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Abstract

Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a
national security concern since the anthrax attacks of 2001. The ability to characterize the pa-
rameters of such attacks, i.e., to estimate the number of people infected, the time of infection,
the average dose received, and the rate of disease spread in contemporary American society
(for contagious diseases), is important when planning a medical response. For non-contagious
diseases, we address the characterization problem by formulating a Bayesian inverse problem
predicated on a short time-series of diagnosed patients exhibiting symptoms. To keep the ap-
proach relevant for response planning, we limit ourselves to 3–5 days of data. In computational
tests performed for anthrax, we usually find these observation windows sufficient, especially
if the outbreak model employed in the inverse problem is accurate. For contagious diseases,
we formulated a Bayesian inversion technique to infer both pathogenic transmissibility and the
social network from outbreak observations, ensuring that the two determinants of spreading
are identified separately. We tested this technique on data collected from a 1967 smallpox epi-
demic in Abakaliki, Nigeria. We inferred, probabilistically, different transmissibilities in the
structured Abakaliki population, the social network, and the chain of transmission. Finally, we
developed an individual-based epidemic model to realistically simulate the spread of a rare (or
eradicated) disease in a modern society. This model incorporates the mixing patterns observed
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in an (American) urban setting and accepts, as model input, pathogenic transmissibilities es-
timated from historical outbreaks that may have occurred in socio-economic environments
with little resemblance to contemporary society. Techniques were also developed to simu-
late disease spread on static and sampled network reductions of the dynamic social networks
originally in the individual-based model, yielding faster, though approximate, network-based
epidemic models. These reduced-order models are useful in scenario analysis for medical
response planning, as well as in computationally intensive inverse problems.
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1 Introduction

The anthrax attacks of 2001 [3] are generally cited as the impetus for raising the specter of rare
pathogens as a terrorism tool. Yet pathogens have seen extensive use in war. There are recorded
accounts of malicious smallpox-infected blanket distribution during the French and Indian Wars
(1756-1763) and attempts to spread veterinary diseases among pack mules and horses used in front-
line positions during World War I [4]. Also, the Japanese Army, during World War II, included
a unit devoted to biowarfare [5] and the Soviet Union allegedly weaponized pathogens on an in-
dustrial scale [6]. The Sverdlovsk anthrax accident, where an aerosolized anthrax preparation was
inadvertently released from a military institution [7] provided one example of the potential effect
of an outdoor aerosolized pathogen release; the “Amerithrax” attacks [3] provided a bioterrorism
counterpart. Thus people’s ability to weaponize pathogens and intent to use them aggressively is
not in doubt.

Pathogenic preparations have both tactical and strategic uses. Large attacks with a non-contagious
disease can severely degrade human population viability in a tightly circumscribed theater of war,
while a contagious disease may spread uncontrollably, seriously (and unpredictably) disrupting a
nation’s operation. It has been estimated that a smallpox attack infecting a small, but significant,
fraction of a country’s population could completely undermine its war effort – this decimation
would primarily be effected by the public health measures (social distancing and quarantine) re-
quired to combat spread and the required care of infected people, rather than by any widespread
morbidity due to the disease [4]. The threat posed by weaponized pathogens should not be taken
lightly.

While prevention of a bioattack against a civilian population remains the obvious preferred option,
the question of how to best mount a medical response is never far behind. This was investigated
first in the “Dark Winter” exercise [8] and thereafter in many TOPOFF (“Top Official”) exercises
conducted by the Department of Defense. “Dark Winter,” which investigated the mechanics of
mounting a medical response to a smallpox attack on an American city, revealed that detecting
a bioattack and identifying its causative agent were insufficient. Logistics planning (for medical
personnel and infrastructure) required knowledge of the number of infected individuals and the
rate of disease spread. Further, this information would be required quite soon after detection to
mount a timely response. Since such information is not readily available, any estimates provided
would be “rough.”

The difficulty in deciding the response parameters has two origins. Many pathogens considered
for bioattack use, e.g., Bacillus anthracis, rarely cause diseases in humans and never in epidemic
numbers; hence there is no “prior art” regarding countermeasures. Others, e.g., Yersinia pestis
(plague) and Variola major (smallpox) are old human scourges, but any epidemic data were col-
lected decades ago in regions with socio-economic characteristics drastically different from those
in contemporary American society, so it is not clear that similar countermeasures would be applica-
ble or effective today. Substantial evidence indicates that socio-economic factors, or more specif-
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ically, social mixing patterns, play an enormous role in determining how quickly and broadly a
disease spreads. For example, the basic reproductive ratio, R0, (the average number of susceptibles
infected by a single infectious person) for the 1972 Yugoslav smallpox outbreak was around 5.4 [9]
(before countermeasures were introduced) and 17 within the confines of a West German hospital
during winter [10], yet an average value of 3.0 is generally used, given the preponderance of data
collected in rural areas of the Indian subcontinent during the 1960s and 1970s [9, 11]. Therefore,
while historical outbreaks may provide guidance regarding medical and public health responses,
whole-hearted singular reliance on them would be foolhardy.

Despite the sparsity and lack of direct applicability of recorded data, the technical issues behind
questions raised by the “Dark Winter” exercise are clear. There is a need to create models of rare
pathogen behavior in individuals that capture the diversity, i.e., the stochastic variability, of hu-
mans. Then, if some individuals were infected, stochasticity would guarantee that a small sample
of those infected would develop symptoms early and be diagnosed. The problem then reduces to
inferring/estimating the characteristics of the (unseen) infected population from the small (diag-
nosed) sample drawn from it. This inference process is not, theoretically, far-fetched. For conta-
gious diseases, it relies on constructing models that characterize pathogenic transmissibility sepa-
rately from social mixing. Such models, calibrated to historical outbreaks, permit the estimation
of transmissibility (and the social mixing model, though that can be discarded). This calculated
transmissibility, in conjunction with a social mixing model for contemporary society, could be used
to predict epidemic evolution with a reasonable degree of confidence. Finally, there is the obvious
requirement to construct a model of the social mixing observed in contemporary society, for this
purpose.

These are precisely the aims of our research effort. Given the paucity of data, any estimates drawn
will contain significant uncertainties; prudence dictates these be quantified. This clearly demands
a statistical approach; we adopt a Bayesian approach and develop parameter estimates as prob-
ability distribution functions. For contagious diseases, we adopt a Poisson process-based model
of disease transmission and social network models of social mixing; these allow us to directly
gauge the applicability of mixing parameters that we infer from historical epidemic records, while
cleanly separating the pathogenic transmissibility from social factors of disease spread. Finally,
we approach the problem of constructing an epidemic model, commensurate with contemporary
American society, with an individual-based technique; this simplifies the comparison to real life
for validation purposes. While this may appear tedious and intractable, current literature offers
much help.

Methodologically, the creation and “calibration” of the models present some stiff algorithmic is-
sues. Individual-based urban population models can be large and unwieldy so we appeal to parallel
computing. Scalable algorithms for individual-based models is an emerging field; we explore and
develop new techniques in this work. Markov Chain Monte Carlo (MCMC) techniques are an
efficient way to solve the statistical inverse problems arising in this context and will be adopted
for the purpose; however, the high-dimensionality of the contagious-disease problem, especially
for inference of social networks, presents novel challenges. Our research effort therefore has both
modeling and algorithmic contributions in equal measure.

In the remainder of this report, we describe the inferential and modeling capabilities developed and
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their performance with both simulated and recorded data. In Section 3 we describe our individual-
based epidemic model and its approximations, which were developed for computational celerity.
In Section 4, we formulate and solve an inverse problem to estimate the characteristics of an
infected population, given a small sample. In Section 5, we develop a technique that estimates both
pathogenic transmissibility and a social network from observations of a smallpox epidemic. We
conclude in Section 6 and assess the extent to which we achieved our research goals. Throughout
this report, anthrax serves as a prototypical non-contagious disease; smallpox as its contagious
counterpart.
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2 Literature review

In this section, we survey available literature pertinent to the problems considered here. This will
be done separately for the three sub-problems under investigation: the individual-based epidemic
simulation, the characterization of non-communicable disease outbreaks and finally, that of com-
municable diseases. We finish with a short discussion of existing literature on Markov Chain
Monte Carlo methods, which are used to solve the inverse problems arising in our work.

2.1 Individual-based models of epidemics

Epidemiologically-based mathematical models and associated computer simulations are widely
used to understand historical disease outbreaks. Given sufficient characterizations of pathogen dy-
namics and transmissibility, they can be used to predict the severity of future epidemics and the
impact of potential interventions. Perhaps the most prolific epidemic models are compartmental
differential equation models which divide people into bulk categories such as susceptible, infec-
tious, and recovered (immune or dead), SIR models. Transition between the compartments is then
based on contact rates between susceptible and infectious people and average recovery time. Sim-
plifying a diverse population in this manner yields a system of differential equations amenable to
analysis and useful for assessing key outbreak features as a function of time. A good overview of
such models, including mathematical analysis techniques and relevance for policy making can be
found in [12].

Compartmental models predict the time evolution of population fractions in various disease stages,
under mass-action (well-mixed population) assumptions. They can address questions about the
rate of spread of a disease, whether it will become endemic, and how one might control seasonal
or other cyclic epidemic waves. Potential enhancements to basic SIR models include: adding
disease progression stages (e.g., to create S-Exposed-I-R models), tracking multiple cohorts of
people (e.g., to add age structure or account for immunocompromised individuals), and explicitly
modeling vaccinated (people with partial or full immunity) or quarantined groups.

A central goal of this project is to use extremely limited observations to invert epidemic models,
characterizing outbreak sources. Most aggregate population models (stochastic ODE models pos-
sibly excepted) are insufficient in this regime, where only a small fraction of the population is
infected and potential transmission paths need to be analyzed to reveal likely index and secondary
cases. Agent-based simulation models, with social contact networks and in-host pathogenesis
models at their core, offer one means to predict epidemic scenarios while tracking individuals and
detailed transmission paths.

A number of intermediate model types accounting for social contact structure, but short of fully
agent-based simulations, are possible. One approach involves constructing a large differential
equation system, with one or more equations explicitly modeling each individual’s disease state and
coupling via a static transition matrix weighting links between pairs of individuals [13]. This could
be viewed as analogous to electrical circuit network simulations or a continuum model similar to
the static network model presented in Section 3.1. It includes sufficient detail to study the effect of
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social distance between people, as represented in pairwise transmission force.

Lloyd and co-authors offer a gentle introduction to epidemic models on network topologies, and
analysis comparing the potential effect of local versus global mixing. [14, 15] These papers bridge
the gap from mass action to network-based models and illustrate challenges in analyzing the ef-
fect of social structures. Many have addressed disease spread on variously connected networks,
including the authors of [16, 17, 18] and [19], some of whom use census data to inform social
network construction. The importance of considering contact heterogeneity is emphasized in [20],
where given a particular disease’s basic reproductive ratio R0 (a dimensionless measure often used
to quantify spread in a population), a variety of epidemiological outcomes may be realized. Like
compartmental models, contact epidemiology-based models can be used to assess containment
strategies (quarantine or prophylaxis) or vaccination impact. See The structure and function of
complex networks [21] for a thorough discussion of network analysis, [22] for complex network
metrics capturing the most salient topological features, and [23] for algorithmic generation and
analysis of the social networks used in our present work.

Many of the papers cited above consider analysis of static network structures, and the correla-
tion between complex network metrics and summary epidemic outcomes. We now turn to truly
individual- or agent-based time-stepped simulations. They offer an alternate means to assess dis-
ease spread in different societal structures, though have associated validation challenges (as dis-
cussed in Section 6). These models typically have social contact network structure and detailed
in-host pathogenesis models, but could also include agent cognition models representing human
behavior during an epidemic. In [24], SEIR type models are explicitly compared to agent-based
models of the same phenomena, and effect of assumptions on network structure explored. The
EpiSims model for smallpox transmission and its associated contact network [25] is an early ex-
ample on which our simulation is based, and among the first simulations of its scale.

Several stochastic individual-based models are presented with a strong emphasis on control strate-
gies. An age-dependent probability of transmission model is used in [26] to model pandemic
influenza spreading among 281 million U.S. citizens. Burke, et al. [27] and Longini, et al. [28]
also consider social structures, but use estimates of smallpox characteristics from a recent expert
panel and, in part, calibrate smallpox models to historical data, before assessing vaccination strate-
gies. Agent-based simulations can leverage substantial computing power to model with extreme
detail, capturing the subtle effect of social connectivity and performing precise scenario analysis.

2.2 Characterization of anthrax outbreaks

Bacillus anthracis is an aerobic Gram-positive, spore-forming nonmotile Bacillus species. The
non-flagellated vegetative cell is about 1-8 µm in length and 1-1.5 µm in width. Spores are approx-
imately 1 µm in size and grow readily on laboratory media [29]. Anthrax spores germinate when
situated in a media rich in amino acids, nucleotides and glucose (e.g. blood and tissues of humans).
When vegetative cells run out of nutrients, they form spores. Vegetative cells are not robust; they
disappear almost completely within 24 hours of being injected into water [30]. Spores, on the other
hand, are hardy and can survive for decades [31].
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Inhalational anthrax follows deposition of spore-bearing particles (1-5 µm in size) in the alveolar
spaces. Macrophages ingest the spores which are mostly destroyed. The survivors are transported
via lymphatics to the mediastinal lymph nodes where germination can occur up to 60 days later [32,
33]. In Sverdlovsk, cases occurred from 2 to 43 days after exposure [7].

Few studies have used statistical methods to characterize the genesis of a partially observed epi-
demic. Walden & Kaplan [34] introduced a Bayesian formulation for estimating the size and time
of a bioterror (BT) attack and tested it on a low-dose (less than ID25, the dose at which a person
has a 25% probability of incurring the disease) anthrax release corresponding, approximately, to
the Sverdlovsk outbreak [7] of 1979. Their formulation incorporated an incubation period model
developed by Brookmeyer et al. [35] and demonstrated the use of prior distributions on N to reduce
uncertainty in the inferred characteristics. Brookmeyer & Blades [36] used a maximum likelihood
approach, along with the anthrax incubation model in [35], to infer the size of the 2001 anthrax
attacks [3] before estimating the reduction in casualties due to the timely administration of an-
tibiotics. Both [34] and [36] developed similar expressions for the likelihood function, i.e., the
probability of observing a patient time series given an attack at time τ with N infected people. The
incubation period model in [35] was not dose-dependent, and hence no doses were inferred in these
two studies.

Significantly more effort has been spent in characterizing the incubation period of inhalational
anthrax. Most work has been experimental, with non-human primates subjected to anthrax chal-
lenges [1, 32, 37, 38, 39, 40]. Brookmeyer et al. [35], on the other hand, used data from the
Sverdlovsk outbreak to fit a log-normal distribution of incubation periods valid at low doses;
their more recent work, based on a competing risks formulation, includes dose-dependence [41].
Wilkening [42] compares four dose-dependent models for the incubation period distribution, one
of which (termed Model D) is structurally identical to Brookmeyer’s [41], with updated parame-
ters. Compared to Model D, Wilkening’s Model A2 provides slightly better agreement with the
spatial and temporal distribution of anthrax cases observed in Sverdlovsk; the median incubation
period predicted by Model D is consistently larger than that predicted by Model A2 (see Figure 7).
Yet experimental results by Ivins et al. [40] and Brachman et al. [1] show significant departures
from the results of both models, especially in the 103–104 spore dose range (see Figure 7). Thus
both A2 and D must be considered approximate, though useful, predictive tools. In this study,
we explore the impact of model error by using Model D to simulate bioterror attacks while using
Model A2 for inference. A more detailed discussion of the anthrax incubation period models is
provided in Section 4.2.

