
SAND2008-4073
Unlimited Release
Printed July 2008

The Benefits of Adaptive Partiti ning for
~arallel AMR ~p~licati ns

Johan Steensland
Sandia National Laboratories, CA

Prepared by
Sandia National Laboralories
Albuquerque, New Mexico 87185 .-ld Uwrmore. California 94550

Sandia Is a muItIprogrBm laboratory operated by Sandia Corporation,
a Lockheed Martin Company, br the United SlalBs Department of Energy's
Na NucIelIr SecOOty AdmIniItrlIlion under Contract DE-AC04-94-AL85000.

Approved br public relea8e; further dissemination unnmited.

("'] Sandia ational Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re
sponsibility for the accuracy, completeness, or usefulness of any information, appara
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States ofAmerica. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

2

'.

SAND2008-4073
Unlimited Release
Printed July 2008

The Benefits of Adaptive Partitioning for Parallel
AMR Applications

Johan Steensland
Advanced Software Research and Development,

Sandia National Laboratories, P.O. Box 969,
Livermore, CA 94550-9915, USA,

j steens @ somnet.sandia.gov,
Phone, fax: (925)-294-2474, (925)-294-2234

Abstract

Parallel adaptive mesh refinement methods potentially lead to realistic modeling of com
plex three-dimensional physical phenomena. However, the dynamics inherent in these methods
present significant challenges in data partitioning and load balancing. Significant human re
sources, including time, effort, experience, and knowledge, are required for determining the
optimal partitioning technique for each new simulation. In reality, scientists resort to using
the on-board partitioner of the computational framework, or to using the partitioning industry
standard, ParMetis.

Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal
partitioning technique at run-time, based on the current state of the computer and application.
In theory, adaptive partitioning automatically delivers superior performance and eliminates
the need for repeatedly spending valuable human resources for determining the optimal static
partitioning technique. In practice, however, enabling frameworks are non-existent due to the
inherent significant inter-disciplinary research challenges.

This paper presents a study of a simple implementation of adaptive partitioning and dis
cusses implied potential benefits from the perspective of common groups of users within com
putational science. The study is based on a large set of data derived from experiments includ
ing six real-life, multi-time-step adaptive applications from various scientific domains, five
complementing and fundamentally different partitioning techniques, a large set of parameters
corresponding to a wide spectrum of computing environments, and a flexible cost function that
considers the relative impact of multiple partitioning metrics and diverse partitioning objec
tives.

The results show that even a simple implementation of adaptive partitioning can automati
cally generate results statistically equivalent to the best static partitioning. Thus, it is possible

3

to effectively eliminate the problem ofdetermining the best partitioning technique for new sim
ulations. Moreover. the results show that adaptive partitioning can provide a performance gain
of about 10 percent on average as compared to routinely using the industry-standard. ParMetis.

4

Acknowledgment

This work was supported Sandia National Laboratories' ASC program, under the Focused Re
search Innovation and Collaboration program element, administered by Dr. David Womble. Thanks
to Jaideep Ray, Sandia National Laboratories, CA, for suggestions leading to a significantly im
proved paper. Thanks to John Peterson at CFDLab, University of Texas, for scientific collaboration
and providing the Convection application, Richard Drake at Sandia, New Mexico, Computational
Shock and Multiphysics Department, ALEGRAINEVADA code project, for providing the Mach
Stem application, to Charles Norton at Jet Propulsion Lab, NASA, for providing the Quake appli
cation, and to James Overfelt at Sandia, New Mexico, for providing the LaserRaster application.
Thanks to Karen Devine, also at Sandia, New Mexico, for providing Zoltan with all drivers and
source code, and for supporting the project throughout. Thanks to Ralf Deiterding at Oakridge
National Laboratory, Tennessee, for providing the Spheres and ShockTurb applications. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under contract DE-AC04-94-AL85000.

