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Abstract 
 

This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) 
of nuclear reactors—analyses which are very resource intensive—more efficient.   PRAs 
of nuclear reactors are being increasingly relied on by the United States Nuclear 
Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced 
reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied 
a modern systems analysis technique to the accident progression analysis portion of the 
PRA; the technique was a system-independent multi-task computer driver routine.   
  
Initially, the objective of the work was to fuse the accident progression event tree (APET) 
portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University.  
Instead, during the initial efforts, it was found that the DSD could be linked directly to a 
detailed accident progression phenomenological simulation code—the type on which 
APET construction and analysis relies, albeit indirectly—and thereby directly create and 
analyze the APET.  The expanded DSD computational architecture and infrastructure that 
was created during this effort is called ADAPT (Analysis of Dynamic Accident 
Progression Trees).  ADAPT is a system software infrastructure that supports execution 
and analysis of multiple dynamic event-tree simulations on distributed environments. A 
simulator abstraction layer was developed, and a generic driver was implemented for 
executing simulators on a distributed environment.  
 
As a demonstration of the use of the methodological tool, ADAPT was applied to 
quantify the likelihood of competing accident progression pathways occurring for a 
particular accident scenario in a particular reactor type using MELCOR, an integrated 
severe accident analysis code developed at Sandia.  (ADAPT was intentionally created 
with flexibility, however, and is not limited to interacting with only one code.  With 
minor coding changes to input files, ADAPT can be linked to other such codes.)  The 
results of this demonstration indicate that the approach can significantly reduce the 
resources required for Level 2 PRAs.  From the phenomenological viewpoint, ADAPT 
can also treat the associated epistemic and aleatory uncertainties. 
 
This methodology can also be used for analyses of other complex systems.  Any complex 
system can be analyzed using ADAPT if the workings of that system can be displayed as 
an event tree, there is a computer code that simulates how those events could progress, 
and that simulator code has switches to turn on and off system events, phenomena, etc. 
 
Using and applying ADAPT to particular problems is not human independent.  While the 
human resources for the creation and analysis of the accident progression are 
significantly decreased, knowledgeable analysts are still necessary for a given project to 
apply ADAPT successfully.   
 
This research and development effort has met its original goals and then exceeded them. 
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Summary 
 

This LDRD project has produced a tool that can make probabilistic risk assessments 
(PRAs) of nuclear reactors—analyses which are very resource intensive—more efficient.   
PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear 
Regulatory Commission (U.S.N.R.C.) in making licensing decisions for current and 
advanced reactors. Yet, PRAs are produced much as they were 20 years ago.  They 
require significant resources to create and analyze.  This work applied a modern systems 
analysis technique to the accident progression analysis portion of the PRA; the technique 
was a system-independent multi-task computer driver routine.   
  
Initially, the objective of the work was to fuse the APET portion of a PRA to the dynamic 
system doctor (DSD) created by Ohio State University.  Instead, during the initial efforts, 
it was found that the DSD could be linked directly to a detailed accident progression 
phenomenological simulation code—the type on which APET construction and analysis 
relies, albeit indirectly—and thereby directly create the APET.  The expanded DSD 
computational architecture and infrastructure that was created during this effort is called 
ADAPT (Analysis of Dynamic Accident Progression Trees).  ADAPT is a system 
software infrastructure that supports execution and analysis of multiple dynamic event-
tree simulations on distributed environments. A simulator abstraction layer was 
developed, and a generic driver was implemented for executing simulators on a 
distributed environment.  
 
As demonstrations of the use of the methodological tool in the probabilistic modeling of 
severe accident phenomena in Level 2 PRA, ADAPT was applied to quantify the 
likelihood of creep rupture of pressurizer surge line, hot leg, and SG tubes in a PWR with 
a large dry containment using MELCOR, an integrated severe accident analysis code 
developed at Sandia.  (ADAPT was intentionally created with flexibility, however, and is 
not limited to interacting with only one code.  With minor coding changes to input files, 
ADAPT can be linked to other such codes.)  A station blackout initiating event with a 
failure of the AFWS was considered as in this test case.  
 
The results of this demonstration indicate that the developed approach can significantly 
reduce the manual and computational effort in Level 2 PRA analysis.  By implementing 
the model mechanistically, it also eliminates the potential of introducing errors while 
making changes in the input decks manually for running new accident scenarios.  From 
the phenomenological viewpoint, it can also treat the epistemic and aleatory uncertainties 
associated with complex physical phenomena taking place during severe accident 
progression.  Several different parallel processing configurations were investigated.  It 
was found that more computational stations did not necessarily result in shorter analysis 
time.  This was because some stations could be idle while waiting for a previous 
calculation to finish. 
 
The ADAPT methodology can also be used for analyses of other complex systems.  In 
PRAs, it could be applied to the Level 1 analysis, during which the frequency of 
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challenges to the core integrity are examined.  Any complex system can be analyzed 
using ADAPT if the workings of that system can be displayed as an event tree, there is a 
computer code that simulates how those events could progress, and that simulator code 
has switches to turn on and off system events, phenomena, etc. 
 
There is interest in ADAPT nationally and internationally.  Future development work 
could include explicitly using another plant simulator, improving the metadata 
management system, making the creation of branching rules more user friendly, further 
optimizing the scheduling techniques developed, and developing a complier that will take 
high-level branching rules and generate application specific edit-rules. 
 
Using and applying ADAPT to particular problems is not human independent.  While the 
human resources for the creation and analysis of the accident progression are 
significantly decreased, knowledgeable analysts are still necessary for a given project to 
apply ADAPT successfully.  It can be made more user friendly than it already is, but it 
will never be “user independent.” 
 
This research and development effort has met its original goals and then exceeded them. 
 



1.  Introduction 
 

1.1 Purpose 
 
This Laboratory Directed Research and Development (LDRD) project developed a 
methodological tool to make the creation and use of probabilistic risk assessments 
(PRAs) more efficient.  Specifically PRAs for nuclear reactors were investigated, but the 
work has broader application than that.  Hence, while this report shall almost totally 
concentrate on PRAs for nuclear reactors, the potential for broader application is also 
noted.  This work was a joint effort of Sandia National Laboratories and Ohio State 
University. 
 
PRAs of nuclear reactors are the most comprehensive tools in quantifying reactor safety, 
but they are notoriously resource intensive.  Yet, PRAs are produced much as they were 
20 years ago.  The idea of this work idea applied one modern systems analysis technique 
to a specific part of the PRA—the accident progression event tree (APET).  The Dynamic 
System Doctor (DSD), developed at Ohio State University, is system-independent, 
interactive software for model-based state/parameter estimation in dynamic systems.  The 
DSD was initially linked to an APET so that it could directly and semi-automatically help 
construct additional event tree logic.  The success in doing so led us to an additional step, 
the bypassing of the APET “seed” to begin with and linking an enhanced DSD directly to 
a detailed severe accident systems analysis computer code, MELCOR, that simulates 
potential nuclear reactor accidents, and thereby creating the APET.  The enhanced DSD 
has been named “Analysis of Dynamic Accident Progression Trees “(ADAPT).  (It must 
be emphasized here, as it is in the report as well, that ADAPT is independent of the 
severe accident simulation code chosen except for a small portion of computer code that 
performed the communication between them.)   Before discussing the work, however, 
background material on PRAs and the DSD will be presented so that the reader will then 
be able to better understand why what was done was done and the significance of the 
accomplishment. 
 
 
1.2  Background 
 
PRAs are the method of choice for assessing and quantifying the risks of low probability, 
high consequence accidents, such as those related to nuclear reactors.  There are three 
levels of probabilistic risk assessment (PRA) performed for nuclear power plants:  
 

• Level 1 PRA quantifies the frequency of core damage.  
 
• Level 2 PRA examines the mode and timing of containment failure and the release 

of radioactivity material to the environment.  
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• Level 3 PRA quantifies the risk of off-site adverse health effects.  
Event trees are used in both the analysis of core damage frequency and in the analysis of 
containment failure modes [1]. The accident progression event trees (APETs) used in 
Level 2 PRA identify, sequentially order, and probabilistically quantify the important 
events in the progression of a severe accident. The development of an APET consists of   
 

• identifying potentially important parameters to the accident progression and 
associated containment building structural response,  

 
• determining possible values of each parameter (including dependencies on 

outcomes of previous parameters in the event tree),  
 
• ordering the events chronologically, and,  
 
• quantify the frequency and consequences of the ordered scenarios.  

 
The quantification of an APET is primarily based on sensitivity studies performed with 
accident simulation computer codes that are validated against experimental data. An 
APET is conceptually similar to the system event trees in Level 1 PRAs. While the 
quantification of the branch probabilities in Level 1 PRAs relies on fault tree analysis, 
however, a number of calculations are performed with the accident simulation code prior 
to quantification of the APET which include a range of code parameter variations that 
provide insights to the analyst on the impact of uncertainties on the probability of 
alternative branches on the tree. (See References 2 and 3 for examples of detailed PRAs 
for nuclear reactors using APETs.) 
 
For each general type of postulated accident, the APET analysis considers the important 
characteristics of the core damage process, the challenges to the barriers and structures 
designed to mitigate an accident, and the response of those barriers and structures to 
those challenges.  APETs are used to identify, to order sequentially, and to quantify 
probabilistically the important events associated with the progression of a severe 
accident.  The development of an APET consists of identifying potentially important 
issues, determining possible values of each parameter (including dependencies on 
previous parameters in the event tree), ordering the events chronologically, and defining 
the information needed to determine each parameter. In addition, an APET is static, no 
dynamic, so that parameters that could change during the accident need to be re-queried 
in the APET.  Trying to account for the timings of events is made more complex because, 
a priori, the analyst does not know whether Event A precedes or follows Event B but 
must determine the ordering of events based on sensitivity calculations, or sometimes 
simply by making assumptions.  Often because of uncertainties in accident progression, it 
is possible that Event A might precede Event B under some circumstances and follow 
Event B under other circumstances.   
 
Describing the possible and credible accident pathways leads to the construction of a 
complex event tree, potentially involving hundreds of event questions with the potential 
of several branches at each question.  An APET generates hundreds of millions of 
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different possible accident progression pathways that must each be analyzed in some 
sense before an estimate of risk can be made.  Many hours and computing resources are 
needed to produce results for even a single pathway.  The increase of computational 
power over the last two decades has made the calculational part of the effort more 
manageable, but the burden on the analyst has not been similarly assuaged.  The 
construction and analysis of such a tree is still resource intensive as the pathway direction 
at each branch can potentially depend on all the results of all the preceding branch 
answers.  That is, where the pathway goes from point A can depend on all the specifics of 
how the accident progressed to point A.  Keeping the logic straight for such dependencies 
in the APET construction and analysis of results is fraught with error potential.  An 
additional error potential is introduced by manually changing a portion of the input data 
for each new scenario in order to simulate different accident scenarios.  These types of 
errors are very hard to identify in the post-analysis of enormous output database, thus 
making the overall time of the analysis even longer 
 
In addition, as mentioned above, the current PRA methodology is the static and can only 
account for the time element in the accident progression through sequencing and re-
querying of events.  A review of the literature, however, indicates that the exact timing of 
failure events and exact magnitude of system variables at the time of a failure event can 
be critical in determining the risk associated with system operation.  In fact, the standard 
approach to event trees also requires the analyst to establish a specific order of events, 
when in fact variability of accident conditions and uncertainty in the ability to model 
severe accidents could change the order of events. 
 
The timing and magnitude of events can be understood via tests or simulations.  The 
former is expensive for even examining one possible progression pathway, prohibitively 
so to examine several, let alone many.  Integrated reactor systems computer codes have 
been written to simulate the progression of possible accidents.  In the past, the APET 
analyst would incorporate the results of some such computational analyses (as well as 
any test data available) in the construction of the tree.  But, the actual scenarios computed 
likely do not perfectly align with pathway logic under consideration in the APET 
construction so estimates of progression timing and events were necessary.  This added 
unnecessary uncertainty in the results. 
 
Therefore, automating the APET construction and subsequent analysis, incorporating 
timing explicitly in that construction and analysis, and linking the APET directly to an 
integrated accident analysis computer code are highly desirable objectives.  These are the 
objectives of the work this project set out to achieve.  This project achieved them. 
 
