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Abstract

This research applies design optimization techniquesrtetsires in adhesive contact where
the dominant adhesive mechanism is the van der Waals fanterfdce finite elements are devel-
oped for domains discretized by beam elements, quadalakments or triangular shell elements.
Example analysis problems comparing finite element resulsalytical solutions are presented.
These examples are then optimized, where the objectivetishing a force-displacement relation-
ship and the optimization variables are the interface ef¢rarergy of adhesion or the width of
beam elements in the structure. Several parameter studiesaducted and discussed.
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Chapter 1

Introduction

Adhesion is a phenomenon that has wide-ranging and inagdgsimportant applications and
effects in industry, nature and daily life. This report expels methods for designing surfaces
with novel, previously unavailable adhesive propertie®ulgh the coupling of advanced finite
element techniques and the mathematics of topology omiiiz. The intent is to tailor surface
force distributions to create strong or weak adhesion batvegructural members, as dictated by
particular device applications and requirements.

As characteristic length scales in structures approacimtbe and nanometer range, surface
interaction forces play an increasingly important role @nesion phenomena. The phenomenon
of stiction in MEMS devices is one example of the power of acef interaction forces at the
microscale [55]. At the nanoscale, the usually weak van deal8\forces between molecules can
dominate depending on the geometry and topology of the sesfan contact. For example, it has
been shown that nanoscale hair-like structures on the fegtakos allow them to stick to nearly
any surface through van der Waals forces and support maes tineir own weight ([13], [47]).

Recent advances in nanomanufacturing technologies hasaéecrthe potential for fabricating
surfaces that utilize nanostructures for tailored adhmegroperties. This promises to significantly
impact a wide range of technologies in science, engineenmbiology. Some example appli-
cations are surface engineering of MEMS components toiatestiction problems ([26], [50],
[55]), creating self-assembling structures [30] and tedbay to design adhesive substrates for cell
capture, adhesion and growth [51].

Figure 1.1: A SEM image of setae, or hair, on the foot of a gedkich allows adhesion to surfaces
through van der Waals forces. [1]
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However, until now no methods have been developed to debgmgeéometry, topology and
surface interaction force laws at the microscale. In faegnethe analysis of the phenomena is
a challenge for arbitrary geometries. This research ire®bheveloping and using finite element
methods coupled with topology optimization to develop aiglesnethodology for adhesive mi-
crostructures. The types of design problems studied heodvia structures that come into or out
of adhesive contact at matching points between two surf&ecifically, the objective of concern
is matching the loading response to a target curve as stasctielaminate or come into adhesive
contact, although a framework is developed and implemetatedlow a wide range of types of
design objectives. Only problems with small deformatiomd displacements are considered. Ad-
ditionally, interfacial forces considered are restrictedhose that act normal to the surfaces and
are conservative. Adhesives with tangential friction éboomponents and viscoelastic rate de-
pendencies are not considered. This work is multidiscgplirand combines physical modeling,
numerical simulations, and formal design optimizationmoels.

Chapter 2 is areview of the literature relevant to the wortkis report. Chapter 3 describes the
analysis framework used including a description of adteefivce laws, formulation of interface
finite elements and example simulations. Chapter 4 focuséseooptimization of structures with
adhesive surface interactions, beginning with a sentsitanalysis of the interface finite elements
followed by several examples of design optimization. Caaptsummarizes the key conclusions
and gives suggestions for future work.

Zum

Figure 1.2: A SEM image of a nanowire composed of gold sphefdss wire self-assembled
through adhesive forces [30]
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Chapter 2

Survey of the Literature

This chapter is a survey of the literature pertaining to tpeds of adhesion, modeling and design
optimization. It begins with a brief history of the field of fagkive contact mechanics and then
goes on to mention current advances in the fields of adhesibEMS, adhesion in nature, com-

putational adhesive models and design optimization as riéleye to the work presented in this

report.

2.1 Brief History of Adhesive Modeling

The study of adhesion between surfaces in close proximigatdh other originally grew out of
contact theory. The first analytical formulations relatstigesses, strains, displacements and forces
in contacting spherical bodies were published by Heinrieimt#in 1882 [18]. He found a cubic
relation between the applied force and the radius of théecoiccontact between the spheres:

PR
3
ad=_—— 2.1
< (21)
wherea is the radius of the contact circlB,is the contact force,
1 1 1
B 2.2
R Ri + R (2.2)
whereR; andRy are the radii of the spheres, and
1 3/1-v? 1-v3
- _° 2.3
K 4 ( Eq - E, (2:3)

whereE; andE; are the Young’s moduli and; andv, are the Poisson’s ratios of the spheres.

Fritz London, in 1930, used principles of quantum mechataesxplain attractive forces ob-
served between inert noble gas atoms [28]. These forcdedozdn der Waals forces after 19th
century Dutch physicist Johannes Diderik van der Waalseaiue to instantaneous dipole mo-
ments caused by a temporary asymmetrical distributionesftedns in a atom or molecule’s elec-
tron cloud. These forces are negligibly weak when atoms eparsted by large distances, but
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become dominant as surfaces come with 100 nm or less of eaeh dtondon showed that the
potential energy between molecules due to van der Waalsgasayiven by:

C

U=—%. (2.4)

where C is the London constant,10~"%JmP [32].

As molecules approach each other, this attractive forcergumtil the electron clouds begin
to overlap, creating a very large repulsive effect refeteeds Pauli or Born repulsion. Although
guantum mechanics yields that the energy of repulsicarrf, typically it is expressed- %n with
n> 10 [32]. The most common expression for interaction enehgy takes into account both
London attraction forces and Born repulsion forces is thenaed-Jones potential:

D C

V=1

(2.5)

whereD = rch andrg is the equilibrium radius between attraction and Born rgipui.
Bradley [4] and Deryagin [10], also in the early 1930s, shdweat adhesive "pull-off” force
between a rigid contacting sphere and plane is

F=2mR (2.6)
whererl is the energy of adhesion per area, and

F=w+yY—V (2.7)

wherey; and y», are the surface energies of the materials in contactyands their interfacial
energy.

In the 1970s two new and apparently conflicting adhesivertag@emerged for elastic spheres
in contact. Johnson, Kendall and Roberts formulated a yhieased on experiments on the inter-
action of rubber, a relatively flexible material, and gla&S][ This came to be known as the JKR
theory of adhesive contact. They noticed that the contaet af a sphere of rubber on a glass sub-
strate was larger than Hertz contact theory predicted asatitted that adhesive forces deformed
the sphere surface into contact, shown in Figure 2.1b. JKBthis analogous to fracture mechan-
ics where the edge of the contact area coincides with a cratode 1. At the rim of the circular
cont%ct area infinite stresses are sustained until the sphabruptly pulled off the substrate at
F=3mR

However, researchers Derjaguin, Muller and Toporov inddpatly developed an alternate
theory, called DMT theory, describing adhesion in the cointd elastic spheres which yielded
different predictions than the JKR theory [9]. In DMT the@ghesive forces are present in a ring
outside the circular contact area, shown in Figure 2.1c. gdrbéle, however, remains Hertzian
and the stresses at the edge of the contact area remain Tiheg.find that when the sphere is in
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(a) Hertz (b) JKR (c) DMT

contact area

adhesive zone

Figure 2.1: Diagram showing different adhesive contacteetbr a sphere pressing into a plane.
(a) Hertz theory, no adhesion. (b) JKR theory, adhesiveefonecrease contact area, no adhesive
forces outside of contact area. (c) DMT theory, sphere dedtion same as Hertz, additional ring
of adhesive forces outside of contact area.
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contact with a substrate at a single point the pull-off foreguces td- = 2r R as in the theory
for rigid spheres but tends t = ril R as the contact area increases.

These two theories which lead to different conclusions wep®nciled by Tabor [49]. He
defined a dimensionless parametetater referred to as the Tabor number, where

r2R %

H= <E2—ZS) (2.8)
and Zp is the equilibrium distance between atoms. In cases of stfiss(small E) and large
adhesion energy > 1 and the JKR theory is valid. For hard solids and relativelgker adhesion
energy,iu < 1 and the DMT theory is valid. For intermediate valuespothere is a smooth
transition between JKR and DMT models. Analytical expressifor the JKR-DMT transition

were formulated by Maugis [31] by assuming a Dugdale modette adhesive law between
surfaces (described in Section 3.1.2.2).

2.2 Adhesive Modeling

Baney and Hui [2] extend the work of Maugis to describe theeadin between long cylinders.
They define a paramet@r which is proportional to the Tabor numbgr They find a relation
between the force applied to the top of the cylinder per leryand the contact radiua by
enforcing the condition that the singularity in the adhesiene cancels the singularity from the
contact pressure and integrating. In the case of a cylif@econtact area is rectangular and the
contact radius is half the width of the contact area. One mapd conclusion of their work is that
for cylinders, as\ approaches 0 the solution tends to the Hertz instead of th& Bigldel. This is
due to the difference in the way that adhesive forces scdleckiaracteristic contact length in 2D
(cylinder) and 3D (sphere) cases. This work is used dirdwthe in Section 3.4.

Johnson and Greenwood [24] found adhesion maps for a sphe@ntact over a range of
Tabor numbers analytically by using a Dugdale adhesion mmbdé with the errors in the Dug-
dale approximation corrected by numerical results usinganard-Jones adhesion model. The
Lennard-Jones model is described in Section 3.1.2.1 andnisra realistic model than the Dug-
dale. However, closed form analytical solutions of the éadisplacement characteristics cannot
be obtained with the Lennard-Jones model.

Reedy [44] developed a theory for a rigid sphere coming intgact with a rigid surface coated
in a thin elastic layer. He then verified his analytical thethrough finite element analysis. He
used a triangular adhesion model as in Section 3.1.2.3 anddrthe JKR P-a curve as in Figure
3.30 for both the case with and without the elastic coatirygia In his finite element analysis
the adhesion law was incorporated into the contact algorgtready implemented in his finite
element code. In this work adhesion and contact are incatparinto the finite element model
through material nonlinearities in an interface element.

Cho and Park [7] incorporated a Lennard-Jones adhesivelnmatheir finite element analysis
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of a sphere coming into contact with a substrate. They useddmmercial ABAQUS finite
element code and introduced the adhesive force as nonboegrforces. They employed a quasi-
static solver and nonlinear geometry analysis for largemedtion effects.

Hui et al. [21] develop an analytical model based on JKR thémrthe analysis of periodically
rough surfaces at the microscale. In MEMS devices, surfaeghness directly correlates to adhe-
sion energy. Rough surfaces, because asperities keeplkhef e surface from being within the
range of van der Waals forces, have less adhesive energyitr@smooth surfaces. They found a
closed form relation between applied load, contact areaadhdsion energy for arbitrary surface
profiles.

Mi et al. [36] use interface elements which are completelglagous to the Inter elements
presented in Chapter 3 to analyze the crack propagationaaoe-tlisplacement characteristics in
a double cantilever beam example. They use a triangularsaghmodel. They claim that the
interface element technique in simulating crack propagatvas first used by Hilleborg et al. in
1976 [20]. They note the importance of mesh refinement toaedpeakiness” of the results,
which leads to poor convergence. They advocate adaptivhinges the location of the crack tip
location or path is not previously known.

2.3 Adhesion in Micromechanical Structures

Zhao et al. [55] review some important topics in adhesiort esdates to microelectromechanical
systems (MEMS). In these devices adhesion is often reféorad "stiction” and can be problem-
atic. Although in some cases stiction occurs due to capitbarelectrostatic forces, it often arises
due to van der Waals forces as described in this report.

Tayebi and Polycarpou [50] study how roughening the surfeteeen MEMS structures can
reduce adhesive effects. They conclude that increaseaceurdughness, as well as asymmetry in
the asperity heights and decreased asperity thicknes&dane the adhesive energy between two
surfaces. In the beam delamination example presented o83 it is assumed that surface
roughness is the mechanism for altering the adhesive emerglyips along the beam-substrate
interface.

Knapp and de Boer [26] present an example of a microbeam iesagthcontact with a surface
and compare experimental, numerical and analytical resOlhe important result that they present
and that is duplicated here is that the choice of adhesiveehtwak little effect on the final de-
formed shape of the beam. They gather beam deflection datsieentally using interferometry
and calculate the energy of adhesion associated with teefane by matching to finite element
simulation results. Both the experimental and finite eleniemam deflections are compared to
analytical results derived from basic beam theory. The sappeoach was used here in Section
3.3, although without experimental results.

An example of an application of adhesive design that coultebefrom optimization is pre-
sented by Meitl et al [34]. They present an elastomeric statmph is used to transfer micropar-
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ticles arranged in patterns from one surface to anotheugiroan der Waals adhesion forces. For
example, optimization could be employed to design adhegiadients on the stamp surface that
would roll particles from one configuration into another.

2.4 Adhesion in Biology

Gao et al. [13] describe how the topology of the feet of ge@klmsvs them to move along vertical
walls and ceilings. They have a dense array of nhanohairseinféet called setae which can get
close enough to the wall surface so that a large surface asedia@ are within the range of van der
Waals adhesion. Additionally, asymmetry in the setae atlwsvadhesion energy to change based
on the orientation of the seta, allowing the gecko foot teasé and lift off the surface. Since the
adhesive characteristics of the gecko foot are entirelyegwd by the geometry of the surface,
it is possible that design optimization of adhesive sudacan be utilized to recreate the novel
adhesion characteristics of gecko feet or other adhesieetdles in manufactured devices.

Sitti and Fearing [47] and Northen and Turner [39] propos&gtes for synthetic microscale
adhesives based on observations of gecko feet. They presearal approaches of microfabricat-
ing structures that mimic the setae of geckos. Their work anig experimental and does not
include finite element analysis. Their microstructureseandgsigned without design optimization
techniques.

Tsibouklis et al. [51] design low surface energy coatingsrigplants. By reducing the energy
of adhesion of surfaces through coating, bacteria canrtedradas easily, reducing the formation
of hazardous biofilms.

2.5 Design Optimization

There is currently very little work published on optimizatiof surfaces in adhesive contact where
the dominant adhesion force is from van der Waals attract¥aon and Gao [53] use an analytical
approach to find optimal shapes of two contacting surfacéh,the objective of maximizing the
adhesive pull-off force. However, the analytical appro&himited to axisymmetric problems
where the adhesive energy in the interface is constant. dardo deal with general problem
formulations and complex geometries we present a compuatdt@pproach drawing from topology
optimization of structures that come into contact withadihesion [42], [29], [11], [19]. These
methods allow for the design of structures by starting wittyd@oundary conditions and a design
domain but do not account for adhesion, whereas the worlepted in this paper focuses on
designing the adhesive pattern between predefined stesctur

Pajot [40] also investigates the design optimization oficttires with nonlinear properties.
He looks at designing structures with geometric nonlinesrisuch as buckling and studied the
problems in optimization of systems that may develop liroitys and turning points. He used the
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same optimization algorithm, GCMMA, as is used here in Céiaftas well as the same nonlinear
finite element framework and solvers used in Chapter 3.

