
SANDIA REPORT
SAND2008-5776
Unlimited Release
Printed August 2008

OpenCV and TYZX: Video Surveillance
for Tracking

Eric Chu, Andrew Spencer, and Jim He

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2008-5776
Unlimited Release

Printed August 2008

OpenCV and TYZX: Video Surveillance
for Tracking

Eric Chu

Sandia National Laboratories
P.O. Box 969

Livermore, CA. 94551-0969

Andrew Spencer
Sandia National Laboratories

P.O. Box 969
Livermore, CA. 94551-0969

Jim He

Sandia National Laboratories
P.O. Box 969

Livermore, CA. 94551-0969

Abstract

As part of the National Security Engineering Institute (NSEI) project, several sensors were
developed in conjunction with an assessment algorithm. A camera system was developed in-
house to track the locations of personnel within a secure room. In addition, a commercial, off-
the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area
start-up that has developed its own tracking hardware and software which we use as COTS
support for robust tracking. This report discusses the pros and cons of each camera system, how
they work, a proposed data fusion method, and some visual results. Distributed, embedded image
processing solutions show the most promise in their ability to track multiple targets in complex
environments and in real-time. Future work on the camera system may include three-dimensional
volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated
camera calibration and registration, and gesture or path recognition.

4

Acknowledgements

Thanks to Davd Burnett, Donald Dowdle, Ann Lehman Harren, Harvey Ho, and Marisa Ruffolo
for their advice, inspiration, and teamwork during the early phase of this project.

Acknowledgements go to Karen McWilliams for her publication support, and Doug Gehmlich
for his support of the project.

5

Contents

Abstract ... 3
Acknowledgements... 4
Contents .. 5
Figures... 6
Preface... 7
Summary ... 8
Nomenclature.. 9
1 Introduction... 11
2 Point Grey Research Cameras .. 12

2.1 Tracking Pipeline ... 13
2.2 Background-Foreground Segmentation ... 14
2.3 Foreground Stitching ... 15
2.4 OpenCV Tracking Algorithm .. 16
2.5 Known Issues ... 17
2.6 Summary .. 18

3 TYZX.. 19
3.1 How TYZX Works .. 19
3.2 Tracking System .. 21
3.3 Known Issues ... 24
3.4 Summary .. 24

4 Comparing the Two Camera Systems... 25
5 Integrating the Two Camera Systems ... 27
6 Future Work .. 29
7 Summary ... 30
References... 31
Appendix: Programming Resources .. 32

A.1 Setting Up OpenCV .. 32
A.2 Setting Up Point Grey’s SDK ... 32
A.3 Setting Up TYZX.. 32

Distribution ... 33

6

Figures

Figure 1. Software and hardware hierarchy to accomplish tracking task.12

Figure 2. Room and camera layout. ..13

Figure 3. Flowchart of tracking algorithm..14

Figure 4. Tiled images shows how eight video views were arranged before background
segmentation. ...15

Figure 5. The image on the left shows tracking results. Note the false positive.The image
on the right shows the results of stitching together the foreground using an OR
operator on overlaps...16

Figure 6. The results of tracking a single person walking along the ground truth path
shown with a solid blue line. The dots mark the detected locations..17

Figure 7. A screen capture from a TYZX video surveillance demonstration. On left,
TYZX is capable of tracking multiple people in a busy room. On right, we see TYZX
maintain track of a two-person team..19

Figure 8. On the left is a scene and the right shows the depth map. Images taken
from [3]. ...20

Figure 9. A basic diagram showing how TYZX performs the person-tracking task.
Compare to Figure 3. ...21

Figure 10. The yellow dots show the location of the cameras. The black boxes are
occlusions, and the grey area is the effective coverage. ..22

Figure 11. This picture gives a visual indication of the blind spots in the room. Dots are
drawn where TYZX provides a track. The missing, square-like area in the middle is
the location of static occlusions, such as the server rack. The other missing track areas
are blind spots. ...22

Figure 12. A screen capture from the TYZX PersonTrackControl program. The right
panel shows the locations of the cameras and their lines of sight. The red box
represents a tracked person. The left panel shows video from one of the three
cameras, with the tracked target effectively marked with the red box.23

Figure 13. A comparison of the tracking results between the PGR overhead and TYZX
camera systems. Note the accuracy of TYZX along the ground truth when the target
is not in a blind spot. ..26

Figure 14. Results of merged outputs. Compare to individual outputs in Figure 13....................28