5

Contents

1 Introduction. 9
2 The Parallel Mesh Application Simulator. .. 10
3 Cost Function. .. 11
4 Real-World Applications.. 12
5 Partitioning Algorithms. .. 18
6 Adaptive Partitioning. .. 19

6.1 Uniform Starting Point. .. 20
6.2 Switching-Penalty... 21
6.3 The Simple Implementation. .. 21

7 Experimentation........ .. 26
7.1 Hypothesis and Setup. .. 26
7.2 Results.. 27
7.3 Conclusions and Future Work .. 28

List of Figures

The parallel mesh application simulator with its constituent parts. It consists of an
application trace reader (left) and an analytical subsystem (middle) that evaluates
the quality of the partitions obtained from Zoltan's (right) partitioners. It also
outputs quality metrics for plotting and further (manual) analysis (right). 11

2 Mesh configurations taken from two applications, namely Quake (above) and Mach
Stem (below). Note that these figures correspond to one instance of the adaptive
meshes that the simulations employ; these meshes adapt as the simulation pro-
gresses. 15

3 Mesh configurations taken from two applications, namely Laser-raster (above) and
Convection (below). Note that these figures correspond to one instance of the
adaptive meshes that the simulations employ; these meshes adapt as the simulation
progresses. 16

4 Mesh configurations taken from two applications, namely ShockTurb (above) and
Spheres (below). Note that these figures correspond to one instance ofthe adaptive
meshes that the simulations employ; these meshes adapt as the simulation progresses. 17

5 The modeled cost for a set of partitioners for two different data sets (max, avg)
for Spheres with p = 8, CCR=0.5, and ITR=l.O for II applied to both max and
average values. Max and average values (across processors) refer to those of load
imbalance, edge-cuts and data-migration, as they enter Eq. 1. Note that "Timestep"
on the horizontal axis refers to the chronological index of the mesh in the appli
cation trace and may not refer to the timestep of the time-integrator used in the
simulation. 20

6

6 The resulting sequence of partitioners for Spheres with p = 8, CCR=0.5, and
ITR= 1.0 for n applied to both max and average values. The blue line shows the
adaptive partitioning sequence resulting from applying n to max values, and the
red line shows the result using average values. Max and average values (across
processors) refer to those of load-imbalance, edge-cuts and data-migration, as they
enter Eq. 1. Note that "Timestep" on the horizontal axis refers to the chronological
index of the mesh in the application trace and may not refer to the timestep of the
time-integrator used in the simulation. 23

7 The (theoretical) cost of the adaptive partitioning sequence (rightmost bar in each
cluster) compared to a set of static techniques for CCR = {0.25, 0.5, 1.0} (the
left, middle and right clusters of histograms).Results from n, as applied to aver
age (across processors) values of load-imbalance, edge-cuts and data-migration, is
plotted first, followed by n as applied to the max values of the same variables. Re
sults are plotted for the application "Spheres" with ITR=I.0. The costs associated
with load-imbalance, communication and data-migration are plotted in blue, green
and red, respectively. RCB = the recursive coordinate bisection algorithm, R+M
= RCB with remapping, PM = ParMetis, HG = Hypergraph partitioner in Zoltan,
SFC = Hilbert space-filling curve partitioner (Zoltan) and Opt=Optimal sequence
of partitioners. .. 24
The accurate cost of the adaptive partitioning sequence (rightmost bar in each clus-
ter) compared to a set of static techniques for CCR = {0.25, 0.5, 1.0} (the left, mid-
dle and right clusters of histograms). Results from n, as applied to average (across
processors) values ofload-imbalance, edge-cuts and data-migration, is plotted first,
followed by n as applied to the max values of the same variables. Results are plot-
ted for the application "Spheres" with ITR=1.0. The costs associated with load
imbalance, communication and data-migration are plotted in blue, green and red,
respectively. Note the differrence in data migration (red part of bars) as compared
to the theoretical adaptive partitioning in Figure 7. R = the recursive coordinate
bisection algorithm, + = RCB with remapping, P = ParMetis, H = Hypergraph par
titioner in Zoltan, S = Hilbert space-filling curve partitioner (Zoltan), O=Optimal
sequence of partitioners and A = optimal partitioner sequence with data migration
costs (i.e. with accurate metrics). .. 25

9 Best penalties (above) and algorithms (below) for the applications tested in this
study. 31

List of Tables

1 Table of applications 14
2 Table of partitioning algorithms 19
3 Adaptive partitioning vs. the best static algorithm using ITR=HG_MULT=O.1 and

all CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best
penalty, Y is the index of the best static algorithm, where I=RCB, 2=RCB+MAP,
3=ParMetis, 4=HyperGraph, 5=HSFC, and Z is the cost ratio of the best adaptive
and the best static algorithm. .. 28

