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Abstract

The goal of this research was to examine foundational methods, both computational and theoreti-
cal, that can improve the veracity of entity-based complex system models and increase confidence
in their predictions for emergent behavior. The strategy was to seek insight and guidance from
simplified yet realistic models, such as cellular automata and Boolean networks, whose proper-
ties can be generalized to production entity-based simulations. We have explored the usefulness
of renormalization-group methods for finding reduced models of such idealized complex systems.
We have prototyped representative models that are both tractable and relevant to Sandia mission
applications, and quantified the effect of computational renormalization on the predictive accu-
racy of these models, finding good predictivity from renormalized versions of cellular automata
and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of
certain Boolean networks, relevant for characterizing organic behavior, and obtained precise math-
ematical constraints on systems that are robust to failures. In combination, our results provide
important guidance for more rigorous construction of entity-based models, which currently are of-
ten devised in an ad-hoc manner. Our results can also help in designing complex systems with the
goal of predictable behavior, e.g., for cybersecurity.

3



4



Contents

1 Introduction 9

1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 9

1.2 Research Goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 10

2 Cellular Automata 13

2.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 13

2.2 The Sandpile Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Definition of the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Self-Organized Criticality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Boolean Networks 17

3.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 17

3.2 Robustness Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Renormalization 21

4.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 21

4.2 Application to Prototype Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Cellular Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Boolean Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Software 29

5.1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Description of the Individual Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5



6 Results 37

6.1 Computational Analysis of Renormalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Cellular Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.2 Boolean Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Functions Robustly Expressible by Boolean Networks. . . . . . . . . . . . . . . . . . . . . . . 42

6.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.2 Necessary Conditions for Robust Expressibility. . . . . . . . . . . . . . . . . . . . . . 44

6.2.3 Sufficient Conditions for Robust Expressibility. . . . . . . . . . . . . . . . . . . . . . 45

7 Discussion 49

7.1 Significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 49

7.2 Future Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50

References 51

6



List of Figures

4.1 Basic scheme for computational renormalization of cellular automata. . . . . . . . . . . 23

6.1 Spatial power spectra of the sandpile model and its coarsening . . . . . . . . . . . . . . . . 39

6.2 Frequency power spectra of five Kauffman networks and their coarsenings. . . . . . . 41

7



List of Tables

6.1 Optimized parameters for six renormalization stages ofthe sandpile model. . . . . . 38

6.2 Optimized parameters for renormalization of five Kauffman networks. . . . . . . . . . . 40

8



Chapter 1

Introduction

1.1 Background

Many systems of interest to Sandia missions show propertiesof self-similarity, power-law scaling,
and emergent behavior. Examples include critical infrastructures such as the Internet [30], the fi-
nancial system [31], and electrical grids [10], as well as other phenomena of relevance to national
security, such as the formation and behavior of social networks (including terrorist cells) [5] and
the spread of communicable diseases [26]. The emergence of unpredictable behavior from a col-
lection of components whose behavior is well-understood (or assumed to be well-understood) is
the hallmark of what is known as acomplex system[22]. Sandia and other research institutions
have invested significant resources developing models of complex systems of interest [27], but to
date there has been no validated set of principles for constructing these models in a manner that
maximizes model rigor and veracity.

Another problem that frequently plagues efforts to model complex systems is that the behavior
of their components and interactions may be understood, in principle, but the governing physics
is too complicated to simulate effectively, and may not be relevant to the phenomena of interest
in the system. An example would be social interactions between people, about which a great deal
is known in terms of culturally-specific patterns of interaction, social norms, etc., most of which
is abstracted away in models of social networks. Another example concerns cascading failures in
electrical grids. Much is known about how transformers failphysically, yet it is believed that not
all of the detailed physics of transformer failure is neededto accurately model cascading electrical
grid failures [10]. Currently, little is known about how such “abstracting away” of the details of
component-component interactions during the modeling process affects the veracity and rigor of
the model.

The real danger of abstracting away too much detail of component behavior and component-
component interaction can be seen in the context of the evaluation of the security properties of
computer systems. To make the job of designing computer hardware and software easier, design-
ers typically employ a paradigm of modular design, in which acomponent or module will have
a simple interface with other components/modules (often a protocol) that hides (or encapsulates)
more complicated internal implementation. Frequently, when the security properties of a system
are evaluated, these interfaces (which are abstractions ofthe true component behavior) are taken
at face value, as the actual behavior of the components in question. The reality is that hardware
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and software components exhibit much richer “interfaces” in the real world than the ones specified
in design documents, a fact which hackers have exploited numerous times to break into systems.
A simple recent example is the “freezing” of computer DRAM topreserve the contents of volatile
memory after a machine is powered off, which allowed security researchers to retrieve crypto-
graphic keys and other data from an otherwise secure system [16].

One of the most important questions concerning the modelingof complex systems is, how
much abstraction is safe? Are there general mathematical principles that can be applied to answer
this question? To date, most efforts to model complex systems have applied abstraction during the
course of model construction in a context-dependent, ad-hoc fashion. The most rigorous modeling
efforts undertake some sort of validation of models againstreal-world observations of the system of
interest, and attempt to account in the model for those aspects of the real system having the greatest
influence on the system behavior through sensitivity studies. Sensitivity studies, however, require
exhaustive study of the system of interest, which may not always be possible with the resources
available for the modeling effort. Furthermore, when dealing with systems that exhibit complex,
emergent phenomena, it can be difficult to know when enough observations have been collected to
build a model that will yield useful results. This problem isespecially pronounced when modeling
real-world systems or phenomena that have not occurred, such as a massive catastrophic failure of
the modern financial system or extensive global warming. It would be enormously helpful to the
modeling of many different kinds of complex phenomena to be able to know when a model has
captured enough detail of the real-world system to be useful, so that a particular modeling effort
can be guided by (and compared against) rigorous, objectivecriteria, as opposed to the intuition of
the modelers.

1.2 Research Goals

One goal of our research was to explore the use of renormalization-group methods to find reduced
models for complex systems. Our expectation was that findingmethods for computing these re-
duced models would yield greater insight into the emergenceof complexity in the systems being
studied, and might also yield models that were easier to understand yet still captured the essence
of the phenomena of interest in the original system. One of our hopes is that the preliminary re-
search we have undertaken in this LDRD will allow us to begin to answer the questions raised in
the previous section, whether there are universal principles governing the effects abstraction has on
models of complex systems. One can view the renormalization-group methods we have explored
in this LDRD as a formalized version of the kind of abstraction that goes on in efforts to construct
models of real-world complex systems. Because of the long use of renormalization-group methods
in physics, there are many mathematical tools we can use to study renormalization-group methods
for model reduction of complex systems, making it easier to study than the ad-hoc methods of
abstraction now used to build models of complex systems. However, we expect that results we
have proved concerning renormalization-group methods will generalize to more ad-hoc methods
of abstraction, allowing us to make statements about the veracity and rigor of models of complex
real-world phenomena.
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A second goal of our research was to explore how the structureof a complex system affects
the robustness of that system in response to perturbations in its environment. To make the problem
tractable, and allow us to bring well-developed analyticaltools to bear on the problem, we chose to
study the structure-robustness relationship in the context of Boolean networks. Boolean networks
are graphs in which each node has a Boolean state (0 or 1) that changes at the next timestep accord-
ing to some function of the current state and the state of the node’s neighbors [22]. While simple,
Boolean networks can model complicated dynamics of interest in fields such as biology, epidemi-
ology, electrical engineering, computer science, etc. [3]. In particular, VLSI chips composed of
digital logic circuits can be represented directly as Boolean networks [3]. Our research has ex-
plored what constraints on the structure of Boolean networks lead to robustness in the presence of
environmental perturbations. We believe that these results can be generalized to show constraints
on the structure of real-world complex systems that show robustness in the presence of environ-
mental change, such as social organizations (including terrorist networks), biological organisms,
computer networks, etc. Our results can hopefully inform efforts to model such systems. Further-
more, we believe our research results might have direct applicability to the problem of designing
logic hardware, software, and protocols that resist faultsand attacks.
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Chapter 2

Cellular Automata

2.1 Background

Cellular automata provide an especially simple setting to illustrate the emergence of rich phe-
nomena from basic underlying rules. Extensive theoreticaland computational results have been
previously obtained for cellular automata, showing that these systems exhibit a wide range of be-
haviors seen in the natural and manmade world, as documentedby Wolfram [34]. It has even been
suggested that cellular automata and related systems are candidates for expressing fundamental
laws of nature, in contrast to traditional mathematical approaches based on differential equations
[34]. At a different level, the relevance of such idealized systems to real-world applications is
illustrated by a cellular-automaton model for the adoptionof a new technology in an economy
[24].

The essence of a cellular automaton is its regular structureand communication pattern. A cel-
lular automaton consists of a lattice ofcells, each of which carries a definite state at any given time.
In most cases, the state of a cell is discrete and thus can be represented by an integer. Furthermore,
the evolution of the system is carried out in discrete timesteps. As a result, a specification of the
underlying dynamics of the system can be exactly reproducedin a computer simulation, provided
enough memory and processing time are available. The lattice of cells can exist in a “space” of
one, two, three, or more dimensions, although dimensions greater than three are difficult to visual-
ize and also expensive to simulate. Typical cellular automata of interest are in one dimension (such
as the fundamental Wolfram cellular automata) or two dimensions (such as the sandpile model to
be discussed below). Another two-dimensional cellular automaton is the Game of Life, which has
been widely popularized and offers evolution patterns withhigh visual interest [14].

The most common setting for cellular automata is the simple Cartesian lattice (e.g., a square
lattice in two dimensions); this is the case we investigate here, although other regular lattice types
are possible. Also, because a finite lattice must be used in any simulation, the treatment of the
boundaries of the lattice must be specified. The simplest approach, which we adopt, is to impose
“periodic” or “toroidal” boundary conditions; that is, thelattice is conceptually wrapped around
so that each cell on a boundary is considered adjacent to the corresponding cell on the opposite
boundary. A key advantage of periodic boundary conditions is that all cells are equivalent and the
lattice structure is invariant to arbitrary shifts, just asfor a hypothetical infinite lattice.
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The procedure for “updating” a cellular automaton (evolving to the next discrete timestep) is
usually specified via a function that determines the new state of a given cell based on the current
state of that cell and its nearest neighbors (for our purposes, 2d neighbors in ad-dimensional Carte-
sian lattice; in some cases, such as the Game of Life, the “diagonal” neighbors are also included).
The limitation to nearest-neighbor dependence reflects thelocality of interactions in physical space,
and also reduces the number of possible cellular automaton specifications. A further assumption
is that the updating function is the same for all cells; this makes the system dynamics (like the
lattice structure) homogeneous in space, and allows the useof mathematical descriptions such as
Fourier analysis. Conceptually, the updating function is applied to all cells in parallel, using the
current states, and the new states all take effect simultaneously. This synchronous updating is actu-
ally implemented in a standard computer by allocating a separate memory area for the new states,
storing in that area the result of the updating function for each cell to avoid overwriting the current
states, and finally treating the new memory area as encoding the state of the system at the next
timestep (the old states can then be discarded). So far we have described a cellular automaton with
deterministic behavior. A cellular automaton can also be defined so that the result of the updating
function depends not only on the given cell and its neighbors, but on an additional input that re-
flects an external perturbation, such as a random number thatintroduces stochastic behavior. We
refer to this external input as atrigger and assume that it is also an integer.