Groth and Nordlund [16] use shape optimization to optimideesive joints at the macroscale.
However they do not model the adhesive as intermoleculaefobut instead focus on classical
structural criteria such as the strength of the adhesiv.joi
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Chapter 3

Analysis Framework

In this chapter the general models used for contact and emthase described in detail. Three
finite element models that incorporate these models areetkerihe method for solving the mate-
rially nonlinear problem is then discussed. Finally, ex@amglemonstrating the accuracy of these
elements in matching analytical solutions as well as patanséudies are presented.

3.1 Modeling and Element Implementation

The adhesive contact model presented here stems from aimeesional forcing model. This
model includes a force which is a function of the gap betweengarticles experiencing van der
Waals attraction and Born repulsion, and can be thought aframlinear spring. This spring has
an equilibrium length, which corresponds to the equilibrigap where the Born repulsion forces
from electron cloud overlap balances the attractive van/dails adhesion forces. However, the
restoring force only increases up to a point, at which theageate of the van der Waals force
outpaces the decay rate of the repulsion forces and the sumdaoting on the particles begins to
decrease.

This one-dimensional spring model is introduced in theditere when accounting for van der
Waals forces between nodes in finite element analysis. Lal. g27] use this approach in their
atomic scale finite element modeling. As nodes (atoms) ampr@ach other, nonlinear spring
elements are adaptively inserted when the distance beta@ggs is less than some cutoff value.
These spring elements serve both to prevent surface pgoeteand to include adhesive van der
Waals forces. Other researchers use a similar method afiacating surface forces as nonuniform
distributed loads that are functions of the nodal displaa@[26], [7]. In another model, the gap
between two surfaces remains identically zero while argrfatial forces exist [43], [52]. These
forces drop to zero when the gap becomes greater than zerararadfunction of the viscosity
of the adhesive. This formulation is more appropriate focroascale adhesive problems such as
those involving the delamination of composite material$ @mot explored in this report.
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3.1.1 Contact by Penetration Penalty

First, the penalty contact formulation is described. A direensional one degree of freedom con-
tact example is shown in Figure 3.1. Considering an elastitylsubject to conservative external

(@) (b) ()

Figure 3.1: A body coming into contact with a surface. (a) Bigbn of initial gaph and displace-
mentu. (b) Lagrange multiplieA as reaction force preventing penetration. (c) Contactlpeaa
spring with stiffnessy, allowing penetration.

forces, the potential enerdy of the system to be minimized can be expressed as

N = U+W+M49) (3.1)
g = h—-u>0 (3.2)

HereU is the internal strain energyV is the external work andll, is the adhesive energy in
the system, defined as a function of the ggp,Contact occurs wheg is reduced to zero. To
account for this, the energy minimization problem is camstd by the inequality (3.2), whelre

is the initial distance between the points closest to eatbérain the body and surface coming into
contact ana is the displacement of the same point on the body.

Two standard methods for enforcing this constraint in coreg&e problems are the penalty
and Lagrange multiplier methods [52]. In the Lagrange rpli&ir method, the potential energy is
augmented by a term

M = U+W-Ta(g)+ M, (3.4)
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whereA is a Lagrange multiplier and analogous to a reaction forctheatinterface preventing
penetration. This term must be solved for as an addition#bke. The penalty method, which is
the method used in this work, augments the internal stragnggrfunction by a term

Mp = %kg(g)z” (3.5)
M = U+W-+Ma(g)+Myp, (3.6)

whereg™ is zero for positive gaps argifor negative values. The vallkg is a penalty factor and is
analogous to the stiffness of a spring that resists peratratit does not completely prevent it.

The interface elements used are derived by integrating adonensional force model over
the area of an interface segment. Wriggers [52] refers akian isoparametric contact element
approach. One limitation in this approach is that tangéntimmponents of interfacial forces such
as friction are not included. However, this model is suffithe accurate for the design problems
under consideration in this paper.

The penetration penalty is introduced in the interface el@inas an interface stregswhich
depends on the gapfor negative gap values:

cg ,9<0
a(g):{og g> 0 (3.7)

wherec is the penetration penalty.

3.1.2 One-Dimensional Adhesion Models

While the contact formulations define the response of ther lelements for negative gaps or pen-
etrations, several adhesion formulations have been deselthat define how the Inter elements
respond to positive gaps. In adhesion there is decreagifiiess as the gap grows larger, and
when two surfaces have debonded there is no longer anyestsffoontribution from the gap be-
tween them. Three adhesion models have been implemen&dheiLennard-Jones, the Dugdale
and a triangular model. The Lennard-Jones model is the sinoafiverse polynomials represent-
ing the adhesive van der Waals force and repulsive electoud ©verlap. The Dugdale model is
an artificially constructed function that makes some amnad/talculations easier but is not rooted
in reality. It is a notch function with a constant force peeawover a certain gap range and zero
everywhere else. The triangular function is a linear apjpnation of the Lennard-Jones model
with a positively sloped section, a negatively sloped secénd zero everywhere else.

3.1.2.1 Lennard-Jones Model

Of all the models describing adhesion presented here, thedrd-Jones model most realistically
models forces between particles at the nanoscale. EquaBdor the force per area between two
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perfectly smooth surfaces was derived by integrating thenbked-Jones potential between two

atoms.

a a
— _ 3.8
79= g1 (bg+ 1) 9

whereg is the gap or distance between two surfaces. This functichasastructed so that the
equilibrium stateg = 0 is at the origin. In reality there is some non-zero distaret@veen atomic
nuclei which is a stable equilibrium. The termibg+ 1) represents the contribution from the
van der Waals force. The terma(bg-+ 1)_9 in Equation 3.8 is due to the strong repulsion that
arises when the electron clouds of neighboring atoms begiadrlap. This effect is what prevents
solids from penetrating each other at the macroscale. Thedrd-Jones function, which is shown
in Figure 3.2, sums the effects from van der Waals attractahelectron cloud repulsion.

25

\ van der Waals
/

force per aread

/ electron cloud repulsion
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gap size, g

Figure 3.2: The Lennard-Jones model for attraction andisepubetween atoms as a sum of van
der Waals forces and electron cloud interaction

The constanta and b in Equation 3.8 can be expressed in terms of characterisfitke
Lennard-Jones function such as the maximum force per @redhe distance between particles
that corresponds to that force per aggaand the surface energy or adhesive strength perlarea
The maximum force per area, occurs when the derivati\% = 0. Solving forb in terms ofgm,

d ) )
d—g — ab|-3(bgm+1)"*+9(bgm+ 1) 10} —0 (3.9)
3(bgm+1)_4 = 9(bgm+1)_10
(bgm+1)° = 3
1
b — > -1 (3.10)
Om
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The constana can be expressed in term @,

a a
a(gm) =0m = 1 3 1 9
(bSGb—l + 1) <b36b—1 + 1)
— a(g*% _ 3*%)
_ 23,
a 9
a = %3@,1 (3.11)

Alternately, either of these can be replaced with an expesglatinga andb to each other
and adhesion enerdy. Adhesion energy per area is defined as the integral of thesaatinforce
per areao over the distance between partictes

= [ ol (3.12)

- /0 (bg+1) 3dg— /0 (bg+1)°dg

S N B B

Making the substitutiom = bg+ 1,
b—r = / x3dx—/ X 9dx
a 1 1

a — (3.13)

One notable feature of the Lennard-Jones function is th&tenge of a singularity when the
terms in the denominators approach zero. This occurs \gh:en—% ~ —0.2gm. This makes the
function by itself unsuitable for analysis when there argdgpenetrations, necessitating a piece-
wise function combining a linear or quadratic contact pgrahd the Lennard-Jones formulation.

3.1.2.2 Dugdale Model

While the Lennard-Jones model is based closely on actuaigddyphenomena, the Dugdale model
is constructed for mathematical reasons in deriving aitals$olutions to example adhesion prob-
lems. For example, in Baney and Hui [2] a Dugdale model is tiselérive closed-form solutions
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to the Hertz and JKR problem for a cylinder. The Dugdale mazigimply

i
_ W ,g<uz
0(@1)—{02 9> U (3.14)

whererl is defined in the same was as for the Lennard-Jones modeldilesian energy per area,
or the area under the force per area curve) ang a critical gap size. The function is shown in
Figure 3.3. Note that the slope of this function is zero ewtigre, and there a@® discontinuities
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gap size, g

0

Figure 3.3: The Dugdale model for attraction between segac

at the origin andus,. both of these features make this particular functionuited for numerical
analysis.

3.1.2.3 Triangular Model

The triangular model is a compromise between the Lennandsland Dugdale models. Like the
Dugdale there is a critical gap, after which the force per area is identically zero. However,
the triangular model i€° continuous and has non-zero slope in the adhesive zonédtni
numerical solution methods. The force per area functionfertriangular model is

2r

uu g 7g < U1
o(@=1 T% w<g<uw (3.15)
0 ,g> U

whererl is the adhesion per area as defined in Equation 3111, the critical gap corresponding
to the maximum force per area (correspondingtoin the Lennard-Jones model) angd is the
gap size where the force per area becomes zero, as showruire Bgl. Examples of triangular
functions with variousl; andu, values are shown graphically in Figure 3.18 in Section 3.3.3
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Figure 3.4: The triangular model for attraction betweerfieags

3.1.3 Finite Element Development

A finite element discretization of these contact and adimesiodels is developed here. The Inter
elements, unlike other type of finite elements, are desigmée used in conjunction with specific

other types of elements and cannot be used on their own. figpdygj they are designed to be

placed topologically between two surfaces of the same eletype, connecting them. The internal

force and stiffness in Inter elements depend on the gap keetie two surfaces as dictated by a
contact and adhesion model pair, introducing a materiaimearity to the system.

In nonlinear finite element analysis the internal fopcand the tangential stiffness mati
need to be formulated. The nonlinear solver requires thvasguantities to determine the displace-
ments of the system for the next step or Newton iterationhéretdhesion/contact problem studied
here bothp andK; can be derived from a potential energy functibnimplying that the system is
conservative. This potential energy is the integral of desr potential functiorsintegrated over
the area between two surfaces:

U= //AS(g)dA (3.16)
The surface potenti@is defined to be the integral of the adhesive force per area
si9)= [ o(g)dg (3.17)
whereg is the gap between surfaces. Note from equation 3.12 that:
= limSg) (3.18)
The internal forcep is defined as:
p= ‘;_ﬂ (3.19)
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Substituting Equations 3.16 and 3.17 into Equation 3.1flgia general finite element equation
for the internal force between two surfaces, which will be@galized to interface elements: the
InterQuad, InterBeam and InterShell elements.

P = 5| /) s@aA
= [
— // gdA (3.20)

A general form for the tangential stiffness matrix can alsalbrived:

K = 0’ dp
b= dudu_du
_ ‘99
~ du // dA
do dg T 929
//[dg 0u( ) +a(g)0u0u dA (3-21)

3.1.3.1 InterQuad

The InterQuad element is two-dimensional with 4 nodes andd@eaks of freedom, as shown in
Figure 3.5. This element is designed to have 4-node qusshalaelements sharing an edge be-

y 4 3

3 b

1 2 2

Figure 3.5: InterQuad element. Initial position is on thi¢ vgth a deformed configuration on the
right.

tween nodes 1 and 2 (the bottom edge) and between nodes 3 tredtd edge). The InterQuad
contributes stiffness and forces to the system dependirntgegap between the top and bottom
edges, shown in Figure 3.5 gsThe gap is interpolated from one-dimensional linear stiape-
tions, treating each of the two edges as individual entitigke local x-axis is aligned with the top
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and bottom edges with the origin at nodes 4 and 1 respectihelx-position can be parameterized:

1+Xg

_ 9
X 5

1
Xp — J;Xng (3.22)

wherex; is the location along the top edge, is the location along the bottom edde,andLy, are
the lengths of the edges amglis a parameterized coordinate that goes from -1 to 1. Thadine
shape functions for the y-component of the four nodes are:

vy — 1
vy = L
vy — L

The gapg between the edges at given corresponding x-locatigean be written as a function of
shape functionsl),, nodal y-displacements), and initial nodal y-positiongy,:

g = Nay (Yoa+ Uay) + Nay (Yoz -+ Uzy) — Ny (Yo1 + Uzy) — Noy (Yoz + Uzy) (3.23)

The generalized internal force equation (3.20) and tamgestiffness equation (3.21) can now
be specialized to the InterQuad element. The width of thenefd is constant and the gap value
does not change in the z-direction (along the width), redythe integral for internal force to
= —d 3.24
p=w | ()5 dx (3.24)
wherew is the element width ang andL represent eithex, andLy or % andL; depending on
which edge each component of the internal force vector spards to. Substituting Equation
3.22 for generalized coordinates allows for a Gauss poiptagmation of the integral over the
length of the element

wL 1 ag
P = = 710(9)5(3')(9

I

wL 2 ag
7|ZWIO—<QI)%‘XQ- (3.25)

wheren is the number of Gauss pointg, are the generalized coordinates of the Gauss points,
are the corresponding weights, agds the gap equation (3.23) evaluated at the gauss prjnts
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The derivative of the gag with respect to the elemental displacement veuatisr

g

.
Gu= L0 Ny 0 —Npy 0 Ny 0 Ny (3.26)

The tangential stiffness matrix can also be specializetiedriterQuad element in the same way.

The first observation is thaﬁ% = 0, following from Equation 3.26. The tangential stiffness
matrix for the InterQuad element, following from Equatic2Bis

@ - //2333( )

_wL ldodg(dg T
N _1dgdu \du

~NayNzy O —NayNpy O NgNay 0 NayNgy
0 0 0 0 0 0 0

~ WL do| dg (dg)
= (3.27)
2 Z dg Xgi
Here, the gap derivative matrix is:
[0 0 0 0 0 0 0 0 ]
0 NyNiy O NyNpy 0 —NgiyNay 0 —NgyNgy
0 0 0 0 0 0 0 0
dg (dg) 0 NpyNiy 0O NpyNoy 0O —NpyNzy O —NpyNay (3.28)
du \ du 0 0 0 0 0 0 0 0 '
0
0
0

The forces in the InterQuad element act only in the localrgation; there is no friction-like
resistance to motion in the tangential direction. Highstdited elements, where the upper surface
may be offset from the lower in the x-direction, will behavethe same manner as rectangular
elements since the tangential component of the gap betweesutfaces is disregarded. This is
true for all three interface elements developed here.

