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Abstract

Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a
better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby
provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAS). The purpose of
this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences
that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the
importance of human errors in complex human-technical systems, examines why humans contribute to accidents and
unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for
modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has
become increasingly more important to understand and model the more cognitive aspects of human performance and
to address the broader range of factors that have been shown to influence human performance in complex domains.
The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their
likelihood.
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1. ARE HUMAN ERRORS IMPORTANT IN COMPLEX HUMAN-
TECHNICAL SYSTEMS?

Three Mile Island (TMI), Chernobyl, Bhopal, Challenger, Air Florida Flight 737, Piper
Alpha — these names are etched in our consciousness. All were accidents where safe and trusted
technologies went awry. All involved extensive property damage and most were serious
disasters with many deaths. One brought no death or injury, but substantial emotional trauma to
workers and nearby population. The technologies involved were hardly related, even for the two

nuclear plant
accidents. All were
designed to high-
reliability standards,
generally
incorporating
redundancy (multiple
identical components),
diversity (functional
redundancy), and
extensive training for
operators and
maintenance
personnel. What went
wrong? Were these
simply random events,
bad rolls of the dice?
Or is there a common
thread among them?

Those of us in
the west had good
reason to look on
Chernobyl as a unique
design problem; a
physically similar
accident couldn’t
happen with U.S. light

Figure 1. Chernobyl and TMI - Common Elements in Very Different Accidents.

Following the 1986 accident at Chernobyl in the Ukraine, the view in the west was
summed up by the UKAEA report The Chernobyl Accident and Its Consequences [1],
“It seems certain that a Chernobyl-type accident could not happen in the UK...the
Chernobyl accident was unique to the RBMK reactor design and there are few
lessons for the United Kingdom to learn from it. Its main effect has been to reinforce
and reiterate the importance and validity of existing UK safety standards.” Indeed it
was clear that the Chernobyl design was unforgiving and there was a strong view that
plant operators felt free to experiment with their reactor.

However, from another point of view, a re-framing if you will, one can see disturbing

similarities to the very different sequence of events at Three Mile Island (TMI) some

years earlier. Beginning with Chernobyl, we can identify three crucial stages of the

accident that strongly affected human performance: Plant personnel placed the

reactor in an unusual and unanalyzed condition (the emergency core cooling system

was disconnected and power was reduced for a diesel generator test leading to rules

on power and reactivity being violated for an extended time)

=  Operators did not understand the core physics in this unusual condition

=  Operators and managers refused to believe instrument readings and field
reports, because of their incorrect understanding

At TMI, a remarkably similar series of human conditions played out:

= A *“work-around” (using instrument air to unblock resin beds) caused a reactor
trip; and unexplained maintenance tagout (disabling) of the emergency feed
water supply starved cooling water to the steam generators; and a relief valve
failure (sticking open) combined with a lack of understanding of the actuation
signal for valve position indication led to an unrecognized condition in the reactor

=  Operators did not understand the reactor physics in this unusual condition

Operators refused to believe implications of what they assumed were incorrect

instrument readings

water reactors. However, when we re-frame the very different physical accident at TMI, we find
striking similarities. In both cases, the reactors were driven into modes of operation not familiar
to the operators. Not understanding the physical regime, psychological traps kept the operators
from acting appropriately on the cues coming to them from the plant. In both cases, operators
took actions that seemed reasonable from their mistaken understanding of plant conditions that
made the situation much worse (see comparison in Figure 1).



The 1982 Air Florida Flight 737 crash into the 14™ Street Bridge in Washington, D.C. [2]
was widely publicized. On departure from Washington National Airport, the plane accelerated
slowly. The First Officer warned of an instrument/throttle anomaly, but was over-ruled by the
pilot and the plane crashed into the 14" Street Bridge and Potomac River. There were only five
survivors. The Pilot and First Officer were concerned about weather but failed to abide by
relevant rules and take needed and possible actions to counter the post-takeoff performance
problem. There were serious equipment problems: ice and snow caused reduced lift and
increased drag and ice on the inlet pressure probe caused an erroneously high thrust indication,
but experienced pilots were able to counter these problems in re-enactment simulations.

Performance- Unsafe
Organizational Shaping Error Actions Human Failure Unacceptable
Influences Factors Mechanisms (Multiple) Event Outcome
Training Incomplete & Crew Fails to Failure to
A Recognize
| Experience [—1 |Inaccurate | poeniaifor [ ENsure Clean |—
MMI? Knowledge Contamination AIC
| Training Failure in Ctzputrig Fraells
Workload? Recognition e
Traini Engine Data
raining : . )
Baaiee | = Failure to Collision with
R/IMI” Reject T/O Ground
) i i F.O. Fails to
Failure in
| | Crew Factors Situation | | Challenge
Training X Captain on
Appraisal Engine Data
- Crew Does Failure to
— Uty A lsenpeie L Not Exceed Increase
Experience Knowledge EPR Limits Thrust
——
Based on NTSB-AAR-82-8

Figure 2. Framework Application to Aviation.

An analysis of the National Transportation Safety Board (NTSB) report [2] on the Air
Florida crash is presented in Figure 2. Here we see the events of January 18, 1982 laid out
against the ATHEANA (A Technique for Human Event Analysis) framework (NUREG-1624,
Rev. 1, [3]) described later in this paper. It begins by showing that the “Organizational
Influences” relevant to the accident had direct impact on four performance shaping factors
(PSFs). The report emphasized that the training and experience of the crew were weak in
ensuring an understanding of the situation and did not ensure that the best use of the knowledge
of all crew members was involved in operational decisions. Four trains of influence lead to three
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specific human failure events that all contributed to the collision. They each begin with PSFs
that lead to human error mechanisms that lead to unsafe actions. The unsafe actions were
influenced by four contingent conditions (akin to plant conditions in nuclear power plant
operations):

. Weather conditions - perfect for icing
. Inadequate deicing solution

. Delay between deicing and takeoff

. B-737 aircraft pitch-up conditions

Crew training and experience led to an incomplete and inaccurate knowledge of icing
conditions and the effects of contamination from exhaust gases. Thus, they failed to recognize
the potential for contamination and ice build up on their aircraft caused by their actions. In
addition, crew training and workload led to a failure to recognize relevant information, which in
turn meant that the captain did not grasp the meaning of anomalous engine data. Finally, crew
organizational training led to an error mechanism of failing to develop an adequate situation
appraisal, which led the first officer to fail to sufficiently challenge the captain on the meaning of
the engine data. Together these unsafe acts formed the human failure event: captain fails to
reject takeoff.

Even though the captain went ahead with the takeoff, it should still have been possible to
overcome the difficulties and successfully gain altitude. However, another aspect of training led
to the captain’s incomplete knowledge of the situation. He refused to exceed aircraft stress
limits, because he did not understand the seriousness of the situation. An increase in thrust was
the only chance he had to avoid the accident, which he failed to do.

This analysis of the accident can be summarized in findings similar to those for TMI and
Chernobyl:

. Crew circumvented the rules — they did not verify the plane free of snow and ice; they used
reversed thrust to melt it (which actually makes this condition worse); they failed to use
engine anti-ice

« They were operating the plane in a regime they did not understand - this Florida crew had
limited experience with the effects of special conditions on ice formation on the aircraft

« The pilot refused to believe the evidence — instrument anomalies pointed out by the First
Officer were ignored or overlooked

Once again we see an event where a combination of abnormal operating conditions and
human conditions combined to set the operators up for failure. Analyses of other well known
events have led to similar findings. The explosion at the Bhopal, India insecticide plant that
killed at least 2,500 people and injured more than 200,000, the crash of the Challenger space
shuttle, and the Piper Alpha oil platform explosion, all involved significant human actions
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affected by similar characteristics.

Looking beyond these high profile events, statistics related to the occurrence of accidents
in complex human technical systems suggest that the human contribution is relatively high. For
example, as reported by Reason [4] and Hollnagel [5], data from the nuclear power industry [6,
7] indicated that 51% of 180 “significant” events in 1983 and 1984 could be attributed to human
performance problems of some kind. Hollnagel [5] points out that the fraction is really higher
because many of the other events examined in the Institute of Nuclear Power Operations (INPO)
studies were related to design deficiencies and poorly manufactured equipment, which also could
be attributed to human actions. The pattern seems to be generally the same in other industries.
For example, Gertman and Blackman [8] and Hollnagel [5] reported that, regardless of the
domain, there seemed to be general agreement that 60-90% of all system failures could be
attributed to erroneous human actions.

