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Abstract 

Uncertainty in site characterization arises from a lack of data and knowledge about a site 
and includes uncertainty in the boundary conditions, uncertainty in the characteristics, 
location, and behavior of major features within an investigation area (e.g., major faults as 
barriers or conduits), uncertainty in the geologic structure, as well as differences in 
numerical implementation (e.g., 2-D versus 3-D, finite difference versus finite element, 
grid resolution, deterministic versus stochastic, etc.).  Since the true condition at a site 
can never be known, selection of the best conceptual model is very difficult.  In addition, 
limiting the understanding to a single conceptualization too early in the process, or before 
data can support that conceptualization, may lead to confidence in a characterization that 
is unwarranted as well as to data collection efforts and field investigations that are 
misdirected and/or redundant.  Using a series of numerical modeling experiments, this 
project examined the application and use of information criteria within the site 
characterization process.  The numerical experiments are based on models of varying 
complexity that were developed to represent one of two synthetically developed 
groundwater sites; 1) a fully hypothetical site that represented a complex, multi-layer, 
multi-faulted site, and 2) a site that was based on the Horonobe site in northern Japan.  
Each of the synthetic sites were modeled in detail to provide increasingly informative 
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‘field’ data over successive iterations to the representing numerical models.  The 
representing numerical models were calibrated to the synthetic site data and then ranked 
and compared using several different information criteria approaches.  Results show, that 
for the early phases of site characterization, low-parameterized models ranked highest 
while more complex models generally ranked lowest.  In addition, predictive capabilities 
were also better with the low-parameterized models.  For the latter iterations, when more 
data were available, the information criteria rankings tended to converge on the higher 
parameterized models.  Analysis of the numerical experiments suggest that information 
criteria rankings can be extremely useful for site characterization, but only when the 
rankings are placed in context and when the contribution of each bias term is understood. 
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1. Introduction 
When developing a high-level nuclear waste repository, enormous efforts are spent 
characterizing the site, beginning from the preliminary investigation (PI), where the 
major features and gross suitability are analyzed, to more detailed investigations (DI), 
where understanding of local-scale processes is demonstrated.  The bulk of this effort is 
spent trying to gain sufficient understanding of the site such that performance assessment 
can be carried out with acceptable levels of uncertainty.  Because subsurface data are 
relatively sparse, however, reducing uncertainty can be extremely difficult, especially 
during the PI. 
 
Uncertainty in site characterization arises from a lack of data and knowledge about the 
site and includes uncertainty in the boundary conditions, uncertainty in the 
characteristics, location, and behavior of major features within the investigation area 
(e.g., major faults, confining layers, etc.), and uncertainty in the geologic, geochemical, 
and hydrogeologic environments.  Numerical models used to simulate conditions at the 
site contribute further uncertainty.  By definition, models rely on assumptions and 
conceptualizations about the true conditions, with the hope that those assumptions and 
conceptualizations are of little consequence with regard to the models ability to answer 
useful questions and to gain understanding about the site.  In addition, site 
characterization can involve expert elicitation and scientific analyses, which can lead to 
competing viewpoints and conceptualizations about the site.  The aggregation of the data, 
model, and conceptual uncertainty represents the information gap between what needs to 
be known and what is actually occurring at the site. 
 
Given the fact that uncertainty in groundwater investigations is high, inferences about a 
site should include all possible processes as determined through expert opinion and 
scientific evaluation.  This follows closely Chamberlin’s famous paper that describes 
using multiple hypothesis as a strategy for gaining maximum understanding in applied 
and theoretical problems [Chamberlin, 1965].  With regard to modeling a potential 
repository site, this means that multiple conceptual models formed as a result of 
aggregated uncertainty should remain active until one can determine which model is 
“best” (the term best is open to interpretation and can impact a models relative merit, as 
will be discussed below).  To outline this strategy in the context of nuclear site 
investigations, this project examines the efficacy of using model selection methodologies 
that are based on an information theoretic approach with the objective of making better 
and more defensible decisions and inferences about the site. 

1.1 Information Theoretic Approach 

Information theoretic approaches are based on Kullback-Leibler (K-L) information, 
which is defined as the information, I(f,g), that is lost when the true condition f is 
approximated by a model, g [Kullback and Leibler, 1951].  Mathematically, this is 
expressed for continuous functions as: 

( ) ( )
( )∫ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

θxg

xf
xfgfI ln)(,  (1) 
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where f and g are n-dimensional probability distributions.  Fundamentally, K-L 
information is a measure of the distance between conceptual reality, f, and the 
approximating model, g [Burnham and Anderson, 2001]. 
 
Akaike [Akaike, 1973; 1974] developed a relationship between K-L information and 
maximum likelihood theory that makes it possible to combine estimation (e.g., such as 
maximum likelihood or least squares) with model selection.  Akaike defined an estimator 
of the expected K-L information based on the maximized log-likelihood function known 
as “Akaike’s information criteria” (AIC) [Burnham and Anderson, 2001]: 

( )( ) kdataLAIC 2ˆln2 +−= θ  (2) 

where θ̂  are the calibrated parameters, ln[L( θ̂ |data)] is the maximized log-likelihood 
function, and k is the number of calibration parameters used in the model.  If one assumes 
a normal distribution of errors for all models in the set, then for the case of least-squares 
estimation, equation (2) can be expressed as: 

knAIC 2)ln( 2 += σ)  (3) 

where 

n
i∑=
2

2
ε

σ
)

)
 (4) 

and 2
iε) are the squared residuals between the model and the observed data. 

A version of equation (3) was developed that accounts for cases when n/k > 40 [see, for 
example, Hurvich and Tsai, 1989].  Known as the corrected Akaike Information Criteria 
(AICc), it is given as: 

( )
1

12
2)ln( 2

−−
+

++=
kn

kk
knAICc σ)  (5) 

Because the AICc asymptotically approaches the AIC as n gets large, it is recommended 
that the AICc always be used [Burnham and Anderson, 2004].  The small “c” in AICc 
stands for (bias) corrected. 
 
To use the AICc, we assume that a set of R conceptual models have been defined.  Each 
of the R models is fitted to the n observed data and the average of the sum of the squared 
residuals ( 2σ) ) and then the AICc are calculated for each model.  The number of 
parameters, k, used to calculate the AICc should be the number of calibrated parameters 
in the model plus 1 to reflect the concept that 2σ)  is also an estimatable parameter 
[Burnham and Anderson, 2004; Poeter and Anderson, 2005].  The model for which the 
AICc is lowest given the available data is selected as the best model of the set of R 
models given the set of n observations.  The best model, as determined by the AICc is the 
model that provides the highest degree of parsimony, which is defined as the tradeoff 
between under-fitting and over-fitting (i.e., under-parameterization and over-
parameterization) [Poeter and Anderson, 2005]. 
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Figure 1 shows an example of this concept with the green squares representing a single 
data set that are fit using two conceptual models: a 2nd and a 5th order polynomial (red 
and blue dotted lines, respectively).  For the 2nd order model, 2σ)  is equal to 23.37 but for 
the 5th order model, it is equal to 0.00 (the 5th order model fits the data exactly). 
 
However, when additional data are added (blue diamonds) 2σ)  is equal to 16.43 and 
51.48 for the 2nd and 5th order models, respectively.  In this case, the 5thorder model 
demonstrates over-fitting of the first data set, which results in its inability to simulate the 
additional data.  Using AICc, the 5th order model would be penalized for being over-
parameterized with respect to the available data. 
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Figure 1 – The green squares represent the original data set are fit using two conceptual 
models: a 2nd and a 5th order polynomial (red and blue dotted lines, respectively).  The blue 
diamonds represent data that are collected at a later date.  The 2nd order model is an 
example of under-fitting while the 5th order model is an example of over-fitting. 
 
Burnham and Anderson [2001] make an important point with regards to the information-
theoretic approach to modeling, saying: 
 

“In a very important sense, we are not trying to model the data; instead, 
we are trying to model the information in the data.” 

 
The significance of this point reflects an underlying fact of the AICc; namely that the 
AICc is only comparing the R models to each other for a particular data set.  In other 
words, if another data set is chosen, the magnitude of AICc values for models fitted to 
different data sets from the same site cannot be compared.  Only the relative rankings of 
each model as compared to the set of models calibrated to the same data set are able to be 
compared.  This stems from the fact that the AICc is an estimate of the K-L information 
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and contains arbitrary constants that are affected mainly by the sample size but also by 
the samples themselves  [Burnham and Anderson, 2004].  The practical aspect of this is 
the understanding that the AICc does not choose the best model based on its ability to 
model the data.  Rather, it chooses the best model as the one that can most effectively use 
the information contained in the data. 
 
Model rankings are obtained by rescaling the AICc values by a factor that reduces the 
AICc value of the best model to a value of 0, i.e.: 

minAICcAICcii −=Δ  (6) 

where AICci is the AICc value of the ith model, and AICcmin is the AICc value of the best 
model (i.e. minimum AICc value).  The Δi values provide an easy way to rank models 
within a single model set by providing a “strength-of-evidence” measure for model i 
versus the best model.  Guidelines have been posed [Burnham and Anderson, 2002] for 
assessing the relative merits of models within a set: models with Δi � 2 have substantial 
evidence, models where 4 � Δi � 7 have less support, and models where Δi > 10 have 
essentially no support.  As demonstrated below, we believe that the Δi values should not 
be a means for keeping or discarding a model between successive data collection efforts 
but rather, the should be used to indicate the relative strength of one model over another 
for the particular data set being modeled. 
 
A transformation of Δi to exp(–Δi / 2), for i = 1, 2, …, R, provides the likelihood of model 
i given the data.  Using this transformation, a ‘weight of evidence’ can be calculated as: 

( )
( )∑

=

Δ−

Δ−
= R

r
r

i
iw

1

2exp

2exp
 

(7) 

Sometimes called the “Akaike weights,” wi is interpreted as the evidence that model i is 
the best model in the set, R.  The ratio wi/wj is the “evidence ratio” and can be used to 
directly compare one model to the next and allows statements to be made such as “there 
is wi/wj times more evidence supporting model i over model j” [Poeter and Anderson, 
2005].  It is important to note that both the Akaike weights and the evidence ratios are 
relative measures and should only be interpreted as being valid for the R models in the 
model set as calibrated to a single set of data. 
 
An analogy for the evidence ratios are given by Burnham and Anderson [2002, page 79] 
whereby they compare an auditorium with N people, each of whom holds a raffle ticket.  
The exception is that a single person (Bob) has 3 tickets.  The evidence ratio that Bob 
will win the raffle versus any other person is 3.  While Bob has a 3 to 1 edge of winning 
over any other person, the evidence ratio says nothing about his probability of winning, 
which is dependent on the number tickets Bob holds versus the number of tickets given 
out.  Similarly, the evidence ratio for model i over model j indicates only that model i has 
wi/wj more evidence of being the true model than model j.  It does not, in any way, 
indicate the probability of model i being the true model. 
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1.2 Multi-Model Inference 
With regard to nuclear repository site characterization, the objective is not to reproduce 
observed data as closely as possible, but rather it is to simulate the important processes at 
the site such that the sites adequacy can be determined with a reasonable amount of 
uncertainty.  As discussed above, uncertainty is contained in the data, the 
conceptualizations, and even the models themselves.  To account for all of these 
uncertainties, multi-model inference is used.  When a single conceptual model is used, 
the uncertainty that that single model is the best model should be incorporated into 
estimates of its ability to fit the data [Burnham and Anderson, 2004].  In other words, the 
variance about a model’s prediction needs to be independent of the selected model.  This 

“unconditional variance” is calculated for the calibrated parameters, θ̂ , from the best 
model as [Buckland et al., 1997]: 

( ) ( ) ( )
221

1

2ˆˆˆarv̂ˆarv̂
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ −+= ∑

=

R

i
iiii gw θθθθ  (8) 

where 

∑
=

=
R

i
iiw

1

ˆˆ θθ  (9) 

is the model averaged value of parameter îθ .  The first term of equation (8) accounts for 

the uncertainty from the single model that is chosen while the second term accounts for 
the conceptual uncertainty of model i.  Equation (9) can be used to calculate model 
averaged parameter values for any parameter, k, by letting R = R’, where R’ is the subset 
of models containing parameter k.  New model weights, '

iw , must also be recalculated to 

reflect the fact that a subset of models, R’, is being used.  Both '
iw  and R’ should be used 

in equation (8) when calculating the unconditional variance for a parameter that does not 
appear in the full model set.  While model-averaged parameter values may be useful in 
some cases, Poeter and Anderson [2005] recommend not using them for groundwater 
problems because they are often inappropriate for use in a particular model construct (i.e. 
they are specific to the model for which they are calibrated and not easily generalized). 
 