3.1.3.2 InterBeam

The InterBeam element is very closely related to the IntadXlement, except that it is designed
to be compatible with 2-node 6-DOF beams along the top antbinoédges. The InterBeam

element, shown in Figure 3.6, has 4 nodes and 12 degreesedbfre two translational and one
rotation at each node. Besides the additional rotationgiesss of freedom, the major difference
between the InterBeam and InterQuad elements is the cubpediinctions. The shape functions
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Figure 3.6: InterBeam element. Initial position is on thi¢ \Wéth a deformed configuration on the
right.

for the InterBeam element are
Ny = L_g(zxg 3L+ Lp)
1
Nig = L—g(Lng 215G+ Lpxo)
Ny = L_g( 2x3 + 3LpX3)
Nog = L—g(beg—Lﬁxﬁ)

1
Nay = 3 (—2¢ +3Lo¢)

L?
1
Nag = 5 (Lo —LEX)
t
1
Ny = —3(2xt3 3L + L)
t
1
Nag = 5 (Log = 2LEX + L)
t

Note thatx, andx; are used as defined in Equation 3.22 in placeyofThe gap functiomy is

9 =Nay (Yoa+ Uay) +NagUag + Nay (Yo + Usy) +NagUsg

(3.29)
— Niy (Yo1+ U1y) — NagUie — Noy (Yoz + Uzy) — NogUzg

Equations 3.25 and 3.27 for the internal fog@nd tangential stiffness matrik; are identical
for the InterBeam element. The differences are in the shapetibns and the derivatives of the
gap with respect to the displacement vector. The gap demveector for the InterBeam element
becomes

99

.
%:[0 —Niy —Ngg 0 —Nzy —Nzg O Nzy Nzg O Nay Ngg | . (3.30)

T
The gap derivative matri% (%) is not written explicitly here, but obviously follows from
Equation 3.30..
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One optional feature in InterBeam elements is the abilitadfust the gap to take the beam
thickness into account. In this case the top and bottom eodfgéhee InterBeam are taken as the
midlines of the beams, shown in Figure 3.7gliis defined to represent the original gap measure-

9t
4

6) t /2
Ot

9b
t,/2\8},

2
9b

|

Figure 3.7: The gap adjusted for beam thicknesses. Triangles show close-gparidg, con-
struction

1

ment, the true value for the ggbecomes
9=9 — %0 (3.31)
whereg; and gy, are defined graphically in the diagram. With the assumpti@ beam cross-

sections remain normal to the beam midline under bendintatiae between the beam slope and
the angle$} and6, emerge

dy
tanf@ = dx
sew — (14 (¥ (3.32)
a dx '

From the triangles in Figure 3.7 the following trigonomenelations exist

O = %secet
{
G = 3 sech (3.33)

wheret; andt, are the thickness of the top and bottom beams respectivebstiuting Equation
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3.32 into Equations 3.33

ok dy \*
* =2 1+<dxt>

b dyp \ *
O = 1+ (dxb) (3.34)

Since beam elements are isoparametric the y-coordinatéuaston ofx along the beam is

e = N{x
Yo = Npxp (3.35)
where

Nt:[O Nay Nzg O Nzy Nazg }T
No=1[0 Ny Nig 0 Ny Ny |’

and

X=X Ya 612 X3 Y3 93]T

Xp=[X1 y1 61 X2 Y2 62 }T~
Differentiating Equations 3.35,

dyt dN;r T dXt
= Lxe+ Ny ——
dx dx dx
iy
dyb _ % NT dxp

dx, dxy b b%
=0

and substituting back into Equation 3.34 yields the equatigsed to modify the midline gapto
account for beam thicknesses

ot ANy
% = é\/ 1*(&“
t dNT \?
o = §b\/1+ (—dxsxb) (3.36)
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3.1.3.3 InterShell

The InterShell element shown in Figure 3.8, unlike the Bé&am and InterQuad, is fully three-
dimensional and is meant to be compatible with 3-node 18-D@Rgular shell elements. It has

Figure 3.8: InterShell element. Initial position is on tleé Wwith a deformed configuration on the
right. The gapy measured between the top and bottom surfaces is shown

6 nodes with 6 degrees of freedom at each node for a total oé8feds of freedom. It has upper
and lower triangular surfaces defined by nodes 4,5,6 an8 fie8pectively. The overall element
is prismatic in shape. The top and bottom surfaces are wiggr with linear shape functions for
simplicity. Rotations at the nodes are not taken into actolithe shape functions for the shell
elements are

Nt = (1
N = &
N3 = (3
Ny = Q1
Ns = {2
Ne = (3

where({y, {» and {3 are generalized triangular coordinates of a given pointhentdp or bottom
surface of the element. The ggpcan be described in terms of these shape functions and z-
displacements and initial conditions.

9 =N4 (204 + Ugz) + N5 (205 + Usz) + Ne (Zos + Usz)

3.37
— N1 (Zo1+ U1z) — N2 (202 + Ugz) — N3 (203 + Us;) (3:37)

The internal force can be specialized from the general fdtquétion 3.20) by converting from
Cartesian to triangular coordinates. Using the relation

dA = Jd1dZ2dZ (3.38)

whereld is the Jacobian determinant. For linear shape functiondabebian determinadtreduces
to either the are&; or A,, depending on whether it is the top or bottom surface undesideration.
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The specialized internal force vector becomes

p = | / / 0)22302,00,025
- A / / / gdzldzzdzs

and with triangular Gauss integration approximation
oA 09!
p= .Z ()5 W (3.39)

wheren is the number of points in the Gauss integration rglesepresents the gap evaluated at

Gauss points andg; is the weighting factors of each Gauss point. The gap ddaré/&tector% has
zeros for all non-z-component entries, negative nodalelfiapctions for the first three nodes and
positive nodal shape functions for the last three nodesedims vector is constant inthe second

derivativea‘fmgu = 0. The specialized tangential stiffness matrix can be ddrftom Equation 3.21

ldodyg T
<= [ / / s (—) 34102502
= do| dg (dgi T
Er (%) (3.40)

= A
Z dg
Again for space considerations the 36x36 gap derlvatlvenm%% (‘79'> is not included. It

includes 36 non-zero entries and has a structure very sitoithat of the gap derivative matrix for
the InterQuad element.

3.2 Nonlinear Solver

The material nonlinearity introduced by the contact andeattin models in the Inter elements re-
quire the use of a nonlinear finite element solver. In lingatems the stiffness matrik of the

system is constant, allowing the displacements vactorbe solved for in a single step. Addition-
ally, the principle of superposition applies, meaning thalttions for different system boundary
conditions can be added. In nonlinear systems, howevesttifigess of the system is a function
of the displacements, meaning that the solution cannot bguated in a single step. At each
equilibrium displacement vector a tangential stiffnes$rimd; must be computed to predict the
displacement of the next incremental step. A Newton coorettethod is applied to applied to
reduce the residual of the resulting prediction until theggiis satisfactorily close to a new equi-
librium state. There are several methods for stepping tiiraquilibrium states to the solution.
Those shown in Figure 3.9 are the load control, state oratgphent control and arclength control.
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Figure 3.9: Sketch of different nonlinear solution metho@g Load control. (b) State (displace-
ment) control. (c) Arclength control.

The diagram shows a one-dimensional simplification of tispldcement and force vectors. The
methods can be abstracted to higher dimensions. In all rdstihe step size i8A and then+ 1t
step isAn11 = An+AA. In the forward Euler method, which is the method used in wWosk, a
prediction is made for the solution in stdp, 1 by moving along a vector tangent to the residual
path (defined by the tangential stiffness mati® until a constraint is met. In the load control
method, this constraint is a hyperplane defined by a fractidhe total applied force. The Newton
corrector method then traverses along this constant fdeseepuntil the guess is close enough to
the equilibrium residual curve, as defined by a convergenieeance. In the displacement control
method the constraint for the first prediction is instead @stant displacement hyperplane that is
defined by a fraction of the applied displacements vectoe 8dvantage of the displacement con-
trol method is the ability to traverse limit points on the éitpuium residual curve. A limit point

is a critical point where the tangential stiffness makixbecomes singular and the tangent to the
equilibrium path is normal to the load axis. If a solution &spa limit point, it is not possible
to solve for it using the load control method. In the arcléngtethod, the prediction constraint
is the length of the prediction vector itself. The Newtonreotor then traverses the hyperplane
that is perpendicular to the predictor vector toward thelggium path. This is the most robust
method, able to traverse limit points and turning points ok K; is singular and the tangent
to the equilibrium path is normal to the displacement axisthis work the displacement control
method is used because typically limit points are the orpg$yof critical points encountered and it
makes specifying certain applied displacements to be davegtimization objective formulations
trivial.

In solving nonlinear problems the step six& is a critical value, especially near critical points
where the tangential stiffness changes drastically overald range. In these regions a relatively
small step size is necessary or the Newton corrector methad &blow-up” or get stuck oscillat-
ing between two values. However, a smaller step size mayanaedired for the majority of the
solution, where unnecessatysteps can add to the solution time without improving sigaifity
the accuracy of the solution. As a compromise, an adagtiseheme is use based on the number
of iterations the previous step took. If the previous stapveaged to within the specified tolerance
in less thamax Newton iterationsAA is doubled for the next step. Likewise, if the previous steps
took more thamy,, iterations to converge)A is halved for the next step. The number of times
thatAA can be doubled or halved is specified by the facktéwf, andl fax respectively. This al-
lows refinement near difficult areas such as critical poiritgenallowing large steps through easier
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sections.

In most nonlinear solution methods, the Newton convergdalezance tends to be defined
by the current residual value normalized by a referenceevalihis relative convergence scheme
allows the user to set a single tolerance value that is noredsional and valid for a wide range
of problems. However, problems arise when using a relatilgance for adaptive step size when
coupled with saving the state for optimization at specifioga ofA. For example, if the last step
solved for is close to & value that needs to be saved for optimization, the predidtoothat step
may be extremely accurate. If a relative convergence @iteuused, the solution may not be able
to be improved to the level specified because the predictesmalready almost converged. This
will force the Newton solver to continue iterating and it nmeot be able to converge to the specified
tolerance. This will trigger the adaptive step size to benesraaller on the next step, exacerbating
the problem. This can be avoided by using an absolute rdstdnaergence tolerance. All the
tolerances given in this work are absolute residual val@sse needs to be taken in selecting an
absolute tolerance that leads to a well-converged soludibis is studied in Section 3.3.4.

3.2.1 Multiple Statically Stable Solutions

Sometimes in the solution of nonlinear problems two diffierequilibrium states can be reached
for the same boundary conditions. The solution that theesdinds is dependent on the beginning
state of that step; it will find the solution that it beginss#st to. This multiplicity of solutions
may seem similar to a path dependency, which would be cdotigive as each element in a
system is internally conservative. Indeed, if every nodsitpm is prescribed, the same forces
arise independent of the path that the nodes took to reagbréiseribed configuration. However,
typically only some boundary nodes in a system have presgtidisplacements or forces, allowing
possibly multiple stable equilibria to exist, even in cana#ive nonlinear systems such as those
that include Inter elements. This can be demonstrated w#imale example, shown in Figure
3.10. This example is a simplified model of one object beinghed into another with an adhesive

kg ko

initial: %—W‘ ! r Z’W'S

f L L
0 ) ) )
0 X1 X2 o

deformed:

Figure 3.10: Diagram of multiple stable equilibria exampteblem. Initial and deformed states
are shown. There is an adhesive field between points 1 andti2l position and displacement of
point 3 are prescribed.
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force between the two, such as the cylinder example detailé&kction 3.4. Here one linear
spring is pushed into another by specifying an initial uodefed position for point 3)@ and

a prescribed displacement for the same nagg. (Displacements; andu, are the degrees of
freedom. There exists a nonlinear adhesive function betweits 1 and 2, modeled with the
Lennard-Jones equation. It is important to note that siheeproblem is one-dimensional, the
contact area between points 1 and 2 is constant and assutined td he units of are reduced to
energy instead of energy per area.

Equilibrium states of the system for a givg%and uz occur when the potential energy of the
systeml, is at a local minimum. The potential energy of the systemlmaaxpressed

U (U, U2) = Us+Ua (3.41)
whereUs is the potential energy of the linear springs asklis the energy stored in the adhe-
sive field between points 1 and 2. The energy in the springdusction of the deformation of
the springs from their undeformed lengthy, It is assumed that both springs have the same un-

deformed length and that in the initial state the springsusngeformed, such thzx@ = Lo and
xg = xg —Lo. The energy stored in the springs is therefore

1 1 .
Us(ul,UZ) = ékluf—l—ékz(Uz—l—Ug)z. (3.42)

The energy in the adhesive field can be expressed

9
Un(g(us,uz)) = S(g) = | ~odg (3.43)
from Equations 3.16 and 3.17, assuming contact area isatrestd equal to 1. Here, the ggys
g(uz, uz) :Xg—Xg-i-Uz—Ul :Xg—ZLo-l-Uz—Ul. (3.44)

Substituting the Lennard-Jones model éofrom Equation 3.8Ua can be expressed

8br [ 9 1 9 1
00 = 5| wrr e | ) -
1 4
Ua(g) = T {S(bg—i—l)s — 3(bg+ 1)2 —i—l] ) (3.46)

whereb, defined in Equation 3.10, is proportional to the inversenefgap that corresponds to the
maximum adhesive forcgm, and has units of inverse length.

Stable equilibria will occur either at critical points bf or whereg = 0, since negative
corresponds to penetration which is not admissible. Gtipoints ofU occur where
ou oduU
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variable| value
ki 4
ko 100
X 4
U3 1
r 2
b 2
Lo 1

Table 3.1: Parameters in spring problem

Differentiating Equation 3.41,

T T
Z—i = ‘;th + dCLI;A ;i = ‘;l:zs + dc:éA. (3.49)
Setting these to zero and summing,
0= % + g—l:j (3.50)
Differentiating Equation 3.42,
% = king (3.51)
g—ldzs = ko(uz+0Ug). (3.52)

Substituting back into Equation 3.50, the following redatbetweernu; andu, at a critical point of
U is obtained:

U = —ﬁul — 03. (3.53)
ko

Equation 3.53 has several implications. At all critical meiof U, (uj,u3), us is a linear
function ofuj. This means that for each critica} there is a uniques, and the problem can be
reduced to a single degree of freedom. Furthermore, in tleelimensionali;-u,-U space, all
critical points of the surfadd are along the intersection with the vertical plane defineBdpyation
3.53. Figure 3.11 shows a contour plot of the potential gnefghe systentJ as a function ofi;
andu, for the values in Table 3.1. For these parameters there aréot@l minima ofU in the
admissible ranges fan, andu,, implying two different stable equilibria for the samg ~

Since all critical points oU intersect Equation 3.53 and that equation is linear, we fan-e
tively reduce the problem to one degree of freedom. Sulbisiifiequation 3.53,) becomes

U*(up) = Ug(u1) +Ua(g"(u1)) (3.54)
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Figure 3.11: Contour plot dfl for spring system as a function af andu,, with Equation 3.53
overlaid. All critical points olU lie on the line. There are two local minima and one saddletpoin
in the range shown.

where
Ui = }kluf 14k (3.55)
2 ko
g = ¥-lG3—2Lg—u <1+%). (3.56)
2

As a final step, the problem can be non-dimensionalized blngcd * by FlLZ Scaling a
function by a constant does not change the location of italipoints. Non-dimensional terms
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are denoted by bars:

b = bl
G
u = Lo
= _ Us
Uz = |—0
_ ky
““ &
x2
0 _ X3
X3 = >
_ r
r— —
kil2
Lo
Us — %Jﬁ(wk)
_ _ 1 4
Up = |-
A 39+ 1) 3(bgr1)?
_ u* -
U = — =Us+Un 3.57
E: s+Ua (3.57)

Figure 3.12 show§) plotted againsti; at various non-dimensionalized displacement values of
point 3. In each case, only admissible valuesupfare plotted; larger values af; than those
plotted in each graph would correspond to an inadmissibigtnge gap between points 1 and
2. The path that a displacement controlled nonlinear sokarld take, starting fronuz = 0.6,
increasing to 16 and returning to ® is shown. The solver would find the local minimumlbfat
eachA (0z) step, starting at the equilibriuny from the previous step and using the gradient there
in the current step for the search direction.uUAt= 1.1, the solver finds different stable equilibria
based on which direction that step is approached from,iogeah apparent path dependency. Also,
local minima can "disappear” betwednsteps, making the distance to the next stable equilibrium
relatively large. This can cause problems in a real numlesataer in a problem with more degrees
of freedom. Another potential problem, not shown in FigurE23is "flip-flopping” between two
stable equilibria if they are too close together relativeht® Newton step size. These problems
combined can make some adhesive problems nearly unsolestdbown in Section 3.4.

