B profiles obtained from IB and 

m

=10 % for top left panel; =30 % for top right panel; =50 % for bottom left panel; 

=70 % for bottom panel.  

 

F

from the ensemble of 1,000 replicates of a wild type (black), A20 knocked-out mutant 

(red), and three IB double genes knocked-out mutants (blue, yellow, and green). The six

dynamic features are the amplitude of the first peak (First Maximum), the timing o

first peak (First Translocation Time), the First Period, the First Minimum, the Secon

Maximum, and the Steady State: The last three values are normalized by the First 

Maximum.  
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from the ensemble of 1,000 replicates of a wild type NF-B signaling system with a 

small (red color; TR=0.01) or large (black-color; TR=1) dosage stimulation.  

Figure 10: Distribution of the dynamic patterns of nuclear NF-B profiles from the 

ensemble of 1,000 replicates of a wild type NF-B signaling system upon a small 

(TR=0.01) or a large (TR=1) dosage stimulation. Yellow denotes sustained oscillation; 

red for damped oscillation; blue for single-peaked pattern.  

 

Figure 11: The individual dose-response curves and their statistical ensemble average 

from the ensemble consisting of 50 computer-generated replicates of a wild type NF-B 

signaling system. 

 

Supporting Figure 1: Individual time-series curves and their ensemble average of key 

protein concentrations are obtained from the computer-generated ensemble consisting of 

1000 replicates of a wild type (right column) and a A20 knocked-out mutant (left 

column). Computational simulation results are compared with the population-level 

experimental data from Ref. (Lee et al 2000) side by side. Top panels: cytoplasmic 

concentration of IB protein. Mid panel: concentration of IB mRNA. Bottom panel: 

A20 protein concentration. 
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7. Different lipopolysaccharide chemotypes provoke a 

n Toll-like receptor 4 mediated response to 

lar patterns (PAMPs).  For example, Toll-like receptor 4 

LR4) mediated responses vary with the molecular composition of the 

commo

different degrees.  

Zhaoduo Zhang, Meiye Wu, Stephanie Morrison, Julie Kaiser, Nimisha Srivastava, 

Catherine S. Branda, Todd W. Lane, Bryan Carson, Jens Poschet, Tony Martino, Anup 

Singh, and Steven S. Branda 

 

Abstract 

Innate immune response to a pathogenic challenge is shaped by specificity determinants 

including pathogen recognition receptor (PRR) sensitivity to stimulation by different 

pathogen-associated molecu

(T

lipopolysaccharide (LPS) ligands that elicit them.  Whether these responses differ only in 

degree, or also in type, is an unresolved issue that holds important implications for our 

understanding of TLR4-mediated signal transduction and, more broadly, the molecular 

mechanisms imparting specificity to the innate immune system.  To address this issue, we 

carried out a systematic and comprehensive analysis of TLR4-mediated responses to 

different doses and chemotypes of LPS.  By monitoring activation of many key nodes in 

the TLR4 signaling network, as well as production of many cytokines, we found that 

different LPS chemotypes elicit a TLR4-mediated response to different degrees, but that 

the essential nature of the response is conserved.  These findings reinforce the view that 

different LPS chemotypes stimulate TLR4-mediated response through a common 

mechanism, and that the observed specificity in response stems from differences in signal 

strength. 
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Introduction 

The innate immune system is primarily responsible for initiating host defense responses 

against pathogens.  Sentry cells such as macrophages recognize pathogens through use of 

pattern recognition receptors (PRRs), which detect pathogen-associated molecular 

patterns (PAMPs) characteristic of particular classes of pathogen [J Clin Immunol 

25:503; Mol Cells 23:1].  Activation of a PRR sets in motion a signal transduction 

cascade, typically leading to upregulated production of effector proteins such as pro-

inflammatory enzymes, costimulatory molecules, and secreted signaling molecules 

(hereafter referred to broadly as "cytokines").  Induction of these responses is essential 

not only for early protection against infection [Cell Microbiol 9:1891], but also for 

encouraging development of adaptive immunity [Clin Exp Immunol 147:199; Sci STKE 

402:pe48; Nature 438:364]. 