 
1.3  Approach 
 
The starting point for this work was the recognition that the Dynamic System Doctor 
(DSD) computer code developed at Ohio State University could be used to address the 
objectives of the effort.  The DSD is a system-independent multi-task driver (MTD) for 
model-based state/parameter estimation in dynamic systems.  It can provide input to the 
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real-time analysis for evolving systems conditions and has been successfully applied to 
real-time xenon estimation and stability analysis for nuclear reactors and fault detection 
in automobile engines.  The DSD has also been linked with a neural net approach.    
 
The DSD is a system independent, state/parameter estimation software [4] based on the 
cell-to-cell mapping technique (CCMT).  The CCMT models the system evolution in 
terms of probability of transitions in time between sets of user defined parameter/state 
variable magnitude intervals (cells) within a user specified time interval (e.g. data 
sampling interval). The most important feature of DSD is that it is both an interval and a 
point estimator. Subsequently, it yields the lower and upper bounds on the estimated 
values of state variables/parameters, as well as their expected values. Knowledge of such 
bounds is particularly important in the determination of the operational safety margins. 
More importantly, the consequence probability functions will automatically incorporate 
the aleatory uncertainties1 associated with the estimation process, which is a feature 
desirable by NRC but not achievable by other techniques. 
 
The DSD also yields the probability of finding the system in a given cell in the 
state/parameter space that provides a probabilistic measure for model-based diagnosis to 
rank the likelihood of faults in view of modeling uncertainties and/or signal noise. Such a 
ranking is useful for risk-informed regulation and risk monitoring of nuclear power 
plants. Another important feature of this methodology is that its discrete-time nature is 
directly compatible with a look-up table implementation, which is very convenient for the 
use of data that may be available from tests or actual incidents; this is commonly the data 
used during APETs. 
 
The research and development described in this report initially sought to address one part 
of the APET with the DSD: finding what the conditions are in the reactor coolant system 
during all of the potential severe accidents.  Specifically, we shall examine the conditions 
in the steam generators of a pressurized water reactor (PWR).  These conditions can 
substantially vary depending on the nature of the accident, and what happens to the tubes 
of the generators can alter the nature and subsequent progression of the accident itself; it 
is exactly this rigorous complexity that makes using the DSD during APET creation such 
a natural choice.  As presented above, the four stages of development of an APET are 
identifying potentially important issues, determining possible values of each parameter 
(including the dependencies on previous parameters in the event tree), ordering the events 
chronologically, and determining the frequency of the resultant pathways, and the DSD 
could help in developing each of these for the creation of an APET .2  Furthermore, the 
DSD could be used in quantifying the APET. 
 

                                                 
1 That is,  those uncertainties that are stochastic as opposed to epistemic uncertainties, those uncertainties 
that are due to lack of knowledge. 
2 Since the DSD/APET combination is a real-time model, it was recognized at the beginning of the project 
that it might be able to relay accident progression information to reactor operators quickly enough to give 
them the capability to mitigate severe accidents if the model combination was installed at a plant can 
running at the time the reactor systems were challenged by an initiating event. 
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The initial confidence that this effort could be brought to fruition came from the success 
the DSD had with other related technical challenges, such as estimating the amount of 
xenon in a reactor or analyzing the stability of a BWR [5]; the DSD has also been linked 
successfully to a simplified pressurizer model for APET generation [6].  Furthermore, the 
DSD already had multi-threading capability [7], and the multi-tasking extension of DSD 
was in progress when this work was begun, and off-line versions of the relevant modules 
had been successfully implemented in a distributed computing environment [8].   
 
The methodology development could not be done simply on a theoretical basis.  An 
application was necessary to develop and test the methods as the work progressed.  A 
pressurized water reactor (PWR) with a large dry containment was used as a reference 
system, with station blackout as the initiating event compounded by the failure of the 
AFWS.  Additional possible system events included a stuck open safety relief valve on 
the secondary side of the plant, a stuck open pressure operated relief valve on the primary 
side of the plant, and loss of reactor coolant through developing leaks in the seals of the 
reactor coolant pumps.  In various pathways, the integrity of the reactor coolant system 
could be further challenged by induced leaks in the steam generator tubes, pressurizer 
surge line, or reactor coolant system hot leg piping. 
 
In succeeding sections of this report, the methodology will be discussed, the developed 
code system architecture and infrastructure will be described, results of a demonstration 
of applying the developed code suite will be presented, and conclusions will be drawn. 
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2. Methodology 
 
 
This section of the report presents the methodology implemented in the work.  First, a 
brief history of dynamic event trees is presented.  Then, the computer code suite 
developed in this effort is discussed, although the detailed architecture and infrastructure 
of it is described in Section 3.  Finally, the severe accident phenomenological code linked 
to in the work is briefly described. 
 
 
2.1  Dynamic Event Tree (DET) 
 
There are different interpretations to the word “dynamic” when used along with PRA.  
One use of the term dynamic PRA or “living PRA” is to describe periodic updates of the 
PRA to reflect any changes in the plant configuration [9].  Another use is when the PRA 
model is updated to account for equipment aging [10].  The third use is to describe an 
approach that includes explicit modeling of deterministic dynamic processes that take 
place during plant system evolution along with stochastic modeling [11, 12, 13, 14, 15, 
16, and 17].  In this third use, plant parameters are represented as time-dependent 
variables in event tree-construction with branching times often determined from the 
severe accident systems analysis code being used to examine the plant.  It is this last 
definition of dynamic PRA that is used within the context of this effort reported here. 
 
In dynamic PRA analysis, event tree scenarios are run simultaneously starting from a 
single initiating event.  The branchings occur at user specified times and/or when an 
action is required by the system and/or the operator, thus creating a sequence of events 
based on the time of their occurrence.  For example, every time a system parameter 
exceeds a threshold/setpoint, branching takes place based on the possible outcomes of the 
system/component response.  These outcomes then decide how the dynamic system 
variables will evolve in time for each branch.  Since two different outcomes at a 
branching may lead to completely different paths for system evolution, the next 
branching for these paths may occur not only in different times, but also based on 
different branching criteria.  The main advantage of DET methodology over the 
conventional event tree method is that it simulates probabilistic system evolution more 
closely. 
 
Software development for DET generation began in mid 1980’s.  A variety of tools and 
techniques have been proposed.  The research work has modeled the response of both the 
plant systems and plant operators to an initiating event that propagates into an accident.  
Several institutions have been involved in developing DET generation methodologies 
both in the United States [11, 12] and Europe [13, 14, 15, 16, and 17].   
 
In the mid 1980’s, researchers at the Joint European Center at Ispra, Italy, developed a 
methodology for dynamic reliability analysis called Dynamic Logical Analytical 
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Methodology (DYLAM) [13, 14, and 15].  The basic idea of the DYLAM methodology 
is to provide a tool for coupling the probabilistic and physical behavior of a system for 
more detailed reliability analysis.  All the knowledge about the physical system under 
study is contained in the system simulator.  The active components of the system are 
allowed to have different states such as nominal, failed on, failed off and stuck.  Once the 
simulator is linked to the DYLAM code, DYLAM drives the simulation by assigning 
initial states to each branch and triggering stochastic transitions in the component states, 
taking into account the time history of the logical states of components if necessary (e.g. 
for operator modeling).  For each path (or branch), the (possibly time-dependent) 
probability of the system achieving that branch is evaluated from the user-provided 
branching probabilities.  The probability of occurrence of a given consequence (or Top 
Event) is the sum of the probabilities of all the branches leading to that Top Event [15].  
Each system component/operator is characterized by discrete states with different options 
to model transitions between these states, such as stochastic transitions with constant 
probabilities, functionally dependent transitions, stochastic and functionally dependent 
transitions, conditional probabilities, and stochastic transitions with variable transition 
rates.  The time points at which the transitions (either on demand or stochastic) take place 
correspond to the branching points.  The DYLAM approach has been used to perform 
dynamic reliability analysis not only in nuclear, but also in chemical, aeronautical, and 
other industries. 
 
In 1992, Acosta and Siu [11] proposed a variant of DYLAM for Level-1 PRA3 called 
DETAM (Dynamic Event Tree Analysis Method), to analyze the risk associated with 
nuclear power plant accident sequences.  DETAM provided a framework for treating 
stochastic variations in operating crew states, as well as in hardware states.  The plant 
process variables used to determine the likelihood of stochastic branchings were 
calculated from a system simulator.  The branchings were allowed to occur at user-
specified fixed points in time.  In case of hardware-related branchings, the system 
unavailabilities were modeled as demand failure frequencies.  In the cases of diagnosis 
state and planning state transitions, mainly expert judgment was used to assign 
probabilities/frequencies.  
 
In 1993, Hsueh and Mosleh [12] developed the Accident Dynamic Simulation 
Methodology (ADS).  It was an integrated dynamic simulation approach for Level-1 PRA 
developed for large scale dynamic accident sequence analysis.  The modeling strategy of 
ADS was based on breaking down the accident analysis model into different parts 
according to the nature of the processes involved, simplifying each part while retaining 
its essential features, and developing integration rules for full scale application.  
Whenever a hardware system state transition point or an operator interaction point is 
reached, the accident scheduler chooses one path to follow.  After the simulation process 
reaches an end point, the scheduler directs the simulation back to the previous branch 
point, reinitializes every simulation module back to this time point, and follows the other 
branch point path.  

                                                 
3 As mentioned in the introduction,  Level-1 PRA only analyzes a reactor to determine the frequency of 
core damage and does not analyze the subsequent progression of the accident to determine what 
consequences, if any, that damage might cause. 
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Another tool for DET generation developed in 1999 is DENDROS (Dynamic Event 
Network Distributed Risk Oriented Scheduler) [18].  The DENDROS was developed 
mainly to model response of safety features to a transient for Level-1 PRA and is a 
discrete event processor, managing messages coming from different calculation modules 
including the physical system simulator and decision processes.  It is designed for a 
distributed computing environment using a network of processors exchanging 
information through an independent channel.  During a simulation, the scheduler makes a 
decision about the need to create new processes if a setpoint is crossed (branching point), 
to change the already running processes to stand-by state for later reuse, or even to force 
some non-active ones to terminate based on the end conditions, such as probability falling 
below a user-specified cutoff value.  The DENDROS was linked to the pressurized water 
reactor simulator TRETA (Transient Response and Test Analyzer)]. 
 
In 2002, researchers from GRS4, Germany developed a DET method combined with 
Monte Carlo simulation called MCDET (Monte Carlo Dynamic Event Tree) [17].  The 
MCDET considers all combinations of two characteristics of a transition: “when” and 
“where to”.  Discrete and random “when” and/or “where to’ are taken into account by 
DET analysis, while continuous and random ones were handled by Monte Carlo 
simulation.  The MCDET was implemented as a stochastic module that could be operated 
in tandem with any deterministic dynamics code.  For each element of Monte Carlo 
sample, MCDET generates a discrete DET using the system code and computes the time 
histories of all system variables along each path together with the path probability.  The 
mean conditional probability distribution (conditional on the initiating event and the 
values of randomly sampled aleatory uncertainties) over all trees in the sample is the final 
result.  To keep the computational effort practicable, a probabilistic “cutoff” criterion was 
introduced that would allow to terminate any branches with a probability below that 
cutoff value.  For practical application, the MCDET was linked with severe accident 
analysis code MELCOR [19]5.  The focus was on the modeling of the response of the 
safety features of the plant and the reaction of the operating crew during severe accident 
progression. 

                                                 
4 Gesellschaft fur Anlagenund Reacktorsicherheit. 
5 The MELCOR code will be discussed in more detail in a later section as it is the integrated accident 
progression phenomenology code that ADAPT was linked to in this work, although ADAPT could be 
linked to other such codes.  It is not hard-wired to MELCOR. 
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2.2  Introduction to ADAPT 
 
Originally, this project was conceived as creating a computer architecture that would link 
the DSD to an APET so that the DSD could directly and semi-automatically help an 
analyst construct additional tree logic.  The authors quickly realized, however, that it was 
just as straight-forward to create an overall architecture that would have the DSD 
approach drive a phenomenological computer program as to which sets of input to run 
abd when to stop and make adjustments to the input parameters (to simulate changing 
plant events such as operator actions) and then restart so as to create an APET through 
the linked analyses.  This work also created the computational infrastructure to support 
this automated process.  These computational innovations are discussed in greater detail 
in the next section.  Here, however, is an overview.  The mechanized procedure that has 
been developed for the generation of APETs which can substantially reduce the manual 
and computation effort, reduce , the likelihood of input errors, develop the order of events 
dynamically, and treat accident phenomenology consistently is called ADAPT (Analysis 
of Dynamic Accident Progression Trees).   ADAPT is based on the concept of dynamic 
event trees (DETs) which use explicit modeling of deterministic dynamic processes that 
take place during plant system evolution along with stochastic modeling [11, 12, 13, 20, 
21]. In PRA using DETs, all scenarios starting from the initiating event are considered 
simultaneously.  
 