Thus, with the usual simplifying assumptions, a cellular automaton model for ad-dimensional
lattice is specified by giving an integer function (of 2d+1 integer variables and possibly an addi-
tional trigger), used for updating each cell. If the cells are intended to have a finite set of possible
states, then this function must have the property that its result belongs to this set when its inputs
do; as a result, proper initial conditions (valid states of all cells at a starting time) will result in
evolution that remains in the assigned set. The simplest nontrivial set of states is the Boolean case
with two possible values, say 0 and 1. This case already allows some rich dynamics for cellular
automata [34], and it also provides a starting point for another prototype system to be discussed in
Chapter3, namely Boolean networks, which keep the properties of cellular automata we have de-
scribed (with deterministic evolution), except that the entities do not have identical updating rules,
and the communication among them does not follow a lattice structure, but rather some arbitrary
connectivity. However, for cellular automata, it is usefulto compensate for the simplicity of the
lattice structure by allowing a larger state space. We next describe such a model, which we adopt
as our prototype cellular automaton.

2.2 The Sandpile Model

2.2.1 Definition of the Model

The starting point for our prototype cellular automaton is the Bak–Tang–Wiesenfeld (BTW) sand-
pile model [4], which is defined on a two-dimensional square lattice. Thismodel represents an
idealization of the complex behavior of a pile of sand, whichbecomes unstable when its slope
exceeds a critical value. As a result, if sand is randomly added to a pile in various locations,
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“avalanches” eventually occur; such an avalanche continues until the slope is everywhere below
the critical value, restoring stability. Depending on the exact configuration at the location and time
of the perturbation, the avalanche may be localized or it maysweep over a large part of the system.
The sandpile model can thus offer an idealized representation of a process of cascading failure, rel-
evant to many real-world applications. An additional important property of the model is discussed
in Section2.2.2.

As originally defined by BTW, the sandpile model does not completely conform to the defi-
nition of a cellular automaton, because the evolution procedure involves making a perturbation,
evolving the system until the states no longer change, and then making the next perturbation. This
requires monitoring the system as a whole, whereas a cellular automaton should have a consistent
local updating rule applied to every cell at every timestep.To fix the discrepancy, we here define an
updating rule that receives a random trigger to determine whether a perturbation is applied. This
trigger is an independently generated random number for each cell at each timestep, thus main-
taining locality. The result is that perturbations are applied at events that form a Poisson process
in discrete space-time. If the density of this Poisson process is sufficiently low, each avalanche
is likely to run its course with little interference, and theoutcome will be similar to the globally
monitored case.

A further modification we introduce is in the details of the perturbation. In the existing sandpile
model [4], each perturbation adds 1 to the value of the chosen cell, representing the addition of a
grain of sand. As a result, the total number of grains of sand in the system would increase with
time; this is compensated by allowing sand to disappear at the boundaries of the lattice, as if it
were falling off the edge of a table. Because we prefer to workwith periodic boundary conditions,
we use a perturbation that can both add and remove grains of sand. Remarkably, a very simple
perturbation can accomplish this: simply not updating the given cell and instead keeping its state
unchanged. As discussed in Section2.2.2, this choice preserves the main behaviors of the BTW
model but leads to additional, richer phenomena.

Our sandpile cellular automaton model is as follows. On a two-dimensional lattice with peri-
odic boundary conditions, the state of each cell(x,y) is z(x,y) ∈ {0,1, . . . ,7}; we define our model
to maintain this state space, whereas the BTW model does not prescribe a bound on possible states.
Our normal updating rule is precisely that of BTW,

z(x,y)← z(x,y)−4⌊1
4z(x,y)⌋+ ⌊1

4z(x−1,y)⌋+ ⌊1
4z(x+1,y)⌋+ ⌊1

4z(x,y−1)⌋+ ⌊1
4z(x,y+1)⌋,

(2.2.1)
where⌊ ⌋ denotes rounding down to an integer. This rule maintains ourstate space{0,1, . . . ,7},
because the sum of the first two terms on the right-hand side isin {0,1,2,3}, and each of the
remaining terms is in{0,1}. Also, as noted by BTW, the rule results in conservation of the total
amount of sand,Z ≡ ∑x,yz(x,y), because when the change in this sum is evaluated, each term
⌊1

4z(x,y)⌋ appears once with coefficient−4 and four times with coefficient+1. Intuitively, the rule
describes an avalanche process in which a cell withz(x,y)≥ 4 transfers one unit of the conserved
quantity (one grain of sand) to each of its four nearest neighbors.

To introduce perturbations, we allow each update to leave the local state unchanged,

z(x,y)← z(x,y), (2.2.2)
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instead of applying Eq. (2.2.1), if the trigger so directs. This occurs with a fixed small probabil-
ity (an independent random choice for each cell at each timestep). The triggering of this “non-
updating” rule for a given cell has no effect on the updating of neighboring cells. As a result of a
non-update of(x,y), the sumZ changes by

∆Z = 4⌊1
4z(x,y)⌋−⌊1

4z(x−1,y)⌋−⌊1
4z(x+1,y)⌋−⌊1

4z(x,y−1)⌋−⌊1
4z(x,y+1)⌋

∈ {−4,−3, . . . ,4}, (2.2.3)

i.e., the negative of the amount by whichz(x,y) would otherwise have changed. Thus the cellular
automaton is driven by both adding and removing various amounts of the conserved quantity.

2.2.2 Self-Organized Criticality

The BTW sandpile model was introduced to illustrate the then-new concept of self-organized
criticality. This refers to systems that, from random initial states, spontaneously tend toward a
highly structured dynamic regime. Such a regime involves similar phenomena occurring on a wide
range of space and time scales, with a scale-invariant power-law distribution of activity over these
scales. A self-organizing cellular automaton, despite thelimitation to nearest-neighbor interactions
at each step, develops coherent long-range structures overtime. The behavior is called “criticality”
because it is analogous to the scale-invariant behavior of systems in statistical physics, such as
magnets and fluids, at a thermodynamic critical point (second-order phase transition). But unlike
thermodynamic critical behavior, which requires fine tuning of parameters such as temperature to
reach a phase transition, the key property of self-organized criticality is that a system is attracted
to such a regime spontaneously under generic conditions.

The self-organized criticality of the BTW sandpile model was demonstrated through a power-
law distribution of the size of regions affected by avalanches [4], a somewhat indirect property.
However, a more conventional diagnostic of critical behavior in statistical physics—a power-law
correlation function (or power-law spatial Fourier spectrum) of the state fluctuations—is not real-
ized in the BTW sandpile model, with only short-range correlations developing between cell states
[7]. Remarkably, our variant sandpile model produces long-range power-law correlations, closely
resembling those of thermodynamic critical points, but without the associated fine tuning. This
richer scale-invariant behavior is shown through numerical simulations in Chapter6.
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Chapter 3

Boolean Networks

3.1 Background

Boolean networks, like cellular automata, are a particulartype of discrete dynamical system. They
were first proposed by Kauffman as random models of genetic regulatory networks [21]. They
have a simple structure yet rich dynamical behavior and havebeen used as models of complex
dynamical systems in a number of different fields: genetic networks [22], the theory of evolution
[22], social science [29], biochemical reaction pathways [9], and others.

A Boolean network can be represented as a directed graph. Each vertex of the graph has a
Boolean state value (0 or 1). The ability to specify an arbitrary connectivity pattern among vertices
allows Boolean networks to model diverse real-world systems, which may not be well represented
by a lattice. The most commonly considered graph topology results in what is called a Kauffman
network orN-K network. For such a network, there areN vertices (nodes), and each vertex has
K in-neighbors. It is common to select the neighbors and the initial states randomly. The random
approach can be used to model natural systems (such as genetic regulatory networks) that surely
have a structure that is not completely random, but one that is complex and largely unknown.

Each vertex or node sends its value to all its out-neighbors.Each node also has a transfer func-
tion, a Boolean function of its inputs that is typically alsorandomly chosen. At each timestep, all
nodes are updated in parallel by replacing each node’s valueby the value of the node’s transfer
function applied to the node’s inputs. Asynchronous updating of the nodes has also been investi-
gated [17]. The transfer function of a given node, once chosen, can be left unchanged (thequenched
dynamics) or changed at each timestep (theannealed dynamics). In the majority of the work that
has been done on Boolean networks, and in our work, the transfer functions are left unchanged.

The dynamical behavior of the network can be described in terms of its cycles, attractors, and
basins of attraction [3]. Assume the transfer functions are fixed. A network ofN nodes has 2N

possible states, and the rule for evolving the state values is deterministic. Therefore after a certain
number of steps (≤ 2N), the set of state values must start repeating. Each unique cycle of state
values into which the network can fall is an attractor, and the set of all initial states that lead to a
given cycle is that cycle’s basin of attraction.

It has been observed that Boolean networks exhibit three phases, termed quiescent, critical,
and chaotic. In this, they show similarity to the percolation problems of statistical physics [3].
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In the quiescent phase, there are few cycles, the cycles tendto be short, and most of the state
values end up fixed. In the chaotic phase, the average cycle length grows exponentially withN,
and most values keep changing. In the critical phase, the cycle lengths and the average number of
attractors increase algebraically withN. Kauffman hypothesizes that biological systems operate in
the critical phase, “on the edge of chaos” [22].

The phase of the network depends on the number of in-neighbors K, and on the probability
with which the transfer functions output true or false values. If the transfer functions are chosen at
random from all possible truth tables with 2K rows, then the network exhibits the quiescent phase
for K < 2, the critical phase forK = 2, and the chaotic phase forK > 2. Another way to describe
the network is in terms of a collection of the time series of node states, or alternately in terms of
their frequency spectra. The state values tend to change rapidly in the chaotic phase, slowly in the
quiescent phase, and at an intermediate rate in the criticalphase.

In our work, we assign edges randomly in such a way that the graph has a specified average
number of in-neighbors per node, but each node need not have the same number of inputs. For
example, if the specified average is 2.5, every node would have at least two incoming edges, and
approximately half the nodes would have three.

