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This paper describes how confidence intervals can be calculated for radiofrequency emitter 
position estimates based on time-of-arrival and frequency-of-arrival measurements taken at 
several satellites. These confidence intervals take the form of 50th and 95th percentile 
circles and ellipses to convey horizontal error and linear intervals to give vertical error. We 
consider both cases where an assumed altitude is and is not used. Analysis of velocity 
errors is also considered. We derive confidence intervals for horizontal velocity magnitude 
and direction including the case where the emitter velocity is assumed to be purely 
horizontal, i.e., parallel to the ellipsoid. Additionally, we derive an algorithm that we use to 
combine multiple position fixes to reduce location error. The algorithm uses all available 
data, after more than one location estimate for an emitter has been made, in a 
mathematically optimal way. 
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Introduction
Geolocation systems employing a constellation of satellite-based receivers can use time-of-arrival 
(TOA) and/or frequency-of-arrival (FOA) measurements to locate a radio-frequency (RF) emitter 
on or near the Earth. Alternatively the satellites can simply translate the uplink band to a different 
downlink frequency band so that the TOA and FOA measurements are made at a ground station. 
The TOAs and FOAs at the satellite are then inferred from the measurements at the ground using 
the known ground station and satellite positions and velocities so that the localization problem 
can proceed as before. The transmit time and transmit frequency are not known so the localization 
is based implicitly on the time-difference-of-arrival (TDOA) and frequency-difference-of-arrival 
(FDOA) of the signal at the satellites. In this report we derive the mathematical algorithms for cal-
culating and presenting in convenient form the output location error levels given the input TOA 
and FOA measurement error variances. Algorithms for computing the location estimates them-
selves have been described in [1] and are not covered in this report, however we do describe a 
procedure for combining individual position fixes into the best overall position estimate.

Estimating Position Errors
In this section we will be concerned with using estimates of the TOA and FOA measurement 
errors and knowledge of the geometry to compute statistics of the errors in the computed position. 
The term geometry here refers to the positions and velocities of the satellites which are known 
and the position of the emitter which is also known following the geolocation calculation. We will 
represent the horizontal error for a computed location in several ways, for example by giving the 
size and orientation of an ellipse which is centered at the computed location and which is just 
large enough so that there is a 95% probability that the real emitter location is inside the ellipse. 
Following the discussion of horizontal errors we discuss vertical error estimation.

We begin the mathematical derivation of the error analysis algorithms by stating the TOA, FOA 
and ALT equations that are developed in [1]. The TOA equation that relates the emitter position 
x=[x y z]T, a column vector, at the time of transmission t, to the ith satellite position si=[xi yi zi]T, at 
the time of arrival ti, is

. (1) 

The FOA equation relates the transmitted frequency scaled by wavelength ν, and the Doppler-
shifted FOA νi at satellite i. The scaled transmit frequency and FOAs are

, (2) 

respectively where f is the unknown transmit frequency, fi are FOAs and  is the nominal system 
wavelength. The FOA equation is

(3) 

where  and  are emitter and satellite velocity respectively.

x si–( )T x si–( ) cti ct+– 0=

ν λ0f= νi λ0fi=

λ0

x si–( )T x· s·i–( )

x si–( )T x si–( )
------------------------------------------ ν

c---⎝ ⎠
⎛ ⎞ ν νi–– 0=

x· s·i
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The assumed altitude (ALT) equation is obtained from the equation for an ellipsoid, or oblate 
spheroid more specifically,

(4) 

where

, (5) 

and where  and  are the equatorial and polar radii respectively. This ellipsoid is related to the 

Earth ellipsoid having equatorial and polar radii of  and  respectively by  and 

 where a is the altitude of the emitter above the Earth ellipsoid. Here a can be 
obtained from a Digital Terrain Elevation Data (DTED) database after an approximate location is 
computed using a=0. Multiplying Eqn. (4) through by   and then taking the square root 
gives the ALT equation

. (6) 

We prefer to work with Eqn. (6) rather than Eqn. (4) directly because the units of Eqn. (6) are 
meters as in Eqn. (1) which facilitates the summing of total residual error.