The branchings occur at user specified times and/or when an action is required by the 
system and/or the operator. For example, every time a system parameter exceeds a 
threshold or setpoint (the thresholds and setpoints are specified by the analyst as input), 
branching takes place based on the possible outcomes of the system/component response. 
These outcomes then decide how the dynamic system variables will evolve in time for 
each branch. Since two different outcomes at a branching may lead to completely 
different paths for system evolution, the next branching for these paths may occur not 
only in different times, but also based on different branching criteria.  
 
Like all the other DET generation techniques presented in the DET overview above, the 
philosophy of the ADAPT approach is to let a system code (simulator) determine the 
pathway of the scenario within a probabilistic context.  When conditions are achieved 
that would lead to alternative accident pathways, a driver generates new scenario threads 
(branches) for parallel processing.  The branch probabilities are tracked through the tree 
using Boolean algebra.  To avoid numerical catastrophe due to enormous number of 
branch executions, it is necessary to terminate branches based on user defined truncation 
rules, such as truncating an execution when a branch probability falls below a given limit 
or when the user specified simulation time is exceeded.   
 
Regarding its contribution to the state-of-the art, ADAPT combines the active component 
modeling approach and parallel processing capability of DENDROS [18 with passive 
component handling capability of MCDET [17].  It differs from MCDET, however, in the 
way uncertainties are handled.  As indicated in Section 2.1, MCDET first divides the set 
of stochastic variables (which it regards as aleatory uncertainties) into two subsets of 
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discrete (Vd) and continuous (Vs) variables.  Then it selects an element  using 
Monte Carlo sampling from Vs and runs the simulator with vs for all elements of Vd 
(considered as paths of an event tree).  ADAPT also regards the variables associated with 
the stochasticity in the active (e.g. valves, pumps) and passive (e.g. pipes, steam 
generator tubes, containment) component behavior and other severe accident phenomena 
(e.g. hydrogen combustion) as aleatory uncertainties.  Uncertainties associated with 
simulator inputs (e.g. heat transfer coefficients, friction coefficients, nodalization) are 
regarded as epistemic.  For active components, the ADAPT approach is similar to that 
used by DENDROS in that the timing of the branch initiation is determined by the 
simulator based on the computed magnitude of the process variables (e.g. pressure, 
temperature, level) and the control laws, as well as possible failure modes of the 
component.  For example, the time at which a demand will be placed on a safety relief 
valve to open and close will be determined by the simulator based upon the computed 
pressure and valve setpoint.  The valve may open and close in response to the setpoint 
pressure but may also fail to close on demand.  At this point in time, ADAPT generates a 
branching point with two (or more) possible scenarios to be followed by the simulator.  In 
the case of passive component behavior and other stochastic phenomena, ADAPT uses an 
approach similar to Latin Hypercube Sampling from the cumulative distribution function 
(CDF) of the dynamic variables relevant to the components and phenomena under 
consideration.  

Vsvs ∈

 
(The ADAPT approach to the stochastic modeling of passive components and severe 
accident phenomena allows reusable scenario information so that if the CDFs used to 
initiate the branches are changed, the simulations do not have to be repeated.)  
 
ADAPT will be described in much more detail in Section 3. 
 
 
2.3  MELCOR 
 
As mentioned above, the integrated accident progression phenomenology computer code 
chosen to be used for this project was MELCOR [19], although there is nothing in the 
developed ADAPT that intrinsically is dependent on using MELCOR and only 
MELCOR.  The authors strove to make ADAPT as flexible and phenomenological code-
independent as possible.   That is, as will be discussed below, the architecture is 
independent of the phenomenological code, but some small pieces of the infrastructure 
need to be written anew for each code which ADAPT is to drive. 
 
MELCOR is a fully integrated, relatively fast-running code used to simulate the 
progression of accidents in light water reactor nuclear power plants.  A wide range of 
accident phenomena can be modeled with MELCOR including thermal-hydraulic 
response of the reactor coolant system, reactor cavity, containment and confinement 
buildings; core heat-up, degradation, and relocation; ex-vessel debris behavior; core-
concrete attack; hydrogen production, transport, and combustion; fission product release 
and transport; impact of engineered safety features on thermal-hydraulic and radionuclide 
behavior.  MELCOR has been validated against experimental and plant data [22, 23].  It 
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uses the “control volume” approach to describe the plant systems.  No specific 
nodalization of a system is forced on the user, which allows a choice of the degree of 
detail appropriate to the task at hand.  Reactor-specific geometry is imposed only in 
modeling of the reactor core.  
 
A MELCOR calculation is executed in two parts.  First, an executable called MELGEN is 
used to specify, process, and check input data, as well as to generate the initial restart 
information, written to a restart file.  Then, the second executable called MELCOR uses 
that restart file and specific MELCOR input data (general information including the 
problem duration, time steps, edit information, etc. written to a separate file called 
MELCOR Input File) to advance the problem through time. 
 
MELCOR consists of a number of modules called packages.  The packages that are of 
particular interest from the viewpoint of this research work include the Control Functions 
(CF) package, Flow Paths (FP) package, Burn (BYR) package, and Executive (EXEC) 
package.  The CF package is used by the user to define functions of variables in the 
MELCOR database.  The values of these functions are made available to other packages 
in MELCOR.  ADAPT utilizes the CF package to implement the branching rules for 
simulations.  For example, pressures in appropriate control volumes may be used to 
control the opening of a valve or initiate the failure of containment, the temperature in a 
volume may define the enthalpy associated with a mass source/sink, or the particle 
loading on a filter may modify the flow resistance in the corresponding flow path.  The 
user can also simulate the complicated control logic, involving the values of a number of 
variables in the system.  The FP package, together with Control Volume Hydrodynamics 
(CVH) package, is used to model thermal-hydraulic behavior of liquid water, water 
vapor, and gases in MELCOR.  The main application of the FP package is to connect the 
control volumes from the CVH package.  The BUR package allows the user to model gas 
combustion in control volumes.  The EXEC package is used to control the overall 
execution of MELGEN and MELCOR calculations.  It coordinates different processing 
tasks for other MELCOR packages, including file handling, input and output processing, 
modification of sensitivity coefficients, selection of system time-step, time advancement, 
and calculation termination. 
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3.  ADAPT Architecture and Infrastructure 
 
 
This section presents the computational architecture and  infrastructure of ADAPT which 
allows flexibility to link ADAPT with different system simulation codes, parallel 
processing of the scenarios under consideration, on-line scenario management (initiation 
as well as termination) and user friendly graphic capabilities. First presented is a system 
overview. Then, the distributed execution support leveraged by ADAPT will be 
discussed. Finally, the implantation of a prototype which will implement the system 
described will be presented.   
 
 
3.1. ADAPT Overview  
 
A schematic overview of the ADAPT architecture is shown in Figure 1. The ADAPT 
system is composed of a Server, a set of compute nodes that will be used to follow 
transient in each branch via a Plant Simulator (SIM), a Distributed Database 
Management System that will enable the access to data generated by the Plant Simulator, 
and a set of Client programs and tools that will allow end-user to interact with the 
ADAPT system.  
 
Following an initiating event, Client starts a new experiment by submitting the request to 
the Server. The request includes a reference to the Plant Simulator, and necessary input 
files that contain initial parameters. This request is recorded to the Metadata Database in 
the Server, and the Scheduler initiates an execution using the ADAPT’s simulator-
agnostic Driver on an available compute node. Upon termination of the Plant Simulator, 
the Driver parses its output to determine the cause of termination. If a setpoint crossing 
occurred on a branching condition, the Driver submits one ore more branch execution 
requests to the Server. It is the Server’s responsibility to compute the branch probability 
and check with the Probability Module to decide if the branch should be executed or not. 
The PRA Database (DB) contains data to quantify the likelihood of branches generated 
upon crossing setpoints or following operator intervention. The database can consist of 
the minimum cut sets for the Top Events relevant to the branch in the form of binary 
decision diagrams for fast pre-processing [9] or simply contain probabilities based on 
operational failure data. The branching probabilities (possibly obtained through 
preprocessing) are passed on to the Probability Module. If branching is initiated, the 
Scheduler then spawns a process to follow the branch. The Scheduler can spawn as many 
processes as needed to follow the subsequent branches. The resulting tree structure, 
branch probabilities, and some basic statistics are all recorded in Metadata Database. The 
actual simulation results are left intact in the compute nodes they have been executed. 
Access to those files is provided by Distributed Database Management Systems by 
leveraging the STORM middleware [10, 11].  
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Figure 1. ADAPT System Architecture. 

 
 

The interface to the Plant Simulator is abstracted to allow use of different plant 
simulators with possibly different computational models. A Plant Simulator needs to 
interface with the runtime system in two places: 1) during execution for task branching 
and migration, and, 2) before and after execution, to load and store its state and results. A 
plant simulator-agnostic driver has been developed that communicates with the 
distributed database system to retrieve and store the necessary input and output files 
needed by the plant simulator. In other words, the driver stages the necessary input files 
prior to execution of the plant simulator, and after completion of the execution it ``stores'' 
the output files generated by the plant simulator on the distributed database system. Thus, 
the plant simulator can be run without any modifications. 
 
In summary, the significant features of the ADAPT system are: 
 

1. The ADAPT system is designed for a distributed computing environment; the 
scheduler can track multiple concurrent branches simultaneously.  

 
2. The scheduler is modularized so that the branching strategy can be modified (e.g. 

biasing towards the worse event).  
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3. Independent database systems store data from the simulation tasks and the DET 
structure so that the event tree can be constructed and analyzed later.  

 
4. ADAPT is provided with a user-friendly client which can easily sort through and 

display the results of an experiment, precluding the need for the user to manually 
inspect individual simulator runs.  

 
The ADAPT system has been designed targeting Enterprise-Grid environments. An 
Enterprise-Grid is a small Grid environment that is composed of a heterogeneous 
collection of computer and network resources within a single administrative domain 
and/or institution. Specifics and challenges of the runtime system will be discussed in the 
next sections.  
 
 
3.2. System Software Infrastructure  
 
In this section, the requirements and challenges of a system software framework that will 
support dynamic reliability and risk assessment techniques are further discussed. The 
focus is on three major components: distributed execution support, distributed database 
support, and the scheduling component that orchestrates the distributed execution.  
 
 

3.2.1 Distributed Execution Support  
 
In ADAPT distributed execution support is needed in order to run Plant Simulators on a 
set of heterogeneous compute and network resources. The framework should have an 
open architecture that will allow easy replacement of the components and the algorithms 
used in those components. The runtime environment should support execution of stand-
alone or parallel plant simulators, staging of the necessary input and output files for the 
execution, and a mechanism to let the Plant Simulator communicate with the Scheduler to 
instantiate new branches in the DET by running new simulations.  
 
For branching and task migration, as a first step application-level migration techniques 
are relied upon. That is, application specific control mechanisms and checkpoint code are 
used. For example, MELCOR [24] allows users to define their own Control Functions 
and those functions are provided in the simulation input files. With the use of MELCOR's 
control function syntax and language it is possible to monitor and modify simulation 
variables, create checkpoints, or even stop the execution of the application. If an 
application does not support user defined control functions, it is possible to insert those 
monitoring functions and the control logic to the application either at compile time or at 
runtime [25] with minimal intrusion. Since the focus of the framework is neither to 
deliver a new computation steering tool nor a new checkpointing system but provide an 
efficient distributed execution for restartable applications we plan to leverage the existing 
work on computation steering [26] and checkpointing [27, 28] when needed.  
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3.2.2 Distributed Database Support  
 
ADAPT necessitates mainly two types of distributed database support. The first one is 
access to well-structured data including the DET structure itself and metadata about the 
simulations. The second one is access to the input and output files of the simulations. 
Although it is possible to define strongly-typed structures for the input and output files of 
the simulations, those data will be accessed by the simulations in application specific 
ways. In other words, unless the applications are modified directly, they will use their 
own access mechanism to retrieve and store those files. Below, the requirements of these 
two types of database support are examined in more detail.  
 
