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Abstract

This research applies design optimization techniques to structures in adhesive contact where
the dominant adhesive mechanism is the van der Waals force. Interface finite elements are devel-
oped for domains discretized by beam elements, quadrilateral elements or triangular shell elements.
Example analysis problems comparing finite element resultsto analytical solutions are presented.
These examples are then optimized, where the objective is matching a force-displacement relation-
ship and the optimization variables are the interface element energy of adhesion or the width of
beam elements in the structure. Several parameter studies are conducted and discussed.
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Chapter 1

Introduction

Adhesion is a phenomenon that has wide-ranging and increasingly important applications and
effects in industry, nature and daily life. This report explores methods for designing surfaces
with novel, previously unavailable adhesive properties through the coupling of advanced finite
element techniques and the mathematics of topology optimization. The intent is to tailor surface
force distributions to create strong or weak adhesion between structural members, as dictated by
particular device applications and requirements.

As characteristic length scales in structures approach themicro and nanometer range, surface
interaction forces play an increasingly important role in adhesion phenomena. The phenomenon
of stiction in MEMS devices is one example of the power of surface interaction forces at the
microscale [55]. At the nanoscale, the usually weak van der Waals forces between molecules can
dominate depending on the geometry and topology of the surfaces in contact. For example, it has
been shown that nanoscale hair-like structures on the feet of geckos allow them to stick to nearly
any surface through van der Waals forces and support many times their own weight ([13], [47]).

Recent advances in nanomanufacturing technologies have created the potential for fabricating
surfaces that utilize nanostructures for tailored adhesion properties. This promises to significantly
impact a wide range of technologies in science, engineeringand biology. Some example appli-
cations are surface engineering of MEMS components to alleviate stiction problems ([26], [50],
[55]), creating self-assembling structures [30] and technology to design adhesive substrates for cell
capture, adhesion and growth [51].

Figure 1.1: A SEM image of setae, or hair, on the foot of a geckowhich allows adhesion to surfaces
through van der Waals forces. [1]
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However, until now no methods have been developed to design the geometry, topology and
surface interaction force laws at the microscale. In fact, even the analysis of the phenomena is
a challenge for arbitrary geometries. This research involves developing and using finite element
methods coupled with topology optimization to develop a design methodology for adhesive mi-
crostructures. The types of design problems studied here involve structures that come into or out
of adhesive contact at matching points between two surfaces. Specifically, the objective of concern
is matching the loading response to a target curve as structures delaminate or come into adhesive
contact, although a framework is developed and implementedto allow a wide range of types of
design objectives. Only problems with small deformations and displacements are considered. Ad-
ditionally, interfacial forces considered are restrictedto those that act normal to the surfaces and
are conservative. Adhesives with tangential friction force components and viscoelastic rate de-
pendencies are not considered. This work is multidisciplinary and combines physical modeling,
numerical simulations, and formal design optimization methods.

Chapter 2 is a review of the literature relevant to the work inthis report. Chapter 3 describes the
analysis framework used including a description of adhesive force laws, formulation of interface
finite elements and example simulations. Chapter 4 focuses on the optimization of structures with
adhesive surface interactions, beginning with a sensitivity analysis of the interface finite elements
followed by several examples of design optimization. Chapter 5 summarizes the key conclusions
and gives suggestions for future work.

Figure 1.2: A SEM image of a nanowire composed of gold spheres. This wire self-assembled
through adhesive forces [30]
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Chapter 2

Survey of the Literature

This chapter is a survey of the literature pertaining to the topics of adhesion, modeling and design
optimization. It begins with a brief history of the field of adhesive contact mechanics and then
goes on to mention current advances in the fields of adhesion in MEMS, adhesion in nature, com-
putational adhesive models and design optimization as theyrelate to the work presented in this
report.

2.1 Brief History of Adhesive Modeling

The study of adhesion between surfaces in close proximity toeach other originally grew out of
contact theory. The first analytical formulations relatingstresses, strains, displacements and forces
in contacting spherical bodies were published by Heinrich Hertz in 1882 [18]. He found a cubic
relation between the applied force and the radius of the circle of contact between the spheres:

a3 =
PR
K

(2.1)

wherea is the radius of the contact circle,P is the contact force,

1
R

=
1

R1
+

1
R2

(2.2)

whereR1 andR2 are the radii of the spheres, and

1
K

=
3
4

(
1−ν2

1

E1
+

1−ν2
2

E2

)

(2.3)

whereE1 andE2 are the Young’s moduli andν1 andν2 are the Poisson’s ratios of the spheres.

Fritz London, in 1930, used principles of quantum mechanicsto explain attractive forces ob-
served between inert noble gas atoms [28]. These forces, called van der Waals forces after 19th
century Dutch physicist Johannes Diderik van der Waals, arise due to instantaneous dipole mo-
ments caused by a temporary asymmetrical distribution of electrons in a atom or molecule’s elec-
tron cloud. These forces are negligibly weak when atoms are separated by large distances, but
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become dominant as surfaces come with 100 nm or less of each other. London showed that the
potential energy between molecules due to van der Waals forces is given by:

U = −C

r6 , (2.4)

where C is the London constant,∼ 10−79Jm6 [32].

As molecules approach each other, this attractive force grows until the electron clouds begin
to overlap, creating a very large repulsive effect referredto as Pauli or Born repulsion. Although
quantum mechanics yields that the energy of repulsion∼ e

rc
r , typically it is expressed∼ 1

rn with
n > 10 [32]. The most common expression for interaction energy that takes into account both
London attraction forces and Born repulsion forces is the Lennard-Jones potential:

U =
D
r12 −

C

r6 (2.5)

whereD =
r6
0C
2 andr0 is the equilibrium radius between attraction and Born repulsion.

Bradley [4] and Deryagin [10], also in the early 1930s, showed that adhesive ”pull-off” force
between a rigid contacting sphere and plane is

F = 2πΓR (2.6)

whereΓ is the energy of adhesion per area, and

Γ = γ1 + γ2− γ12 (2.7)

whereγ1 and γ2 are the surface energies of the materials in contact andγ12 is their interfacial
energy.

In the 1970s two new and apparently conflicting adhesive theories emerged for elastic spheres
in contact. Johnson, Kendall and Roberts formulated a theory based on experiments on the inter-
action of rubber, a relatively flexible material, and glass [25]. This came to be known as the JKR
theory of adhesive contact. They noticed that the contact area of a sphere of rubber on a glass sub-
strate was larger than Hertz contact theory predicted and theorized that adhesive forces deformed
the sphere surface into contact, shown in Figure 2.1b. JKR theory is analogous to fracture mechan-
ics where the edge of the contact area coincides with a crack in mode I. At the rim of the circular
contact area infinite stresses are sustained until the sphere is abruptly pulled off the substrate at
F = 3

2πΓR.

However, researchers Derjaguin, Muller and Toporov independently developed an alternate
theory, called DMT theory, describing adhesion in the contact of elastic spheres which yielded
different predictions than the JKR theory [9]. In DMT theoryadhesive forces are present in a ring
outside the circular contact area, shown in Figure 2.1c. Theprofile, however, remains Hertzian
and the stresses at the edge of the contact area remain finite.They find that when the sphere is in
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(c) DMT

Figure 2.1: Diagram showing different adhesive contact models for a sphere pressing into a plane.
(a) Hertz theory, no adhesion. (b) JKR theory, adhesive forces increase contact area, no adhesive
forces outside of contact area. (c) DMT theory, sphere deformation same as Hertz, additional ring
of adhesive forces outside of contact area.
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contact with a substrate at a single point the pull-off forcereduces toF = 2πΓR as in the theory
for rigid spheres but tends toF = πΓR as the contact area increases.

These two theories which lead to different conclusions werereconciled by Tabor [49]. He
defined a dimensionless parameterµ, later referred to as the Tabor number, where

µ =

(
Γ2R

E2Z3
0

)1
3

(2.8)

and Z0 is the equilibrium distance between atoms. In cases of soft solids (small E) and large
adhesion energy,µ ≫ 1 and the JKR theory is valid. For hard solids and relatively smaller adhesion
energy,µ ≪ 1 and the DMT theory is valid. For intermediate values ofµ there is a smooth
transition between JKR and DMT models. Analytical expressions for the JKR-DMT transition
were formulated by Maugis [31] by assuming a Dugdale model for the adhesive law between
surfaces (described in Section 3.1.2.2).

2.2 Adhesive Modeling

Baney and Hui [2] extend the work of Maugis to describe the adhesion between long cylinders.
They define a parameterλ which is proportional to the Tabor numberµ. They find a relation
between the force applied to the top of the cylinder per length P and the contact radiusa by
enforcing the condition that the singularity in the adhesive zone cancels the singularity from the
contact pressure and integrating. In the case of a cylinder the contact area is rectangular and the
contact radius is half the width of the contact area. One important conclusion of their work is that
for cylinders, asλ approaches 0 the solution tends to the Hertz instead of the DMT model. This is
due to the difference in the way that adhesive forces scale with characteristic contact length in 2D
(cylinder) and 3D (sphere) cases. This work is used directlyhere in Section 3.4.

Johnson and Greenwood [24] found adhesion maps for a sphere in contact over a range of
Tabor numbers analytically by using a Dugdale adhesion model, but with the errors in the Dug-
dale approximation corrected by numerical results using a Lennard-Jones adhesion model. The
Lennard-Jones model is described in Section 3.1.2.1 and is amore realistic model than the Dug-
dale. However, closed form analytical solutions of the force-displacement characteristics cannot
be obtained with the Lennard-Jones model.

Reedy [44] developed a theory for a rigid sphere coming into contact with a rigid surface coated
in a thin elastic layer. He then verified his analytical theory through finite element analysis. He
used a triangular adhesion model as in Section 3.1.2.3 and traced the JKR P-a curve as in Figure
3.30 for both the case with and without the elastic coating layer. In his finite element analysis
the adhesion law was incorporated into the contact algorithm already implemented in his finite
element code. In this work adhesion and contact are incorporated into the finite element model
through material nonlinearities in an interface element.

Cho and Park [7] incorporated a Lennard-Jones adhesive model in their finite element analysis
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of a sphere coming into contact with a substrate. They used the commercial ABAQUS finite
element code and introduced the adhesive force as nonlinearbody forces. They employed a quasi-
static solver and nonlinear geometry analysis for large deformation effects.

Hui et al. [21] develop an analytical model based on JKR theory for the analysis of periodically
rough surfaces at the microscale. In MEMS devices, surface roughness directly correlates to adhe-
sion energy. Rough surfaces, because asperities keep the bulk of the surface from being within the
range of van der Waals forces, have less adhesive energy thanmore smooth surfaces. They found a
closed form relation between applied load, contact area andadhesion energy for arbitrary surface
profiles.

Mi et al. [36] use interface elements which are completely analogous to the Inter elements
presented in Chapter 3 to analyze the crack propagation and force-displacement characteristics in
a double cantilever beam example. They use a triangular adhesive model. They claim that the
interface element technique in simulating crack propagation was first used by Hilleborg et al. in
1976 [20]. They note the importance of mesh refinement to reduce ”peakiness” of the results,
which leads to poor convergence. They advocate adaptive meshing if the location of the crack tip
location or path is not previously known.

2.3 Adhesion in Micromechanical Structures

Zhao et al. [55] review some important topics in adhesion as it relates to microelectromechanical
systems (MEMS). In these devices adhesion is often referredto as ”stiction” and can be problem-
atic. Although in some cases stiction occurs due to capillary or electrostatic forces, it often arises
due to van der Waals forces as described in this report.

Tayebi and Polycarpou [50] study how roughening the surfacebetween MEMS structures can
reduce adhesive effects. They conclude that increased surface roughness, as well as asymmetry in
the asperity heights and decreased asperity thickness can reduce the adhesive energy between two
surfaces. In the beam delamination example presented in Section 3.3 it is assumed that surface
roughness is the mechanism for altering the adhesive energyin strips along the beam-substrate
interface.

Knapp and de Boer [26] present an example of a microbeam in adhesive contact with a surface
and compare experimental, numerical and analytical results. One important result that they present
and that is duplicated here is that the choice of adhesive model has little effect on the final de-
formed shape of the beam. They gather beam deflection data experimentally using interferometry
and calculate the energy of adhesion associated with the interface by matching to finite element
simulation results. Both the experimental and finite element beam deflections are compared to
analytical results derived from basic beam theory. The sameapproach was used here in Section
3.3, although without experimental results.

An example of an application of adhesive design that could benefit from optimization is pre-
sented by Meitl et al [34]. They present an elastomeric stampwhich is used to transfer micropar-

19



ticles arranged in patterns from one surface to another through van der Waals adhesion forces. For
example, optimization could be employed to design adhesivegradients on the stamp surface that
would roll particles from one configuration into another.

2.4 Adhesion in Biology

Gao et al. [13] describe how the topology of the feet of geckosallows them to move along vertical
walls and ceilings. They have a dense array of nanohairs on their feet called setae which can get
close enough to the wall surface so that a large surface area of setae are within the range of van der
Waals adhesion. Additionally, asymmetry in the setae allowthe adhesion energy to change based
on the orientation of the seta, allowing the gecko foot to release and lift off the surface. Since the
adhesive characteristics of the gecko foot are entirely governed by the geometry of the surface,
it is possible that design optimization of adhesive surfaces can be utilized to recreate the novel
adhesion characteristics of gecko feet or other adhesive objectives in manufactured devices.

Sitti and Fearing [47] and Northen and Turner [39] propose designs for synthetic microscale
adhesives based on observations of gecko feet. They presentseveral approaches of microfabricat-
ing structures that mimic the setae of geckos. Their work is mainly experimental and does not
include finite element analysis. Their microstructures were designed without design optimization
techniques.

Tsibouklis et al. [51] design low surface energy coatings for implants. By reducing the energy
of adhesion of surfaces through coating, bacteria cannot adhere as easily, reducing the formation
of hazardous biofilms.

2.5 Design Optimization

There is currently very little work published on optimization of surfaces in adhesive contact where
the dominant adhesion force is from van der Waals attraction. Yao and Gao [53] use an analytical
approach to find optimal shapes of two contacting surfaces, with the objective of maximizing the
adhesive pull-off force. However, the analytical approachis limited to axisymmetric problems
where the adhesive energy in the interface is constant. In order to deal with general problem
formulations and complex geometries we present a computational approach drawing from topology
optimization of structures that come into contact without adhesion [42], [29], [11], [19]. These
methods allow for the design of structures by starting with only boundary conditions and a design
domain but do not account for adhesion, whereas the work presented in this paper focuses on
designing the adhesive pattern between predefined structures.

Pajot [40] also investigates the design optimization of structures with nonlinear properties.
He looks at designing structures with geometric nonlinearities such as buckling and studied the
problems in optimization of systems that may develop limit points and turning points. He used the

20



same optimization algorithm, GCMMA, as is used here in Chapter 4, as well as the same nonlinear
finite element framework and solvers used in Chapter 3.

Groth and Nordlund [16] use shape optimization to optimize adhesive joints at the macroscale.
However they do not model the adhesive as intermolecular forces but instead focus on classical
structural criteria such as the strength of the adhesive joint.
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Chapter 3

Analysis Framework

In this chapter the general models used for contact and adhesion are described in detail. Three
finite element models that incorporate these models are derived. The method for solving the mate-
rially nonlinear problem is then discussed. Finally, examples demonstrating the accuracy of these
elements in matching analytical solutions as well as parameter studies are presented.