7

Preface

During the summer of 2007, video cameras were employed to perform basic tracking and
recognition tasks in a National Security Engineering Institute (NSEI) project. The surveillance
system implemented then detected the presence of a person via facial recognition and tracked a
color-coded asset. The computer vision algorithms were revisited and updated during 2008 to
perform more sophisticated target tracking, where the targets were personnel operating in a
cluttered room (i.e., a room with static occlusion and obstructions). An exploratory algorithm
was simulated in late 2007 for tracking multiple people in an empty room, which was found to
fail for cluttered scenes [9]. A second, brute-force approach developed in early 2008 yielded
good track results, but was unable to maintain identity. Finally, a COTS solution was obtained in
the spring of 2008. It was developed by TYZX, Inc. of Menlo Park, CA. It was tested and found
to provide the most stable and robust solution to the tracking problem, giving real-time
coordinate readings of people working in a room. Its embedded, distributed approach to machine
vision provided better performance and accuracy in solving the tracking problem.

8

Summary

Video surveillance units are usually the first element of a security system. While they are the
most intuitive to understand and can be programmed for many tasks, they also have many
vulnerabilities, such as sensitivity to light levels and large computational requirements. In this
document, we explore the simple task of tracking multiple persons in a room using two different
methods: one, a centralized, software-based solution developed at Sandia by using an open-
source computer vision library (OpenCV); and the other, a distributed, hardware-based solution
through commercial hardware (TYZX).

In our analysis, we have found TYZX stereo-vision cameras to be most capable of basic object
tracking in large areas. Its hardware-based solutions to machine vision problems provide real-
time results and accuracy that can not be rivaled by smart software. Hardware-based approaches
also provide scalable and distributed solutions to the tracking problem, distributing the
computational power among many parallel processes. As of this report’s time of writing,
TYZX’s solution gives track results in two dimensions: the x-, y-coordinates of a person from an
overhead perspective. Future work may include three-dimensional (3D) volumetric tracking by
obtaining stereo-camera development kits from TYZX or through multicamera registration [6].
While tracking a single person in an empty room is trivial for both the OpenCV and TYZX
solution, further development may be necessary to maintain track of multiple people in more
complex environments, including those with static occlusions (tables, chairs, bookshelves, etc.).
Three-dimensional information will also facilitate gesture recognition for high-level task
analysis. In conclusion, Sandia would benefit greatly by taking advantage of COTS hardware
and open-source software, adapting them for use to solve national security problems.

9

Nomenclature

NSEI National Security Engineering Institute, a summer institute
designed to expose students to national security issues and
solutions through engineering

OpenCV an open-source computer vision library initially developed by
Intel

TYZX a stereo-vision based start-up in Menlo Park, CA; pronounced to
sound like “physics”

Point Grey Research
(PGR)

a Canadian video camera company that builds high-speed, high-
resolution cameras for imaging

AVATAR a machine learning algorithm employing decision trees
developed by Philip Kegelmeyer of Sandia, CA

Fps an acronym for “frames per second”

FOV an acronym for “field of view,” representing the angles at which
a camera can detect light

LOS an acronym for “line of sight,” describing if an object can be
seen by a camera

10

This page intentionally left blank.

11

1 Introduction

Video cameras are widely employed in security systems because they closely resemble the
human sense of sight. However, video frames must be processed by a computer or custom
hardware to provide information that rivals human vision. In designing a system for tracking
personnel, the main concern is real-time processing (about 15 fps) and producing accurate track
results relative to a ground truth. Because video cameras provide much information, a measured
in megabits, image processing and computer vision algorithms often suffer from bloat and
inelegance, resulting in slow computation. To provide real-time surveillance, efficient algorithms
must be implemented and used (as in OpenCV) or a custom hardware solution must be pursued
(as in TYZX). Section 2 describes one possible software implementation by using Point Grey
Research (PGR) cameras and OpenCV. Section 3 roughly describes the TYZX implementation
and its hardware.

In this document, we examine the two computer vision systems to track personnel as a case study
in video surveillance. Our main criterion for evaluating the systems are how well the system
tracks a single person, how well the system performs with multiple people, and, finally, how well
it scales to larger environments. The first system is a Sandia design utilizing basic geometry and
computer vision methods implemented in OpenCV to extract an estimate of location. The second
system is a COTS design by TYZX using stereo vision and automatic camera calibration and
registration to accomplish the task. The TYZX design is proprietary, but what is known about it
is briefly discussed in Section 3.

Furthermore, estimates of position and velocity of tracked people provide valuable insight into
their behavior and intent. These estimates can be analyzed to determine a person’s trajectory and
intent. Currently, AVATAR, a machine learning program developed by Philip Kegelmeyer of
Sandia, is being used to learn and distinguish authorized from unauthorized behavior for various
tasks [1].