For handling simulation metadata, various options exist. One possibility is to design a 
relational schema and implement it via existing relational databases. Such an approach 
may prove too restrictive, however, and would necessitate the development of application 
specific user interfaces to access and process the data. Consider an example case with 
multiple plant simulators. The metadata required for each plant simulator does not need 
to be exactly the same, and most likely it will not be the same. Although one might 
attempt to find a common schema that will cover all the existing simulators' metadata, 
this approach still has the problem of extensibility. An alternative would be to use XML 
schemas to describe metadata schemas and a generic framework such as Mobius [29, 30] 
that will allow the analyst to design and deploy schemas for the existing plant simulators 
as well as give him flexibility to extend those schemas for new simulators.  
 
Direct and efficient access to the data stored in application specific format is the second 
type of database support needed. ADAPT uses a simple execution model, in order to 
avoid modification of simulators, that necessitates staging the data files in and out. To 
make this possible, a distributed database system is needed that is capable of retrieving 
and storing user-defined format data in an efficient manner.  
 
Other than staging input files, another major responsibility of the distributed database 
system is efficiently processing of analysis queries. Even some of simple queries, such as 
plotting a system variable over time (e.g. pressure, temperature etc.) for a complete 
scenario might require accessing multiple files stored on multiple nodes; since a complete 
scenario could be composed of multiple branches executed on different nodes. Another 
type of the query may involve comparison of two or more scenarios' data.  
 
There are multiple use cases for such a query. To start with a very basic case, a 
comparison of the results of two or more scenarios may be wanted, presented either 
visually or mathematically, in order to a gain better understanding of the dynamics of the 
plant. The same motivation inspires a second use case scenario, where the analyst may 
want to group/cluster multiple scenarios that are ``close'' to each other. Another use case 
involves dynamic execution. If it were possible to identify a scenario that had already 
been executed in either another study or even in the same study but happen to occur after 
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a different event sequence, we could eliminate the execution of redundant copies of it. 
One can extend this idea by searching not only exactly identical scenarios but ``very 
similar'' ones. Combining this with the risk factors might allow us to prune event trees at 
a much faster rate.  
 

3.2.3 Scheduling  
 
Many forms of the scheduling problems have been well studied over the last couple of 
decades, such as, independent task scheduling [31], DAG scheduling [32] scheduling of 
multiple parallel jobs on space-shared systems [33], and, recently, batch-shared I/O 
scheduling [34, 35]. Some of the recent Grid scheduling work [36, 37] addresses 
independent task execution on the Grid environment, and the others focus on workflow 
scheduling [38, 39, 40]. Kondo et al. [41] proposed resource prioritization heuristics for 
scheduling short-lived applications onto enterprise desktop grids. Raadt et al. [42] 
presents a framework for scheduling divisible loads [43], which has been implemented as 
an extension to A Parameter Sweep Tool [36, 44].  
 
Dynamic Event Tree generation poses a new scheduling problem which is called here 
Dynamic Tree Scheduling. It has some unique properties that make existing scheduling 
techniques not directly applicable. First of all, the workload is dynamically generated 
while executing the portions of the workload. Standard DAG scheduling techniques and 
workflow scheduling techniques necessitates that the task graph and workflow--which is 
usually represented with a DAG too--is given as an input, and they compute mapping of 
the tasks to compute nodes (with possible duplication in workflow scheduling) that will 
minimize a cost function, e.g. execution time. The end of the DET generation is the 
creation of a tree, which is a special instance of DAG. Even if the exact shape of the tree 
and the execution time of the tasks in that tree could be guessed, that knowledge could 
not be used to find an optimum scheduling, because, to the best of the writers’ 
knowledge, there is no optimum tree scheduling algorithm for non-uniform vertex 
weights (task execution times) and edge weights (communication costs).  
 
Another approach for scheduling could be looking at a snapshot of this problem, and 
model the scheduling problem as an online independent job scheduling problem, such 
that at completion of each task, zero or more tasks are submitted to the system. The non-
deterministic nature of the branching, however, makes it impossible to predict the 
execution time of every single branch accurately, if it is possible at all. Hence, neither the 
standard scheduling techniques, such as MinMin, MaxMin [31], nor their enhanced 
versions that would take the I/O into account [36, 44, 45, 46] nor more advanced 
hypergraph partitioning-based scheduling approaches [34,  35, 47] can be directly 
applied.  
 
In the framework, a pluggable scheduling interface has been designed and three basic 
scheduling techniques have been implemented: 1) random scheduling, 2) first-come first-
served scheduling, and 3) greedy staging minimization. As their name implies, when a 
compute node becomes idle, random and first-come first-served scheduling techniques 

 27



either picks a random task from the task queue, or picks the very first one in the queue. 
When a compute node becomes idle, greedy staging minimization algorithm first scans 
the task queue for a task whose parent had been executed on the same compute node; if 
such task exists it is picked and executed on that node. Otherwise, the first task in the 
queue is executed in that node.  
 
 
3.3 ADAPT Prototype Implementation  
 
ADAPT attempts to materialize many of the ideas presented in the Section 3.2. 
MELCOR [19, 24] has been used as an example of a plant simulator. MELCOR consists 
of four main components: the driver, the user tools, the scheduler process, and the 
database.  
 
 

3.3.1 Driver 
 
The developed driver interfaces with existing plant simulators, such as MELCOR [19, 
24], in order to assimilate dynamic data inputs. In the current version of ADAPT, the 
driver requires that a plant simulator SIM provides following four features  
 
• SIM reads its input from command-line and/or text file  
 
• SIM has check-pointing feature  
 
• SIM allows user-defined control-functions (e.g. stopping if a certain condition is true)  
 
• SIM output can be utilized to detect stopping condition  
 
If a simulator provides these features it can be used in ADAPT without any 
modifications. Luckily, many available plant simulators provide these four basic features.  

 
Figure 2 illustrates the driver’s workflow and its interaction with the plant simulator. The 
driver takes a templated version of the simulator's input file(s). Upon hitting a branch 
condition, it is driver's responsibility to prepare the input file, for branches, using an edit-
rules file. In the current prototype the edit-rules file and templated input file(s) are 
provided by the application user. The long-term goal here is to develop a compiler that 
will read user-friendly branching rules and generates simulator specific edit-rules.  
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3.3.2 Client Tools  
 
A stand-alone Java based GUI user interface (see Figure 3) has been developed as well as 
a Web Portal (see Figure 4) that will allow user to submit new initiating events, monitor 
the generation of dynamic event trees, checkpoint (pause) a running experiment, re-start a 
check-pointed experiment, and provides some analysis functionality of simulation results. 
The Java Client can operate on any system which can support the Java Runtime 
Environment (JRE) version 1.5. It supports the same functionality as the ADAPT web 
portal (experiment submission, experiment checkpointing, etc.) , but also allows for real-
time monitoring of the experiment progress and has built in analysis capabilities which 
include but are not limited to: analyzing event tree structure and determining the 
probability of all scenarios, downloading and displaying plot data from simulator output 
files utilizing the STORM middleware, and the ability to monitor multiple experiments 
and make cross-experiment comparisons of the results.  
 
Moreover a set of command-line tools is provided for more experienced users. Some of 
these tools are:  
 
• An experiment submission tool, which gives the user the ability to launch a new 

experiment using driver.  
 
• monitoring tools, which inform the user what progress has been made in executing any 

of the current experiments.  
 
• a command to halt the execution of all current branches, and terminate the scheduler 

process, such that no branches are being executed. This effectively acts as a checkpoint, 
such that when resumed, the scheduler process can re-execute the terminated branches 
continuing where they left off. Please note that no branches that already completed 
successfully will need to be re-executed.  

 
• a command to aggregate all file based outputs for a given experiment into a common 
location.  

 
• a command to remove an experiment from the system, which involves cleanup of any 
metadata about the experiment, as well as cleaning up any file based outputs created by 
any branch executions.  
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Figure 2. Driver. 
 

 
 
 
 

  
 

Figure 3. Stand-alone Java Client. 
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Figure 4. Web Portal. 
 
 

3.3.3 Scheduler  
 
The scheduler process is responsible for determining when and where a new branch of a 
dynamic event tree should be executed. As input, the scheduler process takes a list of 
compute nodes, output directory locations, a pointer to the database for metadata storage, 
and the desired remote shell (e.g. rsh, ssh) commands. The scheduler process will execute 
any branches that have not been yet executed, by managing the pool of available compute 
nodes. The order and the compute node that a branch will be executed depend on the 
scheduling algorithm chosen when the scheduler is initiated. Current scheduler runs 
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continuously as a background process and hence executes branches on compute nodes as 
long as there are new branches to be executed or until it is halted. When it is halted, it 
will checkpoint any branches that were currently running but had not yet completed; so 
that when the next time ADAPT server is re-started these branches can be resumed from 
the point they stopped.  
 
As mentioned in Section 3.2.3, the current prototype has a pluggable scheduling 
interface, and out-of-box it provides three basic scheduling techniques: 1) random 
scheduling, 2) first-come first-served scheduling, and 3) greedy staging minimization. 
The default technique is greedy staging minimization but user can choose to use a 
different technique.  
 
 

3.3.4  D Database  
 
For distributed access to user created files, the STORM middleware has been leveraged. 
STORM is a middleware [48, 49] that is designed to provide basic database support for: 
1) Selection of the data of interest, and 2) Transfer of data from storage nodes to compute 
nodes for processing. STORM’s default binary and text file extractor object have been 
leveraged to read the data directly from simulation outputs. A customized STORM Java 
Client Object has been developed that interacts with ADAPT’s Metadata Server and 
builds the required STORM database initialization files on-the-fly for dynamic even trees 
that are concurrently being generated. Hence, using the Java Client, the end-user can 
query the simulation output files both while dynamic event trees are being generated and 
after the trees have been generated.  
 
In the current version of ADAPT, a relational database is used, in particular MySQL v5 
[50] to store the metadata6. A MySQL database, with transaction supported tables, stores 
information about which experiments are in the system, in either a completed or 
incomplete state. An experiment consists of one or more branches. For each branch, it is 
in the state of being queued, running, or completed. Both the user tools and the scheduler 
process interact with the database. When a given branch issues sub-branches at the end of 
its execution, the update of the completion state and the submission of the sub-branches 
are collected together into one transaction, to maintain consistency. 
 

                                                 
6 Storing the metadata in a static structure imposed by a relational database is definitely not the most 
desirable approach. In order to provide a more flexible solution our long-term goal is to use an XML 
database. 
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4.  Demonstration 
 

Since ADAPT must be utilized in consort with a pre-existing accident simulator, 
demonstration cases were performed with the MELCOR severe accident analysis code, as 
briefly described in Section 2.3. The MELCOR code has progressed from a probabilistic 
risk assessment tool, as it was originally developed and intended for, to a best-estimate 
severe accident analysis code. It has moderately complex system nodalization capability 
and physical models for simulation of plant system thermo-hydraulic behavior. It has a 
simulating capability for the containment behavior and evaluation of source term to the 
environment. Also, it has a good modeling flexibility through the use of control volumes 
for plant nodalization, control function approach to model an accident scenario of 
interest, and built-in sensitivity coefficients that allow the user to change a large number 
of modeling parameters via input, thus significantly facilitating the process of sensitivity.  
 
Although an existing input deck for the Zion Nuclear Power Plant was used in the 
demonstration, the results are not intended to be representative of the behavior of any 
specific plant.  Our objective is not to perform a PRA for a particular plant but to develop 
an advanced methodology for doing so and demonstrate the utility of that methodology. 
 
Details of the plant model used in this demonstration are described in this section. The 
branching rules and their associated probabilities required for ADAPT input are detailed, 
as well as their phenomenological justification.  
 