3.1 Modeling and Element Implementation

The adhesive contact model presented here stems from a one-dimensional forcing model. This
model includes a force which is a function of the gap between two particles experiencing van der
Waals attraction and Born repulsion, and can be thought of asa nonlinear spring. This spring has
an equilibrium length, which corresponds to the equilibrium gap where the Born repulsion forces
from electron cloud overlap balances the attractive van derWaals adhesion forces. However, the
restoring force only increases up to a point, at which the decay rate of the van der Waals force
outpaces the decay rate of the repulsion forces and the sum force acting on the particles begins to
decrease.

This one-dimensional spring model is introduced in the literature when accounting for van der
Waals forces between nodes in finite element analysis. Liu etal. [27] use this approach in their
atomic scale finite element modeling. As nodes (atoms) approach each other, nonlinear spring
elements are adaptively inserted when the distance betweennodes is less than some cutoff value.
These spring elements serve both to prevent surface penetration and to include adhesive van der
Waals forces. Other researchers use a similar method of incorporating surface forces as nonuniform
distributed loads that are functions of the nodal displacements [26], [7]. In another model, the gap
between two surfaces remains identically zero while any interfacial forces exist [43], [52]. These
forces drop to zero when the gap becomes greater than zero andare a function of the viscosity
of the adhesive. This formulation is more appropriate for macro-scale adhesive problems such as
those involving the delamination of composite materials and is not explored in this report.
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3.1.1 Contact by Penetration Penalty

First, the penalty contact formulation is described. A one-dimensional one degree of freedom con-
tact example is shown in Figure 3.1. Considering an elastic body subject to conservative external

u h

λ kg

(a) (b) (c)

f f

Figure 3.1: A body coming into contact with a surface. (a) Definition of initial gaph and displace-
mentu. (b) Lagrange multiplierλ as reaction force preventing penetration. (c) Contact penalty as
spring with stiffnesskg, allowing penetration.

forces, the potential energyΠ of the system to be minimized can be expressed as

Π = U +W +Πa(g) (3.1)

g = h−u ≥ 0 (3.2)

HereU is the internal strain energy,W is the external work andΠa is the adhesive energy in
the system, defined as a function of the gap,g. Contact occurs wheng is reduced to zero. To
account for this, the energy minimization problem is constrained by the inequality (3.2), whereh
is the initial distance between the points closest to each other on the body and surface coming into
contact andu is the displacement of the same point on the body.

Two standard methods for enforcing this constraint in conservative problems are the penalty
and Lagrange multiplier methods [52]. In the Lagrange multiplier method, the potential energy is
augmented by a term

ΠL = λg (3.3)

Π = U +W +Πa(g)+ΠL, (3.4)
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whereλ is a Lagrange multiplier and analogous to a reaction force atthe interface preventing
penetration. This term must be solved for as an additional variable. The penalty method, which is
the method used in this work, augments the internal strain energy function by a term

Πp =
1
2

kg(g
−)2n (3.5)

Π = U +W +Πa(g)+Πp, (3.6)

whereg− is zero for positive gaps andg for negative values. The valuekg is a penalty factor and is
analogous to the stiffness of a spring that resists penetration but does not completely prevent it.

The interface elements used are derived by integrating a one-dimensional force model over
the area of an interface segment. Wriggers [52] refers to this as an isoparametric contact element
approach. One limitation in this approach is that tangential components of interfacial forces such
as friction are not included. However, this model is sufficiently accurate for the design problems
under consideration in this paper.

The penetration penalty is introduced in the interface elements as an interface stressσ which
depends on the gapg for negative gap values:

σ(g) =

{
cg ,g < 0
0 ,g ≥ 0,

(3.7)

wherec is the penetration penalty.

3.1.2 One-Dimensional Adhesion Models

While the contact formulations define the response of the Inter elements for negative gaps or pen-
etrations, several adhesion formulations have been developed that define how the Inter elements
respond to positive gaps. In adhesion there is decreasing stiffness as the gap grows larger, and
when two surfaces have debonded there is no longer any stiffness contribution from the gap be-
tween them. Three adhesion models have been implemented here: the Lennard-Jones, the Dugdale
and a triangular model. The Lennard-Jones model is the sum oftwo inverse polynomials represent-
ing the adhesive van der Waals force and repulsive electron cloud overlap. The Dugdale model is
an artificially constructed function that makes some analytical calculations easier but is not rooted
in reality. It is a notch function with a constant force per area over a certain gap range and zero
everywhere else. The triangular function is a linear approximation of the Lennard-Jones model
with a positively sloped section, a negatively sloped section and zero everywhere else.

3.1.2.1 Lennard-Jones Model

Of all the models describing adhesion presented here, the Lennard-Jones model most realistically
models forces between particles at the nanoscale. Equation3.8 for the force per area between two
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perfectly smooth surfaces was derived by integrating the Lennard-Jones potential between two
atoms.

σ (g) =
a

(bg+1)3 −
a

(bg+1)9 (3.8)

whereg is the gap or distance between two surfaces. This function was constructed so that the
equilibrium stateσ = 0 is at the origin. In reality there is some non-zero distancebetween atomic
nuclei which is a stable equilibrium. The terma(bg+1)−3 represents the contribution from the
van der Waals force. The term−a(bg+1)−9 in Equation 3.8 is due to the strong repulsion that
arises when the electron clouds of neighboring atoms begin to overlap. This effect is what prevents
solids from penetrating each other at the macroscale. The Lennard-Jones function, which is shown
in Figure 3.2, sums the effects from van der Waals attractionand electron cloud repulsion.
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Figure 3.2: The Lennard-Jones model for attraction and repulsion between atoms as a sum of van
der Waals forces and electron cloud interaction

The constantsa and b in Equation 3.8 can be expressed in terms of characteristicsof the
Lennard-Jones function such as the maximum force per areaσm, the distance between particles
that corresponds to that force per areagm and the surface energy or adhesive strength per areaΓ.
The maximum force per areaσm occurs when the derivativedσ

dg = 0. Solving forb in terms ofgm,

dσ
dg

= ab
[

−3(bgm +1)−4+9(bgm +1)−10
]

= 0 (3.9)

3(bgm +1)−4 = 9(bgm +1)−10

(bgm +1)6 = 3

b =
3

1
6 −1
gm

. (3.10)
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The constanta can be expressed in term ofσm:

σ (gm) = σm =
a

(

b3
1
6−1
b +1

)3 −
a

(

b3
1
6−1
b +1

)9

= a
(

3−
1
2 −3−

3
2

)

=
2
√

3
9

a

a =
3
√

3
2

σm (3.11)

Alternately, either of these can be replaced with an expression relatinga andb to each other
and adhesion energyΓ. Adhesion energy per area is defined as the integral of the adhesion force
per areaσ over the distance between particlesg:

Γ ≡
∫ ∞

0
σ (g)dg (3.12)

Γ
a

=
∫ ∞

0
(bg+1)−3 dg−

∫ ∞

0
(bg+1)−9 dg

Making the substitutionx = bg+1,

bΓ
a

=

∫ ∞

1
x−3dx−

∫ ∞

1
x−9dx

=
3
8

a =
8bΓ
3

(3.13)

One notable feature of the Lennard-Jones function is the existence of a singularity when the
terms in the denominators approach zero. This occurs wheng = −1

b ≈ −0.2gm. This makes the
function by itself unsuitable for analysis when there are large penetrations, necessitating a piece-
wise function combining a linear or quadratic contact penalty and the Lennard-Jones formulation.

3.1.2.2 Dugdale Model

While the Lennard-Jones model is based closely on actual physical phenomena, the Dugdale model
is constructed for mathematical reasons in deriving analytical solutions to example adhesion prob-
lems. For example, in Baney and Hui [2] a Dugdale model is usedto derive closed-form solutions
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to the Hertz and JKR problem for a cylinder. The Dugdale modelis simply

σ(g) =

{ Γ
u2

,g < u2

0 ,g ≥ u2
(3.14)

whereΓ is defined in the same was as for the Lennard-Jones model (the adhesion energy per area,
or the area under the force per area curve) andu2 is a critical gap size. The function is shown in
Figure 3.3. Note that the slope of this function is zero everywhere, and there areC0 discontinuities
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Figure 3.3: The Dugdale model for attraction between surfaces

at the origin andu2. both of these features make this particular function ill-suited for numerical
analysis.

3.1.2.3 Triangular Model

The triangular model is a compromise between the Lennard-Jones and Dugdale models. Like the
Dugdale there is a critical gapu2 after which the force per area is identically zero. However,
the triangular model isC0 continuous and has non-zero slope in the adhesive zone facilitating
numerical solution methods. The force per area function forthe triangular model is

σ(g) =







2Γ
u1u2

g ,g < u1
2Γ(g−u2)
u2(u1−u2)

,u1 ≤ g < u2

0 ,g ≥ u2

(3.15)

whereΓ is the adhesion per area as defined in Equation 3.12,u1 is the critical gap corresponding
to the maximum force per area (corresponding togm in the Lennard-Jones model) andu2 is the
gap size where the force per area becomes zero, as shown in Figure 3.4. Examples of triangular
functions with variousu1 andu2 values are shown graphically in Figure 3.18 in Section 3.3.3.
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Figure 3.4: The triangular model for attraction between surfaces

3.1.3 Finite Element Development

A finite element discretization of these contact and adhesion models is developed here. The Inter
elements, unlike other type of finite elements, are designedto be used in conjunction with specific
other types of elements and cannot be used on their own. Specifically, they are designed to be
placed topologically between two surfaces of the same element type, connecting them. The internal
force and stiffness in Inter elements depend on the gap between the two surfaces as dictated by a
contact and adhesion model pair, introducing a material nonlinearity to the system.

In nonlinear finite element analysis the internal forcep and the tangential stiffness matrixK t

need to be formulated. The nonlinear solver requires these two quantities to determine the displace-
ments of the system for the next step or Newton iteration. In the adhesion/contact problem studied
here bothp andK t can be derived from a potential energy functionU , implying that the system is
conservative. This potential energy is the integral of a surface potential functionS integrated over
the area between two surfaces:

U =
∫∫

A
S(g)dA (3.16)

The surface potentialS is defined to be the integral of the adhesive force per areaσ :

S(g) ≡
∫ g

0
σ(g)dg (3.17)

whereg is the gap between surfaces. Note from equation 3.12 that:

Γ = lim
g→∞

S(g) (3.18)

The internal forcep is defined as:

p ≡ ∂U
∂u

(3.19)
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Substituting Equations 3.16 and 3.17 into Equation 3.19 yields a general finite element equation
for the internal force between two surfaces, which will be specialized to interface elements: the
InterQuad, InterBeam and InterShell elements.

p =
∂

∂u

[∫∫

A
S(g)dA

]

=
∫∫

A

dS
dg

∂g
∂u

dA

=

∫∫

A
σ(g)

∂g
∂u

dA (3.20)

A general form for the tangential stiffness matrix can also be derived:

K t ≡ ∂ 2U
∂u∂u

=
∂p
∂u

=
∂

∂u

∫∫

A
σ(g)

∂g
∂u

dA

=
∫∫

A

[

dσ
dg

∂g
∂u

(
∂g
∂u

)T

+σ(g)
∂ 2g

∂u∂u

]

dA (3.21)

3.1.3.1 InterQuad

The InterQuad element is two-dimensional with 4 nodes and 8 degrees of freedom, as shown in
Figure 3.5. This element is designed to have 4-node quadrilateral elements sharing an edge be-
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Figure 3.5: InterQuad element. Initial position is on the left with a deformed configuration on the
right.

tween nodes 1 and 2 (the bottom edge) and between nodes 3 and 4 (the top edge). The InterQuad
contributes stiffness and forces to the system depending onthe gap between the top and bottom
edges, shown in Figure 3.5 asg. The gap is interpolated from one-dimensional linear shapefunc-
tions, treating each of the two edges as individual entities. If the local x-axis is aligned with the top

30



and bottom edges with the origin at nodes 4 and 1 respectively, the x-position can be parameterized:

xt =
1+ xg

2
Lt

xb =
1+ xg

2
Lb (3.22)

wherext is the location along the top edge,xb is the location along the bottom edge,Lt andLb are
the lengths of the edges andxg is a parameterized coordinate that goes from -1 to 1. The linear
shape functions for the y-component of the four nodes are:

N1y =
1− xg

2

N2y =
1+ xg

2

N3y =
1− xg

2

N4y =
1+ xg

2

The gapg between the edges at given corresponding x-locationsxg can be written as a function of
shape functionsN()y, nodal y-displacementsu()y and initial nodal y-positionsy0():

g = N4y
(
y04+u4y

)
+N3y

(
y03+u3y

)
−N1y

(
y01+u1y

)
−N2y

(
y02+u2y

)
(3.23)

The generalized internal force equation (3.20) and tangential stiffness equation (3.21) can now
be specialized to the InterQuad element. The width of the element is constant and the gap value
does not change in the z-direction (along the width), reducing the integral for internal force to

p = w
∫ L

0
σ(g)

∂g
∂u

dx (3.24)

wherew is the element width andx andL represent eitherxb andLb or xt andLt depending on
which edge each component of the internal force vector corresponds to. Substituting Equation
3.22 for generalized coordinates allows for a Gauss point approximation of the integral over the
length of the element

p =
wL
2

∫ 1

−1
σ(g)

∂g
∂u

dxg

∼= wL
2

n

∑
i

wiσ(gi)
∂g
∂u

∣
∣
∣
∣
xgi

(3.25)

wheren is the number of Gauss points,xgi are the generalized coordinates of the Gauss points,wi

are the corresponding weights, andgi is the gap equation (3.23) evaluated at the gauss pointsxgi .
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The derivative of the gapg with respect to the elemental displacement vectoru is

∂g
∂u

=
[

0 −N1y 0 −N2y 0 N3y 0 N4y
]T

. (3.26)

The tangential stiffness matrix can also be specialized to the InterQuad element in the same way.

The first observation is that∂
2g

∂u∂u = 0, following from Equation 3.26. The tangential stiffness
matrix for the InterQuad element, following from Equation 3.21 is

K t =
∫∫

A

dσ
dg

∂g
∂u

(
∂g
∂u

)T

dA

=
wL
2

∫ 1

−1

dσ
dg

∂g
∂u

(
∂g
∂u

)T

dxg

∼= wL
2

n

∑
i

wi
dσ
dg

∣
∣
∣
∣
gi

∂g
∂u

(
∂g
∂u

)T ∣
∣
∣
∣
xgi

(3.27)

Here, the gap derivative matrix is:

∂g
∂u

(
∂g
∂u

)T

=















0 0 0 0 0 0 0 0
0 N1yN1y 0 N1yN2y 0 −N1yN3y 0 −N1yN4y

0 0 0 0 0 0 0 0
0 N2yN1y 0 N2yN2y 0 −N2yN3y 0 −N2yN4y

0 0 0 0 0 0 0 0
0 −N3yN1y 0 −N3yN2y 0 N3yN3y 0 N3yN4y

0 0 0 0 0 0 0 0
0 −N4yN1y 0 −N4yN2y 0 N4yN3y 0 N4yN4y















(3.28)

The forces in the InterQuad element act only in the local y-direction; there is no friction-like
resistance to motion in the tangential direction. Highly distorted elements, where the upper surface
may be offset from the lower in the x-direction, will behave in the same manner as rectangular
elements since the tangential component of the gap between the surfaces is disregarded. This is
true for all three interface elements developed here.

