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Abstract

A microscopic theory for investigating quantum-dot optical properties was developed.
The theory incorporated advances on various aspects of quantum-dot physics developed
at Sandia and elsewhere. Important components are a non-Markovian treatment of
polarization dephasing due to carrier-carrier scattering (developed at Sandia) and a
nonperturbative treatment within a polaron picture of the scattering of carriers by
longitudinal-optical phonons (developed at Bremen University). A computer code was
also developed that provides a detailed accounting of electronic structure influences and a
consistent treatment of many-body effects, the latter via the incorporation of results from
the microscopic theory. This code was used to explore quantum coherence physics in a
quantum-dot system. The investigation furthers the understanding of the underlying
differences between atomic quantum coherence and semiconductor quantum coherence,
and helps improve the potential of using quantum coherences in gquantum computing,
coherent control and high-resolution spectroscopy.
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|. Introduction

Quantum dots (QDs) are considered key elements for the next generation of
optoelectronic devices. Sandia has many QD device development projects, and the
number will definitely grow in the future, as new applications emerge. To fully tap the
advantages of QD technology, it is crucial to understand the underlying physics and be
able to accurately predict physical behaviors over a broad range of experimental
conditions.

Until recently, theoretical investigations were hindered by the lack of a comprehensive
microscopic theory, because of serious complexities in QD physics. As a result, no
single group could perform a complete calculation. On the other hand, several groups
have made theoretical advances that contributed to solutions of various aspects of the
problem. At Sandia, we developed a non-Markovian treatment of polarization dephasing
due to carrier-carrier scattering within a coupled quantum-dot-quantum-well (QD-QW)
system. [1] At Bremen University, a nonperturbative treatment within a polaron picture
of the scattering of carriers by longitudinal-optical phonons (carrier-LO-phonon
scattering) was recently completed. [2] A theory group at the Walter-Schottky Institute
has developed a computer code for calculating QD electronic structures and has made it
available to the public. [3] These pieces of solutions made possible the development of a
comprehensive microscopic theory for QD optical response.

This LDRD project was for performing such a task at Sandia. Also proposed was the
application of the theory and resulting computer code to investigate QD quantum-optical
phenomena, with the goal of potential applications in quantum computing, coherent
control and high-resolution spectroscopy. A by-product of this exercise was the
demonstration of the analytical capability developed in this LDRD project to explore
high-risk, high-payoff ideas, and put them on firm scientific foundations before
undertaking the greater commitment of doing experiments.

This report highlights the results of this LDRD project and explains the physics and
calculations at a level understandable to the non specialist. Details of results are
published and a copy of each paper may be found at the end to this report.

Il. Theory

Central to Sandia’s contribution to QD theory is the realization that under high-
excitation conditions (such as found in a laser) the coupling between QD and QW
(wetting layer) states plays an important role in determining optical response. [4] It is
therefore necessary to treat QD and QW contributions on equal footing. This is
accomplished by starting with a many-body Hamiltonian of the combined QD-QW
system, and working in the Hiesenberg Picture, derive the coupled equations of motion
for the QD and QW polarizations. The equations have the common form:

dp( v/3
dt
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where o and B (discrete for QD and continuous for QW) label the states involved in the
optical transition. On the right-hand side, the first term describes oscillation at the
renormalized transition frequency oqs and the second term is from absorption and
stimulated emission involving the populations n,, ng and the laser field in the form of the
renormalized Rabi frequency Q.p. Also on the right-hand side, the 3% and 4™ terms
account for dephasing from carrier-phonon and carrier-carrier scattering, respectively.
Details of the various contributions appearing in the above equation may be found in
several publications. [1,2,4-7].

From semiclassical laser theory, the optical gain (or negative absorption) is given by

[8]
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where ( and c are the permittivity and speed of light in vacuum, pg is the dipole matrix
element, n is the background refractive index, E(w) is the laser electric field amplitude
and o is its frequency. The active region contains the QDs, wetting layer and QW
embedding the QDs, and has volume, V.

A gain or absorption calculation involves solving for the steady-state solutions to the
polarization equations for given carrier density (which then defines n,, ng assuming
quasiequilibrium condition) and weak laser probe field, E. The solution is then
substituted into to the 2" equation to obtain the gain or absorption.

I11. Gain and Absorption spectra
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Fig. 1. Spectra showing intrinsic gain and absorption for InGaAs quantum-dot structure for
increasing carrier density from 10" to 3x10™cm™.



Figure 1 shows gain spectra computed using the procedure outlined in Sec. Il. The
curves are for T=300K and different carrier densities. The active region is a 4nm thick
GaAs QW containing a density of 5x10'%m™? IngsGao7As QDs. For the electronic
structure calculations, the QD shape is approximated by a 2nm thick disk with an 18nm
diameter. Each spectrum shows a QD resonance and a broad QW contribution. These
spectra reveal interesting intrinsic QD properties. One is a carrier-density dependent
energy shift in the QD resonances. (Note that such a shift is absent in the QW exciton
resonance.) There is also appreciable spectral broadening of QD resonances with
increasing carrier density, suggesting strong excitation dependence in the dephasing. [1,
6, 7] Both behaviors were observed in low excitation single-dot experiments. [9] In
measurements involving an ensemble of QDs, they are likely masked by inhomogeneous
broadening due to QD size and composition variations.

IV. Peak Gain Properties

Many useful laser properties are determined by the excitation dependence of peak
gain. The solid curve in Fig. 2 shows the intrinsic behavior of peak gain for changing
carrier density. The curve is extracted from Ing3Gap7As QD gain spectra. With
increasing carrier density, there is a strong initial rise in peak gain that is followed by
significant gain saturation, where surprisingly, we find the QD peak gain to actually
decrease with increasing carrier density. Eventually, the QW gain takes over and a
positive dG/dN is restored.

The intrinsic dGp/dN<O behavior is counterintuitive and is caused by the detrimental
(to having a good laser) effect of dephasing overtaking the desired effect of state-filling.
[6] Fortunately, this anomaly appears to be unique to the QD-QW system and has yet to
be encountered in other laser systems, whether atomic or semiconductor
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Fig. 2. Peak gain versus carrier density for intrinsic IngsGag-As QD
structure (solid curve) and with 20meV inhomogeneous broadening (dashed
curve).



A good question is why dGp/dN<0 has to date not been observed in experiment. A
reason is that with present QD samples, peak gain is reduced by inhomogeneous
broadening. Because the amount of reduction is inversely proportional to the width of
the QD resonance, and therefore, also inversely proportion to carrier density, one ends up
with only a flattening of Gy vs. N, as illustrated by the dashed curve in Fig. 2, when a
sufficiently large inhomogeneous broadening is added to the intrinsic result. The

inn=20meV needed to produce the dashed curve is typical of the best presently grown
QD samples and it produces a result that resembles what is typically observed in
experiment. Until now, peak gain saturation in a QD system is only attributed to Pauli
blocking. The microscopic theory shows that there is a second contribution from the
abrupt increase in dephasing because of additional scattering channels arising from the
population of QW.

Information on Gy versus N is useful for many semiconductor laser simulations. To
facilitate the use of our results in laser models, we introduce the following fitting function
for QD peak gain:

G (N) = A In(N/N) + B exp(= NIN))

where the first term is similar to the widely used QW gain fit function and a second term
is added to account for the stronger saturation and possible gain reduction. Table 1 lists
the coefficients obtained from a least-squares fit of Gy versus N curves computed with
the microscopic theory.  These coefficients take into account the complicated
dependences of scattering effects on carrier density and transition, as determined by the
rigorous calculations. A more extensive discussion including information on fitting
coefficients for other QD structures, in addition to fitting functions and coefficients for
the carrier-induced refractive index may be found in the literature. [7]

Table I. Coefficients for Iny3Gag7As QD gain fitting functions
A, (meV) A (10%em) N, (10'%em?) B (10%cm) N, (102/cm?)

0 8.10 3.06 26.24 1.18
4 2.95 3.36 9.61 1.58
8 1.63 3.39 5.24 1.83

V. Polarization Dephasing

QD gain properties are strongly governed by polarization dephasing. Polarization
decay in semiconductor (bulk, QW and QD) is nonexponential because of nondiagonal
contributions to the scattering terms in the polarization equations of motion. [8]
Consequently, it is only possible to speak of an effective dephasing rate that is obtained
from fitting gain or absorption spectra. In the case of the QD, the dephasing rate is
obtained by fitting the computed intrinsic QD resonance with a Lorentzian function,
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using the Lorentzian full width at half height (FWHH) as a fitting parameter. In most
cases, we are able to achieve reasonably good fits, except for the asymmetry in the actual
resonance and deviations at the spectral tails. [1] Figure 3 summarizes the results by
plotting the FWHH obtained from the spectral fits as a function of carrier density.

The curves illustrate the complicated nature of dephasing. First of all, the dephasing
can be quite sensitive to carrier density. In addition, dephasing also depends on QD
structure, and in the case of structures with multiple QD transitions, varies with
resonances. To illustrate both points, we use in addition to the Ing3Gag7As QD structure,
an InAs QD structure. Henceforth, we refer to the InAs QD as deep QD, because its
confinement potential is noticeably deeper relative to that of an Ing3Gag7As QD. The
deep QD emission wavelength is around 1.5um, which makes it interesting for
telecommunication applications. With the InAs deep QD, there are two resonances (s-
shell and p-shell) and the effective dephasing rate for the two resonances are distinctly
different in magnitude and in carrier-density dependence, as shown in Fig. 3. There is
also little overlap between InAs and Ing3Gag7As QD curves. The complex dephasing
behaviors are obtainable only with a rigorous treatment of scattering effects. Predictions
of dephasing widths or times (right axis) are consistent with experiment. [10]
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FIG. 3. Intrinsic (homogeneous) width of QD resonance (left axis) and effective dephasing
lifetime (right axis) vs. carrier density. The dotted line indicates the carrier density where the
InAs QD gain peak moves from the s- to p-shell resonance.