3.3 Beam Delamination Example

A simple example problem is presented that has an analwidation to which numerical results
can be compared. In this problem, a beam begins fully adheredrigid substrate. A vertical
displacementy; is applied to the tip of the beam while the angle of beam atifhis fixed at zero,
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Figure 3.12: Progression of displacement controlled me@li solver finding stable equilibria of
the spring system as is increased from @ to 1.6 and back. Solver finds different stable equilib-
rium atuz = 1.1 depending on which direction that displacement is apgredérom.
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as shown in Figure 3.13. As the gap between the beam tip arslitistrate grows, the tip force

1R
MtC
Ut
Y, y(X)
/
S

Figure 3.13: Diagram of beam example delamination problem

increases until a crack begins to form and propagates almngpace between the beam and the
substrate. Analytically this crack length is represented avhile numerically the crack length is
determined by the number of Inter elements with a gap latger some critical value, usualgy,

for the Lennard-Jones model oy for the triangular model. Nominal values for all the problem
parameters are given in Table 3.2

In the following sections the analytical solution is dedvand then a series of case studies
where various problem or numerical parameters are variethodstrating the envelope of re-
sponses that are possible and verifying the accuracy ohtlee inter element models. With the
exception of the parameter under study, all other parasi&ke the nominal value given in Table
3.2. Additionally the triangular model is the default adliegorce per area function with a linear
contact penalty function, a spooles solver is used for sglsystems of equations, the beam is dis-
cretized by 1200 beam elements with InterBeam elementseobing to the substrate and 6 Gauss
points per InterBeam element is used for numerical intemrat

3.3.1 Analytical Solution

For this problem an analytical solution can be obtained.mpdification is made that no adhesive
force acts on the delaminated section of the beam and thadhered section acts as though
clamped. The delaminated portion of the beam can then beletbds shown in Figure 3.14 with
the following boundary conditions:

Y (0) 0 (3.58)

Y (s) 0 (3.59)

y0) = u (3.60)

y(s) = 0. (3.61)
Summing moments in the free body diagram in Figure 3.14 gield

M(x) = Rx— M (3.62)

45



variable value description
w 8um beam width
t; 2um beam thickness
ty 2um substrate thickness
A 1.6x 10 1P beam cross-sectional area
E 1.6 x 10*Pa beam Young’s modulus
I 5.333x 10 %*nt* beam moment of inertia
L 800um beam length
U 2um vertical beam tip displacement
m 1200 elements per beam
r 100%J adhesion energy per area
up 1x108m triangular first critical gap
Uy 2x108m triangular second critical gap
c 1x 1016% contact penetration penalty
tol 1x10°8 absolute residual convergence tolerance
Ao 0.002 initial A for nonlinear solver
AV 0.002 initial A step size
| fmin 3 minimumAA multiplication factor
| frax 5 maximumAA multiplication factor
Nmin 20 minimum iterations foAA factor decrease
Nmax 5 maximum iterations foAA factor increase

Table 3.2: Nominal values for the parameters in the beam pbkeapmoblem
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Figure 3.14: Free body diagram of delaminated section ahtmeample. Lower diagram includes
shear force and moment exposed by a cut
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and from basic beam theory,
Ely’ =M. (3.63)

Substituting Equation 3.62 and integrating,
Ely’ = Rx—M
Ely = %thz— MiX+ C;. (3.64)

Substituting Boundary Condition 3.58 yields= 0. Substituting Boundary Condition 3.59 gives
a relation between crack length, tip force and tip moment:

M = SFs. (3.65)

Integrating Equation 3.64,
1 1
Ely= 6th3— E|v|tx2+c2 (3.66)

Substituting Boundary Condition 3.60 yields = Elw. Substituting Boundary Condition 3.61
and Equation 3.65 yields a relation between crack lengitiptce and tip displacement.

1 1
0 = éFts3—§Mtsz+Elut

1
Eluy = 1—25s3
12E]
r = “o (3.67)

Using this expression it is possible to express the beamesiiapin terms of crack length and tip
displacement.

_ 13 15
Ely = H{éxe’—zsx}JrElut
o121, 1,
y = Ut|:§ <6X3—Z )‘i‘l}
NG
y = ut(2—§—3—82+1) (3.68)

In order to express the crack length in terms of the adhesiengg per areal’, the strain
energy rate of the beam needs to be formulated. From beanytie® strain energy density is
a function of the stress,

M
GX — I—y
2 2\,2
0] M=y
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The strain energy of the beabh is the strain energy density integrated over the beam cross-
sectional area and the length

S
U — //WdAdx
0

S M2

B /ZEI / Y’ dAdx
sMZ

= Jy 2m

- = 2
_ 2E|/0M dx (3.70)

The termM? is expressed in terms of crack length and tip displacemestibgtituting Equations
3.65 and 3.67 into Equation 3.62

1

2122
e - ERE (o g 1)
4
Substituting into Equation 3.70,

1 122|52|2 1

_ 6.1§6Elut {553_533%153}

_ BEIW
U = =3 (3.71)

The beam/adhesive system will be in equilibrium when theg@neeleased when increasing the
delaminated area by an infinitesimal amount is equal to tkeggrof adhesion per area,

du du
18RI
o wst

wherew is the beam width. Substituting= ‘“1”—23

1
3,2\ 12
s— <3Eztr”‘ ) (3.73)
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wheret is the beam thickness. Substituting this back into Equadié8 yields an equation for
the beam shapgin terms of the tip displacement and the energy of adhesion per afeaTlhis
equation is used as the baseline to compare numericalgesmtexample is in Figure 3.16.

3.3.2 Element Model Study

The first study we look at is modeling the beam using eithentdaur-node quadrilaterals, or

three-node shell elements. In the case of beam elementappe delaminating beam was dis-
cretized into 1200 elements. Displacements at all degrieesemlom of the lower substrate beam
were set to zero, as well as those of the right-most node ofipper beam. A displacement of
2 x 107%min the y-direction was applied to the leftmost node of thearppeam, and all other

degrees of freedom were left free.

In the case of shell elements, the upper beam was discretiZt00 triangular elements in a
pattern shown in Figure 3.15 This discretization presethedx-length of the elements from the

V(L_'
z X

Figure 3.15: Sketch of beam discretization pattern forahrede triangular shell elements, top-
down view

beam element discretization. In this case the tip displacems in the z-direction, out of the page
as shown in Figure 3.15. Again, displacements in all degoééeedom of the substrate beam
were restricted to zero, as well as at the rightmost two nofittee upper delaminating beam.

Several meshes were studied for quadrilateral elementgereral, the converged shape of
the beam discretized with quadrilaterals matched the Veal$tvith the analytical solution. This is
most likely due to not having rotational degrees of freedonhthe linear as opposed to cubic shape
functions. The mesh that was the best compromise betweemaaycand computation time was
2400 elements in the x-direction and 4 in the y-direction.ithe beam element case, beam tip
displacement is in the y-direction. It is important to ndtattthe element length in the x-direction
is twice as small as in the beam and shell element cases.

Figure 3.16 shows numerical results for the delaminatedhbs&@ape using different element
types to discretize the beam, compared to the analyticatisal In some cases, the upper beam
is clamped at the analytically computed crack tip and theeaitle energy of the Inter elements
is set to zero. The clamped beam and shell element disdretigaare nearly indistinguishable
from the analytical solution. Figure 3.17 shows the diffex@ between the different examples and
the analytical solution. The clamped quadrilateral disza¢ion is less accurate, even though the
mesh is twice as dense in the x-direction as the beam andcstsals. This is especially evident
in the region between the beam tip and the crack tip. In thean@img cases the adhesion energy
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Figure 3.16: Beam deflection example modeled with diffeedament types. (a) Delaminated
beam profile (b) Close-up on crack tip area
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Figure 3.17: Difference between FEM and analytical sohgito beam delamination example
along the beam length
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in the Inter elements is set tox110~% and the upper beam is not clamped at the analytically
determined crack tip. The beam and shell element discteftimare nearly indistinguishable, and
the quadrilateral element case is slightly worse. All thsbew a crack tip shifted to the right,
indicating a possibly weaker adhesive than calculatedy#ically. However, this effect is due to
the transition between fully "stuck” and fully delaminatexdjions of the elemental force function,
while the analytical case assumed no transition zone. Hexvdve maximum error overall, in the
quadrilateral case, was less tham? which is about a third of one percent of the beam thickness.

3.3.3 Adhesion Law Study

Two adhesion laws were implemented, one based on the Ledoaes equation and four varia-
tions on the triangle law used in all other examples. Figui® 3hows the five functions, which
all have a corresponding adhesion energy per drigaf(1 x 10*4#. Figure 3.18(a) shows the

@) x 10° (b)
10000 10
E E
Z 8000 2 8
g ramp down ramp up g
© <
@ 6000 T 6
o o
g g __— compressed triangle
o 4000 = 4
= =
@ 7]
14 I
< <
® 2000 T 2 Lennard-Jones
triangle
0 0
0 0.5 1 15 2 0 1 2 3 4 5
gap size (m) x10°® gap size (m) 10

Figure 3.18: Various nonlinear adhesive functions studi@) Triangular functions withu, =
2.0 x 1078 (b) Lennard-Jones-style function and a correspondingdtiar function

triangular functions "ramp down,” "ramp up” and "triandleyhich all have the same gap size
over which adhesion is activel) in addition to the samé&. Figure 3.18(b) shows a Lennard-
Jones function and a corresponding triangular functiohithacaled to similar dimensions. The
Lennard-Jones function was scaled so that the penetratizaity would be large enough to allow
the same amount of penetration as the other triangulariimectNote the two order of magnitude
difference between the scales in the figure.

Figure 3.19 shows the resulting beam profiles for the varamligesion laws. Interestingly, at
the crack tip the ramp up and ramp down laws give similar tesblt the error over the beam
as a whole is much greater for the ramp down case. Also, thedrdrlones law gave by far the
closest agreement with the analytical solution, while tih@lar compressed triangle law yielded
the poorest results. In fact, the nonlinear solver couldamriverge to an absolute residual of
1 x 1078 for the compressed triangle case as it did in all the othershe tolerance had to be
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Figure 3.19: Beam delamination with various adhesive féawes. (a) Close-up of crack tip (b)
Difference in beam shape from analytical solution

relaxed to Ix 10, Even with this relaxation, many steps took more than 8@iiens to converge.
The convergence issues are most likely due to the sBargiscontinuities in the compressed
triangle function. Although the Lennard-Jones functioeslaot have any definitive point, the
vast majority of the adhesive strength is concentrated iruahnmore narrow range than in the
other triangular functions. This accounts for the closeeament to the analytical solution, which
assumes no transition whatsoever from adhered to free.

3.3.4 Convergence Tolerance Study

In any nonlinear analysis the degree to which the force vasjcbr the norm of the difference

between the external and internal forces, converges tazarmimportant parameter. If the residual
is not required to converge to a small enough value the iegulisplacement field can become
offset by increasing error at each iteration. Howeverjrsgtn overly strict convergence tolerance
could force the solver into additional iterations that ioy@ a solution that is already adequately
converged adding computation time. Also, if the convergdactor is set too low it may be below

the range of numerical precision of the machine, in whicke¢hs problem would never converge.

Typically nonlinear problems are solved using a relativeveogence tolerance, in which the
value of the residual is normalized by the residual of theitiesation of a given step. However, this
approach was not suitable here because an adaptive stepasizmployed. In the case of a very
small step size the first residual may be already well comarigp which case a relative drop in the
residual of several orders of magnitude may not be posdixgemely small step sizes may occur
when solving an optimization problem, especially when th&noization criteria are dependent on
variables at specified nonlinear steps. Figure 3.20 shosvisdleline beam delamination problem
run with various absolute convergence tolerances. Theisokwhen converged to a tolerance of
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Figure 3.20: (a) Beam delamination with various residualvengence tolerances (b) Close-up

1x10°% 1x 108 and 1x 10 10 were identical. Differences appeared when the tolerance wa
1 x 104, and the solution with a tolerance o&110~2 was significantly different.

3.3.5 Penetration Penalty Study

In the Inter elements, contact is implemented through alpemeethod by treating it as a material
nonlinearity. Although this method is much easier to impdathan a Lagrange multiplier method
which would require modifying the solver itself, it has dizaeks including severe material nonlin-
earities and penetration. Figure 3.21 shows solutionsstbéam problem with various penetration
penalty factors. These factors correspond to the slopeeotdntact portion of the adhesion law
described earlier. For this problem, a penalty factormﬂ_’Dlo% is inadequate, leading to extreme
penetration of the upper beam into the substrate. A peradtpif of 1x 1016% leads to very little
penetration, on the order ohin, while larger penalty factors lead to increased numericzblems

in solving.

The penalty factor is not non-dimensionalized due to th& #ca stable reference value to
normalize it against. In optimization, if the energy of asllo@ of the elements are the optimization
variables then the obvious choice for normalization, tlo@elof the adhesive curve, is variable
for each element in the structure. In elements that have aiaésive energies the contact penalty
would also be small, allowing more penetration in theseaeg}i An acceptable penalty factor must
be found for each new problem for this reason; the value us#uki beam delamination problem
will not work globally.
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Figure 3.21: (a) Beam delamination with various contacgftgriactors (b) Close-up

3.3.6 Gauss Point Study

One variable in the Inter element formulation is the numlb&@auss points used in the integration
approximations for the internal force vector and tangémtiéfness matrix. These approxima-
tions for the InterBeam element are in Equations 3.20 antl FRyure 3.22 shows the difference
between the shapes of the analytical solution and numesatation using 1-point, 3-point and

6-point Gauss integration rules. The differences betweestlutions are nearly negligible. How-
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1 Gauss point
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~_6 Gauss point
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X—position (m) X107

Figure 3.22: Effect of Gauss point integration rule on resuDifference between solution with
various Gauss points and the analytical solution is shown.

ever, the numerical statistics in arriving at these sohgishown in Table 3.3 are more telling: For
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Gauss point rulé max iterations pei step\ average iterations per step

6 13 6.0268
3 12 7.2362
1 71 6.6727

Table 3.3: Statistics from the numerical analysis in the<santegration rule study

one Gauss point per element the solver had trouble congeigisome steps. This becomes es-
pecially problematic if used for optimization, which mayate adhesive patterns along the beam
which cause additional convergence problems. The thrag-pde did not have any steps where
convergence was difficult, but the solver took the least remobsteps using the six-point rule.