3.1.3.2 InterBeam

The InterBeam element is very closely related to the InterQuad element, except that it is designed
to be compatible with 2-node 6-DOF beams along the top and bottom edges. The InterBeam
element, shown in Figure 3.6, has 4 nodes and 12 degrees of freedom, two translational and one
rotation at each node. Besides the additional rotational degrees of freedom, the major difference
between the InterBeam and InterQuad elements is the cubic shape functions. The shape functions
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Figure 3.6: InterBeam element. Initial position is on the left with a deformed configuration on the
right.

for the InterBeam element are

N1y =
1

L3
b

(
2x3

b −3Lbx2
b +L3

b

)

N1θ =
1

L3
b

(
Lbx3

b −2L2
bx2

b +L3
bxb

)

N2y =
1

L3
b

(
−2x3

b +3Lbx2
b

)

N2θ =
1

L3
b

(
Lbx3

b −L2
bx2

b

)

N3y =
1

L3
t

(
−2x3

t +3Ltx
2
t

)

N3θ =
1

L3
t

(
Ltx

3
t −L2

t x2
t

)

N4y =
1

L3
t

(
2x3

t −3Ltx
2
t +L3

t

)

N4θ =
1

L3
t

(
Ltx

3
t −2L2

t x2
t +L3

t xt
)

Note thatxb andxt are used as defined in Equation 3.22 in place ofxg. The gap functiong is

g =N4y
(
y04+u4y

)
+N4θ u4θ +N3y

(
y03+u3y

)
+N3θ u3θ

−N1y
(
y01+u1y

)
−N1θ u1θ −N2y

(
y02+u2y

)
−N2θ u2θ

(3.29)

Equations 3.25 and 3.27 for the internal forcep and tangential stiffness matrixK t are identical
for the InterBeam element. The differences are in the shape functions and the derivatives of the
gap with respect to the displacement vector. The gap derivative vector for the InterBeam element
becomes

∂g
∂u

=
[

0 −N1y −N1θ 0 −N2y −N2θ 0 N3y N3θ 0 N4y N4θ
]T

. (3.30)

The gap derivative matrix∂g
∂u

(
∂g
∂u

)T
is not written explicitly here, but obviously follows from

Equation 3.30..
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One optional feature in InterBeam elements is the ability toadjust the gap to take the beam
thickness into account. In this case the top and bottom edgesof the InterBeam are taken as the
midlines of the beams, shown in Figure 3.7. Ifg′ is defined to represent the original gap measure-

gt

gb

gt

gb

2

1

4

3

t  /2t

t  /2b

g

θ

b

t

θ

Figure 3.7: The gapg adjusted for beam thicknesses. Triangles show close-up ofgt andgb con-
struction

ment, the true value for the gapg becomes

g = g′−gt −gb (3.31)

wheregt andgb are defined graphically in the diagram. With the assumption that beam cross-
sections remain normal to the beam midline under bending a relation between the beam slope and
the anglesθt andθb emerge

tanθ =
dy
dx

secθ =

√

1+

(
dy
dx

)2

(3.32)

From the triangles in Figure 3.7 the following trigonometric relations exist

gt =
tt
2

secθt

gb =
tb
2

secθb (3.33)

wherett andtb are the thickness of the top and bottom beams respectively. Substituting Equation
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3.32 into Equations 3.33

gt =
tt
2

√

1+

(
dyt

dxt

)2

gb =
tb
2

√

1+

(
dyb

dxb

)2

(3.34)

Since beam elements are isoparametric the y-coordinate as afunction ofx along the beam is

yt = NT
t xt

yb = NT
b xb (3.35)

where

Nt =
[

0 N4y N4θ 0 N3y N3θ
]T

Nb =
[

0 N1y N1θ 0 N2y N2θ
]T

and

xt =
[

x4 y4 θ4 x3 y3 θ3
]T

xb =
[

x1 y1 θ1 x2 y2 θ2
]T

.

Differentiating Equations 3.35,

dyt

dxt
=

dNT
t

dxt
xt +NT

t
dxt

dxt
︸︷︷︸

=0

dyb

dxb
=

dNT
b

dxb
xb +NT

b
dxb

dxb
︸︷︷︸

=0

and substituting back into Equation 3.34 yields the equations used to modify the midline gapg′ to
account for beam thicknesses

gt =
tt
2

√

1+

(
dNT

t

dxt
xt

)2

gb =
tb
2

√

1+

(
dNT

b

dxb
xb

)2

(3.36)
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3.1.3.3 InterShell

The InterShell element shown in Figure 3.8, unlike the InterBeam and InterQuad, is fully three-
dimensional and is meant to be compatible with 3-node 18-DOFtriangular shell elements. It has

g

1 3 2

564

1

2

3

4
5

6

x

z

y

Figure 3.8: InterShell element. Initial position is on the left with a deformed configuration on the
right. The gapg measured between the top and bottom surfaces is shown

6 nodes with 6 degrees of freedom at each node for a total of 36 degrees of freedom. It has upper
and lower triangular surfaces defined by nodes 4,5,6 and 1,2,3 respectively. The overall element
is prismatic in shape. The top and bottom surfaces are interpolated with linear shape functions for
simplicity. Rotations at the nodes are not taken into account. The shape functions for the shell
elements are

N1 = ζ1

N2 = ζ2

N3 = ζ3

N4 = ζ1

N5 = ζ2

N6 = ζ3

whereζ1, ζ2 andζ3 are generalized triangular coordinates of a given point on the top or bottom
surface of the element. The gapg can be described in terms of these shape functions and z-
displacements and initial conditions.

g =N4(z04+u4z)+N5(z05+u5z)+N6(z06+u6z)

−N1(z01+u1z)−N2(z02+u2z)−N3(z03+u3z)
(3.37)

The internal force can be specialized from the general form (Equation 3.20) by converting from
Cartesian to triangular coordinates. Using the relation

dA = Jdζ1dζ2dζ3 (3.38)

whereJ is the Jacobian determinant. For linear shape functions theJacobian determinantJ reduces
to either the areaAt or Ab, depending on whether it is the top or bottom surface under consideration.

36



The specialized internal force vector becomes

p =

∫ 1

0

∫ 1

0

∫ 1

0
σ(g)

∂g
∂u

Jdζ1dζ2dζ3

= A
∫ 1

0

∫ 1

0

∫ 1

0
σ(g)

∂g
∂u

dζ1dζ2dζ3

and with triangular Gauss integration approximation

p ∼= A
n

∑
i

σ(gi)
∂gi

∂u
wi (3.39)

wheren is the number of points in the Gauss integration rule,gi represents the gap evaluated at
Gauss points andwi is the weighting factors of each Gauss point. The gap derivative vector∂g

∂u has
zeros for all non-z-component entries, negative nodal shape functions for the first three nodes and
positive nodal shape functions for the last three nodes. since this vector is constant inu the second

derivative ∂ 2g
∂u∂u = 0. The specialized tangential stiffness matrix can be derived from Equation 3.21

K t =

∫ 1

0

∫ 1

0

∫ 1

0

dσ
dg

∂g
∂u

(
∂g
∂u

)T

Jdζ1dζ2dζ3

∼= A
n

∑
i

wi
dσ
dg

∣
∣
∣
∣
gi

∂gi

∂u

(
∂gi

∂u

)T

(3.40)

Again for space considerations the 36x36 gap derivative matrix ∂gi
∂u

(
∂gi
∂u

)T
is not included. It

includes 36 non-zero entries and has a structure very similar to that of the gap derivative matrix for
the InterQuad element.

3.2 Nonlinear Solver

The material nonlinearity introduced by the contact and adhesion models in the Inter elements re-
quire the use of a nonlinear finite element solver. In linear systems the stiffness matrixK of the
system is constant, allowing the displacements vectoru to be solved for in a single step. Addition-
ally, the principle of superposition applies, meaning thatsolutions for different system boundary
conditions can be added. In nonlinear systems, however, thestiffness of the system is a function
of the displacements, meaning that the solution cannot be computed in a single step. At each
equilibrium displacement vector a tangential stiffness matrix K t must be computed to predict the
displacement of the next incremental step. A Newton corrector method is applied to applied to
reduce the residual of the resulting prediction until the guess is satisfactorily close to a new equi-
librium state. There are several methods for stepping through equilibrium states to the solution.
Those shown in Figure 3.9 are the load control, state or displacement control and arclength control.
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Figure 3.9: Sketch of different nonlinear solution methods. (a) Load control. (b) State (displace-
ment) control. (c) Arclength control.

The diagram shows a one-dimensional simplification of the displacement and force vectors. The
methods can be abstracted to higher dimensions. In all methods the step size is∆λ and then+1th

step isλn+1 = λn + ∆λ . In the forward Euler method, which is the method used in thiswork, a
prediction is made for the solution in stepλn+1 by moving along a vector tangent to the residual
path (defined by the tangential stiffness matrixK t) until a constraint is met. In the load control
method, this constraint is a hyperplane defined by a fractionof the total applied force. The Newton
corrector method then traverses along this constant force plane until the guess is close enough to
the equilibrium residual curve, as defined by a convergence tolerance. In the displacement control
method the constraint for the first prediction is instead a constant displacement hyperplane that is
defined by a fraction of the applied displacements vector. The advantage of the displacement con-
trol method is the ability to traverse limit points on the equilibrium residual curve. A limit point
is a critical point where the tangential stiffness matrixK t becomes singular and the tangent to the
equilibrium path is normal to the load axis. If a solution is past a limit point, it is not possible
to solve for it using the load control method. In the arclength method, the prediction constraint
is the length of the prediction vector itself. The Newton corrector then traverses the hyperplane
that is perpendicular to the predictor vector toward the equilibrium path. This is the most robust
method, able to traverse limit points and turning points in which K t is singular and the tangent
to the equilibrium path is normal to the displacement axis. In this work the displacement control
method is used because typically limit points are the only types of critical points encountered and it
makes specifying certain applied displacements to be savedfor optimization objective formulations
trivial.

In solving nonlinear problems the step size∆λ is a critical value, especially near critical points
where the tangential stiffness changes drastically over a small λ range. In these regions a relatively
small step size is necessary or the Newton corrector method could ”blow-up” or get stuck oscillat-
ing between two values. However, a smaller step size may not be required for the majority of the
solution, where unnecessaryλ steps can add to the solution time without improving significantly
the accuracy of the solution. As a compromise, an adaptiveλ scheme is use based on the number
of iterations the previous step took. If the previous step converged to within the specified tolerance
in less thannmax Newton iterations,∆λ is doubled for the next step. Likewise, if the previous steps
took more thannmin iterations to converge,∆λ is halved for the next step. The number of times
that∆λ can be doubled or halved is specified by the factorsl fmin andl fmax respectively. This al-
lows refinement near difficult areas such as critical points while allowing large steps through easier
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sections.

In most nonlinear solution methods, the Newton convergencetolerance tends to be defined
by the current residual value normalized by a reference value. This relative convergence scheme
allows the user to set a single tolerance value that is non-dimensional and valid for a wide range
of problems. However, problems arise when using a relative tolerance for adaptive step size when
coupled with saving the state for optimization at specific values ofλ . For example, if the lastλ step
solved for is close to aλ value that needs to be saved for optimization, the prediction for that step
may be extremely accurate. If a relative convergence criteria is used, the solution may not be able
to be improved to the level specified because the prediction was already almost converged. This
will force the Newton solver to continue iterating and it maynot be able to converge to the specified
tolerance. This will trigger the adaptive step size to be even smaller on the next step, exacerbating
the problem. This can be avoided by using an absolute residual convergence tolerance. All the
tolerances given in this work are absolute residual values.Care needs to be taken in selecting an
absolute tolerance that leads to a well-converged solution. This is studied in Section 3.3.4.

3.2.1 Multiple Statically Stable Solutions

Sometimes in the solution of nonlinear problems two different equilibrium states can be reached
for the same boundary conditions. The solution that the solver finds is dependent on the beginning
state of that step; it will find the solution that it begins closest to. This multiplicity of solutions
may seem similar to a path dependency, which would be counterintuitive as each element in a
system is internally conservative. Indeed, if every node position is prescribed, the same forces
arise independent of the path that the nodes took to reach theprescribed configuration. However,
typically only some boundary nodes in a system have prescribed displacements or forces, allowing
possibly multiple stable equilibria to exist, even in conservative nonlinear systems such as those
that include Inter elements. This can be demonstrated with asimple example, shown in Figure
3.10. This example is a simplified model of one object being pushed into another with an adhesive

k1

L0
L0

1 2 3

0 x x1 x2 3
0 0 0

k2

u3
^

initial:

321

u u1 2

deformed:

Γ

Figure 3.10: Diagram of multiple stable equilibria exampleproblem. Initial and deformed states
are shown. There is an adhesive field between points 1 and 2. Initial position and displacement of
point 3 are prescribed.
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force between the two, such as the cylinder example detailedin Section 3.4. Here one linear
spring is pushed into another by specifying an initial undeformed position for point 3 (x0

3) and
a prescribed displacement for the same node ( ˆu3). Displacementsu1 andu2 are the degrees of
freedom. There exists a nonlinear adhesive function between points 1 and 2, modeled with the
Lennard-Jones equation. It is important to note that since the problem is one-dimensional, the
contact area between points 1 and 2 is constant and assumed tobe 1. The units ofΓ are reduced to
energy instead of energy per area.

Equilibrium states of the system for a givenx0
3 andû3 occur when the potential energy of the

system,U , is at a local minimum. The potential energy of the system canbe expressed

U(u1,u2) = US +UA (3.41)

whereUS is the potential energy of the linear springs andUA is the energy stored in the adhe-
sive field between points 1 and 2. The energy in the springs is afunction of the deformation of
the springs from their undeformed length,L0. It is assumed that both springs have the same un-
deformed length and that in the initial state the springs areundeformed, such thatx0

1 = L0 and
x0

2 = x0
3−L0. The energy stored in the springs is therefore

US(u1,u2) =
1
2

k1u2
1+

1
2

k2(u2+ û3)
2 . (3.42)

The energy in the adhesive field can be expressed

UA(g(u1,u2)) = S(g) =

∫ g

0
σdg (3.43)

from Equations 3.16 and 3.17, assuming contact area is constant and equal to 1. Here, the gapg is

g(u1,u2) = x0
2− x0

1 +u2−u1 = x0
3−2L0+u2−u1. (3.44)

Substituting the Lennard-Jones model forσ from Equation 3.8,UA can be expressed

UA(g) =
8bΓ
3

[∫ g

0

1
(bg+1)3dg−

∫ g

0

1
(bg+1)9dg

]

(3.45)

UA(g) = Γ
[

1
3(bg+1)8 −

4
3(bg+1)2 +1

]

, (3.46)

whereb, defined in Equation 3.10, is proportional to the inverse of the gap that corresponds to the
maximum adhesive force,gm, and has units of inverse length.

Stable equilibria will occur either at critical points ofU or whereg = 0, since negativeg
corresponds to penetration which is not admissible. Critical points ofU occur where

∂U
∂u1

=
∂U
∂u2

= 0. (3.47)
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variable value
k1 4
k2 100
x0

3 4
û3 1
Γ 2
b 2
L0 1

Table 3.1: Parameters in spring problem

Differentiating Equation 3.41,

∂U
∂u1

=
∂US

∂u1
+

dUA

dg
∂g
∂u1

=
∂US

∂u1
− dUA

dg
(3.48)

∂U
∂u2

=
∂US

∂u2
+

dUA

dg
∂g
∂u2

=
∂US

∂u2
+

dUA

dg
. (3.49)

Setting these to zero and summing,

0 =
∂US

∂u1
+

∂US

∂u2
. (3.50)

Differentiating Equation 3.42,

∂US

∂u1
= k1u1 (3.51)

∂US

∂u2
= k2(u2+ û3). (3.52)

Substituting back into Equation 3.50, the following relation betweenu1 andu2 at a critical point of
U is obtained:

u2 = −k1

k2
u1− û3. (3.53)

Equation 3.53 has several implications. At all critical points of U , (u∗1,u
∗
2), u∗2 is a linear

function of u∗1. This means that for each criticalu∗2 there is a uniqueu∗1, and the problem can be
reduced to a single degree of freedom. Furthermore, in the three-dimensionalu1-u2-U space, all
critical points of the surfaceU are along the intersection with the vertical plane defined byEquation
3.53. Figure 3.11 shows a contour plot of the potential energy of the systemU as a function ofu1
andu2 for the values in Table 3.1. For these parameters there are two local minima ofU in the
admissible ranges foru1 andu2, implying two different stable equilibria for the same ˆu3.