An interesting example of the use of Boolean networks to model a complex system is found in
a biochemistry application [9], which used Boolean networks as a coarse-grained approximation
of the more detailed differential equation network model ofthe fission yeast cell cycle control net-
work. The Boolean model abstracted out time information butsuccessfully modeled the reaction
kinetics, reproducing the sequence of cycle states and evenpredicting the effects of mutations.

3.2 Robustness Properties

Because Boolean networks are mathematically tractable yetclosely related to real-world systems
such as biological regulatory networks and digital circuits, they provide a convenient setting for
the study of robustness. From a biological perspective, theproblem can be formulated as follows:
A specification of a Boolean network (topology and transfer functions) models a genotype. The
expression of this genotype is carried out by evolving the Boolean network until it reaches an
attractor, which models a phenotype. The biological fitnessof this phenotype is evaluated using an
objective function, which in the simplest case is itself Boolean (fit or unfit).

For mutation and natural selection to operate efficiently, it is necessary that almost all random
changes to the genotype (mutations) result in a phenotype that still satisfies this objective function.
This allows mutations to explore the possibility of keepingup with a slow drift in the objective
function, or satisfying additional, stricter objective functions, while almost always remaining fit
according to the original objective function. Otherwise, if most mutations resulted in an unfit
phenotype, then very little promising variation would be available, mutations would not be useful,
and species adaptation via natural selection would grind toa halt.

Thus robustness is a necessary condition for biological evolvability, and can serve as a marker
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of systems that have an organic character. As discussed in Section6.2, we have translated the idea
of robustness into precise mathematical constraints on thestructure of certain Boolean networks
and the objective functions they satisfy. This result can then guide the design of models for systems
that are known, or desired, to exhibit robustness to failures.
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Chapter 4

Renormalization

4.1 Background

The emergent behaviors of a complex system generally becomeapparent only in a large system
and after many timesteps. Indeed, the real-world systems ofgreatest application value, whether
physical, cyber, or social, undergo an enormous number of elementary local interactions in the
course of building up their rich global dynamics. The large number of degrees of freedom in
these systems implies a severe cost in computational resources for a direct simulation, especially
when many simulations are being performed to explore parameter space or to gather statistics.
Consequently, almost all practical simulations use some kind of reduced model. Even models
accepted as “complete” descriptions of a system are usuallywell-founded abstractions of deeper
processes (e.g., the equations of fluid mechanics summarizethe effects of molecular dynamics).
For complex systems, the construction of successful reduced models has typically been an ad-hoc
process requiring a great deal of insight and experience in the problem domain. One of our goals
has been to develop a more systematic and validated approachfor creating coarse-grained models
of complex systems.

A useful framework for simplifying the description of intractably large systems is available
from theoretical physics in the form of “renormalization.”This technique seeks to replace the ac-
tual system with a model of reduced complexity, lying withinsome specified class of models. The
form of such a reduced model is often taken as a straightforward generalization of the underly-
ing system dynamics, with a number of adjustable parametersincluded. In the process, many of
the original degrees of freedom are omitted through some form of sampling or averaging; those
associated with the large-scale phenomena of primary interest are retained. The method is suc-
cessful when the effect of the omitted degrees of freedom is approximately equivalent to that of
substituting new values for the model parameters. These parameters are thus “renormalized” in
the reduced description. Renormalization is expected to bemost useful when the underlying inter-
actions exhibit locality, so that a block of nearby degrees of freedom behaves approximately as a
unit—allowing a summary description of its internal state and higher-level interactions.

This coarse-graining process can be applied iteratively, leading to the “renormalization group”
concept, which describes a repeated transformation or “flow” in the model parameter space as de-
grees of freedom are progressively omitted. At each step, only small blocks of the current degrees
of freedom need be considered, and their effective dynamicscan be determined more tractably
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by taking advantage of the locality of interactions. Thus the renormalization group is a mathe-
matical device for reducing the number of degrees of freedom(zooming out) while preserving
some aspects of the dynamics. The original motivation for renormalization-group methods arose
in statistical physics, where a large number of interactingdegrees of freedom (even with simple
interactions, such as those between nearest-neighbor atoms in a crystal lattice) can lead to criti-
cal fluctuations on a wide range of length and time scales. Renormalization-group methods have
since been applied extensively to phenomena with similar characteristics, as in high-energy parti-
cle physics and fluid turbulence. In many such areas, the renormalization group can be treated with
considerable rigor, and it can be shown that all but a small number of parameters (describing pos-
sible interactions) become negligible upon repeated coarse-graining. Such rigorous justification of
reduced models is possible because the systems are defined byhighly regular structures, such as
functions in Euclidean space.

To determine whether renormalization remains useful in a more general modeling context, we
have prototyped representative complex system models thatare both tractable and relevant to San-
dia mission applications, and quantified the effect of renormalization on the predictive accuracy
of these models. The renormalization itself has been be carried out computationally, by simu-
lating the behavior of blocks of degrees of freedom under a variety of conditions and fitting the
coarse-grained model parameters that best reproduce this behavior. The stepwise process of the
renormalization group makes these model-building simulations tractable because small blocks are
used at each stage. We next describe the details of our renormalization method for cellular au-
tomata and Boolean networks. Results of our computational tests of this approach are presented in
Chapter6.

4.2 Application to Prototype Models

4.2.1 Cellular Automata

A previous application of the renormalization group to cellular automata [20] considered special
cases in which renormalization can be performed rigorouslyand the resulting coarse model is
exact. We wish to generalize renormalization to other kindsof cellular automata for which an
empirical, statistical approach is needed. As is usual in the renormalization of lattice systems, we
wish to create a model on a coarser Cartesian lattice, each cell of which corresponds to a block of
cells in the original lattice. The motivation for this is that the large-scale emergent behavior can
be adequately discerned from a coarse history that summarizes the states within each block. The
traditional summary description in physics is a block average, but here we use a block sum so that
the result remains an integer.

Our approach is to implement the goal of renormalization—finding a coarse model that best
reproduces the system’s large-scale behavior—as a numerical optimization problem. Such an opti-
mization cannot, of course, explore the space of all conceivable coarse models to find the best one;
rather, the investigator must define a limited family of coarse models, with a reasonable number of
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Figure 4.1. Basic scheme for computational renormalization of
cellular automata.

free parameters to be optimized. The choice of family may be aided by general principles such as
symmetry, or by expert knowledge of the system’s behavior. This approach is general and does not
require analytic tractability of models. However, it raises the question of how renormalization can
make a simulation more computationally feasible if a simulation of the original model is needed
for comparison to optimize the coarse model. The answer is that the optimization can be based
on a much smaller simulation, in lattice size and in timesteps, than the main simulation for which
results are needed.

The computational renormalization process is shown schematically in Figure4.1. The follow-
ing items are specified in advance to define a particular renormalization problem:

• the updating rule for the original cellular automaton,

• a parameterized updating rule for the coarse cellular automaton,

• the sizes of the original and coarse lattices to be used for optimization,

• a method of populating the original cellular automaton withrandom initial states,

• a method of generating trigger values for the original cellular automaton (if applicable),

• a comparison function for quantifying the discrepancy between the coarse predictions and
the actual “derived” block sums of the original cellular automaton,

• the number of simulation timesteps to be carried out during optimization, and
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• the number of separate simulations, starting from random initial states, to be used in evalu-
ating each candidate coarse model (to average out statistical fluctuations in performance).

Given trial values of the coarse rule parameters, the assigned number of simulations are performed,
each consisting of (conceptually) parallel evolution of the original and coarse cellular automata.
For each such simulation, random initial states are placed on the original lattice (to favor param-
eter values that perform well in a broad range of situations), and their block sums are placed on
the coarse lattice, so that the coarse cellular automaton starts from an equivalent initial condition.
Both cellular automata are then simulated using their respective rules for the assigned number of
timesteps; at each timestep, a “derived” lattice of the samesize as the coarse one is populated with
block sums from the original cellular automaton, representing the true coarse states that should
ideally be reproduced. The comparison function accumulates the total discrepancy between the
derived and simulated coarse states over all timesteps of all simulations with given parameter
values. This discrepancy is then treated as an objective function and minimized with respect to
the parameters using a standard numerical optimization algorithm. The parameters are treated as
floating-point numbers; although their effect on the time evolution of the coarse model is ulti-
mately discrete, their typically wide range of possible values and the statistical averaging of the
simulations result in somewhat smooth overall behavior of the objective function. Nevertheless,
gradients are not available and the detailed form of the objective function is not locally smooth, so
we use the Nelder–Mead simplex method for optimization.

If a trigger is needed (as for our sandpile model), a lattice is populated at each timestep to pro-
vide trigger values for the original cellular automaton, and the block sums are used as trigger values
for the coarse cellular automaton. Thus the coarse cellularautomaton is being asked to track the
large-scale behavior as well as possible with access to a synchronous, appropriately coarse sum-
mary of the particular external input values driving the original cellular automaton. This allows the
coarse cellular automaton to develop an accurate model of the response to individual perturbations,
even if they are stochastic. To reduce the effect of statistical fluctuations on the objective function
landscape, the random number generator is initialized witha fixed seed for each new set of trial
parameter values. As a result, the series of random initial conditions for the simulations, and any
randomness in the trigger values, will be identical for all trial parameter values. Otherwise, inde-
pendent fluctuations would enter each time the objective function was evaluated, and the landscape
would appear extremely jagged, frustrating numerical optimization.

An alternative to optimizing the match of individual simulation histories would be to generate
separate ensembles of simulations of the original and coarse cellular automata, and compare only
statistical properties of the derived and coarse states, such as their spectra in space or time. This
would represent a goal of a different kind of predictivity, favoring coarse models whose behavior
“looks right” statistically but need have no correlation with the behavior of the original model in
a particular realization. Such an approach is of limited usefulness because matching a chosen set
of statistical properties is no guarantee of matching others, and furthermore, accurate individual
simulations are often needed for real-world applications.By using linked trigger values for the
original and coarse cellular automata and optimizing the match of individual simulation histories,
we favor coarse models that reflect the underlying dynamicalmechanisms as accurately as possi-
ble. To the extent that individual realizations are reproduced correctly, statistical properties will
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automatically follow.