V1. Alpha Factor

The microscopic theory also gives the linewidth enhancement [11] or antiguiding
[12] factor

d(én) /dN

, = R=—2
=K dG /AN

where K is the laser field wave number and
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is the carrier-induced refractive index change. The magnitude of o provides indication of
the contribution of the active medium to laser linewidth, frequency chirp and output beam
quality.

Figure 4 shows the dependence of at the gain peak (where a laser typically operates)
as a function of peak gain for Ing3Gag 7As and InAs QDs. In the range of small peak gain
the curves indicate small values for the magnitude of  as expected for atomic-like
systems. In contrast to the bulk and QW cases, a at the gain peak can be negative.

A negative o is very desirable for high-power single-mode operation. With a>0,
filamentation (or self-focusing) limits output intensity in single-mode lasers. With <0,
antiguiding occurs instead, and single-mode intensity is only limited by extrinsic factors
such as thermal lensing.
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Fig. 4. o at gain peak vs. peak gain for shallow (left) and deep (right) QDs, showing both
intrinsic (solid curves) and inhomogeneously-broadened behaviors (dashed curves). Only the
ground state (s-shell) resonance is considered. Note that for the deep QD, o(w,) remains
negative for low excitations and with inhomogeneous broadening.

However, we note that negative o with s-shell lasing is only achievable with
sufficiently small inhomogeneous broadening in the sample. The widening of dn
spectrum with inhomogeneous broadening leads to a changing of the sign of o as
depicted in Fig. 4. However, it was shown, theoretically and experimentally, that
antiguiding at high excitation is still possible with experimentally realizable QD samples
with the proper choice of QD confinement and lasing transition. [13,14]
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VI1I. Quantum Coherences

Research on quantum coherence effects in atomic systems has stirred interest in
possible optoelectronic applications. To realize this goal, we investigated in this LDRD
project the physics and device engineering issues in the context of a condense-matter
system. The advantages of using quantum dots (QDs) in quantum coherences include the
possibility of long dephasing times and the preservation of atomic-like properties (e.g.,
discrete energy levels) at high temperatures. [15]

Our investigation uncovered an important difference between many-body theory
(such as ours) and free-carrier treatments (adapted from atomic physics). To illustrate
this difference, we present results for the slow-down factor

S = np (1 + wydx,/dw,)

where ny is the background refractive index, o, is the probe frequency and y;, is the real
part of the quantum-dot susceptibility. The slow-down factor, which is a measure of the
refractive index changes resulting in optical group-velocity reduction, is of interest for
applications such as optical storage.

Figure 5 shows predictions of the maximum value for S as a function of pump
intensity for lattice temperatures, T, =75K. Comparison of solid and dashed curves
shows an appreciable difference between many-body and free-carrier predictions. Most
important of these differences is the over two orders of magnitude overestimation of the
necessary pump-pulse intensity when many-body effects are neglected. Also, while both
treatments predict basically the same maximum achievable S, the drive intensities for
reaching saturation are drastically different. Detailed analysis reveals that the Coulomb
enhancement is the primary cause for these differences. [16]
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Fig. 5. Maximum slow-down factor vs. pump-pulse peak intensity for T=75K.
Comparison of solid and dashed curves shows over 2 orders of magnitude
difference in many-body and free-carrier predictions for the pump intensity
necessary for the onset of group-velocity slowdown.
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VI1II. Conclusion

This 2-year LDRD project led to the development of a theory and accompanying
computer codes for investigating optical properties in quantum-dot systems. In
developing the theory, we used a first-principles approach that included a detailed
account of the electronic structure of the coupled quantum-dot and quantum-well system;
a description of light-matter interaction that allowed treatment of optical nonlinearities,
ultrafast excitation and quantum coherences; and a rigorous treatment of scattering
effects at the level of quantum kinetic theory. The detailed treatment of many-body
effects allows the elimination of almost all free (fitting) input parameters, resulting in
significant improvement in predictive capability. The code is presently providing the
most advance theoretical support for in-house experiments and idea developments. For
example, during the final year of the project, the theory and code were used to explore
qguantum-optical phenomena in quantum-dot systems. The motivation is potential
applications in quantum computing, coherent control and high-resolution spectroscopy.
The exercise demonstrated our capability to explore a high-risk, high-payoff idea and put
it on a firm scientific foundation before undertaking the greater commitment of doing
experiment.

In addition to providing state-of-the-art analytical support to Sandia's many quantum-
dot research projects, the investigations also motivated new ideas relevant to Sandia
initiatives in solid-state lighting, solar photovoltaic conversion and negative refraction.
These ideas contributed to three LDRD new-start projects. The results of our LDRD
project also provided technical supporting material in three recent BES proposals. Lastly,
external recognition is evident from the 5 invited talks and 4 refereed papers.
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Appendix I: Equations for quantum-dot microscopic theory

In this appendix, the equations derived for the quantum-dot/quantum-well system are

listed. These equations are used in the code development.

Material gain
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Quantum dot polarization
Equation of motion
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dt
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Coefficients for carrier-phonon scattering
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where the equation of motion for the polaron Green’s function is
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Quantum well
Equation of motion
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where Gy, is determined by solving (11).
Equations as programmed in code

For the numerical computer code, the above equations are converted by allowing the
quantum well index, k, to be continuous. The corresponding equations are given below.

G=—2 0l; {\ don,) 1 fx ik e }
= — m | Ny (e o K km———
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where Gy, is determined by solving (11).
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Equations (16) to (18) are exactly the same for continuous and discrete k, and the matrix
elements appearing in those equations are
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Input parameters (MKS):

Nop is the quantum dot density in L™

BandqareinL? Aisin L2

Eqot (electron) = 0.037eV below QW conduction bandedge
Edot (Nole) = 0.031eV above QW valence bandedge

QW subband effective masses = 0.067m, (electrons), 0.180my (holes)

h  L0=0.036eV
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=0.06
=1.571 x 108m™*
ar=1.404 x 10®m

= 0.00396eV
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Quantum-coherence induced group-velocit

slowdown 1n a semiconductor quantum-dot structure is

investigated using a many-body theory. The predictions are found to be noticeably different from
those obtained in the independent-particle treatment typically used for describing atomic quantum
coherence. In particular, Hartree-Fock renormalizations can lead to over two orders of magnitude

reduction in the predicted pump intensity requirement for group-velocity slowdown to occur.
Results are presented for the slowdown factor and slowdown-bandwidth product in a pulsed InAs—
GaAs quantum-dot A scheme. © 2006 American Institute of Physics. [DOL: 10.1063/1.2364164]

Research on quantum-coherence effects in atomic
ssys;lmnsl‘2 has stirred interest in possible optoelectronic ap-
plications. An cxamflc is optical buffers based on the slow-
light phcnomcnun.}‘ To realize this goal, physics and device
engineering issues are being addressed in the context of a
condensed-matter system. For instance, excitonic or spin cor-
relations leading to electromagnetically induced transparency
(EIT) in semiconductor quantum wells (QWs) were investi-
gated experimentally or theoretically.”™ There is also interest
in quantum coherences using quantum dots (QD&;),&q because
of reports of long dephasing times  and preservation of
atomiclike properties (e.g., discrete energy levels) at high
lemperatures.

Several ideas for quantum coherence in QDs are being
proposed and analyzed. However, the analyses are mostly
adapted from atomic quantum-coherence theory, where
many-body effects are ncglcclcd.s‘“ To improve on these
analyses, this letter investigates QD quantum coherence us-
ing the semiconductor Bloch equations, modified to allow
the tracking of the additional optical fields and electron-hole
polarizations in a A syslu.:m.g Furthermore, a relatively de-
tailed description of the electronic states of a coupled
QD-QW system is included, together with the coupling of
these states via collisions in the relaxation rate approxima-
tion. A treatment in the framework of semiconductor Bloch
equations  (Hartree-Fock) neglects  excitonic  correlations,
which have been shown to be important for the incoherent
emission from QQDs and at lower lcln[:)c,mlurL:s.t2 However, in
the temperature range considered in the present letter, the
semiconductor Bloch equations are expected to provide a
good description of the influence of the Coulomb interaction
on the quantum-coherence properties of a QD ensemble.

A structure consisting of InAs QDs embedded in a GaAs
QW is chosen for the study. The electronic level structure”
is computed for InAs pyramidal dots (each with a base of
12 12 nm” and height of 6 nm) and wetting layer of thick-
ness of | nm. There are three confined electron and six con-
fined hole levels, denoted by |e0) to |e2) and |h0) to |25).

YElectronic mail: hesch @physik.uni-kl.de

0003-6951/2006/89(18)/181114/3/$23.00

89, 181114-1

This is in agreement with previous calculations, e.g.. Ref. 14,
where input material parameters are listed. Each level is dou-
bly degenerate. The level energies and dipole selection rules
give rise to a modified A configuration, with the drive field
connecting |e0) and |A0) and a probe field connecting the
transitions |e0) and |1}, as well as |e0) and |h2). The other
QD  and QW states in  Fig. 1 are coupled
to one another and to the states in the A configuration via
collisions.