Finally, the 95% confidence interval around the predictions from model i can be 
calculated as: 

( )θθθ ˆarv̂2ˆˆ ±=  (10) 

1.3 Other Forms 
Several other forms of information-theoretic criteria exist, some which were developed 
from the Bayesian point of view while others which were developed from the frequentist 
point of view (such as the AIC) [see McQuarrie and Tsai, 1998].  For comparative 
purposes, and because the calculations are relatively easy once 2σ)  has been calculated, 
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several of these additional criteria are calculated.  Namely, the BIC [Schwarz, 1978], the 
HQ [Hannan and Quinn, 1979], and the KIC [Kashyab, 1982].  These are each given as: 

)ln()ln( 2 nknBIC += σ)  (11) 

  

))ln(ln()ln( 2 ncknHQ += σ)  (12) 

and  

( ) ΧΧ+⎟
⎠
⎞

⎜
⎝
⎛+= w

n
knKIC Tln

2
lnln 2

π
σ)  (13) 

For equation (12), c > 2, and for equation (13), TΧ wΧ  is the determinant of the Fisher 

information matrix, X is the sensitivity matrix, XT is its transpose, and w is the weight 
matrix.  Because this study is focused on the use of the AICc in the context of nuclear 
repository site investigations, the details and implications of each of these methods are 
not discussed here.  However, additional information for each of these methods in the 
context of information-theoretic methods can be readily found in the literature [Burnham 
and Anderson, 2001; 2002; 2004; Link and Barker, 2006; Ye et al., 2008; Zucchini, 
2000].  More specifically, several studies exist that have suggested the use of some of 
these methods for the selection of groundwater models [Carrera and Neuman, 1986; 
Neuman, 2003; Neuman and Wierenga, 2003; Ye et al., 2004; Ye et al., 2008]. 

Figure 2 – Deterministic conceptual models will be formed by combining different site-
processes that are representative of processes identified at the PI stage during expert field 
investigations and analyses. 
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This project consists of two Phases.  The first Phase relies on a synthetically developed 
hypothetical site to examine how the ranking criteria behave when used in a complex, 
natural system and to determine the limits of its use.  Successive iterations of adding 
observation data and calibration of the models were conducted.  The second Phase 
utilizes data from a real-world site in Japan and concentrates on the addition of 
observational data only.  This was done to provide insight into how the AICc behaved 
with regards to the number of available data as well as the magnitude and contribution of 
second degree bias (i.e. the bias that ‘penalizes’ a model for being more complex).  The 
result of these two analyses has resulted in a recommendation list presented in the last 
section for using the AICc in the site characterization process. 

2 Implementation 

To implement Phase I, the project team was broken into two distinct groups: the site 
creation (SC) team and the modeling and analysis (MA) team. These teams worked 
independently to iteratively execute the seven distinct steps outlined below: 

1. Synthesize a Hypothetical Site (SC Team) 

For the hypothetical site (HS), the first step was to identify features and processes that 
should be included in the model.  The goal was to create a HS that, when modeled, would 
show different scales of complexity and structure as well as processes that are indicative 
of those found in Japan (Figure 3).  After considerable research and discussion, a 
cross-section of the Senya Fault region that is contained in the JNC H12 report [JNC, 
2000] was selected as the template from which to build the stratigraphy. 

Because the Senya Fault region is highly active and thus would not be considered as a 
potential location for a repository, assumptions are made for the HS model that the faults 
shown in the cross-section are not active and that the site qualifies as an investigation 
area.  The Senya Fault cross-section was only used to establish contact elevations only, 
meaning that no attempt was made to preserve the geologic material types shown in the 
cross-section legend.  For the HS model, we extended the approximate 5-km width of the 
Senya Fault cross-section to 15 km, by conceptualizing a gradual elevation decline 
towards the west to a constant head ocean boundary (left-hand side of the cross-section), 
and a sharper increase in elevation to the east, which terminates at a no-flow groundwater 
divide.  Contact elevations on either end of the model were extrapolated to the model 
boundary based on the slope of the contact close to the boundary.  To avoid too much 
complexity that could compromise our ability to analyze the rankings, the contact 
elevations are assumed constant in the north-south direction, which, like the east-west 
dimension, is also 15 km.  A preliminary investigation area is defined to be a 6×6 km2 
region in the middle of the model domain.  The 3-D representation is shown in Figure 3 
with cross-sections shown in Figure 4 and Figure 5. 
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Table 1 – Key features and processes included in the hypothetical site model. 

 
 
Figure 3 – Three-dimensional view of the hypothetical site model. 

2. Model Flow Conditions over Time (SC Team) 

Because a thermal gradient and an intrusion feature are included in the hypothetical 
model, the Finite Element Heat and Mass [FEHM - Zyvoloski et al., 1999] code was 
selected to model the site.  FEHM is able to model 3-D, time-dependent, multiphase, 
multi-component, non-isothermal, reactive flow through porous and fractured media.  It 
can accurately represent complex, 3-D geologic media and structures and their effects on 
subsurface flow and transport.  FEHM has been used to simulate groundwater and 
contaminant flow and transport in deep and shallow, fractured and un-fractured porous 
media by the US Department of Energy (DOE) and is the primary code used for 
modeling the saturated zone for the Yucca Mountain Project (YMP). 

Despite its name, FEHM is a finite volume code that uses as part of its input a finite 
element mesh (the finite volume mesh is calculated internally by FEHM).  The meshing 
process itself was extremely time consuming, requiring a mesh that was detailed enough 

Feature / 
Process 

Reason to Include in Model 

Faults 

The faults are conceptualized to be conduits, barriers, or mixed conduit/barrier to flow. Potentially, 
conceptual models that more closely match the treatment of faults in the hypothetical model should rank 
higher. The ordering of the conceptual model ranks may also provide a means for inferring the true 
nature of the faults. 

Variable recharge 
Recharge is conceptualized to increase toward the east in the higher elevations and decrease in the west 
at the lower elevations. Spatial variations in groundwater head could show up in the calibrated 
conceptual models and in turn, help infer the recharge conditions. 

Thermal gradient Thermal gradients are common in Japan and thus are included in the hypothetical model. 

Thermal intrusion The hypothetical model includes a granitic intrusion that is conceptualized to be much warmer then the 
surrounding rock. 

Complex geology By using a complex geologic system as the hypothetical model, it is hoped that we can identify how 
complex the numerical models need to be to rank highly. 

Heterogeneous 
hydrogeology 

This is included by developing 3-D varying, spatially correlated random hydraulic conductivity fields in 
some of the geologic layers. This is a common approach to modeling heterogeneous systems and thus 
was included in the hypothetical model. 
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to capture fine-resolution three-dimensional groundwater flow dynamics while 
conforming to the contact surfaces of the various units.  Difficulties arose in the meshing 
process due to the numerous “pinch-outs” and discontinuities in the geology, which 
caused the meshing algorithm to produce meshes that resulted in negative volumes when 
FEHM converted the finite element mesh to a finite volume mesh.  Due to these 
difficulties, a new strategy was developed; create a mesh by first meshing a two-
dimensional cross-section in the east-west direction and then projecting the two-
dimensional mesh in the north-south direction (Figure 4 and Figure 5).  In addition, the 
only contact elevations that were preserved are along the faults, with the balance of the 
volume treated as a single meshing volume.  Parameters were mapped to the mesh by 
overlaying the meshed volume with the stratigraphy volume and assigning a material ID 
number to each node based on where it falls in the stratigraphy.  While this approach 
does represent a compromise to the initial objective, high resolution in the area of interest 
was maintained. 
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Figure 4 – Cross section of the HS model showing the stratigraphy and the finite element 
and finite volume meshes (DeLauney and Voronoi meshes). 
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Figure 5 – Close-up of the DeLauney and Voronoi meshes. The only structures preserved 
in the mesh are the faults.  Nodal values are assigned based on the geologic unit in which 
it falls. 

3. Collect Data from the Site (SC Team) 

Data supplied to the MA team consisted of a general description of the site, rainfall data, 
assumed boundary conditions, geologic setting, and borehole measurements that included 
both static and temporal head levels as well as stratigraphic contact elevations. 
Increasingly descriptive data were given to the MA team over three iterations. 

4. Form the Conceptual and Numerical Models (MA Team) 

With each data set, the MA team formed a set of conceptual models.  The conceptual 
models defined the stratigraphic and hydrostratigraphic conditions, the important 
features, structures, and processes, as well as the boundary conditions at the site (as best 
determined from the supplied data).  To maintain consistency, the numerical models 
encompassed the same domain and orientation. 

5. Calibrate and Rank the Numerical Models (MA Team) 

The MA team calibrate the numerical models to supplied observational data using the 
parameter estimation code, PEST [Doherty, 2007].  The models were then ranked and 
their Akaike weights and posterior model probabilities were calculated. 

6. Analyze Results (MA Team) 

Analysis of the results involved identifying features and processes that were highly 
ranked and determining areas within each model (in both parameter space and real space) 
with the highest uncertainty.  
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7. Acquire More Data and Repeat the Process (SC Team) 

Steps 3-6 were repeated three times to establish a ranking trend for each of the models. 

3 Phase I 

3.1 Testing MMRI with Analytical Solutions 

Anticipating that the development of the hypothetical site was going to take some time, 
the MA team began the by implementing the MMRI process using a series of analytical 
solutions that describe 1-dimensional groundwater transport under various initial and 
boundary conditions [van Genuchten and Alves, 1982].  The governing equation for this 
system is: 

x
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∂

2

2

 (14) 

where c [M/L3] is the concentration of solute, t [t] is time, x [L] is the spatial reference, R 
is the retardation factor [–], D [L2/t] is the dispersion coefficient, and u [L/t] is the 
advective groundwater velocity.  Van Genuchten and Alves [1982] developed 12 different 
analytical solutions (A1 to A12) to this equation based on different initial and boundary 
conditions with solutions varying in the number of parameters (from 6 to 8).  Each 
solution represents a unique conceptualization of equation (14) and are analogous to the 
conceptualizations one would make during preliminary and detailed investigations of a 
potential repository site. 

For this test, a single “true” solution (solution A9) was selected from the set of 12 with 
R = 1.5, D = 0.005 m2/s, and u = 0.001 m/s. The initial condition represents a uniform 
positive concentration across the entire domain (C(x,0) = 1.0).  The left hand boundary 
condition describes a declining mass flux over time (C(0,t) = Ca + Cbe

�λt, with Ca = 0.05, 
Cb = 0.95, and λ = �2×10�5) while the right-hand boundary is a no-flux boundary 
projected at infinite (∂C/∂x(L = �,t) = 0).  The spatial and temporal model domains are 0 
� x � 25 m, 0 � t � 100,000 s, respectively. 

Five iterations were conducted at time 500, 1,000, 10,000, 50,000, 100,000 seconds as 
illustrated in Figure 6.  These comprise the calibration data for the other solutions. 
Successive iterations include data from the next timestep and all 12 solutions (A1–A12) 
were calibrated to those data using PEST.  Thus, at the first timestep, each of the 12 
solutions was fit to the concentration profile across all x as calculated by A9 at t = 500 s. 
For the second iteration, calibration was against the concentration profiles at t = 500 and 
1,000 s, and so on. 
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Figure 6 – The concentration profiles of solution A9 at each timestep. 

Figure 7 shows the results of this exercise by plotting the ranking of each solution for 
each iteration along with its wi value.  The colored lines trace each models ranking across 
the 5 iterations.  The AICc values are negative due to the fact that the logarithm of the 
residuals, which are all less then 1 in this case, results in negative values for the first 
order bias term of the AICc.  For the first three iterations, rankings are seemingly random.  
By the fourth and fifth iteration, the rank changes are more orderly because there are 
enough data to adequately inform the calibration process.  From the second iteration 
onward, the delta value of the true solution A9 continues to decrease.  Likewise, the mean 
of the deltas as well as the standard deviation increase with each iteration because 
additional calibration data result in unsupported models with much higher AICc values 
with respect to A9.  While it is not possible to compare AICc across iterations because of 
increasing calibration data, n, Figure 7 suggests that poorly performing models (e.g., A9 
is ranked worst by the second iteration) should not be immediately eliminated from 
further consideration. 
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Solution
Number 1 2 3 4 5

A1 0.00 0.00 0.00 0.00 0.00
A2 60.19 314.57 125.36 217.36 5356.46
A3 76.30 316.17 133.09 542.03 8167.80
A4 77.83 318.46 177.86 686.34 8203.78
A5 80.22 321.18 414.49 1027.66 8338.32
A6 89.60 343.59 525.64 1140.15 8366.08
A7 108.83 382.99 528.08 1143.64 8550.23
A8 115.24 385.70 670.68 1147.18 8647.06
A9 119.16 386.96 673.11 1186.99 8666.39

A10 124.54 388.61 677.20 1298.04 8670.54
A11 242.73 413.94 700.25 1415.05 8682.73
A12 284.06 479.52 1201.72 1574.07 8688.66

Mean 114.89 337.64 485.62 948.21 7528.17
Std. Dev. 77.46 117.17 338.18 483.99 2543.99

ITERATION

 
Figure 7 – The ∆i values of each of the 12 analytical models over successive iterations. 
Note how the mean and standard deviation of the ∆i values increase with each successive 
iteration. 

3.2 Applying MMRI to the Hypothetical Site 

For each iteration, data generated from the HS were supplied to the MA team and 
included contact elevations and material types at each contact point, screen elevations, 
hydraulic head, land surface elevation, x and y coordinates, geologic material descriptions 
and/or ‘estimated’ conductivity values in selected boreholes, as well as information 
regarding rainfall in the area.  With the first data set, a set of alternative conceptual 
models are constructed, calibrated, and ranked using the AICc.  This process is repeated 
as subsequent data sets are supplied, and models are adjusted as appropriate to coincide 
with the improved understanding of the HS.  Starting with the second data set, models 
simulate the new observations to evaluate predictive capability, before model calibration 
is performed.  Calibration and model ranking results for all of the models from a given 
data set are reported at the end of each section.  