12

2 Point Grey Research Cameras

The Sandia, OpenCV system is built upon eight Point Grey Research (PGR) cameras. Point Grey
Research is a Canadian company, spun out of UBC (University of British Columbia),
specializing in advanced digital camera technology for computer vision research. We use Point
Grey’s Dragonfly cameras for our system. Technical documents about the PGR Dragonflies can
be found at PGR’s website, although PGR is replacing the Dragonfly line with Dragonfly2’s.

All eight cameras are linked via IEEE 1394a Firewire cables (maximum data speed of 400Mbps)
to a single, Pentium dual-core Xeon machine with 2GB of RAM. We use the OpenCV library to
process the frames. OpenCV is an open-source computer vision library written by Intel in C/C++
and released to the general public for computer vision programming. PGR’s FlyCapture SDK—
the software development kit provided by Point Grey—is used to interface with the cameras.
PGR’s MultiSync is used to synchronize the eight cameras. The firmware is updated to the latest
version (at the time of writing)—v2.1 beta 22 (2.1.1.22)—using the UpdatorGUI, which can be
found after logging into Point Grey’s support section. The frames are captured by Point Grey’s
FlyCaptureSDK and then converted into a format useable by OpenCV for further processing.
Figure 1 shows the hierarchy of hardware and software used to build the tracking system.

Figure 1. Software and hardware hierarchy to accomplish tracking task.

In addition, the Intel IPP (Integrated Performance Primitives) are used with PGR’s FlyCapture
SDK to speed up image acquisition. Intel’s IPP is a low-level library designed specifically for
Intel processors to perform many signal and image processing operations in special hardware
rather than through the CPU, thus optimizing the execution of common linear algebra operations.
There is also an option to use the IPP with OpenCV, though that has not been explored or
implemented yet. The XVID codec was used for video compression and viewing.

Finally, the eight cameras are set up inside a demonstration room and connected to an 80/20
Industrial Erector Set for easy reconfiguration. They are pointed to the floor and positioned
parallel to the ground. They are placed by hand to roughly maximize coverage around the server
racks (see Figure 2).

13

Figure 2. Room and camera layout.

2.1 Tracking Pipeline

Figure 3 shows the data flow from the camera frames to the resultant track. To acquire an
accurate track, we first perform background subtraction on the individual videos. Then, we
crudely stitch the foregrounds together, and track the foreground blobs. Blobs are a group of
pixels in the foreground mask that represent the location of foreground objects. The blobs are
tracked through a pre-existing OpenCV blob-tracking algorithm [2].

The following bullets describe the various components of the tracking pipeline shown in Figure
3.

• The “frames” are acquired from the video feed off one of the eight cameras.

• The “FG/BG Detector” separates foreground objects from background objects and
produces a foreground mask for objects that are not part of the static background. See 2.2.

• The “Frame Stitching” algorithm is a crude geometric overlay of the images based on the
physical location of the cameras. See 2.3.

14

• The “Blob Detection” algorithm detects when a new blob has appeared on the scene.
See 2.4.

• The “Blob Tracking” algorithm tracks the blobs around the scene. See 2.4.

• The “Trajectory Post-Processing” algorithm is used to smooth out the tracking result,
using a Kalman filter. See 2.4.

• “Blob Location and Velocity” represents the results of the current blob state for further
analysis in the machine learning algorithm.

Figure 3. Flowchart of tracking algorithm.

2.2 Background-Foreground Segmentation

The background subtraction algorithm is described by Li [5]. It is CPU intensive to run the
algorithm separately on all eight camera frames, so we start by tiling the eight videos into a 4x2
image array to make a single call to the background-foreground segmentation algorithm. The
choice to tile them into a 4x2 array is arbitrary, but was done so we can construct a single frame
from which to call the segmentation algorithm. (See Figure 4.) We use custom parameters that
differ from Li’s implementation for our segmentation.

15

Figure 4. Tiled images shows how eight video views were arranged
before background segmentation.

2.3 Foreground Stitching

After the foreground has been extracted, the foregrounds are re-stitched to resemble the shape of
the room, and thus the blob’s center of mass gives an approximation of personnel location. The
stitching is done by manually measuring the physical locations of the camera relative to an origin
and overlaying the video frames on top of each other. The foreground masks are OR-ed together
to produce the desired result. Figure 5 shows the resulting stitch. The lower-left corner represents
the origin at (0, 0). The stitching is hand-tweaked to produce good, visual results. A better
stitching algorithm would be computationally more expensive, but provide more accurate means
of tracking, since tracking is done on the OR-ed foreground masks. OpenCV’s pre-packaged
video surveillance algorithm [2] is used to track the blobs; it is described in Section 2.4. The
tracked blob is marked with a green circle. Note the false track in Figure 5, which is a result of
our personnel having moved the ladder from its original position in the background.