When systems of Eqn. (1), Eqn. (3) and/or Eqn. (6) are solved then we can make a system of 
equations relating input errors and output errors by adding variation terms to the solution vari-
ables and to the data (measurement) variables in each equation. We can write Eqn. (1), Eqn. (3) 
and Eqn. (6) generically as  where i is the equation number index such as i=1...4 in 
a 4-TOA problem, p is a vector of solution variables such as p=[x t] and d is a vector of data vari-
ables such as d=[t1 t2 t3 t4]. The variational equations can then be written as

(7) 

where A and G are the Jacobian matrices of partials ,  evaluated at the solution 

and data values p and d respectively. Note that G is a square diagonal matrix since each measure-
ment generates one independent equation. Since  Eqn. (7) can be written as

(8) 

where e are errors resulting from the variations. For uniquely determined systems, as solved in 
[1], Eqn. (8) can be solved with  giving the input/output error relation

. (9) 

xTQx rb
2=

Q
1 0 0
0 1 0

0 0 rb
2 rs

2⁄

=

rb rs

re rp rb re a+=

rs rp a+=

rs rb⁄

rs x2

rb
---------

rs y2

rb
---------

rb z2

rs
---------+ + rb rs– 0=

fi p d,( ) 0=

f p δp+ d δd+,( ) f p d,( ) Aδp Gδd+ +=
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The output error covariance matrix then follows as

(10) 

where  is the input data error covariance matrix.  is diagonal for the common 
situation of uncorrelated measurement errors so the diagonal holds our estimated data variances. 
These estimates are made by analyzing the TOA and FOA measurement processes and likely 
sources of error, a very difficult task that is beyond the scope of this report. Assumed altitude 
error variance is principally a function of the quality of the terrain elevation database i.e. the 
DTED being used for surface emitters.

If the system in Eqn. (8) is overdetermined then it can not generally be solved with  and we 
choose instead to solve the system in a weighted least-squares sense. We minimize

(11) 

where

, (12) 

for maximum-likelihood weighting, by solving . Using Eqn. (8) we have

  (13) 

giving

. (14) 

Now output error covariance matrix follows as

(15) 

which, using Eqn. (12) simplifies to

(16) 

which agrees with Eqn. (10) when A and G are square.

Under the assumption that the measurement errors are small, zero and gaussian then the solution 
errors are linear combinations of the input errors and are gaussian. Assume further, for the 
moment, that the input errors are zero mean so that the output errors are also zero mean. Then the 
the (gaussian) probability density function (pdf) for a solution vector p when p0 is the computed 
position is

Σp E δpδpT{ } A 1– GΣdG A 1–( )
T

= =

Σd E δdδdT{ }= Σd

e 0=

ξ eTWe=

W GΣdG( ) 1–=

ξp∇ eTWep∇ 0= =

Aδp Gδd+( )TW Aδp Gδd+( )p∇ 0=

2ATWAδp 2ATWGδd+ 0=

Σp E δpδpT{ } ATWA( ) 1– ATWGΣdGWA ATWA( ) 1–= =

Σp AT GΣdG( ) 1– A( ) 1–=
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(17) 

where m is the number of solution variables in p. For example in a TOA problem, m=4, since we 
solve for 3 position coordinates and transmit time. However the pdf in Eqn. (17) could just as eas-
ily represent the factored pdf for the (x,y,z) coordinates alone. In this case m=3 and the covariance 

matrix  is the upper 3x3 of the full covariance matrix. Since  is the 
equation of an ellipsoid we see that there are constant probability density ellipsoids about the 
computed locations whose size and orientation are given by the output covariance matrix.

We now discuss how to compute the horizontal ellipse centered at the computed location that has 
a 95% probability of containing the actual emitter location. We first extract the upper 3x3 section 
of the full covariance matrix  from Eqn. (16) giving the covariance matrix for the position 
coordinates in Earth-centered Earth-fixed (ECEF) coordinates. This matrix is pre and post multi-
plied by rotation matrices to change to local South-East-Zenith (SEZ) coordinates at which point 
the upper 2x2 matrix partition gives the South-East covariance matrix . This matrix is then 
diagonalized by an eigensolver with the resulting diagonal 2x2 matrix containing the 2 uncorrel-

lated variances  and  with the eigenvector associated with the largest eigenvalue giving the 
direction of the ellipse semi-major axis in the South-East plane. In order to determine the ellipse 
semi-major and semi-minor axis lengths a and b we must determine the constant

(18) 

which gives the scale factor relating the size of the 95% ellipse to the “1-σ ellipse” which contains 
only 39% of the probability. The constant k is given by the equation 

(19) 

from [2] which can be solved for k using p=0.95 giving k=2.4477. Now the lengths of the 95% 

horizontal error ellipse axes can be determined from the eigenvalues  and  using Eqn. (18).