The issue of dose-response functions, which indicate whether a person exposed to a number of
spores will actually contract the disease, will not be addressed in this study. We concentrate on
inferring the number of people who are actually infected, not merely exposed to the pathogen. The
problem of estimating the probability of infection from D spores was addressed by Brookmeyer
et al. [41] as well as by Glassman [43] and Druett et al. [44]. Haas [45] has established that
exposure to low doses can still pose a statistically significant risk to large populations.

The BARD effort [46] also seeks to characterize a BT attack from presentation of symptoms. It at-
tempts to estimate the location, height, and time of an airborne anthrax release, as well as the num-
ber of spores. The observables consist of respiratory visits to emergency departments, as might be
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obtainable from syndromic surveillance systems such as RODS [47]. The model that relates these
observables to outbreak characteristics includes a Gaussian dispersion plume [48], Glassman’s
infection relation [43], and a log-normal distribution of incubation periods, with dose-dependent
mean and standard deviation. However, BARD’s use in an urban context is only approximate since
Gaussian plumes are suited mainly for open spaces [48].

In this study, we develop a Bayesian formulation for inferring BT attack characteristics in the form
of probability distributions for N, τ, and D, using data from the first 3–5 days of an outbreak. We
restrict ourselves to temporal analysis; that is, we do not take the location of diagnosed patients into
consideration. All tests are performed with anthrax as the pathogen. In this study, a hypothetical
infected population receives a broad range of doses, commensurate with atmospheric dispersion
over a 10 km square domain. We explore how the accuracy and uncertainty of inference are
affected by the size of the outbreak, the dose received, and the frequency with which patient data
is collected. In the interest of realism, we also consider cases in which the anthrax model used to
generate the observed data (via simulated outbreaks) is different from the model used in inference.
We conclude with an application of this method to the Sverdlovsk outbreak of 1979 [7].

This study adds a new degree of realism to outbreak data and its analysis compared to those con-
ducted in [34, 46]. Unlike [34], we consider dose-dependent incubation periods and populations
infected by a range of doses, as might be obtained by atmospheric dispersion, and infer a repre-
sentative dose for the population. Since aerosol releases in confined spaces can lead to high doses
(comparable to or greater than ID50), the inferred dose serves as a useful indicator of the indoor
versus outdoor nature of the release. Unlike [46], model uncertainty—when the disease model used
in the inference procedure is only a partially accurate representation of the disease’s behavior—is
considered here to explore how large an inference error one might encounter under realistic condi-
tions. Further, since our analysis is strictly temporal, we do not take into account the geographical
location of patients; in a mobile population, this can be a significant source of (observation) error,
especially if the time of infection is not known and a detailed movement schedule of the infected
patients is unavailable. We also consider correlations between the inferred parameters of the at-
tack, demonstrating realistic cases in which scarce data might support multiple characterizations.
These were not explored in [34, 46].

2.3 Characterization of smallpox outbreaks

Smallpox is a highly contagious and frequently fatal disease. Its causative agent is an Orthopox
virus Variola major. The best sources of epidemiological information on smallpox are [11, 49].
The disease has 12 manifestations, ranging from the uniformly fatal hemorrhagic and flat mani-
festation to the relatively mild “modified” manifestation [49]; overall the mortality rate is approx-
imately 30%. The disease follows a typical incubation-prodromal-contagious-removed sequence;
removal by recovery bestows immunity. The distributions for the incubation, prodromal and con-
tagious periods can be found in [2], where they were modeled as Γ distributions. The R0 for
smallpox, a measure of the spreading rate in a virgin population, has been estimated to vary be-
tween 3 and 17 [9]; the upper limit of spread was observed in a hospital in Meschede, W. Germany,
in 1970 [10], where the contagion “leaked out” from the isolation ward with warm air into an in-
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sulated hospital (it was winter).

The threat from a release of smallpox would be of a strategic nature; apart from its high mortality
rate, it spreads rather quickly. Smallpox has been used in warfare in the past (infected blankets
were distributed to the Indians during the French and Indian Wars, 1754-1767 by the British forces
in North America [4]) and it has been alleged that the Soviet Union weaponized it [6]. However, its
ability to spread in a contemporary society is unknown, though attempts have been made to model
it [25, 50]. These models attempt to separate the effects of social mixing from pathogen charac-
teristics, but are frequently forced to use parameters whose values are largely guessed. Thus being
able to extract the pathogenic transmissibility from observations of historical epidemics, separate
from the effect of social mixing on disease spread, can be of help in informing such models. Also,
given this degree of uncertainty in crucial pathogenic and epidemiological parameters, a real-time
approach to measure the instantaneous spreading rate of such an outbreak would be helpful, if
only to measure the efficacy of epidemiological countermeasures. Thus, methods to characterize
outbreaks of contagious diseases, from full and partial observations, can be useful.

Such efforts have already started, mostly for emerging infectious diseases. Recent studies [51,
52, 53, 54] have concentrated on estimating the spread rates (R0) of various emerging strains of
influenza, from sparse observations; however, they have generally used conventional, ordinary
differential equation-based SEIR models. Further, these studies did not include any effect of a
structured population. Of late, there has been some interest in addressing problems of statistical
inference, predicated on incomplete data, which involve stochastic epidemics in a structured pop-
ulation. Typically, the structure involves clustering, most commonly, a family or a household. The
in-household rate of spread is assumed to be larger than the rate at which households themselves
get infected. Cauchemez et al. [55] performed such a study on the spread of influenza, as observed
over a period of 15 days, in Epigrippe, France. Their recent work, however, structures the pop-
ulation into adults and children and infers the importance of children as vectors for the diseases,
conditioned on Sentinel data [56]. Eichner and Dietz [2] divided the population in the Abakaliki
into 3 groups and estimated inter- and intra-group spread rates of smallpox. In both these studies,
homogeneous mixing was assumed inside each group i.e. there was no notion of a social graph.

Introduction of an unobserved social graph into an inference problem renders it high-dimensional
(since the social graph itself becomes a model “parameter” to be inferred) and has generally been
addressed using Markov Chain Monte Carlo (MCMC). MCMC has been used to infer epidemiolog-
ical models, even when social graphs were not involved [57, 58, 59]. Britton and O’Neill [60] in-
vestigated gastroenteritis and shigellosis outbreaks where they explicitly introduced a social graph
into a stochastic epidemic model. They assumed an SIR model and formulated a Bayesian inverse
problem for the dates of infection and the average contagious period of the disease (assumed expo-
nentially distributed). A closed population was assumed, and a binomial graph, with an uncertain
connection probability, used to model interpersonal relations. Disease transmission over a social
link was modeled as a Poisson process, whose rate was inferred as a part of the solution. The
authors formulated a Bayesian inverse problem, predicated on the removal dates of the epidemic
victims, and solved it using an MCMC procedure. A mixture of Gibbs and Metropolis-Hastings
updates were used to sample the high-dimensional parameter field, which include the social graph
and the infection pathway. The size of the problem was generally small (10-40 patients in a pop-
ulation of roughly 100-200). Demiris and O’Neill [61] extended Britton and O’Neill’s approach
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to address two-level mixing, i.e., where the social graphs for inter-household and intra-household
connections assumed different contact probabilities. However, they retained the SIR model, as-
sumed that the contagious period was known, and modeled the social graphs as binomial graphs.

Modeling social connections with a binomial graph is rather restrictive; studies have shown that
human contacts rarely follow such a distribution [62]. Britton’s recent work has addressed the
generation of random graphs that follow a given degree distribution [63], but they have not yet
been incorporated into an epidemic inference problem.

2.4 Markov Chain Monte Carlo methods

We conclude our discussion of prior work with a quick review of Markov Chain Monte Carlo
(MCMC) methods which we use to solve our Bayesian inverse problem. Inverse problems are
most profitably formulated in a Bayesian framework if (1) the data are diverse and (2) the data are
sparse. Diverse data, which may not be linked together via a model in an inverse problem, can be
accommodated directly via prior beliefs in a Bayesian inverse problem. Bayesian methods allow
estimation of inverse problem unknowns as probability density functions; this is critical when data
are sparse and point estimates could be insufficient/misleading. [64] is an excellent reference on
the formulation and mathematical aspects of such problems; [65] adopts a more practical approach
to formulating Bayesian inverse problems. Such problems result in an expression for the joint
posterior probability distribution for the problem unknowns (and thus can be high-dimensional).
The joint probability distribution is evaluated by sampling from it, which is most efficiently done
using MCMC methods. Metropolis-Hastings samplers, which can address arbitrary posterior dis-
tributions, will be used in this work; [66, 67, 68] provide an excellent and detailed treatment of the
matters, including many practical issues (e.g. “convergence” of the MCMC chain to a stationary
state in a finite number of steps, for which no theoretical metric exists).

MCMC methods are not without problems; they often have difficulty sampling from multimodal
distributions. However, “mode-hopping” MCMC methods, which directly address this problem
have been studied [69, 70, 71]. MCMC also have difficulty with narrow and skewed posterior
distributions; these may be resolved by either transforming the unknowns yielding a better-behaved
distribution (i.e., more circular) [66] or adapting the proposal distribution [72], particularly when
dealing with high-dimensional problems [73]. An intuitive way to deal with higher dimensional
problems (where a single chain may have difficulty visiting the entire space in a reasonable number
of iterations) or problems where evaluating the posterior distribution is computationally expensive
(where a single chain may not be able to take many steps in a reasonable amount of time) is to have
multiple chains distributed among multiple CPUs in a parallel supercomputer; Population Monte
Carlo methods to do so have been investigated [74, 75].
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3 Individual-based models of epidemics, including
approximations.

A detailed model for inter-person disease transmission is essential for solving inverse problems
to characterize outbreak source, strength, and number of people infected. It also enables crucial
scenario analysis including potential transmission paths, effect of interventions such as vaccination
and quarantine, and advance disaster response placement decisions. Detailed individual person-
based models can also inform construction of aggregate (mass-action) epidemic models, such as
SEIR models, potentially with structured populations.

The inversion work in this project concerns source identification given extremely limited observa-
tions. Aggregate population models are insufficient in this regime, where the total number infected
is low and potential transmission paths need to be analyzed to reveal likely index and secondary
cases. To meet these needs, we constructed a stochastic, individual-based model for disease trans-
mission, including social contact network structure and detailed in-host pathogenesis models. Key
features of the initial model prototype include:� object-oriented C++ implementation;� text-based input file specifying simulation characteristics;� accepts bipartite person/location or unipartite person/person contact graph;� accepts static or dynamic (time-varying) contact graph;� capable of simulating multiple diseases simultaneously;� scales well via MPI parallelism for rapid individual scenario analysis, or can be run mas-

sively serial for ensemble Monte Carlo analysis;� aggregates multiple events in time to coarser time scale; and� can perform reduced-order simulations using user-provided person and/or location samples.

In this section we describe our individual-based disease transmission model, including social net-
works and associated transmission models, available social network data, potential network reduc-
tion approaches, and in-host pathogenesis models. We present sample simulation results which
demonstrate bulk epidemic properties and spatial spread, including for reduced-order simulations.

3.1 Social contact networks and transmission models

While disease model stochasticity could derive in part from stochasticity of the social contact
network or uncertainty of its specification, the network specification to our disease model is explicit
deterministic input. The specification of a social network for disease spread may be static or
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dynamic, and may be bipartite (e.g., with nodes representing people and locations) or unipartite,
modeling only person-to-person interactions. While any of these combinations are feasible, those
implemented in the present disease model are discussed here.

The available transportation-based data (described in Section 3.2) include dynamic, bipartite graph
characterizations similar to those used by Eubank, et al. [25]. Graph nodes consist of people
and locations, and dynamic edges connect people to locations, indicating their transient behavior
throughout the day. In this specification, when people are collocated (same geographic coordinates
and same sublocation, e.g., room within a building), there is potential for disease transmission.

The static person-to-person networks considered consist of nodes (people) and weighted edges
indicating time of collocation. While weights could be specified as percent time collocated (relative
to other people pairs), the data specify collocation in hours for a 24 hour period. The network
structure is currently supplied to the disease model in augmented compressed sparse row (CSR)
format, with a specified period (24 hours), and edge weights in hours of collocation. The static
network-based disease simulation is therefore time stepped using the 24 hour period specified for
the connectivity data. Static equivalents of the dynamic contact graphs are included in the available
data sets.

We consider two models for inter-host disease transmission. The first is a physics-based model,
where people (and locations when considering a bipartite representation) have a disease “load” as-
sociated with each pathogen they may acquire. [25] Contagious individuals shed pathogen, either
to the location or directly to other people, at a potentially disease state- or covariate-dependent
rate, influencing their load. Susceptible individuals absorb pathogen from the environment (at a
potentially demographics-dependent rate), and update their load and in-host pathogenesis model
accordingly, as described in Section 3.4. Load is not intended to strictly quantify the amount of
disease present in an entity, but rather provides a means to model transmission and progress the
relative state of disease in an individual. In this report, the load-based model is closely associated
with the dynamic bipartite case, so individuals shed to and absorb from locations (as in the Eu-
bank, et al. “environment-mediated transmission” model), but could be generalized to the direct
transmission case.

In the load transmission model, initial conditions (pathogen levels) may be specified by contami-
nating locations, or directly infecting people. In contaminated locations and people who have not
yet reached their infectious dose (ID), pathogen decays or grows exponentially at a fixed rate. This
allows modeling of diseases with varying vectors, including contamination, and differing require-
ments for sustained growth or decay. A person becomes infected once they reach their assigned
infectious dose.

The second transmission model is simpler, based on the probability of transmission between two
collocated individuals. Based on the overall probability of transmission in a 24 hour period, we
assume that the probability increases with time collocated, according to

p j  1 � exp

� � NN

∑
i � 1

pi � t � wi j � (1)
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where p j denotes the probability of susceptible person j being infected, given collocation with
NN neighbors over a 24-hour time period. The time-dependent pi � t � is the scaled probability of
neighbor i infecting a susceptible person and is dependent on their disease state and therefore
simulation time t. The weight wi j indicates the time person i and j are collocated in a 24-hour
period. While this could be implemented for both the static and dynamic graph cases, we presently
only consider such transmission models for the former.

Initial disease conditions (outbreaks or attacks) may affect people or locations, and may be spec-
ified by person or location. For example, the simulation input may specify that location 101 is
contaminated, that all people in location 101 are directly infected, that specific people individuals
are infected, or the location (or its occupants) corresponding to a particular individual is attacked
(as in the malicious case).