3.3.7 Mesh Refinement Study

Another important parameter in any finite element analystb@ mesh discretization size. Typi-
cally in finite element analysis a finer mesh results in a mooei@te solution at the expense of
computation time. Five discretizations are presented. Heréhe 1200 element case, for example,
the beam and substrate are each discretized into 1200 atemiéh 1200 InterBeam elements
connecting them for a total of 3600 elements. Figure 3.23vshbat even the most coarse dis-
cretization yields a relatively close match to the analitgolution with a maximum error in the
beam shape of less tham@h. However, the coarser discretizations did not always yeédfastest

50 elements

600, 1200 and
2400 element

difference from analytical solution (m)

0 1 2 3 4 5 6 7
X—position (m) %10

Figure 3.23: Difference between numerical solutions wahaus mesh refinement levels and the
analytical solution of Section 3.3.1

run time. Table 3.4 shows that nonlinearities began giviregdolver convergence problems for
discretizations of 100 and 50 elements per beam. The coeweegssues with more coarse dis-
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InterBeam elements max iter/step average iter/step total run time (s)
50 > 110 24.616 2.26x 10°
100 > 110 17.749 3.82x 107
600 13 6.045 1.89x 107
1200 13 6.0268 3.86x 107
2400 13 6.0357 8.03x 107

Table 3.4: Statistics from the numerical analysis in thelmreinement study

cretizations also become more problematic with varyingeadie strength topologies that arise
from optimization.

3.3.8 Adhesion Energy Study

Figure 3.24 shows the beam response as the energy of adhesisrvaried between & 10~°
and 1x 10°3. Fig. 3.24(a) shows the nodal force vs. the displacemethtestipp of the beam. In
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Figure 3.24: Beam delamination example over a range of amthegergied . (a) Force at beam
tip for given tip displacements (b) Beam shape profile fopalgflection of um

Chapter 4 the distribution of adhesive energy along the bg#irhe optimized to meet a given tip
force/displacement objective. The adhesion energy in bexdk of four elements along the beam
will be free to vary between & 10~1? (effectively zero) and k 10~3J/n?. The plot of tip force
vs. displacement in Figure 3.24(a) serves as an envelo foossible solutions. If an objective
point is outside the curve labeldd= 1 x 103, it is not reachable given the constraints on the
design variablé . Figure 3.24(b) shows the final beam profiles for various sigdleeenergies for a

2 umtip displacement.
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3.3.9 Beam Stiffness Study

The response of the system to changing the Young’s moduliredifeam, shown in Figure 3.25, is
extremely similar to the response of changing the energgloésion per area (Figure 3.24). In the
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Figure 3.25: Beam delamination example over a range of beamg’s moduli. (a) Force at beam
tip for given tip displacements (b) Beam shape profile fopalgflection of um

analytical solution, Equation 3.73 shows that increasimgYoung’s modulug€ and decreasing
the energy of adhesion per areéancreases the crack lengstby the same factor. One important
note is that as eithdr became large de became small the solver had more difficulty converging
in some steps. This difficulty arose due to the region ahe#iteadrack tip in which there is strong
adhesion (the cohesive zone) shrinking to act within a sitgfler element. This can be mitigated
by switching to finer mesh densities. The ratio betwEeandl™ also is important in the following
example.

3.4 Hertz/JKR Cylinder Example

While the beam delamination example was chosen because #@rhaasily computed analytical
solution, this example of a cylinder in adhesive contachwitigid substrate was selected because
it is derived from one of the most exhaustively studied peaid in the field of adhesive contact
mechanics. The problem of contacting spheres was firstestudi the 19th century by Hertz,
as described in Chapter 2, and modified to include adhesiodohyson, Kendall and Roberts
(JKR) and Derjaguin, Muller and Toporov (DMT). In JKR thedhg contact area increases due to
adhesive forces but there is no cohesive zone outside obtitact area where adhesive forces act.
This model is valid for very flexible smooth materials sucmdsber. The DMT theory the contact
area does not increase due to the adhesive forces but fato@essacohesive zone ring outside the
contact area. This model holds for very rigid structures.
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The classical model for spheres was reformulated for cglisavith quadratic shape profiles in
contact by Baney and Hui [2]. They model the adhesive fordh thie Dugdale Model (described
in Section 3.1.2.2), which leads to a sharply defined cokemine outside the contact area. In this
work the triangular model is used instead for ease in nuraksmution. A factor) is defined as a
function of the cylinder Young’s modulus, Poisson’s ratmdhe energy of adhesion per area. As
this factor approaches the cohesive zone length approaches zero, leading to aykdsolution.
As A approaches zero the solution approaches the Hertz saluNlote that for spheres as an
analogous\ factor approaches zero the DMT solution is reached. Thereifice between a 2-D
cylinder and 3-D spheres comes from the way that the adh&sise scales with contact lengths.

Figure 3.26 shows the cylinder example problem. In thedhitondition the cylinder is in

LS

\

cohesive zone a

Figure 3.26: Diagram of the cylinder adhesive contact examp

contact with the substrate at a single point. A displacemgistapplied to the top cylinder surface
pressing the cylinder into the rigid substrate. A rectaagabntact area forms with a lengthlof
the length of the cylinder, and widtra2vherea is the contact radius. The undeformed surface of
the cylinder is defined to be quadratic, such that

1.2

o (3.74)

y:

whereR is the radius of curvature of the cylind@.is also defined geometrically for this problem
in Figure 3.26.

For this problem, the parameters were used are tabulatesbile B.5. Note that length scales
are in the macro range to help reduce numerical issues assoevith small length scales.
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variable value description

E 1x 10°Pa cylinder Young’s modulus
v 0.23 cylinder Poisson'’s ratio
L 80m cylinder length
R 8m cylinder radius of curvature

Amax 0.8m maximum contact radius

amax 2 maximum normalized contact radius
up 4x103m triangular first critical gap
Up 8x103m triangular second critical gap
C 1x 1011 contact penetration penalty

tol 1x 10~ | absolute residual convergence tolerance

Table 3.5: Nominal values for the parameters in the cylirc@mple problem

3.4.1 Analytical Solution

Baney and Hui derive an analytical solution that relatesradimensionalized force per unit length
applied to the top surface of the cylindBr,and a non-dimensionalized contact radag2]"

Piaty = & (3.75)
Prr = & - 247 (3.76)
where
5 — P : (3.77)
(nE*FZR)§
5= — 2 (3.78)
2(%)°
ft
p — %
L
E
E* =
1—v2

and f; is the sum of forces acting along the top surface of the cglirrahdv is the Poisson’s ratio
of the cylinder material. A graph showing Equations 3.75 a1 is in Figure 3.30

3.4.2 Contact Area Formulation

In the beam example the crack lengthever needs to be explicitly extracted from the numerical
solutions because the analytical solution for the entiesrbshape was available. In the case of the
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cylinder example there is no analytical solution availdblethe deformed shape of the cylinder
surface. The analytical solution instead relates the falaweg the cylinder top surface to the radius
of contacta. This radius needs to be extracted from the numerical swiutiFor InterBeam and
InterQuad elements, the contact radius is the sum of thepareglement that is in conta8t over

all the Inter elements divided by the width of the elemerits (ength of the cylinder, in this case).

The contact area per elemé¥tis formulated by detecting whether the gap between surfaces
less than a certain valugg shown in Figure 3.27. This detection is captured by a comaeation

L t |
! in contact " notin contact !

Figure 3.27: An InterQuad element showing partial contidi¢he gap is less than the critical ggp
the part of the element is in contact and the functibis 1. For the rest of the element, the contact
indication function] is O.

functiond that takes the value 1 if the gap is smaller tgaimdicating contact, and takes the value
0 ifthe gap is greater tha;n

The contact indication functionl includes a transition gap between complete contact and no
contact, making the functioB® andC* continuous, which aids in optimization if contact area is a
criterion. The function is defined as

1 ,9<(1-p)g
O(g) =4 cos| & (3+p-1)|+} .1-pF<g<(@+p)g (3.79)
0 9= (1+p)g

and is shown graphically in Figure 3.28 is a fraction of the critical gajy that defines the
transition zone between complete contact and no contact.

The elemental contact ar@éga equals the contact indication function integrated oveetbment

area,
A
A= / /AOD(Q) dAg (3.80)

WhereA is the deformed elemental area afyglis the initial elemental area. For the InterBeam
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Figure 3.28: The contact indication functi@has a function of the gap between surfaces.

and InterQuad elements, this reduces to

L Lo
Ac = W—O/ 0(g) dx

Lo Jo
L r1
= w; [ D@
n

wg IZwiD (9) (3.81)

12

wherexg are generalized coordinates defined in Equation 3.22 the deformed element length,
w; are Gauss weighting factors, awds the element width.

3.4.3 Numerical Solution

In this section, the analytical equations for the relatiemween force per length and contact
radiusa’are attempted to be matched with finite element analysis.cyheder domain was dis-
cretized into 4-node linear quadrilateral elements anef@aiad elements were placed between the
cylinder and the substrate as shown in Figure 3.29. The fi8shh the x-direction of the domain
was discretized into 40 InterQuad elements and the remiawwtéeh is never in the cohesive zone,
is discretized into 10 InterQuad elements.

The Hertz solution is obtained by setting the energy of aidineser ared” to be near-zero.
A solution is obtained for a range of top cylinder surfaceptiisementsy. For each of these
solutions,P andd’are computedP is computed by summing the forces at all the nodes along the
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Figure 3.29: Mesh for cylinder example

top surface of the cylindea is computed by the method described in Section 3.4.2. TResé&
coordinates are plotted against the analytical curve inifei@.30. There is generally very close
agreement between the numerical and analytical solution.

As the adhesion energy per areas increased, th® — & response gradually shifts from the
Hertz solution and approaches the JKR solution if all otlzrables are kept constant. Baney and
Hui define a factoA to parameterize the transition between the solutions:

40p
1
2E*2[ \ 3
(%)

whereqy is the force per area defined in the Dugdale model,

A= (3.82)

o r
0—uz

from Section 3.1.2.2. Here the triangular model is usecatsioy is redefined as

_r

Op =
uz

(3.83)

which corresponds to the peak force per area in the triangutairve shown in Figure 3.4. Sub-
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Figure 3.30: The numerical solution of tRe- & curves compared to the analytical solution of the
JKR and Hertz cases.
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A r

0 0
0.1]1.1727x 10
1 | 3.7086x 10*

5 | 4.1463x 107
10 | 1.1727x 103
100 | 3.7086x 10*

Table 3.6: Adhesion energy per area values for a rangdevailues

stituting Equation 3.83 into Equation 3.82,

8r

UZ(HZIIE;ZI-)%
1
8 (TR

E*m [A3uS
r = 16\/2—R2 (3.84)

Table 3.6 gives the adhesion energy per area that corresposdveral different values afwhen
substituting values from Table 3.5. According to Baney and [2] the JKR model is roughly
valid for A > 4. The valueA =5 is selected for the numerical analysis of the JKR model. The
results are plotted against the analytical solution (Equas.76) in Figure 3.30. The numerical
and analytical solutions for the JKR and Hertz cases matdhfergher validating the accuracy of
the Inter element discretization and the adhesion/contadels used.

It is important to note that in the case where the JKR curvematshed it was not possible to
solve for points less than a certafivalue. The reason for this is related to the discussion itiGec
3.2.1. NeitheP nor & are the control variable. Therefore, for a given displacgnoé the upper
surface of the cylinder there may be multifge P) stable equilibria points. Additionally, there
may be a range of4, P) points along the JKR curve for which there is not a stable ldxjitim.
Attempts were made to fin(h, P) points for small values oP using both a static solver and a
guasi-static solver using dynamic relaxation without &ssc

3.5 Sheet Wrapping Example

While the problems presented up to this point are acadelyicaéresting, the following example
grows from an actual application of adhesion at small scafiese a nanotube wraps a thin sheet
around itself, forming another layer or wall to the tube. Austration of this for a carbon nanotube
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variable value description

r 40x10%m cylinder radius

I 8.0x10%m cylinder length

do 40x10'm initial gap between cylinder and sheet

t 1.0x 10 'm sheet thickness

E 4.0x 108Pa sheet Young’s modulus
Om 2.0x 107 8m | Lennard-Jones gap corresponding to maximum adhesive force
r 1.0x 102 '\i# Adhesion energy per area between surfaces

C 1x 1045 contact penetration penalty

Table 3.7: Material properties and problem parametersheeswrapping example

wrapping a graphene sheet is shown in Figure 3.31. The oreafinanotubes though folding a
thin film has been of interest to the scientific community {[157], [46]).

The problem of rolling a sheet around a cylinder is modela@ lusing shell finite elements
connected by InterShells. The shell elements are georaliyritonlinear, allowing large displace-
ments but small deformations through the corotational tdation [12]. The element pattern is
very similar to that of the beam problem, shown in Figure 34 with the upper sheet wrapped
into a cylinder. The dimensions and properties for the gobare shown in Table 3.7. Here the
diameter length scale is slightly larger than a typical nabe, which is generally as large agrh
[15]. In general the scales of this problem were chosen torbih@ same order as the other ex-
ample problems presented earlier. For the boundary conditf the finite element simulation,
the cylinder is rigid with every nodal displacement presed to zero. The center points of the
sheet directly under the cylinder’s lowest point have pibsd vertical displacement directly to-
ward the cylinder. The remaining sheet nodes are free tslanin the x and z-directions and to
rotate about the y-axis while other displacements andiootatare prescribed to zero. This prob-
lem could only be solved with the static solver for relatjveleak adhesive energies, causing only
slight bending of the sheet as shown in Figure 3.32. For ggpadhesive energies, there was a
certain point in the displacement controlled solution rodtiwhere the sheet would try to wrap
around the cylinder all in one step. As one element appraattteesurface of the cylinder close
enough to be pulled in it initiated a chain reaction wherghbkoring elements also became close
enough to be pulled in. In this case the solver could not cgrevenstead, for larger values bf
a quasi-static solver was employed. With appropriate seg€hrtificial damping and an adaptive
pseudotime step a steady-state solution could be reachednsn Figure 3.33. In this case the
wrapping process was smooth due to the high damping terns High level of damping makes
intermediate solutions look as though the stiffness of Heesis less than it is in reality.
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Figure 3.31: an illustration of a single walled carbon nabetwrapping a graphene sheet around
itself through van der Waals adhesion [5].
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Figure 3.32: The sheet wrapping problem solved with a nedgtigentlel” and a static solver
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Figure 3.33: The sheet wrapping problem solved with a seoadhesive with a quasi-static solver
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Chapter 4

Design Framework

In this chapter, design optimization is applied to the atleelnite element framework described
in Chapter 3. First topology optimization is briefly desewih Next sensitivity analysis is discussed
and the analytical sensitivities of the Inter elements amamuted and checked against finite dif-
ferencing. Finally the beam delamination and cylinder eplax from Chapter 3 are modified
to include optimization of the force-displacement chaggstic in delamination or compression.
Several parameter studies and variations are explored.