In the absence of a perfect coarse model, however, our choiceof objective function will have
a systematic effect on statistical properties, which is related to the number of simulation timesteps
used for optimization. An imperfect coarse model will inevitably lose its correlation with individ-
ual histories of the original cellular automaton beyond some timescale, the predictivity horizon.
(This concept is illustrated by weather forecasting models, which can give useful predictions only
for approximately a two-week period.) If the optimization uses simulations much longer than this
timescale, then the coarse model cannot generate any meaningful prediction for most of a simu-
lation and, to reduce its discrepancy, is driven to make a noncommittal prediction that tends to a
uniform average state for all cells (analogous to the use of climate averages as the best alternative
beyond the horizon of weather forecasts). Thus, the longer the optimization simulations and the
more imperfect the coarse model, the more suppressed is the intensity of dynamics in the optimized
coarse predictions, resulting in smaller statistical measures of variation compared to those derived
directly from the original cellular automaton. On the otherhand, if the optimization simulations
are very short, such as a single timestep, then other issues arise. The performance being optimized
is then tied strongly to the imposed distribution of random initial states, and may not carry over
to longer simulations in which the cellular automaton relaxes to its own characteristic distribution
and statistical correlations. Also, the coarse model may obtain an excellent match, because only
relatively slight changes in block sums over a single timestep need to be predicted, but may not be
well optimized to maintain accuracy for as long as possible (which may involve stability properties
in addition to single-timestep accuracy). Thus simulations with a duration of the same order as the
predictivity horizon are most useful for obtaining optimalcoarse models.

For our sandpile model, the details of the renormalization scheme are as follows. The original
cellular automaton uses a trigger value of 0 for the normal updating rule (2.2.1) and 1 for the non-
updating perturbation. Each block-sum trigger value for the coarse cellular automaton therefore
indicates the number of perturbations in the block; becauseperturbations are rare, this number
is almost always at most 1. The properties of the sandpile model that must carry over to the
coarse model are the symmetry among the four directions in the square lattice (isotropy), and the
conservation of the sum of states (total amount of sand) in the absence of perturbations. A simple
generalization of the rule (2.2.1) that preserves these properties is

z(x,y)← z(x,y)−4 f
(

z(x,y)
)

+ f
(

z(x−1,y)
)

+ f
(

z(x+1,y)
)

+ f
(

z(x,y−1)
)

+ f
(

z(x,y+1)
)

,
(4.2.1)

where f is an integer function; the original rule hasf (z) = ⌊1
4z⌋. Note thatf (z) can be interpreted

as the number of grains of sand transferred by a block to each of its four neighbors. To give a
tractable number of parameters, we take a coarse rule with

f (z) =

⌊

z−A0

B0

⌋

, (4.2.2)

whereA0 andB0 are real numbers. Repeated coarse-graining can be performed within this rule
family by using an optimized coarse rule as the original rulefor a further optimization, thus ob-
taining a new coarse rule applicable to even larger blocks.

An additive constant inf has no effect on the updating rule, and so addition of an integer
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multiple of B0 to A0 leaves the rule unchanged. The graph off (z) for B0 ≥ 1 consists of upward
steps of+1 at approximately equal intervals ofz given byB0. If the range of relevantz values is
much greater thanB0, then any change inA0 should have relatively little effect, merely shifting
the phase of these steps. On the other hand, in the original rule, where 0≤ z≤ 7, there is only
one step, which can be recreated for anyB0 > 7

2 by appropriate choice ofA0 (e.g.,B0 = 4 and
A0 = 0). The sandpile model’s preservation of a finite state spaceis due to the nondecreasing
property of f (z) = ⌊1

4z⌋, which results in the largest values ofz never increasing further (and the
smallest values never decreasing further). Our generalized coarse rule provides a similar stability
whenB0 > 0, but we do not impose this as a constraint, instead relying on the objective function
to penalize the divergent evolution of an unstable rule.

Whereas the original cellular automaton performs a non-update for a trigger value of 1, we
expect that some other strategy is appropriate for the coarse model, because only one of the under-
lying cells of the block is responding to such a trigger and the others are updating normally. Thus
we further generalize the coarse model by performing an update analogous to Eq. (4.2.1) also
in the case of positive coarse trigger values (which will almost always be 1), but using different
parametersA1 andB1 in the functionf .

For a coarse model based on 2×2 blocks, we can make an educated guess of reasonable initial
parameter values for optimization. In the normal updating case, the number of grains of sand
transferred to all block neighbors is 8 if all underlying states are between 4 and 7 (typical block
sumz= 22), is 4 if two states are between 0 and 3 and two are between 4 and 7 (typical block sum
z= 14), and is 0 if all states are between 0 and 3 (typical block sum z= 6). Thus f (z), the number
of grains transferred to each block neighbor, should equal 2for z near 22, equal 1 forz near 14,
and equal 0 forz near 6. A similar argument for the triggered case, where onlythree underlying
cells update normally, shows that in that casef (z) should equal 1 forz near 17 (where on average
2
3 of the states are between 4 and 7 and1

3 are between 0 and 3) and equal 0 forz near 6 (where all
states are between 0 and 3). Example parameter values that fitthese conditions are

(A0,B0,A1,B1) = (2,8,0.67,10.67). (4.2.3)

Such values are not necessarily optimal because the typicalblock sums quoted for various patterns
of underlying cells are also consistent with different patterns, reflecting the loss of information in
coarse-graining.

4.2.2 Boolean Networks

The renormalization of Boolean networks follows most of thesame principles as for cellular au-
tomata and, as discussed in Chapter5, is performed with the same software framework. However,
some differences of interpretation apply. A trigger is not needed because the Boolean networks
commonly studied have deterministic time evolution. SinceBoolean networks usually associate a
different updating rule with each node, we take the specific rule to be encoded in part of a node’s
state value—a part that does not change with updating (because we use the quenched dynamics),
but determines the updating of the Boolean bit in the state. Atype of Boolean network is not con-
sidered to be a specific assignment of updating rules to nodes, but rather anensembleof such rule
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assignments, as part of the generation of random initial states. Correspondingly, a renormalized
version of a Boolean network consists not of a specific set of coarse rules, but rather of amethod
that transforms specific rules on the original network into specific rules on the coarse network. It
is this method that contains parameters to be optimized. Because the specific rules are part of the
state values, this method operates at the point of populating the initial states of the coarse network.
Unlike cellular automata, whose states are coarsened simply with a block sum, Boolean networks
require coarsening the specific rules at the same time (this applies only when setting initial con-
ditions, since the coarse rules are automatically preserved thereafter). The actual updating rule,
which plays the same role as a cellular automaton updating function, is a rule fixed once and for
all, with no parameters. This master rule interprets the specific rule part of a node’s state, and eval-
uates the appropriate function of the Boolean bits of its in-neighbors to replace the given node’s
Boolean bit. Because a Boolean rule for a node withK in-neighbors requires 2K bits to specify,
and we must carry an additional Boolean bit, standard 32-bitintegers can store the required state
values providedK ≤ 4.

Whereas lattice systems offer an obvious state-coarseningapproach based on regular blocks,
the arbitrary connectivity of Boolean networks makes it unclear what groups of nodes should be
represented by the coarse network’s nodes. We expect that renormalization is most effective when
the node groups are highly connected internally and sparsely connected externally, so that they
act as coherent entities. Thus we are faced with a graph clustering problem; we have adopted
an implementation of a clustering algorithm based on the statistical physics of spin glasses [28].
This algorithm is used for obtaining the coarse network structure, which is held fixed through the
parameter optimization process. We must then relate the states of the coarse network to those of
the original network. In principle, cluster sums could be used for coarsening the Boolean bits,
leading to a coarse model with integer states that is not a Boolean network. But for simplicity we
have maintained the Boolean nature of the network when coarsening. Moreover, instead of using
the majority vote of all nodes in the cluster to determine thecoarse Boolean bit, we have made a
different choice that may give better results. Because onlythe nodes with out-links from a cluster
can affect other clusters at the next timestep, we consider the majority Boolean bit of these out-
facing nodes to be a more useful summary of the state of the cluster. This distinction does not arise
for coarsening of cellular automata into 2×2 blocks because all cells are automatically out-facing.

As mentioned, a method is also required for coarsening specific Boolean rules. For this we
adopt a simple strategy. To tabulate the coarse updating function for a cluster, we “excise” the
cluster from the original network and evolve it independently starting from the given initial states,
but supplying its external in-links with random Boolean bits at each timestep. The key parameter
of the method is the number of timesteps for which these random inputs are held fixed before being
regenerated. Because the random inputs are a proxy for the behavior of the cluster’s environment,
the performance of the resulting coarse rule in a whole-network simulation will depend on how
well this proxy reflects the typical dynamics of the inputs toa cluster. The optimization will have
the opportunity to tune the timescale parameter to the most effective value. Every step in the
evolution of the excised cluster contributes to a tabulation of the coarse rule: Each coarse input
bit (arriving on a coarse in-link from another cluster) is taken as the majority of its most recent
underlying random inputs, thus identifying a row in the truth table, and then the out-facing nodes
of the cluster “vote” on what the corresponding result of thecoarse Boolean rule should be. The
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excised evolution is continued until the truth table accumulates a threshold number of votes for
either a 0 or 1 result in every row, and then the majorities determine the final coarse rule. This vote
threshold is also an adjustable parameter of the method, butbecause it mainly governs the trade-off
between statistical accuracy and execution time, we assignit a fixed value rather than subjecting it
to optimization.

The optimization process is carried out as for cellular automata. The various simulations per-
formed for a given parameter value start from various initial states and thus use different specific
rules from the assigned ensemble. For each simulation, after the initial states (including rules) are
coarsened, the original and coarse networks are evolved forthe given number of timesteps. Af-
ter each timestep, the coarsening of the original network’sstates onto the “derived” network (for
comparison with the coarse network) applies only to the Boolean bits, because there is no point to
re-coarsening the rules. Correspondingly, the comparisonfunction ignores the rules in the coarse
network and simply compares the Boolean bits with those of the derived network. The baseline
discrepancy measure for a unhelpful coarsening corresponds to predicting half of all bits incor-
rectly, and discrepancies less than this indicate some success in tracking the original network’s
behavior. Although the optimization for Boolean networks is currently one-dimensional and thus
a variety of other numerical optimization algorithms are available, for simplicity and consistency
we continue to use the Nelder–Mead simplex method.
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Chapter 5

Software

5.1 General Description

We wish to experiment with complex systems expressed as networks. A network has a topology
given as a directed graph. Once established, a graph’s topology remains fixed. Each node in the
graph contains a state value, and we wish to investigate the evolution of the state values in time.
There is an edge from node A to node B in the graph if node A’s value can influence the evolution
of B’s value. Each network type is characterized by a particular evolution rule, by which the new
value at a node is computed taking into account the values at each of the node’s in-neighbors
and perhaps some additional characteristics of the node. For all the networks investigated so far,
we update all state values in parallel. Our particular interest lies in deriving networks that are
renormalized or coarsened approximations of an original network. The coarsened version of a
network is in general parameterized, and we optimize over the values of the parameters to improve
the approximation.

