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Abstract 
 

This report describes progress in designing a neutral atom trap capable of trapping 
sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom 
chip from a collection area to an optical cavity. The numerical simulation and 
atom chip design are discussed. Also, discussed are preliminary calculations of 
quantum noise sources in Kerr nonlinear optics measurements based on 
electromagnetically induced transparency. These types of measurements may be 
important for quantum nondemolition measurements at the few photon limit. 

 



 

INTRODUCTION 
 

This report describes progress in two areas of atomic physics; neutral atom traps, and 
noise sources in nonlinear optics based on electromagnetically induced transparency (EIT). Our 
emphasis is to develop the necessary tools and understanding required for quantum 
nondemolition (QND) measurements of photon number. The goal is to increase the resolution of 
the QND measurements until it is possible to resolve individual photons, and it seems the best 
path to single-photon resolution is via the giant Kerr optical nonlinearities provided by EIT.   

The development of magnetic neutral atom traps is important because it provides a small, 
dense cloud of atoms in a single velocity class as the EIT medium. Also, atom traps can be used 
to move the atoms from a collection region into an optical cavity where the coupling between 
atoms and photons becomes even stronger. 

There are also some fundamental problems which need to be better understood in order to 
determine what the fundamental limits are on signal to noise ratio for QND measurements. Over 
the past 20 years numerous proposal have been advanced which rely on Kerr nonlinearities to 
realize quantum computing or quantum information tasks. Recent research has looked at how 
fundamental noise limits set bounds on the fidelity for two-qubit gates based on Kerr 
nonlinearities. This research has raised doubts whether early research adequately accounted for 
all the noise sources affecting the Kerr QND measurements. 

 
1 — ATOM CHIP DESIGN 
 

Neutral atom chips have generated tremendous interest in the field of cold atom physics 
because the offer greater control, lower currents, and decrease the challenges in atomic cooling 
and trapping experiments. At Sandia our interest has been in applying our technical expertise in 
microfabrication to improve upon the atom chip success at numerous universities, and to develop 
the ability to tap atoms and move them into an optical cavity for cavity QED experiments. In this 
report we discuss an atom chip design we have developed to collect and trap alkali atoms in a 
magneto-optical trap (MOT). Our atom chip then transfers the atoms from the MOT to a smaller 
magnetic trap, which is used to transport the atoms 7 mm across the atom trap surface to an 
optical cavity. 

The organization of our atom chip discussion is divided into three parts. First, we discuss 
the numerical techniques developed to calculate the magnetic fields for designing an simulating 
the magnetic chip traps. Second, we present the design of the atom chip. Finally, we discuss the 
numerical simulation tools for calculating loss and heating due to atom transportation across the 
chip. At the time of this report we have not obtained sufficient results from the heating 
simulations to report on them. 



 

 

 
 

1.1  —  Magnetic field calculations for atom chips 
 
Magnetic traps of neutral atoms use the coupling between an atoms magnetic dipole 

moment and an external B-field to create a potential well deep enough to confine the motion of 
low temperature atoms. Practical limitations (e.g. maximum electical currents, atomic dipole 
moments, etc.) limit the trappable atom temperature to the sub-millikelvin range. 

In order to understand our choice of method in solving for magnetic fields, it is helpful to 
give a rough definition of the problem. Figure 1.1 shows the simplest magnetic trap for atoms. A 
wire is centered at the origin and runs along the x-axis with electrical current in the negative x 
direction. An external bias magnetic field is directed along the negative y direction. In the yz 
plane the combination of the B-field from the wire and the bias field creates a null at a distance  

bias

wire

B

I
y

π
μ
2

0=       (1.1) 

above the wire. This is quadrupole waveguide for paramagnetic atoms, because it will only 
confine the atoms in two dimensions. Additional wires and B-fields can create confinement in 
the z-dimension.   
 The energy potential for an alkali atom in an inhomogeneous magnetic field on is given 
by 
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where Bμ  is the Bohr magneton, Fm  is the electron spin for a given magnetic hyperfine 

sublevels, zB  is the magnetic field which is assumed to be entirely along the quantization axis, 
and hyperfine Landé g-factor is given by 
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where SLJ +=  is the total electron angular momentum (L is the electron orbital angular 
momentum and S is the electron spin angular momentum) and IJF +=  is the total atomic 
angular momentum (I is the total nuclear angular momentum). 

