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Abstract

We present a formula for the pairwise update of arbitrary-order centered statistical moments.
This formula is of particular interest to compute such moments in parallel for large-scale,
distributed data sets. As a corollary, we indicate a specialization of this formula for incremental
updates, of particular interest to streaming implementations. Finally, we provide pairwise and
incremental update formulas for the covariance.
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1 Introduction

Centered statistical moments are one of the most widely used tools in descriptive statistics. It is
therefore essential for statistical analysis packages that robust and efficient algorithms be devised
and implemented. However, robustness and speed of execution, in this context as well as in others,
tend to be orthogonal. For instance, it is well known' that algorithms for calculating centered
statistical moments that utilize sum of powers for the sake of execution speed (one-pass algorithms)
lead to unacceptable numerical instability. Remedies to this problem can be found by using two-
pass algorithms, e.g.:

1. In the first pass, calculate the mean of the data set, and

2. In the second pass, calculate the required powers of the deviations to the previously calcu-
lated mean.

This approach is, in general, much more stable than the naive one-pass approach. However, ex-
ecution speed is severely impaired as each data point must be accessed twice; for large data sets
in particular, one cannot rely on the expectation that all data could be retained in cache memory.
Additional refinements of the two-pass approach have been proposed in order to further improve
numerical stability. However, the issue of execution speed remains.

In addition, having the capability to analyze large-scale, distributed data sets is one of the stated
goals of some of the most recent data analysis packages that are currently being developed [WBSO08,
WTP'08]. In this context, two-pass algorithms become entirely impractical because costs of dis-
tributed memory access massively dominate computation costs, and one must thus devise a one-
pass algorithm that allows direct updates (i.e., where no updates of the mean are necessary) while
being as numerically stable as possible. Moreover, such one-pass (or on-line) algorithms are di-
rectly amenable to streaming processing and thus to implementation for Graphics Processing Units
(GPU). However, on-line algorithms necessitate recurrence formulas for updating the desired cen-
tered moments each time a new data point is added to the system.

In the case of the variance, on-line algorithms have long been known; see for instance [Wel62].
The gist of technique consists in the following recurrence formula for the mean:

— M1
p=p+ (1.1)

where .] is a data set with finite and non-negative cardinality n — 1, u; is its mean, and u is the
mean of the data set . = .%; U {y}, y being an additional data point. Using (1.1), the following
recurrence formula for the sum My o =Y c o (x — u)? can then be used directly:

My o =M o+ (y—pu1)(y—u). (1.2)

I'This can be easily verified by the reader by computing the variance of {1 —¢€,1+¢€}, where € is smaller than than
the square root of the machine’s EPSILON.



from whence, for instance, the unbiased estimator for the variance of .# is readily obtained as
2

Gn—l,f = anlevfy'

With large-scale, distributed data sets, one would like, ideally, to conduct the calculations in an
embarrassingly parallel fashion, except for final aggregation of the results obtained on each part of
the distributed data set, with these final updates having a negligible cost. For example, if the data set
of interest is partitioned into .#; and .%5, one can use a one-pass algorithm to calculate separately,
e.g, in different processes, the desired centered moments of .#; and .#3. Upon completion of these
partial computations, one then needs a global update formula for calculating the desired moments
of ¥ = . U.%. For instance, in the case of the mean and the variance, [CGL79] derived the
following formulas:

)
u=u1+n2%, (1.3)

and
&,
My 9 =M o +M; o + nlnz—n’ ; (1.4)

where n, n1 and n; are the respective cardinalities of ./, .1 and .%3, and 6,1 = up — u;. Evi-

dently, (1.1) and (1.2) are particular cases of, respectively, (1.3) and (1.4), occurring when .75 is
reduced to a singleton {y}.

For third- and fourth-order moments, which are needed to calculate skewness and kurtosis of the
data set, formulas have been derived by [TerO8], in the form of pairwise update formulas for

My = Yo (x—p)* and My_y = ¥, (x — )", as follows:

&, &1
M3 o = M3 o, +M;3 o +niny(ng — nz)n—é +3(niMy v, — nzMz,yl)TH (1.5)
and
54 52
2 2, 92,1 2 2 2.1
My v =My o +My o, + nny(ny —niny + n2>n_3 + 6(n1M2,5ﬂ2 +n5M; o, )7 (16)
3.1 .