Many of the accidents that have occurred in complex human-technical systems, involve
“system” or hardware problems or other “environmental” factors, in addition to multiple human
errors contributing to the accident. In fact, in many cases, serious events occur because of a
combination of unusual conditions and latent human errors that trigger active human errors
(Reason, [4]). Active errors are those that have an immediate effect on system performance and
are usually made by system operators (e.g., pilots, train engineers, control room operators).
Latent errors are those that do not have an immediate effect on system performance, but whose
consequences can become important at a later time, particularly when something else goes
wrong. Reason’s [9] “Swiss Cheese” model (Figures 3 and 4) illustrates how latent errors
generally have no impact on safe operation, but when the latent errors and hazardous plant
conditions align in an unfortunate way, failure can result.

Some ‘holes
due to active
failures

Defences|
in depth

reality

Other ‘holes’
due to latent
conditions

Potential losses
(people & assets)

Figures 3 and 4. lllustration of Reason's [9] "'Swiss Cheese' Model.

Latent errors are often related to maintenance tasks or may have been imbedded during
the design phase. At TMI, personnel had tagged out and de-energized pumps that are normally
in a standby condition. When cooling water was needed, the pumps were unavailable. In a
related manner, the valve position indicator light circuit in the control room was designed such
that it indicate open when the signal to open is sent rather than when the valve is actually
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opened. This can also be classified as a latent error if operators normally assume that if the light
indicates open, then the valve is open. Kletz [10] points out that instruments should measure the
parameter that the operator wants to know. Measuring other parameters and calculating the
desired information is possible, but often leads to misunderstanding and error.

The events described above illustrate situations where adverse system conditions and
human errors had to occur in order for the accident to happen. The important point is that,
although accident rates in complex human-technical systems are demonstrably low and efforts
continue to keep them that way, serious accidents can and do occur and humans frequently
contribute to their occurrence through inappropriate actions.

Those using and operating complex human-technical systems are very aware of the
potential consequences of accidents in their domains and realize that safe operation requires
appropriate actions on the part of operating crews and other personnel, whether under normal or
accident conditions. To support personnel in their various capacities and to minimize the
chances of inappropriate or unsafe human actions, most industries have instituted a significant
number of safety-related conditions and controls. For example, the nuclear power industry has
taken significant measures to minimize the chances of unsafe acts in nuclear power plants
including:

. appropriate staffing levels,

. significant personnel education, frequent training, and updates on potential concerns and
problems identified at other plants,

« procedures, plans, and checks to ensure that both maintenance during power operations and
outage related activities are conducted safely,

« post-maintenance testing,

« symptom-based procedures for use in the control room,

. well-designed human-machine interfaces, including redundant and alternative
instrumentation and related indications,

« industry initiated programs to improve human performance, and

« astrong emphasis on safety in performing one’s job.

2. WHY DO HUMANS CONTRIBUTE TO ACCIDENTS AND
UNSAFE CONDITIONS, IN SPITE OF COUNTERMEASURES?

A series of event investigations have revealed a common set of characteristics that
consistently recur. In many instances they result from “mismatches” between some aspect of the
system conditions and the human’s expectations or understanding of the system. They tend to
occur in combination and, except when the time available for successful response is extremely
short, involve at least two contextual elements — both a complicating physical condition and a
complicating human condition. With respect to the time limitation, some aircraft and train
accidents are so unforgiving and fast that successful human response is not possible (i.e., time
frames for responses are only on the order of seconds). Most light water nuclear power plants
have substantial recovery capability, with time frames on the order of minutes to hours. The

11



following characteristics are usually identified in serious accidents:

. The system (plant, airplane, etc.) is in a deviant or unexpected state. System behavior and
conditions are not usual or expected.

« System behavior and conditions are not understood by operators. Operators do not correctly
identify the current and future system states, including the system’s trajectory of states.

« Indications of actual system state and behavior are not recognized. Operators are provided
with wrong or misleading information about the system state. Or, operators discount or reject
helpful information.

. Prepared plans or procedures do not apply or are not helpful. Procedures, training, and other
prepared plans do not address the actual system behavior and conditions.

« Informal rules are used that counter formal rules or plans. Operators inappropriately follow
informal rules (e.g., "rules of thumb," informal training, informal interpretations of company
policy or expectations, experience, folklore) that conflict with procedures, formal training,
and/or other prepared plans.

. Breakdown in crew performance occurs. Crew performance is less successful than expected,
either due to vulnerabilities in crew characteristics or due to specific features of the event
context that defeat measures for improving crew performance.

An important point to be gleaned from these observations and the reviews of events is
that there is usually a context associated with such accidents that contributes to the occurrence of
unsafe acts. That is, serious accidents are not typically caused by random or un-forced errors on
the part of negligent or inattentive operators. Rather, there are often several “sub-events” (e.g.,
hardware failures, environmental factors, unsafe design decisions, both latent and active human
errors) that occur over time. And, it is the unique conjunction or concatenation of these events
that leads to or essentially “sets up” the occurrence of the accident. In other words, the human
error that most directly leads to the accident is often itself forced or driven by the context created
by the sub-events.

One implication of these observations is that, in most cases, “human error” is somewhat
of a misnomer. Operators in these situations usually are not just committing random errors or
“making stupid mistakes,” but rather they are taking actions that are reasonable given the
information available, their understanding of the context, and their usual way of doing things.
Dekker [11] provides a lively discussion of these issues and provides welcome guidance on how
to evaluate events from the point of view of the operator involved in the action (i.e., a person
“inside the tube” of the context who does not have the certain knowledge of how things will have
turned out). In other words, from a global point of view, there are many aspects of the situation
working against them with respect to making the correct decision and taking (or not taking) the
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appropriate action. In hindsight, it may be possible to see where individuals made wrong choices
and to argue that if they were any “good” they could have made better choices. But, expecting
someone to “see through” the context at that particular moment in time may be very unrealistic.

This view considers most errors to be consequences rather than causes (Reason [4]) and
is important because it leads analysts to investigate problems in the overall system that could
arise and lead operators to take unsafe actions, rather than just blaming the human for failing to
act appropriately. This position allows a broader and more realistic perspective on how to
institute “fixes” in the system in order to help prevent humans from taking unsafe actions. Thus,
in order to help move away from the tendency to focus on the “errors” made by humans when
something goes wrong, the term unsafe actions® will be used instead of human error where
appropriate in the rest of the article.

Besides the above mentioned unsafe actions, other more simplistic types of errors such as
“slips” and “lapses of memory” do occur and can lead to serious consequences. That is,
sometimes “inadvertent” errors do occur in which the person intends to take the correct action,
but either takes a wrong action (a slip) or fails to take the action they intended (a lapse). Simple
examples would include turning the wrong switch when the correct one is located next to it or
inadvertently leaving out a step in a procedure when they fully intended to complete the step.
Slips and lapses are often responsible for latent errors in maintenance, but are less frequently a
problem where immediate feedback is available (e.g., in nuclear power plant control rooms, or in
airplane cockpits, where such errors generally lead to an obvious change in system state). Of
course, even these types of “errors” are frequently contributed to by outside causes (e.g., an
individual is momentarily distracted) and will not always be “un-forced” errors on the part of the
human.

Human reliability analysis (HRA), and particularly its use in nuclear power plant
probabilistic risk assessment (PRA), is a formalized analytical technique for examining the
potential for nuclear power plant operators to perform unsafe actions or inadvertent errors and, if
appropriate, estimate the likelihood of these actions or errors. These techniques embody the use
of task analysis, models, data, and judgment to assess operator performance and its impact on the
overall risk from potential nuclear power plant accidents, including operator unsafe acts and
errors that may contribute to those accidents. Before we describe both HRA and PRA in more
detail, it is useful to discuss the discipline of behavioral science and how some of the knowledge
from this discipline contributes to and forms many of the bases for how HRA is performed.

3. WHAT DO THE BEHAVIOR SCIENCES SAY ABOUT THE
CAUSES OF UNSAFE ACTIONS?

LUnsafe actions are defined as actions taken, or not taken when needed, by operators or “plant” personnel
that result in a degraded system safety condition. As described above, often they can only be called inappropriate in
hind-sight.
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Human reliability analysis (HRA), as mentioned above (and which will be discussed in
more detail later), relies on knowledge from both the worlds of engineering and the behavioral
sciences. The world of engineering describes the contexts and consequences of the unsafe
actions. The world of the behavioral sciences describes the ways in which the contexts of the
actions influence the likelihoods of different types of unsafe actions. The emphasis in this
discussion is on human performance and unsafe actions in responding to abnormal occurrences—
this is the most common type of action modeled in HRA. While this performance is typically
associated with operators responding to abnormal events, it can also often apply to actions by
maintenance crews performing work during routine conditions.