3.3 First Data Set 

For the first data set, the MA team received data on 7 boreholes (Table 2), a general site 
description, and the 40 year averaged rainfall amounts for three rainfall stations (Table 
3).  The general site description was: 

The 15×15 km2 regional area transitions from forested highlands to rural, 
small agricultural use in the low-lands.  Beginning at about 300 m in 
elevation, the vegetation mix is mixed hardwoods consisting of fir, cedar, 
cottonwood, and ash in equal amounts and trending towards mostly fir 
with some cedar for elevations above 600 m. Small agriculture dominates 
below elevations of 300 m, with the primary crops being rice (40%), 
wheat (20%), and vegetables (40%).  The area is sparsely populated by 
small farm houses and rural dwellings. 
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Rainfall generally increases as one moves from the ocean towards the 
mountains due to orographic mountain effects.  Three rainfall gauges exist 
in the area (see the Rainfall worksheet). 

The area is underlain by marine sediments consisting mainly of mudstones 
and some shale’s.  Above that are alternating strata of volcanic and 
alluvial deposits that have been truncated and folded due to past seismic 
activity.  Several faults cross the area and two faults have surface 
expressions running south to north at x = 6,075 and 7,750 m inland from 
the ocean. 

Using these data coupled with the general site description, the MA team constructed 
several conceptual models.  The first model was based on a one-dimensional Darcy 
equation that assumes transmissivity varies only in the horizontal (x) direction based on 1 
to 5 distinct zones of hydraulic conductivity.  The second model was based on an 
analytical solution to the two-dimensional Laplace equation that assumes a linear water 
table [Toth, 1963].  The third set of models are parameterized variations of a MODFLOW 
model.  Each of these models are described in more detail below.  

The average yearly rainfall rates were plotted as a function of x and a linear regression 
line was fitted that indicates that rainfall rates, R(x) [m/day], range from 1.94×10�3 m/day 
at the west boundary to 2.60×10�3 m/day at the east boundary (Figure 8): 

38 1094.11055.4)( −− ×+×= xxR  (15) 

 

Table 2 – Well location and head measurements supplied for the first iterations.  Note that 
heads are “point-in-time” measurements (snapshots) and do not represent long-term 
static water levels. 

Borehole 
Name 

Easting 
[m] 

Northing 
[m] 

Screen 
Elevation 

[m] 
MODFLOW 

Layer Head  [m] 

Land 
Surface 

[m] 
BH-5 4,120 10,120 �1,447.5 23 63.4 135.4 

BH-14 10,637 9,533 �279.5 11 330.8 312.4 
BH-18 5,667 6,694 �29.0 9 109.0 146.0 
BH-22 7,434 7,131 �410.0 13 186.7 213.2 
BH-31 4,413 1,717 �251.6 11 80.1 137.9 
BH-33 511 13,957 �1,475.8 23 8.8 13.9 
BH-34 12,426 6,019 �212.0 11 390.8 655.2 
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Table 3 - Monthly rainfall data from the first data set. 
Month Station 1 [m] Station 2 [m] Station 3 [m] 
January 0.065 0.069 0.051 

February 0.142 0.121 0.124 
March 0.144 0.119 0.136 
April 0.131 0.094 0.088 
May 0.110 0.124 0.103 
June 0.097 0.096 0.065 
July 0.074 0.058 0.057 

August 0.054 0.059 0.042 
September 0.034 0.033 0.029 

October 0.013 0.013 0.008 
November 0.016 0.016 0.013 
December 0.032 0.032 0.028 

Total [m/yr] 0.913 0.835 0.742 

Location Station 1 [m] Station 2 [m] Station 3 [m] 
Easting (m) 12,566 7,036 2,318 

Northing (m) 2,408 12,026 5,769 

  
Figure 8 - Data collected from the three rain gages and the best linear fit to the average 
rainfall rate showing increasing rainfall from west to east. 

3.3.1 Darcy Models 

The Darcy model envisioned the HS as a one-dimensional system with flow in the 
negative x-direction (east to west).  Although this reduction eliminates two spatial 
degrees of freedom, some hydrologic properties of the original system are retained, such 
as infiltration and potential fault locations.  To incorporate the piecewise nature of the 
flow system, the model domain is separated into a series of zones (referred to as T-zones) 
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with different transmissivities.  Model conceptualizations are formed by altering the 
number and width of each T-zone.  Figure 9 illustrates an example of five equally-spaced 
T-zones and the measured head data along the x-axis (head values were projected onto the 
one-dimensional domain by assuming that the y value is the same for each borehole). 

 
Figure 9 - Example of a 5 T-zone conceptualization with measured head values. 

Assuming constant fluid density, flow through the system is described by Darcy’s Law 
(steady state): 

x

xh
xTxq

d

)(d
)()( −=  (16) 

where q(x) is the specific discharge [m2/day], T(x) is the transmissivity [L2/t], and h(x) is 
the hydraulic head [L].  The left-hand boundary (x = 0) is modeled as a constant head 
boundary with a value of zero; i.e., h(0) = 0.  The right hand boundary is modeled as a 
no-flow boundary on the east face (x = L = 15,000 m).  Specific discharge is determined 
exclusively from rainfall rates R(x).  

The Darcy model is solved numerically with the following finite-difference 
approximation: 
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where 1mxΔ = . 
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The calibration parameters are the transmissivities of each T-zone.  Six different models 
are developed and are labeled as 1D-j, where j denotes the number of serial layers 
(followed by an optional subscript ‘f’ if Faults A and B are represented).  Models 1D-1 
through 1D-5 divide the domain into equally-spaced regions, while 1D-5f contains three 
equally-spaced regions and two 100-m layers that represent Faults A and B.  Using PEST 
[Doherty, 2007], these models were calibrated to the head data given in Table 3. 

3.3.2 Toth Model 

The next conceptual model considers a two-dimensional, steady-state groundwater model 
that is based on the Laplace equation: 
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where h(x, z) is the hydraulic head [L] at the coordinates x and z.  This model can be 
interpreted as a vertical cross section parallel to the x-axis of the hypothetical site.  To 
solve this equation Toth [1963] assumes a linear sloping water table with slope c, and no-
flow boundaries at (i) 0x = and x s= for 00 z z≤ ≤  and (ii) 0z =  for 0 x s≤ ≤ , as 

illustrated in Figure 10.  The solution is given as: 
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where s is the domain length [L], and z0 is the minimum saturated thickness [L].  For our 
purposes, the infinite series is calculated with m = 10, which is enough to minimize 
truncation error to insignificant levels (<0.02 m). 
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Figure 10 – Two-dimensional model with a linearly varying water table. 

Calibration for the Toth model was done using the lsqcurvefit data-fitting function that is 
part of the Matlab optimization toolkit. 

3.3.3 MODFLOW Models 

The MODFLOW model was constructed using MODFLOW-2000 [Harbaugh et al., 
2000].  The domain was divided into 100-m3 finite-difference cells comprising 150 rows, 
150 columns, and 28 layers, resulting in 630,000 total cells with 516,000 active cells, as 
shown in Figure 11 (top).  A zero-head boundary is assigned to the west face while the 
bottom and east boundaries are designated as no-flow boundaries.  The domain is 
modeled as unconfined with wetting and drying capabilities activated.  Recharge is 
applied to the top-most active layer.  Given the limited dataset available for calibration, 
only three geologic units are considered, the host or background hydraulic conductivity 
(red) and the two faults (blue) (Figure 11 bottom). 
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cs 
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Figure 11 – MODFLOW-2000 grid with 516,600 active 100-m3 cells.  In the top figure, the z-
axis is magnified by a factor of 4.5.  In the bottom figure the host rock is shown in red and 
faults are shown blue. 

Building from a single MODFLOW model, alternate conceptual models were developed 
and calibrated to the head data and ranked according to the Akaike Information Criterion 
[Hill and Tiedeman, 2007; Poeter and Anderson, 2005; Poeter and Hill, 2008].  Models 
were developed with increasing numbers of parameters ranging from one to seven.  Table 
4 lists the alternate conceptual models developed for this exercise. These models are 
labeled as MOD-j, where j is the model index. 
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Table 4 – Alternate conceptual model descriptions. 
Model description and estimated parameters Number of 

parameters
MOD-1 Uniform hydraulic conductivity 1 
MOD-2 Host rock and Fault B hydraulic conductivities  2 
MOD-3 Host rock and Faults A and B hydraulic conductivities 3 
MOD-4 Host rock and Faults A and B hydraulic conductivities and 
vertical anisotropy for host rock 

4 

MOD-5 Host rock and Faults A and B hydraulic conductivities plus 
recharge multiplier 

4 

MOD-6 Host rock and Faults A and B hydraulic conductivities and unique 
horizontal anisotropies for Faults A and B 

5 

MOD-7 Host rock and Faults A and B hydraulic conductivities and unique 
vertical anisotropies for the host rock and Faults A and B 

6 

MOD-8 Host rock and Faults A and B hydraulic conductivities, unique 
vertical anisotropies for the host rock and Faults A and B, and horizontal 
anisotropy for the host rock 

7 

3.4 Calibration with PEST 

With the exception of the Toth model, all models were calibrated with PEST 11.4 
[Doherty, 2007; Watermark Computing, 2003; 2004; 2006]. The PEST (parameter 
estimation) software is based on the robust, widely-applicable, and well-established 
Levenberg-Marquardt (LM) optimization algorithm [Press et al., 1992, pp. 678 to 683].  
It searches for the local minima of the weighted sum-of-squared residuals (WSSR) 
between a set of observation data and those calculated by each of the numerical models.  
For this study, the WSSR is designated as Φ  and is calculated as: 
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where n is the number of observation data points (borehole heads), obs
ih  and sim

ih are 

observed and simulated heads at the ith borehole location, respectively, p is the set of 
estimation parameters, and 0iw ≥  is the corresponding weight (wi = 1 for all models in 

this study). 

3.5 Results 

3.5.1 Darcy Models 

For each of the six Darcy models, optimal values for the hydraulic conductivities are 
summarized in Table 5 and illustrated in Figure 12.  Note that model 1D-5f (three 
equally-spaced zones and two 100-m faults) does not yield a significant improvement 
compared to models 1D-3 and 1D-4.  Aside from the two 100-m faults, model 1D-5f has 
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the same zonation as model 1D-3.  Moreover, only one of the faults contains a data point 
(BH-5 in Fault A), which limits the improvement that this model yields compared to 1D-
3.  Figure 12 shows that the zonation of models 1D-3 to 1D-5f neatly divides the head 
data into regions that are quadratic (in head) with the best fit for five equally-spaced 
layers in 1D-5.  Thus, each zone is accurately fit by a single value of transmissivity. 
Table 6 contains the calibrated values of the transmissivities.  Due to its low Φ  (and 
RMSE), 1D-5 is the best calibrated model (AICc cannot be calculated for 1D-5 and 1D-5f 
because the second order correction has an indeterminate form). 

Table 5 – Results from Darcy Model calibrations for the first data set.  For models 1D-5 and 
1D-5f, values of AICc are not reported because the second-order bias involves division by 
zero. 

  hsim [m] 
Borehole hobs [m] 1D-1 1D-2 1D-3 1D-4 1D-5 1D-5f 

BH-5 63.4 140.4 92.4 65.7 62.3 67.6 62.7 
BH-14 330.8 277.5 329.7 322.0 330.8 330.8 323.9 
BH-18 109.0 182.7 120.3 112.9 122.3 109.5 112.1 
BH-22 186.7 223.7 147.3 196.2 180.5 186.7 196.9 
BH-31 80.1 148.8 98.0 69.7 74.3 76.0 74.2 
BH-33 8.8 19.5 12.8 9.1 7.0 6.2 8.4 
BH-34 390.8 295.3 391.6 393.6 390.8 390.8 394.3 
Φ — 29,500 2,860 300 250 40 210 

RMSE — 64.9 20.2 6.6 6.0 2.4 5.5 
AICc — 65.4 56.1 54.4 95.1 — — 

Table 6 – Estimated parameters for the Darcy-flow model calibrated with the first data set.  
For model 1D-5f, T4 and T5 are the transmissivities for Faults A and B, respectively. 

 Transmissivities [m2/day] 
Model T1 T2 T3 T4 T5 
1D-1 884 – – – – 
1D-2 1,340 255 – – – 
1D-3 1,890 436 220 – – 
1D-4 2,450 623 312 238 – 
1D-5 2,780 893 419 261 273 
1D-5f 2,050 229 2,050 229 773,000 
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Figure 12 – Head values for calibrations performed for serial geologic units with unique 
transmissivities. The colored vertical lines designate the location of the serial geologic 
units for each of the six partitioning scenarios. 

3.5.2 Toth Model 

For the Toth model, the predicted heads for the calibrated value of c = 0.028 are shown in 
Table 7.  Interestingly, this model produces a better fit (i.e., lower RMSE) than the 
corresponding one-parameter Darcy-flow model 1D-1, which may be related to the 
increased dimensionality of the Toth model. 