—|—4(n1M3’y2 — n2M37y1)7".

Evidently, these pairwise update formulas can be readily specialized to the particular case (incre-
mental updates) where one of the two subsets is reduced to a singleton, in a similar fashion to
the specialization of (1.4) to (1.2). The incremental update formulas can, in particular, be used to
calculate M3 and M4 on each subset of the partitioned data set. Although [Ter08] does not provide
them, their derivation from (1.5) and (1.6) is trivial and thus not detailed in this report.

The results recalled thus far provide the necessary formulas for efficient, one-pass, robust parallel
calculations of statistical moments up to the fourth order, thus addressing the issue that arises when
the considered application requires that mean, variance, skewness, and kurtosis be calculated. Al-
though this probably covers the needs of the vast majority of traditional applications of descriptive
statistics, more recent applications require that higher-order statistics be used: for example, in
the context of signal processing, cf. [KHSSO05] for a method using up to the sixth-order centered
statistical moments, but which in theory can be used with arbitrarily higher-order moments.

8



To our knowledge, there are currently no published formulas for parallel updates of higher-order
moments. Therefore, the goal of this report is to address this issue; more precisely, rather than
providing a number of additional formulas for given orders, this report presents a general result
that is valid for all orders. Finally, because covariance estimators are also of broad interest (e.g.,
for correlation analysis), and no parallel update formulas seem to have been proposed thus far, this
report also presents formulas for the pairwise update of the covariance.



2 Arbitrary-Order Update Formulas

Proposition 2.1. Let p be a natural number greater than 1. Then, using the same notations as in
Section 1, the pairwise update formula for M, o =Y c o (x —u)? is:

P22 [k ny\ k k
2 ni k
e =My byt T () [(=22) My () Wy
k=1

2.1
niny rl 1 —1\p—-1
) -G
n n, ny
Proof. By definition of M, »», and because {.71,.>} is a partition of .#, one has
My =Y, (x—u)? (2.2)
xe.s
=) (=P + ) (x—p)? (2.3)
xX€SA XES
p p
LY (o M)y (e 2
n n
xS XESH
n p n 14
= Z (X—Hl - —252,1> + Z (x—u2+—152,1> (2.5)
XES n XES n
2k n k n k
= Z ( ) [Mp—k,yl <— —252,1> +Mp_k,y2<—152,1> }, (2.6)
= \P n n

thanks to the commutativity of summations over finite sets, which allows us here to permute ‘Z:O

with }.c o, and } ;¢ & . Now, a few simplifications are in order. First, the k = 0 term of the above
summation is simply M), &, + M, & . Second, by definition, both M| o and M, ¢, are zero, thus
eliminating the kK = p — 1 term from the summation. Last, My &, = n1, My & = na, and

n p n p nin r|(=1)° 1
n1<——252,1> +n2<—152,1> = ( ! 252,1) {%_{_—_]} 2.7
n n n nll’ né’
r| 1 —1\r-1
_ (”1"282,1) [__1_ (_> } 2.8)
n nlz’ ni
Therefore, by substituting (2.8) for the k = p term in (2.6), one finally obtains (2.1). ]

One can readily verify that the pairwise update formulas for M3 and M, indicated in [Ter08],
respectively recalled in (1.5) and (1.6), are particular cases of Proposition 2.1 when p = 3 and
p = 4, respectively.

Corollary 2.2. In the case where . is reduced to a singleton {y}, and denoting 8 =y — u,
Proposition 2.1 reduces to the incremental update formula for ¥ = 1 U{y} as follows:

P22 [k —\F =1\ —1 \p-!
Mp,f) :Mp,yl +1§1 (p)Mpk,jﬂl (7) + < " 8) |i1 — (m) 1 (2.9)
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Proof. Corollary 2.2 is an immediate specialization of Proposition 2.1, obtained when n; =n —
1 and np = 1. In this case, &, = 6 and each M, &, vanishes since u; =y, and thus (2.1) is
immediately simplified into (2.9). Il

Remark 2.1. By noticing that (1.1) is equivalent to

n—1

yop=— (y—u1) (2.10)

one directly retrieves (1.2) from Corollary 2.2 with p = 2.

