
LJIGHT-FD Scalability Tez '

r
Max S. Shneidc

r Report

ore, California 94550

her dissemination mm-':-

Q Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: httpY/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: httpJ/~~~.ntis.govlhe1p/ordermethods.asp?loc=74-O#o~e

SAND2008-4460
Unlimited Release
Printed July 2008

iSIGHT-FD Scalability Test Report

Max S. Shneider
Informatics and Decision Sciences Department

Sandia National Laboratories, CA
P.O. Box 969

Livermore, CA 94551-0969
msshnei@sandia.gov

Robert L. Clay
Advanced Software Research and Development Department

Sandia National Laboratories, CA
P.O. Box 969

Livermore, CA 94551-0969
rlclay@sandia.gov

Abstract

The engineering analysis community at Sandia National Laboratories uses a number
of internal and commercial software codes and tools, including mesh generators, pre-
processors, mesh manipulators, simulation codes, post-processors, and visualization
packages. We define an analysis workflow as the execution of an ordered, logical se-
quence of these tools. Various forms of analysis (and in particular, methodologies
that use multiple function evaluations or samples) involve executing parameterized
variations of these workflows. As part of the DART project, we are evaluating vari-
ous commercial workflow management systems, including iSIGHT-FD from Engineous.
This report documents the results of a scalability test that was driven by DAKOTA
and conducted on a parallel computer (Thunderbird). The purpose of this experiment
was to examine the suitability and performance of iSIGHT-FD for large-scale, parame-
terized analysis workflows. As the results indicate, we found iSIGHT-FD to be suitable
for this type of application.

Acknowledgments

Special thanks to Shyam Kumar, Mark Ondracek, and Jon Long of Engineous for their help
throughout the test. Their support throughout this experiment was invaluable. Also, thanks
to Mike Eldred for his help with DAKOTA and Matt Kerschen for providing us with our
example problem.

Contents

Nomenclature 7
DART Overview 9

. DARTIUQ Overview 10
. iSIGHT-FD Overview 11

Purpose of the Scalability Test 12
. Scalability Test Specifics 13

. Scalability Test Observations 15
. Scalability Test Results 16

. Scalability Test Discussion 19
. Conclusions and Recommendations 20

Figures

1 Scalability Test Workflow . . . 14
. . . 2 Time Interval Calculations 16

. 3 Fipercmd Result Times 17

. 4 Workflow Result Times 18
5 Start-Overhead Result Times 18

Nomenclature

APC Analysis Process Coordinator

DAKOTA Design Analysis Kit for Optimization and Terascale Applications

DART The Design through Analysis Realization Team

DTA Design Through Analysis

UQ Uncertainty Quantification

This page intentionally left blank.

DART Overview

The engineering and analysis community at Sandia National Laboratories uses a number
of internal and commercial software codes and tools to perform their work. These include
mesh generators, pre-processors, mesh manipulators, simulation codes, post-processors, and
visualization tools.

DART is integrating these codes and tools into a complete DTA toolset. This will reduce
the time required to create, generate, analyze, and manage the data that is generated in the
computational analysis process.

DART/UQ Overview

While DTA tools may be executed only once, they are increasingly being used to generate
sample-based studies and answer optimization and uncertainty quantification (UQ) ques-
tions. In these cases, the tools are executed multiple times as parameterized sets of simu-
lation runs. Often, this is done in a parallel environment to reduce the turnaround time.
At Sandia, these types of studies typically involve DAKOTA [I], a parallel framework for
design optimization, parameter estimation, uncertainty quantification, and sensitivity anal-
ysis. Because it is so widely adopted at Sandia, our DART/UQ solution must be integrated
with DAKOTA.