Our code is written in C (∼ 2000 lines) but structured so as to give some of the advantages of
object orientation. All networks, no matter what their topologies or updating rules, are covered by
one type, CXnetwork, and all updating rules are of one function type, CXupdate. A particular
advantage of this approach is that we can construct a single objective function, to be called by the
optimizer, that works for all networks.

The network data structure is laid out to facilitate this simulated polymorphism. All network
state data occupies a one-dimensional array. Any further structure is expressed in the configuration
data, which is given merely as a void pointer in the data structure. Likewise, parameters used for
the updating rule are given in an array of type CXparameter (defined as a double), with the length
of the array and the meaning of its elements left undetermined. The network data structure also
contains a function pointer to the function that returns thelist of neighbors of a node, to be filled
in with a pointer to a function that takes the particular network topology into account.

In order to introduce a new network type, it is necessary to provide a way to create the net-
work, an update rule for the network, a neighbor list function for the network, a way to derive a
renormalized version of the network, and, since storage management is done “by hand” in C, a
way to release the network’s storage. It may be necessary to provide a separate updating rule for
the coarsened network, in the case that the coarse updating rule has optimizable parameters.
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We currently support the creation of two network types, the periodic Cartesian lattice and the
Kauffman network (a type of Boolean network). The periodic Cartesian lattice may have any num-
ber of dimensions with any number of nodes in each dimension;a d-dimensional periodic lattice
forms a torus ind dimensions, in which each node has 2d neighbors. The Kauffman network,
sometimes called anN-K network, has a graph in which each of theN nodes hasK in-neighbors.
We assign the links randomly.

For the periodic Cartesian network, network creation is handled by the function CXperiodic
cartesiancreate in module periodiccartesian.c and network destruction is handled by the generic
CX networkdestroy in network.c. The neighbor list function is CXperiodiccartesianneighbor
list in module periodiccartesian.c. The sandpile update rule, CXsandpileupdate in module sand-
pile.c, can be used for periodic Cartesian networks. A separate updating rule, CXsandpilecoarse
update, can be used for a renormalized periodic Cartesian network. The update function uses the
state value at the node itself as well as the values at the neighboring nodes. The renormalized
network states (block sums) are derived with function CXperiodiccartesianderive in module pe-
riodic cartesian.c.

The igraph package [8], a high-quality software package originating in the Hungarian Academy
of Sciences for creating and manipulating graphs and released under the GNU Public License, is
used for the topology component of a Kauffman network. Creation of a Kauffman network re-
quires two steps. CXkauffmancreate in module kauffman.c creates theN-K topology and returns
an igrapht graph structure. CXgraphcreate in module graph.c accepts the igraph structure and
returns a CXnetwork. CXgraphcreate installs the igrapht as its configuration data, allocates the
state data array, and installs the proper neighbor list function, CX graphneighborlist in module
graph.c. Doing the creation in two steps will make it easy to substitute other graph topologies (such
as ones constructed directly by igraph) if this becomes desirable. The update function for Kauff-
man networks is CXbooleanupdate in module boolean.c. In a Boolean network, in addition to a
state value (a true/false value), each node has a transfer function that is a Boolean function of the
inputs to the node. After an update, the state value at the node is the output of the node’s transfer
function applied to the node’s inputs. In our implementation, the transfer function is encoded in the
state data; thus the state data consists of two parts, the state value proper and the encoded transfer
function. Renormalization of Kauffman networks is a three-step process. The topology coarsening
is done by function CXgraphspinglass cluster in module graph.c, which returns a grapht struc-
ture. Then CXgraphcreate in module graph.c is called to return a CXnetwork structure with
the given topology. Finally, CXbooleanderive in module boolean.c is called to derive the state
values of the coarsened network from the original network. If CX booleanderive is called with no
parameters, it derives only the 1-bit Boolean value at each node. If it is provided with parameters,
it also derives the transfer function at each node (see belowfor details).

To evaluate the performance of a coarsened network, CXobjective in module objective.c re-
turns the total discrepancy, over a specified number of simulations, between the predicted coarse
states and those derived from the original network. In the process, CXobjective also accumulates
frequency spectra of node histories and/or spatial spectraof snapshots of the network (the latter
meaningful only for a Cartesian lattice). Spectra are computed using fast Fourier transform rou-
tines from the GNU Scientific Library [13]; our implementation assumes that the relevant sizes in
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space and time are powers of 2. The discrepancy is used as the objective function by CXoptimize
in module optimize.c, which calls the Nelder–Mead simplex method for numerical minimization,
also provided by the GNU Scientific Library.

5.2 Description of the Individual Modules

The following gives a brief description of the functions in each module:

boolean.c

• CX state CXbooleanupdate(CXstate **list, CX parameter *p, CXstate trigger);

Updates a node of a Boolean network, using the state values ofa node’s in-neighbors and
the node’s Boolean transfer function to determine the node’s new value.

• double CXbooleandiscrepancy(CXnetwork *net1, CXnetwork *net2);

Computes the distance between two Boolean networks with thesame layout by counting the
number of nodes whose Boolean state bits differ (ignoring the transfer functions that may be
encoded in the state data).

• void CX booleanderive(CXnetwork *orig, CX network *derived, CXparameter *p);

Derives the state values of a coarse (derived) network from those of a fine (original) network.
The state values have two components, a Boolean transfer function and and a Boolean value.
If the parameter argument is null, only the Boolean value is derived. Otherwise, the coarse
transfer function is also computed by simulating the evolution of each coarse node (cluster).
The fine nodes making up a coarse node are provided with randominputs on the incoming
edges from outside the cluster and updated a number of times,noting the count of true
and false values in the out-facing nodes after each update step. Using the correspondence
between coarse and fine edges, each set of random inputs is interpreted as a set of coarse
inputs, corresponding to a row in a truth table for the coarsenode. When enough true and
false counts have been collected in each row of the truth table, the coarse transfer function
for the node is determined. There are two parameters in the parameter array: the number of
steps to evolve the fine nodes within a coarse node between assignments of random inputs,
and the minimum number of true or false values needed in each row of the coarse node’s
truth table.

compare.c

• typedef void (*CXrandom)(CXnetwork *net, CXparameter *p);
typedef void (*CXderive)(CXnetwork *orig, CX network *derived, CXparameter *p);
typedef double (*CXdiscrepancy)(CXnetwork *net1, CXnetwork *net2);
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Function types for functions called by the compare functionin order, respectively, to as-
sign random values to a network, derive coarsened states fora network, and compute the
difference (or distance) between the states of two networks.

• struct CX compareclosure;
double CXcompare(CXcompareclosure *c);

Using items from the closure data structure, updates the finenetwork according to the fine
update rule, updates the coarse network according to the coarse update rule, derives a coars-
ened network from the fine network, and compares the coarse network to the derived network
using the discrepancy function. The discrepancy is accumulated for an assigned number of
timesteps. If the closure contains a non-null sampler function, CX compare uses it to popu-
late the fine trigger network, which it then coarsens to produce a coarse trigger network (used
in cases where an update function requires a trigger argument—see below). If instructed,
CX compare also records node histories, and accumulates spatial spectra of snapshots, for
the coarse and derived networks.

graph.c

• CX network *CX graphcreate(igrapht *graph);

Given a graph structure (as created, e.g., by CXkauffmancreate), creates a network having
the topology of the graph.

• CX state **CX graphneighborlist(CX network *net, unsigned node);

Returns the list of in-neighbors of a given node of the network (where the given node is
considered to be the first “neighbor” in the list.)

• igraph t *CX graphspinglasscluster(igrapht *orig, CX parameter *param);

Coarsens a given graph structure using the igraphcommunityspinglass function of the
igraph package. The parameter array contains three parameters: a suggested number of
nodes of the original graph per node of the coarsened graph; an edge threshold giving the
minimum number of (directed) edges of the original graph needed to justify creation of an
edge of the coarsened graph; and an edge limit, the maximum number of (incoming) edges
that any node of the coarsened graph may have.

gsl.c

• struct CX objectivegsl closure;
double CXobjectivegsl(const gslvector *x, void *v);

Function called by the GNU Scientific Library optimization routine. It serves as a wrapper
for CX objective function, which it calls.
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kauffman.c

• igraph t *CX kauffmancreate(unsigned n, double k);

Creates and returns a graph ofn nodes, each with an average ofk in-neighbors drawn in-
dependently and uniformly from then nodes. Each node has a probabilityk−⌊k⌋ to have
⌊k⌋+1 in-neighbors instead of⌊k⌋.

• igraph t *CX kauffmandestroy(igrapht *graph);

Frees the memory used for a Kauffman graph.

network.c

All networks, no matter what their topology, are accommodated by the same data structure having
the same components: an array of state values (of type CXstate), an undefined (void *) data
structure defining the connectivity, an array of parametersthat may be used for the updating rule
(of type CX parameter), and a function pointer to the updating rule to beused for the network.

• CX network *CX networkdestroy(CXnetwork *net);

Frees the memory used by the network (for state data array andconfiguration data).

• double CXnetworkdiscrepancy(CXnetwork *net1, CXnetwork *net2);

Computes the distance between two networks with the same layout using a node-by-node
sum of squares of the differences between the state values.

objective.c

• struct CX objectiveclosure;
double CXobjective(CXparameter *p, CXobjectiveclosure *c);

The objective function used for optimization of the coarse network parameters. The first
argument contains the parameters being optimized. Using data and functions specified in
the closure argument, the function populates a fine network,coarsens it using the opti-
mization parameters, and computes the discrepancy by calling CX compare with the CX
compareclosure element of the CXobjectiveclosure (see module compare.c, above). CX
objective does this for a specified number of simulations andreturns the cumulative dis-
crepancy. Also, CXobjective accumulates frequency spectra of the coarse and derived node
histories recorded by CXcompare.
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optimize.c

• double CXoptimize (CX parameter *param, unsigned paramcount, CXobjectivegsl
closure *c);

Calls the GNU Scientific Library’s Nelder–Mead simplex method to minimize CXobjective,
and returns the minimum discrepancy value. The parameter array is used to input the starting
values and to output the optimized vales. Collection of spectra, if requested, is suppressed
during optimization and performed only when converged parameter values are reached.

periodic cartesian.c

• CX network *CX periodiccartesiancreate(unsigned dim, unsigned *size);

Creates a network with a periodic Cartesian lattice topology.

• CX state **CX periodiccartesianneighborlist(CX network *net, unsigned node);

Returns a list of a given node’s neighbors in a periodic Cartesian lattice (in which the node
itself is considered to be the first “neighbor”).

• void CX periodiccartesianderive(CXnetwork *orig, CX network *derived, CXparameter
*p);

Derives coarsened states for a periodic Cartesian lattice network. Each node of the derived
network represents a block of nodes of the original network;its state value is the sum of the
values of the original nodes in the block. The parameter array provided is transferred to the
derived network.