As another and more interesting illustration of Corollary 2.2, one can readily evince the incremental
update formulas for M3 and My:

Example 2.1. 1f p = 3, then (2.9) becomes:

3 n—1)\3 —1\2
M3,y=M3,y1—3M2,y1;+(( " )6) [1—<n_1)} (2.11)
8 (n—138 n?-2n
= M37<5ﬂl — 3M275ﬂl ; + ( n3) X (n_ 1)2 (212)
S 3
=Ms. 5 =3Mo 5 +(n=1)(n=2)-. (2.13)

Example 2.2. 1f p =4, then (2.9) becomes:

§ 8\2 /(n—1).\* —1\3
M4,y :M4,<5’1 —4M3’ylz+6M2’yl (;l) _|_ (%5) |:1— (n_ 1) :| (214)
) S\2 (n—1)** n®—3n24+3n
= M47y1 —4M375ﬂl; +6M27y1 (?l) + ( l’l4) X (n — 1)3 (2.15)
8 8\ ? ) &
=My, —4Ms. 5 +6Mo, (= )+ (0= D) =3n+3) 5 (2.16)

Note that we are providing implementations of these in the open-source Visualization Tool Kit
(VTK), more precisely as part of the vtkDescriptiveStatistics class.
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3 Covariance Update Formulas

In this section, we provide formulas for both incremental and pairwise update of the covariance.
These are of interest, in particular, for Pearson correlation analysis, which we wish to conduct on
large-scale, distributed data sets.

In this section, . denotes a set of doubles x = (u,v). Existing notations from Section 1 are
retained; in addition, we will use 1, i1, 4y,2, and u,»> to denote the means of u and v on .7 and
5, respectively. Also, we define 8,21 =ty 2 — 1, and 8,21 = py2 — 1.

Proposition 3.1. The pairwise update formula for C3 . =¥ (4 v)e.o (U — pu) (v — ) is:

ninz

Cy=0C 9 +C o+ 75u,2,15v,2,1- (3.1)

Proof. By definition of C; », and because {.#1,.#>} is a partition of ., one has

Crr= Y, (u—pm)(v—uw) (3.2)
(uy)es
= Z (= ) (v —y) + Z (10— ) (v — ). (3.3)
(u,v)eAN (u,v)eS

Asin (2.4), we expand the means over . into expressions that relate them to the means on .7 and
5”2:

_ EROVIR ) TR A AR L VU G (T %)
<M,V)Zeyl ety =) = (M7§y1 (umBEe ) (v 22 (3.4)
= Z (u —Hul — %&t,Z,l) <V —Hy1— %8\4271) (35)
(u,v)eAN

np
(” _.uu.,l)(v _.uv,l) - 78%2,1(” _:uu,1>

= ) . (36

no ns
— 7&/,2,1 (v—p1)+ ;5u,2,15v,2,1

Il
X

(v

Again using the commutatitivty of summations over finite sets and noticing that, by definition of
Mu,1 and 1,

n n
Y 8t —p) = =82 Y (4~ 1) =0 (3.7)
(u,v)e# n ue.#
and 1o 1o
Y, S8a(v—ma)=—821 ), (v—m1)=0, (3.8)
(u,v)eN n n VES]

we simplify (3.6) into

nyn3

Y (u—w)v—m)=Cory+ 725%2715%2,1 : (3.9)

(uv)es”
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Similarly, by interchanging the roles of .#} and .%,, we obtain

nzn%

Y (u—wm)(v—w)=Cop+ 58,2182, (3.10)
(uv)es n

because (12 — 1) (v — 1) = (Mu,1 — Mu2) (v,1 — ty,2). Therefore, (3.3) becomes

2 2
nin; +nan
Cr.v =Cy 9 +Co + %su,z,lsv,z,l, (3.11)

from whence the result arises since nj +ny = n. O

Pairwise update formulas for the estimators of the variance are now obtained immediately; for

instance, the unbiased estimator of the covariance of .% is ﬁCL 7.

Remark 3.1. In passing, we note that in the case where .#> is reduced to a singleton {(s,7)},
Proposition 3.1 reduces to the following incremental update formula for . = . U{(s,?) }:

n
Cro=0C 9+ (5 — 1) (T — ty1)- (3.12)
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