In describing the theoretical formulation, we will high-
light the many-body aspect, because the Coulomb correc-
tions are the focus of this letter and because the semiconduc-
tor equations of motion have basically similar forms as the
corresponding atomic ones. For example, the semiconductor
equation of motion for the polarization connecting the states
leO) and |11} is

%

dpaoni . .
—dr == ({w,p + Yd)Pen.m =i (g + 11y = 1)
+i E’Qrﬂ.ﬁpﬂ.h] —i E’Ahl.ﬂpeﬂ.ﬁ- (1

B+hl B=hl

where the first line is similar to the atomic polarization equa-
tion of motion. In the above equation, ¥ is the dephasing
rate, n; is population in level j, and the primed summations
are over hole states that are connected to electron-hole co-
herences that are closely resonant with the drive and probe
fields. The differences are the additional term appearing in
the second line and the carrier-density dependent renormal-
izations of the transition frequency wﬂ_h]:wsg)‘mﬂ.‘.w
+A; 4, and Rabi frequency QEO_M:"*;?,;“EPe""“’P'+ Ao
where cuf,u‘“ and o5 are the transition frequency and di-
pole matrix element determined from the single-particle
electronic-structure calculation, respectively, and E, is the
probe field with frequency w,. The many-body contributions,
which may be grouped into electron, hole-hole, and electron-
hole terms, are

A== 2 (Vi = Ve ng - 2 Vehing — 2 Vidng.
A k

2
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FIG. 1. Imaginary (left) and real (right) parts of susceptibility vs probe
energy. The solid and dashed curves are the many-body and independent-
particle results, respectively. To display spectra corresponding to unexcited
system, complete EIT and maximum LWI, the times for the many-body
(independent-particle) spectra are =2 (=2) ps (a), 0.11 (=0.10) ps (b}, and
0.42 (0.16) ps (c) relative to the maximum of drive pulse. The probe energy
detuning is relative to the zero-density e(-h2 exciton resonance and the
independent-particle spectra are shifted to facilitate comparison of the line
shapes.
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Ao = E'V?&;;Peme 4
B
respectively, where the summation index a refers to QD
electron states, 8" and B” (#8') 1o QD hole states, and k to
QW states. Each term on the right-hand contains matrix
clcmcnlsQ of the Coulomb interaction energy V:’,B ,
:f(b:(r)(;b;(r’) e [dme vt —1"| g (1) o (V) rd’r’ . We use
a many-body theory where screening effects arise from the
changes in the dielectric function due to the presence of car-
riers in the QW states.”” For the situations considered in this
letter, the QW carrier population is negligible because of the
relatively deep InAs quantum-dot confinement. Therefore,
we neglected the plasma screening contributions in the above
equations. Also neglected are the microscopic dephasing pro-
cesses that couple the polarization of interest to other polar-
izations, giving rise to nondiagonal scattering contributions.
A recent study showed that these contributions are usually
small in QDs  because of the three-dimensional
confinement.'® Consequently, dephasing effects are approxi-
mated by the diagonal term in Eq. (1) containing the effec-
tive dephasing rate
For the populations, one has, e.
Downloaded 0
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FIG. 2. Maximum slowdown factor vs drive-pulse peak intensity for lattice
temperatures of 200 K (a) and 75 K (b). The solid and dashed curves are the
many-body and independent-particle results, respectively.
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where 'y‘:_c and 'yﬁ_P are carrier-carrier scattering and carrier-
phonon scattering rates, respectively. Besides {1, 5. the dif-
ference between semiconductor and atomic equations lies in
the population relaxation. In our case, we have terms ap-
proximating the collision-induced particle exchange pro-
cesses that drive the population distributions to quasiequilib-
rium Fermi-Dirac I'uncliun.slﬂ at chemical potentials and
temperatures (uf,T,) and (g;,T)), where T, and T; are the
plasma and lattice temperatures, respectively. The details of
the computational procedure are given elsewhere.

We begin by considering an experiment where an optical
pulse is incident on the QD sample to drive the polarization
Peoso- The optical response to this excitation is investigated
by examining the complex susceptibility seen by a probe
field that is closely resonant with the polarizations pg 5, and
Peox2- The numerical computations involve solving 36 polar-
ization equations of motion [of the form (1)], together with
nine equations of motion for the QD populations [of the form
(5), four with optical interaction and five without] and
around 100 equations of motion for the populations in the
momentum-resolved QW electron and hole states. The com-
plex susceptibility at some time and probe frequency is com-
puted from the polarizations p_g; and p.g 2, according to
semiclassical laser theory.

For the results shown in Fig. I, we use a sech drive pulse
with peak intensity of 1.4 MW /cm? and duration [full width
half maximum (FWHM)] of 1.7 ps. Furthermore, the dot
density is Ny;=5x10" cm™ and lattice temperature T
=200 K. where recent literature®! gives scallering rates
around p4=1.5% 102 57, 5,.=2x 102 57! and Yep=2
x 10" 571 The solid curves describe the imaginary (x;. left
column) and real (y,. right column) parts of the susceptibility
as functions of probe frequency and at different times (=0 is
chosen to be at the peak of the drive pulse). Prior to the
excitation, one has the typical excitonic absorption reso-
nances approximately centered at the unexcited e0-k1 and
e0-h2 exciton resonances and corresponding dispersions as
given by the Kramers-Kronig relations [Fig. 1(a)]. Figures
1(b) and 1(c) are for times when complete transparency and
maximum gain are created by EIT and lasing without inver-
sion (LWI), respectively, at the e0— A2 transition. For times
longer than the reciprocal of the dephasing rate, the

uantum-coherence effects vanish and the spectral shapes re-
IP license or copyright, see http://apl.aip.org/apl/copyright.jsp
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FIG. 3. Maximum slowdown-bandwidth product vs drive-pulse peak inten-
sity for lattice temperatures of 75 K and 200 K. The inset shows a

nywydx,/dw, spectrum for both treatments. The solid and dashed curves are
the many-body and independent-particle results, respectively.

turn to forms of Fig. 1(a), except for amplitude changes due
to carrier creation and population of excited states.

Also plotted in Fig. 1 dashed curves) is the result ob-
tained by ignoring the Coulomb renormalizations and popu-
lation redistribution, i.c., by setting 0 zero, Yoo, Y. Yepr
¥2_. and the right-hand side of Eqs. (2)-(4). This gives the
indl:-:pendent—parlicle (atomic) result with absorption reso-
nances centered at cuf,?]’m and cuf,?]’m. To reach complete trans-
parency. a much higher drive-pulse peak intensity of
21.9 MW /cm? is necessary in this case. The time evolution
of the probe susceptibility is different from that of the many-
body case. Consequently, the times for complete transpar-
ency and maximum gain in the e0 — k2 transition are differ-
ent, as indicated in the caption of the figure. Comparison of
solid and dashed curves indicates that appreciable differ-
ences can occur between the two descriptions. The many-
body corrections give rise to asymmetries in the resonances
and different spectral peak amplitudes.

A consequence of the differences between the present
theory and the independent-particle treatment, as depicted in
Fig. 1, is in the prediction of the slowdown factor S=n(1
+w,dx,/dw,). The slowdown factor. which is a measure of
the refractive index changes resulting in optical group-
velocity reduction, is of interest for applications such as op-
tical storage. To show explicitly the discrepancy, Fig. 2 plots
the maximum value for § as a function of drive intensity for
lattice temperatures 7;=75 and 200 K. For T;=75 K, the
dephasing rate is taken to be y#=15x 10" 18 and a
sech drive pulse with FWHM of 8.3 ps is used. There is
clearly a strong temperature dependence in the slowdown
factor. However, independent of temperature, there are ap-
preciable differences between many-body and independent-
particle predictions (compare solid and dashed curves). Most
important of these differences is the over two orders of mag-
nitude overestimation of the necessary drive-pulse intensity
when the many-body renormalizations are neglected. Also,
while both treatments predict basically the same maximum
achievable S, the drive intensities for reaching saturation are
drastically different. Detailed analysis reveals that the Cou-

Appl. Phys. Lett. 89, 181114 (2006)

lomb enhancement is the primary cause for these differences.

Important  for ]pulse propagation is the slowdown-
bandwidth product. * The differences between solid and
dashed curves in Fig. | also suggest that this product will be
quite different between the two treatments. The inset in Fig.
3 sh::)“-'s ‘lhe spectra Of1 ”bmpainjdmp at 200 K t:or drive in-
tensity of 5.5 MW/em® and time when the maximum slow-
down factor is reached. The solid and dashed curves are
obtained using the many-body and independent-particle de-
scriptions, respectively. From such spectra. we obtain the
product wynpdy,/dw,, where @y is the FWHM of the e0
— h2 resonance. Again, comparison of solid and dashed
curves shows significant many-body contributions.

In conclusion, quantum coherence in a semiconductor
QD structure is studied by using a many-body theory to cal-
culate the optical response of a pulse-driven A system. The
present theory differs from the typical independent-particle
treatment by taking into account Hartree-Fock renormaliza-
tions, the details of the QD and QW states, and their cou-
pling via collisions. The slowdown factor and slowdown-
bandwidth product, which characterize device performance
in an optical buffer, are calculated, and the results are com-
pared to the independent-particle treatment. It is found that
the predictions for these quantities differ significantly for the
two approaches. When many-body effects are neglected, one
seriously overestimates the drive intensity requirement for
quantum coherence to occur.
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Anomaly in the excitation dependence of the optical gain of semiconductor quantum dots

M. Lorke,"* W. W. Chow,” T. R. Nielsen,' J. Seebeck,' P. Gartner,' and F. Jahnke'
Vnstitute for Theoretical Physics, University of Bremen, 28334 Bremen, Germany
2Semiconductor Materials and Device Science Department, Sandia National Laboratories, Albuguerque, New Mexico 87185-0601, USA
(Received 2 February 2006; revised manuscript received 21 June 2006: published 26 July 2006)

Optical gain behavior of semiconductor quantum dots is studied within a quantum-kinetic theory, with

carrier-carrier and carrier-phonon scattering treated using renormalized quasiparticle states. For inhomoge-
neously broadened samples, we found the excitation dependence of gain to be basically similar to quantum-
well and bulk systems. However, for a high quality sample, our theory predicts the possibility of a decreasing
peak gain with increasing carrier density. This anomaly can be attributed to the delicate balance between state

filling and dephasing.