Of course, the world of the behavioral sciences encompasses much more than human
performance in relation to the operation of technological systems. Models or theories exist from
the very microscopic levels (e.g., the physiology of the central nervous system-the CNS), to the
macroscopic studies of societies. While some aspect of these extremes of focus may play a role
in understanding human performance related to nuclear power (e.g., the physiology of the CNS
limits the speed with which people can recognize alarms, cultural aspects of society can
influence the prioritization of responding to technical problems), the most relevant focus in the
behavioral sciences is on the cognitive functions of operators (e.g., control room operators in
power plants, pilots in aircraft, anesthesiologists in surgery). Cognition and, particularly, its
subset of information processing, are a relatively new area of psychology that focuses on the
mental processes, including detection, situation analysis, and problem solving. The earliest
systematic work in this area was in the late 1950's to the middle 1960's. (See the discussions by
Harré & Lamb [12] and Reason [4] for reviews of the development of the field).

Developments in the behavioral sciences have continued to expand the understanding of
human performance issues required for PRA modeling. Firstly, work by Swain and Guttmann
[13] set out many of the basics that underlie the early methods of human reliability analysis, with
its emphasis on issues associated with such failures as selecting wrong instruments and controls,
missing steps in procedures, and so on, that were seen as the critical issues in human
performance before the accidents at Three Mile Island and Chernobyl. Following these
accidents, work began on developing methods to model the likelihood of misunderstanding
accidents as they evolve, such as the work discussed by Rasmussen & Rouse [14], Hall, et al.
[15], Woods, et al. [16], and Dougherty & Fragola [17]. This work started to focus attention on
the process of decision making by operators in the post-accident phase of nuclear plants.
Particularly, the work by Woods and Roth (described in Woods, et al. [16]) and Reason [18], led
to an upsurge in research to explain the issues associated with the identification and
understanding of plant conditions. For example, Reason proposed a relatively straightforward
model (GEMS) for the occurrence of unsafe actions that relies on the notion of schemas (e.g.,
Minsky [19]; Rumelhart [20]) and various human information processing and decision making
heuristics (e.g., Tversky and Kahneman [21]). Following these developments, and continuing
experience with human actions associated with misunderstandings by operators in responding to
unusual plant conditions, developments took place to create newer HRA models that use as their
basis a more complete understanding of the interactions between people and the systems. For
example, later work by Woods et al. [22], Hollnagel [23, 24], Roth, et al. [25] and Reason [18]
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all added significantly to the explanation of how people can be led to misunderstand the nature of
events. This explanation underlies several of the more recent methods like ATHEANA [3] and
CAHR (Stréater [26]; Strater and Bubb [27]).

There are two fundamental models that are important in understanding the underlying
methods of HRA and its role in PRA. The first is a representation of the substantially different
kinds of failures that can occur. The second is the representation of information processing in
humans (including small teams) associated with identifying and responding to substantial events.

3.1. Representation of Different Types of Failures - Slips and Lapses,
Mistakes, and Violations

One of the most useful distinctions in the behavioral sciences about the nature and causes
of unsafe actions is the breakdown between slips and lapses, mistakes, and violations (Norman
[28]; Reason [4]). While this distinction post-dates some of the early HRA methods
development, it provides a very useful way of distinguishing the different types of unsafe actions
from a behavioral sciences perspective, and for which different HRA techniques are required. As
discussed briefly above, slips and lapses are the erroneous actions that occur when people are
following a planned set of actions and, because of a slip in attention or a lapse of memory (for
example), the actions are not executed as intended. Examples in power plant operations include
inadvertently selecting the wrong switch among a bank of similar switches, reading the wrong
indicator for a plant parameter, or simply forgetting to turn a switch that they intended to turn (a
lapse). Such errors become more frequent when a task follows a familiar routine up to a point,
and then different actions from the normal task are called for. In this case, a slip or lapse will
often occur when the person continues to follow the familiar routine that, in this instance, is
wrong. An every-day example occurs when a person is driving along a familiar route to work,
but on this day, intends to go to a different destination (perhaps the doctor’s office). They
suddenly ‘wake up’ and realize they have actually arrived in the parking lot at the work location
— not where they had intended to arrive.

In contrast, mistakes are the class of errors that occur when a person is following a plan
diligently, but the plan is inappropriate for the actual situation. The plan may be inappropriate
because the person misunderstands the situation and persistently acts on their belief (as when the
operators believed that the reactor system was going ‘solid’ at Three Mile Island and terminated
high-pressure injection cooling as discussed in Kemeny [29]), or because the plan is inadequate
and the person implementing it has insufficient knowledge to recognize the flaws. There are two
subcategories of mistakes: rule-based and knowledge-based. Rule-based mistakes are associated
with following ‘rules,’ typically those provided in procedures and standard operating practices in
industrial settings, where either the wrong rule is being followed (as at Three Mile Island), or the
rule is inadequate for the situation. Knowledge-based mistakes occur when a person is using
their education and knowledge (rather than procedures and common learned practices) and that
knowledge is incorrect or incomplete, or inaccessible in the stress of the moment.

Violations are different from the other two categories in that people knowingly and
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deliberately break the rules, but without any intention of harm. Examples of violations would be
the cases where a task requires a sequence of actions to be taken that involve moving from one
location to another, back to the first location and then back to the second, and where the
movement involves arduous or frustrating activities—for example, having to change into and out
of radiation protective equipment. Suppose the people performing the task have learned from
experience that in most cases, the actions at the distant location can be performed all at one time
with no immediately noticeable adverse consequence. A likely violation would be that people
routinely will perform the task using this short cut. Many times it may not matter, but when an
occasion arises where the difference is important, a surprising failure will occur. (Often, the
term “circumvention” is used for this type of error in the nuclear and other well-regulated
industries because the term “violation” has a specific legal connotation, related to breaking laws
and regulatory rules that are separate from human performance issues. However, for the purposes
of this discussion we will keep the term “violation,” as used by Reason and others in the
behavioral sciences.)

This classification of errors is related to a second taxonomy of human behavior that has
proved popular in the behavioral sciences and human factors engineering: the skill-, rule- and
knowledge-based classes of performance level first articulated by Rasmussen [30], as they relate
to responding to off-normal conditions. Skill-based behavior represents the behaviors that occur
after an overall intention has been formed and typically take place with little conscious thought;
starting a familiar item of equipment in response to an alarm is an example. Rule-based behavior
comes into play when a person is aware that a problem exists and they respond using pre-
formulated rules in a “feed-forward’ manner, using rules (e.g., procedures or trained strategies)
as the basis for action. Knowledge-based behavior often occurs when the repertoire of rules has
been exhausted, and people are forced to rely on conscious deliberative analysis, often involving
trial-and-error problem solving. Slips and lapses are principally associated with failures in skill-
based behaviors, and mistakes are associated with rule-based and knowledge-based behaviors.

Skill-based Rule-based Knowledge-based
behaviors behaviors behaviors
Principal types of Slips and lapses Rule-based mistakes Know[e dge-based
errors mistakes
Type of activity Routlne_ manual Problem-solving activities
actions
Control mode Mainly by automated processing Conscious (limited)
Actions \ Stored rules processing
Predictability of errors | Largely predictable (‘strong-but wrong’) errors Variable
Ease of self-detection Det_ectlon gsually Difficult and often requires external
fairly rapid and : :
. intervention
effective

Table 1. Primary Characteristics and Relationships Between Different Levels of Behavior and Types of
Errors (Adapted from Reason [4]).
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3.2. Representation of Human Information Processing

3.2.1 Simple Model of Cognition

With the breakdown of error types and associated behavioral modes, the basis in the
behavioral sciences for each type can be discussed. In order to do so, we present a simple model
of human cognition (Figure 5), particularly as it relates to problem identification and solving,
say, of front-line nuclear or process plant operators, airline pilots and air traffic controllers. The
model (taken from NUREG-1624, Rev.1, [3]), breaks down human information processing into
stages that allow analysts to address the specific types of influences that could interrupt
processing during the various stages, and which correlate generally to the classes of behaviors
and errors introduced above. These stages are:

Y

Response
Implementation

A

Y

Human-System Monitoring/ Situation - Response
Interface Detection Assessment Planning
A / \
Y
| & C System S Knowledge/
(Plant Automation) Sl A Mental Model

Internal to Operators
Figure 5. Major Cognitive Activities Underlying Human Performance.