7

4 Adaptive partitioning vs. the best static algorithm using ITR=HG_MULT=0.25
and all CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X
is the best penalty, Y is the index of the best static algorithm, where l=RCB,
2=RCB+MAP, 3=ParMetis, 4=HyperGraph, 5=HSFC, and Z is the cost ratio of
the best adaptive and the best static algorithm. 29

5 Adaptive partitioning vs. the best static algorithm using ITR=HG_MULT=0.5 and
all CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best
penalty, Y is the index of the best static algorithm, where l=RCB, 2=RCB+MAP,
3=ParMetis, 4=HyperGraph, 5=HSFC, and Z is the cost ratio of the best adaptive
and the best static algorithm. .. 30

6 Adaptive partitioning vs. the best static algorithm using ITR=HG_MULT=1.0 and
all CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best
penalty, Y is the index of the best static algorithm, where l=RCB, 2=RCB+MAP,
3=ParMetis, 4=HyperGraph, 5=HSFC, and Z is the cost ratio of the best adaptive
and the best static algorithm. .. 30

7 Adaptive partitioning vs. AdaptiveRepart, using ITR=HG_MULT=O.l and all
CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best
penalty, Y is the index of AdaptiveRepart (3), and Z is the cost ratio of the best
adaptive and AdaptiveRepart. 32

8 Adaptive partitioning vs. AdaptiveRepart, using ITR=HG_MULT=0.25 and all
CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best
penalty, Y is the index of AdaptiveRepart (3), and Z is the cost ratio of the best
adaptive and AdaptiveRepart. 32

9 Adaptive partitioning vs. AdaptiveRepart, using ITR=HG_MULT=0.5 and all
CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best
penalty, Y is the index of AdaptiveRepart (3), and Z is the cost ratio of the best
adaptive and AdaptiveRepart. 33

10 Adaptive partitioning vs. AdaptiveRepart, using ITR=HG_MULT=1.0 and all
CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best
penalty, Y is the index of AdaptiveRepart (3), and Z is the cost ratio of the best
adaptive and AdaptiveRepart. 33

8

1 Introduction

Adaptive mesh refinement (AMR) methods are being widely used for numerical simulations of
physical phenomena in many scientific domains, including earthquake (tectonic/thermal) model
ing [20], computational shock multi-physics [16], computational heat transfer [3], materials sci
ence applications such as crack propagation [8], biological problems such as E-Coli prolifera
tion [19], and generalized classes of nonlinear reaction-diffusion systems [7]. The survey articles
by Carey et. al [5, 6] detail several additional diverse application areas including Laplace-Young
fluid surface interface modeling, electro-rheological flows, drift-diffusion semiconductor model
ing, high-speed compressible flow, variable-density transport in porous media (see also [21]), and
glacier flow modeling [11]. The governing partial differential equations are solved by numerical
methods on a discrete mesh. When dynamic and localized features in the solution require higher
mesh resolution for obtaining sufficient numerical accuracy, the mesh adapts dynamically to ac
commodate this. Consequently, these simulations are inherently dynamic.

Parallel implementation of AMR potentially leads to realistic modeling of complex three-dimensional
physical phenomena. However, it also presents significant challenges in dynamic resource allo
cation. The parallel efficiency is limited by the effectiveness of the partitioner to partition and
distribute the underlying mesh at runtime to expose all inherent parallelism, minimize communi
cation and synchronization overheads, and balance load. Because application adaptation during
execution results in repeated modifications of the mesh, it is necessary to repeatedly repartition the
mesh to maintain efficient use of resources.

The specific requirements for an effective partitioning depend on properties of the mesh. As the
mesh adapts to the solution, these requirements change. Consequently, no partitioning technique
performs the best for all types of simulations [25]. The best partitioner for a particular time frame
of a parallel simulation might be the worst for the next time-frame. By explicitly considering these
dynamic conditions, the scalability for large, realistic simulations could possibly be significantly
improved. Significant human resources, including time, effort, experience, and knowledge, are
required for determining the optimal partitioning technique for each new simulation. In reality,
scientists resort to using the on-board partitioner of the computational framework, or to using the
partitioning industry standard, ParMetis.