 
4.1  Reference Plant Nodalization  
 
The input deck utilized in these studies is the model of the Zion Nuclear Power Plant, a 
Westinghouse-type PWR with a large dry containment. This plant has four loops each 
with a U-tube Steam Generator and a Reactor Coolant Pump. One of the loops also 
contains a pressurizer connected to the hot leg.  Figure 5 [51] shows the MELCOR 
nodalization for this input deck.  Figure 6 [52] gives the nodalization of the reactor itself 
as well as a modified nodalization of the pressurizer-leg steam generator. The steam 
generator nodalization shown in the one which is used in all experiments presented here.  
 
The reactor pressure vessel contains the core with fuel assemblies, control rods, support 
structures, the upper plenum with inlet and outlet nozzles, the downcomer region and the 
upper head. The core itself is represented by a 5-ring, 12 level model with three core 
control volumes per thermal-hydraulic level and 10 heated levels. The thermal-hydraulic 
nodalization of the vessel core region is divided into a 5-ring, 4-level control volume 
(CV) geometry (CV 341-5, 351-5, 361-5, 371-5, 381-5). The upper plenum is divided 
into a 5-ring, 2 level nodalization with a control rod housing volume for each ring (not 
shown). The rest of the reactor vessel area is represented by three nodes: Reactor 
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Pressure Vessel downcomer (CV 310), lower plenum (CV 320), and upper head (CV 
399) [51].  
 
 
 

  
 
 

Figure 5. Reference Plant Nodalization. 
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Figure 6. MELCOR Nodalization of Natural Circulation.
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The steam generator consists of both the primary and secondary sides of the plant. The 
primary side contains thousands of steam generator tubes as well as inlet and outlet 
nozzles. The secondary side of the steam generator (SG) contains the feedwater inlet 
nozzle and associated lower plenum as well as the steam outlet nozzle connected to the 
upper plenum.  
 
The four Reactor Coolant System (RCS) loops are modeled as two loops, one 
representing the loop containing the pressurizer and a triple loop representing the other 
three loops. The nodalization for these two loops is identical with the exception of the 
pressurizer in the single loop. The hot leg for each loop is divided into two directions 
(CV 501-4, CV 601-4), each direction containing two nodes. This is to account for steam 
counter flow from the steam generators during accident situations. The primary side of 
the steam generator has a finer nodalization scheme. The SG inlet plenum is divided into 
four nodes (CV 510,514, 518,519), the rising tube region into six nodes (CV 410-2, CV 
418-420), the cross tubes into four nodes (CV 413-4, 421-2), the downside tube region 
into six nodes (CV415-7, 423-5), and finally the SG outlet plenum is represented with a 
single node (CV 518). Finally, the cold leg has four nodes: two before (CV520-1, 620-1) 
and two after the Reactor Coolant Pump (CV 522-3, 622-3).  
 
Figure 6 [52] illustrates modeling of natural circulation in the system during the accident 
progression. As shown, the hot leg is modeled in two sections, an upper half and a lower 
half. The halves are connected by flow paths (FL 421-2), which allow mixing between 
them. Such a division of the hot leg is necessary to model the flow of steam to and from 
the steam generators because countercurrent flow of a single fluid cannot be calculated in 
a single control volume.  
 
The overall pressurizer volume including the surge line is divided into seven nodes: six in 
the pressurizer itself (CV 402-7), and one for the surge line (CV 490). The pressurizer 
relief tank is represented by a single node. No control volumes are allocated to 
pressurizer PORVs (Pressure Operated Relief Valve) and SRVs (Safety Relief Valve).   
Instead, fluid removal from the pressurizer through these valves is simulated using ‘flow 
paths’ (FL 491 for PORV, FL 492 for SRV).  
 
The nodalization of the secondary loop is rather simplistic (see Figure 5). The  
SG secondary side consists of just three nodes: the downcomer, the boiler, and the dome 
(not shown). The rest of the secondary side includes two control volumes for the main 
steam line for the single (CV 590) and triple loops (CV 690), two control volumes to 
represent main and auxiliary systems (CV 595, 695), and another two control volumes, 
one for the main turbine (CV 598), and the other for the SG environment (CV 599).  
The containment volume is divided into four nodes: cavity, lower compartment, annular 
compartment, and upper compartment. The SG steam line consists of two nodes, with the 
corresponding relief valves modeled through ‘Flows’. One node is allocated to the 
turbine, and one to the SG environment. Finally, the general environment is represented 
by two nodes (not shown).  
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The secondary side of the plant begins with the main steam line directed to the main 
turbine. After the turbines, the steam condenses back to water in the condenser using 
service water (e.g., from a nearby lake or pond) as coolant, and is pumped back to the 
steam generator (not shown).  
 
 
4.2  Initiating Event and Accident Progression  
 
Because Station Blackout with loss of Auxiliary Feedwater System has the potential for 
high consequences, it was chosen as the reference initiating event for the severe accident 
simulation. In the scenario analyzed, one of the relief valves on the SG Main Steam Line 
(CV 590) is assumed to stick open. An initial small leakage is assumed from the RCP 
seals following loss of offsite power. Due to the loss of pressure in the Steam Generators, 
the water on the secondary side begins to boil quickly and the water level decreases. This 
results in a rapidly degraded heat removal capacity from the primary coolant. After all the 
water in Steam Generators boils off and no more heat is removed by SGs, the added 
decay heat from the reactor core to the primary coolant makes the RCS pressure rise 
steadily. Due to the loss of power to the pressurizer PORVs (Valve 491), they do not 
respond to the RCS pressure increase above the setpoint for PORV opening. Instead, 
upon reaching a higher pressure setpoint, the passive Safety Relief Valves (Valve 492) 
open dumping the primary system inventory to the Pressurizer Relief Tank (CV 450). 
The system pressure then cycles in response to SRV openings and closing.  
 
After a period where the SRV cycles, the Pressurizer Relief Tank becomes full and its 
rupture disk fails resulting in flashing of the hot steam to the containment. With each 
SRV opening, the primary coolant system loses a part of its inventory, which in time 
leads to the uncovering of the reactor core. The uncovered part of the reactor core starts 
to melt damaging both the fuel and the cladding. The hot radioactive gases are released to 
the in-vessel space and travel through the hot leg (CV 500-503) to the Pressurizer 
(CV402-407) and Steam Generators. The superheated steam and hydrogen flow results in 
hot leg, Pressurizer surge line (CV 490), and steam generator tube heating with a 
potential of a failure by creep rupture. Eventually the core becomes fully uncovered, with 
extensive damage to the fuel and cladding. With the growing creep rupture challenge to 
the hot leg, surge line, and steam generator tubes (CV 410-425), eventually one of those 
components fails due to creep rupture, thus rapidly depressurizing the primary coolant 
system. If the steam generator tubes fail first, the radiological consequences are most  
severe because of the release of radioactive material to the environment by containment 
bypass. Otherwise, if the surge line or hot leg fails first, rapid depressurization of the 
primary system relieves the thermal load on steam generator tubes and prevents their 
failure [53, 54, 55]. The entire lost RCS inventory ends up in the containment (not 
shown), adding a large amount of heat to its volume and increasing the containment 
pressure. Since there is no power in this scenario to operate a heat rejection system to 
relieve the increase in pressure, if power is not restored, with time the pressure will rise to 
a point at which the containment fails.  
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Another contributor to the pressure growth in the containment is Reactor Coolant Pump 
seal leakage events. Different leak sizes are possible based on different models for seal 
degradation. The size of such a leak can also significantly affect the accident progression 
path. For example, a large enough leakage can lead to an early primary system 
depressurization considerably relieving the stress on the hot leg, surge line, and SG tubes, 
which may prevent creep rupture of those components.  
 
Two other critical events can have a substantial impact on the accident path and 
consequence: a hydrogen deflagration or detonation in the containment and the 
possibility of power recovery. Hydrogen is produced in the reactor core as a result of the 
steam-zirconium reaction. Hydrogen can be released to the containment through SRVs, 
failure of either the hot leg piping or the surge line, or due to failure of the lower head of 
the reactor vessel. Depending on the concentration of hydrogen along with other diluents, 
a hydrogen deflagration or detonation can occur having an immediate threat to the 
containment.  
 
Recovery of AC power can have a variety of impacts on accident progression depending 
on the time of power recovery. If it occurs before core damage has begun, the accident 
can be arrested without any core damage or significant radiological consequences. Core 
damage may also be arrested as in the Three Mile Island Unit 2 accident, if power 
recovery occurs early enough in the severe accident progression process. Similarly, if 
power is recovered following failure of the lower head of the vessel, but before 
containment failure, active containment cooling systems will arrest the continued rise in 
containment pressure and containment failure can be averted.  
 
 
4.3  Branching Rules  
 
For the test case, the authors formulated and utilized the following branching conditions 
for this demonstration: 
 

• Power Recovery  
 
• Creep Rupture of RCS Components  
 
• Hydrogen Burn in the Containment  
 
• Containment Failure Due to Overpressure  

 
These phenomena represent four distinct areas of accident progression analysis—reactor 
system performance, reactor coolant response, containment challenge, and containment 
response—so that the breadth of situations encountered in a complete APET analysis is 
considered in the demonstration.  All of these phenomena are calculated deterministically 
within MELCOR with no consideration of what the uncertainties may be and how they 
might affect the calculations. In order to consider these uncertainties in the analysis, 
probability distributions were assigned for each of the items listed above. These 
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distributions are discretized with each discrete point representing a branching condition. 
Each of the modeled phenomena for this demonstration is described in further detail in 
the following subsections. 
 
 

4.3.1 Creep Rupture of RCS Components  
 
During this Station Blackout scenario, as the core begins to overheat, hot gases travel 
through the RCS increasing the temperature of structures and decreasing their strength. 
The three components of concern are the steam generator tubes (SG Tubes), the hot leg, 
and the surge line to the pressurizer. If SG tubes fail before the hot leg or the surge line, a 
pathway will exist for direct radionuclide release to the environment. However, failure of 
the surge line or hot leg first will cause depressurization of the RCS which will preclude 
rupture of the SG tubes. In MELCOR, the criterion for rate-dependent creep rupture is 
based on the time-fraction damage integral [56]:  
 
 

                    
 
 
 
 
where  
 t

f 
= creep rupture failure time  

 
 t

R 
= time to rupture as a function of T (t),  

 
σ = stress in the pipe wall  
 

 m
p 

= intensity factor associated with a flaw in the wall (assumed to be unity)  
 
The value of t

R 
in the denominator is given by the Larsen-Miller correlation [57] and is 

calculated by MELCOR. The form of t
R 

differs with different materials. For the hot leg 
and surge line (SS316), it is  
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for SG tubes (Inconel 600), it is  
 

  
 
  
 
 
where  
 
p = pressure inside the pipe (kPa),  
T = temperature of the structure (K),  
σ = mechanical stress in the structure (log σ given in kPa).  
 
 
Like any correlation, the Larsen-Miller correlation has an associated uncertainty. To 
represent this uncertainty, the following value is calculated  
 
 

  
 
 
 
with R known as the creep rupture parameter. Normally, a wall is assumed to fail when 
R reaches unity. For the case studied, if the uncertainty in the creep rupture parameter is 
not taken into account, surge line rupture will always precede and preclude rupture of the 
steam generator tubes. In order to quantify the uncertainty in R, a cumulative distribution 
function (CDF) was constructed from experimental data in the form of a lognormal 
distribution [56]. The distribution is given as  
 

  
 
 
where Φ(R)  is called the fragility curve. For the purpose of analysis in the ADAPT 
framework, this CDF is discretized into 5 points where the points correspond to 
probabilities of 5%, 25%, 50%, 75%, and 95%. The corresponding R values are 0.518, 
0.764, 1.00, 1.31, and 1.931. These points are now used as branching criteria. When  
MELCOR calculates an R value of 0.518, the execution will stop and two new branches 
will be created. One branch will continue executing with a rupture while the other will 
have no rupture and the threshold of R will be increased to the second point, 0.764 and so 

 40



it goes until there are no points left. Figure 7 shows a graphical representation of the 
fragility curve as well as the branch points at which the analysis is interrupted.  
 