e Monitoring & detection: This is the process by which operators become aware of the
occurrence of an event by observing alarms or indications that have deviated from their
expected values, and by which operators continue to monitor the behavior of the plant.
Monitoring and detection actions are strongly influenced by the other information
processing stages. For instance, if the operators think that a particular type of event is
occurring (i.e., their situation assessment), their search for information will be very
much influenced by their expectations. One particular weakness here can be the general
tendency to search only for confirmatory information, not for evidence that may
challenge a situation assessment.
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e Situation assessment: This is the active process by which operators create an
understanding of what is happening in the plant, in real time, based on the current inputs
from the monitoring and detection activities, and based on operators knowledge and
experience. Associated with situation assessment are:

o Situation model: This is the operators’ explanation, based on their experience and
training, for what generally is happening in the plant. For example, if the event is
believed to be a large loss of coolant accident (LOCA), then what is happening
and will be happening in the plant, is based on the operators’ knowledge and
training for such events. The situation model provides a context for the operators
to create the situation assessment based on current plant information, and is
updated by new information from the situation assessment process.

o Knowledge/mental model: The knowledge and mental models of the operators are
the bases on which the operators create the situation models and awareness; they
represent the basic principles and ‘facts’ about nuclear power plant behaviors
under the ranges of conditions expected.

e Response planning: This stage represents the selection of appropriate actions to respond
to the plant, based on the operators’ situation assessment and knowledge, often in
conjunction with plant procedural guidance.

e Response implementation: This stage represents the actual execution of the intentions
formed in the response planning stage, such as the operation of equipment from the
control room or the direction of the actions for operators in plant areas outside the
control room.

Figure 5 provides a pictorial summary of the above stages. While it presents the
processes of a single operator, it can be applied to teams where some of the functions are
distributed. For example, reactor operators may accomplish the monitoring, detection and
response implementation functions, and the senior reactor operator and the shift technical advisor
generally fulfill (with input from the rest of the crew) the situation assessment and response
planning functions.

3.2.2. Decision Making in Nuclear Power Plant Operations

In describing skill-based behavior, Rasmussen emphasized the path from the human-
system interface through monitoring/detection, situation assessment, response planning and out
to response implementation as virtually an automatic reaction, with little deliberative processing
going on in situation assessment. Perhaps, a classical example would be the response of most
experienced drivers to a red traffic signal while driving under normal conditions—there is very
little assessment of the situation in terms of: “What does this indication mean? What should |
do?” Rather, the errors would be more likely when red lights are located in non-normal locations
that the driver has not previously experienced (as when driving in a foreign country), and, hence,
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fails to see the light in time to stop, or if the location of the brake of the car is unfamiliar
(relatively rare today). Other failures may be associated with interruptions in attention or
distractions to the driver.

Concerning rule-based behavior, the key steps are those associated with situation
assessment and response planning. Regarding situation assessment, first, several analysts in the
behavioral sciences (e.g., Woods et al. [22]; Hollnagel [23]; Reason [4]; and others) have pointed
out that people are most effective at identifying problems by rapid pattern matching—that is, we
look at the indications of a problem and quickly select an explanation that appears to match
many of the symptoms. This explanation is then used as the basis for selecting an appropriate set
of responses. Once formed, this explanation can be hard to change, and hence, if wrong, gives
rise to mistaken actions. With reference to the above figure, data observed by the operators is
interpreted in terms of the situation model-the explanation for what is happening now. This is
compared with the operator’s mental model (a long-term understanding of how the plant
processes work based on training and experience); in the case of rule-based behavior, this
comparison is made on the basis of matching patterns of plant parameters in the actual situation
versus expected patterns of expected parameter behaviors.

In rule-based behavior, the pattern matching leads the operators to select a “‘standard
response’ (in the form of procedures or other trained actions) and to follow the actions set in the
procedures. In the desire to quickly match the symptoms to a standard explanation and response,
certain biases can come in to play that can lead to mistakes. Some of the most common biases
that have been documented are (e.g., Reason [18]):

« recency bias—the event looks somewhat similar to a recent significant event that is in the
forefront of the operators’ minds, and to which they will be strongly drawn,

. frequency bias—the event looks somewhat similar to an event that occurs relatively frequently
(or is used frequently in training), and is one to which operators will be drawn because of its
familiarity, and

. similarity bias—the event looks like a well-known classical or standard event type that is
familiar to all operators and others in the industry.

The technology used in the human-system interface can play a significant role in creating
these kinds of mistakes, as discussed by Woods et al. [22], Hutchins [31], Turner & Pidgeon
[32], among others. For example, the use of computer displays as the primary interface often
requires accessing information serially (i.e., looking at screen after screen) so that the operators
never get a complete overview. By focusing on a few parameters, the “big picture’ is lost and the
biases listed above can lead the operators to a faulty (or only partially correct) assessment of the
nature of the event.

In terms of response planning, in most high-hazard, low-risk industries (such as nuclear
power and commercial aviation), prepared procedures are the basis for responding to off-normal
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and emergency conditions. While procedures (whether written or memorized through training)
provide a structured support to operators, experiments (Roth et al. [25]) have shown that they
are, at best, an initial basis for action but operators must reassess the guidance in light of the
actual plant conditions; even for the symptom-based procedures developed after Three Mile
Island. In other words, while procedures are written using certain assumptions about the course
that an off-normal condition will take, there are many opportunities for the plant to behave
differently from the assumptions underlying the procedures. By simply following the letter of
the procedures, the operators may inadvertently take actions that exacerbate rather than recover
the conditions as a part of their response, thus creating a rule-based mistake.

Knowledge-based mistakes represent the unsafe actions that result when people have to
rely on deliberative cognitive reasoning to identify and solve problems. Deliberative cognitive
reasoning is not something that comes easily to people. This is because it requires adequate
knowledge about the system, systematic selection and consideration of information, logical
thinking, relatively high demands on memory, and can be relatively time consuming. Therefore,
even in the knowledge-based behavior mode, we are limited in our processing capabilities and
tend to take short cuts to identify the problem and appropriate solutions, which then underlie the
potential for knowledge-based mistakes (see discussions by Woods et al. [22], Hollnagel [5, 23],
and Reason [4, 18]). Examples include:

« limited short-term memory, which limits our ability to store and process more than a few
items of information at any one time,

 limitations and simplifications in the mental models that are used to interpret the system’s
behavior, and

 limited attention resources that can lead to narrowing of the search for explanations
(sometimes called ‘cognitive tunneling’).

Each of these effects can be exacerbated by the effects of fatigue, stress, fear, and other
factors that are often the result of being challenged by a significant operational disturbance.
Examples of ‘real world’ decision making have been studied extensively by people like Hutchins
[31], Klein [33], and Klein and Salas [34]. These studies emphasize the nature of learning
through experience (rather than formal education), and how the effects of ambiguity, dynamic
change, and organizational pressures can degrade the effectiveness of knowledge-based
performance. A recent book by Gladwell [35] presents numerous examples of both strengths and
sources of failure in human performance that this kind of behavior can lead to in safety and other
aspects of everyday life. The book also provides an overview of the development of our
understanding of what shapes this kind of information processing in the mind.

As far as the development of several of the more recent HRA models is concerned, the
focus has been on exploring issues associated with the processes shown in Figure 5, and
particularly how operators can be “set up’ by plant conditions to lead to erroneous actions being
taken—often referred to as errors of commission,? or actions that make the plant conditions worse

2EQC - a human failure event resulting from an overt, unsafe action that when taken, leads to a change in
plant configuration with the consequence of a degraded plant state. This is in contrast with an error of omission
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in the mistaken belief that they are appropriate. Using the terminology introduced earlier, these
actions are mistakes that are usually the result of failures in situation assessment (though they
also could result from faulty response planning, as discussed later).

Most times when operators are called on to respond to abnormal events, they are relying
on rules encoded in procedures and training. These rules are largely based on expectations of
plant behaviors. This is true even for the so-called symptom-based procedures that provide basic
steps to be followed once certain symptoms appear, regardless of the cause of the symptoms.
However, experience has shown, both in simulators and in real events, that the symptoms can
mislead operators into taking the wrong actions as discussed in Roth, et al. [25]) and Kauffman
[36]. During the development of the ATHEANA HRA method, several of these events were
examined in detail to identify the kinds of failures that led to the wrong actions being taken
(Barriere, et al. [37]). This showed that there were a set of somewhat common conditions
underlying the kinds of failures seen in the events reviewed. These common conditions that can
lead to unsafe actions, discussed at the beginning of this document, include:

« The plant behavior is outside its expected range

« The plant behavior is not understood

« Indications of the actual plant’s state and behavior are not understood
« Prepared plans or procedures are not applicable or helpful.