 

Table 7– Calibrated heads for the Toth model for the first data set. 
Borehole hobs [m] hsim [m] 

BH-5 63.4 116.1 
BH-14 330.8 299.0 
BH-18 109.0 159.7 
BH-22 186.7 209.3 
BH-31 80.1 124.7 
BH-33 8.8 17.5 
BH-34 390.8 347.0 
Φ — 10,800 

RMSE — 39.4 
AICc — 54.2 
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3.5.3 MODFLOW Models 

Calibrated head data for the first data set are presented in Table 8.  With the exception of 
MOD-4, all models calibrate to reasonably similar head values, although none are 
particularly close to the observations.  Note that MOD-5 provides a non-unique solution 
to the flow problem (i.e., values of recharge and hydraulic conductivity can vary in a 
commensurate manner with little effect on the model outcome). Thus, MOD-5 does not 
differ significantly from MOD-3, but it does yield a significantly different estimated 
hydraulic conductivity for Fault A. Overall, this suggests that these conceptual models 
may be too complex for the given amount of data.  Table 9 lists the calibrated parameters 
for the MODFLOW models. 
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Table 8 – Calibrated head values for each conceptual MODFLOW model for the first data set.  For models MOD-6 through MOD-8, AICc is 
not reported because the second-order bias is either negative or involves division by zero. 

  hsim [m] 
Borehole hobs [m] MOD-1 MOD-2 MOD-3 MOD-4 MOD-5 MOD-6 MOD-7 MOD-8 

BH-5 63.4 139.3 112.4 119.0 125.0 114.0 117.1 126.8 114.2 
BH-14 330.8 273.6 277.4 283.9 274.2 278.2 278.2 270.9 276.5 
BH-18 109.0 185.4 207.3 209.2 176.8 206.6 204.4 189.2 203.4 
BH-22 186.7 222.8 236.7 240.7 196.6 236.8 235.5 224.9 235.4 
BH-31 80.1 151.4 122.4 126.6 133.8 121.3 125.2 134.4 120.7 
BH-33 8.8 17.6 14.2 15.1 14.5 14.5 14.9 16.8 15.1 
BH-34 390.8 290.4 290.8 298.3 316.6 292.0 292.4 286.1 290.0 
Φ — 31,400 29,200 29,000 20,100 28,800 28,900 29,400 28,600 

RMSE — 67.0 64.6 64.4 53.6 64.2 64.2 64.9 64.0 
AICc — 65.9 72.4 86.3 125.7 128.3 — — — 
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Table 9 – Estimated parameters for the MODFLOW models calibrated with the first data 
set.  Optimized parameters are in bold type, while all other parameters are fixed. 
Model Khost KFA KFB Vhost VFA VFB Hhost HFA HFB Rmult 
MOD-1 0.42 0.42 0.42 1 1 1 1 1 1 1 
MOD-2 0.52 0.52 0.018 1 1 1 1 1 1 1 
MOD-3 0.49 26,800 0.020 1 1 1 1 1 1 1 
MOD-4 0.48 35.0 21.2 150 1 1 1 1 1 1 
MOD-5 0.026 11.2 9.60 1 1 1 1 1 1 0.052 
MOD-6 0.49 23.7 0.021 1 1 1 1 0.1 8.70 1 
MOD-7 0.46 977 0.040 0.080 402 0.29 1 1 1 1 
MOD-8 0.51 141 0.019 0.0032 6.96 1.17 1.70 1 1 1 

3.6 First Data Set Summary 

Table 10 presents the AICc, Δi, and wi values (calculated according to equations (5), (6), 
and (7)) for the full ensemble of conceptual models (Darcy, Toth, and MODFLOW 
models) for the first data set.  An interesting result is the ranking of the Toth model with 
the largest weight, with a model probability of 43%, followed closely by 1D-3.  The fact 
that this model incorporates head variations along the z-axis might be the reason it gives a 
slightly better fit (in terms of RMSE) than Darcy models 1D-1 and 1D-2.  With only 7 
data points for the calibration, these rankings favor models with a smaller number of 
parameters that can provide a reasonable fit, which could explain why the Toth model 
also outperforms the MODFLOW models.  All but one of the Darcy models fit the 
observations better than the Toth model (i.e., they have a lower RMSE), but their AICc is 
penalized by the 2nd order bias term.  This suggests that the amount of information 
contained in the 7 data points is not enough to support a larger number of parameters.  
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Table 10 – Model ranking statistics for the 15 models calibrated with the first data set.  The 
best fit model (Toth) is bolded.  For models 1D-5, 1D-5f and MOD-6 through MOD-8, AICc is 
not reported because the second-order bias is either negative or involves division by zero. 

Model k � RMSE AICc �i wi 
1D-1 2 29,500 64.9 65.4 11.2 1.6E-03 
1D-2 3 2,860 20.2 56.1 1.9 1.7E-01 
1D-3 4 3,040 6.6 54.4 0.2 4.0E-01 
1D-4 5 250 6.0 95.1 40.9 5.7E-10 
1D-5 6 40 2.4 NA NA NA 
1D-5f 6 210 5.5 NA NA NA 
Toth 2 10,800 39.4 54.2 0.0 4.3E-01 

MOD-1 2 31,400 67.0 65.9 11.6 1.3E-03 
MOD-2 3 29,200 64.6 72.4 18.1 5.0E-05 
MOD-3 4 29,000 64.4 86.3 32.1 4.7E-08 
MOD-4 5 20,100 53.6 125.7 71.5 1.3E-16 
MOD-5 5 28,800 64.2 128.3 74.0 3.6E-17 
MOD-6 6 28,900 64.2 NA NA NA 
MOD-7 7 29,400 64.9 NA NA NA 
MOD-8 8 28,600 64.0 NA NA NA 

3.7 Second Data Set 

For the second phase of model development, 13 additional head measurements were 
given to the MA team (Table 11).  These data were used in the calibration of the 
MODFLOW conceptual models introduced in the previous sections.  Material 
descriptions and some estimated hydraulic conductivities as a function of depth for more 
boreholes were also provided.  Analysis of these descriptions revealed the presence of a 
distinct horizontal layer in the host rock between screen elevations of �500 m to �900 
m. 
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Table 11 – Well location and head measurements used in the calibration of the second 
data set.  Note that heads are “point-in-time” measurements (snapshots) and do not 
represent long-term static water levels. 

Borehole 
Name 

Easting 
[m] 

Northing 
[m] 

Screen 
Elevation 

[m] 
MODFLOW 

Layer Head  [m] 

Land 
Surface 

[m] 
BH-5a 4,120 10,120 NA 6 69.9* 135.4 
BH-5b 4,120 10,120 �100.0 10 67.7 135.4 
BH-5c 4,120 10,120 �300.0 12 69.4 135.4 
BH-5d 4,120 10,120 �650.0 15 67.1 135.4 
BH-5e 4,120 10,120 �900.0 18 65.1 135.4 
BH-5f 4,120 10,120 �1,200.0 21 65.8 135.4 
BH-5g 4,120 10,120 �1,447.5 23 63.4 135.4 
BH-12 6,713 8,097 �1,442.5 23 197.5 180.9 
BH-14 10,637 9,533 �279.5 11 330.8 312.4 
BH-18 5,667 6,694 �29.0 9 109.0 146.0 
BH-22 7,434 7,131 �410.0 13 186.7 213.2 
BH-31 4,413 1,717 �251.6 11 80.1 137.9 
BH-33 511 13,957 �1,475.8 23 8.8 13.9 
BH-34a 12,426 6,019 �212.0 11 390.8 655.2 
BH-34b 12,426 6,019 NA 4 426.3* 655.2 
BH-41 5,613 5,351 �799.8 16 97.3 146.0 
BH-44 7,948 9,781 NA 7 194.3* 226.4 
BH-48 5,926 8,871 2.6 8 118.5 148.9 
BH-52 10,034 5,510 �424.4 13 297.6 284.6 
BH-82 5,455 4,037 1,247.0 21 77.3 145.4 

*water level measurement 

3.7.1 Second Data Set Model Verification 

Before the data in Table 11 were used to further calibrate the conceptual models from the 
previous section, a verification was performed.  Using the calibrated model parameters 
resulting from the first data set, simulations were performed that calculated the additional 
heads reported in the second data set.  This process evaluates the predictive capability of 
the calibrated models, and is related to methods in cross validation [e.g., Foglia et al., 
2007].  Because the Darcy model is one-dimensional, the series borehole data are 
eliminated from model verification, yielding 13 head observations (BH-5f and BH-34b 
are retained).  For these simulations, � and RMSE are calculated just as in the case of 
direct calibration, except with an expanded number of observations. The AICc and 
corresponding weights are also calculated, where n, the number of observations, is 13. 
These results are reported in Table 12. The model weights from verification with the 
second data set will be compared to the model weights from calibration with this data set 
to investigate the additional insight that prediction adds to model development. 
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Table 12 – Results for the 15 models verified with the second data set.  The data for the 
best fit model, (in terms of AICc weights) 1D-3, is bold. 

Model k � RMSE AICc �i wi 

1D-1 2 54,100 64.5 113.5 30.5 2.3E-07 
1D-2 3 8,800 26.1 93.5 10.4 5.3E-03 
1D-3 4 2,800 14.8 83.0 0.0 9.9E-01 
1D-4 5 4,200 18.0 93.7 10.7 4.7E-03 
1D-5 6 3,100 15.4 97.0 14.0 8.9E-04 
1D-5f 6 2,700 14.3 95.2 12.2 2.2E-03 
Toth 2 23,900 42.9 102.9 19.9 4.7E-05 

MOD-1 2 52,100 63.3 116.5 33.5 5.3E-08 
MOD-2 3 63,500 69.9 123.4 40.4 1.7E-09 
MOD-3 4 64,900 70.6 129.3 46.3 8.9E-11 
MOD-4 5 77,300 77.1 139.0 56.0 7.0E-13 
MOD-5 5 62,900 69.6 136.3 53.3 2.6E-12 
MOD-6 6 61,300 68.7 146.4 63.3 1.7E-14 
MOD-7 7 57,300 66.4 161.1 78.1 1.1E-17 
MOD-8 8 66,400 71.5 189.0 106.0 9.5E-24 

Comparing Table 12 with Table 10, the Toth and almost all of the MODFLOW models 
(except for model MOD-4) maintain a relatively constant RMSE from calibration to 
prediction, indicating a degree of model stability.  In contrast, all but one of the Darcy 
models change substantially.  Note that the model with the lowest RMSE is not the same 
from model calibration (1D-5) to subsequent prediction (1D-5f).  In terms of AICc, model 
1D-3 now has the largest weight, which is due to a balance between RMSE and the small 
number of parameters used for calibration.  Figure 13 illustrates the predictive capability 
of the calibrated Darcy models from the previous section by combining the head curves 
from Figure 12 and the new heads from the second data set (Table 11). 
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Figure 13 – Hydraulic head curves from Figure 12, with the measured heads from the first 
and second data sets.  Based on differences between new heads from the second data set, 
the calibrated Darcy models from the first data set have a limited predictive ability. 

3.7.2 Updates to the Darcy Models 

With the additional head observations in the second data set, the number of possible 
zones was increased, which resulted in the number of models increasing from 6 to 14, 
with a maximum of 10 zones of transmissivity.  Because there are no head observations 
in the interval 12,426 15,000,x< ≤ when the number of layers was greater than 5, they 
were equally spaced between 0 12,426.x≤ ≤   This adjustment was done because any 
zones contained within 12,426 15,000x< ≤  would not affect model calibration efforts. 

3.7.3 Toth Model 

No changes were made to the Toth model for use in the second data set.  Interestingly, it 
outperformed all of the MODFLOW models in calibration (Table 10) and prediction 
(Table 12).   

3.7.4 Updates to the MODFLOW Model 

An additional estimation parameter was included in each of the conceptual models listed 
in Table 4 (yielding a maximum of 8 parameters).  This parameter resulted from 
partitioning the hydraulic conductivity of the host rock into two independent regions: 
K�host for vertical layers 14 through 17 (corresponding to screen elevations of �500 m to 
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�900 m), and Khost for all other 24 layers.  Based on the material description of the host 
rock in the second data set, K�host was added to accommodate a horizontal region of 
higher hydraulic conductivity.  Aside from the larger set of borehole data and the 
inclusion of the estimation parameter K�host, the eight conceptual models were solved 
with the same MODFLOW-2000 and PEST coupling routine as described previously. 

3.8 Results 
3.8.1 Darcy Models 

Calibrated head data for the second data set are presented in Table 13.  Compared to the 
results in Table 10, the average RMSE increased by approximately 3 m.  Interestingly, 
the model with the largest number of zones did not result in the best calibrated model.  
Compared to the first data set, the RMSE for all models decreased.  Table 14 contains the 
calibrated values of the transmissivities. 
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Table 13 – Results from Darcy model calibrations for the second data set.  
  hsim [m] 

Borehole hobs [m] 1D-1 1D-2 1D-3 1D-4 1D-5 1D-6 1D-7 1D-8 1D-10 
BH-5a 63.4 127.8 93.8 60.5 52.0 62.3 58.8 69.7 62.5 63.4 
BH-12 197.5 189.3 139.0 161.8 155.6 154.4 153.9 175.0 158.4 166.3 
BH-14 330.8 252.6 329.5 323.8 324.4 328.1 327.0 334.0 333.7 331.5 
BH-18 109.0 166.3 122.1 108.4 116.9 109.8 112.4 102.6 111.6 109.6 
BH-22 186.7 203.7 149.5 195.2 179.8 187.2 186.4 199.8 189.5 197.0 
BH-31 80.1 135.5 99.4 64.2 65.0 71.8 69.1 71.6 63.5 63.4 
BH-33 8.8 17.8 13.0 8.4 5.3 4.4 8.2 8.8 9.2 8.8 
BH-34 390.8 268.8 390.5 393.1 390.7 390.7 391.5 390.8 391.5 391.5 
BH-41 97.3 165.1 121.1 105.4 114.8 108.3 110.7 98.6 109.2 106.1 
BH-44 194.3 213.2 181.5 217.3 206.6 208.8 207.9 199.9 207.8 197.9 
BH-48 118.5 172.2 126.4 122.1 126.8 117.2 120.8 121.3 123.0 125.9 
BH-52 297.6 245.3 302.1 292.7 302.6 301.7 301.6 292.9 294.0 298.3 
BH-82 77.3 161.3 118.4 96.8 108.5 103.7 105.5 86.9 102.0 95.9 

�  49,600 8.800 2,700 3,800 3,000 3,300 1,000 2,800 1,900 
RMSE — 61.7 26.0 14.4 17.1 15.2 15.8 8.7 14.7 11.9 
AICc — 112.4 93.4 82.3 92.4 96.8 108.2 108.4 147.8 350.5 
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Table 14 – Estimated parameters for the Darcy-flow model calibrated for the second data set.  For model 1D-5f, T4 and T5 are the 
transmissivities for Faults A and B, respectively. 