4.3.2 Power Recovery  
 
The station blackout scenario is typically found to be an important contributor to nuclear 
power plant risk. In the absence of all AC power, key emergency systems with the 
purpose of heat removal from the core will fail to actuate potentially leading to core 
damage. There is always a chance, however, that power will be recovered at some point 
during the scenario. Power recovery at a critical moment in the severe accident evolution 
can lead to the arresting of core damage or preventing containment failure. It is also 
possible that power recovery could lead to worse consequences. For example, a high 
concentration of steam in the containment atmosphere can prevent a hydrogen 
combustion event. Resumption of AC power could not only result in a decrease in steam 
concentration but also produce sparks igniting the hydrogen and carbon monoxide in the 
containment and producing an explosion.  Both the potential positive and negative effects 
of power recovery must be considered. 
 
There are several categories of loss of offsite power (LOOP) events which can include 
plant centered, switchyard centered, grid related, and weather related. With the use of 
composite data (considering all types of LOOPs) from NUREG/CR-6890 [58] (see Table 
1) the probability of power recovery was assessed as a function of time as a log-normal 
probability density function.  
 

     
 
 

The non-recovery probability is thus the complementary cumulative distribution function  
 

     
 
where  
 
 t = offsite power recovery time  
 μ = mean of natural logarithm of the data  
 σ = standard deviation of natural logarithm of the data  
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Figure 7. Graphical representation of the discretization of the creep rupture 

curve. 
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Table 1. Probability of exceedance versus duration curve fits and summary 
statistics [58]  
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Five time points from the power recovery were selected as branching points. The values 
chosen were 1 hour, 2 hours, 4 hours, 6 hours, and 8 hours with corresponding 
probabilities of non-exceedance at 47%, 68.2%, 84.3%, 90.37%, and 93.28%, 
respectively. During MELCOR execution, when the first branching point is reached (1 
hour), the code execution stops and two child branches are create. One branch runs with 
power restored at a 47% probability and those runs with no power recovery at a 53% 
probability. For the latter, the value of the power recovery time is increased to 2 hours 
(the next discrete point) and this process repeats until all discrete points are exhausted.  
 
 

4.3.3  Hydrogen Burn 
 
Because of the magnitude of the deflagration event that occurred in the containment 
building in the TMI-2 accident, there has been considerable interest in hydrogen 
combustion in the severe accident research community [59]. A major deflagration event 
in the containment could potentially cause a pressure spike great enough to challenge the 
integrity of the containment walls. Hydrogen is produced during a severe accident in the 
reactor core through the steam-zirconium reaction. Hydrogen travels through RCS 
components including the SG and the pressurizer. In the case that is analyzed, hydrogen 
is released to the containment through the SRV due to high pressure in the primary 
system. Following a failure of the lower head of the reactor vessel, the hot leg piping, or 
the surge line, hydrogen can also be released to the containment volume.  
 

In order for hydrogen combustion (or the reaction      ) to take place,  
 
the concentration of both hydrogen and oxygen must be sufficiently high as well as 
temperature of the reactants. Also, some diluents such as steam (H

2
O gas) and carbon 

dioxide (CO
2
) can act as suppressers to the hydrogen burn. There is a maximum limit of 

diluents combined concentration (approximately <55%) above which a hydrogen burn is 
prevented. Containment structures can act as heat sources needed to initiate hydrogen 
ignition. Carbon monoxide (CO) is produced in the later stages of the severe accident 
when the molten core attacks concrete. The presence of CO increases the potential for a 
propagating combustible gas explosion [60].  
 
MELCOR utilizes LeChatelier’s formula [61] to determine the threshold of combustible 
gas ignition provided that oxygen and hydrogen are within combustible limits and the 
combined concentration of inert gases is less than the maximum required levels, i.e.  
 

    
 

 44



where n is the actual volumetric concentration (mole fraction) of gases in the containment 
atmosphere calculated by MELCOR and N is the flammability limit (mole fraction) of 
individual gases. While MELCOR-calculated quantities still have modeling  
uncertainties, the major source of uncertainty in the above is the input values of the 
flammability limits of the individual gases. These experiments show that these values can 
be significantly different for different sizes and geometries of test vessels with different 
direction of flame propagation (upward or downward) [62].  
 
In order to represent the uncertainty on the flammability limits it was first assumed that  
x = 1 / N (H2 ) and y = 1 / N ( CO ) are normally distributed about mean values  
µx = 1 / 0.01 = 10 and µy  = 1 / 0.16 = 6.25  (where 0.1 and 0.16 are the MELCOR default 
values for the flammability limits of H

2 
and CO respectively). Their corresponding 

standard deviations were chosen as 10% of the respective mean values, σx  = 1 and   σy  =  
0.625 based on experimental data [62, 63, 64].   By denoting the parameters a = n(H

2
) 

and b = n(CO), and assuming they are fixed values for a given time point, the parameter z 
= ax+by is formed.  It is well known from statistics that z is also normally distributed 
with a mean value of µz  = aµx  +  bµy   and a variance of σz

2
  = a2 σx

2  +  b2 σy
2 

 ,  i.e.  
 

    
 
 
The corresponding cumulative distribution function is  
 

    
 
 
Since the hydrogen ignition criterion is 1≥z, however, the probability region of interest is  
 

    
 
 
At each time step, MELCOR calculates N(H

2
) and N(CO). When the value of P reaches 

the first discrete point specified by the user, MELCOR checks the concentrations of 
oxygen and diluents. It also checks the temperatures of the structures to determine if the 
gas mixture will auto-ignite. If these values are in a range adequate for combustion, the 
execution stop and two branches are created. The first branch continues with a hydrogen 
burn occurring with probability P and the second branch executes with no hydrogen burn 
with probability 1-P. For the branch without hydrogen burn, the probability threshold is 
raised to the next user-specified point. The process again continues until all user-
specified branching points are exhausted.  
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4.3.4 Containment Overpressure Failure  
 
The containment is the final barrier for the release of radioactive material to the 
environment. Containment failure modes are often categorized into early and late 
containment failures, both having differing consequences with regards to source term size 
(magnitude of release of radioactive material) and offsite effect. Early containment 
failures are characterized by larger source terms and insufficient time for an effective 
evacuation while late containment failure is characterized by smaller source terms and 
more time for an effective evacuation [65]. Since early failure tends to have more severe 
consequences it is usually emphasized in APET analyses. Many mechanisms are present 
that can lead to early containment failure such as rapid overpressurization from severe 
accident phenomena such as direct containment heating that can result from reactor 
pressure vessel lower head failure with the primary system at high pressure [66, 67] or 
explosive increase in pressure due to a steam explosion [68, 69] or from hydrogen 
deflagration or detonation [70, 71, 72]. The main mechanism of late containment failure 
is through slow pressure buildup because of failure of AC-powered containment heat 
removal systems.  
 
While MELCOR cannot model the response of the containment to pressure loads, it can 
simulate the effect of containment failure on the accident evolution. The current 
MELCOR model considers containment pressure to be the dominant factor in 
containment failure, although other factors such as structure temperature can play a role 
[24]. Containment failure is modeled deterministically in MELCOR by causing a 
containment rupture when a user-defined pressure has been reached. Although the 
ultimate strength of the shell of the containment is known fairly accurately, it is difficult 
to assess the actual location and pressure level at which failure will occur. The most 
likely failure locations are at points of discontinuity, such as penetrations or the interface 
between the wall and base mat. Thus, containment failure pressure must be treated as a 
distribution.  
 
Fragility curves for containment pressure are used to treat this uncertainty [73] in the 
form of CDFs for containment failure versus containment pressure. Since every plant has 
a unique design for its containment, different fragility curves are used not only for 
different types of containments but different plants with similar containment concepts. 
Figure 8 illustrates containment fragility curves for 5 different plants with a steel 
containment. The test case is not intended to be representative of a specific plant. The 
fragility curve for the Davis-Besse plant was used since it exhibits the highest failure 
probabilities for the lowest pressures.  
 
For this study, a CDF Φ(P) was developed as a normal distribution  
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Figure 8. Containment fragility curves for five steel containments [73]. 

 
where μ

p 
= 85 psig is the mean value of this distribution and σ = 12 psig is the standard 

deviation obtained from curves in Figure 8. Once again this CDF was discretized into 5 
points with probabilities 5%, 25%, 50%, 75%, and 95%. The corresponding pressure 
values are 65 psig, 77 psig, 85 psig, 93 psig, and 105 psig. When the MELCOR-
calculated pressure reaches the first discrete point (65 psig), a branching occurs. Two 
new branches are created, one branch with a 5% probability and with containment failure, 
the second with a probability of 95% and no containment failure. For the second branch, 
the containment failure threshold is raised to the value of 77 psig and this process 
continues until all discrete points are exhausted.  
 
 
 
4.4  Demonstration Results 
 
 
The scenario described in Section 4.2 was executed in two different experiments on two 
different Linux clusters. In the first experiment (Experiment 1) the scenario was executed 
on a Linux cluster consisting of 8 nodes connected with a gigabit Ethernet switch. Each 
computer contained a Pentium 4 3.1 GHz processor, 3 GB of memory, and 2x250GB of 
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local serial ATA disks in a software RAID1 configuration. In the second experiment 
(Experiment 2) four simultaneous scenarios were carried out on a Linux compute cluster 
consisting of up to 40 compute nodes connected with a gigabit switched network. Each 
one of the compute nodes is equipped with dual AMD Opteron 250 processors running at 
2.4 gigahertz, 2x250 GB of local serial ATA disks in a RAID0 configuration with 256KB 
block size, and 8 GB of memory. Experiment 1 served to test the speedup of a single 
experiment resulting from executing the scenario within the ADAPT framework as 
compared to running the scenario in a serial manner. Experiment 1 also served as a means 
of demonstrating some of the graphical features of the ADAPT Client.  
 
Experiment 2 was performed to test the robustness of the ADAPT scheduling system 
with different scheduling schemes utilized. Each of these experiments will now be 
discussed in turn.  
 
Experiment 1 had a total runtime of 9.3 days. This compares to a serial runtime of 72.1 
days, resulting in a speedup factor of 7.8. The experiment resulted in a total of 197 
different branch points, 54 of which were deemed “insignificant” (they fell below the 
experiment’s probability threshold of 10

-4
). There were also 74 “significant” scenarios 

pathways (a sequence of branches) on the tree (A significant scenario is one which ended 
with a probability higher than the experiment’s probability threshold).  
In Figure 9 a visualization of a portion of the event tree generated in Experiment 1 is 
shown. The branches in the tree are color coded based off of their status in the queue. In 
the figure, green branches signify branches whose execution in complete, orange 
branches are insignificant and red branches signify situations in which the simulator 
stopped via some non-user specified reason (an abnormal termination). The software can 
also show when branches are running, waiting in the queue, or have been paused by the  
user. The branches on the event tree are spaced based off of the simulation time at which 
the branch execution completed; hence the horizontal axis on the tree represents time. 
Since these trees may become very large, features are in place to navigate through the 
tree as well as select a desired branch from a list which will focus the event tree display 
on that branch. 
 
In addition to event tree visualization, some analysis features have been implemented into 
the ADAPT client software. The user can view plots of certain simulator-output plot 
variables. While ADAPT does not currently have the ability to directly read simulator 
binary plot files, several plot variables were output to an external data file to demonstrate 
the ability of the client to retrieve the plot data. With plot data spread across several 
compute nodes, the STORM middleware was utilized to gather the data and return it to 
the client. Figure 10 shows an example of a plot that was made from ADAPT/MELCOR 
generated data. Also some other analysis tools are present to assist in obtaining some 
overarching results for the event tree. Figure 11 shows one such example of a chart which 
gives a tally of all different branches which appear on the tree.  
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Figure 9. Picture of portion of event tree generated by Experiment 1. Green 
represent completed branches, orange represents insignificant branches, 

and red represents abnormally terminated branches. 
 

 
 
Aside from event tree analysis capabilities the client software also has the capability to 
interact with the ADAPT server software and the cluster file system. From the client the 
user can launch experiments, pause them, or delete them from the database. Also, all files 
which are output from the simulator can be downloaded from the compute cluster to the 
user’s hard drive.  
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Experiment 2 was been carried out using three different configurations: a 20-, 40- and 80-
CPU configuration, using both CPUs per compute node, i.e. 10, 20 and 40 compute 
nodes, respectively. In the early stages of DET generation the number of branches 
(runnable jobs) will be less than available number of CPUs. Hence, system will not be 
able to utilize all of the available CPUs. Similarly, as the experiment is nearing 
completion, there are again fewer branches to be executed than CPUs. In other words, we 
can only obtain significant gains by increasing number of compute resources in the 
``middle'' of dynamic even tree execution.  
 