When compared with the understanding of the conditions underlying mistakes, it can be
seen how these match the underlying conditions described by the behavioral sciences. For
instance, once parameters are outside the expected range, the process of rapid pattern matching
(the normal process of situation modeling and awareness building) will not be successful, leading
operators to rely on finding an alternative based on their recency and familiarity biases. If these
do not lead to finding an explanation on which to act, they will typically apply knowledge-based
reasoning to find an explanation, which is not always successful as discussed above. If the plant
behavior or the indications themselves are not understood, the operators are led directly to
knowledge-based reasoning. Additionally, if the plant procedures also are based on the
expectation of the patterns of symptoms (e.g., the time sequencing of indications), this mismatch
between plant behavior and plant procedures is likely to further push the operators toward using
knowledge-based reasoning for their responses. While there has been considerable effort to
develop procedures that do not rely on accurate interpretation of events but simply to rely on the
various symptoms—the so-called symptom-based procedures— work by Roth, et al. [25], and in
the development of the ATHEANA HRA method [3], shows that these procedures have many
implicit assumptions concerning the time-sequencing of events and the responses required by
operators. These assumed conditions and responses often represent nominal conditions.
However, other time sequences can occur, suggesting that operators may face conditions where
the symptom-based procedures do not match actual plant conditions, as shown in examples

(EOQO) which is a human failure event resulting from failure to take a required action that in turn leads to a degraded
plant state. Until recently, only EOQOs were treated in HRA and even now, only limited evaluations of EOCs tend to
be performed.
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discussed in NUREG-1624, Rev. 1 [3]. As noted above, the particular processes associated with
knowledge-based processing are made more difficult by such factors as stress and fatigue.

Considering the theories and understandings cited in this section, engineers ‘model’
human performance in a way that is directly useable in a PRA. Because PRA is foremost a
failure-type model that examines undesirable events (e.g., damaging the reactor core in a nuclear
power plant) involving equipment unreliability and unavailability as well as inappropriate
operator actions, the discipline of human reliability analysis (HRA) has evolved in ways that
attempt to utilize the above information in predicting the unreliability of operator actions
associated with such events. To understand this engineering view of human performance, we
now address both PRA and HRA in more detail.

4. PROBABILISTIC RISK ASSESSMENT — WHY WE WANT TO
PREDICT THE LIKELIHOOD OF HUMAN ACTIONS

The driving force behind the development of HRA has been the growing use of
probabilistic risk assessment (PRA) as a tool for evaluating and managing nuclear power plant
safety®. Rather than focus on meeting a set of presumed worst credible accidents, PRA tries to
look at the probability and consequences associated with all possible events (see Figure 6 for a
discussion of the development of PRA). It avoids the ambiguity of defining “credible” and
“incredible” events. It admits that some so-called incredible events may be more likely than
chains of credible events and may have more severe consequences. It acknowledges that certain
multiple failure events are more likely than some single failure events. Perhaps most
importantly, it addresses the uncertainty, both aleatory (randomness) and epistemic (state of
knowledge), in its data, its calculations, the success criteria for its models, and its models
themselves.

Because functional failures of the nuclear power plant system depend in many ways on
the performance of human operators, maintainers, and management, PRA must account for the
impacts, both positive and negative, of human performance on the plant system. To support the
probabilistic models and calculations of PRA, HRA must address the causes of human error and
performance, the context in which unsafe acts are more likely to occur, the frequency with which
such acts occur in these contextual settings, and the uncertainty in the HRA models and
quantification. And this must be done in a manner consistent with the structure and
sophistication of the overall PRA model.

In the following sections, we show how HRA has evolved with the growing completeness
and sophistication of PRA. The evolution of methods represents expanding needs of PRA to
quantitatively account for the kinds of human actions identified in examination of actual event
histories and the need for PRA/HRA to be a tool for risk management as well as risk calculation.

3of course, PRA and HRA have been applied to other industries and disciplines beyond safety analysis.
Currently HRA methods are being expanded and specialized to support a growing number of applications in
transportation (air, rail, shipping, and highway), chemical processing, defense, and homeland security.
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Figure 6. The Development of Probabilistic Risk Assessment.

By the mid-1960s, the Atomic Energy Commission (AEC), whose regulatory arm later became the Nuclear
Regulatory Commission (NRC), had evolved a system of safety regulation predicated on ensuring that each plant
design could survive all “credible” accidents and transients, without exceeding regulatory limits for offsite
exposure (DiNunno et al. [38]). The basic idea involves identifying a set of events that create the most severe,
but credible, conditions for the reactor. The set includes both frequent and rare transients as well as accidents.
The name of this set, as well as the philosophy used in its definition and application, changed over the years from
maximum hypothetical, to maximum credible, to “design basis accidents” (DBAS).

Each design basis analysis assumed that the key event occurred followed by the single most troublesome failure
of an active component. For example, a large loss of coolant accident (LOCA) was followed by the failure of
one train of safety injection (the water supply designed to maintain coolant inventory in case of such an accident).
Rather sophisticated criteria for selecting the most limiting conditions (time in life, temperature, pressure, etc.)
and for evaluating success were published in the regulations (for example, see any final safety analysis report
[FSAR] from a nuclear power plant).

Nevertheless, a number of concerns led the AEC and others to wonder if there were gaps or unnecessary burdens
in our regulations; for example:
o the DBA and single failure criterion were almost surely overly protective in some areas
e on the other hand, some scenarios with multiple failures might be more likely than the single failure case
of the DBA
e could some “incredible” events outside the safety analysis be more likely and more severe than some
included events; for example, were there conditions in which failure of the reactor vessel would be more
likely than the double-ended break of a large pipe
e what would happen if the unlikely occurred and the plant reached a beyond-design-basis condition
e with growing numbers of reactors, even low probability events could accumulate to significant public
risk

As a rough cut consideration of the possibility that beyond-design-basis events constituted a significant risk, a
report analyzed the potential effects of a set of mutually impossible “worst case” conditions [e.g., 100% of all
fission products within the core distributed throughout the containment (direct gamma shine at the site boundary),
100% of volatile fission products released from the containment (direct shine to the public and washed out for the
contamination dose)] (WASH-740 [39]). A caveat in the report stated that 'the significance of damages
consequent to accidents cannot be appraised independently of the probability of the accident." They believed the
probability of a hazardous accident to be exceedingly small, but did not see how to estimate it. They did put some
perspective on the possible consequences of such events."

By the late 1960s, a combination of concerns about the existing approach to regulation and improved capabilities
in reliability analysis developed in the aerospace and chemical industries combined to spur the AEC to
commission the first large-scale use of PRA. The Reactor Safety Study (Rasmussen et al. [40]), commonly known
as the Rasmussen Report and WASH-1400 [40], was the result. It extended existing reliability methods and
developed a very successful structure, the event tree on critical safety functions to organize the model. This
structure transformed an originally intractable large fault tree into a set of initiating events and subsequent safety
system response fault trees that allowed review and checking against previous analyses, as well as facilitated a
very complex calculation. That structure continues to serve the needs of nuclear plant systems analysis very well.
Alternative structures have proved valuable in other applications.

The basic approach of the Reactor Safety Study has proved durable and effective and the study set standards in
many areas of safety analysis. However, little was available to support modeling of human actions and human
errors at the time of the study. The authors argued that on the whole they believed that the positive effects of
human operators probably out-weighed the negative aspects of human error (Congressional Testimony [41]).
Some simple models and quantification were included. Later reviews criticized the lack of thorough modeling of
human error (Lewis et al. [42]) and made it clear that work was required to develop an HRA capability consistent
with the state-of-the-art in modeling systems performance. Of course human error was not the only area
reauirina more sophistication.
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4.1. The Role of HRA in PRA

HRA is a critical component of PRA. PRA models systems’ performance and their
ability to provide safety related critical functions. In spite of the fact that in many systems, such
as nuclear power plants and airplane cockpits, safety related functions are sometimes
automatically initiated, there are still many situations where operator control is necessary and
situations where operators decide to take manual control. Thus, an important aspect of a PRA is
to appropriately model human actions that are needed to ensure critical functions or that could
cause the loss of a critical function (including maintenance and testing related human actions that
could render a system unavailable when needed). In other words, the overall objective of HRA
in a PRA is to include the impacts of personnel actions in an assessment of risk.

Generally, there are three broad classes of human actions relevant to a PRA: routine
actions (including unscheduled maintenance), actions that lead to the initiation of an accident
scenario, and actions that occur during the evolution of the accident sequence. In nuclear
power plant PRA, these are historically referred to as pre-initiator, initiator, and post-initiator
human actions, respectively.