This algorithm is unable to distinguish between people and objects. It makes the naive
assumption that all moving objects are human and that all static objects are background. Hence,
if a background object has been moved, it will be thought of as a “person.” The segmentation
algorithm “learns” what pixels belong in the static background and compares the change in pixel
intensities between frames. When the ladder is moved from its original location, the pixel values
change dramatically. The carpet, then, is marked as a foreground object because of the change in
pixel intensity. The tracking algorithm assumes this cluster of pixels is now a new “person” who
has simply appeared in the scene and is standing still. After some time, the segmentation
algorithm adapts the carpet into the background, and the track disappears.

16

Figure 5. The image on the left shows tracking results. Note the false positive.The
image on the right shows the results of stitching together the foreground

using an OR operator on overlaps.

2.4 OpenCV Tracking Algorithm

The actual tracking algorithm is implemented in OpenCV [2]. Various methods are implemented
to detect new blobs, and even more methods are used to track the blobs. More details about these
methods can be found in the references listed in [2]. The code for tracking can be found in the
blobtrack.cpp file under ...\OpenCV\samples\c. Details about the implementation can be found in
the folder ...\OpenCV\cvaux\src\vs.

The current pipeline uses a simple method to detect new blobs in the foreground image, keeping
track of the history of blob appearances. There is no collision detection done on the blobs (for
tracking multiple people), since collision detection ends up slowing down the system. Tracking
is done by finding connected components in sequential frames. The final path is Kalman filtered
to produce the result (see [7] for information on Kalman filters). This pipeline is the simplest and
produces fast results in real-time. To achieve better results, we would require more
computational power.

Figure 6 shows the results of the overhead, PGR tracking system and gives a visual sense of the
amount of error in the system. This system runs at 7.5 fps to give enough time to process the data
between frames. The dots in Figure 6 show the sampled locations (at 7.5 times a second) of a
single user walking along the ground truth path (the solid blue line). The person was instructed to
walk around the room a couple of times, so the data covers multiple paths. Near the entryway,
the error is large because the door is often tracked as a foreground object. Along the upper wall,
the shadow cast by the user is tracked as the foreground object and the stitching is non-ideal, thus
the track deviates greatly from the ground truth. The accuracy can be improved by utilizing a
better stitching algorithm, though it may prove more computationally expensive.

17

Figure 6. The results of tracking a single person walking along the ground truth path shown with a
solid blue line. The dots mark the detected locations.

2.5 Known Issues

The OpenCV implementation is not without its limitations. Because the background
segmentation algorithm is adaptive and relies on pixel values, colors similar to the carpet are not
properly segmented. Skin tones are correctly separated from the ground, but dark-colored
clothing can blend in to the background. Because of these missed positives in the segmentation
algorithm, a single person may be split into separate tracks. Furthermore, because the
segmentation algorithm is adaptive, a person that stands very still may become adapted into the
background, and the track on him or her is lost.

Stitching the camera frames together as described in Section 2.3 introduces errors from the
different fields of view. These errors are a function of the locations of the cameras and the
distances between the object and each camera. The error can be reduced by camera calibration
and registration, a step we highlight in Section 6, Future Work. These errors can also cause a
single person to split along the seams of two images.

18

With multiple people in the scene, multiple blobs are tracked. When people brush by each other,
their blobs merge. Since there is no collision detection and avoidance (see Section 2.4), multiple
people may be tracked as one.

As with all camera systems, lighting changes drastically affect performance. Decreasing light
levels decrease the contrast between foreground and background objects. Increasing the light
levels in the room may cause spurious foreground objects to appear, since the pixel values
suddenly appear brighter. This system is only acceptable for indoor tracking where indoor
lighting is usually at a constant level, as opposed to outdoors where lighting levels vary with
time of day.

Furthermore, the cameras are networked via Firewire directly into a single computer, passing
megabytes of video data to the Firewire bus. To cover a larger physical space would require
more cameras and more data bandwidth, which may not be possible with a Firewire bus. This
design may work well for small rooms, but will not scale easily.

2.6 Summary

In this section, we described how to build a tracking system out of eight overhead cameras and
demonstrated that it can produce a rudimentary track of personnel within a secure room. We also
discussed limitations of the system. There is still room for improvement, as described in Future
Work (Section 6). While this system is functional and provides a bare-bones implementation of a
tracking algorithm for further research, the commercial TYZX system described in Section 3
provides better tracking results with fewer long-term costs.