The plot in Fig. 1 shows constant time-difference-of-arrival and constant frequency-difference-of-
arrival contours on Earth for a simulated emitter at 0 degrees latitude and longitude. The two sat-
ellites recording the TOAs and FOAs are in some random mid-earth orbit (MEO) positions visible 
to the emitter. The intersections of these two contours are the two possible Earth-bound emitter 
locations that could have produced the observed TOAs and FOAs, i.e. these are the two points 
that would be determined from the 2-sat solver in [1].

The plot in Fig. 2 shows the locations of 100 computed solutions for the emitter that generated 
Fig. 1, i.e. the ellipse in Fig. 2 is located at 0 degrees latitude and longitude. 

f p( ) 1
2π( )m 2/ Σp

----------------------------
p p0–( )TΣp

1– p p0–( )
2----------------------------------------------------–exp=

Σp p p0–( )TΣp
1– p p0–( ) 1=

Σp

ΣSE

σ1
2 σ2

2

k a
σ1
------ b

σ2
------= =

1 k2 2⁄–( )exp– p=
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2 σ2

2
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 Figure 1. Iso-TDOA and Iso-FDOA contours for a simulated 2-sat example problem.
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 Figure 2. 100 computed locations of a simulated beacon located at center of the error ellipse.
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The error ellipse does a good job of describing the spatial distribution of horizontal location errors 
but requires three parameters, 2 axis lengths and an orientation angle, to represent it. Therefore it 
is best drawn on a map. A simple way to convey error statistics verbally is the radius of a circle 
centered at the computed location that has a given likelihood of encompassing the real location. 
The 50th percentile radius is called the Circular Error Probable (CEP) and the 95th percentile 
radius is called the Horizontal Radial Error (HRE95). The observed and computed CEP and 
HRE95 for 100 locations estimates is shown in Fig. 3 below. The observed CEP is the minimum 
radius which contains exactly 50 of the computed locations. The estimated CEP is the radius that 
theory predicts should encompass half of the computed locations - or equivalently the radius 
about the computed point that encircles the true location half the time. We now describe a proce-
dure to compute the CEP and HRE95 given the output error covariance matrix for a computed 
position.

Using the two horizontal component error variances  and  referenced in Eqn. (18), the inte-
gral of the horizontal error pdf, Eqn. (17), over a circular region of radius R about the computed 
location can be written as

(20) 
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 Figure 3. Observed (solid) and estimated (dashed) CEP and HRE95 error circles.
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where P is the resulting accumulated probability. When  Eqn. (20) can be written in terms 

of  which is in the interval (0,1), as

. (21) 

When  Eqn. (20) can be written in terms of  as

. (22) 

By symmetry Eqn. (21) can be used for either case while letting c be the smaller standard devia-
tion divided by the larger, so that  and R is measured in lengths of the larger .

Letting P=0.5 Eqn. (21) can now be used to find a polynomial approximation for CEP, R, for var-
ious values of  and , or equivalently various values of c and . The poly-

nomial in c for  is found by fitting the polynomial to data pairs determined from Eqn. (21). 
For a given value of c Eqn. (21) is numerically integrated with an increasing radius  until the 
desired value of P is reached. For P=0.5 the follow data pairs were obtained in this way:

The data in Table 1 was found to be approximated well by

. (23) 

In summary, to calculate CEP at a given location from the diagonalized horizontal location error 
covariance matrix, we divide the smaller standard deviations by the larger to get c, which is put 
into Eqn. (23) to get  which is then multiplied by the larger of the standard deviations to give 
CEP.