3.2 Available network data

Results presented in this report use social contact network data available from the Network Dy-
namics and Simulation Science Laboratory (NDSSL) of the Virginia Bioinformatics Institute at
Virginia Tech. These synthetic data for the population of Portland, Oregon, are generated from
detailed simulation models implemented in Simfrastructure, which aims to simulate functioning
virtual cities at the individual level. [76, 77] Simfrastructure includes TRANSIMS for agent-based
large-scale transit simulations [78] and EpiSims for disease outbreak modeling [25], and is de-
signed to create a prototypical urban population and infrastructure and together with individuals’
movements and interaction with the infrastructure. The most relevant features of these synthetic
data include:� approximately 1.6 million people, with demographic attributes, and assignment to house-

holds;� 243,423 geographically distinct locations that people may visit, with � x � y � coordinate pairs
in meters (roughly two locations per roadway link/city block);� activity data, indicating movement of people among locations, and their purpose in occupy-
ing a location, for a typical day (these characterize a dynamic, bipartite social contact graph);
and� a static projection of the social contact network, based on the dynamic activities, that results
in a person-to-person social contact graph with edges weighted according to time collocated.

The populations were generated to be statistically equivalent to Portland census data at the block
level. Collocation of two individuals at a geographic location is insufficient for contact, as a lo-
cation may include multiple sublocations. For example, there may be several households and/or
work sublocations assigned to a single location.

The NDSSL released two versions of synthetic data for Portland. Initial model development used
Data Set Version 1.0 [76], released in January 2006, but several limitations required moving to
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Data Set Version 2.0 [77] when it was released in 2007. Potential limitations with the Version 1.0
data include:� a total time span of approximately 30 hours, and no clear means to select a 24 hour slice for

simulation purposes;� many individuals would “disappear” for long periods of time (5–6 hours), i.e., were not
assigned to locations for these time spans, would occupy a location for potentially unrealistic
durations (order seconds), or only have movement data for a small fraction of the 30 hour
simulation period;� some overlapping people events, i.e., a person may be assigned to two distinct locations at
the same time;� lack of explicit sublocation data (as generated by the underlying EpiSims sublocation model);

For model prototyping and testing, most of these are not fatal limitations. However the lack of
sublocation-resolution movement data prohibited comparison between the dynamic, bipartite and
static, unipartite graph models. The latter static network instances were generated from social con-
tact based on the sublocation model, which requires people to not only occupy the same geographic
location, but also the same sublocation. The Version 2.0 data set explicitly included sublocation
data for both person movement and household locations, enabling comparison to the static graph
case.

Other minor differences between the Version 1.0 and 2.0 data sets include addition of boolean
worker information, relationship of people to household head, and number of household vehicles.
Also, there are minor differences in numbering/indexing of entities in the data. The disease simu-
lation can accommodated pre-processed data from either original data format.

A potential benefit of the Version 2.0 data is inclusion of several realizations of disease spread
simulated with the Epi-Fast model, including various initial conditions and simulated public health
interventions. These could be used to to compare disease transmission assumptions, with a com-
mon underlying social structure. For further details on the construction and characteristics of the
synthetic data used, the interested reader should consult the technical reports from NDSSL refer-
ences above and references therein.

3.3 Description of population sampling approaches

The static unipartite network is one example of a surrogate for (approximation of) the full dynamic,
bipartite graph. Strategic population and/or location sampling offers another type of surrogate
or reduced-order model for the full fidelity simulation. One model reduction technique involves
clustering or partitioning people, based on a similarity metric, and then selecting one or more
(perhaps a percentage of) people from each cluster. The sampled representatives can then be used
in a disease simulation as a surrogate for the full population.
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For illustration purposes, consider a simple matrix representation, with one row per location, one
person per column, and non-zero entries Ci j that indicate person j visited location i. Instead of
indicators the entries could be weighted by time spent in that location over a 24-hour period. The
inner product of two columns C � j and C � k gives a measure of similarity between persons j and k
in terms of locations they visited that could then be used for clustering.

We consider two specific clustering variants; the first based on person-to-location clustering and
the second on person-to-person clustering.

1. Person-to-location clustering with Zoltan: This approach clusters people who visit the
same locations, but does not represent collocation of people with respect to time.

In this variant, hypergraph coarsening [79] from the Zoltan toolkit was used to cluster the
people in the simulation. Vertices of the hypergraph represented people; hyperedges repre-
sented locations. A hyperedge, then, consisted of all people who visited a given location
during a 24-hour period. This hypergraph representation is more compact and retains more
information than a person-to-person graph constructed by connecting (with graph edges) all
individuals who visited a location. In our coarsening algorithm, we computed the number of
locations shared by pairs of people. People who shared the most locations were considered
to be most similar and, thus, were grouped together in a greedy manner. The coarsening
process was terminated when a coarse hypergraph of user-specified size was obtained.

This process was used to generate people samples of sizes 107359 and 6874 using Data
Set Version 1.0. Adaptations of this process accounting for percentage of time collocated
through summary weights on hyperedges are possible, but not considered here.

2. Person-to-person clustering with PVXORD: This approach clusters people who are often
collocated at the same locations, or collocated for similar amounts of time.

In contrast to the person-to-location approaches, where the data size is M locations by N peo-
ple, this variant operates on larger N � N data, and requires examination of time-dependent
collocation data to generate the connectivity matrix. Dynamic movement data for hour 6 only
(software was limited by data size), were used to construct a person-to-person contact graph
with edges weighted by percentage of simulation time individuals are truly collocated (nor-
malized to 1.0). We used the parallel VXORD software PVXORD (Wylie, Martin, Brown)
to assign people to clusters and then sample one representative person (or again a percentage
of people) from each cluster. By this means a population sample of 238370 individuals was
generated.

A challenge in performing this kind of network model reduction is properly scaling contact rates
and disease properties so the reduced-order graphs are faithful to the full-fidelity simulation; see
comparative results in Section 3.6.
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Table 1. Representative smallpox disease periods, with probability distributions for durations.

period distribution log (load threshold) notes

exposure n/a
incubation normal(12.0, 2.0) 0.5
prodromal constant(3.0) 2.0 symptomatic

contagious burst constant(0.5) 6.0 symptomatic, infectious
contagious decline normal(6.5,1.0) 7.0 symptomatic, infectious

recovery uniform(6.0,12.0) 6.0

3.4 In-host pathogenesis (micro-models)

In-host disease progression models are based on stages and at a minimum, include those corre-
sponding to an SIR model: susceptible, infectious, and recovered. The residence times in each
disease period are sampled from probability distributions, introducing a stochastic element. As-
sociated with each phase are indicators for whether a person is susceptible, contagious, and/or
symptomatic for that phase. This could readily be extended to include severity of susceptibil-
ity or contagiousness dependent on a person’s disease state or even covariate (e.g., demographic)
information.

For example, for smallpox, we consider the periods with distributions specified in Table 1, similar
to the original EpiSims smallpox model. Here the normal distribution is parametrized by mean
and standard deviation and the uniform by its lower and upper bounds. The exposure period is of
variable length, as a person remains in it until reaching their assigned infectious dose. At the end
of the recovery period, a person could have acquired immunity, otherwise is dead. There is wide
speculation about the pathogenesis of smallpox in modern society, and slightly different periods
together with discrete probability distributions are reported by Longini, et al. [28], with reference
to consensus of a recent Smallpox Modeling Working Group working group commissioned by the
United States Department of Health and Human Services.

For load-based disease models, as in [80], we assume that the human ID50 (infectious dose, 50%
probability) is 5 PFUs (plaque forming units), and that 500 PFUs provide an almost 100% proba-
bility of infection. Infectious doses for individuals in the simulation are therefore sampled from a
log-normal probability distribution with mean 18 and standard deviation 68.

While disease stage lengths vary across individuals, the associated disease loads (with the excep-
tion of that required to enter incubation) are the same for all people. During a stage, the disease
load grows exponentially with (potentially negative) rate required to attain the specified starting
and ending load over the sampled period length. The in-host load model can therefore be repre-
sented as an ordinary differential equation

dL � t �
dt  a � t � L � t � (2)
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with piecewise constant growth rate a � t � . While the generality of a differential equation is not
necessary for the present simulation, which uses piecewise constant growth rates over each disease
stage and therefore has an explicit analytical solution, it permits the replacement of the in-host
models with more complex pathogenesis models if desired.

For the results here, we consider fixed shedding and absorption rates 1 � 0e � 4 and 5 � 0e � 3, re-
spectively. The model also permits specifying these in a demographics- or disease state-dependent
fashion. For example, data might support age-dependent transmission rates, or specification that
infected individuals are more contagious in specified time windows or given certain variants of a
disease.

3.5 Parallel implementation

An initial implementation of load-based time stepping with the dynamic network proved compu-
tationally intensive (requiring over 26 CPU hours on a single 3.60 GHz Intel Xeon processor to
simulate three weeks of disease spread). The first parallel implementation replicated locations on
all processors and partitioned people among processors. An MPI all-to-all communication pattern
updated loads, where contributions to loads (load updates) were computed on all processors and
then all-reduced. This did not scale well with the number of processors.

The current model incorporates a point-to-point communication model, which leverages services
from Sandia’s Zoltan framework. [81] Along with the new parallel communication model, we
partitioned both locations and people among processors, reducing memory requirements per pro-
cessor. With point-to-point communication, each processor registers needed load updates (either
local people needing off-processor location data or local locations needing off-processor people
data), and the Zoltan communicator orchestrates the parallel data movement when requested. For
static networks a single communication initialization suffices, whereas for dynamic networks the
communication pattern must typically be re-initialized at each time step.

Even with this additional overhead, the new parallel model scales nearly linearly up to 64 proces-
sors, as shown in Figure 1. Formal profiling studies have not yet been conducted, but we conjecture
that for this (relatively small) social network, communication begins to dominate local processing
at around 64 processors. If scalability tapered for larger data sets, load balancing via Zoltan’s
hypergraph partitioning would likely help.

3.6 Sample simulation results

The section includes sample disease model results for smallpox. A preliminary plague model,
implemented, but not yet exercised.

In Figure 2 we present an example of the spatial spread of disease in Portland, Oregon, over 21
days. The initial condition (I1) exposed 1599 collocated people to 100 PFUs of smallpox each, 312
collocated people to 30 PFUs each, and contaminated another location with 1000 PFUs. Based
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Figure 1. Parallelism: improved scalability with point-to-point communication model.

on the dynamic load-based model, the intensity represents the disease load at the location. The
geographic spread is not simply diffuse, but indicates social connections are responsbile for first
bringing disease to a new region. Ongoing work is exercising the model with carefully selected
initial locations to assess spread across key city features and natural partitions.

Comparison between the dynamic and static network approaches is shown in Figures 3 and 4,
with comparative SEIR data for one and six months, respectively. These results correspond to
an initial condition affecting 7 locations, with varying amounts of pathogen in the load-based
case and a 95% probability of initial transmission in the direct transmission case. While there
are some temporally locally deviations, the simulations agree qualitatively. The plots indicate
more secondary infections in the load-based case. The parameters for the dynamic, load-based
simulation are adapted from [25] while those used in the static, simple contact model are adapted
from [28]. Given the independence of the parameters and differences in simulation formulations,
the agreement is surprisingly good. If calibrated, this discrepancy could likely be reduced.

We present examples of model reduction for both the person-to-location (1) and person-to-person
(2) sampling cases, using Data Set Version 1.0, initial condition I1. Figure 5 depicts overall epi-
demic spread with the full population and with the 107,359 person sample. The initial outbreak
wave is captured well by the reduced-order model, but the wave of secondary infections is con-
siderably stronger in the full population. The geographic spread of the disease in the reduced-
order case is shown in Figure 6. Qualitatively, the epidemic characteristics are similar, but clearly
reduced-order population models must incorporate scaled rates in order to properly represent the
full population. Our network sampling techniques are heuristic and could be improved by adding
analytic rigor in the sampling process to preserve particular graph and/or simulation characteristics
in the sample.
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Figure 2. Representative spatial spread of smallpox in an urban setting over 21 days, using full-
fidelity dynamic network, Data Set Version 1.0.
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Version 1.0.

Figure 6. Representative spatial spread of smallpox in an urban setting over 21 days, using
reduced-order dynamic network based on person-to-person clustering.
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4 Characterizing outbreaks from partial observations: The
case for non-contagious diseases

Non-contagious diseases (i.e. diseases that are not spread from human to human) usually refer to
vector-borne diseases or zoonotics. Such diseases have been largely controlled by standard public-
health policies. However, a few of them, most famously, anthrax, have been weaponised - i.e.
turned into a form, by industrial means, into an aerosol that can be dispersed easily and efficiently
(see [82, 4] for a review of various state-sponsored programs and their vicissitudes). Outbreaks
caused by their release are not expected to bear any resemblance to commonly observed zoonotic
outbreaks. In this section we identify what such outbreaks of non-contagious disease may look
like, what the relevant issues are and mostly, how such issues may be resolved. For the purposes
of our study, we will use anthrax as the pathogen.

The release of weaponised anthrax (similar to the Amerithrax attacks [3]) will probably occur in
a bioterrorism or biological warfare setting. The aim will be to infect a large number of people,
N, who then would have to be cared for, thus imposing a severe cost in terms of resources. From
the victim’s point of view, estimating N becomes critical, for the allocation of resources. Since the
quantity of pathogen released, the time and location of release may not be known, a straightfor-
ward estimation (using models of aerosol dispersion) is impossible. N, therefore, may have to be
estimated by indirect means.

N individuals infected with a spectrum of doses of anthrax will come out of incubation over a
period of time, leading to a time-series, ni � i  1 ���	� M of diagnosed people over M days. The
time-series will provide definite proof of a biological attack and may allow one to infer N (and
secondarily, the time of release τ and a representative dose D). Further, we will adopt a purely
temporal approach which will not require the location of the diagnosed people at the time of infec-
tion.

In this section, we develop a Bayesian formulation for inferring BT attack characteristics in the
form of probability distributions for N, τ, and D, using data from the first 3–5 days of an outbreak.
All tests are performed with anthrax as the pathogen. Compared to [34] and [46], we introduce a
new degree of realism to outbreak data and its analysis. Unlike [34], we consider dose-dependent
incubation periods and populations infected by a broad range of doses, commensurate with at-
mospheric dispersion, and infer a representative dose for the population. Since aerosol releases
in confined spaces can lead to high doses (comparable to or greater than ID50), the inferred dose
serves as a useful indicator of the indoor versus outdoor nature of the release. Unlike [46], model
uncertainty—situations in which the disease model used in the inference procedure is not an ac-
curate representation of the disease’s behavior—is examined here in order to assess how large an
error one might encounter under realistic conditions. We also explore how the accuracy and un-
certainty of estimates are affected by the size of the outbreak, the dose received, and the frequency
with which patient data is collected. Further, we identify correlations between the inferred pa-
rameters of the attack, demonstrating realistic cases in which scarce data might support multiple
characterizations. These were not explored in [34, 46].

Since our analysis is strictly temporal, we do not rely on the geographical location of patients;
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in a mobile population, locations can be a significant source of error, especially if the time of
infection is not known and a detailed movement schedule of the infected patients is unavailable.
For example, the night time locations of the Sverdlovsk victims shows no trend, while the day time
locations lie approximately on a straight line bearing south-east of a military facility (see [82] for
a discussion; the plots of the day time and night time populations are in [83]). We conclude with
an application of this method to the Sverdlovsk outbreak of 1979 [7].