Routine and unscheduled maintenance actions that are modeled include such latent errors
as miscalibrations of instruments and failures to restore equipment after test or maintenance.
These latent errors are not usually important contributors to the loss of equipment, because many
of these failures are easily recovered and modern post-maintenance test requirements make it
unlikely that maintenance errors survive into the operating mode. However, as new methods dig
deeper into the causes of unsafe acts during the accident sequence, it is expected that the
cognitive difficulties introduced by unexpected conditions caused by latent errors may be found
to be important to risk. As discussed earlier, given the important role of latent errors in many
serious accidents, it appears that their impact on crew response in accident scenarios should be
considered in the PRA if a realistic assessment of risk is required.

In addition, although human actions that initiate an accident scenario have not
traditionally been modeled in PRA (the experience-based initiating event frequencies usually
include their contribution), such scenarios at least have the potential to create problems for crew
response. For example, the source of the problem might be unexpected, and therefore potentially
confusing. There are special cases and certain technologies for which explicit HRA treatment of
human-induced initiators is necessary.

The main focus of most PRAs, however, usually is human actions that occur during the
accident sequence. To include such human actions realistically in the PRA, the modeling of
human interactions considers each action evaluated in the context of a complete accident
scenario. In the early days of PRA, accident sequence analysts simply provided the human
events of interest to a HRA specialist who then assigned human error probabilities (HEPS) to the
human events, often in isolation from the rest of the PRA team. Such a process is no longer
considered good practice. Current good practice in HRA requires inputs from a team of
personnel, representing multiple disciplines, in order to perform the three major aspects of HRA:

24



1) identify accident scenario contexts and associated human actions, 2) quantify the probabilities
of failure of each relevant human action (while considering the context, including plant
conditions and other important factors that can influence performance), and 3) when necessary,
identify ways to improve human performance and avoid important unsafe actions. It should be
noted that standards for accomplishing the major aspects of HRA have been developed in recent
years (ASME [43]; IEEE [44]) and the U.S. Nuclear Regulatory Commission (USNRC) has
developed guidance (HRA good practices) for how to meet such standards (NUREG-1792 [45]).

Framework Implicit in Many PRASs
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HRA | PRA
World I World
|
|

Performance ﬁ> Human ﬁ>
Shaping Factors PRA Model
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I Plant States
[}

Figure 7. Framework Implicit in Many Earlier HRAs.

The two framework charts (Figures 7 and 8) illustrate representations of the earlier and
the more current frameworks, respectively, for the relationship between PRA and HRA. The
multi-disciplinary, integrated approach, with expertise in facility operations and training, facility
engineering, PRA and behavioral science, is needed because understanding an accident scenario
context is a complex, multi-faceted process (from the ATHEANA HRA method [3]). The
interaction of facility (for example, airplane) hardware response and the response of operators
(e.g., pilots) must be investigated and modeled accordingly. The following are examples of
characteristics (among many other characteristics), that must be understood and reflected, as
necessary, in a model of a specific human action or group of human actions:
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Multidisciplinary HRA Framework
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Figure 8. Multidisciplinary HRA Framework from ATHEANA (NUREG-1624, Rev. 1[3]).

the timing of events and the occurrence of human action cues,
the parameter indications used by the operators and changes in those parameters as the

scenario proceeds,

the time available and locations necessary to take the human actions,

the equipment available for use by the operators based on the scenario,
the environmental conditions under which the decision to act must be made and the actual
response must be performed,
the degree of training guidance and procedure applicability, and
the way the crews interact with one another and implement the procedures.

Hence, to model human actions in the PRA (e.g., in a nuclear power plant PRA), PRA
and HRA practitioners, thermal-hydraulic analysts, operations, training, and maintenance
personnel, and sometimes other disciplines depending on the accident scenario (e.g., structural
engineers might be needed if the timing of an action is dependent on when and how the
containment might fail) all can have input into defining as well as quantifying the probabilities of
human actions to be included in the PRA. Each discipline provides a portion of the context
knowledge. Only when the context is sufficiently understood can the human action event be
realistically modeled and quantified. In addition, good practice in HRA (see NUREG-1792 [45])
includes the use of tools or information sources such as task analysis, simulator exercises, field
observations, walk downs of areas where the action needs to take place, and talk-throughs of the
scenario and actions of interest with plant operators or maintenance personnel. For a thorough
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PRA, it is not good practice to perform a human reliability assessment “sitting in an office” with
little or no interaction with those who can provide an understanding of the scenario context.

It should be noted that even when all of the information described above has been
collected in performing the HRA and the scenario context has been thoroughly documented,
analysts must then determine how to combine all of the information in order to obtain estimates
of the probabilities of the unsafe actions. Moreover, as the discussions in the sections above on
the perspectives from the behavioral sciences and from the examination of operational events
illustrate, there are numerous ways in which the context can occur and evolve, and then interact
with the characteristics of human information processing to create opportunities for unsafe acts
to occur. An important aspect of the evolution of HRA technology has been the need to better
account for the wide range of factors and conditions that have been identified over the years as
having strong influences on human behavior.

4.2. Evolution of HRA Technology

Human reliability analysis (HRA) methods have evolved along with the practice of HRA
as is discussed in the previous section. Figure 9 provides an overview of the evolution of HRA
methods (see Table 2 below for the citations for the various methods) and some of the more
influencing events that have stimulated this evolutionary process. Besides the timing of each
method, Table 2 (discussed in more detail later) provides a cataloging of HRA methods from two
viewpoints; the general focus of each method and the quantification process employed to
estimate human error probabilities (HEPSs). Collectively, these views of the evolution of HRA
technology and methods help us to understand the current status of HRA. Additional overviews
of many of the methods are provided by Swain [46], Gertman and Blackman [8], and Hollnagel
[5] for the methods commonly in use at the time. The most recent review of available methods
(covering ten methods used in the U.S.), including discussions of their strengths, weaknesses,
and applicability can be found in NUREG - 1842 [47].
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Figure 9. Time History of HRA Methods® Development.

8 THERP? refers to the version of THERP (Swain and Guttmann [13]) used in the Reactor Safety Study
(Rasmussen et al. [40]) and which was documented in that study’s final report. THERP! involved simple
modeling of what we today call slips and lapses, such as missing a step in a procedure.

 THERP® (Swain and Guttmann [13]) refers to the detailed HRA method documented in NUREG/CR-
1278.

¢ See Table 2 for citations for the various methods.
4.2.1. Time Evolution of HRA Methods

Figure 9 provides a time history of HRA methods development. There have been a
number of events that have affected the evolution of HRA methods. Some of this evolution has
been in response to the demands of and the parallel maturing of PRA; other HRA method
evolution influences have been actual events and subsequent activities in response to those
events. The figure shows some of the more prominent influences on HRA over the past thirty
years.
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Table 2. Summary of the General Focus of Each HRA Method and its Approach for Quantification.

Focus of HRA Method

Approach for Quantification

THERP' (as documented in Rasmussen, 1975
[40]) -original form of THERP (Swain and
Guttmann, 1983 [13]); primarily modeled
aspects such as missing a step in procedure,
reading a wrong indication, selecting a wrong
switch, etc.

Provides tabulated failure estimates

Confusion Matrix (Potash et al.,1981 [51]) -
models mis-diagnosis; e.g., confusing event
‘A’ as event ‘B’ because of similarities

Expert judgment

OAT (Hall et al., 1982 [15]) - considers that
with greater time for diagnosis, there is an
increased likelihood of detecting and
correcting mistakes

Provides tabulated, time-reliability based
failure estimates

THERP? (Swain and Guttmann,1983 [13]) -
adds to the original version of THERP, the
ability to estimate diagnostic errors within
periods of time

Provides tabulated or time-reliability based
failure estimates

STAHR (Phillips et al., 1983 [52]) - estimates  Expert judgment
the effects of different (user-identified)

factors on the overall likelihood of human

error

Expert Estimation (Swain and Guttmann, Expert judgment

1983 [13]) - uses a set of techniques to elicit
expert judgments, mainly for diagnostic
errors

SLIM (Embrey, 1983 [53]) - provides a
calculation process to estimate the overall
likelihood of an error based on a range of
user-identified performance shaping factors.
In principle can be applied to any type of
error

Expert judgment along with a mathematical
formula for combining judgments

HCR (Hannaman et al.,1985 [54]) - estimates
the likelihood of failure based on data
gathered for response times for similar
actions in simulators. Focus is on non-
response probability
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Ideally derives time-reliability based
estimates from plant specific simulator
exercises, but may use expert judgment to
obtain time-reliability parameters. Some
tabulated model parameters provided to
reflect effects of a few PSFs.