 Transmissivities [m2/day] 
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
1D-1 970 – – – – – – – – – 
1D-2 1,320 258 – – – – – – – – 
1D-3 2,050 418 228 – – – – – – – 
1D-4 3.250 577 324 202 – – – – – – 
1D-5 3,950 786 426 268 203 – – – – – 
1D-6 2,110 2,110 691 429 316 244 – – – – 
1D-7 1,950 1,410 4,000 308 647,000 172 280 – – – 
1D-8 1,867 1,450 7,540 503 450 656 179 303 – – 
1D-10 1,950 1,790 1,640 543,000 352 455 64,400 186 213 302 
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3.8.2 Toth Model 

Calibration results for the Toth model are reported in Table 15.  Given that this model 
only has one calibration parameter, the fact that RMSE increased by only 2 m compared 
to the calibration with the first data set is interesting. It may be possible to improve the 
calibration of this model by incorporating oscillatory variations in the water table 
boundary condition, thereby adding two additional parameters (amplitude and frequency 
of oscillations) for calibration [Toth, 1963]. 

Table 15 – Calibrated heads for the Toth model from the second data set. 
Borehole hobs [m] hsim [m] 
BH-5f 63.4 116.1 
BH-12 197.5 189.0 
BH-14 330.8 299.0 
BH-18 109.0 159.7 
BH-22 186.7 209.3 
BH-31 80.1 124.7 
BH-33 8.8 17.5 
BH-34b 390.8 347.0 
BH-41 97.3 158.2 
BH-44 194.3 223.8 
BH-48 118.5 167.0 
BH-52 297.6 282.3 
BH-82 77.3 153.7 
Φ — 22,300 

RMSE — 41.4 
AICc — 99.2 

3.8.3 MODFLOW Models 

Calibrated head data for the second data set are presented in Table 16.  As before (see 
Table 8), all models calibrate to similar head values, but with few exceptions, most do not 
come particularly close to the observations.  The AICc values show that MOD-1 is the 
best ranked model followed closely by MOD-2.  The average RMSE for the second data 
set is approximately 10 m smaller than the first, demonstrating that the combination of an 
increased number of head values and the inclusion of the additional parameter K�host 
improved the ability of the MODFLOW models to represent the true model.  For all 
cases, note the consistent difference between Khost and K�host of approximately one order 
of magnitude or more, supporting the continued use of the host rock partitioning scheme. 
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Table 16 – Calibrated head values [m] for each alternate conceptual MODFLOW model. 
  hsim [m] 

Borehole hobs [m] MOD-1 MOD-2 MOD-3 MOD-4 MOD-5 MOD-6 MOD-7 MOD-8 
BH-5f 63.4 115.4 91.5 110.2 108.8 110.2 116.2 101.8 91.6 
BH-12 197.5 179.2 197.3 173.9 165.0 175.3 181.4 166.3 195.8 
BH-14 330.8 237.2 242.9 237.3 240.5 240.5 247.0 250.3 242.7 
BH-18 109.0 164.3 184.8 163.8 169.6 167.3 169.4 166.3 179.5 
BH-22 186.7 194.1 209.0 190.7 187.0 192.8 198.6 194.5 206.6 
BH-31 80.1 128.1 99.3 119.9 120.3 120.6 126.2 110.5 97.3 
BH-33 8.8 13.7 11.2 13.7 13.3 13.7 14.5 12.0 11.8 
BH-34b 390.8 251.8 254.2 253.7 260.8 257.4 263.9 272.2 254.8 
BH-41 97.3 160.5 183.1 154.7 146.9 156.1 161.1 158.0 178.0 
BH-44 194.3 208.2 218.5 214.9 241.6 220.8 221.6 266.4 214.4 
BH-48 118.5 170.5 189.4 171.7 181.5 175.8 177.3 181.5 184.0 
BH-52 297.6 229.5 237.2 226.9 222.5 229.0 236.7 227.7 237.1 
BH-82 77.3 77.0 78.5 60.0 88.1 53.9 72.7 64.1 82.0 

Φ  — 48,100 50,400 46,700 47,900 46,400 44,100 45,200 47,600 
RMSE — 60.8 62.2 60.0 60.7 59.8 58.2 59.0 60.5 
AICc — 115.5 120.4 125.0 132.8 132.4 142.1 158.0 184.7 
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All estimated parameters are reported in Table 17.  For all models, note the consistent 
difference between Khost and K�host of approximately one order of magnitude or more, 
supporting the use of the host rock partitioning scheme.  The reduced RMSE supports the 
inclusion of a horizontally conducting feature in layers 14 through 17 (K�host). 

Table 17 – Estimated parameters for the second data set.  Optimized parameters are bold 
(all other parameters are fixed). 

Model Khost K�host KFA KFB Vhost VFA VFB Hhost HFA HFB Rmult 
MOD-1 0.22 1.84 0.22 0.22 1 1 1 1 1 1 1 
MOD-2 0.42 1.64 0.42 0.018 1 1 1 1 1 1 1 
MOD-3 0.083 2.37 1,240 0.28 1 1 1 1 1 1 1 
MOD-4 0.063 2.48 1,380 0.54 2.20 1 1 1 1 1 1 
MOD-5 0.060 2.16 413 0.23 1 1 1 1 1 1 0.89 
MOD-6 0.093 2.19 18.5 0.29 1 1 1 1 84.8 0.72 1 
MOD-7 0.14 2.35 23,200 0.10 7.61 390 0.0004 1 1 1 1 
MOD-8 0.038 3.11 159 0.035 0.025 0.57 57.1 0.66 1 1 1 

3.9 Second Data Set Model Ranking 

Table 18 summarizes the calibration results for the second data set.  According to the 
AICc, the highest ranking model is the Darcy model with three calibration parameters 
(1D-3).  This model does not have the lowest � (or RMSE), but AICc weights the other 
models unfavorably due to second order bias.  Comparing calibrated results in Table 18 
to verification results in Table 12, in terms of absolute values, the RMSE decreases 
slightly for the Darcy and Toth models and more significantly for the MODFLOW 
models.  Interestingly, from prediction to calibration, AICc model weights remain 
approximately the same for almost all models that appear in Table 12.  The ranking of the 
models in this data set differs from the previous ranking in that, because of the larger 
number of observations, all models now have a calculable weight although one model 
(1D-3) is vastly superior to all others.  Comparing Table 18 to Table 10 (first data set 
calibration), the RMSE and ∆i values for the MODFLOW models decreased on average, 
while the opposite occurs for the Darcy and Toth models.  This suggests that the 
MODFLOW models are responding well to the increased number of observations and 
parameters, and increasing the complexity of the parameterization scheme as more data 
become available may continue to improve the calibration and ranking results of these 
models. 
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Table 18 – Model ranking statistics for the 20 models calibrated with the second data set. 
The best fit model, 1D-3, is bold. 

Model k � RMSE AICc �i wi 

1D-1 2 49,500 61.7 112.4 30.1 2.8E-07 
1D-2 3 8,800 26.0 93.4 11.2 3.7E-03 
1D-3 4 2,700 14.4 82.3 0.0 9.9E-01 
1D-4 5 3,800 17.1 92.4 10.1 6.2E-03 
1D-5 6 3,000 15.2 96.8 14.5 6.9E-04 
1D-5f 6 2,500 13.9 94.5 12.2 2.2E-03 
1D-6 7 3,300 15.8 108.2 25.9 2.3E-06 
1D-7 8 1,000 8.7 108.4 26.1 2.1E-06 
1D-8 9 2,800 14.7 147.8 65.6 5.7E-15 
1D-10 11 1,900 11.9 350.5 268.2 5.7E-59 
Toth 2 22,300 41.4 99.2 16.9 2.1E-04 

MOD-1 3 48,100 60.8 116.5 34.2 3.6E-08 
MOD-2 4 50,400 62.2 123.4 41.2 1.1E-09 
MOD-3 5 46,800 60.0 129.3 47.0 6.1E-11 
MOD-4 6 47,900 60.7 139.0 56.7 4.8E-13 
MOD-5 6 46,400 59.8 136.3 54.0 1.8E-12 
MOD-6 7 44,100 58.2 146.4 64.1 1.2E-14 
MOD-7 8 45,200 59.0 161.1 78.8 7.5E-18 
MOD-8 9 47,600 60.5 189.0 106.7 6.5E-24 

3.10  Multi-model Parameter Estimations 

If we consider the host rock hydraulic conductivity Khost from all 8 MODFLOW models, 
which is the complete set of models that contain Khost as a parameter, we can calculate the 
multi-model averaged value using equation (9).  Table 19 contains values of Khost and w′j 
for all models and the resulting estimated parameter hostK .  Because one of the models 

(MOD-1) is weighted much larger than all of others, the resulting value of hostK  is 

basically the same as that for MOD-1. 
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Table 19 – Host rock hydraulic conductivity Khost for each MODFLOW model, renormalized 
weights, and the estimated model-averaged host rock hydraulic conductivity hostK . 

Model Khost w′j 
MOD-1 0.22 0.97 
MOD-2 0.42 0.030 
MOD-3 0.083 1.6E-03 
MOD-4 0.063 1.3E-05 
MOD-5 0.060 4.9E-05 
MOD-6 0.093 3.2E-07 
MOD-7 0.14 2.0E-10 
MOD-8 0.038 1.7E-16 

 hostK  0.22 

3.11  Third Data Set 

This data set expands the description of the site, most notably with the inclusion of time-
dependent information.  In addition to static head values from BH-6 and BH-30 (BH-30 
is a multi-completion well) and static water levels from BH-6b, BH-16, and BH-70, 
which are listed in Table 20, this data set also contains partial time series information 
between 1971 and 2000 for BH-25 (measured at z = �1,222.1 m) and BH-34 (measured 
at z = �212.0 m) as shown in Figure 14.  It also reports an important characteristic about 
rainfall recharge, namely that recharge is zero west of x = 7,750 m. Moreover, the new 
data set includes transient rainfall information from Station 1 between 1971 and 2000 as 
shown in Figure 15.  Because previous head data are “point-in-time” measurements 
(snapshots and not static water levels), they were not considered in the calibration of 
transient models. 
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Table 20 – Static head data used to calibrate the two-dimensional transient, unconfined 
model. 

Borehole Name x [m] z [m] Head [m] 
BH-6a 4,917 NA 93.3* 
BH-16 7,790 NA 194.4* 
BH-70 13,605 NA 470.4* 
BH-6b 4,917 �1,310.7 77.0 
BH-30a 8,213 95.2 233.2 
BH-30b 8,213 �93.7 234.9 
BH-30c 8,213 �223.7 229.7 
BH-30d 8,213 �266.7 227.1 
BH-30e 8,213 �428.8 221.6 
BH-30f 8,213 �625.6 219.8 
BH-30g 8,213 �698.43 219.6 
BH-30h 8,213 �800.1 225.8 
BH-30i 8,213 �975.4 227.2 
BH-30j 8,213 �1,163.3 226.3 
BH-30k 8,213 �1,251.0 229.6 

*Water-level measurement 

 

Figure 14 – Transient head data for BH-25 and BH-34. 
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Figure 15 – Rainfall data at Station 1 (x = 12,566 m). 

Based on the expanded material descriptions (i.e., geologic units) from borehole data, a 
horizontal low-hydraulic-conductivity fault consisting of cemented material is present at 
screen elevations of �200 to �300 m.  The data set also revealed that the geology, water 
table, and recharge are homogeneous in the y-direction, meaning that they vary minimally 
in the north-south direction, making a two-dimensional (x and z) representation is 
appropriate. 

3.11.1 Third Data Set Model Verification 

The model verification includes the static heads from the second data set and BH-6b, 
BH-16, BH-70, and BH-30k from Table 20 (because the Darcy models are one-
dimensional, only one head observation from series borehole data can be included). 
Model 1D-3 has the highest rank.  With the addition of time-dependence in this data set, 
only transient MODFLOW models will be developed and calibrated as described in the 
next section. 
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Table 21 – Results for the 15 models verified with the third data set.  The data for the 
highest ranking model, (in terms of AICc weights) 1D-3, is bolded. 