19

3 TYZX

TYZX is a proprietary system developed by a start-up company of the same name in Menlo
Park, CA. It is a hardware-based, embedded image processing / computer vision system. Using
stereo vision (two cameras placed slightly apart from each other), it calculates the distance of a
foreground object from the camera. It maps that data to an overhead perspective of the camera’s
field-of-view. With multiple cameras, such information can be combined to differentiate and
track individuals working around the room. Figure 7 shows the robustness of the TYZX tracking
system, capable of tracking a large group of individuals in a crowded environment. Figure 7 also
shows TYZX tracking two people, as if tracking a two-person security team.

From these images, we can see that TYZX provides a very accurate method to track multiple
people in the face of occlusion for complicated environments. [3] and [8] provide the technical
details about the TYZX cameras and various applications for 3D tracking.

Figure 7. A screen capture from a TYZX video surveillance demonstration. On left,
TYZX is capable of tracking multiple people in a busy room. On right, we see TYZX

maintain track of a two-person team.

3.1 How TYZX Works

The TYZX tracking system relies fundamentally on stereo vision, emulating the physical
architecture of human vision. With two cameras placed a known distance apart from each other,
there is considerable overlap in the two fields of view. Because the cameras see the same scene
from a slightly different perspective, certain objects in the scene will appear to be shifted: the
shift is proportional to how far away the object is from the cameras. Using two cameras, then,
one can accomplish depth perception without relying on pixel values, as shown in Figure 8.

20

Figure 8. On the left is a scene and the right shows the depth map. Images taken from [3].

The depth values can then be used to track targets in three dimensions (3D). Height thresholds
can be applied to exclude objects that are too short, and distance thresholds can be used to
exclude walls or static barriers.

TYZX’s image processing pipeline is shown in Figure 9; compare it to Figure 3. Note that in the
PGR / OpenCV implementation, only the background / foreground segmentation algorithm was
theoretically offloaded to the camera. A dedicated server polled all eight frames and computed
the proper track through the OpenCV software. In TYZX’s implementation, computation is
distributed among the cameras. Background models are built by learning how far away each
pixel is from the camera (a depth map) instead of the pixel’s color value. Foreground objects are
segmented by marking pixels that differ in depth from the background model. Each camera finds
these foreground objects (in 3D), projects them into the world (room) coordinate system, and
sends the height coordinate of the head back to the server. The server provides a central clock to
synchronize data among the distributed cameras. It also collates and fuses the data from the
cameras to produce a single reading. Since the hard work is distributed among the cameras,
TYZX is more efficient at tracking people and more scalable (i.e., network traffic is smaller).
Details about the TYZX design can be culled from [8].

21

Figure 9. A basic diagram showing how TYZX performs
the person-tracking task. Compare to Figure 3.

3.2 Tracking System

To set up TYZX, we place the cameras so that they have some amount of overlap in their fields
of view and can provide maximal coverage for the demonstration room. The cameras are
networked via Ethernet to a central switch and fed to a central server for further processing.
Because of the room’s layout and the number of cameras we had access to, we settled on the
layout in Figure 10, which leaves an open, blind spot in the room (as shown in Figure 11). The
blind spot is a result of a tall server rack placed in the center of the room, simulating static
occlusions for the person-tracking problem. The rack blocks the line-of-sight of the cameras such
that the area behind it cannot be tracked. Effectively, the blind spot can be thought of as a
“shadow” cast by the server rack in the room. It can be eliminated by purchasing a separate
camera to cover that space.

Once the cameras are positioned in the room, they are automatically calibrated by providing a
track target (usually a person) that traverses the space in the track area. From the collected track
information, the server is able to compute the correspondence in track locations between the
cameras and back-calculate the orientation and location matrix (six degrees of freedom: the x, y,
and z positions and the x, y, and z rotations) of each camera. This geometric transform can then
be used to transform any detected targets into arbitrary coordinates through basic linear algebra.

22

Figure 10. The yellow dots show the location of the cameras. The black boxes are occlusions,
and the grey area is the effective coverage.

Figure 11. This picture gives a visual indication of the blind spots in the room. Dots are drawn
where TYZX provides a track. The missing, square-like area in the middle is the location of static

occlusions, such as the server rack. The other missing track areas are blind spots.

23

Figure 12 shows a screenshot of the TYZX PersonTrackControl program which comes with the
TYZX install CD. This program serves as the control gateway to visualize the networked
cameras and their track results. Note that the GUI displays the location of the cameras (the
circles) and their fields of view. It also displays the image as viewed from a selected camera,
with a marker drawn on the tracked target.