 

Often described as the "non-specific" counterpart to adaptive immunity, the innate 

immune system may in fact recognize and combat pathogens with heretofore unsuspected 

specificity.  Recent discoveries of "new" PRRs and cognate PAMPs underscore the 

possibility that, as a rule, pathogens bear several different PAMPs and are recognized 

combinatorially, through integration of multiple PRR-induced signals [Crit Rev Immunol 

22:217; J Clin Invest 118:413; Curr Opin Immunol 19:10].  Furthermore, an additional 

level of specificity is implied in the observation that different PAMPs acting on a 

common PRR can elicit different innate immune responses [Annu Rev Immunol 21:335; 

Clin Exp Immunol 140:395; PNAS 99:1503].  While both of these potential specificity 

determinants have garnered considerable attention, thus far only the latter has been 

characterized in some detail.  In particular, several groups have investigated the 

specificity with which variants of lipopolysaccharide (LPS), a bacterial PAMP, elicit 

innate immune responses via activation of Toll-like receptor 4 (TLR4), its cognate PRR. 
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LPS, the major structural component of the outer membrane of Gram-negative bacteria, is 

a complex macromolecule consisting of three covalently linked domains: a distal segment 

comprised of a repeating, highly variable oligosaccharide (O-antigen) which is 

immunogenic; a middle segment comprised of a much shorter, non-repeating, more 

conserved oligosaccharide (core); and a proximal segment comprised of a glycolipid 

(lipid A) which anchors the LPS to the external surface of the bacterial outer membrane 

[Annu Rev Biochem 71:635].  The precise composition of LPS varies between different 

species and strains of bacteria [J Endotoxin Res 12:205], and can vary even within pure 

cultures [J Biol Chem 274:16819; J Biol Chem 275:28006; FEBS Lett 499:1; Infect 

Immun 72:5041].  In fact, certain bacteria are capable of expressing different chemotypes 

of LPS in response to changes in environmental conditions [Science 276:250; Science 

286:1561; Biochem 44:1731; Infect Immun 70:4092; Mol Microbiol 52:1363]. 

 

It is well established that different LPS chemotypes can provoke different innate immune 

responses [J Endotoxin Res 7:167].  Indeed, even seemingly subtle modifications to LPS 

- changes in lipid A phosphorylation or acylation patterns, for example - can dramatically 

alter its immunobiological activity.  In some instances pathogens appear to take 

advantage of this phenomenon, expressing "non-stimulatory" LPS and thereby evading 

recognition by the innate immune system [J Endotoxin Res 12:205; Ann N Y Acad Sci 

1105:202; Infect Immun 70:4092; Mol Microbiol 52:1363].  The significance of this 

virulence strategy is evident in the fact that Yersinia pestis, the causitive agent of the 

plague, can be rendered avirulent simply by forcing it to constitutively express a 

"stimulatory" chemotype of LPS [Nat Immunol 7:1066].  Because of its implications for 

host-pathogen interactions, including the development of sepsis [Int J Med Microbiol 

297:365], the relationship between LPS composition and immunobiological activity has 

been studied extensively.  With the identification of TLR4 as the PRR responsible for 
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host recognition of LPS [Blood Cells Mol Dis 24:340; Science 282:2085], there has been 

equally intense interest in elucidating the relationship between LPS composition and 

efficacy in activating the TLR4-mediated signaling pathway.  Not surprisingly, such 

studies generally have found that LPS chemotypes of high immunobiological activity 

strongly induce activation of the TLR4 signaling network, whereas "non-stimulatory" 

LPS chemotypes do not [e.g., Int Immunol 16:1467; Int Immunol 18:785; Infect Immun 

73:2940; Nat Immunol 7:1066].  The simplest explanation for these observations is that 

"stimulatory" LPS chemotypes engage the TLR4 receptor complex productively whereas 

"non-stimulatory" LPS chemotypes do not, and this difference is maintained at the level 

of TLR4 network activation and induction of innate immune responses.  However, it is 

also possible that "stimulatory" LPS chemotypes engage the TLR4 network in a 

categorically different way, and that this is reflected in differences in TLR4 network 

activation and innate immune response.  Each of these models draws some support from 

published observations.  For instance, Duanas et al. reported that "stimulatory" LPS 

(derived from E. coli) induced a TLR4 network response virtually identical to that 

induced by 500-fold higher concentrations of "non-stimulatory" LPS (derived from F. 

tularensis holarctica LVS) [Int Immunol 18:785].  In contrast, Zughaier et al. reported 

that matched doses of different LPS chemotypes (derived from a variety of bacteria) 

induced markedly different TLR4 network responses [Infect Immun 73:2940].  