Model k � RMSE AICc �i wi 

1D-1 2 93,200 73.4 151.2 41.4 9.5E-10 
1D-2 3 14,500 28.3 122.6 12.8 1.6E-03 
1D-3 4 5,600 18.0 109.8 0.0 9.4E-01 
1D-4 5 6,500 18.5 116.5 6.7 3.3E-02 
1D-5 6 5,800 17.8 119.5 9.7 7.3E-03 
1D-5f 6 5,400 17.7 118.3 8.5 1.4E-02 
1D-6 7 6,500 18.8 127.4 17.7 1.4E-04 
1D-7 8 5,300 18.0 131.6 21.8 1.8E-05 
1D-8 9 6,600 19.3 145.0 35.2 2.1E-08 
1D-10 11 6,500 19.6 175.9 66.1 4.1E-15 
Toth 2 38,900 47.9 133.8 24.0 5.8E-06 

MOD-1 3 55,000 58.6 145.2 35.5 1.9E-08 
MOD-2 4 54,500 58.3 148.6 38.8 3.6E-09 
MOD-3 5 53,300 57.6 152.3 42.5 5.5E-10 
MOD-4 6 56,700 59.5 158.3 48.5 2.7E-11 
MOD-5 6 53,200 57.4 163.3 53.5 2.3E-12 
MOD-6 7 51,300 56.6 162.6 52.9 3.1E-12 
MOD-7 8 57,600 59.8 172.2 62.4 2.7E-14 
MOD-8 9 52,000 57.0 180.1 70.4 5.0E-16 

3.11.2 Problems with Applying MMRI to a Transient Data Set 

Considering the “point-in-time” data comprising sets one and two, developing a set of 
transient models for calibration and ranking with the third data set proved somewhat 
difficult.  For example, the third data set contains both static (long-term averaged) and 
transient data.  Combining the first two data sets (and the corresponding models) with the 
third data set is not as simple as assuming that the “point-in-time” head data are actually 
static data (although this was done for verification purposes).  The models constructed for 
data sets one and two are steady state and converting them to time-dependent models was 
made by the addition of a few transient-related parameters (e.g., Sy) while maintaining the 
original parameterization scheme.  This generalization could also be applied to the Toth 
model by not applying the steady-state assumption to the groundwater flow equation, but 
maintaining the linear (or oscillating) water-table boundary condition.  It is unlikely that 
this approach has an analytical solution, but it could be solved numerically. 

Using these hypothetical transient models, calibrated models from the first data set can be 
introduced as steady-state approximations to the real conceptual models under 
consideration.  Because the initial data represent a snapshot (“point-in-time”), the 
steady-state approximation is applied to these models to calibrate and rank them.  Once 
time-dependent observations are available, the transient versions of the models are used.  
Although this approach was not followed in this exercise, the idea of iteratively 
calibrating and developing models in the context of information criteria and evolving 
(transient) data is one of the novel aspects of this work.  Keep in mind that computational 
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expense may limit the feasibility of calibrating a set of three-dimensional transient 
models and reduction from three to two dimensions may be needed to spare 
computational expense.  If such a computational restriction exists, it would be necessary 
to relate the three-dimensional models from previous data sets to two-dimensional 
transient representations of the same models.  All these areas represent significant areas 
of future research. 

3.12  Summary of Phase I 

This section presented the development and iterative calibration and ranking of three 
types of models: a series of one-dimensional Darcy flow models, a two-dimensional Toth 
model, and three-dimensional MODFLOW models.  The first data set contained 7 head 
observations that represented the sparseness of data one would in during a preliminary 
site investigation.  Calibration parameters for the Darcy and MODFLOW models were 
mostly restricted to the transmissivity and hydraulic conductivity, respectively.  As a 
reflection of the size of this data set, calibration efforts favored the simpler models, 
especially the Darcy model 1D-5, which had an RMSE of less than 3 m.  The 
MODFLOW models did not attain satisfactory calibration results or model rankings, 
while the Toth model performed reasonably well, especially given that it only has a 
single parameter for calibration, specifically, the slope of the linear water table.  
Although somewhat incomplete because AICc was incalculable for all models, the 
corresponding relative weights favored a multi-model average. 

The second data set provided 19 head observations for calibration, allowing for the 
inclusion of additional calibration parameters.  For the Darcy models, the maximum 
number of parameters increased from 5 to 10 (the number of transmissivity zones), and 
the maximum number of parameters for the MODFLOW models increased from 7 to 8.  
Calibration with this data set increased the average RMSE of the Darcy and Toth models 
by approximately 3 m and 2 m, respectively, while the average MODFLOW RMSE 
decreased by approximately 10 m.  

Investigating the predictive ability of the models calibrated with the first data set against 
the new data in the second data set identified the MODFLOW models as the most stable 
on average with respect to variations in RMSE from calibration to prediction.  In addition 
to model weights, predictive ability should also be considered when deciding which 
models advance to the calibration and ranking iteration, especially when these models are 
developed for predictive purposes. 

Based on the performance of the MODFLOW model from the first to second data sets, 
increasing the number of observations and the complexity of the parameterization scheme 
will produce superior results.  Similarly, allowing the Toth model water table to vary in 
an oscillatory manner will enable the model to represent fluctuations in the water table of 
the HS and increase the number of calibration parameters from 1 to 3.  Despite its 
simplicity, the Toth model always outperformed the MODFLOW models (and some of 
the Darcy models) in terms of RMSE and AICc, and could be included in future iterations 
if possible. 
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4 Phase II 

Based on the lessons learned from Phase I, the tasks of Phase II were modified from the 
original statement of work to examine the variability and degree of usefulness of using 
the AICc for multi-model ranking and inference across successive data collection efforts.  
Phase II began by creating a ground-truthing (GT) model that was based on the latest 
version of the JAEA Horonobe model [Ota et al., 2007].  Several different conceptual 
models were created along with their respective numerical models.  Sample data from the 
GT model of the Horonobe site were then ‘collected’ and the conceptual models were 
calibrated to those data.  The changes from the statement of work concerned how the 
simulations were analyzed such that the analysis now looks at: 
 

1. The use of both the WSSR and the AICc in evaluating the appropriateness of a 
model 

2. The variability of multi-model averaged parameter values and predictions across 
different randomly sampled sets 

3. The magnitude and importance of each of the bias terms and how those bias terms 
can inform model selection 

 
Items 1-3 were applied to develop lessons and a methodology for application in the field. 
 
4.1 Development of Ground-Truthing Model 
 
The GT model was based on the latest version of the Horonobe model as described in 
[Ota et al., 2007] (Figure 16).  The model, and input and output files were supplied to the 
Phase II team for the ‘Case 0’ or base-case simulation.  The original model was created 
using DTransu-3D-EL, which is a mass transport code developed by JAEA that simulates 
discrete or single continuum media, unsaturated liquid flow, thermal vapor diffusion, and 
advection-diffusion for transport.  The JAEA model was ported to FEMWATER so that 
the model could interface with the Groundwater Modeling System (GMS) [GMS, 2008], 
which made the development of the conceptual models an easier task (see below).  While 
care was taken to maintain the site specific features of the JAEA model, reproducing the 
JAEA model exactly was not a priority. 
 
The 78,792 node finite-element grid used in the JAEA model was able to be directly 
ported to FEMWATER so that the original mesh and stratigraphy were maintained 
(Figure 17).  A coordinate change was made by rotating the model grid -20.87o around 
node #1 of the original mesh, and then translating it by X = X0 + 2257.24m and Y = Y0 + 
5893.89m, where X0 and Y0 are the (X,Y) coordinates from the original mesh.  This 
translation provided a convenient reference such that the lower left hand corner of the 
finite-difference grid of the conceptual models could be given an (X,Y) coordinate of 
(0,0). 
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The lateral and bottom boundaries of the JAEA model were maintained, with no-flow on 
the north, south, east, and bottom boundaries and constant head on the western boundary. 
 

To allow for faster convergence of the conceptual models during calibration, the top 
boundary was modified from the non-linear saturated/unsaturated boundary with variable 
recharge and discharge to a linear prescribed recharge boundary.  To establish the spatial 
distribution and magnitude of the prescribed recharge, the spatial distribution of recharge 
and discharge from the JAEA model were plotted onto the top layer of the mesh (Figure 
18).  Discharge areas (colored blue in Figure 18) were given a value of zero recharge 

Figure 16 - Site domain for JAEA Horonobe model. 

Figure 17 - Horonobe model finite element mesh. 
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while recharge areas (colored red in Figure 18) were scaled appropriately to maintain the 
net total recharge from the JAEA model. 
 

The FEMWATER model was simultaneously calibrated to the same borehole data for 
which the JAEA model had been calibrated (Table 22).  The FEMWATER model was 
calibrated using PEST [Doherty, 2007] by changing a recharge multiplier as well as the 
hydraulic conductivity for each geologic unit.  Head values were interpolated from the 
finite element grid to the actual borehole location using tri-linear interpolation.  Where 
applicable (see below), the allowable range of hydraulic conductivities used during 
calibration was ± 150% of those given in Table 4.2.2-1 of Ota et al. [2007].  This was 
necessary to account for any differences that might occur due to the different recharge 
boundary conditions.  The FEMWATER model was able to mimic the JAEA model very 
well while some bias was present against the borehole data (Figure 19).  The calibrated 
FEMWATER model is what served as the GT model for Phase II. 
 
Table 22 - Coordinate data of the HDB wells used in the ground truthing model calibration. 

Degree Minute Second Degree Minute Second X Y X (m) Y (m)
HDB-1 45 02 24.03 141 51 52.83 4987758.42 568102.26 69.10 720 9295.45 4287.95
HDB-2 44 59 48.38 141 55 10.38 4983002.94 572478.75 42.53 720 13671.94 -467.52
HDB-3 45 02 39.50 141 51 26.64 4988229.85 567524.24 58.19 520 8717.43 4759.39
HDB-4 45 03 16.35 141 52 30.29 4989381.79 568904.23 63.61 520 10097.42 5911.32
HDB-5 45 02 57.75 141 52 47.09 4988811.81 569278.06 78.77 520 10471.25 5341.34
HDB-6 45 02 39.09 141 51 38.64 4988219.99 567786.85 60.21 620 8980.05 4749.52
HDB-7 45 02 51.30 141 50 39.32 4988583.10 566485.23 43.75 520 7678.42 5112.63
HDB-8 45 03 00.05 141 52 09.31 4988873.70 568450.84 70.05 470 9644.03 5403.23
HDB-9 45 03 36.20 141 51 00.45 4989973.23 566932.89 97.19 520 8126.09 6502.76

HDB-10 45 03 31.92 141 53 38.11 4989878.52 570382.40 50.83 550 11575.59 6408.05
HDB-11 45 02 08.72 141 52 09.10 4987289.75 568463.27 66.85 1020 9656.46 3819.29

Borehole
North latitude East longitude UTM（zone54） Elevation

(m)
FEMWATER Model CoordinatesBorehole length

(m)

 

Figure 18 - Recharge (red) and discharge (blue) areas as simulated by the JAEA Horonobe 
model. 
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4.2 Conceptual Models 
 
To create the conceptual models, a series of seven separate conceptualizations were 
formed and then modeled using MODFLOW.  A common MODFLOW grid was used for 
all seven conceptual models that was comprised of 48x33x52 finite difference cells of 
600 x 600 x 100m dimensions (Figure 20). 
 
The seven different conceptual models were constructed by varying the number of unique 
hydraulic conductivity zones and allowing or dis-allowing anisotropy.  Each of the 
models are described in Table 23 and illustrated in Figure 21 (Eight conceptual models 
were originally developed but model 5 was lost to a hard-drive malfunction.  After 

Figure 19 - Calibration results of the FEMWATER model against the JAEA Horonobe model 
and the HBD borehole data (top) and the resulting head distribution (bottom). 
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analyzing the remaining 7 models, it was determined that recreating Model 5 would not 
benefit the analysis).  
 
 
 

 
 
 
Table 23 - MODFLOW conceptual models for the Horonobe site. 

Model 
# 

Description # of 
Parameters 

Comments 

1 Homogeneous 2 Entire domain treated as a single, homogeneous unit. 

2 Faults / non-faults 3 
Domain split into 2 K-zones; areas that represent faults and 

areas that don’t. 

3 
2 Faults / non-

faults 
4 

Domain split into 3 K-zone; one zone for each fault, and one for 
non-fault areas. 

4 11 materials 13 Each of the 11 geologic units has a unique K value. 

6 Model1 + αxz 3 Same as Model 1 but with vertical anisotropy. 

7 Model 2 + αxz 5 Same as Model 2 but with vertical anisotropy for each material. 

8 Model 4 + αxz 22 Same as Model 4 but with vertical anisotropy for each material. 

Figure 20 - MODFLOW grid for the conceptual models. 
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4.3 Generating Observation Data 
 
Ten iterations of observation data are sampled from the FEMWATER GT model.  Each 
successive iteration doubles the number of data points from the previous iteration by 
adding the same number of randomly sampled points to the previous iteration.  In this 
way, ‘old’ observation points are preserved as would occur during a site investigation 
where data and observations are accumulated with successive field studies over time.  
Each iteration contains 2k observation points, where k = 3..10 is the iteration number.  
Thus, iteration #3 has 8 data points while iteration #10 has 1024 data points (iterations 1 
and 2 did not contain enough data points to allow for a multi-model comparison).  One 
hundred data sets were generated with a data set defined as a single ensemble of 
iterations 3..10.  The observation points are randomly selected within a rectangular region 
of the model domain as shown in Figure 22, which plots the data points of the first 5 data 
sets for iterations 2 through 10 (iteration 2 is included for illustrative purposes only but is 
not used in any of the analyses).  All of the conceptual models described in the previous 
section were calibrated to each individual iteration / data set combination, which resulted 
in over 500,000 model runs.  Due to the lengthy simulation time involved in calibrating 
its 22 parameters, Model #8 was calibrated to the first 25 data sets only. 
 