4.1 Formulation

We now formulate a Bayesian parameter estimation problem for the characteristics of a BT attack.
Consider a time series of infected patients

�
ti � ni � , i  0 ����� M, where ni is the number of people

developing symptoms in the time interval � ti � 1 � ti � . For simplicity, we let the intervals be of uniform
length ∆t  ti � ti � 1, typically 6 or 24 hours. t0 marks the time at which the first symptomatic patient
is identified; this patient may have developed symptoms anytime between t0 and t � 1  t0 � ∆t.
M is the total length of the time series and is expected to be small, e.g., 3–5 days. We seek a
probabilistic model for these observables, conditioned on an attack that infects N people at time τ
with a uniform dose of D spores. By convention, we set t0 to zero, and thus τ, the time of infection,
is always negative.

The dose-dependent incubation period is described by its cumulative distribution function (CDF)
C � T � D � , where T , the incubation period, is the time elapsed since infection. The probability of
an infected individual developing symptoms in the interval � ti � 1 � ti � is thus

�
C � ti � τ � D ��� C � ti � 1 �

τ � D ��� . Let L  ∑M
i � 0 ni be the total number of people who have developed symptoms by the end

of the observation period tM. Then N � L infected people are still asymptomatic; the probability of
someone remaining asymptomatic at tM is the survival probability, Psurv � tM � τ � D �  1 � C � tM �
τ � D � . Since the incubation times of each individual are conditionally independent given N, τ, D and
the disease model, the probability of the entire time series

�
ti � ni � obeys a multinomial distribution

with M � 2 outcomes. One outcome corresponds to remaining asymptomatic at tM; the M � 1
others correspond to developing symptoms in a preceding time interval. The resulting conditional
probability distribution is given by the following expression:

P � � ti � ni � M
i � 0 �N � τ � D � N!� N � L � !∏M

i � 0 ni!
� �

Psurv � tM � τ � D ��� N � L

� M

∏
i � 0

� C � ti � τ � D ��� C � ti � 1 � τ � D ��� ni� L � N � τ � D � (3)

In last line of this equation, we rewrite the probability of the observables as a likelihood function
L � N � τ � D � . We then use Bayes rule to obtain the posterior probability of the attack parameters:

p � N � τ � log10 � D � � � ti � ni � M
i � 0 � ∝ L � N � τ � D � πN � N � πτ � τ � πD � log10 � D ��� (4)
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Note that we have written the posterior density in terms of log10 � D � rather than D; this is in keeping
with [43, 42], where response to infection is generally modeled as a function of the log-dose. Here
πN , πτ, and πD are prior densities on N, τ, and log10 � D � . Presuming a lack of additional informa-
tion, we use broad uniform priors on all three parameters. The joint posterior density can then be
marginalized to obtain individual probability density functions (PDFs) for N, τ and log10 � D � . Inte-
grals yielding these marginal densities are evaluated using the VEGAS algorithm [84], an iterative
adaptive Monte Carlo method implemented in the GNU Scientific Library [85].

4.2 Anthrax incubation models

This section briefly reviews mathematical models used to predict the onset of symptoms in a person
exposed instantaneously to D anthrax spores. The onset time is a random variable, described by
its cumulative distribution function (CDF). These models are from Wilkening [42]; details of their
derivation can be found in [42, 86].

The CDF for Wilkening’s Model D is given by [42, 86]

CModelD � T � D � �� T

0
F � T � s;D � λ � θ � g � s � ds � (5)

which is a convolution of F � T ;D � —the probability that at least one spore out of a dose of D spores
will germinate into a vegetative anthrax cell by time t—and g � s � , which is the PDF of the time s
taken, post-germination, to reach a bacterial load at which symptoms appear. F and g are defined
as

F � T ;D � λ � θ �  1
p � 1 � exp � � Dλ

λ � θ
Q � T �	 ! "� where

Q � T �  1 � exp � � � λ � θ � T �#� (6)

p  1 � exp � � Dλ
θ � λ

 (7)

and

g � s �  1$
2πσss

exp � � 1
2

log2 � s % Ms �
σ2

s
 � (8)

p, the probability of showing symptoms in infinite time, is also called the attack rate. These
distributions depend on a number of parameters:� Nthresh, a threshold bacterial load in a person that causes symptoms
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� t2, the bacterial load doubling time in a given medium (e.g., mediastinal lymph nodes where
the spores germinate), which can be obtained from in vitro laboratory experiments� tM, which is the time required to reach a bacterial load of Nthresh

tM  tlag � t2
log � 2 � Nthresh

D� tlag, a lag time in bacterial growth experiments (typically 1 hour)� σ2
s , the variance of the log of the time required to reach the symptomatic bacterial load� θ, the probability rate of clearance of a spore (by the immune system), specified in terms of

probability of clearance per spore per day� λ, the probability rate of germination of a spore, specified in terms of probability of germi-
nation per spore per day

In the present models, Ms, the median time to symptoms, is set to tM. The values of the parameters
for Model D are θ  0 � 109 day � 1, λ  8 � 79 � 10 � 6 day � 1, tlag  1 hour, t2  2 � 07 hour, Nthresh 
109 and σs  0 � 544 day � 1.

Sartwell [87] found that the incubation period for a number of diseases was log-normally dis-
tributed, which is at odds with Eq. 5. Wilkening’s Model A2 captures this alternative by assuming
a log-normal distribution,

CModelA2 � T � D �  1
2 & 1 � erf � ln � T % T0 �$

2S
 (' � S  0 � 804 � 0 � 079log10 � D �)� (9)

where T0, the median incubation time, is obtained by solving an integral equation derived from
Eq. 5

0 � 5  � T0

0
F � T0 � s;D � λ � θ � g � s � ds �

However, in solving for t0, Wilkening used a slightly different set of parameters: θ  0 � 11 day � 1,
λ  8 � 84 � 10 � 6 day � 1, tlag  1 hour, t2  2 � 06 hour, and σs  0 � 542 day � 1. The reason for the
slight change in parameters as well as the difference between Models A2 and D is discussed below.

Parameters in Eqs. 5 and 9 were obtained by fitting the models to the median incubation peri-
ods observed in experiments with non-human primates (performed by Henderson et al. [37] and
Friedlander et al. [32]) and to the data from the Sverdlovsk anthrax outbreak. The average dose in
the Sverdlovsk outbreak, however, had to be inferred from atmospheric dispersion models and the
probability of exhibiting symptoms (in infinite time) given a dose of D spores. This is the proce-
dure adopted by Wilkening [42]. Using Glassman’s model [43] for the probability of infection, one
obtains an average dose of 2.4 spores. Alternatively, if one employs Eq. 7 (which is similar in form
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Figure 7. The median incubation period for anthrax as a function of dose D. The solid line is
Model A2, which assumes a dose of 2.4 spores at Sverdlovsk; the dashed line is Model D, which
assumes 300 spores. The solid symbols are median incubation periods obtained from experimental
investigations or from Sverdlovsk data. The filled circle (Sverdlovsk; Wilkening Model A) refers
to both Models A1 and A2, though only Model A2 is used in the current study. Symbols which are
not filled denote experiments where the population of primates was too small to draw statistically
meaningful results. The experiments by Brachman et al. [1] are shown by vertical lines between
symbols. In these experiments, only the lower and upper bounds of the incubation period were
provided. These ranges were not used for determining model parameters and are only provided for
reference.
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to Druett’s [44] and was used by Brookmeyer in [41]) one obtains a dose of 300 spores. Wilkening
retained both possibilities and incorporated them into separate models. Model D is based on a dose
of 300 spores at Sverdlovsk while A2 assumes 2.4 spores.

In Figure 7, we plot the median incubation period predicted by Models A2 and D as a function of
dosage D. The dosage at Sverdlovsk, estimated as 2.4 spores (represented by � ) is used to calculate
parameters for Model A2 (solid line); the alternative estimate of 300 spores (represented by a filled
∇) is used for Model D (dashed line). Studies by Henderson [37] with 2 � 1 � 105, 3 � 9 � 105 and
7 � 6 � 105 spores (represented as filled * ) and Friedlander with 3 � 5 � 105 spores (represented by
filled + ) were also used to calculate the parameters of both models. Studies by Ivins et al. [40]
(unfilled + ) and Gleiser et al. [39] (unfilled , ) were conducted with very few primates and conse-
quently are plotted only for reference. Primate experiments by Brachman [1] simulated the effect
of prolonged regular exposure to low doses, as might be the case in a contaminated wool-sorting
mill. The primates experienced extended periods during which they received no spores at all. The
dose was defined as the total number of spores inhaled and was generally low, between 1000 and
10,000 spores. We plot the resulting ranges of incubation periods observed at various dosages, also
for reference.

We see that the tests by Gleiser et al. and Ivins et al. agree with both models, which in turn agree
with each other. However, significant differences arise when D -. 103 spores. (Note that the vertical
axis is logarithmic.) Brachman’s tests show median incubation periods which are at odds with
the models’ predictions; however the mode of infection (a continuous low-level infection process
spread over days or months) was very different from the rapid (timescale of an hour) challenge
one would expect in a BT attack. Both models show a “kink” at D / 103; this is because they are
evaluated with a lower value of λ (1 � 3 � 10 � 6 day � 1), corresponding to a primate ID50 of 55,000
spores, for comparison with primate results at the high dose limit, while the low dose predictions
were developed with a human ID50 of 8600 spores for comparison with Sverdlovsk data. To the
best of the authors’ knowledge, this is the sum total of experimental data obtained from anthrax
challenges of non-human primates where incubation times were measured. We have omitted a
study by Klein et al. [88] in which an incubation period increase was observed with increasing
doses, because only one primate was subjected to each dose, making the behavior statistically
unreliable.

4.3 Inference of attack parameters with ideal cases

In this section we test the Bayesian estimation procedure described above. We use Wilkening’s
Model A2, described in Section 4.2, to simulate inhalational anthrax outbreaks of different sizes.
The same model is used for inference; that is, there are no systematic errors between the infer-
ence and data-generation models. Thus, posterior uncertainties may be ascribed to (1) incomplete
observation of the outbreak, specifically finite time resolution ∆t and a short time series, and (2)
the probabilistic character of disease incubation. We investigate how the quality of the inference
varies with the size of the outbreak and the dose received. We also investigate whether a higher-
resolution time series spanning a given observation period performs significantly better than a
lower-resolution one.
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Table 2. Time series obtained from six different outbreaks, simulated with the parameters 0 N 1 τ 1 D 2
as noted at the bottom of the table. The table has been divided into 24-hour sections, where the n i
in each section are summed to produce the low-resolution time series (24-hour resolution) used to
investigate the effect of temporal resolution. Time is measured in days and dose in spores.

time Case A Case B Case C Case D Case E Case F

0.00 1 1 1 1 2 1
0.25 0 2 2 7 13 7
0.50 0 1 1 12 18 24
0.75 1 1 1 39 39 29
1.00 2 2 2 50 38 60
1.25 0 3 3 77 64 96
1.50 1 2 3 77 84 153
1.75 2 1 1 98 116 164
2.00 1 1 2 126 130 193
2.25 1 1 2 162 137 223
2.50 2 3 3 146 141 258
2.75 3 1 4 148 160 302
3.00 2 1 3 149 190 299
3.25 1 3 3 163 175 312
3.50 1 1 2 181 182 304
3.75 1 1 3 162 201 335
4.00 2 1 2 165 200 373
4.25 1 5 5 177 238 340
4.50 1 4 4 169 202 327
4.75 3 2 2 217 216 332
5.00 1 1 1 167 217 350
5.25 1 3 4 182 237 321
5.50 1 1 5 163 207 316

N 100 100 100 10,000 10,000 10,000
τ -0.75 -2.25 -2.25 -0.5 -1.0 -1.25
D 1 100 10,000 1 100 10,000
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In Table 2, we list time series at 6-hour resolution: the number of patients showing symptoms
collected over 6-hour intervals obtained from 6 simulated outbreaks, henceforth called Cases A–F.
Each infected patient received an identical dose D. N indicates the number of people infected and
τ is the time of attack, measured in days prior to the exhibition of symptoms in the first diagnosed
patient.

We use the procedure outlined in Section 4.1 to develop posterior PDFs for N, τ, and log10 � D � in
Cases A–F. Figs. 8, 9, and 10 plot the resulting marginal densities for

�
N � τ � log10 � D ��� . These are

conditioned on the 6-hour resolution time series listed in Table 2. In Table 3, we summarize the
maximum a posteriori (MAP) estimates and 90% posterior credibility intervals (CIs) for N, τ, and
log10 � D � obtained with 5 days of data. We see that the marginal MAP estimate for N (the value of
N corresponding to the peak of p � N � � ti � ni � M

i � 0 � ) is generally close to the correct value even with
3 days of data; increasing the length of the observation period to 5 days usually sharpens the PDF,
reflecting a reduction in uncertainty. This trend holds true for small attacks (N  102) as well as for
large ones (N  104). An exception is Case F, which will be discussed below. The time of attack τ
is also identified quite readily, except for the small-N low-dose Case A. Larger attacks (Cases D,
E, and F) have narrower PDFs for τ compared to Cases A, B, and C. Higher values of ni in Eq. 3
(which generally result from large N attacks) provide structure in L and allow a more accurate
estimation of the attack. The dose D is the most difficult parameter to infer. PDFs for Cases A, B
and C in Figs. 8 and 9 show that it is virtually impossible to estimate the dose for small (N  102)
attacks; appreciable posterior probability is spread over 5 orders of magnitude. Table 3 confirms
that MAP estimates of the dose in these small attacks are incorrect. Larger attacks (N  104) yield
more informative PDFs for D. Note that the sensitivity of C � T � D � to D is rather small for Model
A2 (see the expression for S in Eq. 9), suggesting that dependence of the likelihood function on D
will be weak unless ni or M is large.

Cases D, E, and F (Figs. 9 and 10) demonstrate how early observations of an outbreak may support
multiple hypotheses, and at times favor a “wrong” hypothesis over the correct one. For instance,
Case D exhibits peaks in p � N � at N / 4 � 103 and N / 104. Peaks in the PDF of log10 � D � occur
at 1 spore and between 104 and 105 spores. For this case, both marginal PDFs overwhelmingly
favor a large N, low-dose attack, which is the correct characterization. A similar minor ambiguity
is observed in Case E. Marginal PDFs in Case F (Figure 10) are much more strongly bimodal,
however. In Figure 11 we plot the joint posterior density p � N � log10 � D ��� to examine correlations
among these parameters; it clearly shows two distinct islands—one corresponding to a large-N
low-dose attack, and the other corresponding to a small-N high-dose attack. Up to Day 5, the data
favors the wrong hypothesis (a larger, low-dose attack) over the correct one. Note also that the large
low-dose attack corresponds to larger (i.e., later) values of τ, as evidenced by the posterior density
p � τ � for Days 3–5 (Figure 10, right column). With more data (Day 6 and 7), the correct values
for

�
N � τ � log10 � D ��� are recovered, with peaks at N / 104, τ /3� 1 � 2, and log10 � D �4/ 4. However,

such a long observation period would not be relevant for consequence planning purposes. We
stress that a Bayesian analysis is free to identify competing hypotheses, and that the degree of
belief assigned to each is determined by the data and the prior information. In a partially observed
attack, the MAP estimate may be erroneous, especially if data is scarce. One possible remedy is
the use of informative priors for N, τ, and/or log10 � D � instead of the broad uniform priors used
here. Otherwise, natural ambiguities may remain and should be accounted for in consequence
management plans based on these inferences.
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Table 3. Cases A–F; MAP estimates and 90% credibility intervals (in parentheses) for N, τ, and
log10 5 D 6 , conditioned on the high-resolution time series at Day 5. The number in the curly brackets072 is the correct value.