Unfortunately, neither study provides sufficient evidence to convincingly support one 

model at the expense of the other; too few LPS doses were tested, too few TLR4 network 

nodes were assessed, and consequently the results may be explained by either model. 

 

In order to determine whether different LPS chemotypes elicit innate immune responses 

that differ only in degree, or also in type, we carried out a systematic and comprehensive 

analysis of TLR4-mediated responses to different doses and chemotypes of LPS.  By 

monitoring activation of many key nodes in the TLR4 signaling network, as well as 
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production of many cytokines, we found that different LPS chemotypes elicit TLR4-

onse to different degrees, but that the essential nature of the response is mediated resp

conserved.  These findings support the idea that different LPS chemotypes stimulate 

TLR4-mediated responses via a common signal transduction mechanism, and that 

specificity in response is simply a manifestation of differences in signal strength. 
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Materials and Methods 

Cell Culture 

The murine macrophage cell line RAW264.7 (TIB-71) was obtained from American 

Type Culture Collection (ATCC).  RAW264.7 cells were maintained in DMEM 

supplemented with 10% FBS (Gemini Bio-Products), 2 mM glutamine (Invitrogen), and 

20 mM HEPES (Invitrogen) [i.e., RAWGM1, as per Alliance for Cell Signaling (AfCS) 

Solution Protocol PS00000510 (http://www.signaling-

gateway.org/data/ProtocolLinks.html)], at 5% CO2 and 37°C.  For routine passaging the 

cells were grown on non-treated disposable tissue culture vessels and harvested through 

brief exposure to EDTA (Versene solution; Invitrogen), as per AfCS Procedure Protocol 

PP00000159). 

 

Francisella tularensis subspecies novicida strain Utah 112 (NR-13) was obtained from 

BEI Resources (Manassas, VA).  F. tularensis subsp. novicida cells were maintained in 

tryptic soy broth (BBL 211768) supplemented with 0.1% L-cysteine, at 37C with 

shaking at 250 rpm. 

 

Purification of Bacterial Lipopolysaccharides (LPS) 

LPS was extracted from F. tularensis subsp. novicida cells using a protocol based upon 

that described by Darveau and Hancock [J Bacteriol 155:831].  Cells were harvested from 

12 L overnight cultures through centrifugation, washed once with 10 mM Tris-HCl pH 8 

 2 mM MgCl2, and resuspended in 175 ml of 10 mM Tris-HCl pH 8 + 2 mM MgCl2 + 

 10 mM Tris-HCl pH 8 were added to the cell lysate for final concentrations of 

+

100 μg/ml DNase I (Sigma-Aldrich DNEP) + 25 μg/ml RNase A (Sigma-Aldrich R4875) 

for incubation at 4C for 16 h.  The cells were then lysed using an EmulsiFlex-C5 

(Avestin), and DNase I and RNase A were added to 100 μg/ml and 25 μg/ml, 

respectively, for incubation at 37C for 2 h.  Stock solutions of 500 mM EDTA and 20% 

SDS in
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100 mM and 2%, respectively, and the mixture centrifuged at 50,000 x g at 20C for 30 

vested from the sample through centrifugation at 200,000 x g at 20C for 2 h; the 

lear, waxy LPS pellets were resuspended in endotoxin-free water and lyophilized for 

min.  The cleared supernatant (~570 ml) was transferred to a clean flask, and proteinase E 

(Sigma-Aldrich 81748) was added to a final concentration of 200 μg/ml, for incubation at 

37C with shaking at 150 rpm for 16 h.  The preparation was then split into two aliquots 

for precipitation of LPS, in order to reduce the risk of co-precipitation of SDS.  Each 

aliquot was combined with two volumes of freshly made 375 mM MgCl2 in 95% ethanol, 

and was cooled to 0C in a frozen ethanol bath.  The aliquots were then centrifuged at 

12,000 x g at 0C for 15 minutes, and the LPS pellets resuspended in 10 mM Tris-HCl 

pH 8 + 100 mM EDTA + 2% SDS, and combined for a total volume of 650 ml.  LPS 

aggregates were further dispersed through two rounds of sonication (1 min each), the pH 

was adjusted to 7 through addition of NaOH, and the sample incubated at 85C for 30 

min, in order to ensure denaturation of detergent-resistant proteins.  After cooling to RT, 

the pH was re-adjusted to 9.5 through addition of NaOH, proteinase E was added to 25 