Since all critical points ofU intersect Equation 3.53 and that equation is linear, we can effec-
tively reduce the problem to one degree of freedom. Substituting Equation 3.53,U becomes

U∗(u1) = U∗
S (u1)+UA(g∗(u1)) (3.54)
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Figure 3.11: Contour plot ofU for spring system as a function ofu1 andu2, with Equation 3.53
overlaid. All critical points ofU lie on the line. There are two local minima and one saddle point
in the range shown.

where

U∗
S =

1
2

k1u2
1

(

1+
k1

k2

)

(3.55)

g∗ = x0
3− û3−2L0−u1

(

1+
k1

k2

)

. (3.56)

As a final step, the problem can be non-dimensionalized by scaling U∗ by 1
k1L2

0
. Scaling a

function by a constant does not change the location of its critical points. Non-dimensional terms
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are denoted by bars:

b̄ = bL0

ū1 =
u1

L0

ū3 =
û3

L0

k̄ =
k1

k2

x̄0
3 =

x0
3

L0

Γ̄ =
Γ

k1L2
0

ḡ =
g∗

L0
= x̄0

3−2− ū3−
(
k̄ +1

)
ū1

ŪS =
1
2

ū2
1(1+ k̄)

ŪA = Γ̄
[

1

3(b̄ḡ+1)8
− 4

3(b̄ḡ+1)2
+1

]

Ū =
U∗

k1L2
0

= ŪS +ŪA. (3.57)

Figure 3.12 shows̄U plotted against ¯u1 at various non-dimensionalized displacement values of
point 3. In each case, only admissible values of ¯u1 are plotted; larger values of ¯u1 than those
plotted in each graph would correspond to an inadmissible negative gap between points 1 and
2. The path that a displacement controlled nonlinear solverwould take, starting from ¯u3 = 0.6,
increasing to 1.6 and returning to 0.6 is shown. The solver would find the local minimum ofŪ at
eachλ (û3) step, starting at the equilibrium ¯u∗1 from the previous step and using the gradient there
in the current step for the search direction. At ¯u3 = 1.1, the solver finds different stable equilibria
based on which direction that step is approached from, creating an apparent path dependency. Also,
local minima can ”disappear” betweenλ steps, making the distance to the next stable equilibrium
relatively large. This can cause problems in a real numerical solver in a problem with more degrees
of freedom. Another potential problem, not shown in Figure 3.12, is ”flip-flopping” between two
stable equilibria if they are too close together relative tothe Newton step size. These problems
combined can make some adhesive problems nearly unsolvable, as shown in Section 3.4.

3.3 Beam Delamination Example

A simple example problem is presented that has an analyticalsolution to which numerical results
can be compared. In this problem, a beam begins fully adheredto a rigid substrate. A vertical
displacementut is applied to the tip of the beam while the angle of beam at the tip is fixed at zero,
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Figure 3.12: Progression of displacement controlled nonlinear solver finding stable equilibria of
the spring system as ¯u3 is increased from 0.6 to 1.6 and back. Solver finds different stable equilib-
rium at ū3 = 1.1 depending on which direction that displacement is approached from.
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as shown in Figure 3.13. As the gap between the beam tip and thesubstrate grows, the tip force

F

t
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M
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x
y(x)

s

L

Figure 3.13: Diagram of beam example delamination problem

increases until a crack begins to form and propagates along the space between the beam and the
substrate. Analytically this crack length is represented as s, while numerically the crack length is
determined by the number of Inter elements with a gap larger than some critical value, usuallygm

for the Lennard-Jones model oru1 for the triangular model. Nominal values for all the problem
parameters are given in Table 3.2

In the following sections the analytical solution is derived and then a series of case studies
where various problem or numerical parameters are varied, demonstrating the envelope of re-
sponses that are possible and verifying the accuracy of the three Inter element models. With the
exception of the parameter under study, all other parameters take the nominal value given in Table
3.2. Additionally the triangular model is the default adhesive force per area function with a linear
contact penalty function, a spooles solver is used for solving systems of equations, the beam is dis-
cretized by 1200 beam elements with InterBeam elements connecting to the substrate and 6 Gauss
points per InterBeam element is used for numerical integration.

3.3.1 Analytical Solution

For this problem an analytical solution can be obtained. A simplification is made that no adhesive
force acts on the delaminated section of the beam and that theadhered section acts as though
clamped. The delaminated portion of the beam can then be modeled as shown in Figure 3.14 with
the following boundary conditions:

y′(0) = 0 (3.58)

y′(s) = 0 (3.59)

y(0) = ut (3.60)

y(s) = 0. (3.61)

Summing moments in the free body diagram in Figure 3.14 yields

M(x) = Ftx−Mt (3.62)

45



variable value description
w 8µm beam width
tt 2µm beam thickness
tb 2µm substrate thickness
A 1.6×10−11m2 beam cross-sectional area
E 1.6×1011Pa beam Young’s modulus
I 5.333×10−24m4 beam moment of inertia
L 800µm beam length
ut 2µm vertical beam tip displacement
m 1200 elements per beam
Γ 100µJ

m2 adhesion energy per area
u1 1×10−8m triangular first critical gap
u2 2×10−8m triangular second critical gap
c 1×1016 N

m3 contact penetration penalty
tol 1×10−8 absolute residual convergence tolerance
λ0 0.002 initial λ for nonlinear solver

∆λ0 0.002 initial λ step size
l fmin 3 minimum∆λ multiplication factor
l fmax 5 maximum∆λ multiplication factor
nmin 20 minimum iterations for∆λ factor decrease
nmax 5 maximum iterations for∆λ factor increase

Table 3.2: Nominal values for the parameters in the beam example problem

M t

Ft

M t

Ft
V(x)

M(x)

x

s

Figure 3.14: Free body diagram of delaminated section of beam example. Lower diagram includes
shear force and moment exposed by a cut
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and from basic beam theory,
EIy′′ = M. (3.63)

Substituting Equation 3.62 and integrating,

EIy′′ = Ftx−Mt

EIy′ =
1
2

Ftx
2−Mtx+ c1. (3.64)

Substituting Boundary Condition 3.58 yieldsc1 = 0. Substituting Boundary Condition 3.59 gives
a relation between crack length, tip force and tip moment:

Mt =
1
2

Fts. (3.65)

Integrating Equation 3.64,

EIy =
1
6

Ftx
3− 1

2
Mtx

2 + c2 (3.66)

Substituting Boundary Condition 3.60 yieldsc2 = EIut. Substituting Boundary Condition 3.61
and Equation 3.65 yields a relation between crack length, tip force and tip displacement.

0 =
1
6

Fts
3− 1

2
Mts

2+EIut

EIut =
1
12

Fts
3

Ft =
12EI

s3 ut (3.67)

Using this expression it is possible to express the beam shape y(x) in terms of crack length and tip
displacement.

EIy = Ft

[
1
6

x3− 1
4

sx2
]

+EIut

y = ut

[
12
s3

(
1
6

x3− 1
4

sx2
)

+1

]

y = ut

(

2
x3

s3 −3
x2

s2 +1

)

(3.68)

In order to express the crack length in terms of the adhesion energy per area,Γ, the strain
energy rate of the beam needs to be formulated. From beam theory, the strain energy densityW is
a function of the stress,

σx =
My
I

W =
σ2

x

2E
=

M2y2

2EI2 . (3.69)
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The strain energy of the beamU is the strain energy density integrated over the beam cross-
sectional area and the length

U =

∫ s

0

∫∫

A
WdAdx

=
∫ s

0

M2

2EI2

∫∫

A
y2dAdx

=
∫ s

0

M2

2EI
dx

U =
1

2EI

∫ s

0
M2dx (3.70)

The termM2 is expressed in terms of crack length and tip displacement bysubstituting Equations
3.65 and 3.67 into Equation 3.62

M = Ft

(

x− 1
2

s

)

M2 =
122E2I2u2

t

s6

(

x2− sx+
1
4

s2
)

Substituting into Equation 3.70,

U =
1

2EI
122E2I2u2

t

s6

∫ s

0

(

x2− sx+
1
4

s2
)

dx

=
6 ·12EIu2

t

s6

[
1
3

s3− 1
2

s3+
1
4

s3
]

U =
6EIu2

t

s3 (3.71)

The beam/adhesive system will be in equilibrium when the energy released when increasing the
delaminated area by an infinitesimal amount is equal to the energy of adhesion per area,

Γ = −dU
dA

= − dU
wds

(3.72)

=
18EIu2

t

ws4

s =

(
18EIu2

t

wΓ

)1
4

wherew is the beam width. SubstitutingI = wt3

12 ,

s =

(
3Et3u2

t

2Γ

) 1
4

(3.73)
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wheret is the beam thickness. Substituting this back into Equation3.68 yields an equation for
the beam shapey in terms of the tip displacementut and the energy of adhesion per areaΓ. This
equation is used as the baseline to compare numerical results. An example is in Figure 3.16.

3.3.2 Element Model Study

The first study we look at is modeling the beam using either beam, four-node quadrilaterals, or
three-node shell elements. In the case of beam elements, theupper delaminating beam was dis-
cretized into 1200 elements. Displacements at all degrees of freedom of the lower substrate beam
were set to zero, as well as those of the right-most node of theupper beam. A displacement of
2×10−6m in the y-direction was applied to the leftmost node of the upper beam, and all other
degrees of freedom were left free.

In the case of shell elements, the upper beam was discretizedin 2400 triangular elements in a
pattern shown in Figure 3.15 This discretization preservedthe x-length of the elements from the

x

y

z

Figure 3.15: Sketch of beam discretization pattern for three-node triangular shell elements, top-
down view

beam element discretization. In this case the tip displacement is in the z-direction, out of the page
as shown in Figure 3.15. Again, displacements in all degreesof freedom of the substrate beam
were restricted to zero, as well as at the rightmost two nodesof the upper delaminating beam.

Several meshes were studied for quadrilateral elements. Ingeneral, the converged shape of
the beam discretized with quadrilaterals matched the leastwell with the analytical solution. This is
most likely due to not having rotational degrees of freedom and the linear as opposed to cubic shape
functions. The mesh that was the best compromise between accuracy and computation time was
2400 elements in the x-direction and 4 in the y-direction. Asin the beam element case, beam tip
displacement is in the y-direction. It is important to note that the element length in the x-direction
is twice as small as in the beam and shell element cases.

Figure 3.16 shows numerical results for the delaminated beam shape using different element
types to discretize the beam, compared to the analytical solution. In some cases, the upper beam
is clamped at the analytically computed crack tip and the adhesive energy of the Inter elements
is set to zero. The clamped beam and shell element discretizations are nearly indistinguishable
from the analytical solution. Figure 3.17 shows the difference between the different examples and
the analytical solution. The clamped quadrilateral discretization is less accurate, even though the
mesh is twice as dense in the x-direction as the beam and shellcases. This is especially evident
in the region between the beam tip and the crack tip. In the remaining cases the adhesion energy
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Figure 3.16: Beam deflection example modeled with differentelement types. (a) Delaminated
beam profile (b) Close-up on crack tip area
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in the Inter elements is set to 1× 10−4 and the upper beam is not clamped at the analytically
determined crack tip. The beam and shell element discretizations are nearly indistinguishable, and
the quadrilateral element case is slightly worse. All threeshow a crack tip shifted to the right,
indicating a possibly weaker adhesive than calculated analytically. However, this effect is due to
the transition between fully ”stuck” and fully delaminatedregions of the elemental force function,
while the analytical case assumed no transition zone. However, the maximum error overall, in the
quadrilateral case, was less than 7nm, which is about a third of one percent of the beam thickness.

3.3.3 Adhesion Law Study

Two adhesion laws were implemented, one based on the Lennard-Jones equation and four varia-
tions on the triangle law used in all other examples. Figure 3.18 shows the five functions, which
all have a corresponding adhesion energy per area (Γ) of 1×10−4 J

m2 . Figure 3.18(a) shows the
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Figure 3.18: Various nonlinear adhesive functions studied. (a) Triangular functions withu2 =
2.0×10−8 (b) Lennard-Jones-style function and a corresponding triangular function

triangular functions ”ramp down,” ”ramp up” and ”triangle,” which all have the same gap size
over which adhesion is active (u2) in addition to the sameΓ. Figure 3.18(b) shows a Lennard-
Jones function and a corresponding triangular function that is scaled to similar dimensions. The
Lennard-Jones function was scaled so that the penetration penalty would be large enough to allow
the same amount of penetration as the other triangular functions. Note the two order of magnitude
difference between the scales in the figure.

Figure 3.19 shows the resulting beam profiles for the variousadhesion laws. Interestingly, at
the crack tip the ramp up and ramp down laws give similar results, but the error over the beam
as a whole is much greater for the ramp down case. Also, the Lennard-Jones law gave by far the
closest agreement with the analytical solution, while the similar compressed triangle law yielded
the poorest results. In fact, the nonlinear solver could notconverge to an absolute residual of
1× 10−8 for the compressed triangle case as it did in all the others, so the tolerance had to be
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Figure 3.19: Beam delamination with various adhesive forcelaws. (a) Close-up of crack tip (b)
Difference in beam shape from analytical solution

relaxed to 1×10−6. Even with this relaxation, many steps took more than 80 iterations to converge.
The convergence issues are most likely due to the sharpC1 discontinuities in the compressed
triangle function. Although the Lennard-Jones function does not have any definitiveu2 point, the
vast majority of the adhesive strength is concentrated in a much more narrow range than in the
other triangular functions. This accounts for the closer agreement to the analytical solution, which
assumes no transition whatsoever from adhered to free.

3.3.4 Convergence Tolerance Study

In any nonlinear analysis the degree to which the force residual, or the norm of the difference
between the external and internal forces, converges to zerois an important parameter. If the residual
is not required to converge to a small enough value the resulting displacement field can become
offset by increasing error at each iteration. However, setting an overly strict convergence tolerance
could force the solver into additional iterations that improve a solution that is already adequately
converged adding computation time. Also, if the convergence factor is set too low it may be below
the range of numerical precision of the machine, in which case the problem would never converge.

Typically nonlinear problems are solved using a relative convergence tolerance, in which the
value of the residual is normalized by the residual of the first iteration of a given step. However, this
approach was not suitable here because an adaptive step sizewas employed. In the case of a very
small step size the first residual may be already well converged, in which case a relative drop in the
residual of several orders of magnitude may not be possible.Extremely small step sizes may occur
when solving an optimization problem, especially when the optimization criteria are dependent on
variables at specified nonlinear steps. Figure 3.20 shows the baseline beam delamination problem
run with various absolute convergence tolerances. The solutions when converged to a tolerance of
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Figure 3.20: (a) Beam delamination with various residual convergence tolerances (b) Close-up

1×10−6, 1×10−8 and 1×10−10 were identical. Differences appeared when the tolerance was
1×10−4, and the solution with a tolerance of 1×10−2 was significantly different.