• void CX periodiccartesiandisplay(CXnetwork *net, char *title);

Prints the state values of a periodic Cartesian network.

random.c

• void CX uniform random(CXnetwork *net, CXparameter *p);

Initializes the state values of a network to values chosen uniformly at random from a range
specified by the parameters.

• void CX booleanrandom(CXnetwork *net, CXparameter *p);

Initializes the state values of a network to randomly selected Boolean values, with the prob-
ability of 0 given by the parameter.
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sandpile.c

• CX state CXsandpileupdate(CXstate **list, CX parameter *p, CXstate trigger);

Updates a network node according to the sandpile rule.

• CX state CXsandpilecoarseupdate(CXstate **list, CX parameter *p, CXstate trigger);

The coarse version of the sandpile rule suitable for a coarsened network. Uses four parame-
ters whose values are subject to optimization.

update.c

• typedef CXstate (*CX update)(CXstate **, CX parameter *, CXstate trigger);
CX network *CX networkupdate(CXnetwork *net, CXupdate rule, CXnetwork *trig-
ger);

The function to call to update any kind of network. The callermust provide the updating rule
(a function pointer); a particular rule may also require a trigger network of the same layout
whose state values are used in determining how to update eachindividual node.
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Chapter 6

Results

6.1 Computational Analysis of Renormalization

6.1.1 Cellular Automata

We performed computational experiments on the renormalization of the sandpile model described
in Section2.2, using the approach described in Section4.2.1. We performed six stages of renor-
malization, each coarsening a 16×16 lattice to an 8×8 lattice composed of 2×2 blocks. The
lattice sizes were chosen small enough to allow efficient simulation in the optimization process
but large enough to make finite-size effects reasonably unimportant. In the first stage, we took our
sandpile model as the original cellular automaton and optimized the four parameters of the coarse
sandpile rule starting from the trial values (4.2.3). In each of the remaining stages, the coarse
sandpile rule with the previously optimized parameter values was taken as the original cellular au-
tomaton, and starting from these values, new parameter values were optimized for a further 2×2
coarsening. The probability of a trigger value of 1 for each cell of the 16×16 lattice was always
taken as 0.01, so that two or three perturbations occurred in the entiresystem on a typical timestep.
The discrepancy of derived and coarse states was computed asthe sum of squared differences. All
objective function evaluations used 100 simulations from random initial conditions for statistical
averaging. Because the range of typical state values changes with repeated coarsening, we used a
different distribution of random initial states for each stage. Starting with the range of 0 to 7 for
the sandpile model, we increased the midpoint of the range bya factor of the cumulative number
of original cells coarsened into the current blocks (4, 42, 43, . . .), and increased the width of the
range by the square root of this factor. In this way, we estimated the typical range that would result
from block sums of approximately independent cell states.

As discussed in Section4.2.1, the number of timesteps used for the optimization simulations
affects the behavior of the resulting coarse model. We measured each coarse model’s performance
by converting the objective function value into anerror ratio, the ratio of its discrepancy to the
discrepancy of a naı̈ve model that predicts, for each timestep, a uniform average state value for all
cells. For very short simulations, this ratio is small, because even keeping the coarse initial state
unchanged is a much better prediction than a uniform state. For very long simulations, beyond
the predictivity horizon, this ratio is approximately 1, because the optimal coarse model is close
to the naı̈ve one. Since the successive coarsenings of the sandpile model represent larger and
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Table 6.1. Optimized parameters for six renormalization stages
of the sandpile model.

Block size Timesteps A0 B0 A1 B1 Error ratio
2×2 3 1.86 8.26 0.88 10.88 0.58
4×4 8 −4.09 18.05 −2.97 12.71 0.25
8×8 22 −5.21 22.56 −1.13 12.95 0.35

16×16 61 −3.03 24.66 −2.40 12.34 0.59
32×32 170 31.76 44.39 −21.59 11.46 0.52
64×64 475 36.86 91.57 −144.13 81.09 0.38

larger blocks of the original cells, they have a longer and longer predictivity horizon. This is
simply because it takes a long time for significant amounts ofsand to be transferred between very
large blocks through the nearest-neighbor interactions ofthe basic sandpile model. To optimize
the coarse models over a duration of order their predictivity horizon, we adjusted the growth of the
simulation durations with repeated coarsening until the optimized models maintained an error ratio
of order 0.5. We found that each coarsening into 2×2 blocks increased the predictivity horizon by
a factor of approximately 2.8. As a result, the greatest execution time was spent in the last stage of
renormalization. The results of the renormalization stages are shown in Table6.1.

We then used the coarse rule from the second stage, representing 4×4 blocks, to simulate a
much larger sandpile model on a 256×256 lattice with a coarse 64×64 lattice. The probability of
a trigger value of 1 for each cell of the 256×256 lattice was taken as 4×10−5, so that two or three
perturbations occurred in the entire system on a typical timestep. We used only one simulation,
with 106 timesteps, to evaluate the objective function; in this way we examined the very-long-term
behavior of the models. The error ratio was 1.17, i.e., the optimized coarse model had a greater
discrepancy than a naı̈ve coarse model, as expected becausewe were performing a very long simu-
lation with a coarse model that was optimized for times within the predictivity horizon. The coarse
cellular automaton maintained vigorous dynamics even whenit ultimately become uncorrelated
with the original cellular automaton. As a result, althoughthe accuracy of individual realizations
was lost, we found that some statistical properties were well reproduced. Figure6.1 shows the
spatial power spectra of the cellular automaton states, averaged over 1000 snapshots throughout
the simulation. The spectrum of the predicted coarse states(green points) has the same power-
law slope, approximately−1.8, as that of the derived states from the underlying sandpilemodel
(black points). For comparison, we also performed an equally long simulation of the basic (non-
renormalized) sandpile model on the coarse 64×64 lattice and plotted its spectrum (red points).
The large intensity of this spectrum at the smallest wavelengths (upper right part of the plot) re-
flects the tendency of the sandpile model to form “checkerboard” patterns of alternating high and
low values on the lattice. Only at larger scales (left part ofthe plot) is the power-law spectrum seen
from the basic sandpile model. Our optimized coarse model, however, correctly reflects the result
of coarsening with 4×4 blocks, washing out the checkerboard patterns and exhibiting the power-
law spectrum in the same range of wavelengths as the spectrumcalculated from the sandpile model
on the underlying 256×256 lattice. The lower amplitude of the coarse model’s spectrum reflects
its imperfect predictivity, which results in favoring somewhat more cautious predictions during the
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Figure 6.1. Spatial power spectra of the sandpile model and its
coarsening. The horizontal scale measures inverse wavelength in
units of the coarse 64×64 lattice spacing. Black points: Spectrum
of the coarse states derived directly from the sandpile model on
the 256×256 lattice. Green points: Spectrum of the coarse states
predicted by the renormalized sandpile model on the 64×64 lattice
(with straight line estimating power law). Red points: Spectrum
for the non-renormalized sandpile model on the 64×64 lattice.
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Table 6.2. Optimized parameters for renormalization of five
Kauffman networks.

K Clusters Timescale Error ratio
1 82 12 0.11
1.5 87 7 0.40
2 87 2 0.64
2.5 89 1 0.74
3 96 4 0.82

optimization. The power-law spectra observed here demonstrate the claim in Section2.2.2that our
sandpile model, unlike the original BTW model, exhibits criticality in the conventional physics
sense.

6.1.2 Boolean Networks

We also performed computational experiments on the renormalization of Kauffman networks, us-
ing the approach described in Section4.2.2. We created fiveN-K network topologies withN = 500
nodes andK = 1, 1.5, 2, 2.5, and 3 average in-neighbors per node. As is common in studies of
Kauffman networks, the specific Boolean rules were drawn uniformly from all possible truth tables
and the initial Boolean bit values were drawn uniformly from{0,1}. Under these conditions, as
described in Chapter3, Kauffman networks are known to exhibit quiescent, critical, and chaotic
phases forK less than, equal to, and greater than 2. We wished to determine whether our renormal-
ization method can automatically preserve these differences in emergent behavior upon coarsening
the network.

The topological coarsening was performed by instructing the graph clustering algorithm to find
as close to 100 clusters as possible but no more; thus approximately 5 nodes were used for each
cluster. To give the coarse network the greatest flexibilityto produce various emergent behaviors,
links were placed in the coarse network whenever any link existed between clusters in the original
network, up to a limit of 4 coarse in-links per cluster (with preference for clusters between which
multiple links existed in the original network). The resulting coarse Boolean network is not in
general a Kauffman network, because the in-neighbors of each coarse node need not be similar in
number or randomly distributed. Furthermore, the coarse network’s rules were not randomly cho-
sen but determined by the renormalization process of Section 4.2.2from a given set of rules for the
Kauffman network. In this process, the vote threshold was set to 400. We performed optimizations
to determine the best values of the timescale parameter (starting with a trial value of 2), and mea-
sured the performance of the coarsening of each Kauffman network with 300 simulations over 512
timesteps. Each simulation used a different set of random initial states (rules and Boolean bits),
which were coarsened as described in Section4.2.2. A coarse model’s error ratio was computed as
the ratio of its discrepancy to that of a model predicting half of all bits incorrectly.

The results of the renormalization of each Kauffman networkare shown in Table6.2. As
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(b) K = 1.5
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(c) K = 2

0.0 0.1 0.2 0.3 0.4 0.5

1

5
10

50
100

Inverse period

S
p
e
c
tr

a
l
p
o
w

e
r

(d) K = 2.5
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(e) K = 3

Figure 6.2. Frequency power spectra of five Kauffman net-
works (N = 500 nodes) and their coarsenings (∼ 100 nodes). Note
semilog scales. The horizontal scale measures inverse period in
units of the simulation timestep. Black points: Spectrum ofthe
coarse states derived directly from the Kauffman network. Green
points: Spectrum of the coarse states predicted by the renormal-
ized Boolean network.
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K increases, the optimal timescale parameter mostly decreases, indicating that the evolution of
the network becomes more rapid. Also, asK increases, the error ratio increases, indicating that
an accurate prediction of the evolution over 512 timesteps becomes more difficult. Both trends
are as expected in the transition from the quiescent to the chaotic phase. As a diagnostic to test
whether the different phases can be distinguished in the emergent behavior of the coarse model,
we collected time series of the Boolean bits of each coarse node and computed their frequency
power spectra, averaged over all nodes in each coarse network. Figure6.2compares the spectrum
of the derived Boolean bits from the underlying Kauffman network (black points) with that of
the Boolean bits predicted by the coarse model (green points), for each value ofK. The lower
amplitude of the green spectra, as for the sandpile model, reflects the imperfect predictivity of
the coarse models. The black spectra show that the quiescent, critical, and chaotic phases of the
Kauffman network have distinct signatures—a few prominentcycles, a proliferation of cycles, and
white noise, respectively. These spectra, moreover, support the concept that the transition between
phases is gradual rather than sharp, when a continuum ofK values is considered. The green spectra
show similar distinctions between phases, indicating thatthe renormalization process, despite not
making direct use of any information about the expected properties of Kauffman networks, has
preserved important emergent behaviors.