Figure 12.a shows that, as the number of CPUs increases, the average time that a branch 
spends waiting in the queue decreases significantly. Figure 12.b shows that the overall 
runtime decreases significantly as the number of CPUs are increased, although the  
speed up is not linear. Figure 13 plots the size of the queue and the number of active jobs 
over the course of the running experiments. With the 20-CPU case, the plateau where all 
CPUs are utilized is reached fairly quickly, and lasts almost the entire time. For the 80-
CPU case, however, the period of full utilization of the cluster is only reached for about 
50% of the time. The problem does not grow explosively enough in the early phase of the 
accident to realize a linear speedup with increased CPUs.  
 
In Figure 14, the average time for each branch is presented in two parts: staging and 
execution. Staging time measures the time required to prepare the input files for the 
branch, and execution time is the time to execute a branch when all of its inputs are 
ready. Note that the execution time is identical regardless of the number of CPUs, since 
the workload is the same. For a greater number of CPUs (thus more compute nodes), the 
scheduler is less likely, however, to assign a job to the same compute node as its parent, 
which contributes to an increase in data staging time. Some data must be transferred from 
parent to child at each branch point. This handoff can be performed efficiently by 
creating symbolic links (a feature of the Linux operating system) between the parent and 
child, if they are on the same computer node. 
 
The system developed in this work can exclude certain files from being handled in this 
way, in case symbolic links are not semantically valid and each child does need its own 
copy of every input. For the Station Blackout experiment, using symbolic links can 
reduce the staging time per branch to less than a second, compared to up to 45 seconds in 
the case that files must be copied between compute nodes. Thus, much of the time 
difference in Figure 12 is due to the increased chance that the 20-CPU job could use this 
optimization, versus the 80-CPU job. Although it didn't make a dramatic difference in 
average runtime for these experimental configurations, for other shorter-running jobs, the 
difference in staging time could be more significant.  
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Figure 10. Snapshot of plot generated by ADAPT using MELCOR data. This 
plot shows the pressure in control volume 402, a volume of the pressurizer. 
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Figure 11. A plot of the distribution of branching types in Experiment 1. 
Note that branching types refer to the MELCOR control function which 

stopped the execution. 
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Figure 12. For Station Blackout experiment, average queue wait time and 
total execution time while varying the number of CPUs. 
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Figure 13.  The Number of Queued and Running Jobs for Each 
Configuration During the Execution, 

 
 

 
Figure 14. Breakdown of the average execution time for different 

configurations. 
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Figure 15 compares the three basic scheduling techniques: Random, First-Come First-
Served (FCFS), and Greedy Staging Minimization (MinStaging), presented in Section 
III.C. Although random scheduling usually generated the worst scheduling, and 
MinStaging generated the best scheduling, unfortunately the improvement is not 
significant. On the average, improvement of MinStaging over Random is 1.6%, and 
maximum it is 2.7%. Although each same-host staging can save up to 45 seconds per 
branch on a single CPU, this savings can be absorbed in the case that the cluster is 
underutilized (as is true for much of 80 processors configuration, see Figure 13). Also, 
scheduling one branch on the same host may preclude scheduling another hypothetical 
branch on the same host immediately after, since that host may now be completely busy; 
depending on the duration of each of the two branches, it may have been better to 
schedule the second one on the same host rather than the first one. Also, different 
branches have different amounts of data that needs to be staged, which could vary the 
savings realized between different candidate branches.  
 
 
 
 

 
Figure 15. Comparison of basic scheduling techniques. 
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5.  Conclusions 
 
 
This project has produced a tool that can make PRAs of nuclear reactors—analyses 
which are very resource intensive—more efficient.  The tool has wider applications as 
well.  Initially, the work was to fuse the APET portion of a PRA to the DSD created by 
Ohio State University.  During the course of the effort, however, it was found that the 
DSD could be linked directly to a detailed accident progression phenomenological 
simulation code—the type on which APET construction and analysis relies, albeit 
indirectly—and thereby directly create the APET.  That is, instead of augmenting and 
simplifying APET construction and analysis to assist an analyst in creating and analyzing 
an APET, the product of this project is a tool that creates an APET and analyzes it with 
minimal analyst interaction.  The expanded DSD computational architecture and 
infrastructure that was created during this effort is ADAPT. 
 
PRAs of nuclear reactors being increasingly relied on by the U.S.N.R.C. in making 
licensing decisions for current and advanced reactors. Yet, PRAs are produced much as 
they were 20 years ago.  They require significant resources to create and analyze.  This 
work applied a modern systems analysis technique to the accident progression analysis 
portion of the PRA; the technique was a system-independent multi-task computer driver 
routine.  Here, ADAPT has been presented, a system software infrastructure that supports 
execution and analysis of multiple dynamic event-tree simulations on distributed 
environments. A simulator abstraction layer was developed, and a generic driver was 
implemented for executing simulators on a distributed environment.  
 
The ADAPT methodology has been described with implementation to severe accident 
phenomenological uncertainty treatment.  As demonstrations of the use of the 
methodological tool in the probabilistic modeling of severe accident phenomena in Level 
2 PRA, ADAPT was applied to quantify the likelihood of creep rupture of pressurizer 
surge line, hot leg, and SG tubes in a PWR with a large dry containment using MELCOR.  
A station blackout initiating event with a failure of the AFWS was considered as in this 
test case.  
 
The results of this demonstration indicate that the developed approach can significantly 
reduce the manual and computational effort in Level 2 PRA analysis.  ADAPT does not 
require any human intervention throughout the analysis.  By implementing the model 
mechanistically, it also eliminates the potential of introducing errors while making 
changes in the input decks manually for running new accident scenarios.  From the 
phenomenological viewpoint, it can also treat the epistemic and aleatory uncertainties 
associated with complex physical phenomena taking place during severe accident 
progression.  Many potential accident scenarios that are ignored in current conventional 
PRA Level-2 analyses because of their static nature are accounted for in the proposed 
methodology, resulting in the consideration of a much wider variety of accident 
scenarios.  The ADAPT methodology can be also potentially used for Level 1 PRA, as 
well as Level 2 analysis, of future plants with passively safe accident mitigation features. 
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While this specific project is completed, further development of ADAPT will occur, 
depending on future projects.  Improving the usability of the system would add features 
to the client tools. These include  
 

•  test and improve simulator abstraction layer to work with other plant simulators, 
such as SCDAP/RELAP5 [74].  

 
•  design and develop more generic metadata management system to accommodate 

different plant simulators.  
 

•  develop a user-friendly method for setting up branching rules.  
 

•  investigate scheduling techniques especially under multiple, concurrent tree 
generation scenario.  

 
• • develop a compiler that will take high-level branching rules and generate 

application specific edit-rules.  
 
This additional development will occur with the applications of ADAPT.  There is 
interest in it both nationally and internationally.   
 
It is important to note that using and applying ADAPT to particular problems is not 
human independent.  While the human resources for the creation and analysis of the 
accident progression are significantly decreased, knowledgeable analysts are still 
necessary for a given project to apply ADAPT successfully.  ADAPT is not an “off the 
shelf” “plug in and walk away” tool.  
 
This research and development effort has exceeded its original goals and can be applied 
to many systems analysis problems.  The problem need not be nuclear reactor safety.  
More broadly,  
 

• If there is a complex systems problem amenable to portrayal as an event tree, and 
 

• If there is a computer code that simulates how the events could progress, and  
 

• If this code has event switches or is amenable to adding them, 
 

Then, ADAPT can be applied to analyze the problem. 
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Appendix 
 

 
Presented here are the wrapper script and web interface that were created in this work for 
using ADAPT with MELCOR in the demonstration.  The ADAPT code itself is not 
presented here as it is currently in the licensing process at Sandia. 
 
 
A.  Wrapper 
 
The following document provides a line-by-line description of the wrapper script used to 
link ADAPT to the MELCOR severe accident analysis code.  First, there is a picture of 
the actual wrapper script with line numbers on the left-hand side.  Following this are 
descriptions of each line and their place in the wrapper script algorithm.  Items in the 
description section highlighted in red are files or scripts specific to ADAPT and those 
items highlighted in green in the description section are those which are specific to 
MELCOR.  Following each of these sections is a flow chart which provides a general 
schematic of how a wrapper script algorithm must proceed in order to work with 
ADAPT.  Please note that this document is still under construction. 
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1-5 
 
6: set: set environment variables, options used: 
 Changing a “-“ to a “+” will negate that option  
 
 -e Exit immediately if a simple command exits with a non-zero 
          status, unless the command that fails is part of an until or 
          while loop, part of an if statement, part of a && or || list, 
          or if the command's return status is being inverted using !. 
  
 -x Print a trace of simple commands and their arguments 
          after they are expanded and before they are executed.  
 
7: Commented-out code 
8: print out hostname and date 
9: <blank> 
10:<Comment> 
11: Define melcor root directory variable.  This variable is the location of melcor, sbo.rst, 
,etc.  and is defined as an input argument 
12: Define RST variable, the restart-file 
13: Define TEMPLATE variable, the templated input file 
14: Define EDITRULES variable, the ADAPT editrules file 
15: Define EXE variable, the melcor executable 
16: Define BRANCHESF, which is the file which contains the branch-specific changes to 
the input file 
17: Define PLOTF, the melcor-external plot file 
18: <Commented> Define ACGRACE, the acgrace tarball 
19-29: Actions for the root branch only 
 19: Test if this is indeed the root branch and that we are NOT resuming a 
 checkpoint 
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 VARIABLES: NCENGINE_ROOT – Defined in ADAPT-server code, this 
 variable is 1 if we are in the root branch and zero otherwise 
  
 NCENGINE_RESUMING_CHECKPOINT – Defined in ADAPT-server code, 
 this variable is 1 if we are resuming a checkpoint and is 0 if we are not 
 