3.3.5 Penetration Penalty Study

In the Inter elements, contact is implemented through a penalty method by treating it as a material
nonlinearity. Although this method is much easier to implement than a Lagrange multiplier method
which would require modifying the solver itself, it has drawbacks including severe material nonlin-
earities and penetration. Figure 3.21 shows solutions to the beam problem with various penetration
penalty factors. These factors correspond to the slope of the contact portion of the adhesion law
described earlier. For this problem, a penalty factor of 1×1010 N

m3 is inadequate, leading to extreme

penetration of the upper beam into the substrate. A penalty factor of 1×1016 N
m3 leads to very little

penetration, on the order of 1nm, while larger penalty factors lead to increased numerical problems
in solving.

The penalty factor is not non-dimensionalized due to the lack of a stable reference value to
normalize it against. In optimization, if the energy of adhesion of the elements are the optimization
variables then the obvious choice for normalization, the slope of the adhesiveσ curve, is variable
for each element in the structure. In elements that have small adhesive energies the contact penalty
would also be small, allowing more penetration in these regions. An acceptable penalty factor must
be found for each new problem for this reason; the value used in the beam delamination problem
will not work globally.
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Figure 3.21: (a) Beam delamination with various contact penalty factors (b) Close-up

3.3.6 Gauss Point Study

One variable in the Inter element formulation is the number of Gauss points used in the integration
approximations for the internal force vector and tangential stiffness matrix. These approxima-
tions for the InterBeam element are in Equations 3.20 and 3.21. Figure 3.22 shows the difference
between the shapes of the analytical solution and numericalsolution using 1-point, 3-point and
6-point Gauss integration rules. The differences between the solutions are nearly negligible. How-
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Figure 3.22: Effect of Gauss point integration rule on results. Difference between solution with
various Gauss points and the analytical solution is shown.

ever, the numerical statistics in arriving at these solutions shown in Table 3.3 are more telling: For
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Gauss point rule max iterations perλ step average iterations perλ step
6 13 6.0268
3 12 7.2362
1 71 6.6727

Table 3.3: Statistics from the numerical analysis in the Gauss integration rule study

one Gauss point per element the solver had trouble converging in some steps. This becomes es-
pecially problematic if used for optimization, which may create adhesive patterns along the beam
which cause additional convergence problems. The three-point rule did not have any steps where
convergence was difficult, but the solver took the least number of steps using the six-point rule.

3.3.7 Mesh Refinement Study

Another important parameter in any finite element analysis is the mesh discretization size. Typi-
cally in finite element analysis a finer mesh results in a more accurate solution at the expense of
computation time. Five discretizations are presented here. In the 1200 element case, for example,
the beam and substrate are each discretized into 1200 elements with 1200 InterBeam elements
connecting them for a total of 3600 elements. Figure 3.23 shows that even the most coarse dis-
cretization yields a relatively close match to the analytical solution with a maximum error in the
beam shape of less than 4nm. However, the coarser discretizations did not always yieldthe fastest
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Figure 3.23: Difference between numerical solutions with various mesh refinement levels and the
analytical solution of Section 3.3.1

run time. Table 3.4 shows that nonlinearities began giving the solver convergence problems for
discretizations of 100 and 50 elements per beam. The convergence issues with more coarse dis-
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InterBeam elementsmax iter/step average iter/step total run time (s)
50 > 110 24.616 2.26×103

100 > 110 17.749 3.82×102

600 13 6.045 1.89×102

1200 13 6.0268 3.86×102

2400 13 6.0357 8.03×102

Table 3.4: Statistics from the numerical analysis in the mesh refinement study

cretizations also become more problematic with varying adhesive strength topologies that arise
from optimization.

3.3.8 Adhesion Energy Study

Figure 3.24 shows the beam response as the energy of adhesion, Γ, is varied between 1× 10−5

and 1×10−3. Fig. 3.24(a) shows the nodal force vs. the displacement at the tip of the beam. In
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Figure 3.24: Beam delamination example over a range of adhesion energiesΓ. (a) Force at beam
tip for given tip displacements (b) Beam shape profile for a tip deflection of 2µm

Chapter 4 the distribution of adhesive energy along the beamwill be optimized to meet a given tip
force/displacement objective. The adhesion energy in eachblock of four elements along the beam
will be free to vary between 1×10−12 (effectively zero) and 1×10−3J/m2. The plot of tip force
vs. displacement in Figure 3.24(a) serves as an envelope forall possible solutions. If an objective
point is outside the curve labeledΓ = 1×10−3, it is not reachable given the constraints on the
design variableΓ. Figure 3.24(b) shows the final beam profiles for various adhesive energies for a
2µm tip displacement.
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3.3.9 Beam Stiffness Study

The response of the system to changing the Young’s modulus ofthe beam, shown in Figure 3.25, is
extremely similar to the response of changing the energy of adhesion per area (Figure 3.24). In the
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Figure 3.25: Beam delamination example over a range of beam Young’s moduli. (a) Force at beam
tip for given tip displacements (b) Beam shape profile for a tip deflection of 2µm

analytical solution, Equation 3.73 shows that increasing the Young’s modulusE and decreasing
the energy of adhesion per areaΓ increases the crack lengths by the same factor. One important
note is that as eitherΓ became large orE became small the solver had more difficulty converging
in some steps. This difficulty arose due to the region ahead ofthe crack tip in which there is strong
adhesion (the cohesive zone) shrinking to act within a single Inter element. This can be mitigated
by switching to finer mesh densities. The ratio betweenE andΓ also is important in the following
example.

3.4 Hertz/JKR Cylinder Example

While the beam delamination example was chosen because it has an easily computed analytical
solution, this example of a cylinder in adhesive contact with a rigid substrate was selected because
it is derived from one of the most exhaustively studied problems in the field of adhesive contact
mechanics. The problem of contacting spheres was first studied in the 19th century by Hertz,
as described in Chapter 2, and modified to include adhesion byJohnson, Kendall and Roberts
(JKR) and Derjaguin, Muller and Toporov (DMT). In JKR theorythe contact area increases due to
adhesive forces but there is no cohesive zone outside of the contact area where adhesive forces act.
This model is valid for very flexible smooth materials such asrubber. The DMT theory the contact
area does not increase due to the adhesive forces but forces act in a cohesive zone ring outside the
contact area. This model holds for very rigid structures.
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The classical model for spheres was reformulated for cylinders with quadratic shape profiles in
contact by Baney and Hui [2]. They model the adhesive force with the Dugdale Model (described
in Section 3.1.2.2), which leads to a sharply defined cohesive zone outside the contact area. In this
work the triangular model is used instead for ease in numerical solution. A factorλ is defined as a
function of the cylinder Young’s modulus, Poisson’s ratio and the energy of adhesion per area. As
this factor approaches∞ the cohesive zone length approaches zero, leading to a JKR-type solution.
As λ approaches zero the solution approaches the Hertz solution. Note that for spheres as an
analogousλ factor approaches zero the DMT solution is reached. The difference between a 2-D
cylinder and 3-D spheres comes from the way that the adhesiveforce scales with contact lengths.

Figure 3.26 shows the cylinder example problem. In the initial condition the cylinder is in

u t

R

acohesive zone

Figure 3.26: Diagram of the cylinder adhesive contact example

contact with the substrate at a single point. A displacementut is applied to the top cylinder surface
pressing the cylinder into the rigid substrate. A rectangular contact area forms with a length ofL,
the length of the cylinder, and width 2a wherea is the contact radius. The undeformed surface of
the cylinder is defined to be quadratic, such that

y =
1

2R
x2 (3.74)

whereR is the radius of curvature of the cylinder.R is also defined geometrically for this problem
in Figure 3.26.

For this problem, the parameters were used are tabulated in Table 3.5. Note that length scales
are in the macro range to help reduce numerical issues associated with small length scales.
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variable value description
E 1×106Pa cylinder Young’s modulus
ν 0.23 cylinder Poisson’s ratio
L 80m cylinder length
R 8m cylinder radius of curvature

amax 0.8m maximum contact radius
ãmax 2 maximum normalized contact radius
u1 4×10−3m triangular first critical gap
u2 8×10−3m triangular second critical gap
c 1×1016 N

m3 contact penetration penalty
tol 1×10−4 absolute residual convergence tolerance

Table 3.5: Nominal values for the parameters in the cylinderexample problem

3.4.1 Analytical Solution

Baney and Hui derive an analytical solution that relates a non-dimensionalized force per unit length
applied to the top surface of the cylinder,P̃, and a non-dimensionalized contact radius, ˜a [2]:

P̃Hertz = ã2 (3.75)

P̃JKR = ã2−2ã
1
2 (3.76)

where

P̃ =
P

(πE∗Γ2R)
1
3

(3.77)

ã =
a

2
(

R2Γ
πE∗

)1
3

(3.78)

P =
ft
L

E∗ =
E

1−ν2

and ft is the sum of forces acting along the top surface of the cylinder andν is the Poisson’s ratio
of the cylinder material. A graph showing Equations 3.75 and3.76 is in Figure 3.30

3.4.2 Contact Area Formulation

In the beam example the crack lengths never needs to be explicitly extracted from the numerical
solutions because the analytical solution for the entire beam shape was available. In the case of the
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cylinder example there is no analytical solution availablefor the deformed shape of the cylinder
surface. The analytical solution instead relates the forcealong the cylinder top surface to the radius
of contacta. This radius needs to be extracted from the numerical solution. For InterBeam and
InterQuad elements, the contact radius is the sum of the areaper element that is in contactAc over
all the Inter elements divided by the width of the elements (the length of the cylinder, in this case).

The contact area per elementAc is formulated by detecting whether the gap between surfacesis
less than a certain value ¯g, shown in Figure 3.27. This detection is captured by a contact indication

_
g

in contact not in contact

Figure 3.27: An InterQuad element showing partial contact.If the gap is less than the critical gap ¯g
the part of the element is in contact and the functionℵ is 1. For the rest of the element, the contact
indication functionℵ is 0.

functionℵ that takes the value 1 if the gap is smaller than ¯g, indicating contact, and takes the value
0 if the gap is greater than ¯g.

The contact indication functionℵ includes a transition gap between complete contact and no
contact, making the functionC0 andC1 continuous, which aids in optimization if contact area is a
criterion. The function is defined as

ℵ(g) =







1 ,g < (1− p) ḡ
1
2 cos

[
π
2p

(
g
ḡ + p−1

)]

+ 1
2 ,(1− p) ḡ ≤ g < (1+ p) ḡ

0 ,g ≥ (1+ p) ḡ

(3.79)

and is shown graphically in Figure 3.28.p is a fraction of the critical gap ¯g that defines the
transition zone between complete contact and no contact.

The elemental contact areaAc equals the contact indication function integrated over theelement
area,

Ac =
A
A0

∫∫

A0

ℵ(g)dA0 (3.80)

WhereA is the deformed elemental area andA0 is the initial elemental area. For the InterBeam

60



0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

g
_

_
(1+p)g

_
(1−p)g

ℵ

gap

Figure 3.28: The contact indication functionℵ as a function of the gap between surfaces.

and InterQuad elements, this reduces to

Ac = w
L
L0

∫ L0

0
ℵ(g)dx

= w
L
2

∫ 1

−1
ℵ(g)dxg

∼= w
L
2

n

∑
i

wiℵ(gi) (3.81)

wherexg are generalized coordinates defined in Equation 3.22,L is the deformed element length,
wi are Gauss weighting factors, andw is the element width.

3.4.3 Numerical Solution

In this section, the analytical equations for the relation between force per length̃P and contact
radius ˜a are attempted to be matched with finite element analysis. Thecylinder domain was dis-
cretized into 4-node linear quadrilateral elements and InterQuad elements were placed between the
cylinder and the substrate as shown in Figure 3.29. The first 0.8m in the x-direction of the domain
was discretized into 40 InterQuad elements and the remainder, which is never in the cohesive zone,
is discretized into 10 InterQuad elements.

The Hertz solution is obtained by setting the energy of adhesion per areaΓ to be near-zero.
A solution is obtained for a range of top cylinder surface displacementsut . For each of these
solutions,P̃ andã are computed.P is computed by summing the forces at all the nodes along the
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Figure 3.29: Mesh for cylinder example

top surface of the cylinder.a is computed by the method described in Section 3.4.2. TheseP̃− ã
coordinates are plotted against the analytical curve in Figure 3.30. There is generally very close
agreement between the numerical and analytical solution.

As the adhesion energy per areaΓ is increased, thẽP− ã response gradually shifts from the
Hertz solution and approaches the JKR solution if all other variables are kept constant. Baney and
Hui define a factorλ to parameterize the transition between the solutions:

λ =
4σ0

(
π2E∗2Γ

R

) 1
3

(3.82)

whereσ0 is the force per area defined in the Dugdale model,

σ0 =
Γ
u2

from Section 3.1.2.2. Here the triangular model is used instead.σ0 is redefined as

σ0 =
2Γ
u2

(3.83)

which corresponds to the peak force per area in the triangular σ curve shown in Figure 3.4. Sub-
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Figure 3.30: The numerical solution of theP̃− ã curves compared to the analytical solution of the
JKR and Hertz cases.
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λ Γ
0 0

0.1 1.1727×101

1 3.7086×101

5 4.1463×102

10 1.1727×103

100 3.7086×104

Table 3.6: Adhesion energy per area values for a range ofλ values

stituting Equation 3.83 into Equation 3.82,

λ =
8Γ

u2

(
π2E∗2Γ

R

)1
3

=
8
u2

(
Γ2R

E∗2π2

)1
3

Γ =
E∗π
16

√

λ 3u3
2

2R
(3.84)

Table 3.6 gives the adhesion energy per area that corresponds to several different values ofλ when
substituting values from Table 3.5. According to Baney and Hui [2] the JKR model is roughly
valid for λ > 4. The valueλ = 5 is selected for the numerical analysis of the JKR model. The
results are plotted against the analytical solution (Equation 3.76) in Figure 3.30. The numerical
and analytical solutions for the JKR and Hertz cases match well, further validating the accuracy of
the Inter element discretization and the adhesion/contactmodels used.

It is important to note that in the case where the JKR curve wasmatched it was not possible to
solve for points less than a certainP̃ value. The reason for this is related to the discussion in Section
3.2.1. NeitherP̃ nor ã are the control variable. Therefore, for a given displacement of the upper
surface of the cylinder there may be multiple(ã, P̃) stable equilibria points. Additionally, there
may be a range of(ã, P̃) points along the JKR curve for which there is not a stable equilibrium.
Attempts were made to find(ã, P̃) points for small values of̃P using both a static solver and a
quasi-static solver using dynamic relaxation without success.

3.5 Sheet Wrapping Example

While the problems presented up to this point are academically interesting, the following example
grows from an actual application of adhesion at small scales. Here a nanotube wraps a thin sheet
around itself, forming another layer or wall to the tube. An illustration of this for a carbon nanotube
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variable value description
r 4.0×10−6m cylinder radius
l 8.0×10−6m cylinder length

g0 4.0×10−7m initial gap between cylinder and sheet
t 1.0×10−7m sheet thickness
E 4.0×108Pa sheet Young’s modulus
gm 2.0×10−8m Lennard-Jones gap corresponding to maximum adhesive force
Γ 1.0×10−2 J

m2 Adhesion energy per area between surfaces
c 1×1014 N

m3 contact penetration penalty

Table 3.7: Material properties and problem parameters for sheet wrapping example

wrapping a graphene sheet is shown in Figure 3.31. The creation of nanotubes though folding a
thin film has been of interest to the scientific community ([15], [17], [46]).