Similarly the following HRE95 data pairs were obtained from Eqn. (21) for P=0.5:

The data in Table 2 is approximated well by

Table 1: Data used to make CEP polynomial: R/σ vs. c for P=0.5

c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R/σ .6745 .682 .706 .750 .808 .870 .934 .996 1.058 1.118 1.1774

Table 2: Data used to make HRE95 polynomial: R/σ vs. c for P=0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.96 1.963 1.97 1.984 2.005 2.036 2.081 2.146 2.23 2.332 2.488
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c σ2 σ1⁄=
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. (24) 

Therefore to calculate HRE95 at a given location from the diagonalized horizontal location error 
covariance matrix, we divide the smaller of the standard deviations by the larger to get c, which is 
put into Eqn. (24) to get  which is then multiplied by the larger standard deviations to give 
HRE95.

The 50th percentile Vertical Error Probable (VEP) is found by scaling the Zenith standard devia-
tion, the square-root of the (3,3) element of the SEZ covariance matrix, by the factor 0.6745 
which is the absolute value of the two abscissa values between which a unit gaussian pdf inte-
grates to 0.5. Since the unit gaussian integrates to 0.5 between -0.6745 and +0.6745 it follows that 
a zero-mean gaussian pdf with a standard deviation of  integrates to 0.5 between  

and .

Using the arguments of the previous paragraph the 95th percentile vertical error (VRE95) is found 
by scaling the Zenith standard deviation  by 1.96, i.e. the vertical error pdf integrates to 0.95 

between .

R σ⁄ 1.9576 0.0846c 0.1648– c2 0.6053c3+ +=

R σ⁄

σZ 0.6745σZ–

0.6745σZ

σZ

1.96σ± Z
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Estimating Velocity Errors
Systems f, of FOA equations, Eqn. (3), can be solved for velocity  and scaled transmit fre-
quency ν when emitter position x is known, typically from solving the TOA problem. The system 
of equations can optionally include a surface motion equation of the form

(25) 

which is derived by differentiating Eqn. (4). Eqn. (25) is required for the 3-satellite problem to 
achieve the minimum number of 4 equations required to solve for the 4 unknowns, v and ν.

The derivation of the output error covariance matrix Eqn. (16) in the position error analysis sec-
tion is still valid when we are solving for velocity and transmit frequency, however we now define 
our vector of solution variables as p=[v ν], velocity and transmit frequency, and the vector of data 
variables is d=[ν1  ν2  ν3  ...], the scaled FOAs defined in Eqn. (2). For example in the 4-satellite 

velocity problem . The Jacobians ,  are then computed from 

f the vector of FOA equations, Eqn. (3), and  is formed from the FOA measurement variance 

estimates to form  using Eqn. (16).

The velocity estimate could be reported as the 3 components of v however often a more conve-
nient form is in terms of magnitude and azimuth angle of horizontal velocity and a signed vertical 

velocity. To implement this we rotate v into SEZ components  and then compute the 

azimuth angle as the arctangent of the East over the North velocity component. In the following 
we work with the supplement of the velocity azimuth angle,θ, given by 

. (26) 

This angle can now be used to make the  rotation matrix  that rotates the 

horizontal velocity into a frame with axes in the direction of the horizontal velocity and perpen-
dicular to it given

(27) 

where  and  are the names will now use for these horizontal velocity components. We will 

assume that . When this is not the case, i.e. when the horizontal velocity is near zero, the 
velocity direction error analysis will itself be imprecise but this is acceptable since the velocity 
azimuth angle becomes meaningless as the velocity magnitude goes to 0.
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The standard deviation of the horizontal velocity magnitude is now available simply as the stan-
dard deviation of  while deviations in the angle θ are related to deviations in  and  by

(28) 

where we have used a small angle approximation. Therefore the standard deviation of velocity 

angle is linearly related to the standard deviation of  by . Since  and  are linear 

combinations of normal random variables they are normally distributed and therefore the velocity 
magnitude and angle errors are normal as well. The 50% and 95% magnitude and angle errors are 
therefore easily computed from the standard deviations using the same factors of 0.6745 and 
1.9600 that were used for VEP and VRE95 respectively in the vertical position error analysis, 
which was also a univariate normal random variable.