DOT: 10.1103/PhysRevB.74.035334

I. INTRODUCTION

Semiconductor quantum dots (QDs) are currently under
intense investigation because of scientific and engineering
interests. They are considered as key materials for next gen-
eration optoelectronic devices. New applications emerge also
in the fields of semiconductor quantum optics with funda-
mental studies of light-matter interaction'= and for quantum
information processing.*> A central issue in various applica-
tions is the role of dephasing due to intrinsic interaction pro-
cesses. Dephasing limits the quantum coherence and deter-
mines the homogeneous emission linewidth of QDs.

Crucial to the analysis of fundamental experiments and
the realization of engineering advantages is the knowledge of
intrinsic QD behavior and the understanding of underlying
physics. Extracting the information experimentally is chal-
lenging because sample inhomogeneities make the separa-
tion of intrinsic from extrinsic properties difficult. Theoreti-
cal investigations have been hindered by the lack of a
predictive theory. Recently, this hurdle was removed by the
development of the elements for a microscopic theory that
allows a rigorous treatment of dephasing. These theoretical
tools enable the systematic study of fundamental QD behav-
ior. In this paper, we demonstrate the role of intrinsic inter-
action processes and the resulting excitation induced dephas-
ing for optical absorption and gain spectra. The results are
not only of direct relevance for QD lasers but also for other
QD applications. On a general level, the role of various in-
teraction processes is quantified. On a more particular level,
anomalies in the excitation dependent emission properties
are addressed, which are not known both in higher-
dimensional semiconductor structures and in atomic systems.
Our investigations are performed for typical self-assembled
QDs, where the Coulomb interaction of carriers and the
carrier-phonon interaction leads to a coupling (i) between the
discrete QD states and (ii) to a quasicontinuum of quantum
well (QW) delocalized states, e.g., from a wetting layer.

Polarization dephasing directly influences the amplitude
and spectral broadening of optical absorption and gain. The
primary sources for dephasing are carrier-carrier and carrier-
phonon scattering. These processes also contribute to carrier
capture and relaxation, which are important for an efficient
device operation. The Coulomb interaction leading to carrier-

1098-0121/2006/74(3)/035334(4)
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carrier scattering provides efficient scattering channels, espe-
cially at elevated carrier density and temperature.>* On the
other hand, there was concern over the interaction of carriers
with longitudinal optical (LO) phonons, which provides ad-
ditional scattering channels and thermalization of carrier
population. Calculations based on perturbation theory pre-
dicted strongly inhibited carrier-LO-phonon scattering. be-
cause of mismatch between QD levels and LO-phonon
energy.” This led to the belief that the QD device perfor-
mance would be degraded because of a phonon bottleneck
problem. 1©

Later, nonperturbative treatments within the polaron pic-
ture indicated a less serious phonon bottleneck problem,!!
consistent with many experiments, see Ref. 12. A recent
quantum-kinetic treatment of carrier-phonon interaction in
the polaron picture clearly demonstrates efficient carrier-LO-
phonon scattering.'” This development together with a non-
Markovian treatment of polarization dephasing due to
carrier-carrier scattering within a QD-QW system'? allow the
completion of a truly predictive theory for QD optical re-
sponse. The resulting formalism contains a detailed account-
ing of electronic structure effects and a microscopically con-
sistent treatment of the many-body interaction. The many-
body effects include the Hartree-Fock  energy
renormalizations (band-gap shrinkage and Coulomb en-
hancement) which contribute to shifts and amplitude modifi-
cations of QD absorption and emission resonances, and po-
larization dephasing due to carrier-carrier and carrier-LO-
phonon scattering, which is responsible for the intrinsic
(homogeneous) broadening of these resonances and addi-
tional energy shifts. Our investigation is based on this QD
optical response theory.

We begin by describing the calculation of optical absorp-
tion and gain for a sample with a uniform QD size and com-
position. The computed properties are customarily referred to
as being associated with the homogeneously broadened or
intrinsic situation. Then, we discuss the incorporation of in-
homogeneously broadening effects, such as those arising
from QD size and composition variations. This allows one to
transform from intrinsic behaviors to what is observed in
present experiments. The availability of scattering channels
contributing to polarization dephasing depends on the dis-
crete QD energy level spacings, which in turn, depend on the
QD confinement potential. By considering Ing3Gag;As and

©2006 The American Physical Society
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InAs QDs embedded in GaAs QWs, we are able to examine
the two very different scenarios of shallow and deep quan-
tum confinement. For these two structures, the focus is on
two questions, involving the homogeneously broadened gain
spectrum (especially the intrinsic spectral shape and width)
and the spectral changes with carrier density. A rigorous
treatment of scattering is necessary for addressing these
problems. The typical QD gain calculation, which uses the
relaxation rate approximation, cannot tell us about the homo-
geneously broadened spectrum, because it assumes a line
shape function and treats the spectral width as a free param-
eter. A central result of this paper is the discovery of an
anomaly in the excitation dependence of QD gain: a decrease
in peak gain with increasing carrier density. This result will
directly influence QD applications under high excitation con-
ditions. The behavior arises from a delicate balancing of state
filling and dephasing, so that a detailed treatment of the car-
rier density dependence of scattering processes is necessary.
Again, this can only be accomplished with the recent
quantum-kinetic developments.

II. THEORETICAL DESCRIPTION
OF QUANTUM-DOT GAIN SPECTRA

The gain calculation starts with solving for the micro-
scopic polarization p,. where « represents the discrete levels
v in QD transitions and the in-plane carrier momentum Kk in
QW transitions. In our confinement situation it is sufficient to
consider only the lowest QW subband for gain calculations.
Working in the Heisenberg picture and using a many-particle
Hamiltonian that includes carrier-carrier interaction, carrier-
phonon interaction, and dipole interaction between electron-
hole pairs and laser field, the Fourier-transformed polariza-
tion equation is'*

(hw—g'—ehpa+ B Qo1 —nt—n") = iS5 (w) + iS5 (w).

(1

In (1), the Rabi energy #{), and transition energy sﬁ

(B=e.h) contain the single-particle electronic structure prop-
erties and the many-body Hartree-Fock contributions. The
complex Coulomb correlation (scattering) term S;, “(w) is
treated in the second Born approximation and non-
Markovian limit'® using self-consistently renormalized ener-
gies for the scattering partners.'* For the carrier-phonon cor-
relation S P(w) we assume the random-phase approximation
and use the Frohlich coupling to monochromatic LO
phonons to determine the QD polaron renormalization of the
electronic states.'""'? For linear optical response to a weak
laser probe field E(w) at frequency w, the carrier distribution
nﬁ is to a good approximation a Fermi-Dirac function. A
typical calculation involves simultaneously solving a set of
100-150 equations, each of the form given by (1) and
coupled to one another by nondiagonal terms in (.
So “(m)and S 7(w). The solution is used to give the homo-
geneously broadened (intrinsic) optical gain of the QD-QW
structure:

PHYSICAL REVIEW B 74, 035334 (2006)

1
s(@)= Im| Ngor 2 popyl) + 72 (@) |
v k

B ewE(w)
(2)

where & is the background permittivity, K is the laser field
wave vector in the medium, w is the QW width, and Ny, is
the sheet density of QDs in a QW of area A. The spectral
width calculated using (1) and (2) depends solely on dephas-
ing processes described by the real part of the correlation
contributions §% “(w) and 5%, *(w). Experimental data suggest
that present QD gain regions are inhomogeneously broad-
ened by QD size and composition variations. To incorporate
these deviations from a perfect situation, we follow gas laser
theory,'S and perform a statistical average of the homoge-
neous gain spectra assuming an inhomogeneous width, o;,,.

We begin by considering the case of Iny;Gag;As QDs
embedded in a 4 nm thick GaAs quantum well, which is
cladded by Al,,GaygAs layers. To compute the electronic
structure, the actual QD shape is approximated by a disk of
height and diameter 2 and 18 nm, respectively. Assuming
appreciably weaker QD confinement in the QW plane than in
perpendicular direction,'® it is possible to separate the prob-
lem into radial and vertical components. With this simplifi-
cation, the electronic structure for the QD-QW system can
already be computed, using as input the bulk material prop-
erties, such as the electron effective masses and Luttinger
parameters, spin-orbit energy splitting, elastic constants, lat-
tice constants, and deformation potentials.'” The solutions
contain the effects of quantum confinement and mixing be-
tween hole states. For the QW states, we use orthogonalized
plane waves.® The calculation indicates one localized elec-
tronic state and one localized hole state located 15 and
25 meV, respectively, below their respective QW band
edges. While there are more rigorous approaches to deter-
mining the QD single-particle states,'® the present method
adequately describes the essential features necessary for our
study of excitation effects in optical response.