The problem of rolling a sheet around a cylinder is modeled here using shell finite elements
connected by InterShells. The shell elements are geometrically nonlinear, allowing large displace-
ments but small deformations through the corotational formulation [12]. The element pattern is
very similar to that of the beam problem, shown in Figure 3.15, but with the upper sheet wrapped
into a cylinder. The dimensions and properties for the problem are shown in Table 3.7. Here the
diameter length scale is slightly larger than a typical nanotube, which is generally as large as 1µm
[15]. In general the scales of this problem were chosen to be on the same order as the other ex-
ample problems presented earlier. For the boundary conditions of the finite element simulation,
the cylinder is rigid with every nodal displacement prescribed to zero. The center points of the
sheet directly under the cylinder’s lowest point have prescribed vertical displacement directly to-
ward the cylinder. The remaining sheet nodes are free to translate in the x and z-directions and to
rotate about the y-axis while other displacements and rotations are prescribed to zero. This prob-
lem could only be solved with the static solver for relatively weak adhesive energies, causing only
slight bending of the sheet as shown in Figure 3.32. For stronger adhesive energies, there was a
certain point in the displacement controlled solution method where the sheet would try to wrap
around the cylinder all in one step. As one element approaches the surface of the cylinder close
enough to be pulled in it initiated a chain reaction where neighboring elements also became close
enough to be pulled in. In this case the solver could not converge. Instead, for larger values ofΓ,
a quasi-static solver was employed. With appropriate levels of artificial damping and an adaptive
pseudotime step a steady-state solution could be reached, shown in Figure 3.33. In this case the
wrapping process was smooth due to the high damping term. This high level of damping makes
intermediate solutions look as though the stiffness of the sheet is less than it is in reality.
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Figure 3.31: an illustration of a single walled carbon nanotube wrapping a graphene sheet around
itself through van der Waals adhesion [5].
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Figure 3.32: The sheet wrapping problem solved with a relatively gentleΓ and a static solver
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Figure 3.33: The sheet wrapping problem solved with a stronger adhesive with a quasi-static solver
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Chapter 4

Design Framework

In this chapter, design optimization is applied to the adhesive finite element framework described
in Chapter 3. First topology optimization is briefly described. Next sensitivity analysis is discussed
and the analytical sensitivities of the Inter elements are computed and checked against finite dif-
ferencing. Finally the beam delamination and cylinder examples from Chapter 3 are modified
to include optimization of the force-displacement characteristic in delamination or compression.
Several parameter studies and variations are explored.

In optimization problems there exists an objective function, z, which is a function of multiple
optimization variablessi. The goal is find the optimal values of the optimization variables s∗i
which minimize the objective function. In addition to the objective, there may be constraints
which are also functions of the optimization variables. These may include equality constraints,h,
or inequality constraintsg. There may also be box constraints, or upper and lower boundaries for
the optimization variablessi andsi. The optimization problem can be expressed mathematically:

min z(si) i = 0,1, . . . ,ns

g j(s) ≤ 0 j = 0,1, . . . ,ng

hk(s) = 0 k = 0,1, . . . ,nh

si = {si ∈ R | si ≤ si ≤ si}
wherens, ng andnh are the numbers of optimization variables, inequality constraints and equality
constraints.

For the structural optimization problems studied here gradient-based nonlinear programming
is employed. Specifically, topology optimization is used, where the domain is discretized into a
mesh and each element of the mesh represents a single optimization variable. Topology optimiza-
tion is highly compatible with finite element analysis sincein FEA there is also a domain that is
discretized. Typically in topology optimization each optimization variable corresponds to an at-
tribute of a single element such as density. For optimization within a finite element framework the
objective function and constraints are rewritten to be functions of optimization criteriaq j, which
correspond to components of the finite element problem or solution such as a maximum stress
value or a nodal displacement. These criteria are functionsof the optimization variablessi and the
displacement vectoru. For example, the objective can be rewritten as follows:

z = z(q j(si,u(si))) (4.1)
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4.1 Sensitivity Analysis

The optimization algorithms used here are gradient-based.To evaluate the gradients of the ob-
jective and constraints the sensitivities of the criteria need to be computed with respect to the

optimization variables,∂q j

∂ si
. The optimization algorithm uses this gradient information to decide

which direction to move in the optimization variable space between each iteration. For example
in the steepest descent method the optimizer assumes the best direction to search for the optimal
solution is in the negative gradient direction. The sensitivities can be computed analytically or nu-
merically. It is imperative that the gradients are calculated correctly and coded correctly. Typically
the method used to verify the sensitivities in a finite element framework is to compare analytical
results to those computed by a numerical finite difference scheme for a highly simplified problem,
usually consisting of the fewest number of elements possible.

4.1.1 Finite Differences

Finite differencing is a numerical approximation for computing a derivative. The derivative of a
functionq(s) is defined as

dq
ds

≡ lim
ε→0

q(s+ ε)−q(s)
ε

. (4.2)

For finite values ofε this expression becomes an approximation of the derivative, called forward
differencing. The error of the approximation is on the orderO(ε). The approximation error is
significantly less for a central differencing scheme, defined as

dq
ds

∼= q(s+ ε)−q(s− ε)

2ε
(4.3)

The error of central differencing is on the orderO(ε2).

There are two major drawbacks to using finite differencing asthe method of computing sen-
sitivities within a finite element optimization framework.One drawback is for each optimization
variable the criteria need to be reevaluated twice for central differencing. Each evaluation of the
criteria requires the entire finite element problem to be solved, which is prohibitively costly for
nontrivial problems. The other drawback stems from the limitations of finite precision arithmetic.
Theoretically central differencing, like forward differencing, should converge to the derivative asε
approaches zero. However truncation error increases asε becomes small. There exists an optimal
ε that minimizes the combined computational and mathematical error, but it is not known before-
hand and may be different for each optimization variable. This is shown in Figure 4.1. This is a
graph of the ”II” column of data in Table 4.1. The central difference sensitivities over a range ofε
values are compared to the analytically calculated sensitivity.
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Figure 4.1: The error in calculating sensitivities of∂ f6
∂Γ for the beam example. From data in Table

4.1.

4.1.2 Analytical Approach

In the analytical approach, the exact derivatives of the criteria with respect to the optimization
variables are computed. Analytical sensitivity analysis is preferred over finite differencing because
the computation is exact and does not require the finite element problem to be solved multiple times
in each optimization iteration. On the elemental level, thederivatives of the internal force vector
with respect to any possible material property or nodal coordinate needs to be computed, resulting
in much more coding and the possibility for coding error. It is the possibility of human error that
necessitates the checking of sensitivities computed analytically against finite differencing.

The sensitivities expressed analytically are

dq j

dsi
=

∂q j

∂ si
+

∂q j

∂u

T du
dsi

(4.4)
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Here thedu
dsi

term can be computed by differentiating the equilibrium residual equation,

r(si,u(si)) = 0
dr
dsi

= 0

∂ r
∂ si

+
∂ r
∂u

du
dsi

= 0

∂ r
∂ si

+K t
du
dsi

= 0

du
dsi

= −K−1
t

∂ r
∂ si

(4.5)

substituting Equation 4.5 into Equation 4.4,

dq j

dsi
=

∂q j

∂ si
− ∂q j

∂u

T

K−1
t

∂ r
∂ si

(4.6)

There are two methods to compute the sensitivities analytically, the direct and adjoint methods.
They differ in the number of times it is necessary to solve an equation involving the tangential
stiffness matrix, which is computationally costly. In the direct method thedu

dsi
= −K−1

t
∂ r
∂ si

part of
the second term of Equation 4.6 is solved first. This equationneeds to be solved once for each

optimization variablesi, a total ofns times. In the adjoint method, the adjoint vectoraj =
∂q j

∂u

T
K−1

t
part of the second term of Equation 4.6 is solved first. This equation needs to be solved once
for each criteria,nq. Therefore in the casens > nq, which is true in the majority of topology
optimization problems, the adjoint method requires fewer effective inversions of the tangential
stiffness matrix.

In both the direct and adjoint methods the quantity∂ r
∂ si

, called the pseudoload vector, needs to
be computed. From the definition of the residualr = f−p wheref is the external force andp is the
internal force,

∂ r
∂ si

=
∂ f
∂ si

− ∂p
∂ si

(4.7)

The internal force derivative is computed on the element level and is assembled into the global
vector in the same way as the internal force. Of the three Inter elements, the sensitivities of the
InterQuad element may be the most simple to compute. The derivative of the internal force vector
(Equation 3.25) with respect to an arbitrary optimization variable is

dp
dsi

=
1
2

(
dw
dsi

L+w
dL
dsi

) n

∑
k

wiσ(gk)
∂g
∂u

∣
∣
∣
∣
xgk

+
wL
2

n

∑
k

wk

(
dσ
dsi

∂g
∂u

)∣
∣
∣
∣
xgk

(4.8)

The derivativedσ
dsi

corresponds to whichever one-dimensional adhesion model is in use. For the
Lennard-Jones case,

dσ
dsi

=
∂σ
∂g

dg
dsi

+
∂σ
∂c

dc
dsi

+
∂σ
∂gm

dgm

dsi
+

∂σ
∂Γ

dΓ
dsi

(4.9)
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whereg is the gap between upper and lower edges of the element,c is the contact penalty term,
gm is the gap size that maximizes the adhesive force andΓ is the energy of adhesion per area. The
partial derivatives of Equation 3.8 with respect to the above variables are

∂σ
∂g

=

{
c ,g < 0

ab
(

−3
(bg+1)4 + 9

(bg+1)10

)

,g ≥ 0
(4.10)

∂σ
∂c

=

{
g ,g < 0
0 ,g ≥ 0

(4.11)

∂σ
∂gm

=

{
0 ,g < 0
a

gm

(
3bg

(gb+1)4 − 1
(gb+1)3 + 1

(gb+1)9 − 9bg
(gb+1)10

)

,g ≥ 0
(4.12)

anda andb are defined in Equations 3.13 and 3.10. The derivatives of other one-dimensionalσ
functions would need to be computed in the same matter. Finally, differentiating Equation 3.23,

dg
dsi

= N4y

(
dy04

dsi
+

du4y

dsi

)

+N3y

(
dy03

dsi
+

du3y

dsi

)

−N1y

(
dy01

dsi
+

du1y

dsi

)

−N2y

(
dy02

dsi
+

du2y

dsi

)

(4.13)
For the InterBeam element the derivative of the gap with respect to the optimization variable is
much more complicated because the shape functions are functions of the nodal coordinates. There
is also an additional term in thedp

dsi
equation since the∂g

∂u vector is a function of the shape functions
and is not constant insi. The sensitivities of InterShell elements are similar to InterQuads since the
shape functions are constant insi.

In the above equations, the derivatives of the Inter elementmaterial properties, nodal displace-
ments and nodal coordinates with respect to the optimization variables are supplied as input. Cod-
ing the most general case allows the optimization variablesto be functions of any combination of
material properties of nodal coordinates.

4.1.3 Results

The sensitivities for the InterBeam element was computed byconstructing a simple 5-element
system, shown in Figure 4.2. There are two beams, made of two beam elements each, which are

u

u

1 2 3

46 5

g0

Figure 4.2: The finite element layout for the InterBeam element sensitivity check
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∂ f6
∂Γ I II III

direct 3.696746841×100 2.270400493×10−1 4.094092631×10−5

adjoint 3.696746841×100 2.270400493×10−1 4.094092628×10−5

ε = 1×10−1 3.696286841×100 2.270400512×10−1 4.093309709×10−5

1×10−2 3.696742240×100 2.270400496×10−1 4.092980252×10−5

1×10−3 3.696746796×100 2.270400495×10−1 4.092180105×10−5

1×10−4 3.696746841×100 2.270400495×10−1 4.078951661×10−5

1×10−5 3.696746842×100 2.270400496×10−1 4.080763782×10−5

1×10−6 3.696746840×100 2.270400504×10−1 3.484397950×10−5

1×10−7 3.696746827×100 2.270400472×10−1 2.310063506×10−4

1×10−8 3.696746982×100 2.270401822×10−1 2.260155132×10−3

Table 4.1: Sensitivities of the force at node 6 of the InterBeam example to adhesive energy,Γ

constrained in all degrees of freedom at nodes 3 and 4 and in the x-direction at nodes 1 and 6.
Equal y-displacements are applied to nodes 1 and 6 as shown. Between the beams there is a single
InterBeam element. The sensitivities of the force at node 6 to the adhesive energy per area of the
InterQuad element is in Table 4.1. The three different casesexamined correspond to gap sizesg0
that correspond to different regions of the Lennard-Jones adhesion law, shown in Figure 4.3. In all

I II III

g

σ

Figure 4.3: Lennard-Jones adhesive law with three gap size zones indicated. I. Contact, II. Positive
slope, III. Negative slope

three initial gap size cases the sensitivities between the direct and adjoint analytical methods agree
exactly, and they both agree within several digits of accuracy to the central differencing results.
One exception is very smallε values for the gap in region III, which are orders of magnitude
different than the analytical results. This can be explained by truncation error.

Table 4.2 shows the data for the sensitivities of the tip force to beam width. Width is explored
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∂ f6
∂w I II III

direct 4.449455236×100 5.529858599×10−1 4.094179274×10−2

adjoint 4.449455236×100 5.529858599×10−1 4.094179274×10−2

ε = 1×10−1 4.449455236×100 5.529858599×10−1 4.094179254×10−2

1×10−2 4.449455236×100 5.529858599×10−1 4.094179275×10−2

1×10−3 4.449455236×100 5.529858592×10−1 4.094179099×10−2

1×10−4 4.449455236×100 5.529859907×10−1 4.094164689×10−2

1×10−5 4.449455236×100 5.529855603×10−1 4.094196780×10−2

1×10−6 4.449455234×100 5.529875401×10−1 4.096046156×10−2

1×10−7 4.449455248×100 5.530231104×10−1 4.099429810×10−2

1×10−8 4.449455207×100 5.533583741×10−1 4.024173437×10−2

Table 4.2: Sensitivities of the force at node 6 of the InterBeam example to beam width,w

as an optimization variable in Section 4.2.2.1. As with the sensitivities to energy of adhesion per
area, the analytical measures agree exactly and they both agree with the numerical results to several
significant digits.

The sensitivities of the InterQuad and InterShell were alsoverified. The setup for the InterQuad
check is shown in Figure 4.4. Here a single InterQuad elementis positioned between two 4 node

7 8

g0

1 2

5 6

43

u u

Figure 4.4: The finite element layout for the InterQuad element sensitivity check

quadrilateral elements. Nodes 5-8 are fixed in both x and y andnodes 1-4 are only free in y. The
stiffness of the upper quadrilateral element was set high relative to the energy of adhesion of the
InterQuad element such that it would not deform under displacement of nodes 3 and 4. Since
the same functions for derivatives of the adhesion law are used by all three Inter elements, it is
only necessary to check the sensitivities in one of the regions of the Lennard-Jones function. The
dimensions of this problems were increased to the macroscale to help alleviate truncation errors.
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∂ f1
∂Γ II

direct 1.256271149×107

adjoint 1.256271149×107

ε = 1×10−1 1.261395711×107

1×10−2 1.256323620×107

1×10−3 1.256271673×107

1×10−4 1.256271154×107

1×10−5 1.256271149×107

1×10−6 1.256271149×107

1×10−7 1.256271147×107

1×10−8 1.256271151×107

Table 4.3: Sensitivities of the force at node 1 of the InterQuad example to adhesion energy,Γ

These sensitivities are given in Table 4.3. For the InterQuad element the sensitivities agree well
between the analytical and numerical techniques. In this case larger error between the analytical
and numerical solutions occurs for largerε values.