μg/ml, and the sample incubated at 37C with shaking at 150 rpm for 16 h.  LPS was 

precipitated and pelleted as before, the combined pellets resuspended in 500 ml of 10 

mM Tris-HCl pH 8, and the sample sonicated as before.  Mg-EDTA precipitates were 

removed from the sample by centrifugation at 1000 rpm for 5 min, and MgCl2 was added 

to the transferred supernatant for a final concentration of 25 mM.  Finally, purified LPS 

was har

c

storage at -20°C. 

 

Phospholipids were removed from the F. tularensis subsp. novicida LPS using a modified 

Folch extraction method [REF].  The lyophilized LPS was resuspended in 2:1 

chloroform:methanol to a final concentration of 2% (w/v) and then centrifuged at 10,000 

rpm at 4°C.  After two rounds of extraction the LPS pellet was air-dried for storage at -

20°C. 
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Lipoprotein contaminants were removed from our preparations of F. tularensis subsp. 

novicida "smooth" LPS, as well as from commercial preparations of Escherichia coli 

O55:B5 "smooth" LPS (Sigma-Aldrich L-4524) and Salmonella minnesota Re 595 

"rough" LPS, using a standard phenol extraction method [J Immunol 165:618].  LPS 

samples were resuspended at 5 mg/ml in endotoxin-free water containing 0.2% 

triethylamine, and sodium deoxycholate was added for a final concentration of 0.5%.  

hen, an equal volume of water-saturated phenol was added, and the mixture vortexed 

ation at 10,000 x g at 4C for 2 min, the aqueous phase was carefully transferred 

dded to each tube, and the mixture incubated at RT in the dark.  

T

intermittently at RT for 5 min, followed by incubation on ice for 5 min.  After 

centrifug

to a new tube and set aside.  To the organic phase an equal volume of 0.2% triethylamine 

+ 0.5% sodium deoxycholate was added, and the extraction procedure was repeated.  

After combining the aqueous phase samples, an equal volume of water-saturated phenol 

was added, and the extraction procedure was repeated for a third time.  Each of the final 

aqueous phase samples were mixed with 2.75 volumes of 100% ethanol and 0.01 volume 

of 3 M sodium acetate, the samples incubated at -20C for at least 1 h, and the 

precipitated LPS harvested through centrifugation at 10,000 x g at 4C for 10 min.  The 

LPS pellets were washed once with cold 100% ethanol and then air-dried for storage at 

-20C. 

 

LPS Quantitation by KDO Assay 

LPS preparations were assessed for KDO content as a measure of LPS concentration, 

using a colorimetric assay and protocol based on that described by Karkhanis et al. [Anal 

Biochem 85:595].  Small (50 µl) aliquots of LPS samples and KDO standards were 

mixed with equal volumes of 0.036 N H2SO4 and boiled for 20 min in sealed screw-cap 

microcentrifuge tubes.  After cooling to RT, 25 µl of periodate reagent (0.04 M NaIO4 in 

0.125 N H2SO4) was a
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After 20 min, 50 µl of arsenite reagent (2.6% NaAsO2 in 0.5 N HCl) were added to each 

ixture to transiently develop a brown hue.  Upon becoming colorless 

AWGM1, and the cultures 

ere allowed to equilibrate at 5% CO2 and 37°C for at least 1 h.  LPS challenge was 

upon addition of 1 ml of thoroughly-suspended LPS in RAWGM1 and 

 profiling of 

ytokine content.  Upon removal of the conditioned medium 500 μl of 1.5X SBCe sample 

tion PS00000533] were immediately added to the petri dish, and the 

tube, causing the m

once again, each sample was mixed with 250 µl of 0.3% thiobarbituric acid (Sigma-

Aldrich), vortexed, and incubated at 100°C for 10 min.  To the hot mixure 125 µl of 

dimethyl sulfoxide was added, the tube vortexed, and after cooling OD550 was measured.  

Buffer served as the blank, and dilutions (31.25 μM to 500 μM) of purified KDO (Sigma-

Aldrich) were used to generate a standard curve. 