ITI. RESULTS

Figure 1(a) shows the homogeneously broadened gain
spectra computed using (1) and (2). The curves are for
7=300 K and different carrier densities, which are defined as
N=2N, ZnS+2A7 S0 =N, Sl 4247150l For  the
shallow QD structure, each spectrum has an s-shell reso-
nance and a broad QW contribution. Figure 1(b) depicts the
corresponding inhomogeneously broadened spectra. By as-
suming an inhomogeneous broadening of o;,;,=20 meV, the
spectra in Fig. 1(b) resemble closely those observed in
experiment.'® Comparison of the two sets of spectra reveals
significant masking of intrinsic QD properties by QD size
and composition variations in present experiments. The ho-
mogeneously broadened result clearly indicates a carrier-
density dependent energy shift in the QD resonances. There
is also noticeable spectral broadening of QD resonances with
increasing carrier density, suggesting a strong excitation de-
pendence in the dephasing. Both effects were observed in
QD luminescence in single-dot experiments, but not at car-

035334-2

29



LORKE et al.

s-shell
— 0.03
deep dot
s-shell
shallow dot
=
2 —005 @
= 1
g L
o
— 0.10
p-shell
deep dot
\'\/ 792
! — 0.50
0 1 I
0.01 0.1 1 10

N (102cm?)

FIG. 3. Full width at half height (FWHH) of QD resonances
versus carrier density. The inset shows a typical QD resonance and
best (it with a Lorentzian function.

at N=5x 10" em™2. Comparison with a Lorentzian function
with the same amplitude maximum and FWHH (dashed
curve) indicates a basically good fit except for the asymme-
try in the actual resonance and deviations at the spectral tails.
The differences may be traced to the nondiagonal correlation
contributions and QW influence. The main curves indicate
significant variation in dephasing with carrier density and
QD structure. For the shallow QD, the s-shell dephasing in-
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creases appreciably with carrier density. For the deep QD,
there is a further complication of the s- and p-shell reso-
nances experiencing different dephasing effects. When g,
moves from the s-shell to the p-shell resonance (intersection
of solid curve and dashed line), there is a sharp decrease in
dephasing. The p-shell dephasing dependence on carrier den-
sity first decreases before increasing, with the increase
caused by the onset of QW contributions. The dephasing
widths or times (right axis) is consistent with experiment.””
The complex dependences shown in the figure are describ-
able only with a rigorous treatment of scattering effects.

IV. SUMMARY

The intrinsic properties of QD gain is investigated within
the context of a microscopic theory, with carrier correlations
treated at the level of quantum kinetics. It was found that a
QD active medium exhibits unique optical gain properties
that are usually masked by inhomogeneous broadening. The
most interesting is the decrease in peak gain with increasing
excitation for certain carrier density ranges. This anomalous
behavior depends on the delicate balancing of band-filling
and dephasing contributions in a Coulomb coupled QD-QW
system.
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The excitation-density dependence of optical gain and refractive index changes in quantum-dot
active media is investigated on the basis of a microscopic theory. Carrier-carrier Coulomb
interaction and carrier-phonon interaction are treated on the level of a quantum-kinetic description.
In the range of small optical gain the authors find small values of the « factor, while in the regime
of gain saturation |a| increases drastically. © 2007 American Institute of Physics.
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The advantages of semiconductor quantum-dot (QD) la-
sers are being intensively studied and discussed. Low trans-
parency carrier density, high differential gain, and small
carrier-induced refractive index change have been predictedA]
For laser devices, these gain medium properties translate to
low threshold currents, temperature-insensitive performance,
suppression of filamentation, and reduced sensitivity to
optical feedback, all of which have been experimentally
demonstrated ™ Some questions remain, e.g., the extent to
which high-speed modulation characteristics can be better
than quantum-well (QW) lasers.® A first step towards answer-
ing this question is knowledge of the excitation dependences
of gain and carrier-induced refractive indices. The former
helps determine the modulation bandwidth, while the latter
controls the noise characteristics from frequency chirp and
laser linewidth.

The beneficial QD gain and refractive index properties
are linked to the discrete nature of the energy spectrum as-
sociated with localized carrier states. Application of a simple
atomlike (i.e., noninteracting two-level system) description
predicts symmetric absorption and gain resonances, as well
as the absence of carrier-induced refractive index change at
the resonance peaks. While the atomlike description is an
acceptable approximation in many situations, such as when
inhomogeneous broadening dominates, recent studies show
deviations that can become significant as sample quality im-
proves or when laser behavior is examined in greater detail.
These deviations originate from the carrier many-body inter-
action, involving the localized states, as well as the quasi-
continuum of delocalized states, which reside in the wetting
layer of self-assembled QD structures often used as laser
gain media. In the screened Hartree-Fock approximation, the
many-body interaction between localized and delocalized
states can lead to substantial energy shift in the QD reso-
nances and to nonvanishing carrier-induced refractive index
Change.7 These predictions have been either directly or indi-
rectly verified in experiments&[‘i’8

A serious weakness of both atomlike and screened
Hartree-Fock treatments is the phenomenological description
of scattering effects with an effective relaxation rate approxi-
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mation. Not only is predictive capability severely compro-
mised by having the dephasing rate as a free parameter but
experimental spectral shapes are not accurately reproduced.
Furthermore, unlike the bulk and QW cases, there is an in-
dication that the QD dephasing rate is strongly dependent on
carrier density and possible electronic transitions. Conse-
quently, the implementation of the effective relaxation rate
description is not straightforward. To ensure accurate results,
a microscopic gain theory with a rigorous treatment of car-
rier scattering processes should be used.

The dominant scattering processes in semiconductors
arise from carrier-carrier and carrier-phonon interactions.
They lead to the broadening and energy shift of the reso-
nances due to dephasing and screening, respectively. When
treated consistently, the broadening and energy shift are di-
rectly linked, as imaginary and real parts of the many-body
self-energy. Typically, the determination of the self-energy
uses perturbation theory that is based on the second Born
approximation with strict energy conservation in terms of
free-carrier states. While it gives satisfactory results for bulk
and QW cases, there are indications that perturbation theory
for QDs fails because of the discreteness of the localized
states. For example, perturbation theory predicts a phonon
bottleneck problem, whereas a more rigorous quantum-
kinetic description in terms of renormalized quasiparticles
(polarons)g correctly predicts efficient relaxation by carrier-
phonon interaction under similar conditions.' The polaron
treatment, together with a similar one for carrier-carrier scat-
tering (with renormalized states). is incorporated into the la-
ser theory used in our in\'estigarion&“

This letter begins with a description of the calculation
procedure for QD gain and carrier-induced refractive change.
Gain and refractive index spectra for two distinct QD con-
figurations are computed for a range of carrier density. We
extract the gain and carrier-induced refractive index change
at the gain peaks as functions of carrier densities. Because
these types of curves are used extensively in semiconductor
laser simulations and because the results show functional dif-
ferences from bulk or QW situations, we introduce new fit-
ting functions for the QDs. These functions should facilitate
the use of the microscopic results in laser models. Finally, we
discuss the linewidth enhancement factor in QDs.

© 2007 American Institute of Physics
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The amplitude gain g{w) and carrier-induced refractive
index dn(w) for a QW layer embedded with QDs are deter-
mined from the interband polarizations, p;(w) and py(w).

w
Kén(w) +ig(w) =- e E(@) X [Ndonzz Hipif(w)
. Iy
|
e ukpk(m)] , Q)
k

where j and j label the QD states, k labels the QW states, ¢
and g, are the speed of light and permittivity in vacuum, ng
is the background refractive index, K is the laser field
wavevector, w is the QW width, Ny, is the sheet density of
QDs in a QW of area A, E(w) is a weak laser probe field at
frequency . and the summations are over all possible
electron-hole transitions. For the polarization we solve the an
equation of motion,

(how—&f, — Eﬁ,)jla+ AQ (1 —nf, - .uﬁ) =15, (w)
+iS5 P (w). (2)

where %), and sf (B=e.,h) are the renormalized Rabi
energy and transition energy. nﬁ is the carrier population,
and S7%(w) and S57(w) are the complex carrier-carrier
and  camrier-phonon  correlation  (scaftering)  terms,
respectively.“’ 2 Equation (2) contains the free-carrier tran-
sition energies, the optical driving field, and the phase-space
filling term with the population factors in a way that, re-
stricted to these ingredients, a free-carrier theory for inde-
pendent two-level systems would be obtained. The Coulomb
interaction of carriers modifies this picture: the Hartree-Fock
interaction terms lead to the coupling of QD and QW states,
that describes excitonic effects as well as Hartree and ex-
change shifts of the single-particle energies. Furthermore,
Coulomb correlation contributions contain the influence of
screening, dephasing, and energy renormalization. A non-
Markovian formulation with self-consistent renormalized
states is used, and the interaction of carriers with LO
phonons within the polaron picture is included. A typical
calculation involves simultaneously solving around 100
coupled equations, each of the form given by Eq. (2). Details
of the theory and numerics are described elsewhere."!
Calculations are performed for Ing;Gag;As and InAs
QDs. In each case, the QDs are embedded in GaAs QWs and
the actual QD shape is approximated by a disk. For the
Ing3Gag7As QDs, a 2 nm height and 18 nm diameter are
chosen to give a simple electronic structure, consisting of
only one localized electronic state and one localized hole
state. For the InAs QDs, the height and diameter of 3 and
20 nm, respectively, are chosen to obtain a ground-state
emission wavelength at around 1.5 wm, which is interesting
for optical fiber communication. The two structures enable
us to examine the two very different scenarios of shallow and
deep quantum confinements. Our investigation begins with
calculating the gain and refractive index spectra for T
=300 K, QD density Ngo=5% 10" cm™, and different car-
rier densities. The computed QD spectral resonances for both
structures exhibit noticeable increase in linewidth with in-
creasing carrier density, indicating strong dephasing rate de-
pendence on excitation. Additionally, energy renormaliza-
tions give rise to redshifts of the QD resonances and
refractive index spectra, not predicted by the atomlike theory.
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FIG. 1. Peak gain vs carrier density for different inhomogeneous broaden-
ings. The symbols are the data from the calculations and the lines represent
the fitting functions discussed in the text.