Finally the sensitivities of the InterShell element were tested. The setup is similar to the In-
terQuad setup, shown in Figure 4.5. An InterShell element issandwiched between two 3-node

2

5

u

8

1,4,7

3,6,9

2,5,8

1

4

7

u

3

6

9

u

Figure 4.5: The finite element layout for the InterShell element sensitivity check

shell elements. One difference is the addition of bar elements at nodes 4-6. This additions was
necessary because otherwise there would be no nodes that hadan unspecified displacement degree
of freedom. Also as with the InterQuad example, the dimensions used were on the macroscale.
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∂ f1
∂Γ II

direct 2.259858413×106

adjoint 2.259858413×106

ε = 1×10−1 2.982228635×106

1×10−2 2.982228808×106

1×10−3 2.982234007×106

1×10−4 2.982216677×106

1×10−5 2.982476626×106

1×10−6 2.980743635×106

1×10−7 2.946083825×106

1×10−8 3.465980955×106

Table 4.4: Sensitivities of the force at node 7 of the InterShell example to adhesion energy,Γ

4.2 Beam Delamination Example

The first problem studied is derived from the beam delamination problem of Section 3.3. Unless
otherwise stated, the problem parameters are the same as given in Table 3.2. In all variations of
the problem described below, the objective is to minimize the difference between the tip force-
displacement response and some objective function. For example in Figure 4.10(a) the objective
force-displacement function is linear, denoted by the square indicators. The optimization criteria
q j are the nodal forces at the leftmost tip of the beam at variousspecified tip displacement levels.
As in Chapter 3, the analysis is displacement controlled. The tip force and nodal displacement
vector are saved at various displacement levels for objective evaluation and sensitivity calculation.
The objectivez is to minimize the area between the line segments defined by the objective points
and the optimization force-displacement solution points at the corresponding tip displacements,
shown graphically in Figure 4.6. Mathematically, the objective is defined

z =
nob j

∑
j=0

(
fo j+1 −q j+1 + fo j −q j

)2
(4.14)

wherenob j is the number of objective points andfo j are the force levels of the objective points
corresponding to thejth criteria. The 0th criteria is always zero. This equation squares the area
to guarantee that the number is always positive and disregards the1

4(ut j+1 − ut j)
2 term. The tip

displacements term puts a larger emphasis on minimizing sections of the objective with larger
spacing between the specified tip displacementsut j , which may not be desirable

For all optimization problems described in this chapter a GCMMA, or globally convergent
method of moving asymptotes is employed. This method was developed and described in detail by
Svanberg [48].
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Figure 4.6: The force-displacement objective is the area between the line segments defined by the
objective points and the optimization force-displacementsolution points at the corresponding tip
displacements.

4.2.1 Preconstructed Solution

Although the goal in this work is to demonstrate the ability to find an adhesive energy distribution
that meets an arbitrary objective, it is useful to study the case where the optimal adhesive distribu-
tion is known beforehand. In the case presented here the gluedistribution pattern shown in Figure
4.7(b) was applied. The figure shows the beam, looking from the top down. The left end is the
tip, which is lifted off the substrate. The black regions correspond to the maximum adhesive en-
ergy allowed by the optimization box constraints (1×10−3 µJ

m2 ) while the white corresponds to the
minimum energy per area (effectively zero). The delamination behavior of this adhesive pattern
is to rip each strip of adhesive individually. The tip force-displacement characteristic is shown
in the dotted line of Figure 4.7(a). There are two sharp dropoffs in force as the tip displacement
increases, corresponding to the two adhesive strips delaminating. This force-displacement curve
was taken as the objective for an optimization problem. Twenty points along the curve were used.
Figure 4.8 shows the progression of the optimization from the initial conditions, where the entire
beam has the maximum adhesive energy per area, to the solution which is effectively the same as
the case used to generate the objective.

In this problem each optimization variable corresponded tothe adhesive energy per area of a
group of 20 elements along the beam. There were four variables to each ’strip’ in the optimal
distribution. This example demonstrates that topology optimization techniques can be applied to
simple adhesive problems.
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Figure 4.7: The beam optimization problem with preconstructed ’strips’ adhesive energy distri-
bution. (a) Tip force versus tip displacement. The solid curve is the tip force-displacement char-
acteristic of the optimized solution while the dotted curveis the optimization objective behavior.
(b) The distribution of adhesive energy along the beam-substrate interface used to generate the
objective. Darker regions indicate higher adhesive energy.

Itr. 30

Itr. 1
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Figure 4.8: The progression of the prescribed optimizationproblem from the initial conditions to
the final solution. Intermediate results at 30 and 60 optimization iterations are shown.

79



4.2.1.1 Initial Condition Study

In optimization problems the selection of the initial conditions for the optimization variables can
have a large impact on the solution. For some initial conditions the optimizer may find a local
minimum instead of the global optimum, especially if the initial values are not close to the optimal
solution. In the case of adhesion a poor selection of initialconditions can prevent the optimal
solution from ever being reached. If the triangular adhesion model is used (Equation 3.15) and the
initial gap sizes of all the elements is greater thanu2 then the sensitivities of the nodal forces are
identically zero, giving the optimizer no gradient information and making optimization impossible.
However, if the initial conditions left at least some Inter element gap sizes in the range less thanu2

the sensitivities in those element become non-zero, givingthe optimizer needed gradient data for
finding the next solution step.

The preconstructed beam delamination problem is relatively insensitive to initialΓ conditions.
Figure 4.9 shows the optimization solutions for a range of initial conditions. For all of these cases

Figure 4.9: The solution to the optimization problem starting from various initial conditions. The
initial conditions are shown on the left and the corresponding optimization solution is on the right.

the same solution emerged in the region ahead of the final crack tip. However theΓ values in the
region of the beam that remains adhered to the substrate are different in each initial condition case.
This is due to the fact that these elements do not contribute to the tip force, making the sensitivities
of these elements toΓ nearly zero. Since the optimizer does not detect gradients for these elements,
theΓ values are left unchanged. For the lower initial condition cases, these element did have non-
negligible gradient in the early optimization iteration when the crack tip was able to traverse further
down the beam. As the solution evolved, however, the crack tip never reached those elements at the
base of the beam, freezing theΓ values there. These artifactΓ values that do not contribute to the
solution can be removed by imposing another term to the objective minimizing the total amount of
adhesive energy per area, as shown in Figure 4.10(b) of the following section.
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variable value description
si 1×10−3 maximum allowed value for opt. var. (Γ)
si 1×10−11 minimum allowed value for opt. var. (Γ)
si0 1×10−11 initial value for opt. var.

Table 4.5: Box constraints and initial value for optimization variables in baseline optimization
problem.

4.2.2 Unknown Solution

In this section the optimal solution is not known beforehand. Instead, an objective is constructed
and the optimizer finds the optimal values for the chosen variables. Like in the analytical beam
delamination studies of Chapter 3, a baseline optimizationcase is defined and all subsequent cases
and studies are variations of this case. The optimization objective is a linear force-displacement
relationship, shown in Figure 4.10(a).

Including the origin there are 20 objective points, increasing linearly until the tip force is 9×
10−7N at a tip displacement of 1×10−6 m. This objective is reachable given the box constraints on
the optimization variables. The objective force displacement relation lies between the curves where
the optimization variables are at the maximum and minimum box constraints, as shown in Figure
4.15. In this case the optimization variables, as in the preconstructed solution cases, correspond
to the energy of adhesion per areaΓ of groups of elements along the beam. Here each variable
is associated with a group of 4 elements, allowing much greater variability in the distribution of
adhesive over the beam than in the preconstructed case where20 elements corresponded to each
variable. The box constraints and initial conditions are shown in Table 4.5.

Figure 4.10(a) shows that the optimizer found an adhesive distribution that matches the objec-
tive closely. The final value of the objective was 4.4×10−5, which is six orders of magnitude less
than the initial value of 1.9×101. The first diagram in Figure 4.10(b) shows the corresponding
adhesive energy distribution to the solution in Figure 4.10(a). The most important feature to note is
that ahead of the final crack tip position (indicated by the small triangle above the diagram) there is
virtually no adhesive toward the tip, and there is a quick transition from no adhesive to maximum
allowed adhesive over a very short range.

It is important to note that the adhesive energy beyond the final crack tip location does not
contribute to the force-displacement characteristic in the region that the objective is defined over.
Adding another term to the objective function which sums thetotal amount of adhesive energy
applied to the beam forces a reduction of adhesive energy in regions of the beam that have no
impact on the original objective. The solution to this modified problem is shown in the second
diagram in Figure 4.10(b). It is identical to the solution without the adhesive reduction objective
but with the majority of the adhesive energy beyond the final crack tip location removed. The
force-displacement characteristic curve, plotted over the same range as that in Figure 4.10(a), looks
identical to the case without the adhesive reduction objective addition.
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Figure 4.10: The baseline optimization problem. (a) Tip force versus tip displacement. The squares
indicate objective points and the solid line passing through them indicates the solution reached by
the optimizer. Analysis with all elements set to maximum adhesive and minimum adhesive also
shown. (b) The distribution of adhesive energy along the beam-substrate interface. Darker regions
indicate higher adhesive energy. The top diagram is the adhesive distribution corresponding to the
solution curve in (a). The middle diagram is the same solution but with extraneous adhesive re-
moved through a modification of the objective. The bottom diagram is the corresponding analytical
solution for infinite adhesive energy
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variable value description
si 8×10−5 maximum allowed value for opt. var. (w)
si 8×10−7 minimum allowed value for opt. var. (w)
si0 1×10−11 initial value for opt. var.

Table 4.6: Box constraints and initial value for beam width optimization variables.

This result can be compared to a roughly analogous analytically obtainable solution. If there
was no upper box constraint onΓ, then the effect of adding a thin strip of relatively strong adhesive
would be the same as clamping the beam at that point. A clampedbeam has the same linear
response as the objective function in this case. To find the location of this adhesive strip Equation
3.67 is solved for the crack lengths given the slope of the objective,Ft

ut
. The result is shown in the

third diagram of Figure 4.10(b). Note the similarities between the second and third diagrams of
Figure 4.10(b). In the optimization problem the box constraint on Γ makes the analytical solution
unobtainable, and the adhesive energy is instead spread over a larger region and the final crack tip
location is slightly further back along the beam than in the clamped case.

In topology optimization problems it it typically desirable to have a 0-1 solution, or a solu-
tion where the optimization variables approach their box constraints. Although in these beam
delamination cases the adhesive energy does not tend to a 0-1solution in general, the results can
be reinterpreted that way. The surface of the beam that is being patterned with various adhesive
energy levels is two dimensional. If the width of a given adhesive strip on the beam is seen inde-
pendent of the beam width, a pattern of uniform adhesive energy can be created that has the same
adhesive properties as the case with variable adhesive energy but fixed adhesive width, shown in
Figure 4.11.

Figure 4.11: The solution to the baseline optimization problem reinterpreted as a constantΓ but
variable adhesive width keeping beam width fixed.

4.2.2.1 Beam Width as Structural Variable

In the baseline case the adhesive energies of small groups ofelements along the beam are the
structural optimization variables. However other parameters can be varied in addition to the energy
of adhesion. First the beam width is studied as an optimization variable. Varying the beam width
affects both the moment of inertia of the beam and also the width of the InterBeam element, which
is locked together to the beam width. The design tended to be much more sensitive to beam width
than to the adhesion energy generally, necessitating tighter box constraints shown in Table 4.6.
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When beam width was the only optimization variable the optimizer drove the problem to an in-
termediate step which did not converge in the analytical solver. Figure 4.12 shows the last solution
iteration before the problem diverged. Toward the tip of thebeam the optimizer formed hinge-like
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Figure 4.12: The beam optimization problem with width as variable. (a) Tip force versus tip
displacement. (b) Top-down view of beam shape. Final crack tip location marked.

structures in an attempt to match the individual objective points. Each hinge corresponds to the
sharp drop in tip force at the first several objective points.The main issue here seemed to be that
adhesive energy was equally distributed along the beam, notallowing the clamped behavior seen
previously.

The problem of divergence can be alleviated ifΓ is varied along with beam width. In this
case each group of 4 InterBeam elements have a correspondingvariable for width and for adhesive
energy per area. The solution is shown in Figure 4.13. In thiscase there is a single hinge formed
in the same region where adhesive energy begins to appear. There are several areas ahead of the
hinge where the width suddenly becomes smaller or larger, creating wing-like structures. In an
attempt to force the optimizer to reduce these structures the total surface area of the beam was
constrained to 25% of the area of the beam in Figure 4.13(a). The results are shown in Figure 4.14.
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Figure 4.13: The beam optimization problem with both adhesion energy and width as variables.
(a) Tip force versus tip displacement. (b) Top-down view of beam shape with adhesion energy
distribution superimposed
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Note that the beams shown in Figures 4.13(b) and 4.14(b) are not drawn to the same scale. When
this constraint is applied the wing structures ahead of the crack tip are reduced somewhat and the
hinging effect is less drastic than in the unconstrained case. Figure 4.14(c) shows an alternate view
of the energy of adhesion distribution. As in Figure 4.11,Γ is held constant while the width of the
adhesive is varied independently of the beam width.

4.2.2.2 Objectives

Figure 4.15 shows the baseline optimization objective along with three other variations. Additionally
the envelope of possible solutions is shown. The maximum curve corresponds to the case where
all Γ values are set to the upper optimization box constraints. Itis not possible for an optimization
solution to reach objective points above this curve ifΓ is the only optimization variable.

Figure 4.16 shows the solution of the optimization problem with an objective that is twice
as steep as the baseline case. Since this objective is also linear and goes through the origin, the
optimal solution if there were no box constraints on the adhesive energy would be an infinitely
strong strip at a location along the beam, effectively clamping it. In the baseline case the solution
with box constraints was to spread the adhesive out slightlybehind the location of the analytical
solution. In this case the same type of solution is reached, however even at the maximum allowed
adhesive energy the last objective points cannot be reached. Figure 4.16(a) shows a dotted line
indicating the maximum possible force for a given tip displacement with the box constraints.

The remaining objective points can be reached without increasing the box constraints onΓ by
also assigning optimization variables to the beam width. Asin the baseline case where width andΓ
are optimization variables a hinge forms ahead of the majority of the adhesive energy distribution.
This demonstrates that otherwise unreachable objectives can be obtained if additional optimization
variables are used.

Figure 4.18 shows an objective which has the same first 10 objective points as the baseline case
but then has a decreasing force-displacement relation afterward. This objective has no analogous
analytical solution. Figure 4.18(a) shows that the objective was not converged on as well as in other
the case with other objectives. The curve is especially jagged in the downward sloping region. A
more smooth response may be possible if more objective points are added, although a smooth
downward sloping response may not be obtainable by varying the adhesive energy alone. The so-
lution shown in Figure 4.18(b) shows a non-intuitive distribution. This demonstrated that adhesive
distributions that do not have analytical solutions can be obtained using topology optimization.

The objective shown in Figure 4.19(a) has the same slope as the baseline objective but is shifted
vertically in the force-displacement plane. This shifts itoutside of the envelope of obtainable ob-
jective points. Like the hill objective, this objective does not have an intuitive or analytically
obtainable solution. The adhesive distribution solution gradually increases to a maximum adhesive
energy and then gradually tapers off. As in the hill case, this example demonstrates that design
optimization can be utilized to design adhesive patterns that are not otherwise obvious. For more
complicated adhesion problems and surface geometries or objectives there most likely is no intu-
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Figure 4.14: The beam optimization problem with both adhesion energy and width as variables
with beam area constrained to 25% of the unconstrained solution. (a) Tip force versus tip dis-
placement. (b) Top-down view of beam shape with adhesion energy distribution superimposed. (c)
Reinterpretation of adhesion energy distribution to be constantΓ and variable width independent
of beam width. Marker indicates final location of crack tip.
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Figure 4.15: Maximum and minimum bounds of possible solutions given box constraints with
various objectives.

itive solution.