In the 3-FOA case we must solve for 4 variables, 3 emitter velocity components and the transmit 
frequency, using 3 FOA equations and the surface motion equation which is derived by differenti-
ating Eqn. (4) with respect to time giving

(29) 

where  is the emitter velocity,  as defined following Eqn. (5), while  is the 

altitude rate of change which we assume is 0. One could attempt to estimate  using the horizon-
tal velocity estimate and a DTED database but this small refinement has not been adopted. The 
addition of the surface motion equation makes for several differences between the present 3-FOA 
case and the 4-FOA case above. The new model equation in f produces a new corresponding row 
of matrix A and a new row of matrix G which are partials of Eqn. (29) with respect to the solution 
variables and data variables respectively. Another difference is the data vector d now has 3 scaled 
FOAs and the assumed altitude rate, which we take to be 0, giving 

. (30) 

The variance of the new data variable , the last element of the diagonal of the data covariance 
matrix , must be estimated. At present we assume the standard deviation of the grade of the 

surface at the emitter location is 1% so that the standard deviation of  is 0.01 times the horizon-
tal velocity, i.e. 1-σ vertical velocity , is assumed to be 1% of the horizontal velocity. 

In other words we wish to use our a priori knowledge that motion is commonly parallel to Earth, 
while our mathematical model actually has the motion parallel to an ellipsoid Earth model. So to 
compute the output variable error statistics based on the input variable error statistics we note that 
even a vehical travelling on Earth is not moving parallel to the ellipsoid, but is changing altitude 
relative to the ellipsoid at a rate that depends on the grade of the local surface and the horizontal 
velocity. The horizontal velocity is known approximately and we use a guess of 1% for the stan-
dard deviation of road grade for roads of interest.
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Other methods of estimating  and even (non-zero)  are feasible using a DTED database but 
have not been developed yet.

After  is formed from  and  ,  is computed using Eqn. (16) and the procedure contin-
ues as for the 4-FOA case above.

σa· a·

Σd σνi

2 σ2
a· Σp
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Combining Position Estimates of a Stationary Emitter
The following procedure combines a time sequence of location estimates to give an optimal com-
posite estimate. This estimate is optimal in the sense that it minimizes the variance of the compos-
ite estimate given covariance matrices of the individual estimates. The procedure is also attractive 
in that it is computationally efficient. It is computed recursively so that the cost of computing the 
composite solution remains fixed even as the number of incorporated estimates grows.

The procedure is as follows. After the first beacon transmission we obtain a set of TOA and FOA 
measurements and compute an estimate of the beacon’s location. When the beacon transmits 
again we receive a second set of TOA and FOA data and compute a second estimate of the bea-
cons location. If the computed velocity of the emitter is small enough that the emitter is deemed to 
be stationary then we combine the two position estimates into a single composite estimate using 
the formula given below. When the beacon transmits a third time we again use the same procedure 
to update the composite solution with the third estimate. This procedure continues to update the 
composite location using newly computed locations as they become available so long as the emit-
ter appears to remain stationary.

The minimum variance composite position estimate, , given two constituent position vectors, 
 and,  with respective covariance matrices Σ1 and Σ2 is

(31) 

while the covariance of  is given by

. (32) 

These equations are applied recursively so that outputs  and Σ become inputs  and Σ1 in the 

next iteration while  and Σ2 are the new calculated emitter location and associated error covari-
ance matrix to be added to the composite solution. We call this the Running Minimum Variance 
(RMV) algorithm.

Eqn. (31) and Eqn. (32) are derived as follows. We begin with two noisy vectors  and  hav-
ing zero-mean errors with covariance matrices Σ1 and Σ2. In our application these vectors are the 
1-by-3 coordinate partitions of geolocation solution vectors, such as pn=[xn tn], and Σ1 and Σ2 are 
upper 3-by-3 partitions of solution error covariance matrices as in Eqn. (16). Let x represent the 
true emitter location that xn are noisy estimates of then we say that the expectation of xn is x

. (33) 

Although the measurement errors are uncorrelated the resulting solution errors are correlated as 
shown by Eqn. (16), the errors in different solutions however are uncorrelated, that is we can 
write

. (34) 
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We wish to find the combination of  and  that minimum-error estimate, , of x:

, (35) 

i.e. we wish to find matrices P and Q that minimize the variance of the composite estimate

. (36) 

We also want  which gives  or

. (37) 

Putting Eqn. (35) into Eqn. (36) gives  which 
becomes, using Eqn. (37),

(38) 

or

. (39) 

Using Eqn. (34) this gives

(40) 

or using Eqn. (37) an expression involving P alone is  or

. (41) 