There are two main objectives to the DART/UQ project. First, we want to simplify the
setup of these large, parameterized simulations in the DART environment. In talking with
the analyst community, we found that they typically spend more time setting up the problem
than they do actually running it and analyzing the results. Our goal is to reverse that time
allocation. The second objective is to provide data management so that inputs and results are
automatically and systematically committed to repositories as the simulation runs execute.
There is currently no standard mechanism for easily sharing and backing up information in
these types of studies. In addressing this second objective, we will provide data management
in terms of sets of runs, consistent with the natural structure associated with parametric
and UQ studies.

We have identified a number of solutions to meet these objectives, including a new DAKOTA
user interface to easily create, modify, and submit jobs, and integration with DART data
management capabilities (embodied by the APC). However, the piece that's relevant to this
particular document is using commercial workflow management systems to build and manage
workflows, which execute ordered, logical sequences of Sandia's engineering analysis tools.

iSIGHT-FD Overview

Currently, when Sandia analysts want to use a DART tool in conjunction with DAKOTA,
they write a script to setup work directories, parse input parameters from DAKOTA param-
eter files (using a tool such as grep [2]), substitute the input parameters into the tool's input
deck (using another tool like APREPRO [3]), execute the tool, parse the output parame-
ters from the tool's output file, substitute the output parameters into DAKOTA result files,
and cleanup the work directories. Writing these scripts can take days to months depending
on the level of complexity; and, there is no inherent mechanism for sharing them, short of
passing on the scripts to others. Also, extending and debugging the scripts can be very
time consuming, again depending on the level of complexity. To alleviate the burden on the
user, we are exploring commercial workflow systems which allow users to layout workflows
in a drag-and-drop, reusable fashion, wrap tools so that they can be used in the workflow,
and conveniently manage input and output parameter mappings so that they can easily be
passed between tools.

We evaluated a number of commercial workflow systems, including Samtech's BOSS quattro
[4], Phoenix Integration's Modelcenter [5], MSC's SimManager [6], and Engineous' iSIGHT-
FD [7]. Through a formal down-selection process, we decided to explore iSIGHT-FD in more
detail and test it in the scalability test described below. iSIGHT-FD has a Gateway client
that enables users to create workflows as described above. The workflows may be run from
the Gateway, or through a command line utility called fipercmd. Both methods use the
same underlying Java libraries, so the choice is up to the user. The fipercmd utility was
very useful in our case because it allowed the installation and execution of iSIGHT-FD on
a parallel cluster (Thunderbird, described below), where graphical applications were not an
option. A separate installation of iSIGHT-FD was used on a standard workstation to create
the workflows which were then transferred over when the scalability test was ready to run.
This ability to create a workflow on one system (e.g., the user's workstation) and then run it
on another machine (e.g., a parallel cluster) was one of the reasons iSIGHT-FD was selected
as a leading candidate for further evaluation. All work described in this report was conducted
using iSIGHT-FD version 3.0.0.08091 1452.

Purpose of the Scalability Test

Every software package has a certain amount of associated overhead. For instance, with
iSIGHT-FD, the time that it takes to wrap t,ools, layout the workflow, and execute the
workflow all must be considered. In addition, iSIGHT-FD uses Macrovision's FLEXlni license
server [8] which requires that each time you run an instance of iSIGHT-FD, whether it's
through the Gat'eway or fipercmd, the user must obtain a new license from the license
server. This performance penalty present,ed a big question since we wanted to make sure that
there weren't any critical performance hits in t,he parallel domain, where we'd be requesting
multiple (and perhaps a large number of) licenses at t'he same time.

Additional questions arose since we'd be using iSIGHT-FD in a much different way than
it was intended to be used. Most users design complex workflows that are executed once
either directly in the Gateway, or through a web interface (which is provided as a convenient
way to share workflows with multiple users). If the workflows are executed multiple times,
it's usually a small number that can be done directly on the user's workstation serially (one
run starts after the previous one completes). At Sandia, however, much of our analysis is
done on parallel clusters. For instance, at the time of the t'est, we were using two of the
top 11 supercomputers in the world [9]). This is both because of the size of the models that
we use in our simulations, and the sheer number of runs t,hat are often required. Running
on a parallel cluster means that multiple (and possibly many) fipercmd instances would
be utilizing the same Java libraries concurrently - albeit on different compute nodes. In
addition, the workflows would be executed with fipercmd which is provided in the iSIGHT-
FD distribution, but has not seen heavy usage in the user community.