4.2.2.3 Beam Stiffness Study

In Chapter 3 the delamination problem for a uniform adhesiveenergy distribution was studied over
a range of beam stiffness values. As the stiffness of the beamrelative to the adhesive strength
decreased the analysis became tempermental and took more steps to converge. This was due to
the increasing curvature of the beam at the crack tip, which reduced the number of elements in
the adhesive zone, shown in Figure 4.20. In optimization problems, intermediate solutions can
arise where the the crack tip encounters strong strips of adhesive relative to the beam strength,
creating convergence problems and derailing the optimization procedure. The beam delamination
problem is relatively well-behaved in this regard, but convergence issues do arise when the beam
Young’s modulus is too low. Figure 4.21 shows the solution ofthe baseline delamination problem
with reduced beam stiffnesses. As the beam gets weaker the maximum force that the adhesive can
support is reduced, making fewer objective points reachable. The optimization routine moves the
adhesive strip further toward the beam tip as the beam Young’s modulus decreases. For values of
E smaller than 1×107 the optimization problem stopped converging.
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Figure 4.16: Optimization problem with steeper objective.(a) Tip force versus tip displacement.
(b) The distribution of adhesive energy along the beam-substrate interface.
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Figure 4.17: Optimization problem with steeper objective including beam width as optimization
variables. (a) Tip force versus tip displacement. (b) The shape of the optimal beam and the optimal
adhesive energy distribution.
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Figure 4.18: Optimization problem with ’Hill’ objective. (a) Tip force versus tip displacement. (b)
The distribution of adhesive energy along the beam-substrate interface.
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Figure 4.19: Optimization problem with vertically shiftedobjective. (a) Tip force versus tip dis-
placement. (b) The distribution of adhesive energy along the beam-substrate interface.
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Figure 4.20: Adhesive zone sizes for different beam stiffnesses. (a) For a stiff beam there is less
curvature at the crack tip and the length of beam that is in theadhesive zone but not in contact is
larger. (b) For a weaker beam there is more curvature at the crack tip and fewer elements of the
beam in the adhesive zone.

4.3 Cylinder Compression Example

The cylinder compression optimization example is an extension of the analysis presented in Section
3.4. In that example the relationship between adhesive/contact force and contact area was studied
and compared to analytical results. For optimization purposes, the force-displacement character-
istic is instead studied and optimized, as it was for the beamoptimization example. The objective
is to minimize the difference between the force on the top surface of the cylinder and specified
objective points at certain value of displacement of the topsurface. This objective is defined in an
identical way to that of the beam problem, shown in Figure 4.6and Equation 4.14. The variables
in this case are the adhesive energies per areΓ in each InterQuad element, also just as in the beam
optimization case.

There are some differences between the set-up in this case and the case described in Section
3.4. One difference is that here the Lennard-Jones adhesionmodel is used instead of the triangu-
lar model. While the triangular model made for a more straightforward comparison between the
numerical and analytical results, which used a Dugdale model, the Lennard-Jones model is the
most compatible with optimization due to more useful gradients for sensitivities. Another differ-
ence is the problem parameters. The problem needed to be shifted well out of the JKR regime to
ensure that the analysis at each optimization step could converge. The problem parameters for the
optimization problem are shown in Table 4.7.

The range of possible force-displacement solutions givenΓmin andΓmax is shown in Figure
4.22(a). In the minimum adhesive case contact forces dominate. As the cylinder is lowered into
the substrate, the force is effectively zero until contact when the gap between the cylinder and
substrate closes at a displacement of−4× 10−3 m, at which times contact forces begin to take
effect. In the case of maximum adhesive, there is a large positive adhesive force that dominates,
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Figure 4.21: A study of optimization results when beam stiffness is reduced. (a) Tip force versus
tip displacement. (b) The distribution of adhesive energy along the beam-substrate interface for
increasingly weak beams.
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Figure 4.22: Adhesive distribution optimization of zero-force contact cylinder problem. (a) Force
versus displacement at the top surface of the cylinder with max/min adhesive envelope shown. (b)
The distribution of adhesive energy along the cylinder-substrate interpreted as fixed adhesive width
(top) and fixed adhesive energy (bottom).
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variable value description
E 1×1010Pa cylinder Young’s modulus
ν 0.23 cylinder Poisson’s ratio
L 8×10−6m cylinder length
R 8m cylinder radius of curvature
g0 4×10−3m initial gap between cylinder and substrate
gm 1×10−4m Lennard-Jones gap corresponding to maximum adhesive force
c 1×1013 N

m3 contact penetration penalty
Γmax 1×106 N

m maximum allowed adhesive energy per area
Γmin 1×10−6 N

m minimum allowed adhesive energy per area
tol 1×10−7 absolute residual convergence tolerance

Table 4.7: Nominal values for the parameters in the cylinderoptimization example problem

even when contact is initiated for the entire displacement range studied. For larger displacements
the contact forces begin to dominate in the case of maximum adhesive as well.

The objective for this problem, shown in Figure 4.22(a), is for the force on the upper surface of
the cylinder to remain zero over the entire range of displacements studied. The physical meaning of
this is that the adhesive pattern is such that for any given displacement within a specified range, the
repulsive penetration prevention forces acting inside thecontact area and the attractive adhesive
forces acting both inside and outside the contact area balance each other out. Several objective
points are grouped together near where contact forces first begin to dominate.

The solution to the optimization problem is a very close match to the objective. The resulting
adhesive pattern is shown in Figure 4.22(b). As with the beamproblem, the results can be inter-
preted as either variations in adhesive strength or as variations in the width of the adhesive in each
element between the cylinder and the substrate. The resultsare symmetric about the center low
point of the cylinder, which makes sense given the symmetry in the problem set-up. The solution
has no adhesive at the center elements, allowing the resultsto closely match the zero adhesive
solution up until the point of contact. As the more peripheral cylinder elements come into active
adhesive range with the substrate, the adhesion energy is increased to offset the forces that counter
penetration. The cylinder optimization problem demonstrates that optimization is possible with
more complicated surface geometries than the beam example.

4.4 Sheet Wrapping Example

As with the other examples in this chapter, the optimizationof the sheet wrapping problem is an
extension of the analogous problem in Chapter 3. This example demonstrates optimization using
3D shell elements and adhesive InterShell interface elements. In this case the optimization vari-
ables are the adhesion energies between the cylinder and thesheet in each element along the inter-
face. The objective, also as in previous examples, is to match a specified force-displacement curve
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by minimizing the area between the current and target displacement curves. Here, the force and
displacement are measured at the midpoints of the sheet, where the displacements are prescribed.
Figure 4.23 shows the results of an optimization case with a linear objective. In this case, the initial
value forΓ in all elements was the maximum allowed value (box constraint), 5.0×10−4 J

m2 . This
is a relatively gentle adhesive energy compared to that usedin the Chapter 3 example, allowing the
use of a static solver. The optimizer was not able to convergeexactly to the objective curve. This is
due to physical limitations in the problem; the curvature ofthe cylinder relative to the sheet limits
the number of InterShell elements in the ”active” gap range where changing the adhesion energy
can have a large impact. For large gaps, changing the adhesion energy has nearly no impact on
the solution since the adhesive forces are weak. The optimized adhesive distribution is symmetric,
which is expected due to the symmetry in the problem geometryand boundary conditions. It re-
moves adhesive from the center of the interface to minimize the for for initial small displacement
values, and then the adhesion energy grows further from the center to begin increasing adhesive
forces. The remaining adhesive energy left at the sides of the sheet/cylinder interface is due to
the initial conditions and the relatively small sensitivities in this region, as described in Section
4.2.1.1.
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Figure 4.23: Adhesive distribution in optimization of sheet wrapping problem. (a) Force versus
displacement at the center of the sheet for the initial case with maximum adhesive and the opti-
mized solution.. (b) The distribution of adhesive energy along the cylinder/sheet interface for the
optimized case.
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Chapter 5

Summary and Recommendations for Future
Work

5.1 Analysis

Several one-dimensional adhesive and contact penetrationmodels were presented. Three Inter
elements were formulated, which integrated these adhesiveand contact functions as they acted
between two surfaces. For the InterBeam element, a correction to account for beam thickness in the
gap measurement was used. The nonlinear solver was described, including the use of displacement
control to traverse limit points and the adaptive step size algorithm employed. An example problem
was described where a beam which, initially adhered to a substrate, was delaminated by pulling
upwards on on end. An analytical solution for the crack length and beam shape as a function of
tip displacement was computed assuming that the adhesive only acted in the region that had not
yet delaminated, and was infinitely stiff in that region, effectively clamping the beam at any given
crack tip location.

The beam was modeled in both 2D and 3D using beam elements, quadrilateral elements and
shell elements and their corresponding Inter elements. Theresulting shape profiles of these three
models were nearly identical to each other and also to the analytical solution. The main difference
between the models and the analytical solution can be attributed in large part to the existence of an
adhesive zone outside of the contact area which the analytical model did not take into account.

The beam delamination problem was solved using various adhesive laws, and in general there
was agreement between the models in the beam shape under tip displacement to within 6 nm at any
given point along the beam. The law that fit the analytical data the best was the Lennard-Jones case,
most likely because it was able to more closely match the analytical adhesion assumptions without
having convergence problems as the triangular model tendedto as the adhesive zone decreased.

The effects that various parameters of the nonlinear solverhad on the solution was studied
including the convergence tolerance on each nonlinear iteration, the penetration penalty factor, the
number of gauss points used to approximate the integral of the adhesive force over the area in the
inter elements and the effects of mesh coarseness/refinement. Due to the nature of the nonlinear
solution method and how data is saved at specific steps for optimization, it was most logical to
use an absolute convergence criterion. A good absolute tolerance was found for the beam problem,
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however a new tolerance would need to be found for each new problem solved. The contact penalty
is also not a dimensionless quantity, and due to the nature ofoptimization there is not a good value
to scale it by to make a penalty factor from one simulation work in a different one. It was found
that the number of Gauss points used had little effect on the beam solution shape profile, but fewer
Gauss points created more numerical difficulty and needed more Newton iterations to converge to
equilibrium in each step. The mesh refinement study showed that there is an optimal mesh density
for a given problem. If the mesh is too coarse the solver has difficulty reaching an equilibrium
in each analysis step or may possible not converge at all. this has to do with the crack tip being
distributed over too few variables and the tangential stiffness matrix loosing positive definiteness.
If the mesh is too fine, the simulation takes much longer to complete with little to no improvement
in the solution accuracy.

Finally in the analysis of the beam example the effect of varying the Young’s modulus of the
beam and the adhesion energy per area of the interface were studied. The resulting beam profiles
and tip force-displacement relation vary in the same mannerin both studies. This can be explained
by the fact that the ratioEΓ can be factored out of the analytical equations. IncreasingΓ had the
same effect as decreasingE.

Next the analysis of a cylinder in adhesive contact with a rigid substrate was studied. Here the
applied force at the top of the cylinder as it relates to the radius of contact was simulated for two
extreme cases and compared to analytical results from the literature. The data in both the JKR and
Hertz cases matched with analytical results.

5.2 Optimization

The analytical sensitivities of optimization criteria to optimization variables were computed and
compared to numerical results in simple single Inter element problems. For optimization the
Lennard-Jones adhesive model is the best because not only isit a smooth function but it has gra-
dients everywhere with respect to optimization variables,while this is not the case in the other
adhesive models presented.

An optimization problem was defined for the beam delamination case where the area between
an objective tip force-displacement curve and the current iteration was minimized with the adhe-
sive energy of groups of elements along the beam interface asthe optimization variables. First
a preconstructed solution was analyzed where the objectivecurve was generated by applying a
known adhesive distribution along the beam. The variables were then set to other initial condi-
tions and the optimizer found the original distribution as the optimal solution. A study of starting
from different initial conditions showed that this particular example was not very sensitive to initial
conditions, but this is not the case in general for adhesive optimization.

Next the beam problem was optimized with objective force-displacement curves that were not
the result of analysis of a known adhesive distribution. In the baseline case a linear curve was
the objective. This objective has an analytical solution for the case of infinite adhesive energy,
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effectively clamping the material to the substrate at a certain location along the beam. In the
optimization framework there was a box constraint on the range of admissible adhesive energies.
Although the analytical solution was not obtainable, the optimizer found a similar solution by
spreading adhesive in a strip in the region just behind wherethe beam would be clamped in the
analytical case. Furthermore, if the total amount of adhesive energy is also minimized by including
it in the objective function, unnecessary adhesive energy behind the crack tip is removed, leaving
only the amount needed to meet the force-displacement objective.

In the case of the beam delamination problem, a single element spans the entire width of
the beam. For this reason, the resulting adhesive distribution can be reinterpreted as a constant
adhesion energy but only taking up a percentage of the entirebeam width, effectively reducing the
adhesive energy for that group of elements. Thus a 0-1 adhesive distribution is obtained for any
beam delamination problem solved in this fashion. Alternately, gradients in adhesion energy along
an interface can be allowed. This result can be manufacturedby varying the surface roughness in
the interface.

Beam width was studied as an optimization variable. The optimizer did not converge when the
adhesive energy was held constant across the beam while width was an optimization variable, but
a solution was achieved if both width and adhesive energy were optimization variables. In fact,
objectives that were not reachable given the box constraints onΓ alone became reachable when
bothΓ and width are optimization variables.

Other objectives were applied to the optimization problem that do not have obvious analytical
solutions. The optimizer was able to find adhesive distributions that converged to these objec-
tives, implying that adhesive topology optimization is a useful tool for designing surfaces to meet
adhesive objectives that are not easily obtained though other methods.

The baseline optimization problem was solved with a range ofbeam stiffnesses. As the beam
stiffness decreased, the adhesive strip moved toward the tip of the beam. For very weak beams, the
optimizer stopped converging.

In the final section, the cylinder problem of Chapter 3 was revisited in an optimization frame-
work. Here, as in the beam optimization example, the objective was to match specified force-
displacement points as the cylinder is pressed into the substrate. The optimization variables were
the energy of adhesion in each interface element between thecylinder and the substrate. Specifi-
cally, the objective was for the contact forces to counterbalance the adhesion forces at every dis-
placement step, creating no net force on the cylinder even when it is in contact with the substrate.
The optimizer converged on a solution that met this objective, demonstrating that this design op-
timization approach to adhesive patterning is effective for more complicated surface geometries
than in the beam problem.
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5.3 Future Work

Design optimization for structures in adhesive contact is arich area that still has much room for
exploration. It is desirable to capture additional interfacial forces, especially friction which can
play a large role in adhesive contact. However, friction is anonconservative force and requires
a dynamic nonlinear solver. To solve optimization problemswith friction, other nonconservative
forces, or other dynamic problems transient sensitivity analysis needs to be implemented.

While the interface element approach captures adhesion between prescribed sites it is not pos-
sible to enforce adhesion or penetration penalties betweenany two arbitrary surfaces in a design.
This becomes desirable in dynamic systems or systems with large displacements where adhesive
contact sites are not known beforehand. For these cases an interface element that connects specific
nodes on surfaces should be replaced by a search algorithm that detects adequately small gaps be-
tween all possible interfaces. This will also alleviate theneed for matching meshes on contacting
surfaces, facilitating the design of more complicated geometries. Additionally penetration should
be prevented by a Lagrange multiplier method instead of by a penalty factor.

These modifications and expansions on the finite element codewill greatly expand the types
and complexity of design problems that can be solved. Problems of interest include those involv-
ing multiphysics such as heat or electric conduction acrossan adhesive interface and interactions
between soft particles immersed in an external force field, such as an electrostatic or a flow field,
which have a broad range of applications in areas including manufacturing and processing.
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