Figure 1.1: A simple side guide 2D magnetic trap. The magnetic field from a wire cancels 
with a uniform bias field along onside of the wire creating a quadrupoles magnetic trap for 
paramagnetic atoms. 



 

 Using optical pumping with circularly polarized light it is straightforward to align the 
spins in a cloud of cold alkali atoms such that they are all in the stretched state FmF F =, , in 

which case the energy potential is the deepest. If the atoms are in an inhomogeneous magnetic 
field with spatial varying directionality, the atoms internal state tends to adiabatically follow the 
field such that is the start in the stretched state they will stay in the stretched state. Thus, in 
designing a magnetic microtrap for neutral atoms one needs only to consider the magnitude of 
the magnetic field, and initial preparation of the magnetic states. If the atoms become extremely 
cold (e.g. in evaporative cooling to create a BEC) there is an increased likelihood of Majorana 
spin flips as the atoms pass through a region of near zero magnetic field because there is no clear 
quantization axis in these regions. In this case an Ioffe-Pritchard trap is preferable, but we will 
not discuss the case extremely cold atoms further in this report. 
 We solve the problem of finding the magnetic fields due to a current carrying wire of 
arbitrary shape by dividing the wire up into many sections of straight wires with different lengths 
and direction, which added together equal the arbitrary wire shape. It is well known that that the 
B-field at position r  due to current Iwire flowing along straight wire from point r1 to r2 is given by 
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where ( ) ( ) 12i12i rrrrrrrr ----i ⋅=θsin  and i-d θcosirr= . When a wire cannot be assumed to 

be infinitely thin we assume that the current is evenly distributed across the cross section of the 
wire and  approximate the large wire by several infinitesimal wires distributed  through out the 
cross section. To choose the positions and weighting (i.e. current distribution) of the sub-wires 
we use Gauss-Legendre Quadrature integration. 
 The first step in almost all cold atom experiments is the cooling and trapping of  atoms in 
a MOT. On an atom chip this can be done with a mirror MOT where the surface of the atom chip 
is a mirror. Figure 1.2 shows a diagram from Dana Anderson’s research group describing the 
operation of a mirror-MOT. In a typical MOT without the atom chip anti-helemholtz coils create 
a quadrupole magnetic field and six circularly polarized laser fields provided Doppler cooling. In 
the mirror MOT two of the laser beams are replaced by reflections off of the mirror surface, and 
the experiment can be further simplified by replacing the anit-helmholtz coils with a 
macroscopic U-shaped wire next to the non-mirror surface of the atom chip. As seen in Fig. 1.1 a 
wire in a bias field results in a quadrupole magnetic field similar to the anti-helmholtz coils. 
However, the wires which can be fabricated on an atom chip are much to small to care the 
current necessary for realizing a MOT with sufficiently large capture volume to cool and trap 
room temperature atoms. 

To obtain a large capture volume a macroscopic sized U-trap must be used. Figure 1.3 
shows several views of the macro U (yellow) and atom chip (blue) being used in current 
experiments at Sandia. The macro U is an anodized copper wire with a rectangular cross section 
of 2.5 mm by 5mm, and the length of the bottom and sides of the U are 12 mm and 34 mm 
respectively. The current through the U is about 30 A, and the bias field is maintained near 10 
Gauss. Figure 1.4 shows calculations the magnetic fields using Matlab®. Surface of constant 
magnetic field are plotted using different colors. Obviously with how close the magnetic field 
null is to the wires and the size of the wires it would not be realistic to model the macro U as a 
single infinitesimally thin wire. These simulations are important both for the initial design of the 
experimental apparatus, and also as a guide aligning and optimizing the MOT for evolving 
experiments. 