Scalability Test Specifics

Because of the questions above, we designed a scalability test to examine the system behavior
and performance. For the experiment, we obtained an electrical analysis study that uses the
Xyce electronic simulator [lo]. Since the study was used on a previous Sandia project (instead
of being concocted simply to test the system), it naturally provides a realistic example of
the work at Sandia National Labs.

As shown in the scalability test workflow (Figure 1) below, DAKOTA drives the simulation
and is responsible for managing the individual runs. In other words, only one job is submitted
to the PBS queue, upon which and DAKOTA starts a batch of runs on the reserved compute
nodes, waits for these runs to complete (indicated by the existence of result files), and then
repeats this process until the job is complete. This is standard practice when using DAKOTA
on parallel machines, and avoids the delay incurred by having every iteration (i.e., individual
simulation run) work through the queuing system on the parallel machine.

The workflow itself is simple: we extract the input parameters from the DAKOTA parameter
file, substitute the parameters into the Xyce input deck, run Xyce, extract the output pa-
rameters from the Xyce output file, and substitute the parameters into the DAKOTA result
file.

The test was run on Sandia's Thunderbird cluster, which at the time of the test consisted of 8
login nodes and 4,480 compute nodes. Each node had a dual 3.6 GHz Intel EM64T processor,
6 GB of RAM, and Red Hat Enterprise Linux WS release 4 for the 0 s . Thunderbird has a
shared file system which enabled the test to be self-contained; iSIGHT-FD, DAKOTA, and
Xyce were all installed locally. DAKOTA ran on the head node and spawned Xyce workflow
runs to the compute nodes. The iSIGHT-FD license server was also installed on the shared
file system, and fipercmd licenses were obtained by putting "localhost" in the configuration
files.

Originally we intended to execute a 200,000 run job, using 1,000 processors at a time. How-
ever, we soon learned that a job of that size would take days to get through the Thunderbird
job queue. Also, the job would take another day or two to complete, putting the total
turnaround time for a single job at around a week, at considerable cost of machine time.
Because of this, we decided to shorten the test to a 5,000 run job, using 50 processors at a
time.

Sandia Workflow System Scalability Test

Submit 50 processor DAKOTA job to queue

for i = 1 to 5.000. with 50
running concurrently at one

time (new jobs are started as
others complete)

__---- ---__ ---__
f-- \

Workflow (created in BIGHT-FD and executed with Rpercmd)

L I

Figure 1. Scalability Test Workflow

Scalability Test Observations

We began by participating in a day and a half of iSIGHT-FD training with an Engineous
representative. During the training, we worked through examples in order to become familiar
with the software which helped tremendously in our initial development. We were able to
wrap a couple of our tools within a day which was far quicker than expected.

It took a couple of additional days to complete our workflow since it entailed some extensive
parsing and parameter substitution. We also had to develop some solutions for running each
fipercmd instance in a separate working directory. These took some time to resolve with
the Engineous developers, but iSIGHT-FD always proved flexible enough to allow us, in
some way or another, to do what was needed. For instance, we parsed the current working
directory with a Unix command, and then set the run number as a global variable so that it
could be accessed by subsequent components.

However, there were some errors that even after weeks of investigation were never resolved.
The most significant of these was an error that occurred in the DAKOTA parameter file
Data Exchanger, in which we were parsing over 100 input parameters. One factor that made
this hard to debug was that the file was dynamic. It wasn't available until DAKOTA created
it; and, it was different for each run. We worked with the Engineous team to significantly
reduce the frequency of these errors to under one percent of the runs, but were never able
to eliminate them completely.