 

LPS Challenge of Macrophages and Sample Preparation for Western Analysis and 

ELISA 

RAW264.7 cells were harvested as usual, introduced to fresh RAWGM1 medium, and 

then used to seed 10 cm diameter tissue-culture-treated petri dishes (BD Biosciences 

#35305) at a density of 3x106 cells/dish.  After 24 h of growth, the conditioned medium 

(10 ml) was removed for replacement with 9 ml of fresh R

w

initiated 

immediate mixing by rapid but gentle swirling of the petri dish.  After further incubation 

at 5% CO2 and 37°C for a pre-determined amount of time, the conditioned medium of 

each culture was transferred to a 15 ml Falcon tube on ice; these samples were soon 

thereafter centrifuged at 400 x g for 5 min in order to pellet any contaminating cells, and 

the supernatants transferred to new tubes for storage at -80°C and eventual

c

buffer [AfCS Solu

adherent cells contained therein were harvested through use of a cell scraper and P-1000 

Pipetman.  Each sample was immediately transferred to a locking-lid microcentrifuge 

tube, incubated at 100°C for 5 min, and then stored at -80°C for eventual use in Western 

analysis experiments. 
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Western Analysis 

10 μl aliquots of each sample, and 10 μl of SeeBlue Plus2 protein standard ladder 

(Invitrogen), were loaded into the wells of a Novex 4-20% Tris-Glycine Midi gel 

(Invitrogen).  After electrophoresis at 150V for ~90 min, proteins were transferred from 

the gel to a nitrocellulose membrane using the iBlot system (Invitrogen).  The membrane 

as then incubated in blocking buffer (5% (w/v) powdered milk in TBS/T) at RT with 

 reagent (AlphaInnotech) for 2 

in before detection using an AlphaImager (AlphaInnotech). 

 petri dishes (Corning #3262) or low-attachment 

6-well microtiter plates (Corning #3474), at a density of 106 cells/dish.  After 

equilibration at 5% CO2 and 37°C for at least 2 h, LPS challenge was initiated upon 

w

gentle agitation for 1 h, washed three times with TBS/T, and incubated with a primary 

antibody of interest, diluted appropriately in 5% BSA (Sigma) in TBS/T, at 4°C with 

gentle agitation for 16 h.  The membrane was then washed three times with TBS/T, and 

incubated with an appropriate HRP-conjugated secondary antibody (GE Healthcare), 

diluted 1:200 in 5% powdered milk in TBS/T, at RT for 2 h.  The wash steps were 

repeated, and the membrane was exposed to ChemiGlow

m

 

ELISA 

Conditioned media harvested from LPS-challenged RAW264.7 cell cultures were 

assessed for cytokine content using ELISA kits (R&D Systems) designed to specifically 

detect murine cytokines TNFα, RANTES, IP10, MCP5, G-CSF, IL1β, MCP1, MIP2, and 

MIP1β.  In many cases the samples required appropriate dilution with RAWGM1 in 

order to reduce cytokine levels to fall within the working range of the assay. 

 

Flow Cytometry 

RAW264.7 cells were harvested as usual, introduced to fresh RAWGM1 medium, and 

then used to seed ultra-low attachment

9
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ad t 

5% CO2 and 37°C for a pr , the cells were fixed upon 

addition of paraformaldehyde (Electron Microscopy Sciences) to a final concentration of 

1-2% and incubation at RT for 10 min.  The fixed cells were harvested by centrifugation 

at 400 x g at 4°C for 5 min and washed twice with BD stain buffer with BSA (BD 

Biosciences #554657) prior to downstream processing. 

 

For detection of surface-exposed, non-activated TLR4-MD2 receptor complex, 2.5x105 

fixed cells were resuspended in 25 ul of BD stain buffer containing 5 μg/ml (1:20) of PE-

labeled MTS510 antibody (Abcam ab21319), and incubated in the dark at 4°C for 45 

min.  The cells were then washed twice with BD stain buffer, harvested by centrifugation 

at 300 x g for 5 min, resuspended in 200 μl of BD stain buffer, and the fluorescence 

intensity measured using a BD FACScan flow cytometer. 