To meet the challenges in dynamic resource allocation inherent in parallel AMR, we introduce
another level of adaptation: adaptive partitioning, meaning dynamic and automatic switching of
partitioning techniques, based on the current run-time state. In theory, adaptive partitioning auto
matically delivers superior performance and eliminates the need for repeatedly spending valuable
human resources for determining the optimal static partitioning technique. In practice, however,
enabling frameworks are non-existent due to the inherent significant inter-disciplinary research
challenges.

This paper presents a study of a simple implementation of adaptive partitioning and discusses

9

implied potential benefits from the perspective of common groups of users within computational
science. The study is based on a large set of data derived from experiments including six real
life, multi-time-step adaptive applications from various scientific domains, five complementing
and fundamentally different partitioning techniques, a large set of parameters corresponding to a
wide spectrum of computing environments, and a flexible cost function that considers the relative
impact of multiple partitioning metrics and diverse partitioning objectives.

Related work includes the AdaptiveRepart algorithm [22] in the ParMetis library [18], the VPI
scheme [31] in the Jostle package [30], and the new hypergraph partitioner [9] in the Zoltan Li
brary [15]. A common characteristic for these three bodies of work, is that they focus on developing
state-of-the-art algorithms with the ability to efficiently optimize a number of metrics given some
user-defined parameters. In contrast to the algorithm focus, the present paper focuses on the un
derstanding of the benefits of being able to automatically switch partitioning algorithm repeatedly
at run-time, based on the current state of the application and computer system.

2 The Parallel Mesh Application Simulator

Achieving an objective comparison of a set of load balancers for an arbitrary set of adaptive appli
cations can be prohibitively problematic. First, gathering all applications, compiling and running
them on the same platform, might be impossible for practical, technical, and political reasons.
Second, deriving run-time metrics like load imbalance, data migration, and communication can
be challenging, as it often requires sophisticated profiling tools that force re-instrumentation of the
application source code. Third, applications often have tailored interfaces to certain load balancers,
making it a daunting task to implement an interface to another load balancer.

We have developed "the parallel mesh application simulator" [27] that enables easy comparison
of load balancers for arbitrary AMR applications. The simulator is depicted in Figure 1 and is a
uniform and accessible test-bed, which addresses each of the problems discussed above. Rather
than working with application source code and makefiles, we represent each application with an
application trace. An application trace is a sequence of serial (un-partitioned) mesh files, corre
sponding to the adaptive mesh at regular intervals in the simulation. Typically, these trace files
are created by the code developer in the application's native execution environment. We convert
the trace files from their native format to the Exodus format [23]. The simulator reads these Ex
odus mesh files and - according to input parameters like the number of processors and the load
balancing configuration - partitions the mesh via an interface to the Zoltan library [15]. Much
in the spirit of earlier work by Parashar and students [24], our simulator executes in serial and
partitions the mesh into local (virtual) partitions. Useful metrics, such as data migration, edge cut,
load imbalance, and partitioning time, are derived uniformly for all time-steps.

Our parallel mesh application simulator provides limitless load balancing plug-and-play during
run-time. The number of desired partitions can be specified and all of Zoltan's algorithms can be
freely configured on a time-step basis.

10

Figure 1. The parallel mesh application simulator with its constituent parts. It consists of an
application trace reader (left) and an analytical subsystem (middle) that evaluates the quality of the
partitions obtained from Zoltan's (right) partitioners. It also outputs quality metrics for plotting and
further (manual) analysis (right).

3 Cost Function

To capture the success of a given partitioner for a given mesh, we use a cost function [27]. Shloegel
et al [22] use Cost = ITR x edgecut +migration, where ITR is a user defined weight that determines
the relative importance of optimizing edge cut. This cost function is designed specifically for the
task of selecting the most cost effective algorithm in the adaptive partitioner AdaptiveRepart in
ParMetis. However, apart from edge cut (or communication) and data migration, there is a third
significant contributor to parallel inefficiency, and therefore cost: load imbalance. Thus, we expand
on the above cost function to also include load imbalance, as follows:

IT = CCR x loadimbalance +ITR x edgecut+migration, (1)

where CCR is a weight that determines the relative importance of optimizing load imbalance. In
a physical computer, CCR could be thought of as the "compute-to-communicate ratio" (hence the
acronym). Because migration is given in number of elements, and edge cut could be regarded as

11

the number of elements that need to communicate, their unit (elements) are basically the same. To
obtain the same unit for the load imbalance, we define it as (max load (in elements)) - (average
load (in elements))l. Thus, all three metrics have the same unit (elements), and Cost is expressed
as a sum of elements, weighted by the relative costs.