Multiple targets are easily tracked when different cameras see the same group of people from
different angles (refer to Figure 7 for a screenshot). Depth information allows us to differentiate
whether one object is in front of the other, and information from a separate angle may serve to
corroborate the presence of a second person occluded by the first.

Figure 12. A screen capture from the TYZX PersonTrackControl program. The right panel shows
the locations of the cameras and their lines of sight. The red box represents a tracked person. The

left panel shows video from one of the three cameras, with the tracked target effectively marked
with the red box.

24

3.3 Known Issues

As with the OpenCV software tracking, there are limitations to the TYZX system. The first issue
is inherent to all camera systems: that which they cannot see, they cannot track. TYZX is unable
to maintain track in the blind spots.

Second, because TYZX provides 3D measurements of targets—their x, y position from a bird’s-
eye-view and their height—TYZX thresholds the height to be above a default minimum, so that
small foreground objects are not tracked as people. However, this default threshold setting also
means that if people were to crawl or drop to the floor, TYZX would immediately lose track.
This threshold can be controlled by the PersonTrack API.

3.4 Summary

In this section we have described how the TYZX camera system works (depth perception),
showcased its capabilities and the particular test set-up, and provided visual results regarding the
coverage of the system. Note that it gives accurate tracking in real-time by offloading most
computation on the hardware, leaving the server to do simple tasks such as collating the data for
display. The tracking results for TYZX are discussed in comparison with the overhead, PGR
system in Section 4.

25

4 Comparing the Two Camera Systems

The TYZX system addresses many of the limitations of the PGR system: unreliable background-
foreground segmentation, camera registration errors, inability to track multiple targets, and
scalability issues.

Because TYZX’s segmentation algorithm is based on the distance of objects from the camera
instead of the color values of the pixels, the color of objects does not affect the segmentation nor
do slight lighting changes. Instead, it is changes in depth perception that designate an object as
foreground or background. Pixel values are completely irrelevant when detecting foreground
objects to track. TYZX, then, is able to work around the unreliability of color-based background-
foreground segmentation algorithm of an OpenCV approach.

In the process of setting up TYZX cameras, an automated camera calibration stage is performed
that computes the six-degrees-of-freedom (position and orientation) for each camera. This step
helps the server accurately compute the global coordinates of objects tracked relative to a known
basis. The manually calibrated and configured PGR cameras lack this step and this level of
flexibility. The OpenCV software solution is unable to deal with multiple targets in real-time.
Rather, a change in the setup is required to provide enough information to distinguish multiple
targets moving close together. With TYZX, depth information allows the cameras to distinguish
people occluding each other, and multiple cameras provide different perspectives of the same
scene, providing another view where the people are not blocking each other. Using this physical
setup, there is no need for collision detection and identity maintenance in the TYZX software.

The TYZX cameras transmit 3D coordinates about the location of targets back to the server. This
information is small and takes little bandwidth over Ethernet, which allows us to scale to larger
numbers of cameras to cover a larger area than is possible when cameras are transmitting full
frames to the server. The distributed pre-processing also removes much of the computational
burden required of the central server, thus freeing up CPU time to do real-time calculations and
tracking.

Thus, the TYZX system is far superior to the homegrown PGR system. OpenCV is a useful tool
to quickly build machine vision applications, but distributed hardware-based image processing
offloads much of the complexity from the CPU and also allows scalability and flexibility in
building a generic, person-tracking system. TYZX’s hardware-based and distributed model
easily outperforms the centralized, software-based image processing system (embodied by the
PGR system). Figure 13 shows the comparison between the TYZX tracking system and the PGR
system. Excluding the blind spot, TYZX results are closer to the ground truth path than the PGR
points.

26

Figure 13. A comparison of the tracking results between the PGR overhead and TYZX camera
systems. Note the accuracy of TYZX along the ground truth when the target is not in a blind spot.

27

5 Integrating the Two Camera Systems

Experimental results led us to believe that the most complete tracking system would incorporate
data from each of the available systems. The blind spot that appears in the TYZX coverage is a
function of our small demonstration room (approximately 170”x123”) with the server rack
blocking a large area relative to the size of the room. While buying a fourth TYZX camera to
cover the blind spot would solve our problem, procuring a fourth camera was not possible due to
budget constraints: we used the opportunity to develop a simple data fusion technique for
tracking people.