SLIM-MAUD (Embrey et al., 1984 [55]) - a
variant of SLIM and provides additional tools
for comparing the effects of different
performance shaping factors

Expert judgment along with a mathematical
formula for combining judgments

SHARP (Hannaman and Spurgin, 1984 [56])
and SHARP1 (Wakefield et al., 1992 [57]) -
Frameworks for performing HRA, but not
quantification tools

No explicit quantification process, but
methods available at the time were discussed

ASEP (Swain, 1987 [58]) - a variant of
THERP! %2 (Swain and Guttmann, 1983 [13])
using a more explicit process suitable for
non-HRA experts and reduces the number of
factors to be considered

Provides tabulated or time-reliability based
failure estimates

SNL Recovery Model (Whitehead, 1987 [59])

- provides sets of time-reliability models to
estimate error probabilities resulting from
mistakes and failure to respond correctly

Time-reliability based failure estimates to be
extrapolated from the model data to the
specific application

HEART (Williams, 1988 [60]) - provides a
generic set of descriptions of types of tasks
and factors that influence the overall
probability of failure

Tabulated data mathematically combined to
reflect the type of task and PSFs

ORCA (Dougherty and Fragola, 1988 [17]) -
provides tools for estimating errors including
a THERP-like approach for slips/lapses and
time-reliability relationships with a small
number of factors considered in estimating
HEPs for mistakes

Provides tabulated or time-reliability based
failure estimates

HCR/ORE (Spurgin, et al., 1990 [61]) -
revision of HCR that provides estimates of
failure(non-response probability) based on
simulator data or expert judgment and
assumptions regarding applicability of normal
distribution

Ideally derives time-reliability based
estimates from plant specific simulator
exercises, but may use expert judgment to
obtain time-reliability parameters

INTENT (Gertman et al., 1992 [62]) -
estimates mistakes based on historical
experience of power plants as reported to
NRC and other HRA/PRA estimates

Some empirical data along with expert
judgment

CBDT (Parry et al.1992 [63]) - a follow-on to
HCR and HCR/ORE, allows the estimate of
error probabilities for conditions involving
longer time scales and considers causes of
errors as opposed to time-reliability
relationships

“Tabulated” failure estimates through
application of decision trees
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COSIMO (Cacciabue et al.,1992 [64]) - uses
computer simulation of the human diagnosis
and decision making processes in

combination with a model of plant processes

Expert judgment

Paks Data Model (Bareith et al., 1996 [65]) -
uses data based on extensive analysis of one
plant’s simulator data

Plant simulator data

CREAM (Hollnagel,1998 [5]) - estimates
relative likelihoods of failure based on overall
representations of contexts including
consideration of workplace, task, and
organizational factors

Provides tabulated failure estimates

MERMOS (Bieder et al.,1998 [50]) -
provides a way of modeling errors in the
integrated human team-computer
environments in advanced control rooms
using observations of errors in simulator
exercises

Expert judgment primarily, but may use some
plant data (simulator or operational) as one
basis for the estimation process

ATHEANA (NUREG-1624, Rev. 1, 2000
[3]) - searches for conditions (contexts) in
which mistakes are likely and then considers
the likelihood of those contexts. Later
development of the use of expert opinion to
determine the likelihood of making the
mistake

Expert judgment

CAHR (Strater, 2000 [25]) - estimates the
likelihood of different types of errors based
on the analysis of actual events and the
contexts in which they occurred including the
frequencies of error contributing factors

Use some plant data (simulator or
operational) as one basis for the estimation
process—however, the final quantification
uses judgment for the specific error
probabilities.

SPAR-H (Gertman et al., 2005 [66])-similar
to THERP, includes slips, lapses, and
mistakes and addresses diagnosis and
response execution through use of several
PSFs as multipliers. Not intended for detailed
analysis of decision-making

Provides tabulated failure estimates

As the first comprehensive nuclear power plant PRA, the Reactor Safety Study (Rasmussen et al.
[40] was focused on plant hardware but recognized that some potential accidents could be
significantly affected by whether the operators failed to perform certain actions. In attempting to
include the effects of these actions in the PRA, the analysts did not find either available methods
or experts willing to address questions that needed to be answered, such as whether the operators
would fail to initiate the recirculation cooling mode of emergency core cooling following a

31



LOCA. Nevertheless, probabilities were supplied for a few cases all using the form “What is the
probability that the operators fail to ?”7

A subsequent review of that first PRA by the Lewis Commission [42] identified four
fundamental limitations in the method used, including:

. insufficient data,

. methodological issues associated with time-scale limitations,

« omission of the possibility that operators may perform recovery actions, and

« uncertainty regarding the actual behavior of people during accident conditions.

Just six months following the Lewis Commission report and before there could be much
reaction to its findings, the Three Mile Island (TMI) accident occurred in March 1979. Unsafe
human action was a critical element of what went wrong at TMI, and involved a
misunderstanding of actual plant conditions and the subsequent inappropriate shutdown of all
injection into the reactor coolant system by the operating crew. Following that event, during
much of the next decade and, especially during the five years immediately following the
accident, both the NRC and the industry made numerous changes as part of the many lessons
learned from the accident. Most notably related to the field of HRA, the industry changed from
using event-based emergency operating procedures (EOPs) to symptom-based EOPs to avoid
operators from having to diagnose what the event was at the start of an event. Instead, operators
could simply respond to indications of key parameters (levels, pressures, temperatures, etc.) so
that safety was ultimately achieved by ensuring these parameters stayed in or were brought back
within acceptable ranges by performing various actions with available equipment. Further,
control room design reviews were held and improvements were made in the indications and their
layout in the control rooms so as to lessen the chance of confusion as to the status of plant
conditions during any abnormal situation. In step with both these changes, more training of
operators was enacted to better inform them of conditions that could lead to a severe accident.
Also, upgrading and more wide-spread use of plant simulators to instruct operators about
challenging events was begun.

Paralleling these activities in response to TMI, along with considerable study of the
potential for severe accidents in nuclear power plants, the field of HRA saw a series of HRA
methods developed that were much more focused on analyzing the likelihood of operators
making mistakes (i.e., addressing the TMI experience) and related diagnosis errors, rather than
the simpler slips and lapses. Much of this methods development took advantage of the types of
advances made in the behavioral sciences summarized earlier. More on the main characteristics
of these HRA methods is provided later. Nevertheless, it became increasingly critical to
understand and model operator mistakes and related unsafe actions since, as part of the TMI
aftermath, plants were making hardware changes that made the plants more robust. Hence,
human unsafe acts became more significant to risk since operators could still defeat the increased
diversity and redundancy. This became evident as the Individual Plant Examination and to some
extent the Individual Plant Examination for External Events (IPE/IPEEE) programs were
implemented, whereby all plants performed detailed PRAs of their plants to understand the
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potential vulnerabilities to severe accidents on a plant-specific basis. With the increasing detailed
demands of these PRAs, more sophistication was required in the HRA methods and tools to
assess the potential risks associated with operator unsafe acts during abnormal and accident
situations. The change to a more risk-informed regulatory process has further increased the
demands of modeling human performance as realistically as necessary to be able to address
specific questions regarding the risk impact of plant changes including changes in operational
practices. HRA methods development has continued to respond to these increasing demands.

4.2.2. General Focus of HRA Methods and Approach for Quantification Process

The HRA methods noted in Figure 9 vary in terms of their general focus (e.g., the type of
errors addressed, consideration of decision-making) and in terms of the general approach they use
for quantifying human failure events (HFEs) for a PRA, among other aspects. The general focus
of the methods reflect, at least to some extent, the evolving knowledge-base of HRA (e.g., the
need to better address the decision-making process), while the different approaches to
quantification reflect more pragmatic concerns (e.g., ease of use), and tend to be represented all
along the temporal continuum. Table 2 provides a list of the different methods that have been
developed over the years (may not be a complete list) and discusses their general focus and their
general approach to quantification. More detailed discussions of ten of these methods that have
frequently been used in the U.S. can be found in NUREG-1842 [47].

As mentioned above and noted in Table 2, following the earliest work on the simplest of
errors (i.e., slips and lapses), considerable expansion occurred to create methods that would
address either mistakes like those performed at TMI, or generally all types of errors, within the
method framework. Another issue was the extent to which earlier methods tended to consider a
safety related human action to be similar to an item of equipment that either succeeds or fails in
its intended function. That is, while a few factors may be taken into account by the methods in
estimating the likelihood of failure to take the action, the analysis focuses on just the success or
failure of actions typically defined by systems analysts as important to safety.