Many useful laser properties are determined by the ex-
citation dependences of g and &n at the resonance peaks.
Figures | and 2 show these dependences, where the points
are extracted from the computed spectra and the curves are
the least squares fit using fitting functions that we will dis-
cuss later. The inhomogeneously broadened results are ob-
tained by performing a statistical average of the homoge-
neous spectra assuming an inhomogeneous width oy,
Contributions to inhomogeneous broadening may be from
QD size or composition variations in a sample. The curves
indicate significant saturation of the QD peak gain with in-
creasing carrier density, even with dGg/dN<0 in some
cases. Gain saturation is of critical importance for laser ap-
plications because it limits the useful range of excitation den-
sities. As in QW and bulk structures a contribution to gain
saturation is the limitation of state filling according to the
Pauli principle. However, for QDs, there is an additional
contribution from the appreciable increase in the dephasing
rate with excitation. The unique dG/dN<() behavior at
elevated carrier densities is a result of the dephasing increase
overtaking the state-filling contribution, ' Dephasing is also
responsible for the difference in shallow and deep QD be-
haviors. Dephasing is weaker in the deep QD structure be-
cause of a scarcity of allowable scattering channels. As a
result, the homogeneously broadened QD peak gain is con-

p shell
s shell Deep dot
3 1 1 1
o] 3 6 9 12

N (10"cm2)

FIG. 2. Refractive index at the energetic position of the peak gain vs carrier
density for deep and shallow dots and various inhomogenous broadenings.
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TABLE 1. Coefficients for QD gain and refractive index fitting functions.

Shell A Ny B N
(10%/em)  (10%/cm?) (10%/em)  (10%/cm?)
Shallow
=0 5 8.10 3.06 26.24 118
4 meV s 2.95 3.36 9.61 1.58
8 meV 5 1.63 339 5.24 1.83
Deep
=0 s 642 032 20.03 0.12
P 14.35 30.40 83.05 2.78
4 meV 5 1.75 0.38 5.54 0.17
P 4.70 1.02 1233 0.62
8 meV s 0.90 0.43 2.88 0.20
P 2.74 0.92 7.01 0.55
Shell C (1075 cm?) D
Shallow K -84 0.0135
Deep s -14 0.0065
» -7 0.0094

siderably higher and the spectral width is considerably nar-
rower than in the case of the shallow QDs. The latter leads to
greater sensitivity of the deep QDs to inhomogeneous broad-
ening, as evidence by comparing Figs. 1(a) and 1(b). Figure
2 plots dny, at gain peak versus carrier density for both QD
structures. Because of the symmetry in the &ny spectrum
about the peak gain, ny is insensitive to inhomogeneous
broadening, as shown in Fig. 2, where the data points for the
different inhomogeneous widths are basically inseparable.
The data also indicate that &nyy is to a good approximation
linear in .

Both g vs N and iy, vs N curves are used extensively
in semiconductor laser simulations. To facilitate the use of
our results in laser models, we introduce the following fitting
functions for the QDs:

Gp(N) = A In(N/Ny) + B exp(— NIN,),

“)

where the first term in Eq. (3) is similar to the widely used
QW gain fit function and we added the second term to ac-
count for the stronger saturation and possible gain reduction
effects in QDs. Table T gives the coefficients used to obtain
the curves in Fig. |. These coefficients take into account
the complicated dependences of scattering effects on carrier
density and transition, as determined by the microscopic
calculations.

The importance of dn is that its dependence on carrier
density, relative to that of the gain, characterizes the QD
contribution to laser linewidth, frequency chirp, and
output beam quality. Specifically, a= —[Kd(dn)/dN]
X[dg/dNT | weconst defines both the linewidth enhancement
factor and the antiguiding parameter. Figure 3 illustrates the
dependence of « at the gain peak (where a laser typically
operates) as a function of peak gain.

In the range of small peak gain our results show small
values for the magnitude of a as expected for atomiclike
systems. We find |a|=1(2) with (without) inhomogeneous
broadening. When gain saturation is approached (cf. Fig. 1)
the denominator in the definition of the « factor approaches
zero and, hence, the magnitude of the e factor increases
drastically. The sign of the « factor is determined by the

Snp(N)=CN+ D,
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FIG. 3. e factor vs peak gain for deep and shallow dot: (a) without inho-
mogeneous broadening and (b) with inhomogeneous broadening of 8§ meV.
The lines are guides for the eye.

behavior of the index change at constant energy, and this
behavior changes due to the flattening of the index curves in
the presence of inhomogeneous broadening. Please note that
Fig. 2 displays the index at the peak gain and that the slope
of these curves is different from the variation of the index at

fixed energy for a small density variation. For the deep dot,

the divergence of a, may be delayed by operating with the
p-shell transition, as indicated in Fig. 3.

In summary, this letter explores the excitation depen-
dences of quantum-dot gain and carrier-induced refractive-
index change. The behaviors in the vicinity of the gain peak
are important for understanding laser threshold, noise, and
modulation response characteristics, in addition to being nec-
essary as input to quantum-dot laser models. A microscopic
theory with a quantum-kinetic treatment of scattering is
necessary because little is known quantitatively about the
dephasing rate. The theory also uncovers the complicated
carrier density and electronic structure influences on
quantum-dot dephasing, which in turn determines the excita-
tion dependences of gain and refractive indices.
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A many-body theory for quantum coherence in a semiconductor quantum-
dot system is presented. We present the theory in detail for a A scheme in
a InGaAs—GaAs quantum dot with a pulsed drive field. The paper shows the
significant differences in the predictions of this theory and those of an
independent-particle treatment. adapted from atomic quantum coherence theory.
Specifically, the influence of the quantum-dot level structure on group-velocity
slowdown is discussed, and the influence of different Coulomb renormalization
effects 1s analysed.

1. Introduction

Success in demonstrating quantum coherence phenomena in atomic systems [1-3]
has created interest in achieving similar results in semiconductors. Both physics and
device engineering issues are currently explored for different condensed-matter
systems [4-9]. Some recent work has been directed towards semiconductor
quantum dots (QDs) [10, 11] because of reports of long dephasing times [12] and
promising atomic-like properties (e.g. discrete energy levels) of QDs at high
temperatures. For instance, optical buffers using slow light and EIT in QDs have
been proposed and analysed [10].

To date, the majority of the theoretical analyses of quantum-coherence effects in
QDs are based on atomic quantum-coherence theory [10, 13]. They do not contain a
complete description of semiconductor behaviour because many-body effects due to
the Coulomb interaction between charged carriers are neglected [11, 14]. In this
paper, we show in detail how one can include these interaction eflects in a
straightforward manner to model quantum-coherence phenomena in realistic QDs,
and present some applications of the theory, which illustrate that many-body eflects
can give rise to significant differences from atomic theory. In section 2 we describe
the general theoretical formulation. The many-body contributions are especially
highlighted to show the deviation from conventional quantum-coherence theory.
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In section 3, the theory is applied to treat the case of a pulse driven A configuration
in an InGaAs-GaAs QD structure. The role of the combined influence of many-body
contributions and the QD level structure on the optical response is stressed.
Also, numerical results are presented for the influence of many-body Coulomb
renormalizations and collisions on the slowdown factor, which characterizes the
maximum achievable group-velocity reduction.

2. Theory

The derivation of the semiconductor medium equations is based on the many-body
Hamiltonian for interacting electrons and holes in the quantum-dot material under
the influence of an external field:

H=Y ealan+ Y emblbm— Y (stam@bl, + 11 bman) Ez. 1)

n.m

+é > v alalana, +% > v bibibwby— Y Vi albtbua,. (1)
nm,rN H M, n.m,r.8

The first three terms describe independent particles interacting with an external field,
and are the basis of an atomic-like description of QDs. They describe the kinetic
energies of the noninteracting electrons and holes (g, 15 the free-carrier electron or
hole energy), and the dipole interaction (t,,, 1s the dipole matrix element)
of electron-hole pairs with the optical field, E(z,7). To include many-body
effects, we add to the independent-particle Hamiltonian the contributions from
electron-electron and hole-hole Coulomb repulsion and the electron-hole Coulomb
attraction (the last three terms). These terms contain matrix elements of the
Coulomb interaction energy

.

o 3 3 0 ok " e ' a

Vi = [ & 000) )0, &)

where e is the electron charge, ¢, is the host permittivity and ¢, is a wavefunction of

a localized QD state or of a delocalized (scattering) state in the quantum well, in

which the QDs are embedded. In equation (1), a, and {.'I are electron annihilation

and creation operators, b, and bL are the corresponding operators for holes. Again,

the subscripts and superscripts refer in general to either localized QD states or

delocalized quantum-well states. For a quantum coherence configuration, the optical
field is

1

-E(Za f) = ;

[L’d(f)cxp(ikdz —iwgl) + Ep(r)exp(ikpz — iwpf)

+ Eg(t)exp(—ikqz + 1wgt) + Ei';({)cxp(—ikpz -+ iwpf)], (3

where z is position along the propagation direction, k; is the wavevector, w; is the
frequency, the subscripts *d” and “p’ identify the drive and probe fields, and the slowly
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Figure 1. Electronic level structure for InAs quantum dot structure used in the quantum-
coherence calculations. The shape of the pyramidal QD and contour plots (30%) of the
absolute squares of the envelope wavelunctions are shown on the right. The arrows indicate
the optical transitions of the A scheme. (The colour version of this figure is included in the
online version of the journal.)

varying probe field amplitude £, is complex to allow for a phase difference between it
and the (real) drive field amplitude £g.