4.4 Assessing Model Ranks 
 
The first analysis of Phase II examines the behavior of the multi-model approach as a 
function of the data set.  As mentioned above (see section 1.1), information-criteria 
cannot be compared for models that are calibrated to different sets of data, which 
introduces the risk of prematurely eliminating a model when it may in fact be an 

Figure 21 - MODFLOW conceptual models for the Horonobe site. 
 

Models 1 & 6 Models 2 & 7 

Model 3 Models 4 & 8 
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excellent performer as more data are collected.  This condition was demonstrated in 
Phase I with the MODFLOW models where the models that were mathematically and 
structurally closest to the GT model did not rank high due to the amount of data that were 
available.  The AICc values for these models were heavily influenced by the second order 
bias term, which means that the model complexity was too great for the amount of 
information contained in the data.  Much can be learned from these models and thus they 
should not be eliminated in the early, data scarce, iterations.  Thus, how can we know 
prior to collecting more data whether or not a model will rise in its AICc ranking?  To 
answer this question, we examine how a model with limited amount of data compares to 
itself if there were an infinite amount of data. 

One way to think of site data is to regard each successive collection of data as a 
separate realization of a random variable that is based on an unknown operating model 
[Zucchini, 2000].  The operating model in this case would be the real-world conditions 
at the Horonobe site that produced the measured or observed data.  Given an initial 
data-set, several conceptual models are generated and then ranked.  However, if the 
initial data set is discarded and another data set of the same size is sampled and the 
rankings are recalculated using the same models, chance exists for the rankings to 
change.  If rankings are highly variable as a function of the data set, then a 
conservative approach should be taken when deciding to eliminate a model.  
Conversely, if the rankings are stable, then one can assume that the rankings calculated 
using a single data set are indicative of the ensemble ranking across all data sets. 
 
We have given this approach the name of ‘auto-ranking’ to describe the process of 
comparing a conceptual model against itself across different sets of data.  In order for this 
approach to be valid, we cannot use an information criteria comparison.  However, we 

Figure 22 - The placement of the randomly selected data points of each iteration for the 
first 5 data sets.  The point color differentiates the different data sets.  The number to the 
upper right of each plot shows the number of data points per data set for each iteration. 
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can use the analogous metric of discrepancy [Zucchini, 2000], or more specifically, the 
discrepancy due to approximation (DDA), the discrepancy due to estimation (DDE), and 
the overall discrepancy (OD).  The DDA is defined as sum of the squared residuals 
between the GT model and the best approximating model where the best approximating 
model is the calibrated model if an infinite number of data were available.  
Mathematically, this is represented as: 
 

( ) ( ) dxhhgGT
N iGTi

2

1

,,

0
, ∫ ∞∞ −=Δ θ  (21) 

 
where GTh is the head from the GT model, and ∞,ih is the head predicted by model i after 

calibration to an infinite number of data points, N.  The term ∞,
0

igθ represents the best 

approximating model i using the set of calibrated parameters θ0. 
 
The DDE is defined as the discrepancy between ∞,

0

igθ  and kig ,

θ̂
, where kig ,

θ̂
is the 

calibrated model i based on the data from iteration k (k = 3..10).  The term, θ̂ , represents 
the set of calibrated parameters for model i and dataset k.  This is represented as: 
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Examination of equation (21) shows that the DDA is a function of the operating model 
(i.e. the GT model in this case) and not of the data.  The DDE on the other hand is a 
function of the underlying data set.  In descriptive terms, the DDA is the minimum 
discrepancy possible for each model while the DDE is the discrepancy that arises from 
the lack of information that is a result of the model being calibrated to a dataset that 
contains less than N data points.  The OD is simply the sum of the DDA and the DDE.   
 
Relating this to information criteria, the AICc can be thought of as a way to estimate the 
expected OD (EOD), where the EOD is defined as the average OD for a model over all 
data set combinations of a given size [Zucchini, 2000].  In simple terms, the AICc cannot 
be compared across different data sets since it contains in its genesis terms that describe 
the DDA, which are conceptual and operation model specific.  In order to compare a 
model to itself across different data sets, we must compare the DDE values and this 
cannot be done without knowing the DDA.  While there is no real way to calculate this 
directly (at least not without calibrating to an infinite number of data points) we can 
estimate it by plotting the OD for each model as a function of the number of data, fitting 
a curve to that plot, and then extrapolating that curve to infinite. 
 
Since a cell can only be calibrated to one head value at a time, we define N as the number 
of active, variable head cells in the MODFLOW finite difference grid (60664 cells).  In 
reality, other data types, such as recharge, groundwater flux rates, and the like should be 
included in the infinite data set but since this exercise is using only observed head values 
as the calibration metric we limit N to the highest number of observed heads possible.  
The OD is calculated as: 
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which is simply the mean of the sum of the squared residuals (MSSR).  Figure 23 shows 
the results of this exercise.  In all cases, the OD virtually matches the DDA from the 
seventh iteration (128 data points) onward.  In this case, the OD tends to increase as more 
data are added to the calibration process.  This indicates that the conceptual models are 
incapable of matching a key element of the GT model, which is reflected by a spatial bias 
in the fits and thus a worsening of the average OD as more data points are added (Figure 
24).  The more simple models (1 and 6) reflect this trend more greatly than the complex 
models.  The two most complex models (4 and 8) have the lowest OD’s as well as the 
flattest trend, meaning that from the first data set, the more complicated models are 
performing closer to their DDA (i.e. their theoretical potential) than the simple models.  
If a model contained the necessary features and processes to accurately reproduce the 
observational data, than the DDA should decline as more data are added to the calibration 
process. 
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Figure 23 - The overall discrepancy and the fitted models for extrapolation to estimate the 
DDA (dotted lines).  The fitted models are all of the form OD = A * nB + C, where n is the 
number of calibration data, and A, B, and C are model parameters.  The DDA is calculated 
by setting n = 60664. 
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Figure 24 - As more data are added to the calibration process, the model bias becomes 
more evident (red diamonds versus blue diamonds).  The green diamonds represent the 8 
calibration points from Iteration #3 and the fit that resulted from using all 1024 data points.  
In this case, the OD for Iteration #3 is less than for Iteration #10. 
 
Subtracting the DDA from the OD results in the DDE (Figure 25).  Recall that this 
represents each models performance as a function of the amount of information contained 
in the data.  With the exception of model 8, all the models are very close to their DDA 
values by the 9th or 10th iteration.  The fact that model 8 cannot approach an asymptotic 
value after calibrating to 1028 data points is an indication that the type of data (i.e. head 
data) probably do not contain the right type of information for model 8 to reach its DDA.  
For utilization in the field, this type of situation could point to a need to try and inform 
the model with additional data of a different type (as opposed to gathering more of the 
same type of data). 
 
From these results we conclude that no model be eliminated in the early iterations but 
rather that the early iterations be used to examine the DDE of each model.  Coupled with 
an informational criteria ranking such as the AICc, this will supply the characterization 
team with a method for examining the relative strengths and weaknesses of each model.  
Thus, a model should only be eliminated if its DDE is close to zero and it also ranks 
poorly using the AICc.  This combined analysis will help with the premature elimination 
of a model based solely on its AICc ranking.  
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4.5 Multi-Model Averaging 

4.5.1 Bounding Parameter Values 
One of the primary goals for nuclear waste site characterization is to identify the key 
features and processes that will be important to assessing the performance of the site as 
well as to estimate parameter values associated with those processes.  It has been stated 
that the use of multi-model averaged parameters in a specific conceptual model is rarely 
useful for groundwater problems since the averaged parameter values do not account for 
specific processes associated with a specific model, making use within that model 
inappropriate [Poeter and Anderson, 2005].  However, averaging parameters and then 
calculating the variance and confidence intervals can be useful for bounding parameter 
values at the site. 
 
To illustrate this, the multi-model effective recharge is calculated using a ‘bootstrap’ 
approach.  The bootstrap approach calculates R multi-model averaged parameter values 
for a single iteration and dataset combination by successively omitting one model from 
the calculation.  When a model is eliminated from the group, the weights are recalculated 
to sum to 1.  Effective recharge is used because it is the only parameter that is common 
amongst all seven conceptual models.  For this example, we repeat the process 10 times 
using 10 randomly chosen data sets picked from the set of 100 (data sets 8, 16, 27, 36, 48, 
65, 67, 68, 73, 97) to ensure that the result is not a function of a single data set.  Figure 26 
plots the multi-model average values and the ±95% confidence interval (the confidence 
interval is clipped at zero) for data set 16, which is representative of the 9 other datasets.  
The dotted blue line that is above the other 95% upper confidence interval is the result 
when Model 4 is eliminated from the calculation.  In other words, the uncertainty in our 
parameter estimation becomes much greater when Model 4 is not used.  This is because 

Figure 25 - The discrepancy due to estimation (DDE) for each model. 
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Model 4 has a high Akaike weight and thus when it is included, the recharge value is 
heavily weighted towards the Model 4 value and the corresponding variance is low. 
 
At a higher level, Figure 26 shows that a third type of uncertainty exists in the modeling 
process, which is uncertainty in choosing the set of conceptual models.  If after a couple 
of iterations of data collection and modeling, none of the parameter estimations from the 
conceptual models agree well with data or expert opinion, then, the bootstrap method 
should be used to examine the third type of uncertainty by extending the ±95% 
confidence intervals to be the maximum and minimum values calculated for each 
iteration. 
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Figure 26 - The multi-model average effective recharge (diamonds) and the ±95% 
confidence intervals calculated using the bootstrap method for dataset 16.  The heavy 
dotted blue line is the upper bounds when Model 4 is eliminated from the calculation.  
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4.5.2 Trends in Multi-Model Parameter Values 
By comparing a parameter value that is calculated by a single model over successive data 
sets, insight into the relevance of that parameter can be gained.  This is done through 
comparison of the multi-model average of a single model against itself by calculating its 
AICc ranking for each iteration across all data sets.  In order for this to be valid, an 
assumption is made that if the model is close to its DDA, than the data-set specific 
constants that are inherent in the AICc (and which prevents direct comparison of the AICc 
across different data sets) should be similar enough to allow for multi-model averaging 
across all data sets. 
 
Figure 27 shows a plot of the multi-model averaged parameter values and the arithmetic 
averaged parameters along with the 95% confidence interval for model #1.  Model #1 is 
within 99% of its DDA for iterations 5-10.  Predictably, iteration #5 is also the point that 
we see the arithmetic average coincide with the average calculated using equation (9).  
For the lower iterations where data are more sparse, the arithmetic average is lower than 
the multi-model average and the confidence interval is narrower.  
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Figure 27 - Multi-model average, arithmetic average, and their corresponding 95% 
confidence intervals. 
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Continuing this analysis across all models, data sets, and parameters, information about 
the relevance of a particular parameter can be gained.  Relevance is defined as a 
parameters importance with respect to the available data.  If a parameter is relevant to a 
certain kind of data, then obtaining more of those data will help narrow the uncertainty of 
that parameter.  If it is irrelevant, then more of the same data will not reduce that 
parameters uncertainty. 
 
Figure 28 shows a plot of the multi-model averaged parameters for each of the models 
across successive iterations and shows how the trend in uncertainty changes with each 
iteration.  Direct comparison of the uncertainties is not needed and thus the axes for each 
plot have been removed for clarity.  Three trends in Figure 28 can be identified.  The first 
is identified by a variance trend that is very large with small numbers of observations but 
quickly declines to almost zero as the number of observations increases (Figure 29a).  
Examination of the PEST calibration output files shows that trends of this type indentify 
parameters that have either very low sensitivity or very high sensitivity.  If a parameter 
has low sensitivity, then it can be fixed for future calibrations.  If it shows high 
sensitivity, then it may require different data to become relevant.  The second trend 
shows either a random pattern of both the variance and parameter value or a straight line 
from start to finish (Figure 29b).  These patterns suggest parameters that are ‘irrelevant’ 
to the simulation.  If a parameter is shown to be irrelevant then the model(s) containing 
that parameter may be over-parameterized and could require different types of data to 
perform better.  The final trend shows a smoothly converging confidence interval with 
increasing numbers of observations (Figure 29c) and indicates parameters that are 
relevant to the simulation. 
 

Figure 28 - Multi-model averaged parameters for each conceptual model showing both the 
parameter value and the 95% confidence interval as a function of the number of data 
points. 
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For repository site characterization, plotting the parameter trends over successive 
efforts of data collection can be useful in determining which processes are important 
amongst the different conceptualizations.  New conceptualizations can be formed from 
the trending information by combining relevant parameters into a single model.  
Models that contain mostly irrelevant parameters could be eliminated or saved until 
different types of data are available for which to calibrate to.  

4.6 Bias Contribution 
Information criteria rankings such as the AICc are different from minimizing errors 
between prediction and observation in that information criteria factors in the amount of 
information available from the data in relation to the complexity of the model.  A simple 
calibration that relies only on minimizing the sum of the squared errors can result in the 
acceptance of a model that may fit the data very well but that does not represent the true 
conditions at the site (and thus by association is also a poor predictor of conditions at the 
site). 
 