 

 
 
 

 

 
 
 
 

  

 
 

 

Figure 1.2: Circularly polairazed laser beams are preferentially absorbed by Doppler 
shifted atomic transitions in atoms moving anti-parallel to the laser direction of 
propagation. Quadrupole magnetic fields Zeeman shift the atoms such that the net force 
due to stimulated absorption of the lasers traps the atom at the magnetic null. 

Figure 1.3: Solid works drawings by Kevin Fortier and picture of the atom chip being 
used in cold atom experiments at Sandia NM. and trapping in a MOT. 



 

 

 
1.2—Atom Chip Design 
 

The goal of the atom chip is to transfer atoms collected in the MOT to a purely magnetic 
trap and then transport them along the surface of the atom chip to an optical cavity. We adopt a 
similar approach to J. Reichel’s research group for “long distance” transport of atoms1. We use a 
two metallization layer design with the top layer creating a magnetic waveguide similar to the 
waveguide shown in Fig, 1.1, and the bottom metallization layer providing a conveyor belt for 
precision control and movement of the atoms along the waveguide. The upper metallization layer 
is shown in Fig. 1.5, and it consists of three metal strips. The inner conductor (red) has a rather 
complicated shape because it is required to satisfy numerous functions as we will describe 

Figure 1.4: Numerical calculations of energy potential due to magnetic 
trapping of neutral atoms. 



 

shortly. The inner conductor has an outer conductor running along both sides to provide the bias 
field for the wave guide. There is also a lower metallization layer which is discussed later. 

This atom chip is designed to move the atom cloud from the MOT to an optical cavity. 
There is also a compression of the atom cloud that occurs, but this is of secondary importance. 
To transfer atoms from the MOT to a magnetic trap, the current through the MOT macro U 
(shown in Figs. 1.3 and 1.4) is ramped down as the current in the P-shaped inner conductor 
(shown as black in Fig. 1.6) is ramped up. Figure 1.6 shows the direction of the bias magnetic 
field (which is on for both the MOT and the magnetic trap) and the direction of current flow 
through the P. The Bias field is provided by coils external to the vacuum chamber.  After the 
atoms are completely transferred to the magnetic trap, the bias field is rotated to point in the 
positive y direction such that magnetic trap minimum rotates down to the top of the P.  

Next the current in the P is ramped down while current through the Z trap is ramped up. 
The Z trap can be used for evaporative cooling to decrease the average atom temperature and 
decrease the atom cloud size. It is also a transitional trap to prepare and load the atom 
waveguide. 

 

 

Figure 1.5: Upper metallization layer for atom chip design to move a 
cold atom cloud from the collection region (i.e. the MOT) to a micro 
optical cavity for cavity QED experiments.  



 

 

 

 

 

Figure 1.6: In the first part of the atom transport the atoms are trans-
ferred from the MOT to an optical trap by ramping down the MOT 
currents and ramping up the current in the P-shaped wire (black). 

Figure 1.7: The atoms are moved towards the waveguide by rotating the 
bias field and transferring current from the P-trap to the Z-trap (black). 



 

 

 
As the currents and bias field transfer over to the waveguide configuration shown in Fig. 

1.8, the confinement of the atoms along the x direction is provided by currents running through 
the lower layer of metallization. Also we note that once the atom cload has moved to a region in 
between the outer conductors, the bias field in the y direction can be turned off because the 
current through the outer conductors will provide this bias field. The advantage of using the outer 
conductors to create the bias field is that they consume less power than using a coil outside the 
chamber. They don’t require alignment, and can turn on and off more quickly than external bias 
coils. Also the outer conductor provide additional flexibility because by using both the external 
bias coils and current through the outer conductor we can create a strong bias field and deeper 
magnetic trap than is possible with just one or the other. 