In optimization problems there exists an objective funttip which is a function of multiple
optimization variables. The goal is find the optimal values of the optimization Viales s
which minimize the objective function. In addition to thejettive, there may be constraints
which are also functions of the optimization variables. Séhmay include equality constrainks,
or inequality constraintg. There may also be box constraints, or upper and lower boigsdar
the optimization variables ands. The optimization problem can be expressed mathematically

min  z(s) i=0,1,...,ng
gj(s) <0 j=0,1,...,ng
h(s) =0 k=0,1,...,m,

s={scR[s<s <5}
wherens, ng andn, are the numbers of optimization variables, inequality t@msts and equality
constraints.

For the structural optimization problems studied here igracbased nonlinear programming
is employed. Specifically, topology optimization is usedhene the domain is discretized into a
mesh and each element of the mesh represents a single ggtonizariable. Topology optimiza-
tion is highly compatible with finite element analysis sincd-EA there is also a domain that is
discretized. Typically in topology optimization each opization variable corresponds to an at-
tribute of a single element such as density. For optimipatiihin a finite element framework the
objective function and constraints are rewritten to be fioms of optimization criteriayj, which
correspond to components of the finite element problem artisol such as a maximum stress
value or a nodal displacement. These criteria are functibtise optimization variables and the
displacement vectar. For example, the objective can be rewritten as follows:

z=2z(qj(s;,u(s))) (4.1)
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4.1 Sensitivity Analysis

The optimization algorithms used here are gradient-ba3edevaluate the gradients of the ob-
jective and constraints the sensitivities of the criteréeech to be computed with respect to the
optimization variables‘;—(;j. The optimization algorithm uses this gradient informatio decide
which direction to move in the optimization variable spaeéween each iteration. For example
in the steepest descent method the optimizer assumes théiteesion to search for the optimal
solution is in the negative gradient direction. The sevisigis can be computed analytically or nu-
merically. It is imperative that the gradients are caledatorrectly and coded correctly. Typically
the method used to verify the sensitivities in a finite elenfieEamework is to compare analytical
results to those computed by a numerical finite differenbese for a highly simplified problem,

usually consisting of the fewest number of elements paossibl

4.1.1 Finite Differences

Finite differencing is a numerical approximation for cortipg a derivative. The derivative of a
functionq(s) is defined as
q(s+€)—a(s)

i ST, @2

a9 _
ds
For finite values of this expression becomes an approximation of the derivataied forward

differencing. The error of the approximation is on the or@€e). The approximation error is
significantly less for a central differencing scheme, defiag

dg  d(s+¢&)—q(s—¢)
ds 2 (4.3)

The error of central differencing is on the ord@fe?).

There are two major drawbacks to using finite differencingh@smethod of computing sen-
sitivities within a finite element optimization frameworkne drawback is for each optimization
variable the criteria need to be reevaluated twice for egulifferencing. Each evaluation of the
criteria requires the entire finite element problem to beexbl which is prohibitively costly for
nontrivial problems. The other drawback stems from thetations of finite precision arithmetic.
Theoretically central differencing, like forward differeing, should converge to the derivativesas
approaches zero. However truncation error increasedasomes small. There exists an optimal
€ that minimizes the combined computational and mathemadicar, but it is not known before-
hand and may be different for each optimization variableis Thshown in Figure 4.1. Thisis a
graph of the "II” column of data in Table 4.1. The central diffnce sensitivities over a rangesof
values are compared to the analytically calculated seitgiti

70



10

107

-8
10

error against analytical

10°

10—10

10° 10° 10" 107 10°

finite difference step size

Figure 4.1: The error in calculating sensitivities%]aﬁ for the beam example. From data in Table
4.1.

4.1.2 Analytical Approach

In the analytical approach, the exact derivatives of theega with respect to the optimization
variables are computed. Analytical sensitivity analysigreferred over finite differencing because
the computation is exact and does not require the finite elepreblem to be solved multiple times
in each optimization iteration. On the elemental level,deévatives of the internal force vector
with respect to any possible material property or nodal doate needs to be computed, resulting
in much more coding and the possibility for coding error.sithe possibility of human error that
necessitates the checking of sensitivities computed tcally against finite differencing.

The sensitivities expressed analytically are

dgj dq; dq;'du
E = E + W @ (44)
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Here th term can be computed by differentiating the equilibriumdeal equation,

r(s,u(s)) = 0
dr
as 0
ﬂ+ﬂd_u =0
Js duds
or du
— L Ki— =
0S+ tds 0
du _q0r
s - N (4.5)
substituting Equation 4.5 into Equation 4.4,
: ) T
daj _ 995 00y 10 (4.6)

ds Js du Js
There are two methods to compute the sensitivities analigtiche direct and adjoint methods.
They differ in the number of times it is necessary to solve qumagion involving the tangential
stiffness matrix, which is computationally costly. In thieedt method th%‘ —K¢ 1‘” s part of
the second term of Equation 4.6 is solved first. This equateeds to be solved once for each

optimization variables, a total ofns times. In the adjoint method, the adjoint vectpr= 99, T Ki?

part of the second term of Equation 4.6 is solved first. Thisa#iqn needs to be solved once
for each criteriang. Therefore in the cases > nq, which is true in the majority of topology

optimization problems, the adjoint method requires fewfegcéive inversions of the tangential

stiffness matrix.

In both the direct and adjoint methods the quanggy called the pseudoload vector, needs to
be computed. From the definition of the residual f — p wheref is the external force amglis the

internal force,
or of dp

— = 4.7
Js Os 0s *.7)
The internal force derivative is computed on the elemerdlland is assembled into the global
vector in the same way as the internal force. Of the three Blaaments, the sensitivities of the
InterQuad element may be the most simple to compute. Theadiee of the internal force vector
(Equation 3.25) with respect to an arbitrary optimizatianiable is

dp (dw ) ‘ WL n (da dg) )
=3 Wio(g) 5 E— (4.8)
ds Z ds ou/ |,

The derivativeg—g corresponds to whichever one-dimensional adhesion medeluse. For the

Lennard-Jones case,
do dodg dodc Jdodgm Jdodr

ds ~ 0gds ' dcds ' dgnds | ords (*:9)
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whereg is the gap between upper and lower edges of the elernénthe contact penalty term,
Om is the gap size that maximizes the adhesive forcelaisdhe energy of adhesion per area. The
partial derivatives of Equation 3.8 with respect to the abeariables are

oo { c ,g<0 10
a9 =2 9 4.1
9 ab((bgﬂ)"’ + (bg+1)10> 920

do _ g ,9<0

dc {o,gzo (4.11)
0gm 309 1 1 9bg (4.12)
09m { g% ((gb+1)4 - (gb+1)3 + (gb+1)9 - (gb+1)1°) ,g> 0

anda andb are defined in Equations 3.13 and 3.10. The derivatives @rathe-dimensionad
functions would need to be computed in the same matter. liziiEferentiating Equation 3.23,

dg dyos  dugy dyos , du dyor = duyy dyo> ~ dupy
(

For the InterBeam element the derivative of the gap witheesfo the optimization variable is
much more complicated because the shape functions arednsctf the nodal coordinates. There
is also an additional term in tfg eguation since thé% vector is a function of the shape functions
and is not constant ig. The sensitivities of InterShell elements are similar teft@Quads since the
shape functions are constantgn

In the above equations, the derivatives of the Inter elemmaxtérial properties, nodal displace-
ments and nodal coordinates with respect to the optimizatiables are supplied as input. Cod-
ing the most general case allows the optimization variaiolé® functions of any combination of
material properties of nodal coordinates.

4.1.3 Results

The sensitivities for the InterBeam element was computeddnstructing a simple 5-element
system, shown in Figure 4.2. There are two beams, made of éamlelements each, which are

Figure 4.2: The finite element layout for the InterBeam elensensitivity check
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9fe | [ 1l

di?gct 3.696746841« 10° | 2.270400493« 10 1 | 4.094092631x 10>
adjoint | 3.696746841 1(° | 2.270400493«< 101 | 4.094092628< 10>
€e=1x101]3.696286841 1P | 2.270400512 10 1 | 4.09330970% 10 °
1x102 | 3.696742240< 1(P | 2.270400496< 101 | 4.092980252 10>
1x 103 | 3.696746796< 1P | 2.270400495< 10~ 1 | 4.092180105« 10>
1x 104 | 3.696746841 1P | 2.270400495< 101 | 4.078951661« 10>
1x10° | 3.696746842 1(P | 2.270400496< 101 | 4.080763782 10>
1x10°% | 3.696746840< 1P | 2.270400504« 101 | 3.484397950« 10>
1x 107 | 3.696746827% 1(° | 2.270400472 101 | 2.310063506< 10~*
1x108 | 3.696746982 1(P | 2.270401822 101 | 2.260155132 103

Table 4.1: Sensitivities of the force at node 6 of the IntemBeexample to adhesive energy,

constrained in all degrees of freedom at nodes 3 and 4 anckir-threction at nodes 1 and 6.
Equal y-displacements are applied to nodes 1 and 6 as shatnweBn the beams there is a single
InterBeam element. The sensitivities of the force at nodethe adhesive energy per area of the
InterQuad element is in Table 4.1. The three different cazamined correspond to gap sizps
that correspond to different regions of the Lennard-Jodbession law, shown in Figure 4.3. In all

(0}

Figure 4.3: Lennard-Jones adhesive law with three gap sizeszindicated. I. Contact, Il. Positive
slope, Ill. Negative slope

three initial gap size cases the sensitivities betweenitketdand adjoint analytical methods agree
exactly, and they both agree within several digits of acoyta the central differencing results.

One exception is very smadl values for the gap in region lll, which are orders of magretud
different than the analytical results. This can be explimgtruncation error.

Table 4.2 shows the data for the sensitivities of the tipddocbeam width. Width is explored
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AL | [ 1l
aw

direct 4.449455236< 1P | 5.529858599« 10 1 | 4.094179274« 10 2
adjoint 4.449455236¢ 10° | 5.529858599% 101 | 4.094179274« 102
e=1x101] 4.449455236¢ 10° | 5.529858599% 10 1 | 4.094179254« 102
1x102 | 4.449455236¢ 1P | 5.52985859% 101 | 4.094179275< 102
1x 103 | 4.449455236¢ 1P | 5.529858592 101 | 4.09417909% 102
1x104 | 4.449455236¢ 1P | 5.529859907% 101 | 4.09416468% 10 2
1x10° | 4.449455236¢ 1P | 5.529855603< 101 | 4.094196780« 102
1x10°% | 4.449455234< 1(P | 5529875401 101 | 4.096046156< 102
1x 107 | 4.449455248< 1(P | 5530231104« 101 | 4.099429810« 102
1x 108 | 4.44945520% 1(P | 5.533583741 1071 | 4.02417343% 102

Table 4.2: Sensitivities of the force at node 6 of the IntemBesxample to beam widtly

as an optimization variable in Section 4.2.2.1. As with taesitivities to energy of adhesion per
area, the analytical measures agree exactly and they baé aith the numerical results to several

significant digits.

The sensitivities of the InterQuad and InterShell were wésdied. The setup for the InterQuad
check is shown in Figure 4.4. Here a single InterQuad elesgmisitioned between two 4 node

9 9 °
L

A 7 8

. L 5

Figure 4.4: The finite element layout for the InterQuad elensensitivity check

quadrilateral elements. Nodes 5-8 are fixed in both x and ynades 1-4 are only free iny. The
stiffness of the upper quadrilateral element was set hifgttive to the energy of adhesion of the
InterQuad element such that it would not deform under despteent of nodes 3 and 4. Since
the same functions for derivatives of the adhesion law aeel by all three Inter elements, it is
only necessary to check the sensitivities in one of the regad the Lennard-Jones function. The
dimensions of this problems were increased to the macmsadielp alleviate truncation errors.
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% I
direct 1.256271149% 10’

adjoint 1.256271149% 10’
e=1x101] 126139571k 10’
1x102 | 1.256323620< 10’
1x103 | 1.256271673< 10’
1x104 | 1.256271154« 10’
1x10° | 1.25627114% 10’
1x10°% | 1.256271149% 10’
1x107 | 1.25627114% 10’
1x10°8 | 1.256271151% 107

Table 4.3: Sensitivities of the force at node 1 of the Intea@eaxample to adhesion energy,

These sensitivities are given in Table 4.3. For the IntedQelament the sensitivities agree well
between the analytical and numerical techniques. In thée &arger error between the analytical
and numerical solutions occurs for largevalues.

Finally the sensitivities of the InterShell element werstéel. The setup is similar to the In-
terQuad setup, shown in Figure 4.5. An InterShell elemesaigwiched between two 3-node

u u u
71. 91. 1'8
4 6 5
3
1 2
3,69
2,58
1,4,

Figure 4.5: The finite element layout for the InterShell edatrsensitivity check

shell elements. One difference is the addition of bar elésnannodes 4-6. This additions was
necessary because otherwise there would be no nodes tha nadpecified displacement degree
of freedom. Also as with the InterQuad example, the dimerssised were on the macroscale.
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oh I
direct 2.259858413< 10P

adjoint | 2.259858413« 10°
€=1x101] 2982228635« 10°
1x102 | 2.982228808« 10°
1x 102 |2.98223400% 10°
1x 104 |2.98221667% 10°
1x10° | 2.982476626< 10°
1x10°% |2.980743635< 10°
1x107 | 2946083825« 10°
1x108 | 3.465980955¢ 10°

Table 4.4: Sensitivities of the force at node 7 of the IntetBdxample to adhesion energy,

4.2 Beam Delamination Example

The first problem studied is derived from the beam delanongdroblem of Section 3.3. Unless
otherwise stated, the problem parameters are the sameasigifable 3.2. In all variations of
the problem described below, the objective is to minimize difference between the tip force-
displacement response and some objective function. Fongheain Figure 4.10(a) the objective
force-displacement function is linear, denoted by the sgjualicators. The optimization criteria
qg; are the nodal forces at the leftmost tip of the beam at vaispesified tip displacement levels.
As in Chapter 3, the analysis is displacement controllede fijh force and nodal displacement
vector are saved at various displacement levels for obgetialuation and sensitivity calculation.
The objectivez is to minimize the area between the line segments definedebglijective points
and the optimization force-displacement solution poirntthe corresponding tip displacements,
shown graphically in Figure 4.6. Mathematically, the ohjexis defined

Nobj

z= .%(fom_qjﬂ'i‘ fo; —qj)2 (4.14)
J:

whereng,; is the number of objective points arfg, are the force levels of the objective points
corresponding to th¢'" criteria. The &' criteria is always zero. This equation squares the area
to guarantee that the number is always positive and disqleg‘eua%l(ut].+l — utj)2 term. The tip
displacements term puts a larger emphasis on minimizingjopescof the objective with larger
spacing between the specified tip displacematsvhich may not be desirable

For all optimization problems described in this chapter aMBAA, or globally convergent
method of moving asymptotes is employed. This method wasldpegd and described in detail by
Svanberg [48].
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Figure 4.6: The force-displacement objective is the aréaden the line segments defined by the
objective points and the optimization force-displacensaitition points at the corresponding tip
displacements.