Each system maintains its own pool of tracked objects—a TYZX pool and a PGR pool--which
then feed in to a global pool. Our system uses a “just-in-time” correlation scheme. Matching
between an object in the TYZX pool and an object in the PGR pool is only done when a switch
must be performed in the global pool (e.g. when an object enters the TYZX blind spot). When a
target enters a TYZX blind spot, we find the closest track in the PGR pool and continue to follow
that object until it reappears in the TYZX pool. This algorithm helps us to maintain the identity
of the object as it moves around the room. To find the closest match, given an object, q,
contained in either pool, we linearly search for the object r in the opposite pool which minimizes
the heuristic in Equation 1.

),(),(21 rqdcrqtch ⋅+⋅= (1)

 Note that c1 and c2 are constants tuned to the application, t is a function of two objects that
returns the difference of the objects’ times of entry into their respective pools, and d is a function

of two objects that returns the Euclidean distance (defined as 22)()(yyxx rqrq −+−) between

them.

The importance of the difference between the entry times term in our application was determined
to be negligible because of the high number of false entry and exit events issued by the TYZX
system.

An alternative to the “just-in-time” method would be a “soon-as-possible” approach. In such a
case we would constantly maintain mappings between objects of the two pools and modify these
mappings whenever a new object enters either view. This approach does more computation
without actually improving our system. Figure 14 shows the resultant tracking capabilities of our
“just-in-time” approach.

28

Figure 14. Results of merged outputs. Compare to individual outputs in Figure 13.

To extend the tracking, we can apply Kalman filtering and use the prediction data to smooth out
the estimates and provide minimal estimation when a track is completely lost. This step is further
discussed in Section 6.

The main downside to this design is the necessity of data synchronization. We must ensure that
data from both camera systems represent track data at exactly the same moment in time. Any
time lag will introduce a large amount of error into our tracking estimates. As it stands now,
however, because both systems operate in real-time, the perceived error is small so no data
synchronization is yet implemented. Note that future systems should implement time
synchronization between distributed systems in order to produce accurate results.

29

6 Future Work

We use the tracking problem to explore a centralized, software-based solution (PGR cameras and
OpenCV) and a distributed, hardware-based implementation. While the human tracking problem
is essentially solved through TYZX and Sandia’s in-house computer vision algorithm, further
development may be necessary to continue tracking in the event of occlusions or more complex
environments. More work can be done to build other functionality with the cameras or to better
model it for computer simulations or serious gaming applications.

First, a part of the future work may be to build a model of how the system measures location and
velocity. In essence, we wish to model a system y = Ax, where y is the measured position and
velocity vector and x is the actual position and velocity vector. The matrix A describes how our
“tracking algorithm” measures the real position and velocity, x. With such a matrix, we could
easily abstract the tracking system to a computer program or simulation. Essentially, we hope to
solve an inverse problem to allow us to port the model—along with its errors—to a simulation or
serious game.

Second, since the locations of the Sandia cameras are hard-coded, it might also be useful to have
the cameras automatically determine their locations relative to each other based on the features in
their field of view. Such an algorithm would be immune to slight deviations in camera placement
or measurement errors made by humans. It will also provide the most accurate coordinates to
stitch the images together and perform tracking. This algorithm could be extremely similar to the
automatic calibration algorithm that TYZX performs and could also be implemented with work
done by Tomas Svoboda [6].

Third, Kalman filters and particle filters can be implemented on top of the tracking results to
provide tracking in more complicated environments, and possibly to maintain tracking in blind
spots (see [4]).

Finally, instead of using stereo cameras as TYZX does, we can rearrange the PGR cameras to
provide multiple camera views of a central location. Using these multiple camera views, we can
build an automated calibration routine as in [6]. From the multiple camera data, we can build
simple 3D volumetric models for use in gesture recognition or behavioral pattern recognition. 3D
volumetric information gives more information than only the location of people. We may be able
to take the algorithm and embed custom hardware to build a generic camera security system that
is scalable and easily deployable.

30

7 Summary

We have given a general overview of Sandia’s tracking system used for the NSEI project. It
employs eight Point Grey Research Dragonfly cameras, placed at various locations in the room,
to provide a rudimentary track of personnel. The video feed is processed by software provided by
Point Grey (PGR FlyCapture SDK) and Intel (OpenCV) to give tracking results. We also
describe the proprietary TYZX system. We compare the TYZX system to the PGR-based system
and conclude that hardware-based solutions to machine vision problems provide scalable,
networkable, distributed, and embedded results that give better performance than a software-
based solution. We also propose a simple data fusion method using Euclidean distance to fuse
track data from two independent tracking systems. Finally, we propose some avenues for future
work with the tracking system and a potential new area of work for video surveillance.