Figure 1.9 shows how the lower metallization layer provides confinement in the x 
direction and how modulating the currents on this layers mover the magnetic trap and the atoms 
along the atom chip. In Fig. 1.9 only two wires (colored magenta and cyan) are shown on the 
lower metallization layer for simplicity, but in the actual atom chip there are six wires on the 
lower metallization layer as shown in Fig. 1.10. The wires with current flowing in the positive y 
direction add to the bias field creating a higher potential energy for the atoms and wires carrying 
current in the negative y direction cancel out the bias field to create the trap minimum. In a two 
wire configuration as shown in Fig. 1.9 the currents have a sinusoidal modulation with phase of 
the magenta wire leading the cyan wire by ninety degrees. By using more than two wires as 

Figure 1.8: With the atoms in position current is redirected along the 
long waveguide. When the atoms have moved between the outer 
conductors (purple) the current in the outer conductors ramps up and 
the bias field ramps down. 



 

shown in Fig. 1.10 the magnetic trap can be walked down the wave guide more smoothly and 
more complex trap shapes and modulation schemes can be attempted. 
 When the atom cloud moves close to the center conductor bifurcates to go around the 
optical cavity. This serves two purposes. First, the metal layer cannot go into the optical cavity. 
Second, the split wire configuration provides precision control of the z dimension of the 
magnetic trap. Bringing the atoms into the optical cavity and optimization of the atom cloud 
position inside the optical cavity requires fine control over all dimensions of the magnetic trap. 
Two wires carrying equal and parallel currents create a magnetic minimum at a distance half way 
between them and this magnetic minimum can be moved above or below the plane of the wires 
by turning on a bias magnetic field perpendicular to the wires but parallel to the plane containing 
the wires. And this is precisely the strategy we have employed for controlling the height of the 
magnetic trap above the atom chip as the atoms are moved into the optical cavity. 
 

 

 
Figure 1.9: The lower metallization layer provides confinement of the atoms in 
the x direction by canceling out magnetic bias field in the positive x direction. 



 

 

 
 We have also investigated other atom chip design such as the single layer conveyor.2 This 
design uses sinusoidal modulation of the two side conductors with a 90 degree phase lag between 
the two currents to move a magnetic trap minimum along the Z-trap waveguide. Figure 1.11(a) 
shows each current carrying wire as a different color, and Fig. 1.11(b) shows the magnetic field 
when the current in one of the side conductors is at zero. In this design the magnetic minima 
wandered back and forth across the center wire with each current modulation cycle. It was 
thought that this movement would introduce unnecessary heating and thus it was abandoned. 
 

Figure 1.10: All metallization layers (without P-trap) each metal wire is a 
different color. All six lower metallization wires are shown. 
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1.3—Atom Heating and Loss 
 

For an uncorrelated cloud of atoms, anytime you change the trap potential you should 
expect to heat the atoms, which will also increase atom loss from the trap. Of course, there will 
also be loss if you do nothing. The goal for the atom chip is to make all changes to the magnetic 
trap adiabatically in order to minimize heating and still move the atoms quickly because longer 
times mean greater ambient loss. The best solution gets the most atoms from the MOT to the 
optical cavity by balancing ambient loss which compounds over time with heating loss due to 
quick changes in the magnetic trap. 
 Unfortunately we have not yet solved for the optimal dynamics for the current that gets 
the most atoms to the optical cavity, but we have already developed the numerical tools to do 
this.  The force of the magnetic trap on the atoms in given by taking the negative gradient of the 
enegy given by Eq. (1.2), i.e. 

BmgUF FFB ∇−=−∇= μ .    (1.6) 
Using the Runga-Kuta algorithms it is straightforward to integrate and obtain the atoms position 
as a function of time. Figure 1.12 shows the initial positions of a thermal atom cloud before a 
simulation of a Z-trap. No atom-atom interactions are considered in the simulations. Figure 1.13 
shows the simulated trajectory of one of the atoms in the Z-trap. While we have not yet used 
these tools to determine the best operating regime for the atom chip, they are available to provide 
guidance once experiments commence. 
 