The equations of motion for the polarizations and populations are derived in
the Heisenberg picture. Because of the Coulomb interaction terms in equation (1),
the result is an infinite hierarchy of coupled differential equations. Each level of the
hierarchy describes a higher order correlation effect in the Coulomb potential than
the one before. At the first level are the Hartree-Fock contributions, which give rise
to band gap renormalization and Coulomb enhancement of the optical transitions.
Scattering and dephasing contributions appear in the next higher level in the
equation hierarchy. The present approach to describe quantum coherence effects
in QDs truncates the hierarchy to include only the Hartree Fock contributions and
includes dephasing and scattering contributions at the level of a relaxation-time
approximation.

To facilitate the presentation of the resulting equations of motion, we choose a
specific experimental structure, consisting of InAs QDs embedded in a GaAs
quantum well. Figure 1 depicts the computed electronic levels, assuming pyramidal
dots, each with a base of 12 x 12nm and height 6 nm, and an InAs wetting layer
of thickness 1nm. Using the input material parameters listed in table 1, the
numerical calculation using a software package [15] adapted for our purposes
gives three confined electron and six confined hole levels, which are spin degenerate.
It also produces the envelope wavefunctions, which are shown schematically in
figure 1 using contour plots of their absolute squares. The envelope wavefunctions
are used to determine dipole and Coulomb matrix elements in equation (2). The level
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Table 1. Numerical parameters used in the calculation of QD wave [unctions and energies
using the software package nextnano® (15, 16]. Here g is the vacuum electron mass.

Quantity Symbol/unit Numerical value for In,Ga;_,As
Bandgap Ep/meV 1518 — 1580x + 475x%
Spin—orbit coupling Ap/meV 340 — 93x + 133x%

1 —m, 3Ey(Ey + A
, , £, /meV (1.238 — 0.2095) —— e 3E0(Eo Rl
Optical matrix parameter P m, 3E, + 24,
0.0667 — 0.0419x — 0.002542

CB effective mass mg/my

Luttinger parameter 71 (1 —x)7.1 +x19.7
Luttinger parameter V2 (1 —x)2.02 + x84
Luttinger parameter V3 (1 —x)291 +x9.3

energies and dipole transition selection rules give rise to a slightly modified A
configuration, with the drive field connecting the |e0) and |A0} states, and a probe
field close to resonance to the transitions |e0) — |h1), as well as |e0) — |h2)
(see figure 1). The other QD and quantum well states in figure 1 are coupled to
one another and to the states in the A configuration via collisions.

For the above experimental situation, the following equations-of-motion result
for the polarizations p,g between QD electron state @ and hole state g8 are

0 . .
> Peohy = —(10eohy + Vad)Peghy — 19200k, (}?m + ny, — l)

d
1D Qeopphop — 1) 1AQp0Ppey» (4)
Bthy Bhy
o . .
oy Peoln = —(iwegny + Va)Peoty — 1Qeom (11 + 1py — 1)
F1) " Qeppip =1 AQp D ey (5)
Bt f#
o . .
a5 Peohs = —(1®eohy + Vad)Peghn — 12eohs (}?m + ny, — l)
F1D " Qeoppip — 1) AQpiPpey- (6)
fith fth

For the time development of the electron and hole populations, n, and ng, one
obtains

a . '
e = 12 (Qeﬂ_ BPeop — LoopPeo ﬂ)
B
— Yo — v [neo —fu(12. Tp)] - Vcd_p [neo — fuo(1h. 1)), (7)

0 .
g”h" = 1(!’23n noPeahs — Qooho p:n hﬂ_)

— Va0 — Ve—e[mo — fio (1t To)] = oo [0 — S0 () T1) ] (3)
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In the above equations, ¥4 is the dephasing rate, ¥4, y4 _ and ycd_p are effective
nonradiative recombination, carrier—carrier scattering, and carrier-phonon
scattering rates, respectively. Primed sums indicate that the summations run over
electron and/or hole states that are connected by polarizations close to resonance
with the drive and probe fields. The labels ¢, and £, stand for electron and hole states
that do not belong to the A configuration as shown in figure 1.

One difference to the corresponding atomic equations involves the transition
and Rabi frequencies wyp and €, g, respectively, which are renormalized by
excitation-dependent many-body Coulomb interaction contributions:

wap =y + (45 5+ 43), (12)
Qup = Hap(Ep + Ea) + 455, (13)
AQpp = A% 4, (14)

0 . . .
where wi} and j,p are the transition frequency and dipole matrix

element determined from the single-particle electronic-structure calculation. The
many-body renormalizations in the Hartree- Fock approximation may be grouped
into terms that are nondiagonal (nd), 1.e.,

nAY = Ve ppe (15)
a' f

and contributions that are diagonal (d),

rdﬁﬁﬁ o Z(Vﬁg - V;‘ff;i{f)”ﬂ’ - Z Vﬂntf”w - Z Vﬂoﬂnk
P — e

+ Z ( ﬂnﬁ: - fff;!f:!)})ﬂxﬂu, (1())
B
RAS = = (Ve — Ve )ny — Z veling — Z vieng + Y Ve, (17)
o BB

For a discussion on the separation into diagonal and nondiagonal contributions,
see [17]. The summations are over QD levels with « standing for electron and g for
hole indices, and & for quantum well states. Each term on the right-hand side
contains matrix elements of the Coulomb interaction energy defined in equation (2).
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In a screened Hartree-Fock treatment, the screening effects are for the present
situation assumed to arise from the changes in the dielectric function due to the
presence of carriers in the quantum well states [18]. For the present InAs QDs,
the quantum well carrier population 1s negligible because of the relatively deep InAs
QD confinement, and the plasma screening contributions are neglected. We do not
take into account microscopic dephasing processes that couple the polarization
of interest to other polarizations and thus give rise to diagonal and nondiagonal
scattering contributions [19]. We account for these contributions in equations (4}-(6)
by an effective dephasing rate 9.

Besides the Hartree-Fock contributions, the population and therefore the
polarization dynamics between semiconductors and atomic systems differ due to
population relaxation. For the gquantum-coherence dynamics in a QD, we use
a relaxation-time approximation for the interaction-induced carrier—carrier and
carrier-phonon scattering processes that drive the electron and hole populations
to quasiequilibrium Fermi-Dirac distributions f, and fg, respectively, at chemical
potentials and temperatures (,LLE{}!, T,) and (,u.!,{h, Ty), where T, and T are the plasma
and lattice temperatures, respectively. These relaxation processes couple the four QD
states, that participate directly in the quantum-coherence process, to the other states
of the system. The chemical potentials and temperatures are determined using total
density conservation in carrier—carrier and carrier-phonon collisions, together with
total energy conservation in carrier—carrier collisions. The details are given in [11].

3. Results

Self-organized QDs based on the InAs-GaAs material system usually grow in
pyramidal structures, which set up strain and piezoelectric fields that influence the
structure of the electronic levels in the QDs and the form of the corresponding
wavefunction. The resulting electron and hole level schemes typically do not show
exact degeneracies that rotationally symmetric QD models with effective-mass
approximation have, which is often assumed in theoretical treatments to keep
the determination of the single-particle states simpler. A more realistic
multiband calculation for pyramidal structures including the combined effects of
three-dimensional confinement, strain, and piezoelectric fields leads to a level scheme
for the InAs QD considered here, in which the excited electron and hole states are
still energetically close together (see figure 1) but not degenerate, which would be the
case in a rotationally symmetric structure. Due to the lack of symmetry of realistic
QD structures, energetically close excited states are present in a variety of QD
systems, and the structure of the QD level scheme should also be taken into account
when considering quantum-coherence effects in QDs. In the following, we first
discuss the overall shape of the optical response including quantum-coherence effects
and the influence of Coulomb renormalizations at the Hartree- Fock level and
population scattering. We then focus on the contributions to the spectrum that
arise due to different electron-hole transitions and show how these different
contributions affect the overall optical response in our quantum-coherence scheme.
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We present results obtained from numerically solving the equations of motion
for the case where an optical pulse is incident on the InAs QD sample to drive the
polarization pgg po, and a continuous-wave probe field is used to examine the complex
susceptibility arising from the polarizations p. 5 and p. . Both fields are ot
polarized and propagate in the z direction, ie. perpendicularly to the two-
dimensional arrangement of QDs. The calculations are performed for a dot density
of Ny =5x10%m? and lattice temperature 77 = 200K, where recent literature
[20] gives scattering rates around 9= 1.5x102s" y_.=2x102s"" and
Yep =2 x 10571

From the microscopic polarizations the macroscopic polarization is calculated
according to

2Ny
P(1) =7 MagPap(D). (18)
af

where L is the thickness of the quantum well, in which the QDs are imbedded, and
P and p are the components of P and p for the field polarization. In the presence
of the time-dependent drive field Eg(7), we calculate the transient quantities that
describe gain