31

References

[1] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Learning Ensembles from
Bites: A Scalable and Accurate Approach. Journal of Machine Learning Research, 5:421–
451, 2004.

[2] Trista P. Chen, Horst Haussecker, Alexander Bovyrin, Roman Belenov, Konstantin
Rodyushkin, Alexander Kuranov, and Victor Eruhimov. Computer Vision Workload
Analysis: Case Study of Video Surveillance Systems. Intel Technology Journal, 09:109–118,
May 2005.

[3] Gaile Gordon, Xiangrong Chen, and Ron Buck. Person and Gesture Tracking with Smart
Stereo Cameras. In Brian D. Corner, Masaaki Mochimaru, and Robert Sitnik, editors, Three-
Dimensional Image Capture and Applications 2008, olume 6805, page 68050T. SPIE, 2008.

[4] Michael Isard and Andrew Blake. Conditional Density Propagation for Visual Tracking.
International Journal of Computer Vision, 29:5–28, 1998. http://www.robots.ox.ac.uk/
misard/condensation.html.

[5] L. Li, W. Huang, I.Y.H Gu, and Q. Tian. Foreground Object Detection from Videos
Containing Complex Background. ACM Multimedia, 2003.

[6] Tomas Svoboda. A Software for Complete Calibration of Multicamera Systems. Talk given
at MIT CSAIL, January 2005. http://cmp.felk.cvut.cz/svoboda/SelfCal/index.html.

[7] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. Technical Report TR
95–041, Department of Computer Science, University of North Carolina at Chapel Hill, July
2006. http://www.cs.unc.edu/welch/media/pdf/kalman intro.pdf.

[8] John Iselin Woodfill, Gaile Gordon, Dave Jurasek, Terrance Brown, and Ron Buck. The
TYZX DeepSea G2 Vision System, a Taskable Embedded Stereo Camera. Computer Vision
and Pattern Recognition Workshop, 2006 Conference on, pages 126–132, June 2006.

[9] D. Yang, H. Gonzalez-Banos, and L. Guibas. Counting People in Crowds with a Real-time
Network of Image Sensors. In Proc. IEEE ICCV, 2003.

32

Appendix: Programming Resources

This appendix section assumes the reader of the article has basic programming experience with
Linux (make, MAKEFILEs, etc.) or Microsoft Visual Studio. It is intended to point the reader to
programming resources used in this project.

A.1 Setting Up OpenCV

To set up the OpenCV library for use, follow the instructions found under the “Installing
OpenCV” and “Getting Started” sections on the OpenCV wiki found at
http://opencvlibrary.sourceforge.net/.

A.2 Setting Up Point Grey’s SDK

The Point Grey SDK is set up similarly to the OpenCV library. It should be a fairly
straightforward operation in Linux, but since the camera computers in this project were Windows
machines, it was installed for use in Microsoft Visual Studio .NET. Follow the same instructions
as in OpenCV but include the paths to the FlyCapture SDK’s “...\lib”, “...\src”, and “...\include”
directories. In addition, the “...\bin” directory should be included under “executable files.”
Finally, include the static “flycapture.lib” file in the linker under project properties.

A.3 Setting Up TYZX

Setting up TYZX requires networking the TYZX cameras to a central computer through a hub or
a switch. The server’s IP must be 192.168.247.2 and it must have ntp running. The ntp server
must be configured properly to serve time (whether on an open network or a closed network);
TYZX tech support is extremely helpful (e-mail: info@tyzx.com) in helping to set up the
cameras and set up the time server. Furthermore, TYZX provides excellent documentation for
their cameras which come with their install CD and can also be obtained directly from them.

Once the central server is set up and networked to the cameras and has properly synchronized
time with the cameras (running ntptrace should yield a stratum of less than or equal to 4), then
PersonTrackControl can be run. The TYZX person-tracking GUI (as shown in Figure 12) then
appears on screen and provides tracking results.

33

Distribution

1 Andrew Spencer
307 SE Onyx Court
Lee’s Summit, MO, 64063

1 MS 9106 Doug Gehmlich, 8226

1 MS 9106 Ann Harren, 8226

1 MS 9106 Harvey Ho, 8226

1 MS 9106 Bryn Miyahara, 8226

1 MS 9106 Marisa Ruffolo, 8226

1 MS 9106 Eric Chu, 8226

1 MS 9102 Jim He, 8227

1 MS 9102 Donald Dowdle, 8229

1 MS 9102 David Burnett, 8229

1 MS 0899 Technical Library, 8944 (electronic)

2 MS 9018 Central Technical Files