We did see some other errors in the results (for instance, the fipercmd utility sometimes
failed to load the required iSIGHT-FD libraries), but these were limited, so we did not feel
the need to investigate them further. Overall, it took a couple of solid weeks to develop
the test. This can be attributed to a couple of factors. First, it simply took some time to
become familiar with how to work in iSIGHT-FD, which is true of any software package. For
instance, we assigned the Data Exchanger output files and the component run directories
to the wrong places, both of which the Engineous team had to correct. We view this as a
one-time cost that comes with learning any new software package, so further development
would presumably be much quicker. All in all, the product was relatively straightforward to
install, learn, and use.

The second main factor affecting development time was the fact that we were using iSIGHT-
FD in non-standard ways. For example, the fact that we had 50 fipercmd instances executing
at once could have caused the parsing errors that the Engineous team had not seen before.
We were also calling fipercmd from a DAKOTA job on a massively parallel cluster. The
unique environment could have played a part in the parsing errors as well. Also, being new
DAKOTA users ourselves, it turns out that we were originally invoking it with the wrong
syntax. That caused some other errors and tracking it down added a couple of days to the
process.

Scalability Test Results

We ran three separate yet identical scalability test instances, with the following success/failure
rates:

Job 1 - 4,991 successful runs and 9 failures

Job 2 - 4,991 successful runs and 9 failures

Job 3 - 4,992 successful runs and 8 failures

On each run, we gathered the following timing statistics:

fipercmd-start - the time (in seconds) when the fipercmd starts, recorded in the
script immediately before we call fipercmd.

workflow-start - the time (in seconds) when the workflow starts, recorded in the first
component in the workflow.

workflow-end - the time (in seconds) when the workflow completes, recorded in the
last component in the workflow.

fipercmd-end - the time (in seconds) when the fipercmd completes, recorded in the
script immediately after we call fipercmd.

The statistics that were used to calculate the time intervals are as follows:

Figure 2. Time Interval Calculations

g,,q".4.. y-c, -,.-a !>,I1 .I! -6"- 7 2 i; ; : l - : i~~i 4" I' A,-; fipercmd dime
& p-,.-ez=y -

fipercmd time - the time between fipercmd-start and fipercmd-end, which in-
cludes launching fipercmd, obtaining a license, running the workflow, returning the
license, and exiting fipercmd. Results reflect only successful runs, not failures.

st;
>

end-overhwd time

workflow t i m e - the time between workflow-start and workflow-end, which does
not include obtaininglreturning a license, or launchinglexiting fipercmd. Results re-
flect only successful runs, not failures.

start-overhead t ime - the time between fipercmd-start and workflow-start ,
which includes launching fipercmd and obtaining a license. This value is reported
even for failed runs, since all failures occurred during the workflow execution.

end-overhead t ime - the time between workflow-end and fipercmd-end, which
includes returning a license and exiting fipercmd. Since this value was always zero or
one second, we have removed it from the results in this report.

Figures 3-5 show the fipercmd, workflow, and start-overhead times for each job:

Figure 3. Fipercmd Result Times

Figure 4. Workflow Result Times

Figure 5. Start-Overhead Result Times

Scalability Test Discussion

As shown in the results, all three sets of workflow times have a mean of about 70 seconds,
with a Gaussian-like distribution and a range from around 60 seconds on the low end to 85
seconds on the high end.

The start-overhead times are predominantly around 3-4 seconds with a few outliers in the
30 second range. This is in stark contrast to the previous version of iSIGHT-FD that we
tested which had numerous outliers around or even exceeding 5,000 seconds (83 minutes) on
the high end. The few outliers on the results above are not viewed as significant, but we
remain curious as to the exact cause. The typical 3-4 second overhead from the fipercmd
startup should be measured in terms of the typical time to run the workflow. In general, the
simulations embedded in the workflow are expected to take significantly longer than a few
seconds, so this startup time isn't viewed as problematic for the typical case. If however,
the workflow times were small in comparison, then the star,tup overhead would begin to
dominate the overall time, which is not a desirable outcome.)