Case N τ log10 � D �
A 70, (39.45 – 123.3) -1.75, (-2.90 – -1.04 ) 0.0, (0.18 – 4.12)�

100 � � � 0 � 75 � �
0 �

B 110, (65.7 – 148.4) -2.0, (-3.1 – -1.33) 0.00, (0.14 – 3.97)�
100 � � � 2 � 25 � �

2 �
C 150, (88.78 – 194.7) -1.75, (-2.85 – -1.22) 0.0, (0.153 – 4.13)�

100 � � � 2 � 25 � �
4 �

D 9800, (9439 – 10,350) -0.50, (-0.85 – -0.44) 0.00, (0.024 – 1.03)�
10 � 000 � � � 0 � 50 � �

0 �
E 10,200, (8396 – 10,890) -0.9, (-1.41 – -0.67) 1.75, (0.87– 3.23)�

10 � 000 � � � 1 � 00 � �
2 �

F 18,500, (10,500 – 19,290) -0.5, (-0.99 – -0.34) 0.75, (0.16 – 3.84)�
10 � 000 � � � 1 � 25 � �

4 �

Coarser time resolution (∆t  24 hours instead of 6 hours) was investigated in [86] and generally
yielded only a mild degradation in the smoothness of the PDFs. In cases where a multimodal PDF
evolves into a unimodal PDF over time (e.g., Cases D, E, and F), evolution is more rapid when the
observations are collected in 6-hour intervals.

To summarize, solution of the inference problem successfully provides N and τ for small and large
attacks. D can be estimated for large attacks. Posterior PDFs are sharper for large attacks and
for high-dose attacks. Higher temporal resolution may smoothen the PDFs slightly. When condi-
tioning on a short time series, the Bayesian method may suggest multiple hypotheses, supported
to differing degrees by the data. In some cases, e.g., Case F, the data might initially support the
wrong hypothesis, but the correct characterization is recovered as more data becomes available.
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Figure 8. Posterior PDFs for N (top), τ (middle), and logD (bottom) based on the time series for
Case A (left) and Case B (right), as tabulated in Table 2. Data are collected at 6-hour intervals in
both cases. The correct values for 0 N 1 τ 1 log10 5 D 682 in Case A are 0 102 1:9 0 ; 75 1 100 2 ; in Case B they
are 0 102 1:9 2 ; 25 1 102 2 . In both cases, PDFs are reported after 3-, 4- and 5-day observational periods
(dotted, dashed, and solid lines respectively).
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Figure 9. Posterior PDFs for N (top), τ (middle), and logD (bottom) based on the time series for
Case C (left) and Case D (right), as tabulated in Table 2. Data are collected at 6-hour intervals in
both cases. The correct values for 0 N 1 τ 1 log10 5 D 682 in Case C are 0 102 1:9 2 ; 25 1 104 2 ; in Case D they
are 0 104 1:9 0 ; 05 1 100 2 . In both cases, PDFs are reported after 3-, 4- and 5-day observational periods
(dotted, dashed, and solid lines respectively).
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Figure 10. Posterior PDFs for N (top), τ (middle), and logD (bottom) based on the time series for
Case E (left) and Case F (right), as tabulated in Table 2. Data are collected at 6-hour intervals in
both cases. The correct values for 0 N 1 τ 1 log10 5 D 682 in Case E are 0 104 1:9 1 ; 0 1 102 2 ; in Case F they
are 0 104 1:9 1 ; 25 1 104 2 . In both cases, PDFs are reported after 3-, 4- and 5-day observational periods
(dotted, dashed, and solid lines respectively), but Case F also includes PDFs at Day 6 (solid lines
with filled squares) and at Day 7 (solid lines with filled circles).
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Figure 11. The joint probability density p 5 N 1 log10 5 D 6<6 obtained after 5 days of data for Case F.
We clearly see a dual characterization—a larger low-dose attack and a smaller high-dose attack.
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4.4 Inference of attack parameters under variable doses

In this section we conduct eight tests corresponding to more realistic conditions. In the first four
(Cases I, Ia, II, and IIa) we relax the assumption of a constant dose D; instead, the infected peo-
ple receive a range of doses commensurate with atmospheric dispersion. However, the disease is
still assumed to evolve per Wilkening’s Model A2, with the same model providing C � T � D � to the
inference procedure. In the second set of tests (Cases III, IIIa, IV, and IVa), we retain distributed
doses and additionally relax the second assumption: data is generated with Model D, while the
inference procedure still uses Model A2 to evaluate the incubation period distribution. This mis-
match introduces a degree of realism into the inference process since the host-pathogen interaction
for humans and anthrax will seldom be characterized accurately.

In order to obtain a realistic distribution of doses in a geographically distributed population, we
first simulate an explosive point release of spores at a height of 100 meters with a Gaussian plume
model, thus exposing different numbers of people to varying doses as described in Appendix A.
We see from Figure A.1 that given a quantity of spores, the number of people infected depends on
the total population in the domain, the orientation of the plume, and the population distribution. A
release does not lead to many infected people if the high concentration isopleths of the plume miss
the localized regions of high population density.

Tables 4 and 5 list the time series obtained from all eight cases. The time series have a resolution
of 6 hours, with successive 24-hour intervals indicated in the tables. As noted in Appendix A,
these cases correspond to two choices of population size (pexposed  103 for Cases Ia, II, IIIa and
IV; pexposed  104 for Cases I, IIa, III and IVa) combined with two choices of plume orientation
(θ  170 = for Cases I, Ia, III and IIa; θ  125 = for Cases II, IIa, IV and IVa). The latter orientation
directs the plume over a more population-dense region. Tables 4 and 5 also report quantiles of the
dose distribution D1 � D25 � D50 � D75, and D99. That is, 1% of the population receives a dose of D1
spores or less, 75% of the population receives less than D75 spores, and D99 is near the maximum
dose. In Figure A.2 (Appendix A), we plot dose distributions corresponding to the cases given in
Tables 4 and 5. Note that while the doses may easily span two orders of magnitude, about 80%
of the infected people lie within a one-decade range of doses. We will essentially try to estimate
a representative dose D for this range, by fitting the probabilistic model developed in Section 4.1,
which assumes a constant dose. This is a source of model error, adding to the uncertainty caused by
incomplete observations and the inherent stochasticity of the data. This model error is not expected
to diminish with additional data, and thus one of the aims of this investigation is to quantify it.

4.4.1 Inference of attack parameters without incubation model mismatch

We begin with results from Cases Ia, I, II, and IIa—i.e., eliminating the assumption that each
infected person receives the same dose of anthrax spores, but simulating and inferring disease
progression with Wilkening’s Model A2.

Figs. 12, 13, 14, and 15 show posterior PDFs for
�
N � τ � log10 � D ��� conditioned on the time series

in Tables 4 and 5. Table 6 reports the MAP estimates and the 90% CIs for
�
N � τ � log10 � D ��� after 5
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Table 4. Time series obtained from eight simulated outbreaks with variable doses. Cases I, Ia, II,
and IIa are simulated using Wilkening’s Model A2, with the attack parameters—N, τ, and the dose
distribution—indicated at the bottom of the table. Cases III, IIIa, IV and IV are simulated using
Wilkening’s Model D. D̄ is the average dose for the N infected individuals. The table has been
divided into 24-hour sections, where the values ni in each section can be summed to produce the
low-resolution time series used to investigate the effect of temporal resolution. The dose distribution
is represented by its quantiles D1, D25, D50, D75, and D99; x% of the population receives a dose of
Dx or less. Table 5 continues the time series from Day 5 to Day 8.

Time (days) Case Ia Case I Case II Case IIa Case IIIa Case III Case IV Case IVa

0.0 1 3 2 5 1 1 1 3
0.25 2 3 2 8 1 8 5 14
0.50 0 6 1 8 0 20 6 36
0.75 4 12 5 27 1 16 13 81
1.00 1 14 7 46 3 9 12 77
1.25 2 26 12 57 2 18 14 94
1.50 2 28 9 85 2 28 13 123
1.75 6 49 16 94 1 30 13 132
2.0 6 57 9 133 2 37 17 129
2.25 5 65 20 134 2 27 15 159
2.50 7 68 12 139 4 41 17 126
2.75 6 53 18 163 2 39 14 149
3.0 11 80 15 138 3 34 9 131
3.25 8 62 15 180 2 32 14 129
3.50 9 89 21 140 3 25 16 136
3.75 8 106 16 164 6 33 12 100
4.00 17 70 20 180 4 27 14 125
4.25 12 65 21 136 5 33 11 104
4.50 9 87 8 147 3 33 6 110
4.75 3 87 8 151 5 23 11 106
5.0 6 76 7 127 6 23 15 90
N 318 2989 454 4537 161 1453 453 4453
τ -1.5 -1.5 -1.5 -1.25 -0.75 -0.75 -0.75 -0.5
D̄ 2912.8 2776.8 13,870.5 13,150.4 3603.5 3660.77 16,941 16,532

D1 � 10 � 2 0 � 53 0 � 65 1 � 39 1 � 32 3 � 41 2 � 65 3 � 1 3 � 0
D25 � 10 � 3 1 � 23 1 � 15 3 � 96 3 � 47 1 � 99 2 � 13 9 � 8 9 � 45
D50 � 10 � 4 0 � 29 0 � 26 1 � 34 1 � 24 0 � 33 0 � 35 1 � 65 1 � 57
D75 � 10 � 4 0 � 41 0 � 39 1 � 91 1 � 87 0 � 48 0 � 48 2 � 09 2 � 07
D99 � 10 � 4 0 � 83 0 � 87 5 � 79 5 � 91 0 � 92 0 � 95 6 � 74 6 � 52
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Table 5. Continuation of Table 4 beyond Day 5. Time series obtained from 4 simulated outbreaks
with variable doses. Cases I, Ia, II, and IIa are simulated using Wilkening’s Model A2, with the
attack parameters—N, τ, and the dose distribution—indicated at the bottom of the table. D̄ is the
average dose for the N infected individuals. The table has been divided into 24-hour sections,
where the values ni in each section can be summed to produce the low-resolution time series used
to investigate the effect of temporal resolution. The dose distribution is represented by its quantiles
D1, D25, D50, D75, and D99; x% of the population receives a dose of Dx or less.

Time (days) Case Ia Case I Case II Case IIa

5.25 9 70 16 129
5.50 8 91 8 109
5.75 10 79 9 147
6.00 9 86 12 126
6.25 8 82 13 108
6.50 7 55 9 114
6.75 7 69 7 90
7.0 6 75 8 96

7.25 8 61 6 88
7.50 4 67 6 77
7.75 6 65 8 75
8.00 2 62 6 69

N 318 2989 454 4537
τ -1.5 -1.5 -1.5 -1.25
D̄ 2912.8 2776.8 13,870.5 13,150.4

D1 � 10 � 2 0 � 53 0 � 65 1 � 39 1 � 32
D25 � 10 � 3 1 � 23 1 � 15 3 � 96 3 � 47
D50 � 10 � 4 0 � 29 0 � 26 1 � 34 1 � 24
D75 � 10 � 4 0 � 41 0 � 39 1 � 91 1 � 87
D99 � 10 � 4 0 � 83 0 � 87 5 � 79 5 � 91
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days of data. Since the true doses are distributed, we use the log of the median dose, log10 � D50 � ,
as a reasonable value for comparison to the posterior log10 � D � .
First consider Figs. 12 and 13, corresponding to Cases Ia and I. These attacks have similar dose
distributions but differ by an order of magnitude in N. In both cases, the MAP estimate of τ nearly
coincides with the true value after only 3 days of data. In Case Ia, the MAP estimate of N deviates
from the true value by approximately 20%, but the 90% CIs bracket the correct N quite easily. In
Case I, the PDF for N initially favors an inaccurate characterization (a peak at N / 4000) but by
Day 5, assumes a bimodal shape with a peak close to the correct characterization. Dose is the most
difficult parameter to estimate in Case Ia—the marginal PDF of log10 � D � remains rather broad
at all times. In the larger-N Case I, however, the posterior on log10 � D � at least indicates that the
attack is not a low dose (i.e., D50 > ID25) event. Also in Case I, conditioning on the high resolution
time-series provides more structure to the PDF; the posterior densities on log10 � D � and even on
τ are more prominently bimodal, indicating that inference is inconclusive, and more observations
will be required to obtain a unique characterization. For reference, both Figs. 12 and 13 include
a further set of PDFs conditioned on data through Day 7; MAP estimates from these posteriors
generally show even closer agreement with the true values of log10 � D50 � and N.

Inference is considerably less challenging in Cases II and IIa, corresponding to Figs. 14 and 15.
Because the doses are higher (D50 � ID50), the variance of the incubation period distribution is
smaller. The time of attack τ is captured with only 3 days of data, as is a representative log10 � D �
for the large N attack (Case IIa). With 5 days of data, MAP estimates for N are close to the
correct values in both cases, as is the MAP estimate of log10 D in Case II. Here, conditioning on
the higher-resolution time series yielded little gain over the lower-resolution time series. In Case
II, MAP estimates of τ based on 6-hour data are in fact inaccurate on Days 3 and 4, recovering the
correct characterization after 5 days of data.

In general, therefore, many of the behaviors discussed in Section 4.3 are repeated in the present
cases. Dose D is difficult to estimate for small N attacks, while the time τ is always easy to infer.
We can bound the size N of the attack quite accurately for all cases. MAP estimates of N obtained
from 5 days of data are always within 20% of the correct value. Further, the 90% CIs at Day 5 for
N, τ, and log10 � D � almost always bracket the true attack parameters. Finer temporal resolution ∆t
may better capture the evolution of the outbreak, but has a relatively minor impact on summaries
of the posterior; MAP estimates obtained from the low and high-resolution time series are similar,
as are the 90% CIs. Thus, while the errors incurred in fitting variable-dose data to a constant-
dose inference model are not negligible, the current formulation provides a reasonable and useful
characterization of the BT attack.