6.2 Functions Robustly Expressible by Boolean Networks

6.2.1 Introduction

The genotype of an organism is the hereditary information contained in the genome, while the
phenotype is the set of properties actually exhibited by theorganism and acted upon by natural
selection. This section is part of an effort to understand why the distinction between the genotype
and the phenotype is advantageous at all. The answer commonly proposed is that the genotype-
phenotype distinction promotesevolvability, that is, the ability to acquire novel phenotypes through
genetic perturbations [33]. The argument is that Darwinian evolution is aided if the structure of
the genotype ensures that random genotypic mutations vary the phenotype but keep it viable. Such
robustness might not be possible if the phenotype were mutated directly and hence the genotype-
phenotype distinction.

Formally, suppose that the phenotype is specified byn Boolean charactersx1, . . . ,xn ∈ {±1}
and that the phenotype is viable exactly whenf (x1, . . . ,xn) = 1 where f : {±1}n→ {±1} is a
constraint determined by the environment. The optimally fitphenotype is, of course, viable and so
contained in the solution set off (i.e., the set of inputs that evaluate to 1). The genotype is some
encoding ofx1, . . . ,xn. The evolvability argument suggests that the genotype encoding should be
designed in such a way that random mutations to it keep the corresponding phenotype viable, that
is, in the solution set off , with high probability. Otherwise, since natural selection eliminates
unviable phenotypes, evolution toward the optimally fit phenotype would be highly unlikely or,
alternatively, require an unreasonably large population.Thus, robustness of the phenotype toward
random genotypic mutations is a necessary condition for evolvability.
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We have yet to describe how the genotype encodes the phenotype. In nature, this encoding
takes the form of a regulatory network. The expression levelof each gene is functionally related
to the expression levels of some other genes. Thus, if the expression level of one gene is changed,
expression levels of other genes are also modified accordingto the regulatory connections. Quan-
tizing gene expression to only two levels, ON and OFF, we arrive at the notion of a Boolean
network, introduced by Kauffman [21, 22, 23]. Formally, aBoolean network on n variablesis
specified by a directed graph on the node set{1, . . . ,n} where each nodei hasKi incoming edges
from other nodes and carries astate xi ∈ {±1} as well as anupdate function ui : {±1}Ki →{±1}.
The states of the nodes dynamically change in the following way: if at timet, the node states are
{x1(t), · · · ,xn(t)}, then at timet +1, for each1 i ∈ [n],

xi(t +1) = ui(xi1(t), · · · ,xiKi
(t)) (6.2.1)

wherei1, . . . , iKi are theKi nodes with outgoing edges that end ati. The states att = 0 are specified
in advance. The set of states of all the nodes in the network ata given timet is said to be the
configurationat timet. Since the configuration space is finite and the dynamics of the network are
deterministic, the network will eventually fall into a previously visited configuration, after which
the configuration dynamics becomes periodic. This cyclic trajectory is called anattractor. The set
of attractors is believed [1, 25, 12, 19, 18, 15] to correspond to the set of phenotypes expressible
by the genotype that is represented by the Boolean network.

In this section, we focus our attention on Boolean networks where all the attractors are cycles
of length 1, that is, fixed points in the configuration space. The reasons for this restriction are
twofold. First of all, in many models for regulatory systemsactually found in nature, such as the
model for cell determination during flower development analyzed in [12], the attractors reached
are always fixed points instead of limit cycles. Secondly, the special case of networks with only
fixed points as attractors is easier to specify and analyze technically, and so, is a first step toward
an understanding of the more general case. For these reasons, we restrict our attention here to
Boolean networks specified by directed acyclic graphs. Henceforth, we assume Boolean networks
to be acyclic without comment.

Mutations act on the genotype, or the Boolean network in our model. Mutations could modify
the network in various ways, such as changing the adjacency relations (as in [6]), changing the
update functions (as in [32]), and duplicating or deleting nodes (as in [2]). In this section, we
investigate the case when a mutation on the genotype arbitrarily modifies the update functions of
nodes.

Definition 6.2.1. Given a Boolean network N and a parameterε ∈ (0,1), anε-mutationof N is a
random variable denoting a Boolean network N′ with the same node set and adjacency relations
as N but for which, if ui and vi denote the update functions for node i in networks N and N′

respectively, then for each node i, vi = ui with probability1− ε and vi =−ui with probabilityε.

Certainly, mutation to update functions in a regulatory network is one of the most common
types of mutations in nature. Such mutations to the Boolean network can either be genetic or even

1Throughout,[n]
def
= {1, . . . ,n}.
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be due to environmental effects. Imagine some physical event which probabilistically affects the
transmission of information from one node to the other in thenetwork. These random failures on
the edges can be equivalently modelled as failures of the update functions at the nodes. There-
fore, understanding the effect of update function mutations on the expressed phenotypes is highly
relevant.

Note that in acyclic Boolean networks, the final configuration of the network is independent
of its initial state. For a stringx∈ {±1}n, we say that a Boolean networkN expresses xif for all
i ∈ [n], xi is the state of nodei in the final configuration. Now, we can formalize the notion that
for an evolvable system, the phenotype needs to be viable with high probability even when the
genotype undergoes random mutation.

Definition 6.2.2. For ε ∈ (0,1), a Boolean function f: {±1}n→ {±1} is said to beε-robustly
expressibleif there exists a Boolean network N with nodes{1, . . . ,n} whose states correspond to
the n arguments of f such that, if x= (x1, . . . ,xn) is the configuration expressed by anε-mutation
of N, then f(x) = 1 with probability at least1−on(1). f is said to berobustly expressibleif it is
ε-robustly expressible for some constantε ∈ (0,1).

The primary goal of this work is to advance our understandingof robustly expressible Boolean
functions. This is needed for evolvable, adaptable systemsto exist in the first place. Said differ-
ently, the space of possibilities for self-organized systems must be large enough and accessible
enough to adapt or evolve.

6.2.2 Necessary Conditions for Robust Expressibility

We define theε-biased product measureµε on {±1}n by µε (x1, . . . ,xn) = εn−k(1− ε)k where
k = |{i : xk = 1}|. We may view a functionf : {±1}n→ {±1} as the characteristic function of
a subset of{±1}n, that is, the subset{x ∈ {±1}n : f (x) = 1}. Then,µε( f ) denotes the weight
assigned by the measureµε to the set characterized byf .

Our main observation is the following.

Lemma 6.2.1. f : {±1}n→{±1} is ε-robustly expressible by a network of degree d if and only if
there existπ,g,ϕ1, . . . ,ϕn such that:

f (x1, . . . ,xn) = g(xπ(1) ·ϕ1(),xπ(2) ·ϕ2(xπ(1)), . . . ,xπ(n) ·ϕn(xπ(1),xπ(2), . . . ,xπ(n−1))) (6.2.2)

where:

(i) π : [n]→ [n] is a permutation,

(ii) for i ∈ [n], ϕi : {±1}i−1→{±1} is a Boolean function depending on at most d inputs, and

(iii) g : {±1}n→{±1} such thatµε(g)≥ 1−o(1).
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Proof. To prove one direction, supposef is ε-robustly expressed by a Boolean networkN of
degreed. SinceN is acyclic, there exists a permutationπ : [n]→ [n] such that there is an edge
between nodei and nodej in N only if π−1(x) ≤ π−1(y). For everyi ∈ [n], let ϕi denote the
update function associated with nodeπ(i) in the network. Note that for anyi, the functionϕi

can only take as arguments at mostd elements of the set{xπ( j)} j≤i. Now, in anε-mutation of
N, eachxπ(i)ϕi(· · ·) is independently 1 with probability 1− ε and−1 with probability ε. Let
g(s1, . . . ,sn) = f (x1, . . . ,xn) where inductively,xπ(i) = sπ(i)ϕi(xπ(1), . . . ,xπ(i−1)) for eachi ∈ [n].
One can explicitly verify now that Equation (6.2.2) holds for this choice ofg. By definition of
ε-robust expressibility,g : {±1}n→{±1} is such thatµε(g)≥ 1−o(1).

The proof in the other direction is similar. Given the permutationπ and the functionsϕ1, . . . ,ϕn,
simply define a Boolean networkN whereπ gives the ordering of the nodes and theϕi ’s specify
the update functions of the nodes. Then, the condition ong ensures thatf is robustly expressed by
the network.

Theorem 6.2.2.If f is robustly expressible by a Boolean network of constantdegree, it is corre-
lated with a function computable by a perceptron of constantdegree.

Corollary 6.2.3. Any function robustly expressible by a Boolean network of constant degree can
be learned in polynomial time (and logarithmic sample complexity).

6.2.3 Sufficient Conditions for Robust Expressibility

Definition 6.2.4(Sequential Cover). A bipartite graph G= (V1,V2,E) with |V1| = m and|V2|= n
is sequentially coverableif there exists a sequence of vertices v1, . . . ,vk ∈V2 for some k≤ n such
that the following two conditions hold:

(i) Every vertex v∈V1 is a neighbor of some vi

(ii) Let G0 = G. For i∈ [k], inductively define Gi as the induced graph on Gi−1\({vi}∪N (vi)).
Each vi is a vertex of degree exactly1 in Gi−1.

The sequence v1, . . . ,vk is called asequential cover of sizek for G.

A bipartite graph is thus sequentially coverable if the vertices ofV2 can be ordered in such a
way that at most one vertex ofV1 is covered at a time. Note thatm≤ n necessarily if the graph is
sequentially coverable.

Theorem 6.2.5. If a function f : {±1}n→ {±1} has a sign-representationsgn(p(x1, . . . ,xn)),
such that p(x) is a degree-d polynomial with constant coefficients and suchthat its term-variable
bipartite graph, Gp, has a sequential cover of sizeΩ(n), then f is robustly expressible by a Boolean
network of degree d−1.
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Proof. Let f be a function of the variablesX = {x1, . . . ,xn}. We construct a Boolean networkN
that ε-robustly expressesf for some constant positiveε. Suppose that the term-variable graph
Gp is sequentially covered by the sequence of variablesxi1, . . . ,xik ∈ X, where eachi j is a distinct
element of[n]. Let xik+1, . . . ,xin denote the rest of the variables (in some arbitrary order). For
j ∈ [k], let Tj denote the unique term covered by the variablexi j . Observe that forj ∈ [k], Tj can
only contain the variables{xiℓ}ℓ≥ j and always containsxi j . In the Boolean networkN, let the
update function for the node associated withxi j be ui j = sgn(Tj/xi j ) for j ∈ [k] and letui j be an
arbitrary element of{±1} for j ∈ {k+1, . . . ,n}. It is clear thatN is an acyclic Boolean network.