Another consideration is the overall success rate of the runs submitted. As shown above,
the 3 jobs of 5,000 runs each had failure rates of 9, 9, and 8, or 0.18, 0.18, and 0.16 percent,
respectively. All three jobs were submitted to the queue with the exact same command, and
they executed the same workflows and scripts. The different results are due to the afore-
mentioned parsing bug, which causes runs to fail approximately 0.17 percent of the time. We
are continuing to examine this issue in conjunction with the Engineous staff. It is somewhat
disconcerting, but not a showstopper since 'random' failure modes are often seen on large
jobs on our big clusters. Nevertheless, we would be more confident in recommending this
tool if we understood the source of these failures and eliminated iSIGHT-FD as the source.

Conclusions and Recommendations

Overall, we were very impressed with iSIGHT-FD and with the support we received from the
Engineous staff. We were able to wrap our tools and create our workflow in a short amount
of time. We were also able to execute our workflow in a non-traditional way, as compared
to other users, with concurrent fipercmd instances on a parallel machine.

While there are still a few open questions about using this tool, we believe it could be used
today at Sandia National Labs for parallel execution (i.e., execution of multiple workflow
instances on a parallel machine). A more exhaustive set of experiments would be advisable
before a large-scale rollout for production use. Yet, we have no issues recommending early
adopters to try iSIGHT-FD in lieu of their traditional scripting approaches.

References

[I] DAKOTA - http : //www . cs . sandia. gov/DAKOTA/sof tware . html

[2] grep - http : //www . gnu. org/sof tware/grep/

[3] APREPRO -http://endo.sandia.gov/SEACAS/Documentation/Aprepro.SAND.pdf

[4] Samtech's BOSS quattro - http: //www . samcef . com/en/pss .php?ID=3&W=products

[5] Phoenix Integration's Modelcenter - http : //www . phoenix- int . com/products/
modelcenter.php

[6] MSC's SimManager - http: //www .mscsoftware . com/products/simmanager . cfm?Q=
131&Z=288

[7] Engineous' iSIGHT-FD - http: //www . engineous . com/iSIGHTFD . cfm

[8] Macrovision's FLEXlm license server - http : //en. wikipedia . org/wiki/FLEXlm

[9] Top Supercomputers as of June, 2007 - http : //www . top500. org/list/2007/06/100

[lo] Xyce - http : //xyce . sandia. gov/

DISTRIBUTION:

1 Jon Long, Engineous Software, Inc., 825 Bantam Way, Petaluma, CA
94952

1 Kevin Harris, Engineous Software, Inc., 2000 CentreGreen Way Suite 100,
Cary, NC 27513

3 Mark Ondracek, Engineous Software, Inc., 77 Milford Dr. Ste. 237, Hud-
son, OH 44236

1 Shyam Kumar, Engineous Software, Inc., 1175 Nelrose Ave., Venice, CA
90291

Steven Wix, 1734
Teddy Blacker, 1421
Matthew Kerschen, 21 11

John Linebarger, 6344
Michael Skroch, 6344
Stephenson Tucker, 6344
Brian Adams, 1411
James Stewart, 1411
Michael Eldred, 1411
Howard Hirano, 8960
Edward Hoffman, 8964
Ernest Friedman-Hill, 8962
Marcus Gibson, 8964
Joe Shelton, 8964
Max Shneider, 8962
Mike Hardwick, 8964
Robert Clay, 8964
Heidi Ammerlahn, 8962
Joseph Ruthruff, 8964
Pamela Williams, 8962
Patricia Hough, 8962
Technical Library, 4536
Central Technical Files, 8944