 20: Print out that we are initializing the root branch 
 21: Copy all files from the MELCOR_ROOT location to the current directory 
 where MELCOR is going to be run 
 22: Check for the existence of the plot file in the MELCOR_ROOT directory, if it 
 does exist, copy it to the current location 
 23: use the editrule-apply script with the –init flag to apply initial settings to the 
 root branch (apply branching rules to the root branch) 
 24-27: Need to check on this one 
 28: Remove the branches.tmp file 
 29: Finish the “if” statement for the root branch 
30: <Blank> 
31: <Blank> 
32: <Comment> 
33: Remove the term-early file 
34: Test to see if the NCENGINE_TERMINATE_EARLY variable is greater than 0 
 VARIBLES:  
 NCENGINE_TERMINATE_EARLY:  This variable is a number of   
 seconds that the simulator will be allowed to run before it is stopped,   
 designed to prevent extremely long-running branches from taking up   
 nodes when this is not desired. 
35: If the NCENGINE_TERMINATE_EARLY variable is greater than zero, we  will 
sleep for the number of seconds defined in this variable and then touch the  term-
early file and the sbo.stp file which will stop MELCOR.  The “&” launches  this set 
of commands on a separate thread, so that it will run alongside the  execution of the 
simulator and create the sbo.stp file after the simulator has run  for the desired 
number of seconds. 
36: end of if statement testing for early-termination 
37: <Empty> 
38: <Empty> 
39: <Comment> 
40: Set to not exit immediately if something returns with a non-zero status 
41: print that we are launching the simulator and the date 
42-43: print the contents of the current directory we are running MELCOR in 
44: runs MELCOR and passes the letter “E” to that execution, since MELCOR asks the 
question to (O) overwrite or (E) extend the restart information.  We wish to extend.  The 
“nice” command is used to launch a command with a specified priority.  Without any 
arguments as given here it simply prints its current scheduling priority. 
45: print that MELCOR is done executing 
46: Define the rc variable, the MELCOR return code 
47-48: Once again print out the content of the current directory 
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49: print out the MELCOR return code 
50-52: If the MELCOR return code was anything but 0, quit 
53: <Blank> 
54: <Blank> 
55: <Comment> 
56: Test if the adapt.cp file exists  
57: If we were indeed checkpointed (the adapt.cp file exists) note such and note the date 
and hostname.  Also remove sbo.stp. 
58: remove the adapt.cp file 
59: run adapt-checkpoint-taken to notify the ADAPT-server that the checkpoint as been 
acknowledged. 
60: Exit with rc=0 
61: Finish if statement for checkpoint test 
62: <Blank> 
63: <Blank> 
64: <Comment> 
65: Check if the term-early file exists 
66: Notify the system of the job status, in this case namely that we terminated early using 
the adapt-job-record script 
67: Exit with rc=0; 
68: End if statement testing for early termination 
69: <Blank> 
70: print out that we are truncating the restart file and the date 
71: set environment settings to quit on a non-zero return code 
72: copy sbo.mes to sbo.mes.tmp 
73: sed is a stream editor which can modify in the content of text files.  This line is 
setting the MELCOR input file such that it will create a restart file with only the most 
recent restart dump.  This is done to save space and to reduce the size of the file that is 
being transferred from one node to the next. 
74: run MELCOR again in order to create the new restart file 
75: move sbo.rst to sbo-nontruncated.rst (the no truncated restart file) 
76: recopy sbo.mes.tmp back to sbo.mes 
77: change the name of newrestart.rst (the truncated restart file) to sbo.rst 
78: Set environment settings such that it will not quit with a non-zero return code 
79: print that we are done truncating 
80: <Blank> 
81-90: Commented section which was initially used to unzip acgrace and run mel2dmx.  
This was originally planned as a way of manipulating plot files but has not been used for 
some time. 
91: <Blank> 
92: <Comment> 
93: retrieve the stopping code from the sbo.mes file by looking for the word “ARAM” in 
the output (this was programmed into the MELCOR stopping control functions) 
94: retrieve the simulation elapsed time from the sbo.mes file 
95: convert the elapsed time to a number with precision to 2 decimal places 
96: retrieve the normal termination time from the sbo.mes file(full experiment time) 
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97: check to see if the mystopping_code variable is the empty string (there was no 
branching rule which stopped the code but the simulation came to its simulation end time 
or the simulation was aborted by some unknown means) 
98: check to see if the normal_term variable is NOT the empty string 
99: if normal_term is NOT the empty string then record the job status with adapt-job-
record 
100: else 
101: if the mystopping_code is the empty string record the job as a logical fail with 
adapt-job-record 
102: end if statement checking normal_term variable 
103: exit with return code 0 if mystopping_code is the empty string 
104: else – if mystopping_code is NOT the empty string 
105: record the status of the job if mystopping_code is NOT the empty string with adapt-
job-record 
106: end if statement testing if mystopping_code is the empty string 
107: set environment settings to quit if a nonzero return code is received 
108: <empty> 
109: <empty> 
110: <Comment> 
111: Run the editrule-apply script to determine which child branches to submit 
112:  
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B.  The ADAPT Web-Interface 
 
 
These are the instructions for the web interface that was used in the demonstration. 
 
Open your desired internet browser and go to http://adaptURL:adapt_port , where 
“adaptURL” is the host name of the computer where the web-service is being hosted and 
the “adapt_port” is the port on the web-host where the service is being provided. 
 
Provide login information 
 
ADAPT main menu: 
 

1. List experiments 
2. Launch a new experiment 
3. add a new type of simulator 
4. modify an existing simulator 
5. delete an existing simulator 
 

PLEASE NOTE that the first time a particular user logs on to the web server, it may take 
several seconds to bring up the main page.  The web-server is setting up web session data 
for this user and this delay is normal. 
 
List Experiments: 
 
 Click this link to list all experiments that have been run for this database user.  
Since there is one database user account this is the list of experiments for this installation 
of ADAPT.  The list of experiments will give the experiment number, description, 
experiment name (this is actually the simulator used), the state of the experiment 
(running, checkpointed, finished), the total number of branches, branches completed, 
branches running as well as some control links.  The “stats” link will give the total 
runtime of this experiment and compare it to the serial runtime for this experiment.  This 
allows the user to calculate the speed-up from using ADAPT versus running each 
scenario serially.  Also, the second to last column in the list of experiments gives the user 
the option to checkpoint or restart (depending on the current experiment state) the 
experiment.  The final column allows the user to delete this experiment.  This will delete 
all database entries corresponding to this experiment as well as all simulator data created 
on the cluster. 
 
 Clicking on the experiment number of a particular experiment will pull up a 
graphical visualization of the tree.  Note that this graphic shows a time-independent event 
tree.  Each branch on the tree is color coded (Green: completed, Yellow: Queued, 
Orange: Insignificant, Blue: Checkpointed, Cyan: Running, Red: Many successive 
execution failure, usually 5) according to its current state and lists on it the unique branch 
number and the probability as well as the simtime of completion, stopping code, and 
elapsed real time (for completed branches). 
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Figure 1: Snapshot of the ADAPT web-portal’s list of experiments page. 
 
 

 
Figure 2: Snapshot of the ADAPT web-portal’s graphical tree display. 
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Launch a new experiment: 
  
 Click this link to launch a completely new experiment.  When you click on this 
link a new screen opens with several options.  First, the option is given to select which 
simulator is desired.  Select the desired simulator and provide a description in the 
description field.  A default description is given in the form of “Web-Initiated 
Experiment” followed by the date and time of submission.  Click the submit button. 
 
 Next, a new page is opened which requires the user to input the needed input files 
for the chosen simulator.  These files are based off of the input provided in the “add a 
new type of simulator” section which is usually provided by the administrator.  Upload 
the necessary files by using the browse buttons or by inputting the path on your hard 
drive where the files are located manually.  Click the submit button to submit your 
experiment.  Depending on the file size and network connection speed it could take 
several minutes to transfer the necessary files, please be patient. 
 
Add a new type of simulator: 
  
 ADAPT is designed to accept as its input any simulator given that it meets the 
following requirements: 
 

1) The code execution can be internally stopped 
2) The code has “restart” capability 
3) The code has a text input file 

 
If your simulator meets these three criterion, then the next step is to register this simulator 
with ADAPT using the ADAPT web-interface.  The purpose of this process is to 
minimize the number of files needed each time the user wishes to launch an experiment 
and give the user a consistent outline for the files required for each execution.  ADAPT 
requires the following as input for an experiment: 
 

1) The simulator’s executable file 
2) A wrapper script for the simulator 
3) A checkpoint script for the simulator 
4) The simulator’s template text input file 
5) The experiment edit rules file 
6) Any other files required by the simulator 
7) The web wrapper script 

 
We will look at what each of these in this section.  Some of the above will never change 
from experiment to experiment: the simulator executable, the wrapper script, and the 
checkpoint script.  These can be input when a new simulator is registered and the user 
never needs to supply them again. 
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1. Simulator Executable 
  
 This is the simulator’s executable file and should be rather self-explanatory. 
 
2.  Wrapper Script 
 
 No two simulators are alike and for each simulator registered with ADAPT a 
wrapper script must be supplied which tells ADAPT how to execute the simulator.  Inside 
this wrapper script the input file is altered given what branching rules are applied, the 
simulator is executed (with the proper options and command line arguments), when the 
simulator quits, the output file is then parsed for reason the code was stopped (by a user-
specified branching rule, abnormal termination, or the experiment ran to completion, etc.) 
and using several ADAPT-provided scripts, the ADAPT database is updated.  After this, 
the stopping condition is used to determine what branching rules to apply to the children 
of this branch (if any) and the child branches are submitted.  The wrapper script should 
be recursive, meaning that the script submits itself to the child branches and the child 
branches are executed in the same way.  More detail about the structure and flow of the 
wrapper script is given in another section.  This input needs to be given only once when 
the simulator is registered. 
 
3.  Checkpoint Script 
 
 Checkpointing has been built in to ADAPT as a convenience for the user.  Many 
simulators are constructed with ability to halt its execution through some external means 
(in the case of MELCOR, if STOP file is created in the running directory, the simulation 
is halted) and then restart the simulation from that same point later on.  If the simulator 
you are using has this feature, you can utilize the checkpoint feature built into ADAPT.  
This feature allows the user to pause an entire event tree execution and then restart it at a 
later date.  The checkpoint script is responsible for containing the commands necessary 
for stopping the code externally (in the case of MELCOR, a stop file is created in the run 
directory).  This input is required only once when the simulator is registered. 
 
4.  Template Input File 
 
 ADAPT takes a template of the simulator’s input file for a particular experiment 
as input.  What is meant by “template” can be illustrated by the following example.  We 
are going to consider MELCOR input in this example.  Let us say in the MELCOR input 
file there is a control function value we wish to use as a branching condition. 
 
MELGEN input: 
 
CF10000 ‘TimeStop’  equals 1 1.0 0.0 
CF10010  0.0   200.0  time 
 
CF10100 ‘TimeCmpr’ l-gt 2 1.0 0.0 
CF10110 1.0  0.0  time 

 75



CF10111 1.0  0.0  cfvalu.100 
 
*this will be true when the simulation time becomes greater than the value of CF100, in 
*this case, 200.0 
 
CF899900 ‘StopCF’ L-EQUALS 1 1.0 0.0 
CF899910 1.0 0.0 cfvalu.101 
 
*This will stop the code if CF101 becomes true 
 
 
MELCOR Input: 
 
*This is desired we wish to change the value of CF100 from execution to execution 
 
CF10001 2000.0 
CF10002 3 0.0 2000.0 
 
*This will raise the value of CF100 to 2000.0, which will increase the amount of time the 
*code will run (from 200.0 to 2000.0) 
 
With ADAPT, the MELGEN input stays the same (the logic does not change), what we 
change are the values at which the logic becomes true or false.  If we wish to use the 
above as an example and translate what it might be in ADAPT input, we would look only 
at the MELCOR input.  For ADAPT input, it would look similar to the following: 
 
CF10001 {V100} 
CF10002 3 0.0 {V100} 
 
Where {V100} is an ADAPT variable whose values are defined in the edit rules file.  
Before MELCOR is executed in each branch, ADAPT will replace these variables with 
values from the edit rules files depending on the branching conditions.  In this way, 
ADAPT has dynamic control of the variables in the simulator’s input and branching rules 
can be applied as the tree grows.  This input is required each time a new experiment is 
submitted. 
 
5.  Edit Rules File 
 
 One of the most important files in the ADAPT input is the branching rules file.  
This file is simulator independent and the input structure is defined by ADAPT.  This file 
contains a list of all of the variables that the user has defined in the template input file 
with their initial conditions.  This file also contains a list of the branching conditions with 
the variables and values that need to be changed when that particular branching condition 
is met.  Finally, this file also contains tables of branching probabilities that are to be used 
for each different branching rule.  The structure of this file is given in another section.  
This file needs to be input for each new experiment that is executed. 
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6.  Other Simulator Files 
  
 Sometimes simulators require more than just a single text input file for execution.  
For example, in the case of MELCOR, a restart file is required for execution.  ADAPT 
never attempts to alter or manipulate this file, 
 but it is required for all executions of ADAPT with MELCOR.  Depending on the setup 
of your simulator, these other files may be required each time an experiment is executed 
or they may be provided only at the time of simulator registration. 
 
7.  Web-Wrapper Script 
 
 The web-wrapper script specifies the “adapt-submit” command and specifies the 
local storage directory of the files which are registered to the particular simulator.  
 

When registering a new simulator, some or all of the above file will be required 
and the web-interface required that they be named and the user needs to specify whether 
the file will be provided only at registration or provided by the user each time an 
experiment is launched.  The naming of the files depends on their nomenclature in the 
wrapper-script.  For the case of the example provided with ADAPT, the naming 
convention is as follows: 
 
 Executable:  melcor 
 Wrapper-Script: melcor-wrapper 
 Checkpoint Script: melcor-checkpoint 
 Template Input File: sbo.cor.tpl 
 Editrules File:  sbo_editrules.cor 
 Other File:  sbo.rst (restart file) 
 Wrapper Script: melcor-wrapper-web 
  
 
Update an Existing Simulator: 
 
 This menu option is given to allow the user to update or modify an existing 
registered simulator and the registered simulator files.  In the “add a simulator” option, 
the user is given the chance to specify files which are “provided by the installer” and the 
user only has to input once and not for each experiment run.  Here the user can upload 
new “provided by the installer” files.  Note that if not ALL installer-provided files are 
being altered; the user still has to provide a file for the entries that are not being altered.  
In these cases, the user must simply provide the original files for these entries. 
 
Delete an existing simulator: 
 
 This menu option allows the user to delete a registered simulator.  Simply select 
the desired simulator and click “Submit”. 
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