This simple cost function provides a flexible way to gauge the effectiveness of a partitioner to
simultaneously optimize and trade-off three of the most significant contributors to parallel inef
ficiency. By adjusting the parameters CCR and ITR, we obtain a wide spectrum of hypothetical
computing conditions.

In a real-world scenario, a small CCR would translate to a communication-dominated application,
and expensive interprocessor communication compared to in-processor computations in the par
allel computer. Thus, the partitioner has to focus less on load imbalance and more on network
traffic, such as communication and data migration. A small ITR would translate to an application
with frequent repartitionings and expensive data movement. Thus, the partitioner has to execute
fast and focus more on minimizing data migration.

4 Real-World Applications

We use six real-world adaptive mesh applications from a variety of scientific domains. The ap
plications have different sizes, geometries, structures, and refinement patterns. Because of this
difference in properties, each application poses a unique challenge to the partitioning algorithm.
Moreover, different stages in the same application might be fundamentally different. Consequently,
different stages might require different partitioning configurations to generate high-quality parti
tionings. The applications are listed in Table 1.

Described below, ShockTurb and Spheres are structured adaptive mesh applications from the Vir
tual Test Facility [28, 12] implemented in AMROC [13, 14] at the California Institute of Tech
nology. The structured two-dimensional grid hierarchies are transformed into three-dimensional
finite element meshes as follows. Each grid patch is transformed from a rectangular mesh with
quadratical elements to a cuboid of cubic elements, simply by giving each square a height equal to
its sides. A refined grid patch is positioned on top of its parent and expanded into three dimensions
analogously. The three-dimensional mesh thus expands and contracts as the two-dimensional grid
is refined and un-refined. Figure 4 illustrates the idea. Note that even though these two applications
are native structured applications, they pose significant and realistic challenges to the partitioners.

Quake Space technologies, e.g. InSAR (Interferometric Synthetic Aperture Radar) imaging, now
allow the measurement of previously unobservable earth phenomena. InSAR allows scientists to
discover and measure small changes (order of centimeters) in surface elevation that occur during
and after earthquakes, and other seismic/tectonic events, and may some day aid in earthquake
prediction. GeoFEST [1] is a NASA-developed finite element software package for modeling
solid stress and strain in geophysical and other continuum domain applications. Coupled with the

'This definition of load imbalance is appropriate for our applications with uniform element workload.

12

parallel adaptive mesh refinement capabilities of the Pyramid [2, 20] library, GeoFEST uses InSAR
data as boundary and initial conditions to compute stress, strain, and displacement fields beneath
the earth's surface. The parallel scalability and AMR data structures of Pyramid enable such
simulations to run faster and use fewer system resources than the traditional, fixed-grid approach
allowed (see Figure 2, above).

MachStem In the MachStem application (see Figure 2, below), a planar, high-Mach shock wave
impacts a wedge of material at some angle of incidence. The shock reflects off the wedge, and
for some wedge angles, produces a "Mach stem" (or a double Mach stem) feature: a localized
region of extremely high gradients and complex flow structure. The availability of experimental
pressure data for the Mach stem problem makes it a desirable code-verification application [10].
The Mach stem problem is implemented in ALEGRA [4]: a finite element, multi-material, arbi
trary Lagrangian/Eulerian hydrocode, which simulates shock hydrodynamics and solid dynamics.
ALEGRA can operate on a fully unstructured mesh or on a multi-block structured mesh. The
physics algorithms are built on top of the NEVADA framework, which provide mesh and field data
storage, load balancing, input parsing, data output utilities, communication utilities, and access to
third party libraries.

Laser-Raster The laser-raster problem (see Figure 3, above) is based on Sandia work on expo
sure of a silicon wafer to an advanced lithography tool using laser rastering. The mesh is three
dimensional but thin. At first it is only a single element layer thick, but the adaptation produces
refinement normal to the face so it becomes a true three-dimensional mesh. Nowadays, the appli
cation is used as a regression test of the software Calore [3].