4.4.2 Inference of variable dose attack with incubation model mismatch

We now proceed to Cases III, IIIa, IV, and IVa. As noted above, these cases introduce a systematic
difference between the simulated evolution of the disease in infected persons and the model used
to interpret the observed data. We simulate BT attacks using Wilkening’s Model D (i.e., sampling
the incubation period distribution in Eq. 5), but infer the attack parameters using Model A2. As
in Section 4.4.1, the infected population receives a distribution of doses (see Appendix A) but the
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Figure 12. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Case Ia, as tabulated in Tables 4 and 5. Lower-resolution data (collected in 24-hour intervals)
yields the PDFs on the left, while higher-resolution data yields the PDFs on the right. Correct
values for 0 N 1 τ 1 log10 5 D 682 are 0 318 1:9 1 ; 5 1 3 ; 46 2 , where the “correct” representative dose is taken
to be log10 5 D50 6 . In both cases, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 13. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Case I, as tabulated in Tables 4 and 5. Lower-resolution data (collected in 24-hour intervals)
yields the PDFs on the left, while higher-resolution data yields the PDFs on the right. Correct
values for 0 N 1 τ 1 log10 5 D 682 are 0 2989 1:9 1 ; 5 1 3 ; 41 2 , where the “correct” representative dose is taken
to be log10 5 D50 6 . In both cases, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 14. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Case II, as tabulated in Tables 4 and 5. Lower-resolution data (collected in 24-hour intervals)
yields the PDFs on the left, while higher-resolution data yields the PDFs on the right. Correct
values for 0 N 1 τ 1 log10 5 D 682 are 0 454 1:9 1 ; 5 1 4 ; 13 2 , where the “correct” representative dose is taken
to be log10 5 D50 6 . In both cases, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 15. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Case IIa, as tabulated in Tables 4 and 5. Lower-resolution data (collected in 24-hour intervals)
yields the PDFs on the left, while higher-resolution data yields the PDFs on the right. Correct values
for 0 N 1 τ 1 log10 5 D 682 are 0 4537 1:9 1 ; 25 1 4 ; 09 2 , where the “correct” representative dose is taken to be
log10 5 D50 6 . In both cases, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Case N τ log10 � D �
Ia (6-hr resolution) 400, (233.6 – 581.9) -1.5, (-2.00 – -0.795) 3.0, (0.37 – 3.99)

Ia (24-hr resolution) 400, (230.4 – 582.2) -1.5, (-2.04 – -0.78) 2.75, (0.32 – 4.00)�
318 � � � 1 � 5 � �

3 � 46 �
I (6-hr resolution) 4100, (2334 – 4439) -1.4, (-1.57 – -0.64) 4.00, (0.715 – 4.147)
I (24-hr resolution) 4000, (2281 – 4358) -1.4, (-1.59 – -0.70) 4.00, (0.91 – 4.173)�

2989 � � � 1 � 5 � �
3 � 41 �

II (6-hr resolution) 400, (305.5 – 981.6) -1.5, (-1.98 – -1.08) 4.25, (0.68 – 4.72)
II (24-hr resolution) 400, (327.0 – 984.7) -1.6, (-2.10 – -1.03) 4.25, (0.36 – 4.69)�

454 � � � 1 � 5 � �
4 � 13 �

IIa (6-hr resolution) 3900, (3686 – 4340) -1.3, (-1.48 – -1.14) 4.25, (4.05 – 4.72)
IIa (24-hr resolution) 4000, (3709 – 4433) -1.5, (-1.55 – -1.18) 4.25, (4.04 – 4.72)�

4537 � � � 1 � 25 � �
4 � 09 �

Table 6. Cases I, Ia, II, IIa; MAP estimates and 90% credibility intervals (in parentheses) for N,
τ, and log10 5 D 6 conditioned on data through Day 5. Correct values for N and τ are in 0?2 . The
“correct” representative dose is taken to be log10 5 D50 6 , also in 0@2 .
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model used in the inference process assumes a constant dose.

Figs. 16 and 17 show posterior PDFs for
�
N � τ � log10 � D ��� conditioned on the time series in Table 4.

As described in the preceding section, finer resolution in the time series does not have a great
impact on the posterior, and hence we only plot PDFs resulting from daily observations in each
case. Several features are worth highlighting. First, the dose is identified much more closely in
Cases IV and IVa, where both N and log10 � D � are higher, than in Cases III and IIIa. Indeed,
p � log10 � D �	� in the low-dose small-N Case IIIa remains broad at all times. In Case III, after only 3
days of data, we observe a dual characterization of the outbreak: N / 700 and, to a larger extent,
N / 2000. However, p � N � becomes unimodal as additional data become available. In fact, PDFs
for all three parameters in all four cases are unimodal by Day 5. The resulting MAP estimates and
90% CIs for

�
N � τ � log10 � D ��� are reported in Table 7. In contrast to Section 4.4.1, MAP estimates

for N and τ are not within 20% of the true values. With the exception of Case IIIa, N is smaller
than it should be, and in all cases τ is more negative than it should be.

A qualitative explanation for these discrepancies is advanced as follows. Since Model A2 predicts
shorter incubation periods than Model D (recall Figure7), the epidemic curve as simulated with
Model D will rise more slowly that predicted by Model A2. When this data is interpreted using
Model A2, it is reasonable to expect the posterior to compensate for the slower rise by underes-
timating N, i.e., by suggesting a smaller outbreak. Simultaneous estimation of D and τ raises a
few additional complications, however. Recall that the posterior of D is centered quite close to its
true value in Cases IV and IVa, and to a lesser extent in Case III. But in the likelihood function,
this dose enters the wrong model. Using a “correct” dose in Model A2 is akin to using a much
larger dose in Model D; both situations yield shorter incubation periods. Now draw a parallel with
Case F in Section 4.3. There, we found that a large-dose small-N attack and a small-dose large-N
attack gave rise to very similar patient data during the first five days of an outbreak. Moreover,
we found that N and τ were positively correlated (and that both were negatively correlated with
D): the small-N mode of the posterior also favored more negative τ, i.e., attacks that occurred
approximately one day earlier. The very same correlations affect inference in the present cases.
Incubation model mismatch is roughly equivalent to an overestimation of D, which is compensated
for by underestimating N and τ.

In summary, Table 7 shows that MAP estimates for N are typically within a factor of two below
the true result and that τ is estimated roughly a day too early.

4.5 The Sverdlovsk anthrax outbreak of 1979

We now address the characterization of the Sverdlovsk anthrax outbreak. It is suspected that on
2 April 1979, a high-grade anthrax formulation was accidentally released from a military facility
in Sverdlovsk (today, Yekaterinburg), Russia. The resulting outbreak lasted 42 days, and patient
data was collected on a daily basis [7]. Characterizing the Sverdlovsk case presents significant
challenges. It corresponds to a low-dose “attack” infecting fewer than 100 people. Wilkening [42]
estimates that the average dose was either around 2–3 spores, based on his Model A, or around
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Figure 16. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on daily time series
for Case IIIa (left) and Case III (right). Correct values for 0 N 1 τ 1 log10 5 D 682 are 0 161 1:9 0 ; 75 1 3 ; 52 2
(Case IIIa) and 0 1453 1:9 0 ; 75 1 3 ; 54 2 (Case III), where the “correct” representative dose is taken to
be log10 5 D50 6 . In both cases, PDFs are reported after 3-, 4-, and 5-day observational periods (dotted,
dashed and solid lines respectively).
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Figure 17. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on daily time series
for Case IV (left) and Case IVa (right). Correct values for 0 N 1 τ 1 log10 5 D 682 are 0 453 1:9 0 ; 75 1 4 ; 22 2
(Case IV) and 0 4453 1:9 0 ; 5 1 4 ; 20 2 (Case IVa), where the “correct” representative dose is taken to be
log10 5 D50 6 . In both cases, PDFs are reported after 3-, 4-, and 5-day observational periods (dotted,
dashed and solid lines respectively).
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Case N τ log10 � D �
IIIa (6-hr resolution) 170, (130.1 – 243.6) -1.5, (-2.3 – -0.86) 2.0, (0.23 – 3.74)
IIIa (24-hr resolution 170, (125.1 – 238.8) -1.5, (-2.4 – -0.94) 2.5, (0.255 – 3.78)�

161 � � � 0 � 75 � �
3 � 52 �

III (6-hr resolution) 780, (722 – 945.5) -1.7, (-2.03 – -1.42) 4.25, (4.02 – 4.723)
III (24-hr resolution 760, (701 – 891.7) -1.6, (-1.91 – -1.31) 4.25, (4.04 – 4.724)�

1453 � � � 0 � 75 � �
3 � 54 �

IV (6-hr resolution) 330, (297.2 – 668.6) -1.7, (-2.23 – -1.40) 4.5, (1.4 – 4.72)
IV (24-hr resolution) 330, (296.3 – 705.3) -1.7, (-2.26 – -1.38) 4.5, (1.45 – 4.72)�

453 � � � 0 � 75 � �
4 � 22 �

IVa (6-hr resolution) 2900, (2728 – 3056) -1.5, (-1.90 – -1.1) 4.5, (4.275 – 4.725)
IVa (24-hr resolution) 2900, (2741 – 3064) -1.5, (-1.97 – -1.26) 4.5, (4.275 – 4.725)�

4453 � � � 0 � 5 � �
4 � 20 �

Table 7. Cases III, IIIa, IV, and IVa: MAP estimates and the 90% credibility intervals (in paren-
theses) for N, τ, and log10 5 D 6 conditioned on data through Day 5. Correct values for N and τ are in0@2 . The “correct” representative dose is taken to be log10 5 D50 6 , also in 0A2 .

300 spores based on his Model D; Meselson [7] estimates 100–2000 spores as the likely dose.
The first patient presented symptoms on 4 April 1979. Around 12 April, tetracycline was adminis-
tered around Sverdlovsk; around 15 April, people were vaccinated. These prophylactic measures
probably cured a few people and increased the incubation period in others. Further, the available
data almost certainly contains some recording errors. Errors in the data, the effect of prophylaxis
(which is not modeled in our likelihood function), and the small size of the infected population are
expected to stress our inference process.

In Figure 18 we plot the posterior densities of N and τ based on the data in [7]. Model A2 is used
for inference. After 9 days of data, the MAP estimate for N centers around 50, though the earlier
PDFs underestimate N. The 90% CI for N is B 41 � 15 � 66 � 49 � . In comparison, 70 people are believed
to have died [7, 35] and 80 are believed to have been infected [35]. The time of release was easy
to infer (the MAP estimate of τ is � 2, i.e., 2 April 1979); the 90% CI for τ is BC� 3 � 22 ��� 1 � 38 � .
PDFs for the dose (omitted here) were indeterminate (the 90% CI for log10 � D � spans B 0 � 18 � 3 � 5 � );
further the average dose at Sverdlovsk is unknown. However, by 13 April (i.e., Day 9, the day of
the start of the prophylaxis campaign and 2 days before the vaccination campaign), our estimate
for N is certainly within a factor of two of the correct value, and it is clear that the outbreak will
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affect fewer than 200 people. However, approximately 59,000 people in the Chkalovskiy raion
were impacted by the medical measures; 80% were vaccinated at least once [7].

Guillemin [82] documents the public health response undertaken by the Soviet authorities once the
Sverdlovsk epidemic was detected. In conjunction with the quantitative analysis presented in this
section, [82] illustrates the difficulties and pitfalls faced by medical responders when the origin and
the extent of an epidemic are unknown. Without a model for inhalational anthrax, observations
of symptomatic patients could not be used to prove (or disprove) any hypothesis regarding the
epidemic’s genesis. Indeed, Soviet authorities held that the epidemic was caused by infected meat
and spent considerable effort searching for it. The response also prompted a significant external
component, engaging many medical personnel and officials from outside Sverdlovsk; yet by Day
4 (8 April 1979) it was clear that the epidemic was small (Figure 18, left) and could be handled by
local authorities. (Sverdlovsk was a military-industrial city with a population of 1.2 million [7].)
Guillemin [82] also describes efforts to disinfect buildings and trees by hosing them down with
disinfectants; yet with knowledge of τ (Figure 18, right) and meteorological conditions, the bounds
of the affected region could have been established (as Meselson did in 1994 [7]) and the public
health response suitably targeted. Therefore, a quantitative model and an inferential capability
could have been of assistance in 1979. The lessons are equally applicable in contemporary bioterror
scenarios.
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Figure 18. PDFs of N (left) and τ (right) for the Sverdlovsk outbreak.
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5 Characterizing outbreaks from partial observations: The
case for contagious diseases

In Section 4, we described how one may estimate the characteristics of an outbreak caused by
a (nearly) instantaneous infection of N individuals from partial observations. While the analysis
assumed that the disease was non-contagious, the same approach could also be applied quite easily
to a contagious disease provided the incubation period of the disease was larger than the period of
observation / data collection; in such a case, the time-series would consist solely of the index cases
and consequently, the problem would be no different from the one for non-contagious diseases.

The difference between an outbreak of a non-contagious disease and a contagious one is, of course,
the ability of the disease to spread. The spread of a disease depends on the intrinsic transmissibility
of the pathogen (for example, the common cold spreads far more easily than tuberculosis) as well
as the mixing patterns of the population that allow the transmission of the pathogen. The mixing
pattern can be enormously influential in deciding the spreading rate - smallpox epidemics have ex-
hibited reproductive ratios R0 varying between 3 and 17 [9] and consequently, when characterizing
an outbreak of a contagious disease, it becomes necessary to infer both the transmissibility of the
pathogen and the social mixing pattern. This is particularly true if the pathogen is an emerging one
(e.g. avian flu) which may be expected to undergo evolutionary changes (affecting transmissibility)
from outbreak to outbreak, over time.

Epidemics of contagious diseases are conventionally simulated with SEIR models. An individ-
ual in a population is expected to be in one of the four states (Susceptible–Exposed–Infectious–
Removed). Removal can mean death or recovery. The time spent by an individual in the exposed
and infectious states are assumed to be random variables. Often they are modeled as exponential
distributions, though realistic (observed) distributions tend to be better modeled with log-normal
or Γ distributions. The evolution of the fractions of a population in these categories are governed
by a system of ordinary differential equations [12], where the effect of pathogenic transmissibility
and mixing in a population in determining the spread are “lumped together” in a basic reproductive
number R0. These models are generally applicable in large epidemics where homogeneous mixing
of a population can be safely assumed. Network models(e.g. [89]; also see Section 2.3), on the
other hand, consist of individual members of a population linked into social network which reflects
their mixing pattern; transmission occurs along the links in a probabilistic manner. Individual-
based models [25] are even more detailed, involving pathogen-load dynamics inside each individ-
ual and transmission of the disease via contamination of shared locations.

In this section, we will formulate a statistical inverse problem to infer the transmissibility of a
pathogen as well as the mixing pattern. We will adopt a network model of the epidemic, since it is
the simplest one that explicitly separates transmissibility from mixing. This formulation is based
on the one in [60], but extends it in the following ways:

1. We will use SEIR models, instead of SIR.

2. We will model the disease realistically, using Γ distributions for the incubation and removal
periods (i.e. the exposed and infectious states respectively, rather than exponential distribu-
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tions.

3. We will incorporate a structured population.

Below, we describe the context from which the data (observations of an epidemic) were extracted.
Thereafter, we formulate the inverse problem.