4.2.1 Preconstructed Solution

Although the goal in this work is to demonstrate the abildyind an adhesive energy distribution
that meets an arbitrary objective, it is useful to study thgecwhere the optimal adhesive distribu-
tion is known beforehand. In the case presented here thelgitrédution pattern shown in Figure
4.7(b) was applied. The figure shows the beam, looking froentdlp down. The left end is the
tip, which is lifted off the substrate. The black regionsregpond to the maximum adhesive en-
ergy allowed by the optimization box constraints{10~2 “WJ) while the white corresponds to the
minimum energy per area (effectively zero). The delamarabehavior of this adhesive pattern
is to rip each strip of adhesive individually. The tip fordesplacement characteristic is shown
in the dotted line of Figure 4.7(a). There are two sharp difspo force as the tip displacement
increases, corresponding to the two adhesive strips detdimg. This force-displacement curve
was taken as the objective for an optimization problem. Twenints along the curve were used.
Figure 4.8 shows the progression of the optimization froeitiitial conditions, where the entire
beam has the maximum adhesive energy per area, to the soldioh is effectively the same as
the case used to generate the objective.

In this problem each optimization variable correspondethéoadhesive energy per area of a
group of 20 elements along the beam. There were four vagableach ’strip’ in the optimal
distribution. This example demonstrates that topologynagation techniques can be applied to
simple adhesive problems.
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Figure 4.7: The beam optimization problem with preconsgadcstrips’ adhesive energy distri-
bution. (a) Tip force versus tip displacement. The solidreus the tip force-displacement char-
acteristic of the optimized solution while the dotted cuiv¢he optimization objective behavior.
(b) The distribution of adhesive energy along the beamisatesinterface used to generate the
objective. Darker regions indicate higher adhesive energy

Itr. 1

Itr. 30

Itr. 60

Itr. 89

Figure 4.8: The progression of the prescribed optimizgpiablem from the initial conditions to
the final solution. Intermediate results at 30 and 60 opttnin iterations are shown.
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4.2.1.1 Initial Condition Study

In optimization problems the selection of the initial caiahs for the optimization variables can
have a large impact on the solution. For some initial coadgithe optimizer may find a local
minimum instead of the global optimum, especially if theialivalues are not close to the optimal
solution. In the case of adhesion a poor selection of ingtaiditions can prevent the optimal
solution from ever being reached. If the triangular adhesiodel is used (Equation 3.15) and the
initial gap sizes of all the elements is greater tharthen the sensitivities of the nodal forces are
identically zero, giving the optimizer no gradient infortia@ and making optimization impossible.
However, if the initial conditions left at least some Intégraent gap sizes in the range less than
the sensitivities in those element become non-zero, githegptimizer needed gradient data for
finding the next solution step.

The preconstructed beam delamination problem is relgtimskensitive to initial” conditions.
Figure 4.9 shows the optimization solutions for a range iiiiconditions. For all of these cases

Figure 4.9: The solution to the optimization problem staytirom various initial conditions. The
initial conditions are shown on the left and the correspogdiptimization solution is on the right.

the same solution emerged in the region ahead of the finat tilacHowever thd™ values in the
region of the beam that remains adhered to the substratéf@ret in each initial condition case.
This is due to the fact that these elements do not contributeettip force, making the sensitivities
of these elements fonearly zero. Since the optimizer does not detect gradientbése elements,
thel values are left unchanged. For the lower initial conditiares, these element did have non-
negligible gradient in the early optimization iterationavithe crack tip was able to traverse further
down the beam. As the solution evolved, however, the craakaver reached those elements at the
base of the beam, freezing thevalues there. These artifactvalues that do not contribute to the
solution can be removed by imposing another term to the dbgeminimizing the total amount of
adhesive energy per area, as shown in Figure 4.10(b) of teg/fng section.
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variable| value | description

5 1x 103 | maximum allowed value for opt. varl’]
s 1x 10~ | minimum allowed value for opt. varl]
So 1x 1011 initial value for opt. var.

Table 4.5: Box constraints and initial value for optimipativariables in baseline optimization
problem.

4.2.2 Unknown Solution

In this section the optimal solution is not known beforehalm$tead, an objective is constructed
and the optimizer finds the optimal values for the choseratsées. Like in the analytical beam
delamination studies of Chapter 3, a baseline optimizatase is defined and all subsequent cases
and studies are variations of this case. The optimizatigectibe is a linear force-displacement
relationship, shown in Figure 4.10(a).

Including the origin there are 20 objective points, incnegdinearly until the tip force is %
10-'N at a tip displacement of £ 10-®m. This objective is reachable given the box constraints on
the optimization variables. The objective force displaeatmelation lies between the curves where
the optimization variables are at the maximum and minimumdmnmstraints, as shown in Figure
4.15. In this case the optimization variables, as in thegsttucted solution cases, correspond
to the energy of adhesion per arfeaf groups of elements along the beam. Here each variable
is associated with a group of 4 elements, allowing much greadriability in the distribution of
adhesive over the beam than in the preconstructed case @b&lements corresponded to each
variable. The box constraints and initial conditions arevaiin Table 4.5.

Figure 4.10(a) shows that the optimizer found an adhesstellition that matches the objec-
tive closely. The final value of the objective wag 4 102, which is six orders of magnitude less
than the initial value of B x 10L. The first diagram in Figure 4.10(b) shows the corresponding
adhesive energy distribution to the solution in Figure 4a).0The most important feature to note is
that ahead of the final crack tip position (indicated by thakstnangle above the diagram) there is
virtually no adhesive toward the tip, and there is a quickgrmon from no adhesive to maximum
allowed adhesive over a very short range.

It is important to note that the adhesive energy beyond thad &irack tip location does not
contribute to the force-displacement characteristic enrtigion that the objective is defined over.
Adding another term to the objective function which sumsttital amount of adhesive energy
applied to the beam forces a reduction of adhesive energggioms of the beam that have no
impact on the original objective. The solution to this maatifiproblem is shown in the second
diagram in Figure 4.10(b). It is identical to the solutiortivaut the adhesive reduction objective
but with the majority of the adhesive energy beyond the fimatk tip location removed. The
force-displacement characteristic curve, plotted ovestime range as that in Figure 4.10(a), looks
identical to the case without the adhesive reduction olvgetddition.
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Figure 4.10: The baseline optimization problem. (a) Tig&wersus tip displacement. The squares
indicate objective points and the solid line passing thiotiggm indicates the solution reached by
the optimizer. Analysis with all elements set to maximumesive and minimum adhesive also
shown. (b) The distribution of adhesive energy along therbsabstrate interface. Darker regions
indicate higher adhesive energy. The top diagram is thesaghdistribution corresponding to the
solution curve in (a). The middle diagram is the same sahuiot with extraneous adhesive re-
moved through a modification of the objective. The bottongdian is the corresponding analytical
solution for infinite adhesive energy

82



variable| value | description

5 8x 10~° | maximum allowed value for opt. vamj
S 8x 10~ | minimum allowed value for opt. vany
So 1x 1011 initial value for opt. var.

Table 4.6: Box constraints and initial value for beam widptimization variables.

This result can be compared to a roughly analogous andlytigiatainable solution. If there
was no upper box constraint dnthen the effect of adding a thin strip of relatively stromtipasive
would be the same as clamping the beam at that point. A clarbpath has the same linear
response as the objective function in this case. To find tbetilon of this adhesive strip Equation
3.67 is solved for the crack lengstgiven the slope of the objectivg,. The result is shown in the
third diagram of Figure 4.10(b). Note the similarities beem the second and third diagrams of
Figure 4.10(b). In the optimization problem the box corietran I makes the analytical solution
unobtainable, and the adhesive energy is instead spread targer region and the final crack tip
location is slightly further back along the beam than in tlaenped case.

In topology optimization problems it it typically desir&bto have a 0-1 solution, or a solu-
tion where the optimization variables approach their borst@ints. Although in these beam
delamination cases the adhesive energy does not tend tosaldtion in general, the results can
be reinterpreted that way. The surface of the beam that iglqmtterned with various adhesive
energy levels is two dimensional. If the width of a given agibe strip on the beam is seen inde-
pendent of the beam width, a pattern of uniform adhesiveggnzan be created that has the same
adhesive properties as the case with variable adhesivgyehet fixed adhesive width, shown in
Figure 4.11.

Figure 4.11: The solution to the baseline optimization probreinterpreted as a constdnbut
variable adhesive width keeping beam width fixed.

4.2.2.1 Beam Width as Structural Variable

In the baseline case the adhesive energies of small grouplemmients along the beam are the
structural optimization variables. However other parargetan be varied in addition to the energy
of adhesion. First the beam width is studied as an optinuratariable. Varying the beam width
affects both the moment of inertia of the beam and also théwafithe InterBeam element, which
is locked together to the beam width. The design tended toumhmore sensitive to beam width
than to the adhesion energy generally, necessitatingetidpaoix constraints shown in Table 4.6.
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When beam width was the only optimization variable the oj#@ndrove the problem to an in-
termediate step which did not converge in the analyticalesoFigure 4.12 shows the last solution
iteration before the problem diverged. Toward the tip oftieam the optimizer formed hinge-like

x107°

tip force (N)

0 Oi5 ‘1 l‘.5
tip displacement (m) x 10

Figure 4.12: The beam optimization problem with width asiate. (a) Tip force versus tip
displacement. (b) Top-down view of beam shape. Final cripdiotation marked.

structures in an attempt to match the individual objectiga{s. Each hinge corresponds to the
sharp drop in tip force at the first several objective poifiise main issue here seemed to be that
adhesive energy was equally distributed along the beanmgllweting the clamped behavior seen

previously.

The problem of divergence can be alleviated ifs varied along with beam width. In this
case each group of 4 InterBeam elements have a corresporatiagle for width and for adhesive
energy per area. The solution is shown in Figure 4.13. Inghse there is a single hinge formed
in the same region where adhesive energy begins to appeare ale several areas ahead of the
hinge where the width suddenly becomes smaller or largegtitrg wing-like structures. In an
attempt to force the optimizer to reduce these structureddtal surface area of the beam was
constrained to 25% of the area of the beam in Figure 4.13(@ rd@sults are shown in Figure 4.14.
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Figure 4.13: The beam optimization problem with both adhegnergy and width as variables.
(a) Tip force versus tip displacement. (b) Top-down view e&im shape with adhesion energy
distribution superimposed
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Note that the beams shown in Figures 4.13(b) and 4.14(b)adrérawn to the same scale. When
this constraint is applied the wing structures ahead of taekctip are reduced somewhat and the
hinging effect is less drastic than in the unconstrained.céigure 4.14(c) shows an alternate view
of the energy of adhesion distribution. As in Figure 4I11s held constant while the width of the
adhesive is varied independently of the beam width.

4.2.2.2 Objectives

Figure 4.15 shows the baseline optimization objectivegoith three other variations. Additionally
the envelope of possible solutions is shown. The maximumecoorresponds to the case where
all T values are set to the upper optimization box constraints.not possible for an optimization
solution to reach objective points above this curve i$ the only optimization variable.

Figure 4.16 shows the solution of the optimization probleithvan objective that is twice
as steep as the baseline case. Since this objective is aésr ind goes through the origin, the
optimal solution if there were no box constraints on the adigeenergy would be an infinitely
strong strip at a location along the beam, effectively clengt. In the baseline case the solution
with box constraints was to spread the adhesive out slidgighind the location of the analytical
solution. In this case the same type of solution is reachedetier even at the maximum allowed
adhesive energy the last objective points cannot be readfigdre 4.16(a) shows a dotted line
indicating the maximum possible force for a given tip disglment with the box constraints.

The remaining objective points can be reached without asirg the box constraints dnby
also assigning optimization variables to the beam widthinAke baseline case where width dnd
are optimization variables a hinge forms ahead of the ntgjofithe adhesive energy distribution.
This demonstrates that otherwise unreachable objectarebe obtained if additional optimization
variables are used.

Figure 4.18 shows an objective which has the same first 1@gepoints as the baseline case
but then has a decreasing force-displacement relatiomeitd. This objective has no analogous
analytical solution. Figure 4.18(a) shows that the obyeattas not converged on as well as in other
the case with other objectives. The curve is especiallygddg the downward sloping region. A
more smooth response may be possible if more objective paiet added, although a smooth
downward sloping response may not be obtainable by varfieg@tihesive energy alone. The so-
lution shown in Figure 4.18(b) shows a non-intuitive distition. This demonstrated that adhesive
distributions that do not have analytical solutions can l@ioed using topology optimization.

The objective shown in Figure 4.19(a) has the same slop@dmseline objective but is shifted
vertically in the force-displacement plane. This shiftsutside of the envelope of obtainable ob-
jective points. Like the hill objective, this objective doaot have an intuitive or analytically
obtainable solution. The adhesive distribution soluticadgally increases to a maximum adhesive
energy and then gradually tapers off. As in the hill cases &xample demonstrates that design
optimization can be utilized to design adhesive patterasdre not otherwise obvious. For more
complicated adhesion problems and surface geometriegectnies there most likely is no intu-
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Figure 4.14: The beam optimization problem with both adhesinergy and width as variables
with beam area constrained to 25% of the unconstrainedigoluta) Tip force versus tip dis-

placement. (b) Top-down view of beam shape with adhesiorggrstribution superimposed. (c)
Reinterpretation of adhesion energy distribution to bestamtl™ and variable width independent
of beam width. Marker indicates final location of crack tip.
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Figure 4.15: Maximum and minimum bounds of possible sohgigiven box constraints with
various objectives.

itive solution.