“p
wp) = ————ImP 19
g(wp) 2egconp iy (19)
and refractive-index change
1
5}?(&)‘1) = m Re P (2”)

experienced by the weak CW probe field with a fixed frequency w, and field strength
Ly, We also average over the phase of the probe field. Here, ny 1s the background
refractive index of the host material, and ¢, is the vacuum speed of light. Figure 2
shows the transient gain, defined in equation (19), as a function of probe frequency
for three different times: before the pulse, at the time of maximum transient
amplification and after the pulse. To illustrate the contributions from many-body
effects, the results presented in the left column are obtained using the many-body
treatment described above, i.e. including Coulomb renormalizations of transition
and Rabi energies together with population scattering. The results in the right
column are obtained using an independent-particle approximation, in which energy
renormalizations, Coulomb enhancement and scattering contributions are neglected.
To facilitate comparison of the shapes of the spectra in both cases, the results in the
left column for the interacting case are plotted with a shift of &, = Vﬁ:fé, which 1s
a Rabi-energy renormalization, via equations (15) and (13), to the equation of
motion (6). This particular term is proportional to pu_ 2 and corresponds to the
Coulomb binding energy of an electron-hole pair (or exciton) in states |e0) and |A2),
respectively. The series of snapshots is obtained using a sech drive pulse with peak
intensity 2MWcem 2 for the simulation including Coulomb interaction, and
21.9 MW em 2 for the independent-particle calculation. The duration (FWHM) of
the drive pulse is 1.7 ps in both cases, and the intensities are chosen so that in both
cases the probe absorption after the pump pulse i1s comparable. The solid lines show
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Figure 2. Spectra of the transient gain experienced by the probe field at different times. Top
row: before the drive pulse. middle row: during the drive pulse (0.2 ps aflter the drive-pulse
maximum), and bottom row: after the drive pulse. The spectra are obtained including
Coulomb effects (left column) and using the independent particle model (right column). The
solid line is the result i’ all relevant transitions in the QD are included. the dotted line and
dashed lines correspond to including, respectively, only the |e0) — |#l) and |e0) — |h2)
transitions in the calculation. &, is the (excitonic) interaction energy of an electron and hole
in states |e0) and |42}, respectively, which is subtracted to facilitate the comparison of the
optical response with that of the independent-particle model.

the resulting spectra including the transitions |e0) — |Al) and |e0) — |h2) relevant
for the interaction with the probe field in our quantum-coherence scheme.
The dotted and dashed lines are the results if the calculations are done including
only one of the transitions |e0) — |Al) and |e0) — |h2), respectively.

Prior to the drive pulse and after the drive pulse (top and bottom graphs in
figure 2), the absorption profiles with and without Coulomb interaction are
comparable. During the action of the drive pulse (the snapshot is 0.2 ps after the
drive-pulse maximum and corresponds to the maximum transient gain achieved), the
spectral bandwidth is approximately the same, but the shape of the transient

absorption spectrum with and without Coulomb interaction is different, and these
differences can be exhibited more clearly by looking at the contributions from the
two transitions |e0) — |hl) and |e0) — [42): in the independent-particle model, the
contributions from both transitions are symmetric around the individual resonance
energies, but each of these contributions acquires a distinct asymmetry if Coulomb
effects are taken into account. More specifically, the absorption at the respective
resonances and on the high energy side of each of the resonances 1s decreased,
whereas on the low energy side of the resonance the transient absorption is
increased mainly due to the dynamical Coulomb renormalizations. Also note that
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the individual resonances undergo time-dependent excitation-induced shifts to lower
energy. The asymmetry along with the frequency dependent decrease in absorption
or, equivalently, the increase in transient gain at the individual resonances leads to
transient gain on the |e0) — |A2} transition at a pump intensity that is much lower
than what is needed to achieve a similar transient gain in the independent-particle
case. However, the pronounced asymmetry in the contributions from the individual
transitions 1s the reason that only the transient gain due to the |e0) — [/h2) transition
survives in the actual QD spectrum. While the contribution from [e0) — |i]) alone
reaches transient gain, this is cancelled by the absorption from the |e0) — |h2)
transition. In the independent-particle calculation, on the other hand, no such
cancellation effect occurs because the higher drive intensity necessary to
reach transient amplification leads to sharper individual resonances. Hence, the
contributions from both transitions show up as distinct transient gain maxima.

Oftentimes one is not only interested in the occurrence of transient
excitation-induced transparency or gain, but the group velocity slowdown that can
be achieved over a frequency bandwidth near transparency or amplification.
A measure of the group-velocity slowdown due to excitation-induced
refractive-index changes is the slow-down factor,

d(ém)
Slewy) = np + wp————, (21)
p P dwp

where dn is the transient excitation-induced refractive index change. Figure 3
shows the corresponding differences in the frequency dependent contribution to
the slow-down factor, wpd(dn)/dwy, resulting from the present theory and the
independent-particle treatment. Comparison of the results indicates that
appreciable differences can occur between the two descriptions. Again, the
Coulomb renormalizations give rise to asymmetries in the resonances and different
spectral peak amplitudes [11].

From the discussion of the transient amplification above one would expect that
there may be similar cancellation effects for the contributions of the two individual
resonances to the slowdown factor. However, this is not the case: the spectral
contributions from the transitions |e0) — |1} and |e0) — [h2) to S are narrower
than their counterparts in the transient absorption spectra. In the independent-
particle model the contributions of the individual transitions to S do not overlap
either, as in the case of the corresponding transient gain spectra. Due to the higher
drive intensity, the independent particle model therefore, yields group-velocity
slowdown together with transparency/gain  over a wider bandwidth.
Including Coulomb interactions, however, leads to a drastically reduced drive
field intensity and thus to group-velocity slowdown including transparency/gain
over a smaller bandwidth.

Since the spectral properties of the gain and slowdown are complicated, we
concentrate in the following on the maximum achievable slowdown, which we
extract for a range of drive intensities /y by analysing spectra similar to those in
figure 3. The result is plotted in figure 4 for the independent-particle
model (dotted line) and including Coulomb renormalizations (solid line).

42



2422 W. W. Chow et al.

o, d nfdcop

=T e - - =]

2 950 5 0 5 10 4510 -5 0 5 10
@, - £, (MmeV) @, (meV)

Figure 3. Frequency dependent contribution to the slowdown factor, epdén/dw, experi-
enced by the probe field at different times. Top row: before the drive pulse. middle row: during
the drive pulse (0.2 ps alter the drve-pulse maximum), and bottom row: after the drive pulse.
The spectra are obtained including Coulomb efTects (left column) and using the independent
particle model (right column). The solid line is the result if all relevant transitions in the QD
are included, the dotted line and dashed lines correspond to including, respectively, only the
ey — k1) and |e0) — [h2) transitions in the calculation. &, is the (excitonic) interaction
energy of an electron and hole in states |e0) and |h2). respectively, which is subtracted to
facilitate the comparison of the optical response with that of the independent-particle model.

maximum slow-down factor S
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Figure 4. Maximum slowdown factor Sy experienced by the probe pulse versus drive
pulse peak intensity for different model calculations. The solid and dotted curves are the
many-body and independent-particle results, respectively. The dashed curve results if the
Rabi-energy renormalizations are turned off in the numerical calculation.
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Again, comparison of solid and dashed curves shows the significance of many-body
contributions because neglecting them leads to over two orders of magnitude
overestimation of the necessary drive pulse intensity to reach a given group-velocity
slowdown. On the other hand, both treatments predict basically the same maximum
achievable slow-down even though the drive intensities for reaching saturation is
drastically different. We also investigate here the relative influence of the renorma-
lization of the transition energies, cf. equation (12), and the Rabi energies,
cf. equations (13) and (14). The dashed line shows a calculation for the artificial
case, in which all the Rabi energy renormalizations are neglected. In this case, the
drive intensity requirement is actually lower than the one obtained by including all
Coulomb renormalizations, but the influence of the Rabi-energy renormalization on
the dependence on the drive intensity is smaller than the transition energy
renormalizations. This is in contrast to our earlier investigations of InGaN-based
QDs [11], where we found that the Rabi-energy enhancement played a more
important role for the Coulomb effects on the group-velocity reduction than the
transition-energy renormalizations. The reason for the different behaviours is that,
in confined systems, the performance of quantum-coherence schemes depends on
the dipole-matrix elements and the Coulomb matrix elements coupling the indi-
vidual localized levels, and it is possible to have a competition between the different
Coulomb renormalization terms. This result points to the importance of the
electronic structure for the calculation of Coulomb eflfects in quantum-coherence
schemes in QDs.

4. Conclusions

In conclusion, we showed that the incorporation of many-body effects into an
atomic quantum coherence theory can be accomplished straightforwardly using the
screened Hartree-Fock approximation. The result is a more complete description
of semiconductor behaviour, in particular the carrier density dependences of the
energy levels and optical transition strengths, which can be combined with a
realistic model of the QD electronic structure. To illustrate QD quantum-coher-
ence effects including many-body contributions, the optical response to an optical
drive pulse is calculated for InAs QDs and compared with the results for an
independent-particle model. The influence of the Coulomb interaction (together
with the QD energy spectrum) leads to different predictions concerning the spectral
shape of the optical response and the achievable group-velocity slowdown. When
many-body effects are neglected, one seriously overestimates the drive intensity
requirement for quantum coherence to occur and obtains different predictions on
the spectral regions where group-velocity slowdown and excitation-induced trans-
parency (or amplification) coexist. The influence of different Coulomb renormali-
zation contributions is also discussed. It is shown how a combination of transition
energy and Rabi-energy renormalizations lead to the reduced pump-intensity
requirements.
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