Figure 30 is a contour plot of the first term (i.e. the goodness of fit term) of the AICc 
equation (equation (5)) as a function of the weighted sum of squared residuals (WSSR) 

Figure 29 - The trending patterns for auto-ranked models. 
 

 

a 

b 

c 



 

 67

and the number of observations (n) for an arbitrary range of n and WSSR.  The plot 
indicates that the goodness of fit term for the AICc has a relatively small contribution to 
the AICc when the number of observations are small.  This makes sense in that the 
amount of information that is contained in the data is also small and thus the AICc should 
be dominated by the first and second order bias terms.  As n increases, the sensitivity to 
the WSSR increases.  For moderate values of n (i.e. halfway between ‘low’ and ‘high’ in 
Figure 30) there isn’t much improvement if the WSSR is decreased from a very high 
value to a moderately high value.  However, as the WSSR decreases to low values, the 
AICc becomes more and more sensitive to the WSSR. 
 
The goodness of fit term and the second order bias term (third term of equation (5)) tend 
to offset each other and can indicate when additional model complexity should be added.  
The second order bias term decreases as the number of observations increase with 
relation to model complexity.  Thus, if the reduction in the second order bias term is 
greater than the increase of the goodness of fit term, additional complexity can be 
justified.  This is illustrated in Figure 31 which shows a plot of the averaged percentage 

Figure 30 - The relative AICc value with respect to the weighted sum of the squared 
residuals ( 2σΣ ) and the number of observations. 
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contribution to the AICc across all data sets of the 2nd order bias term for each model as a 
function of the number of data.  Each axis is plotted in log10 scale.  Even for the simplest 
model (Model 1), the 2nd order bias term contributes about 10% to the AICc value for 
iteration 3 (8 data points).  For Model 4 in iteration 4 (16 data points), the 2nd order bias 
is almost 85% of the AICc term.  If the AICc criteria is blindly applied as an isolated 
metric, Model 4 would be omitted from consideration.  However, if professional 
judgment indicates that Model 4 is representative of conditions at the site, and noting that 
the bias term represents a very large percentage of the AICc value, then Model 4 should 
be retained until the bias terms are minimal.  
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Figure 31 - The percent contribution of the second order bias term to the AICc value.  The 
colored numbers are the conceptual model numbers. 
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5 Summary and Suggested Application 

Nuclear repository site characterization is a unique process in that the data collection and 
analysis processes are inherently connected through an iterative process that can span 
years or even decades.  Assumptions and conceptualizations that appear valid early on in 
this process may prove to be invalid as more data are collected.  Risk of prematurely 
accepting or eliminating a particular assumption or conceptualization can lead to 
inadequate or inaccurate characterization, less defensibility, lost time, and increased costs.  
This project examined the application of information criteria (IC) to the repository site 
characterization process, in the form of the Akaike Information Criteria (AICc), to 
develop and identify procedures that could help increase the efficiency, defensibility, and 
accuracy of site characterization.  
  
The application of the AICc is demonstrated here through a series of numerical 
experiments.  The AICc provides a means for assessing both model and conceptual 
uncertainties, assisting to better understand site conditions as well as indentifying 
processes that are important to site characterization. 
 
The concept of parsimony is introduced to describe the balance between a model’s 
complexity and the information available to inform or calibrate the model.  During 
hydrogeologic characterization, available information typically comprises surface 
observation data, well logs, pump tests, geophysical measurements, and the like.  With 
regards to the AICc, model complexity refers to the number of unknown parameters that 
require calibration, which is achieved when the weighted sum of the squared residuals 
between model prediction and observations are minimized. 
 
When using the AICc (or any other IC metric), a distinction between observational data 
and parameter data needs to be made.  Observational data are those data that the model(s) 
are trying to simulate.  For groundwater problems, this could include head level 
measurements, groundwater flux estimations, spring flow, solute concentration, or 
temperature.  Parameter data on the other hand are those data that provide direct 
estimates of model parameters.  Examples of parameter data are the results from aquifer 
pump tests that identify transmissivity and/or storativity, grain size analyses that identify 
porosity, seepage flux tests that help establish recharge rates, or geologic and/or 
geophysical investigations that derive stratigraphy and structure. 
 
For Phase 1 of this study, the addition of parameter and observational data were balanced 
in that each successive iteration of data ‘collection’ provided data that informed the 
actual parameters used in some of the models as well as additional observational data for 
which to calibrate the models.  This balanced approach is what usually occurs during a 
site characterization process.  Phase 2 on the other hand concentrated on the addition of 
observational data only.  This was done to provide insight into how the AICc behaved 
with regards to the number of available data as well as the magnitude and contribution of 
second degree bias (i.e. the bias that ‘penalizes’ a model for being more complex).  The 
result of these two analyses has resulted in the recommendations listed below for using 
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the AICc in the site characterization process.  It should be noted that while this study used 
the AICc as the IC metric, these procedures should be equally valid for any IC metric. 
 
As a procedural method, the AICc can be realized during site characterization through 
implementation of the following steps: 

1. Initial site investigation that includes collection of available data, literature 
review, and consultation with local experts. 

2. Multiple conceptual model formulation. 
a. A conceptual model is defined as a model that has a unique theoretical 

design of the hydrologic and geologic processes at the site that is built 
through expert analysis of the existing data. 

b. Separate conceptual models need not differ greatly and should be 
purposely constructed to investigate different approaches to modeling the 
important processes at the site.  Multiple conceptualizations can be 
derived from deterministic arguments, such as alternative theories about 
depositional environments of the sediments, deformation of rocks that 
make up a groundwater system, or flow characteristics of faults.  They 
also can be derived from stochastic arguments, such as generating multiple 
zonations using indicator kriging or pilot point distributions.  The number 
of conceptualizations might range from a few to a few dozen. 

c. Using the approach of point ‘b’, classes of conceptual models should be 
created that represent sets of similar models with slightly different 
theoretic approaches.  In this way, many conceptualizations can be created 
with little extra cost beyond the creation of a single model. 

3. Numerical model construction and calibration.  Each of the conceptual models is 
converted to a numerical model and calibrated to the available data. 

4. Calculate the relevant information criteria metrics (AICc, Δi, wi, ŷ , and )ˆar(v̂ y ),  
rank, % contribution of the second order bias for each model. 

5. Calculate the overall discrepancy (OD), the discrepancy due to estimation (DDA), 
and the discrepancy due to approximation (DDE). 

a. The OD is the mean of the sum of the squared residuals 
b. The DDA is calculated by: 

i. Plotting the OD as a function of the number of data over 
successive iterations of data collection. 

ii. Fitting a regression model to the OD. 
iii. Calculating the DDA with the regression model by using a large 

value for the number of data. 
c. The DDE is the OD minus the DDA. 
d. The DDA and DDE can only be calculated after a sufficient number of 

data collection iterations have occurred to allow for a representative 
regression of the OD. 

6. Examine the model rankings.  Answers to the following questions should be 
sought with the primary concern of identifying which conceptualizations (and 
ideally which processes within those conceptualizations) clearly explain the 
observations: 
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i. Which predictions are most sensitive to calibration parameters and 
which are not? 

ii. Are the better-ranked models connected by common processes?  If 
so, which processes? 

iii. Are the lesser-ranked models connected by common processes?  If 
so, which processes? 

iv. Are the better-ranked models highly or sparsely parameterized? 
v. What is the contribution of the second order bias to the AICc for 

each model? 
vi. Has a model reached its DDA (this can only be answered as more 

data are collected)? 
7. Add or eliminate models based on the following guidelines: 

a. No model should be eliminated in the early iterations since poorly ranking 
models could perform better as additional data are collected and they can 
help to define bounds on system behavior. 

b. If a model ranks poorly with respect to its AICc, its contribution from the 
second order bias is large (>5%), and its OD is not close to its DDA, then 
it should not be eliminated (an OD that is close to the DDA implies that 
the addition of more data will not improve the models ability to simulate 
the observational data).  

c. If a complex model initially ranks poorly due to a high contribution from 
the second order bias term, then it is likely that that model is lacking some 
fundamental attribute.  Conversely, if its AICc is dominated by second 
order bias, then that model should be brought forward until enough data 
are available to determine its merit. 

d. To add new models: 
i. Presence of model simulation bias, such as that illustrated in 

Figure 24, could indicate that a key process or level of complexity 
is absent from that model.  Examination of models with similar 
bias may help identify the process responsible for the bias or (in 
the case for models that show no bias) processes that should be 
included in a newly formed model. 

ii. When no direct evidence exists for adding a conceptual model, it is 
recommended that new models be created by making slight 
changes to an existing conceptual model.  For example, switching 
recharge from a spatially uniform value to a rate that is dependent 
on elevation represents a new conceptual model to the model suite. 

iii. If changes to a current conceptual model are to be used as a new 
conceptual model in the next iteration, the old conceptual model 
should be retained to allow for direct comparison to the new 
model. 

8. Collect more data and repeat the process. 
 

The above is purposefully designated as a set of guidelines rather than procedures and 
embodies an important lesson; there is no substitute for professional judgment and 
experience when interpreting the various calibration and IC metrics. 
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It should be stressed that the intent of these guidelines is to extract the greatest amount of 
insight from the least amount of data.  To this end, these guidelines provide suggested 
approaches towards coaxing out more understanding about the physical processes that are 
governing conditions at the site.  Other strategies, such as the bootstrap method described 
in section 4.5.1, or the auto-ranking method described in 4.5.2, can be powerful tools for 
examining model behavior but may or may not have applicability towards gaining insight 
about the site.  The usefulness of these other strategies will be dependent on the amount 
and types of data that are available, the ‘distance from reality’ of the suite of conceptual 
models, and the complexity at the physical site.  Given multiple plausible models, it can 
be useful to report results from individual models, including statistics that reflect model 
fit and parsimony, and predictions and confidence intervals on predictions.  In some 
circumstances, a more useful analysis can be achieved by including model-averaged 
predictions and confidence intervals that reflect the multiple models considered.  Like the 
modeling process itself, each of these strategies should be implemented only after more 
simple approaches have been judged to be inadequate with respect to gaining insight 
about the site.  
 
Ultimately, the ‘final’ model should show no dominant spatial or temporal bias in the 
weighted residuals, its estimated parameter values should be reasonable (e.g., in a 
groundwater model, material known to be gravel should a have higher hydraulic 
conductivity than material known to be silt), and its complexity great enough to 
adequately inform the site characterization team about either the sites suitability or the 
next phase of the site investigation process.  
 
Finally, successive data collection efforts can be guided by examining common processes 
in low-ranking models that would benefit from better or more data.  However, a small 
portion of the field investigation budget should be set aside for less targeted data 
collection efforts in an attempt to uncover previously unknown processes or features.  
Beyond that, if accepted reasonable alternative models yield substantially different 
predictions of interest and it is not possible to determine the better model, additional data 
collection should be directed to identify likely and unlikely predictions. 
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6 Future Directions 

At its highest level, the overarching lesson from this research is that no single approach 
can meet all the needs for understanding and reducing uncertainty during the site 
characterization process.  This conclusion points to the need to explore approaches that 
could be used in conjunction with an IC approach to provide complimentary insight and 
quantification of uncertainty.  In an unpublished communication to the project team for 
this study, John Doherty, the author of PEST [Doherty, 2007], states,  
  

‘….all that we can promise, and what we must strive for, are:  
1. That we determine a parameter field that minimizes potential 

predictive error, and 
2. We quantify that error.” 
3.  

To that end, several different yet related directions could be pursued that would help 
extend and place into context this project. 
 
The first direction would couple the IC approach with metaheuristic techniques such as 
the TABU search algorithm [Zheng and Wang, 1996], to provide a means for 
significantly streamlining the model calibration and site characterization process.  TABU 
search uses a query-based search of the solution space to determine the behavior of an 
objective function (e.g. minimization of the RMSE) and then identifies a list of multiple, 
non-unique solutions (i.e. parameter sets) that produce similar reductions to the objective 
function.  Solution spaces could be mapped and overlaid to identify potential new 
conceptualizations that could be added to the suite of conceptual models as well as to 
quantify areas of uncertainty. 
 
A second direction is the exploration of regularised inversion techniques using highly 
parameterised systems to extract the greatest amount of information from the calibration 
dataset.  The investigation would examine the distribution and density of pilot points 
during calibration as well as interpolation techniques that are used to fill in spatially 
distributed data: both of which are important factors in the calibration process and which 
can greatly impact model accuracy and predictive capabilities.  Results from the high 
parameterized analyses could be used to inform simpler models as well as the IC process 
itself.  
 
A third direction could research the creation of a systematic iterative routine to couple 
model calibrations and data acquisition.  Methods of experimental design would be 
applied to calculate a response surface (in head or parameter space) to determine where 
regions of high uncertainty exist in each model.  These response surfaces would guide the 
collection of the next data set. 
 
Each of these ideas would directly build on the work from this project and are given in no 
particular priority.  The next step would be to further develop each of these ideas to 
determine which one would provide the most benefit.  The advantage in doing any future 
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work is that the ground-truthing models that were created at great time and expense for 
this project, could be re-used.  Links to the IC approach would be made by including 
parallel IC analysis with each idea to identify complimentary as well as redundant areas 
of application. 
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