 

For detection of intracellular proteins of interest, fixed and washed RAW 264.7 cells 

were permeabilized through resuspension in cold methanol to a final concentration of 106 

cells/ml and incubation at 4°C for 10 min.  Permeabilized cells were harvested by 

centrifugation at 300 x g for 5 min, and washed twice with BD stain buffer.  106 cells 

were incubated with 50 μl of one of the following antibodies, at 4°C for 45 min: 

phospho-ERK1/2-AlexaFluor488 (Cell Signaling #4374) at 1:25 dilution; phospho-

p38(pT180/pY182)-PE (BD Biosciences 612565) at 1:2 dilution; and phospho-NFκB 

(Ser536) (Cell Signaling #3033) at 1:200 dilution.  Cells were then washed twice with 

BD stain buffer and, in the case of the phospho-NFκB stained cells, incubated with 50 μl 

of (1:1000) goat anti-rabbit secondary antibody conjugated to AlexaFluor488 (Invitrogen 

#11008) at 4°C in the dark for 30 min. 

 

dition of X ml of thoroughly-suspended LPS in RAWGM1.  After further incubation a

e-determined amount of time
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All stained samples were resuspended D staining buffer for analysis on the 

BD FACscan flow cytometer.

 in 250 μl B
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Figures 

ffect of LPS dose and chemotype on activation of the TLR4-MD2 receptor 
complex.  RAW264.7 macrophages were challenged with different doses (100 
pM to 1 μM, 10X dilution series) of LPS derived from E. coli O55:B5 (Ec), S. 
enterica serotype minnesota Re 595 (Se), and F. tularensis novicida Utah 112 
(Ft).  At the times indicated, the cells were harvested; stained with PE-labeled 
MTS510 antibody, which specifically recognizes inactive TLR4-MD2 receptor 
complexes [J Exp Med 198:1035]; and relative fluorescence intensities (RFIs, 
expressed in arbitrary units) of individual cells measured by flow cytometry. 
A. Histograms showing mean RFIs measured in a representative

 
Fig. 1.  E

 
 experiment.  

B. Bar-graphs showing the medians of normalized mean RFIs (MRFIs, 
expressed in arbitrary units), and standard errors, calculated from data 
generated in three independent experiments.  The background of each bar-
graph is partially shaded to facilitate comparisons with the others. 
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Fig. 2. 

expressed in arbitrary units), and standard errors, calculated from data 
generated in three independent experiments.  The background of each bar-
graph is partially shaded to facilitate comparisons with the others. 

 

 Effect of LPS dose and chemotype on activation of TLR4 network node 
NFκB.  RAW264.7 macrophages were challenged with different doses (100 
pM to 1 μM, 10X dilution series) of LPS derived from E. coli O55:B5 (Ec), S. 
enterica serotype minnesota Re 595 (Se), and F. tularensis novicida Utah 112 
(Ft).  At the times indicated, the cells were harvested; stained with Alexa488-
labeled anti-RelA-P antibody; and relative fluorescence intensities (RFIs, 
expressed in arbitrary units) of individual cells measured by flow cytometry.  
A. Histograms showing mean RFIs measured in a representative experiment.  
B. Bar-graphs showing the medians of normalized mean RFIs (MRFIs, 
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Fig. 3.  Effect of LPS dose and chemotype on activation of TLR4 network 
nodes p38, ERK, IκBα, and IRF3.  RAW264.7 macrophages were challenged 
with different doses (100 pM to 1 μM, 10X dilution series) of LPS derived from 
E. coli O55:B5 (Ec), S. enterica serotype minnesota Re 595 (Se), and F. 
tularensis novicida Utah 112 (Ft).  At the times indicated, the cells were 
harvested, lysed in the presence of protease and phosphatase inhibitors, and the 
extracts examined by Western analysis, using antibodies to detect:  A. Total and 
phosphorylated p38;  B. Total and phosphorylated ERK;  C. Total IκBα;  and D. 
Total and phosphorylated IRF3.  All images are representative of results 

generated in three independent experiments. 
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Fig. 4.  Effect of L
media wer

PS dose and chemotype on production of cytokines.  Conditioned 
e harvested from the RAW264.7 cultures described in the legend of 

d th tent easured by ELISA.  A. IL-6 production in 
to of E. coli O55:B5 (Ec), S. enterica serotype 

a R  F. tularensis novicida Utah 112 (Ft) LPS.  B. 
n o onse ent doses of Ec, Se, and Ft 

Fig. 2, an eir cytokine con m
response different doses 

nminnesot e 595 (Se), a d
oProducti f eight cytokines in resp  to differ

LPS.  
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