5.1 The data: The Abakaliki smallpox outbreak of 1967

Between April and June, 1967, a smallpox outbreak with 32 cases occurred in the town of Abaka-
liki (pop. 31,200) in Nigeria [90]. 30 of the 32 cases belonged to the Faith Tabernacle Church
(FTC), a religious group that refused vaccination and medical treatment. The FTC members (a
total of 74) lived in 7 large “compounds”, often with many non-FTC members (total over 7 com-
pounds: 92); however, social contacts between them were rare. The FTC members were closely
related and visited each other; four times a week they gathered at the church. The index case
(Case 0) in Abakaliki came to live in Compound 1 on April 2nd, 1967; by April 5th, (Day 0)
she had developed a macular rash. Thereafter, smallpox spread in Compound 1. On Day 25, a
family seemingly free of smallpox moved to Compound 2, where on day 26 and 30, the children
developed clinical signs of smallpox. Thereafter, smallpox spread in Compound 2. The last case
occurred on June 20, Day 76. No medical interventions were instituted till Case 11; thereafter,
smallpox cases were somewhat tardily isolated at the hospital. This was the only concession FTC
members made to the health authorities; they steadfastly refused to be vaccinated. Many of the
FTC members were vaccinated (35 out of 74), but the smallpox cases generally were not. Only the
dates of appearance of symptoms were recorded and the fate of the smallpox cases are unknown
(no deaths were reported (!)). A tabulation of the dates of appearance of symptoms, as well as the
possible duration of the contagious period (since we do not know of the cases’ fates) are available
in [2]. The 2 non-FTC smallpox cases were associated with FTC members; one (Case 20) operated
a booth in the market opposite Case 1, while the second, Case 27, washed clothes for the people in
Compound 1.

To test our technique, we will slightly idealize the problem. We will ignore the non-FTC population
(including the 2 cases) and treat the FTC community as a closed population. We will assume
that a social network, modeled as a binomial random graph with a link probability of pin, exists
within each compound; cross-compound social links exist, also as a binomial random graph, with
a link probability of pout . The spread of infection along a social link is modeled as a Poisson
process, with rates βin � βout for in-compound and out-of-compound social links respectively. Each
of 30 cases have unknown dates of infection and removal Ii � Ri � i  1 ����� 30, while their dates of
exhibition of symptoms Si forms the evidence on which the inverse problem is predicated. The
other (unobserved) parameters of this stochastic epidemic model are the social network G and
the infection pathway P . We model the behavior of smallpox as “latent” period (non-contagious)
which corresponds to the sum of the incubation and prodromal periods and the contagious period.
The incubation, prodromal and contagious/symptomatic periods are assumed to be Γ distributed,
with the means and standard deviations in Table 8; these were obtained from [2].
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Table 8. Means and standard deviations of the incubation, prodromal and contagious/symptomatic
periods for smallpox. These were obtained from [2].

Disease state Mean Std. Dev.

Incubation period, tI 11.6 1.9
Prodromal period, tP 2.49 0.88
Contagious period, tC 16.0 2.83

5.2 Formulation of the inverse problem

Let I be the set of infection dates Ii for the 30 cases. Let R be the set of dates of removal and S, the
dates when the cases showed symptoms (the evidence). Then, if two cases j and k were known to
have a social link between them, then the likelihood that j showed symptoms on S j, conditioned
on the infection date Ik and transmission rate β jk is

L D A ED j F k E � S j � β jk � Ik �  β jk exp � � β jk � Ik � S j ���
where β jk  βin or βout depending upon whether j and k belong to the same of different compound.
Thus the likelihood of observing S, given the infection pathway (the directed graph of links j G k
over which the disease has been transmitted) P

L D A E � S � I �IHβ � P �  ∏D j F k EKJ P
exp � � β jk � Ik � S j ��� (10)

where Hβ  �
βin � βout � and � j � k � denotes the directed link j G k.

P contains a subset of the links in G , the undirected graph of social contacts, over which disease
transmission occurred; the other links in G did not transmit the disease. This includes links � j � k �
between two nodes (people) who never contracted the disease, links where j L P but k is not (and
thus transmission over � j � k � never occurred) and j � k L P but link � j � k �!%L P . Given our Poisson
process model of transmission over links, the probability of escaping infection, having been in
contact for time τ jk, is exp � � β jkτ jk � . Thus the likelihood of observing S given I � R �:Hβ � P � G is

L D B E � S � I � R �IHβ � P � G �  ∏D j F k EKJ G M P F j J P
exp � � β jkτ jk ���

τ jk  max � min � Ik � R j ��� S j � 0 � (11)

where � j � k �NL G O P are the set of links that exist in G but not in P . For j who never contracted
the disease, I j  ∞ in Eq. 11.
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Let a social network G contain n  �
n1 � n2 ������� n7 � in-compound links in the 7 compounds and m �

m1 � m2 �����	� m7 � out-of-compound links. Then given p  �
pin � pout � , the probability of observing

G is

L D E E � G �p �  7

∏
i � 1

pni
in � 1 � pin � C D Ni EK� ni pmi P 2

out � 1 � pout � D D Ni Fmi E (12)

where

C � Ni �  � Ni
2  �

D � Ni � mi �  Ntot � Ni � Ni � mi

2
� (13)

Ni is the FTC population in Compound i and Ntot  74 is the total FTC population.

Since an infection pathway P is always contained in G , we set the probability of observing P ,
conditioned on G i.e L D F E � P �G �  1.

The probability of observing a set of symptom time S, conditioned on the set of infection and
removal times, is given by

L D D E � S � I � R �  30

∏
i � 1

pl � Si � Ii � pR � Ri � Si � (14)

where pl � t � and the pR � t � are the PDFs of the latent and contagious periods of smallpox.

Thus the probability of observing S is

L � S � I � R �IHβ � p � P � G �  L D A E L D B E L D D E L D E E � (15)

Using Bayes theorem, we can derive an expression for the joint posterior probability for I � R �	Hβ � p � P � G
conditioned on S is

p � I � R � Hβ � p � P � G � S � ∝ L � S � I � R � Hβ � p � P � G � πI � I � πR � R � πβ � Hβ � πp � p � (16)

where the various π � �����Q� are PDFs representing prior beliefs regarding the various parameters.

Given the data (in Section 5.1), it is realistic to assume that βin R βout and pin R pout . We express
these relations as

βin  � 1 � r � βout � r R 0 � βout R 0
pout  ρpin � ρ > 1 � pin > 1 (17)
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and introduce them into Eq. 16 to derive an expression for the posterior distribution
p � I � R � r� βout � pin � ρ � P � G � S � as

p � I � R � r� βout � pin � ρ � P � G �S � ∝
L � S � I � R � r� βout � pin � ρ � P � G � πI � I � πR � R � πr � r � πβout � βout � πpin � pin � πρ � ρ � (18)

We employ uniform distributions for all the priors. Incubation periods I are believed to lie uni-
formly between 0 and 30 days, while the removal period R, between 0 and 40. The prior for r is a
U � 0 � 40 � , while that for βout is U � 0 � 10 � . The priors for both ρ and pin are U � 0 � 1 � .
The solution to the inverse problem lies in evaluating p � I � R � r� βout � pin � ρ � P � G �S � in Eq. 18 for
various values of the independent variables. Given its high dimension, this is intractable; instead
we draw samples from the distribution p � I � R � r� βout � pin � ρ � P � G � S � using a simple Markov chain
Monte Carlo method and histogram them to develop PDFs for βin � βout � pin and pout .

Given our choice of priors, the posterior distribution in Eq. 18 cannot be easily expressed in terms
of canonical distributions and hence we use a Metropolis-Hastings sampler. We use an indepen-
dence sampler for the duration of incubation and removal periods as well as for P and G , in a
manner similar to [60]. We also carry out the following transformations:

ξin  log � r �S� � ∞ � ξin � ∞
ξout  log � βout �S� � ∞ � ξin � ∞
ηin  logit � pin ��� � ∞ � ηin � ∞
ηout  logit � ρ �S� � ∞ � ηout � ∞

and use a normal distribution as a proposal for the remaining parameters ( Hξ � Hη). The problem is
thus solved using a single-component MH sampler, in terms of I � R � Hξ � Hη � P , and G , using a com-
bination of random-walk and independence samplers. The parameters of interest are subsequently
reconstructed from them. Note that the priors are expressed in terms distributions of r� βout � pin and
ρ and are transformed to equivalent distributions in Hξ and Hη in the actual computations.

5.3 Results

The model and the inverse problem described above in Section 5.2 cannot be solved to generate
useful information, given the data, as described in Section 5.1; there are simply too many param-
eters/variables to be inferred from the data. However, the problem can be significantly simplified
by making a few fairly realistic assumptions. These assumptions results in different, simpler prob-
lems which can, thereafter, be solved to extract useful information from the data. These simpler
problems are described below.

Problem I: In this case, we simplify the problem by assuming that we have a fully connected
population (i.e. ρ  1 � pin  1). However, in-compound and cross-compound social links differ
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in strength and the observed differential rates of spread are accommodated by having two distinct
spread rates i.e. βin � βout , on in-compound and cross-compound links respectively. This requires
that we estimate r and βout from the data. Further, while there is a unique G (given full connectiv-
ity), there may be many possible P . In this model, we will develop estimates for I � R � βin � βout and
the expected value of the disease transmission chain � P � .

In Figure 19, above, we plot the variation of four parameters as the MCMC chain progresses. The
MCMC chain was run for 20,000 iterations, with a sample being saved every 10 iterations. It is
clear that the last 15,000 iterations (i.e. the last 1,500 saved samples) show proper mixing of the
chain and that the samples can be used for drawing inferences. In Figure 19, below, we plot the
samples in a βin � βout space to show the correlation structure between the two spread rates - we
see very little of it. In Figure 20 (above), we plot the inferred PDFs for the dates of infection
and removal of 3 different Cases. While the base of the PDFs are rather wide (10 days for the
dates of infection and 15 for dates of removal), they are roughly symmetric, unlike the skewed
Γ-distributions one observes for incubation and removal periods i.e. the PDFs are informative.
However, both the dates of infection and removal are largely nuisance variables and the specificity
with which we can infer a value for them is not very important. In Figure 20 (below), we plot
the PDFs for both βin and βout (lines with symbols). The MAP (maximum a posteriori) estimate
of βin is roughly four times larger that the MAP value for βout , corroborating the faster spread
of smallpox inside a compound that was qualitatively observed in the data. However, somewhat
non-intuitively, the PDF for βin is much wider than that of βout - given the preponderance on in-
compound transmission (as indicated by the larger MAP value of βin), one would have expected
the credibility interval on the value of βin to be much narrower. This issue is being investigated
further. In Figure 21, we plot the expected infection pathway � P � as a directed graph. The
30 Cases (the nodes in the graph) are colored per their compound affiliations. The color of the
links indicates the probability of their existence - all links with a probability of 0.3 or higher are
in red and those between 0.1 and 0.3 are in blue. We see a clear transmission of the disease from
the index case (Node 000) to other members of her compound (most of the links originating from
Node 000 are red and connect to other members of her compound); further most red links exists
between nodes of the same color, indicating cohabitation in the same compound. Cross-compound
links are generally blue, indicating less certainty regarding their existence; however, this lack of
certainty is compensated by their larger number, which enable inter-compound transmission. Also,
higher numbered nodes (which were infected and showed symptoms later) have a larger number of
blue links connected to them (e.g. Node 000 has only one, while Node 029 has four), indicating
an inability to “pin down” the source of their infection as well as the identity of the individuals
they infected. This is expected - as the number of infected individuals increased and became a
substantial fraction of the total population of 74, the infection mechanism approached those that
would be observed in a homogeneously mixed population i.e. where one has an equal probability
of being infected by any contagious individual.

The results presented above were obtained with data collected during the entire 90-day duration of
the epidemic. We now consider partial observations. By Day 40 of the outbreak, the disease had
spread outside Compound 1 and thus there was some (slight) evidence of inter-compound trans-
mission. Using the data collected by Day 40, we infer the same parameters. In Figure 20(below),
we plot the PDFs for βin � βout so inferred using lines without symbols. While the widths of the
PDFs are about the same, the MAP value of βin is about a third smaller, as is the MAP value for
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βout . The cause for this underestimation is being investigated, but may be due to errors in the data
- while the epidemic started in early April, 1967, it was reported to the WHO (which gathered the
data) in the later part of May [90]. Further, the date of appearance of symptoms were obtained
by interviewing the families of the Cases rather than by any documentary proof - thus, there was
ample scope for the introduction of “measurement” errors due to faulty memories. In Figure 22,
we plot the expected infection pathway, as obtained from the first 40 days of data.

Problem II: In this case, we investigate a partially connected society. We assume, realistically,
that the rate of spread along a social link is the same i.e βin  βout (or alternatively, r  0), and the
slower spread of the disease across compounds is due to the paucity of “strong” social links across
compounds. We assume that in-compound mixing is strong - we have a fully connected social
network inside a compound (i.e. pin  1) and a sparse social network exists between individuals
across compounds (i.e. ρ � 1). In this case we infer βout and pout  ρ as PDFs. We also generate
samples of P as in the previous case, as well as G . We perform the analysis with the first 40 days
of data. For the purposes of the MCMC chain, the prior on ρ was U � 0 � 25 � 0 � 75 � ; this was done to
rule out a fully connected social network.