Convection in Porous Media Double-diffusive natural convection in a homogeneous porous medium
[21] (see Figure 3, below) occurs whenever there are two diffusing components (e.g. heat and
species concentration), which have competing effects on the density of a background fluid (e.g.
water). This temperature- and species concentration-dependent density is based on the Boussinesq
approximation, and couples the continuity, momentum (Darcy's flow law), energy, and species
concentration equations. A variety of scales exists in the pressure, temperature, and solute con
centration fields. In particular, sharp boundary layers are often observed in the solute field, and
h-adaptive finite element techniques are used to investigate these effects.

ShockTurb - Planar Richtmyer-Meshkow instability ShockTurb (see Figure 4, above) treats
the interaction of two contacting gases with different densities. When the gases are subject to a
shock wave, the interface between them becomes unstable and the result is called a Richtmyer
Meshkov instability. The Richtmyer-Meshkov instability finds applications in stellar evolution
and supernova collapse, pressure wave interaction with flame fronts, supersonic and hypersonic
combustion and in inertial confinement fusion. In the simulation, an incident Mach 10 shock wave
causes vortices along a sinusoidally perturbed gas interface (five symmetric perturbations). The
geometry is rectangular and closed, except at the left-most end. The gases are air and SF6 (sulfur
and fluoride). The simulation is motivated by physical experiments [29].

Spheres - Cylinders in hypersonic flow In the Spheres application (see Figure 4, below), a

13

constant Mach 10 flow passes over two spheres placed inside the computational domain. The flow
results in steady bow shocks over the cylinders. This is a realistic flow problem with complex
boundaries. Both the workload and the number of patches increase sharply during the first 50 time
steps. They then decrease until time step 125, where they stabilize and remain constant for the
duration of the execution. The increase in patches occurs when the incident flow starts to hit the
two spheres. Heavy turbulence is present until bow shocks begin to form behind the spheres. The
turbulence is decreased when the bow shocks become stable, attributing to the decrease in both
the workload and the number of patches. When the bow shocks are fully formed and stable, the
workload and the number of patches are constant.

Application Element Dim Timesteps Avg #elmts Max#elmts
Quake Tetra 3D 6 308K 1.6M

MachStem Quad 2D 109 8.2K 12.5K
LaserRaster Cube 3D 65 4,4K 1O.3K
Convection Tetra 3D 73 87K 94K

SpheresSAMR Cube 3D 70 233K 341K
ShockTurbSAMR Cube 3D 100 l35K 231K

Table 1. Table of applications

14

Figure 2. Mesh configurations taken from two applications, namely Quake (above) and Mach
Stem (below). Note that these figures correspond to one instance of the adaptive meshes that the
simulations employ; these meshes adapt as the simulation progresses.

15

Figure 3. Mesh configurations taken from two applications, namely Laser-raster (above) and
Convection (below). Note that these figures correspond to one instance of the adaptive meshes
that the simulations employ; these meshes adapt as the simulation progresses.

16

Figure 4. Mesh configurations taken from two applications, namely ShockTurb (above) and
Spheres (below). Note that these figures correspond to one instance of the adaptive meshes that
the simulations employ; these meshes adapt as the simulation progresses.

17

5 Partitioning Algorithms

In this study, we use five partitioning algorithms: recursive coordinate bisection (RCB) [15], RCB
with a post re-mapping step (RCB+Remap), AdaptiveRepart [22], HyperGraph [9], and Hilbert
space-filling curve (HSFC). While RCB, RCB+Remap, HyperGraph, and HSFC are implemented
in Zoltan [15], AdaptiveRepart is a part of the ParMetis library [18] to which Zoltan has an inter
face.

The RCB and HSFC algorithms are geometric while AdaptiveRepart and HyperGraph are graph
based. Geometrical algorithms operate on coordinates defined in some space, while graph-based
methods operate on vertices and edges (that mayor may not have physical coordinates). Geometric
methods produce decompositions that implicitly try to control communication costs by maintaining
geometric locality of the elements. Graph-based methods attempt to explicitly control communi
cation costs by data dependencies. As a consequence, these two types of algorithms behave rather
differently and seem to address different partitioning objectives.