Many analysts, particularly those trained in the behavioral sciences have criticized this
approach as gravely over-simplistic (e.g., Woods et al. [16]; Dougherty [48]; Hollnagel [5]).
Even NRC’s review of HRA in NUREG-1050 [49] identified the limitations in the earlier
methods as an important weakness in PRA. Many of the more recent HRA models recognize that
people behave in very complex ways and are capable of creating new conditions (not simply
failing to accomplish system-demanded tasks) or are subject to influences in more complex ways
than those implied by a few simple performance shaping factors. The development of some of the
most recent methods incorporates explicitly some kind of a model of human cognitive behavior
that takes account of the knowledge of the behavioral sciences, to provide a much richer
description of the human-system interactions. By taking account more realistically of the
cognitive processes of the operators, it is possible to be much more explicit about the kinds of
conditions, or contexts, that are necessary to lead to high likelihood of failure, or may induce
unsafe actions by operators. This came about because when analysts more closely examined real-
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world event data especially in light of the advances in behavioral science and theories about how
humans function, it was found that the more serious accidents involved:

. the plant operating outside normal or expected conditions,

. the resulting physical regime not being well understood by the operators,

« operators refusing to believe or otherwise recognize evidence contrary to their belief as to
what was happening in the plant, and

. prepared plans were not always helpful or even applicable.

Hence, it was recognized that HRA methods needed to holistically account for both plant
conditions and a widening range of operator influences (i.e., performance shaping factors) in
order to be able to address the characteristics of the more serious accidents. While not perfect,
some of the more recent methods provide considerable guidance on understanding, as much as
possible, about the whole context of a situation faced by the operators in order to estimate the
likelihood of operator unsafe acts. In some cases, this expanded understanding also includes
more explicit treatment of errors of commission (EOCs). Even so, advancements are still needed
to be able to address the potential impact of management and organizational influences, and the
role of crew characteristics and team dynamics on crew performance. Additionally, more analysis
of operational and simulator experience is needed in order to add credibility to the methods and
particularly the likelihoods of operator errors as estimated using these methods.

With respect to the basis for quantification, there are generally three different bases (see Table 2
for examples of each):

 the method provides a numerical basis, such as HEP values that are tabulated or expressed in a
time/reliability relationship (this may, in turn, be based on actual experience, simulator
observations, judgment, etc.)

. the method provides ways to elicit or manipulate expert judgment
. the method provides ways to obtain data from plant-specific data sources (such as simulators).

While in some cases, the method may use somewhat of a mixture of the bases shown, the
predominant mechanism by which human error probabilities are quantified is shown in Table 2.

It is noticeable that most of the more recent HRA methods rely on some form of expert
judgment, whereas the majority of the earlier methods rely on tabulated or time reliability based
failure estimates. One reason for this difference is that the effects of contexts considered in more
recent methods like CREAM [5], ATHEANA[3] and MERMOS[50] is much more complex and
not readily reducible to simple tables or correlations using a few performance shaping factors.
Hence, while the use of simple tables, correlations, and related multiplicative factors make the
earlier methods somewhat easier to use, the simplicity of the methods that allowed the use of such
approaches was in fact one of the primary criticisms of them that led to evolution of HRA models.
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4.2.3 Summary of Evolution of HRA

The evolution of HRA technology and the methods for evaluating human performance and
estimating human error probabilities associated with nuclear power plant applications has
occurred consistently over the past thirty years. In large part, this evolution has been in response
to our needs to understand the drivers of human performance in increasing detail, as well as in
response to changes in the industry and due to the ability to incorporate our knowledge from the
behavioral sciences. Simple modeling and quantitative techniques were and continue to be useful
for simpler types of human errors (and, hence, are still used today). However, as we improve the
man-machine interfaces in our nuclear plants, it has become increasingly important to understand
and model the more cognitive aspects of human performance within the context of situations that
operators may experience during abnormal events and in accidents. This has required more
complex and sophisticated modeling as well as more reliance on expert elicitation quantitative
techniques. These advances reflect our improving ability to understand and predict human
behavior in challenging situations. Nevertheless, not all known factors are yet routinely and
completely addressed in the current HRA methods (e.g., organizational influences). Also, while
analysts generally believe the quantitative estimates are reasonable, HRA is still struggling to
obtain and use sufficient real world experience to “gauge” the accuracy of our HEPs. Since
serious challenges to operator performance tend to be rare (which is fortunate), such data is slow
in coming and it will take time to be able to validate our quantitative estimation techniques.

5. CAN WE PREDICT UNSAFE HUMAN ACTIONS AND THEIR
LIKELIHOODS?

The short answer is yes, we can, but some discussion is needed. Our current human
reliability modeling techniques have become far more sophisticated and, generally, can account
for many more influences on human performance than was available with the earliest methods.
Taking into account the advances in the behavioral sciences in our current models, we believe it is
possible to identify those situations that tend to make human error more likely. This allows us to
define potential vulnerabilities and make improvements in plant design and operational practices,
as well as in procedures and operator training that collectively, can lessen the chances of unsafe
human actions.

There are many HRA methods giving human reliability analysts an arsenal of tools for
identifying conditions prone to operators making unsafe acts. Some methods and their tools treat
human performance relatively simply and account for only a few influencing factors. Such
treatment may be adequate for situations that are not complex and when the most likely
influencing factors are within the capabilities of the method. Other methods involve more
complex modeling of human performance, and are most useful and probably necessary for
conditions requiring consideration of many influencing factors. Although the USNRC has
recently provided some guidance on the appropriate use of various types of HRA methods [47],
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knowing when to use as well as how to use a method is part of the “art” of HRA and requires a
sufficiently trained analyst to make the appropriate judgments required by any of the methods.

The methods also have their associated means for quantifying the likelihood of operators
performing unsafe actions. These range from the simple use of data tables (that are based on
experience and judgment) to more complex expert elicitation processes (that, preferably, use
personnel knowledgeable in the tasks being examined). While there is the belief that these
quantification techniques generally provide reasonable probabilities if applied correctly and to the
right situations, all of HRA still suffers from having too little relevant experience to “calibrate” or
otherwise validate these quantification techniques. Efforts continue to make such data (and
analysis of the data) available along with the need to improve our modeling of human
performance so as to handle yet additional performance shaping factors such as organizational
influences.

Thus, the state-of-the-art in HRA is such that we believe we can identify conditions that
tend to make errors more likely and estimate “reasonable” probabilities for the errors. This
should not be confused, however, with being able to predict the next critical human error. Just as
we know that the probability of getting a “head” when flipping a coin is 0.5, that does not mean
we can predict whether or not the next flip of a coin will produce a “head”, or even the flip after
that or after that. We can say that given a sufficient number of flips, you will see a “head” 50% of
the time. In a more complex example, we cannot predict the specific paths of neutrons during
nuclear fission and whether specific neutrons will cause other fissions of uranium nuclei. But, we
know “on average” what will happen and this is sufficient for us to be able to design and build
operating reactors.

It is the same with our human reliability predictions. For a case where we estimate a high
probability of failure by the operators, that probability is a reflection of various influencing
factors that given the situation, we believe tend to make human error likely. In such cases, the
most negative influences can be defined and improvements made to lessen the chance of an
unsafe action. Conversely, a low probability is a reflection of all the positive influences that exist
for the situation that should make a human error unlikely. Such results are useful, even if we
cannot predict that given a particular circumstance and the related influences, that an error will or
will not occur.

Clearly, further advances in the field of HRA are needed. It is not clear that the behavioral
sciences will be able to produce an adequate integrated model of human performance to support
direct quantification of HFEs. Therefore, the systematic collection of a “database” (or information
source) of operational events and simulator experience to support HRA quantification would
seem to be a very high priority. Such a database should be made up of national and international
data, collected on actual events across the different industries, and from investigations using
simulators. Such data will continue to strengthen our ability to understand the characteristics of
situations that can lead to unsafe human actions and provide an additional basis for estimating the
likelihood of those unsafe actions. The USNRC is currently supporting several national and
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international efforts along these lines, including work at the Halden Research Project in Norway
using state-of-the-art nuclear power plant simulators, the international Organization for Economic
Cooperation and Development Nuclear Energy Agency (OECD/NEA) efforts to develop an
international database of nuclear power plants events, and work by Idaho National Laboratory to
build a structured database for collecting information associated with unsafe human actions that
could be used to support quantification (e, g., Hallbert et al. [67]).

In the meantime, HRA provides us with useful insights and allows us to make meaningful
improvements to lessen the likelihood that unsafe actions will occur.
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