A necessary condition that P minimizes Σ is that the variation of Σ with P vanishes, i.e. we put 
 into Eqn. (41) to obtain  and then find P such that  for all :

. (42) 

Using Eqn. (41) gives

(43) 

where we have neglected the smaller term that is quadratic in . Note that Eqn. (43) is of the 

form  where  so that for the diagonal elements of 

 to each be 0, the diagonal elements of B must each be 0, for all  therefore A 
must be zero giving

x1 x2 x̂

x̂ Px1 Qx2+=

Σ E x̂ x–( ) x̂ x–( )T{ }=

E x̂{ } x= E x̂{ } PE x1{ } QE x2{ }+ Px Qx+ x= = =

P Q+ I=

Σ E Px1 Qx2 x–+( ) Px1 Qx2 x–+( )T{ }=

Σ E Px1 Qx2 P Q+( )x–+( ) Px1 Qx2 P Q+( )x–+( )T{ }=

Σ E P x1 x–( ) Q x2 x–( )+( ) P x1 x–( ) Q x2 x–( )+( )T{ }=

Σ PΣ1PT QΣ2QT+=

Σ PΣ1PT I P–( )Σ2 I P–( )T+=

Σ P Σ1 Σ2+( )PT PΣ2– Σ2PT– Σ2+=

P δP+ Σ δΣ+ δΣ 0= δP

Σ δΣ+ P δP+( ) Σ1 Σ2+( ) P δP+( )T P δP+( )Σ2– Σ2 P δP+( )T– Σ2+=

δΣ P Σ1 Σ2+( )δPT δP Σ1 Σ2+( )PT δPΣ2– Σ2δPT–+=

δP

BT B+ AδPT δPAT+= A P Σ1 Σ2+( ) Σ2–=

δΣ BT B+= δP
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. (44) 

Using Eqn. (35) and Eqn. (37) the minimum variance estimate can be written as

(45) 

or simply as

(46) 

which is Eqn. (31).

The variance of this estimate is given by Eqn. (41) which can be expressed in a simpler form by 
putting Eqn. (44)into Eqn. (41) giving

which immediately reduces to

. (47) 

This however can still be reduced to Eqn. (32) by the following sequence of steps.

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

. (54) 

Eqn. (54) is the form given in Eqn. (32), but we note that Eqn. (44) and Eqn. (51) can be used to 
put Eqn. (31) and Eqn. (32) into the alternative simple form  and . 
This completes the derivation of the RMV algorithm.

Figure 4 below shows the generally decreasing location error as the RMV processes 100 input 
location estimates. Also shown in the same figure is the HRE95 at each RMV step.

P Σ2 Σ1 Σ2+( ) 1–=

x̂ Σ2 Σ1 Σ2+( ) 1– x1 I Σ2 Σ1 Σ2+( ) 1––( )x2+=

x̂ x2 P x1 x2–( )+=

Σ Σ2 Σ1 Σ2+( ) 1– Σ1 Σ2+( ) Σ1 Σ2+( ) 1– Σ2 Σ2 Σ1 Σ2+( ) 1– Σ2– Σ2 Σ1 Σ2+( ) 1– Σ2– Σ2+=

Σ Σ2 Σ2 Σ1 Σ2+( ) 1– Σ2–=

Σ Σ2 I Σ1 Σ2+( ) 1– Σ2–[ ]=

Σ2 Σ1 Σ2+( ) 1– Σ1 Σ2+( ) Σ1 Σ2+( ) 1– Σ2–[ ]=

Σ2 Σ1 Σ2+( ) 1– Σ1 Σ2+( ) Σ2–[ ]=

Σ2 Σ1 Σ2+( ) 1– Σ1=

Σ2 Σ1Σ1
1– Σ2Σ1

1–+( )
1–

=

Σ2
1– Σ1Σ1

1– Σ2
1– Σ2Σ1

1–+( )
1–

=

Σ2
1– Σ1

1–+( )
1–

=

x̂ x2 P x1 x2–( )+= Σ PΣ1=
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The solution accuracy metrics described in the previous section, such CEP, can be calculated for 
RMV results just as easily as for individual geolocations since the RMV provides an output error 
covariance matrix  for each RMV solution.
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 Figure 4. Location error for 100 RMV outputs and HRE95.
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