Figure 1.11: Atom conveyor belt design for a single metallization layer (a), and simulation 
of the magnetic field strength (b). 



 

 

 

 

 
 
 
 

Figure 1.12: Initialization of the atom cloud. Each atom is randomly 
assigned a position according to the potential energy as a function of 
position and average atom temperature, and a momentum according to 
the average atom temperature.  

Figure 1.13: Simulated trajectory of an atom in the magnetic trap. 



 

2 — QUANTUM NOISE IN EIT KERR SYSTEMS 
 

The work discussed in this section was inspired by work discussing the giant Kerr 
nonlinearity created in EIT systems and a paper with the provocative title “Single-photon Kerr 
nonlinearities do not help quantum computation”.3  

Prior to this paper there were numerous papers discussing how a giant Kerr optical 
nonlinearity could be used to create two qubit gates (both CNOT and phase gates) for quantum 
computation, as trigger for quantum repeaters and quantum state regeneration, as quantum state 
preparation, and as photon number resolving detectors. It is only a slight exaggeration to say that 
it seemed like the Kerr nonlinearity was a cure all for everything except cancer (at least in the 
area of quantum measurement theory which is a pretty limited field). The only problem was that 
Kerr nonlinearities are extremely weak and require huge macroscopic fields with billions of 
photons to see a measurable effect. That was until the “giant” EIT-Kerr nonlinearity was 
discovered, and then it was speculated that the EIT-Kerr “scheme makes possible conditional 
phase shifts of the order of � with single photons, which  should be beneficial for quantum 
nondemolition measurements of weak signals and quantum logic gate operation.”4  

Even without considering quantum noise the early enthusiasm for EIT Kerr nonlinearities 
proved to be overly optimistic because EIT Kerr nonlinearities are as slow as they are large 
making the integrated signal to noise ratio for EIT Kerr QND measurements under normal 
conditions too small to achieve resolution of individual photons. However, combining the Kerr 
enhancement effects of an optical cavity and EIT it seemed possible to achieve single-photon 
QND measurements and all of the other benefits of giant Kerr nonlinearities. In earlier work we 
found that for the experimental configuration shown in Fig. 2.1, that the signal to noise ratio 
(SNR) for a QND measurement of photon number is 
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In this measurement a signal beam and probe beam interact in an EIT Kerr medium (i.e. the atom 
cloud shaped as a red cigar in Fig 2.1), and the number of photons in the signal beam is 
imprinted on the probe beam (i.e. the EIT beam shown as blue elliptical beam in Fig. 2.1). By 
measuring the phase of the probe (EIT) beam using homodyne detection the number of signal 
photons is measured nondestructively and the signal field is projected into the measured number 
state. The large SNR given by Eq. 2.1 is largely due to the field enhancement of the optical 
cavity (i.e. the blue mirrors in Fig. 2.1), and the dipole trapping beams are to prevent the atom 
cloud from falling under the force of gravity.  In Eq. (2.1) A is the signal field beam diameter, k0 
is the wavenumber (both signal and EIT fields are assumed to have approximately equal 
frequencies) , N the number density of atoms, σ is the absorption cross-section of the atoms, L is 
the length of the interaction region, and Q is the finesse of the signal cavity. 
 