We performed an examination of MCMC chain, in a manner similar to Problem I, to ensure that
the chain was mixing and the samples could be used for analysis. As above, the first 500 saved
samples were discarded, to account for the “burn-in” period. In Figure 23(above), we plot the PDFs
for the dates of infection and recovery of Cases 5 and 10 (Case 30 had not showed symptoms in
the first 40 days). Comparing these PDFs with those obtained in Problem I, we see that the shape
of the PDFs is similar, and the MAP values are for Problem II are shifted to the right by about 1
day (Problem II infers that infections and removals happened a day later, compared to Problem I).
Thus the two models show very little difference in the values of the infection and removal dates. In
Figure 23(below), we plot the PDF for βin  βout . Comparing with Figure 20(below), we see that
the width of the PDF for Problem II is similar to that for βin in Problem I, while the MAP value lies
in between the MAP values for βin and βout , though closer to βin if one considers the median value
(3 � 37 � 10 � 3day � 1, as opposed to 4 � 76 � 10 � 3day � 1 for Problem I). This is intuitively correct,
since the bulk of the transmission was in-compound. In Figure 24 we plot the expected infection
pathway � P � . Comparing to Figure 22, we see that the two are very similar, but not identical (for
example, Node 008 has four in-links in Problem II, but 3 in Problem I). Again, transmission links
can be inferred with high probability only for the first few Cases; the links connected to the latter
Cases are generally blue. Thus the inferences drawn by the two models are quite comparable. In
Figure 25 we plot the expected social network � G � . As in Problem I, the 74 nodes (individuals
in the entire population) are colored by their compound affiliations. Only cross-compound links
which have appeared in 50% (or higher) of the samples are plotted. A subset of these links, which
were instrumental in disease transmission, appear in Figure 24.
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Figure 19. Above: Samples of I10 1 R10 1 βin and βout for Problem I, as the MCMC chain progressed.
We see little autocorrelation and the chains are seen to be mixing well. Below: Scatter plot of
samples of βin and βout . We see very little correlation between the two.
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Figure 20. Above: PDFs for the dates of infection and removal for Cases number 5, 10 and 30
for Problem I. The Cases are denoted by separate colors; plots of removal dates contain a symbol.
While the bases of the PDFs are almost as wide as those of the incubation and removal periods,
the shapes of the PDFs are quite different from the skewed Γ-distributions which are used to model
incubation and removal durations for smallpox. Below: The PDFs for the rates of spread β in and
βout developed from data collected during the entire epidemic (plots with symbols) and from the
first 40 days of data (plots without symbols). The MAP estimate of the spread rates drawn from the
first 40 days may be affected by measurement error in the data.
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Figure 21. The expected infection pathway T P U , drawn from data collected during the entire
epidemic for Problem I. Nodes represent the 30 Cases of the outbreak and are colored by their
compound affiliations. The links in the graphs are colored by their probability of existence - links
with probability of 30% or higher are in red while those between 10% and 30% are in blue. Most
of the transmission from the index case (Node 000) are in red, and connect individuals in the same
compound. Infection transmission between the later Cases are almost completely in blue, indicating
the reduction of heterogeneity in the transmission mechanism as a large fraction of the population
became infected.
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Figure 22. The expected infection pathway T P U , drawn from data collected during the first 40
days of the epidemic, for Problem I. Nodes represent the 30 Cases of the outbreak and are colored
by their compound affiliations. The links in the graphs are colored by their probability of existence
- links with probability of 30% or higher are in red while those between 10% and 30% are in blue.
Most of the transmission from the index case (Node 000) are in red, and connect individuals in the
same compound. A few red cross-compound links are also evident at this point in the epidemic.
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Figure 23. Above: PDFs for the dates of infection and removal for Case numbers 5 and 10, for
Problem II. The cases are denoted by separate colors; plots of removal dates contain a symbol.
While the bases of the PDFs are almost as wide as those of the incubation and removal periods,
the shapes of the PDFs are quite different from the skewed Γ-distributions which are used to model
incubation and removal durations for smallpox. Below: The PDFs for the rate of spread β in V βout .
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Figure 24. The expected infection pathway T P U , drawn from data collected during the first 40
days of the epidemic, for Problem II. Nodes represent the Cases of the outbreak and are colored by
their compound affiliations. The links in the graphs are colored by their probability of existence -
links with probability of 30% or higher are in red while those between 10% and 30% are in blue.
Most of the transmission from the index case (Node 000) are in red, and connect individuals in
the same compound. Infection transmission between the later Cases are almost completely in blue,
indicating the reduction of heterogeneity in the transmission mechanism as a large fraction of the
population became infected.
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Figure 25. The expected social network T G U , drawn from data collected during the first 40
day, for Problem II. Nodes represent the 74 members of the population and are colored by their
compound affiliations. Links in the graphs represent the cross-compound social links seen in 50%
(or higher) of the samples.
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6 Conclusions

Simulations with individual-based models yield detailed predictions of where on the social net-
work disease will spread as well as the transmission chain information and structure necessary to
perform source inversion problems. They are potentially valid when the well-mixed assumptions
of (deterministic) differential equations are inappropriate. In Section 3 we present smallpox sim-
ulation results from our individual-based model, which we designed to be parallel scalable and to
investigate the effect of social contact network structures and reduced-order modeling. A static uni-
partite graph formulation demonstrated comparable performance to a more computationally costly
dynamic bipartiite formulation, though with the loss of geographic location information. Static
person-to-person contact graphs with basic probability of transmission models still offer individ-
ual resolution and contact tracing ability. Results for network sampling (model reduction) indicate
that qualitatively similar predictions are possible for both geographic spread and population count
epidemic spread. However, appropriately scaling the simulation to the reduced network remains a
challenge. Our simulation demonstrates that individual-based models can scale well in parallel, if
appropriate communication patterns are used.

We favor the term “individual-based” for our models since, with the exception of choosing when to
seek medical care or self-quarantine, disease progression is uninfluenced by autonomous decision,
and we include no cognitive models. However, we offer some concluding remarks on agent-
based models in general. Agent-based models typically implement local learning, adaptation, and
interaction rules, but can exhibit global emergent (complex adaptive) behavior. They are useful for
modeling social systems and networks, traffic and transit systems, economies and governments,
supply chains and logistics, and even systems of systems, e.g., the nuclear fuel cycle or operational
fleets. Agent-based models closely align with structures present in these kinds of systems.

While often intuitive, agent-based models can be complex, and all but the simplest transition mod-
els are challenging to analyze. Other criticisms and potential limitations include:� lack of detailed quantitative information needed to define agent behavior (especially for hu-

man decision-making models);� stochastic nature mandates simulation ensembles to characterize outcomes instead of single
calculations;� computational intensity; and� not thought of as prescriptive models in the typical engineering sense and there is no clear
way to invert to identify parameters.

Perhaps the greatest challenge with agent-based models is performing verification and validation
to ensure credibility for their intended use. Verification assesses whether the “right” solution to the
mathematical formulation implemented has been found. Code verification can largely (though not
entirely) be addressed through good software development practices. Solution verification however
presents a problem. There is no clear analog to order of convergence or method of manufactured
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solutions. While not rigorous, steps toward verification might include: testing network models by
creating carefully structured networks, where transmission paths and incubation rates would be
appropriately modeled by an ODE model; or testing cases where analytic or well-established solu-
tions apply. These, however, will not exercise the full extent of an agent-based model (stochasticity,
dynamic contacts, emergent behavior, etc.).

Credibility checks on models require data for both individual agent, connectivity, and system-level
model validation. This is rare in the context of eradicated or emergent diseases, though there are
some exceptions [91]. At least for social networks, data might be gathered from studies in a con-
trolled population, perhaps in observational studies of rumors or other information dissemination.
Engineering hierarchical validation approaches may offer some help. Also, methods for validating
stochastic simulations are needed: one can only examine output summary statistics or distributions,
and must therefore employ appropriate statistical measures.

Applications of social network-based simulations reach far beyond disease modeling; developing
verified and validated predictive capability is crucial. Ultimately, practitioners will demand best
estimate predictions with quantified uncertainty, especially when model details are not well known.

In Section 4 we have developed a Bayesian approach to characterize bioterror (BT) attacks from
a time series of diagnosed patients. Our tests with anthrax show that an observation period of
3–5 days may be sufficient to estimate the number of asymptomatic infected people, the time of
infection, and a representative dose, and to provide quantified uncertainty intervals around these
estimates; in the absence of an accurate disease model, we may arrive within a factor of two of the
size of the attack. The resolution of the time series of diagnosed patients has a small impact if the
disease model is accurate; otherwise, model errors dominate.

This Bayesian approach is amenable to many potential extensions and improvements. Informative
prior distributions for N and τ, drawn from syndromic surveillance data, may increase the efficiency
of the inference process. The ability to “fuse” disparate sources of data via prior distributions
contributes significantly to the robustness of Bayesian inference in data-starved environments. One
could also incorporate atmospheric transport processes into the likelihood function, thus using the
spatial locations of diagnosed patients to guide posterior estimates, though for urban terrains this
could lead to very involved computations. Also, the present approach can immediately be applied
to other noncontagious diseases, as well as to contagious diseases with long incubation periods,
such as smallpox, where secondary cases do not appear in the early time series of patient data.

The Bayesian inference method developed in Section 5 is novel, in the sense it explicitly accounts
for the role of pathogenic transmissibility and mixing in the spread of a disease and infers them
from the data. These two variables could also be used, independently - the link probabilities
inferred in Section 5 (Case II) could easily be used in a network epidemic model for any other
disease (e.g., influenza). The inference of the transmissibility, β, can be easily used to track the
evolution (of the transmissibility of) emerging infectious diseases; in fact, such efforts have already
commenced [51, 52, 53, 54]. Further, the inference of a transmission chain can often be helpful in
identifying the mechanism of transmission. For example, in-family transmission is not very strong
for Ebola, since it mainly spreads via contaminated bodily fluids, most commonly when preparing
a contaminated corpse for final disposal. This is generally done by the women of a village [92],
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leading to strong cross-family transmission. Such a mechanism would be reflected in both Hβ and� P � and would be helpful in detecting the actual mechanism. Thus, while our intention was to
apply our approach to counter bioterrorism, there is little to prevent its use with emerging infectious
diseases.

The importance of quantitatively characterizing a BT attack was explicitly identified in the “Dark
Winter” exercise [8]. Participants sought the ability “. . . to immediately predict the likely size of
the epidemic on the basis of the initial cases; to know how many people were exposed.” Thus
the primary utility of our inference procedure is within a response plan framework. Response to
a BT attack would typically involve confirmatory testing and logistics (the transport of medical
materials and personnel), both of which could be better targeted by a quantitative characterization
of the attack. By placing the estimated origin of an attack in the context of a transportation network,
one could predict the location of future patients and guide prophylactic activities accordingly. The
probabilistic characterizations developed here, along with resource hedging for risk-mitigation,
support a measured approach to addressing BT attacks. In addition to being more sustainable,
measured responses may introduce fewer undesirable side effects and be less susceptible to feints.
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A Methodology for obtaining a dose distribution consistent with
atmospheric dispersion over a geographically distributed pop-
ulation

The spatial distribution of dosages due to atmospheric release of an aerosol can be modeled using
a simple Gaussian plume model [48]. An atmospheric release typically occurs over a domain
with a non-uniform population distribution; we can combine the plume model with the population
distribution to calculate the number of people exposed to a given dose. In this section, we describe
a simple way to obtain such a population-dosage distribution.

We consider a square domain, L km on each side; in this study, L  10 km. The domain is divided
into N blocks per side; here N  100. 25 population clusters are chosen in the form of Gaussian
kernels Aexp � � r2 % R2 � , where r2  � x � x0 � 2. The strength of the kernel A, its center x0, and
its length scale R are randomly sampled from independent uniform distributions. The population
density in any block, with its center at x, is a sum of the strengths of all the 25 kernels. The
strengths of the kernels are scaled to obtain a total population (in the domain) of Pdomain. The
population in a given block is obtained by multiplying the population density with the block area.
This creates a geographically distributed population.

The number of people exposed (i.e., who inhaled the aerosol, but may or may not develop symp-
toms) and infected (i.e., who will develop symptoms) is dependent on the location and size of the
release and direction of the wind. We release 1013 spores at the origin, at a height of 100 meters.
A wind speed of 4 m/s and a Pasquill stability class of “B” are assumed. Pasquill stability classes
indicate atmospheric stability; class B indicates a moderately unstable atmosphere with strong
daytime insolation. Details of Pasquill stability classes and atmospheric dispersion are in [48].
In our study, wind directions are measured in degrees from due north; that is, a wind direction
of zero degrees is a wind from due north, 90 degrees is a westerly wind, and a direction of 180
degrees is a wind from due south. The release is assumed to be an explosive point release, and the
concentration of the aerosol at any point � x � y � on the ground and any time t is given by [48]

χ � x � y � t �  2QT� 2π � 3 P 2σx W σy W σz W exp XY� � x Z7� ut � 2
2σ2

x W [ exp XY� � y Z\� 2
2σ2

y W][ exp X^� � H Z\� 2
2σ2

z WY[ (19)

where � x Z_� y Z\� are Cartesian coordinates in a frame of reference where the x Z -axis is aligned with
the wind. σx W � σy W and σz W are coefficients dependent on x Z and on the Pasquill stability class. H is
the height of release and χ is the concentration of the aerosol in spores per unit volume. u is the
wind velocity. QT is the total number of spores released. The relation between x Z and x is given by

� x
y   � cos � π � θ � � sin � π � θ �

sin � π � θ � cos � π � θ �  � x Z
y Z  

where θ is the wind direction. Assuming a breathing rate β of 30 liters a minute, one can obtain an
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Figure A.1. Dosage plumes plotted over the population distribution for θ V 170 ` (left) and 125 `
(right). We see on the right that the extremities of the plume extend into a high population density
region. Population density is measured in number of people per square kilometer. Thus we may
expect a substantial number of high-dosage cases, resulting in a higher average dosage D.

expression for the number of spores inhaled per unit time. Integrating to infinite time, one obtains
the total number of spores D inhaled by a person positioned at � x � y � (or at � x Z � y Z � ):

D  QT β
2πσx W σy W σz W exp X � � y Za� 2

2σ2
y W [ exp X � � H Za� 2

2σ2
z W [ � 1 � erf � x Z �	�b�

The dosage assigned to a given block is decided by the location of its center. If we choose Model
A2 to simulate the BT attack, we use Glassman’s formula to model the probability a of showing
symptoms (in infinite time) given a dosage D [43]:

a � D �  1
2 & 1 � erf � ln � D % D0 �

S
$

2
 (' (20)

where D0  8600 spores and S  3 � 44. These correspond to a human ID50 of 8600 spores and
a probit slope of 0.67 [42, 43]. If Model D is chosen instead, we employ Eq. 7 to determine the
probability of infection given a dose D. Since the population in a block is known, we can then
use the probability of infection to calculate the number of people in the block who will proceed to
develop symptoms over time, per the incubation period model.

In this study, we use Pdomain  3 � 106 and two plume directions, θ  170 = and 125 = . The two
releases result in, respectively, 686,068 and 1,869,741 exposed individuals, i.e., individuals who
have received a dose of one spore or more. The maximum doses observed in the two cases are
30,877 and 314,053 respectively. The dose range is divided into 100 equal bins and a histogram
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Table A.1. The wind direction, θ, and the size of the exposed population, pexposed, used to gen-
erate the infected population in various attacks. For Cases I, Ia, II, and IIa, Eq. 20 is used for the
probability of infection, while for Cases III, IIIa, IV, and IVa, Eq. 7 is used.

pexposed  103 pexposed  104

θ  170 = Case Ia, Case IIIa Case I, Case III
θ  125 = Case II, Case IV Case IIa, Case IVa

of the number of people in each bin is developed for each of the cases. The histogram is then
normalized to obtain the “exposure” PDF, i.e, the PDF of the dose received by an individual in the
exposed population. Given the large population (Pdomain  3 � 106), the PDF developed from a
histogram with 100 bins is quite smooth. Note that only a fraction of the exposed population will
develop symptoms, with an individual’s probability of being infected (and subsequently developing
symptoms) being given by Glassman’s relation (Eq. 20) or Eq. 7.

The “exposure” PDFs developed for θ  170 = and 125 = are then used to sample from a smaller
exposed population of pexposed for each of the tests. Values of pexposed and θ used for the different
cases are in Table A.1. Each exposed individual is then allowed to become infected with a dose-
dependent probability. The resulting infected sub-population yields the final dose distribution.

Dose distributions resulting from this process, for all the cases (viz. Cases Ia, I, II, IIa, IIIa, III,
IVa and IV) are depicted in Figure A.2. We plot the inverse CDF of doses—i.e., the abscissa is the
fraction of the infected population which receives a dose less than or equal to the ordinate. In each
inset, we also plot a histogram of the dose distribution. Note that while the doses may easily span
two orders of magnitude, about 80% of the infected people lie within a one-decade range.
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Figure A.2. The inverse cumulative distribution of doses for Cases Ia, I, II, and IIa (left column)
and Cases IIIa, III, IV, IVa (right column). The abscissa is the fraction of the infected population
which receives a dose less than or equal to the ordinate. Inset: we plot histograms containing the
number of infected people in each dose bin. While the histograms have long tails, the bulk of the
population receives doses spanning one order of magnitude.
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