We now show thatf is ε-robustly expressed byN for someε ∈ (0,1). Observe that with
probability at least 1−2−Ω(n), at most 2εn mutations occur. There are a total ofΩ(n) terms in
p. The terms which correspond to mutated nodes are strictly negative, while those which are not
are strictly positive, because of our choice of update functions. Since all the coefficients ofp are
constant, for a small enough constantε, at most 2εn mutations will not be enough to makep
evaluate to a negative real. Hence,N expressesf with probability at least 1−2−Ω(n).

Corollary 6.2.6. There is a robustly expressible family of functions fn : {±1}n→{±1} that cannot
be robustly expressed by a static assignment. In fact, for any constantε > 0 and for any static
assignment of{x1, . . . ,xn}, the probability that the assignment expressed by anε-mutation of the
assignment satisfies fn is at most2−Ω(n).

Proof. For eachn≥ 1, consider the functionfn : {±1}n→{±1} where fn(x1, . . . ,xn) = sgn(x1 +

x1x2 + x1x2x3 + · · ·+ x1x2 · · ·xn−
n
4). Noting that the term-variable graph ofp(x)

def
= x1 + x1x2 +

x1x2x3 + · · ·+x1x2 · · ·xn is sequentially covered by the sequencexn, . . . ,x1, it follows by a proba-
bilistic argument similar to the one in the proof of Theorem6.2.5, that the functionfn is ε-robustly
expressible for a small enough constantε.

On the other hand, we next show thatfn cannot be robustly expressed by any static assignment.
Fix a static assignment forfn, and consider anε-mutation of it. Then, eachxi is an independent
random variable that acquires−1/1 with probability 1− ε and 1/− 1 with probabilityε. For
i ∈ {1, . . . ,n}, let yi = x1x2 · · ·xi . Now, p(x) = ∑i yi , and therefore,|E [p(x)]|= ∑i |Eyi | ≤ ∑i(1−
2ε)i ≤ 1−2ε

2ε , a constant. We need to bound the concentration around this mean. Note that theyi ’s
are not independent; instead, they are generated by a Markovprocess. That is, Pr[yi = ai|yi−1 =

ai−1] can be specified by a 2-by-2 stochastic matrix, either

(

1− ε ε
ε 1− ε

)

or

(

ε 1− ε
1− ε ε

)

.

The eigenvalue gaps of these two matrices are 2ε and 2(1− ε) respectively. By a concentration
bound on the sum of elements generated by a Markov chain with eigenvalue gapδ , given in
Theorem 4.23 of [11], we have that Pr[|E [∑i yi ]−∑i yi |> n/8]≤ 2−Ω(δn). So, with probability at
least 1−2−Ω(n), ∑i yi < n/4 and fn is not satisfied.

We will say that a sign-representation isacyclic if the term-variable graph contains no cycle.
This allows us to present a more natural class of functions that are robustly expressible.

Theorem 6.2.7. If a Boolean function f: {±1}n→ {±1} has an acyclic constant-degree sign-
representation with constant coefficients and no degree-1 terms, then f is robustly expressible by a
Boolean network of constant degree.
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Proof. We show thatf has a sign-representation whose term-variable graph has a sequential cover
of sizeΩ(n), thus proving our claim using Theorem6.2.5. Let G be the term-variable bipartite
graph for the given sign-representation forf . SinceG is a forest by assumption, there must exist
some (at least 2) degree-1 vertices. Furthermore, because there are no degree-1 monomials in
the sign-representation, all the degree-1 vertices represent variables, not terms. We constructS,
a sequential cover ofG, as follows. InitiallyS is empty. Select some degree-1 vertexv in G and
append it toS. Next, removev from G and also all the vertices adjacent tov. Note that these
adjacent vertices must represent terms. The modified graph is still a forest and must have some
degree-1 vertices. Again, the degree-1 vertices must represent variables, not terms. Hence, we can
repeat the process, appending a degree-1 vertex toS, remove it and its adjacent vertices fromG,
and so on. We stop when no vertices remain that represent terms.

It is clear thatS is a sequential cover. We only need to show thatS is of sizeΩ(n). This is
so because each time a vertex is added to the sequential cover, we remove the unique term the
associated variable is contained in, and this removal can make only a constant number of other
vertices isolated (because each term is of constant degree). Hence, in order for all the variable
vertices to either be inSor be isolated after the removal process, at leastΩ(n) vertices need to be
in S.

We remark that given our other conditions, the “no degree-1 term” condition cannot be re-
moved entirely. For instance,f (x) = sgn(−x1 + x2 + (x1 + x2)(x3 + · · ·+ xn)) has an acyclic
sign-representation which contains degree-1 monomials, but it is not robustly expressible, because
with constant probabilityx1 = 1 andx2 = −1 which makesf (x) =−1 regardless of the values of
x3, . . . ,xn.

Corollary 6.2.8. There are at least nΩ(n) functions on n variables that are robustly expressible.

Proof. Use Cayley.

Corollary 6.2.9. There is a family of functions fn : {±1}n→{±1} such that it is robustly express-
ible by a constant degree Boolean network but does not have a robust static assignment.

Proof. For eachn, considerfn(x1, . . . ,xn) = sgn(x1x2 + x1x3 + · · ·+ x1xn). fn satisfies the con-
ditions of Theorem6.2.7 and hence is robustly expressible by a constant degree Boolean net-
work. On the other hand, for any static assignment,x1 could be assigned to the complement of
sgn(x2 + · · ·+xn) with constant probability, so that the assignment would notsatisfy fn.

Algorithmic Complexity of Constructing Robust Boolean Networks

Theorem 6.2.10.Suppose f: {±1}n→{±1} is known to beε-robustly expressible. Then, if f has
a constant-size decision tree, a robust Boolean network expressing f can be constructed in poly-
nomial time with probability1− 1

poly(n) , using PAC queries and uniformly distributed examples.
Also, if f is chosen uniformly at random from the set of all functions with logarithmic decision
tree depth, then a robust Boolean network expressing f can beconstructed in polynomial time with
probability1− 1

poly(n) , using PAC queries and uniformly distributed examples.
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Proof. Show how to find robust Boolean network from decision tree representation of function.
Use Ehrenfeucht-Haussler and Blum for first statement (class of sizes decision trees can be PAC
learned innlogs time steps). Use Jackson-Servedio for second statement.

Open Problems While this is a promising start toward characterizing the necessary conditions
for self-organization, adaptability, and evolvability, further work is necessary particularly in gener-
alizing the conditions placed on the structure of Boolean networks. The acyclic graph requirement
for the networks considered in this section is necessary to ensure that there is a stationary fixed
point. While most evolvable systemsdo have stationary fixed points, they arrive at them in a more
general way than this drastic requirement. Future work should focus on relaxing this retriction.

48



Chapter 7

Discussion

7.1 Significance

We have demonstrated the usefulness of renormalization-group methods for constructing reduced
models of complex systems that preserve emergent behavior,and have provided mathematical
constraints on the structure of complex systems that are robust to perturbations. Although we
have worked with idealized complex system models—cellularautomata and Boolean networks—
our approaches are extensible to more general entity-basedmodels. In combination, our results
provide important guidance for more rigorous constructionof entity-based models, which currently
are often devised in an ad-hoc manner. Our results can also help in designing complex systems
with the goal of predictable behavior, e.g., for cybersecurity. This work has potential applications
to Sandia modeling and simulation efforts in the ERN, HSD, and DS&A SMUs, such as energy
infrastructure and financial networks. By providing a clearer relation between model construction
and emergent behavior, we can more efficiently identify appropriate entity-based models for a
given domain.

One way of applying this work is through renormalization of aknown detailed model that is
not feasible to simulate in full. The systematic approach ofrenormalization offers a controlled
study of the abstraction process that is involved in constructing almost all real-world models. A
reduced model not only allows greater opportunities for extensive simulation, but offers a more
intuitive picture in terms of higher-level entities. Our results for cellular automata indicate that as
the desired level of description of a system becomes coarser, the predictivity horizon increases.
Thus, if we are interested in the large-scale behavior of thesystem, a coarse model can track this
behavior accurately, well past the time at which the smaller-scale predictions of a detailed model
may become inaccurate.

Another way of applying this work, in the absence of a known detailed model, is through
model construction based on known or desired emergent behavior. In particular, many real-world
systems exhibit properties of self-organization, scale invariance, and robustness. Our results, along
with those in other literature, provide known families of idealized complex systems that manifest
such behaviors. Entity models obtained by renormalizationof these idealized systems are good
candidates for modeling real-world systems in such a way that their key emergent behaviors are
reproduced. Furthermore, engineering design of complex systems can benefit from attempting to
build actual entities that exhibit the same responses as those in a model with desirable types of
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emergent behavior.

7.2 Future Directions

Several further technical investigations are suggested bythis work. A limitation of our current
renormalization process is that coarsening occurs in spacebut not in time. Because a coarsened
model generally has slower evolution, it should be possibleto construct a coarsened model whose
timestep corresponds to more than one timestep of the original model. This would ameliorate
the increasing cost of successive renormalizations, as seen in the sandpile model. However, be-
cause time is one-dimensional whereas space is typically two- or three-dimensional, most of the
efficiency gain from a reduced model has already been obtained through spatial coarsening.

In a broader setting, the relation of the idealized models wehave considered to more general
entity-based models would benefit from further study. We canargue that any entity-based model
that can be simulated in a digital computer is necessarily equivalent to some Boolean network, but
the effect on tractability of viewing the model in this way remains to be determined. From the other
direction, it is important to extend the renormalization ofBoolean networks so that the resulting
coarse model may be more general than a Boolean network. In this way, Boolean networks can be a
source of useful entity-based models for real-world applications, and our results on the robustness
of Boolean networks can inform the selection of such entity-based models.

Finally, an important property of some real-world systems that is not reflected in our idealized
models is dynamic adaptation of networks, i.e., connectivity that changes in time. This presents in-
teresting challenges to the renormalization concept. If the emergent behavior of dynamic adaptive
networks can be studied with systematic computational and theoretical tools analogous to those
we have developed here, then much better guidance on the construction of adaptive entity-based
models will be available. This will further advance the capabilities of modeling and simulation for
addressing vital problems.
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