 

 

 
 
The only problem with Eq. (2.1) is that it uses a semi-classical theory to determine the 

EIT Kerr nonlinearity, and thus does not account for vacuum fluctuations making the actually 
EIT Kerr phase shift noisy. It does however account for all other sources of quantum noise. 
There are reasons to believe that it is a good assumption to ignore this noise. To create a little 
more context for understanding this problem, consider that most EIT experiments use alkali 
atoms for their simplicity and good EIT characteristics. In this case noise in the EIT phase shift 
can only result from uncorrelated phase noise between the quantum states of two hyperfine 
magnetic sublevels, and this could only result from uncorrelated energy fluctuations between the 
two magnetic sublevels. However, the hyperfine splitting of the cesium (an alkali atom) ground 
state is used to define the second, and it is one of the most thoroughly measured values in all 
science. I have searched the literature and have not yet found where it discusses energy 
fluctuations in the ground states of cesium being an important noise source for determining the 
second. Also, EIT which is very sensitive to phase fluctuations in the ground states has been 
measured with line widths below 10 Hz in alkali atoms, and even in these cases the limiting 
factors seem to be decoherence due to buffer gas and wall collisions. Thus, it seemed reasonable 
to ignore the effects of vacuum fluctuations on the phase of the ground state. Although, I should 
point out that it is well known that vacuum fields do create an energy shift on the ground state 
which is known as the Lamb shift. 

In Ref. [3] it is derived that when the commutation relation required by quantum 
mechanics are imposed on any Kerr nonlinearity, the fidelity of a two-qubit quantum gate 
derived from a Kerr nonlinearity must be poor. This is obviously because commutation relation 
imposes quantum noise on the Kerr nonlinearity. In contrast, Eq. (2.1) predicts that in theory the 
EIT Kerr nonlinearity can produce an arbitrarily good fidelity for a quantum gate. Therefore it 

Figure 2.1: Diagram of an EIT Kerr experiment which could achieve large signal to noise 
ratio in the single photon limit. A signal field, which experiences a field enhancement due to 
propagating through a resonant optical cavity, creates cross-phase modulation an EIT beam 
via the EIT Kerr effect in a cold atomic cloud. The dipole trapping beams keep the atomic 
cloud from falling under the influence of gravity 



 

seems logical that there is important aspect of quantum noise that the derivation of Eq. (2.1) is 
ignoring, and that is the question we wish to resolve. 

 
2.1 — The Lamb shift 
 
It seems likely that the source of quantum noise responsible for reducing the fidelity of EIT Kerr 
measurements is also responsible for the Lamb shift, and thus our first effort at understanding 
this noise is to adapt calculations which predict the lamb shift. In particular we are adapting the 
calculation method employed by T. Welton.5 The zero point fluctuations of the radiation field 
will effect the position of the electron causing it to spread out and experience a different smeared 
out Coulomb potential than if there were no noise associated with the quantum vacuum. In free 
space the non-relativistic equation of motion for an electron in an electric field is 

Eexm =&& .     (2.1) 
Given that the fluctuations about the mean value are defined by xxx −≡δ , the variance of the 

position is given by 
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where we have used the facts that the time-harmonic position fluctuations are 
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and the quantized electric field is defined as 
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In order to evaluate Eq. (2.3) and achieve a none infinite result, physically realistic upper and 
lower limits need to be imposed on the integral over k. We will not review the arguments as to 
why the following limits are chosen, but upper and lower limits of hmc  and hmcZα  are the 
generally accepted limits. 
It calculate the energy shift due to the zero point fluctuations we start with the Taylor expansion 
of the Coulomb potential 
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and use this to calculate the expectation value for the energy shift to first order 
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For a Coulomb potential ( ) rcZrV hαπ4−= , this simplifies to 
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where we have used the fact that ( ) ( )xπδ412 −=∇ r . 
 
2.2—Variance of the Lamb shift 
 
To extend Welton’s derivation of the Lamb shift to calculate the variance of the lamb shift we 
simply take the expectation value of the variance, which to first order is 
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Using Eq. (2.2) the facts that 
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we can calculate the variance given by Eq. (2.8). However, we are really interested in the 
variance of the phase which is the integral of the energy, and we have not yet performed this 
calculation. It is the variance of the phase which would also be of interest for time and frequency 
standards. Our study of the contribution of zero point fluctuations to the noise in EIT Kerr 
systems is still evolving, and this report is only an update on what has been completed. 
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