4.2.2.3 Beam Stiffness Study

In Chapter 3 the delamination problem for a uniform adhesnergy distribution was studied over
a range of beam stiffness values. As the stiffness of the bretative to the adhesive strength
decreased the analysis became tempermental and took rapeetstconverge. This was due to
the increasing curvature of the beam at the crack tip, wheclueced the number of elements in
the adhesive zone, shown in Figure 4.20. In optimizatiorblgrs, intermediate solutions can
arise where the the crack tip encounters strong strips oésadh relative to the beam strength,
creating convergence problems and derailing the optimoizgirocedure. The beam delamination
problem is relatively well-behaved in this regard, but cengence issues do arise when the beam
Young’s modulus is too low. Figure 4.21 shows the solutiothefbaseline delamination problem
with reduced beam stiffnesses. As the beam gets weaker tkienoma force that the adhesive can
support is reduced, making fewer objective points reaghabhe optimization routine moves the
adhesive strip further toward the beam tip as the beam Ysungdulus decreases. For values of
E smaller than & 10’ the optimization problem stopped converging.
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Figure 4.16: Optimization problem with steeper objectia). Tip force versus tip displacement.
(b) The distribution of adhesive energy along the beam1satesinterface.
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Figure 4.17: Optimization problem with steeper objectiveluding beam width as optimization
variables. (a) Tip force versus tip displacement. (b) Thrapslof the optimal beam and the optimal
adhesive energy distribution.
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Figure 4.18: Optimization problem with 'Hill’ objectivea] Tip force versus tip displacement. (b)
The distribution of adhesive energy along the beam-suiestrterface.
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Figure 4.19: Optimization problem with vertically shiftethjective. (a) Tip force versus tip dis-
placement. (b) The distribution of adhesive energy aloegogam-substrate interface.
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@ (b)

Adhesive Zone

Figure 4.20: Adhesive zone sizes for different beam stiffes. (a) For a stiff beam there is less
curvature at the crack tip and the length of beam that is iratlfesive zone but not in contact is
larger. (b) For a weaker beam there is more curvature at ek ¢ip and fewer elements of the

beam in the adhesive zone.

4.3 Cylinder Compression Example

The cylinder compression optimization example is an ex¢ersf the analysis presented in Section
3.4. In that example the relationship between adhesivédcbforce and contact area was studied
and compared to analytical results. For optimization psegothe force-displacement character-
istic is instead studied and optimized, as it was for the beptimization example. The objective

is to minimize the difference between the force on the tofaserof the cylinder and specified
objective points at certain value of displacement of thestagface. This objective is defined in an
identical way to that of the beam problem, shown in Figureah@ Equation 4.14. The variables
in this case are the adhesive energies peF aneeach InterQuad element, also just as in the beam
optimization case.

There are some differences between the set-up in this castharctase described in Section
3.4. One difference is that here the Lennard-Jones adhewdel is used instead of the triangu-
lar model. While the triangular model made for a more strdiggtvard comparison between the
numerical and analytical results, which used a Dugdale malde Lennard-Jones model is the
most compatible with optimization due to more useful gratidor sensitivities. Another differ-
ence is the problem parameters. The problem needed to bedshi¢ll out of the JKR regime to
ensure that the analysis at each optimization step coulteege. The problem parameters for the
optimization problem are shown in Table 4.7.

The range of possible force-displacement solutions gliugh and Il yax is shown in Figure
4.22(a). In the minimum adhesive case contact forces damimss the cylinder is lowered into
the substrate, the force is effectively zero until contabew the gap between the cylinder and
substrate closes at a displacement-@fx 10~3m, at which times contact forces begin to take
effect. In the case of maximum adhesive, there is a largdaip@sidhesive force that dominates,
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Figure 4.21: A study of optimization results when beam iséiffs is reduced. (a) Tip force versus
tip displacement. (b) The distribution of adhesive enelgyna the beam-substrate interface for
increasingly weak beams.
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Figure 4.22: Adhesive distribution optimization of zemrde contact cylinder problem. (a) Force
versus displacement at the top surface of the cylinder wak/min adhesive envelope shown. (b)
The distribution of adhesive energy along the cylindersstatbe interpreted as fixed adhesive width
(top) and fixed adhesive energy (bottom).
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variable value description
E 1x 10°Pa cylinder Young’s modulus
v 0.23 cylinder Poisson’s ratio
L 8x 10 °m cylinder length
R 8m cylinder radius of curvature
Jdo 4%103m initial gap between cylinder and substrate
Om 1x 10~*m | Lennard-Jones gap corresponding to maximum adhesive force
c 1x 1013% contact penetration penalty
I max 1x10° Y maximum allowed adhesive energy per area
M min 1x 10“3[Ti\‘—n minimum allowed adhesive energy per area
tol 1x10°7 absolute residual convergence tolerance

Table 4.7: Nominal values for the parameters in the cylirggimization example problem

even when contact is initiated for the entire displacemangie studied. For larger displacements
the contact forces begin to dominate in the case of maximurasade as well.

The objective for this problem, shown in Figure 4.22(a)pisthe force on the upper surface of
the cylinder to remain zero over the entire range of displreags studied. The physical meaning of
this is that the adhesive pattern is such that for any giveplaicement within a specified range, the
repulsive penetration prevention forces acting insidecthrgtact area and the attractive adhesive
forces acting both inside and outside the contact area taleach other out. Several objective
points are grouped together near where contact forces égsh lbo dominate.

The solution to the optimization problem is a very close hatcthe objective. The resulting
adhesive pattern is shown in Figure 4.22(b). As with the bpesblem, the results can be inter-
preted as either variations in adhesive strength or asti@argain the width of the adhesive in each
element between the cylinder and the substrate. The remeltsymmetric about the center low
point of the cylinder, which makes sense given the symmaettiié problem set-up. The solution
has no adhesive at the center elements, allowing the rasuti®sely match the zero adhesive
solution up until the point of contact. As the more periphegdinder elements come into active
adhesive range with the substrate, the adhesion energyréased to offset the forces that counter
penetration. The cylinder optimization problem demoriegdhat optimization is possible with
more complicated surface geometries than the beam example.

4.4 Sheet Wrapping Example

As with the other examples in this chapter, the optimizatbthe sheet wrapping problem is an
extension of the analogous problem in Chapter 3. This exanpinonstrates optimization using
3D shell elements and adhesive InterShell interface elesnén this case the optimization vari-

ables are the adhesion energies between the cylinder astiébein each element along the inter-
face. The objective, also as in previous examples, is tometpecified force-displacement curve
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by minimizing the area between the current and target disph&nt curves. Here, the force and
displacement are measured at the midpoints of the sheetewhiedisplacements are prescribed.
Figure 4.23 shows the results of an optimization case witheat objective. In this case, the initial
value forl in all elements was the maximum allowed value (box congiabD x 10‘4#. This

is a relatively gentle adhesive energy compared to thatingbeé Chapter 3 example, allowing the
use of a static solver. The optimizer was not able to convexgetly to the objective curve. This is
due to physical limitations in the problem; the curvaturehaf cylinder relative to the sheet limits
the number of InterShell elements in the "active” gap ranpens changing the adhesion energy
can have a large impact. For large gaps, changing the adghesergy has nearly no impact on
the solution since the adhesive forces are weak. The omdth@dhesive distribution is symmetric,
which is expected due to the symmetry in the problem geonstdyboundary conditions. It re-
moves adhesive from the center of the interface to mininhizefar for initial small displacement
values, and then the adhesion energy grows further fromehgecto begin increasing adhesive
forces. The remaining adhesive energy left at the sideseoElieet/cylinder interface is due to
the initial conditions and the relatively small sensiied in this region, as described in Section
4.2.1.1.
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Figure 4.23: Adhesive distribution in optimization of shegapping problem. (a) Force versus
displacement at the center of the sheet for the initial caie waximum adhesive and the opti-
mized solution.. (b) The distribution of adhesive energynglthe cylinder/sheet interface for the
optimized case.
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Chapter 5

Summary and Recommendations for Future
Work

5.1 Analysis

Several one-dimensional adhesive and contact penetmatoatels were presented. Three Inter
elements were formulated, which integrated these adhesigiecontact functions as they acted
between two surfaces. For the InterBeam element, a cavreictiaccount for beam thickness in the
gap measurement was used. The nonlinear solver was dekénbleiding the use of displacement
control to traverse limit points and the adaptive step digerdhm employed. An example problem

was described where a beam which, initially adhered to atsatbswas delaminated by pulling

upwards on on end. An analytical solution for the crack larggtd beam shape as a function of
tip displacement was computed assuming that the adheslyeoted in the region that had not

yet delaminated, and was infinitely stiff in that regioneetively clamping the beam at any given
crack tip location.

The beam was modeled in both 2D and 3D using beam elementdilgteral elements and
shell elements and their corresponding Inter elements.r@fdting shape profiles of these three
models were nearly identical to each other and also to thigtaoed solution. The main difference
between the models and the analytical solution can be @ti#dlin large part to the existence of an
adhesive zone outside of the contact area which the aralytiecdel did not take into account.

The beam delamination problem was solved using varioussighkaws, and in general there
was agreement between the models in the beam shape undsptgcément to within 6 nm at any
given point along the beam. The law that fit the analyticahdla¢ best was the Lennard-Jones case,
most likely because it was able to more closely match theytinal adhesion assumptions without
having convergence problems as the triangular model tetodesithe adhesive zone decreased.

The effects that various parameters of the nonlinear sdladron the solution was studied
including the convergence tolerance on each nonlineatiter, the penetration penalty factor, the
number of gauss points used to approximate the integrakechdnesive force over the area in the
inter elements and the effects of mesh coarseness/refihedea to the nature of the nonlinear
solution method and how data is saved at specific steps fanization, it was most logical to
use an absolute convergence criterion. A good absolutatate was found for the beam problem,
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however a new tolerance would need to be found for each nevlgmsolved. The contact penalty
is also not a dimensionless quantity, and due to the natwptohization there is not a good value
to scale it by to make a penalty factor from one simulationknora different one. It was found
that the number of Gauss points used had little effect oné¢haelsolution shape profile, but fewer
Gauss points created more numerical difficulty and neede@ iewton iterations to converge to
equilibrium in each step. The mesh refinement study showadtibre is an optimal mesh density
for a given problem. If the mesh is too coarse the solver hifiswty reaching an equilibrium
in each analysis step or may possible not converge at afi.htés to do with the crack tip being
distributed over too few variables and the tangentialreegs matrix loosing positive definiteness.
If the mesh is too fine, the simulation takes much longer toglete with little to no improvement
in the solution accuracy.

Finally in the analysis of the beam example the effect of weyyhe Young’s modulus of the
beam and the adhesion energy per area of the interface weliedt The resulting beam profiles
and tip force-displacement relation vary in the same mamnaoth studies. This can be explained
by the fact that the ratic% can be factored out of the analytical equations. IncreaBihgd the
same effect as decreasikg

Next the analysis of a cylinder in adhesive contact with alrsmibstrate was studied. Here the
applied force at the top of the cylinder as it relates to thitusof contact was simulated for two
extreme cases and compared to analytical results fromtératlire. The data in both the JKR and
Hertz cases matched with analytical results.

5.2 Optimization

The analytical sensitivities of optimization criteria tptonization variables were computed and
compared to numerical results in simple single Inter eldnpeablems. For optimization the

Lennard-Jones adhesive model is the best because not anéyssnooth function but it has gra-

dients everywhere with respect to optimization variablesile this is not the case in the other
adhesive models presented.

An optimization problem was defined for the beam delamimat@se where the area between
an objective tip force-displacement curve and the curtenaiion was minimized with the adhe-
sive energy of groups of elements along the beam interfackeasptimization variables. First
a preconstructed solution was analyzed where the objectimes was generated by applying a
known adhesive distribution along the beam. The variableewhen set to other initial condi-
tions and the optimizer found the original distribution s bptimal solution. A study of starting
from different initial conditions showed that this parti@uexample was not very sensitive to initial
conditions, but this is not the case in general for adhegpenization.

Next the beam problem was optimized with objective forcgpliicement curves that were not
the result of analysis of a known adhesive distribution. Hea baseline case a linear curve was
the objective. This objective has an analytical solutiontfee case of infinite adhesive energy,
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effectively clamping the material to the substrate at aatertocation along the beam. In the
optimization framework there was a box constraint on thgeaof admissible adhesive energies.
Although the analytical solution was not obtainable, thé&mjzer found a similar solution by
spreading adhesive in a strip in the region just behind wheddeam would be clamped in the
analytical case. Furthermore, if the total amount of adleesnergy is also minimized by including
it in the objective function, unnecessary adhesive eneelyral the crack tip is removed, leaving
only the amount needed to meet the force-displacementtolgec

In the case of the beam delamination problem, a single elespans the entire width of
the beam. For this reason, the resulting adhesive disimitbean be reinterpreted as a constant
adhesion energy but only taking up a percentage of the dygam width, effectively reducing the
adhesive energy for that group of elements. Thus a 0-1 adghdgtribution is obtained for any
beam delamination problem solved in this fashion. Altezlyagradients in adhesion energy along
an interface can be allowed. This result can be manufactwe@rying the surface roughness in
the interface.

Beam width was studied as an optimization variable. Thexupér did not converge when the
adhesive energy was held constant across the beam whille widt an optimization variable, but
a solution was achieved if both width and adhesive energy wetimization variables. In fact,
objectives that were not reachable given the box conssr@ni alone became reachable when
bothI" and width are optimization variables.

Other objectives were applied to the optimization problaat tio not have obvious analytical
solutions. The optimizer was able to find adhesive distitimst that converged to these objec-
tives, implying that adhesive topology optimization is @fus tool for designing surfaces to meet
adhesive objectives that are not easily obtained thougér atiethods.

The baseline optimization problem was solved with a randgeeain stiffnesses. As the beam
stiffness decreased, the adhesive strip moved towardtloé tihe beam. For very weak beams, the
optimizer stopped converging.

In the final section, the cylinder problem of Chapter 3 wassigad in an optimization frame-
work. Here, as in the beam optimization example, the objeatias to match specified force-
displacement points as the cylinder is pressed into thetsibs The optimization variables were
the energy of adhesion in each interface element betweetrylimeler and the substrate. Specifi-
cally, the objective was for the contact forces to countrze the adhesion forces at every dis-
placement step, creating no net force on the cylinder eveanwths in contact with the substrate.
The optimizer converged on a solution that met this objectilemonstrating that this design op-
timization approach to adhesive patterning is effectiveniore complicated surface geometries
than in the beam problem.
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5.3 Future Work

Design optimization for structures in adhesive contactiigla area that still has much room for
exploration. It is desirable to capture additional inteldhforces, especially friction which can

play a large role in adhesive contact. However, friction isoaconservative force and requires
a dynamic nonlinear solver. To solve optimization problewts friction, other nonconservative

forces, or other dynamic problems transient sensitiviglysis needs to be implemented.

While the interface element approach captures adhesiorebatprescribed sites it is not pos-
sible to enforce adhesion or penetration penalties betaegriwo arbitrary surfaces in a design.
This becomes desirable in dynamic systems or systems wgh tlisplacements where adhesive
contact sites are not known beforehand. For these casetediade element that connects specific
nodes on surfaces should be replaced by a search algoridtrdtects adequately small gaps be-
tween all possible interfaces. This will also alleviate ti@ed for matching meshes on contacting
surfaces, facilitating the design of more complicated getoies. Additionally penetration should
be prevented by a Lagrange multiplier method instead of bgreiby factor.

These modifications and expansions on the finite element wddgreatly expand the types
and complexity of design problems that can be solved. Pnablef interest include those involv-
ing multiphysics such as heat or electric conduction acaosadhesive interface and interactions
between soft particles immersed in an external force fieldh @s an electrostatic or a flow field,
which have a broad range of applications in areas includiagufacturing and processing.
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