RCB lacks a dedicated partitions-to-processor mapping mechanism. To keep data migration under
control, it relies on the assumption that the coordinate bisection will preserve some important
geometric properties of the mesh. Zoltan offers a remapping function, that, given an existing
distribution and a newly computed partitioning, can remap the new partitions on to the processors
to minimize the data migration between the existing and the new distribution.

AdaptiveRepart is (as its name indicates) adaptive in the sense that it tries to adapt to its input. Two
fundamentally different partitioning approaches are tried in parallel: a scratch/remap approach
and an incremental, diffusion, approach. A scratch/remap algorithm operates in two steps. First,
the data is partitioned from scratch, disregarding the current distribution. Second, the resulting
partitions are remaped with the objective to reduce data migration. Incremental algorithms operate
by modifying the current distribution with the objective to create a new high-quality partitioning
while keeping data migration under control. For AdaptiveRepart, the approach that, given a cost
function (see Section 3), generates the more cost effective solution, is selected. This test is applied
to a coarse version of the graph. The selected version is then successively un-coarsened and refined
to produce the final result.

Hypergraph is a new algorithm developed for the Zoltan library. It is based on a model for dynamic
load balancing, where the sum of the communication and migration cost is minimized. This model
can be solved with a hypergraph with fixed vertices. The resulting algorithm is a parallel multilevel
partitioning algorithm within the Zoltan load balancing toolkit.

The HSFC algorithm is an implementation of the widely used inverse space-filling curve partition
ing method [26]. The method consists of three conceptual steps: indexing, sorting and coloring.
In the indexing step, each element is numbered according to its Hilbert curve index. This creates
a one-dimensional list of indexed elements. To preserve locality, the element list is then sorted on
the Hilbert indices. Last, consecutive portions of the sorted list are colored (or assigned) to their
respective partitions.

The partitioners unsed in this study, and their characteristics, are summerized in Table 2.

18

Algorithm Class Model Package
RCB Geometric Scratch Zoltan

RCB/Remap Geometric + Graph ScratchlRemap Zoltan
AdaptiveRepart Graph based ScratchlRemap ParMetis

Incremental
HyperGraph Graph based Incremental Zoltan

HSF Geometric Scratch Zoltan

Table 2. Table of partitioning algorithms

6 Adaptive Partitioning

In the following, assume an adaptive scientific application A with m time-steps, and a set of par
titioners PI ,P2, ... ,Pn . Assume that A has been executed n times - once for each partitioner,
resulting in n sequences of partitionings, each m time-steps long. Additionally, assume that there
are quality metrics, including load imbalance, edge cut, and data migration, computed for each
time-step and partitioner. Last, assume that these metrics are weighed together to form a cost met
ric for partitioner P applied to application A at time-step t by the cost function TI(P,A, t) described
in Section 3.

A first, theoretical approach to establish adaptive partitioning could be to select, for each time-step,
the algorithm associated with the lowest cost as estimated by TI. However, there is a major problem
inherent in this approach.

Because partitioning techniques might differ fundamentally in their algorithmic steps, their end
product, i.e., the processor-mapped partitions, might be fundamentally different. This is especially
true for techniques from different classes. For example, a geometric partitioning algorithm consid
ers the coordinates of each element, while a purely graph-based technique does not. Instead, the
graph-based technique considers vertices and edges. Adding to the complexity, incremental tech
niques use the partitioning at time-step t - I as a basis for computing the partitioning at time-step
t, and scratch-remap techniques first partition the mesh from scratch, and then re-map the result
ing partitions onto the processors with the objective to maximize data "overlap" with the existing
distribution. As a result, data that partitioner PI clusters on processor PI, might be distributed
over all processors but PI by partitioner P2. Even though the partitioning metrics indicate that two
partitionings are similar quality-wise, their end products may still be fundamentally different.

Thus, switching the current partitioning technique for a theoretically superior technique might
actually decrease parallel efficiency [27]. The data necessary to migrate to conform to the native
data mapping of the new technique might be substantial. It follows that estimating P;'s effect on a
A at time-step t, exclusively based on P;'s quality metrics for t, is insufficient. Estimated that way,
the quality metrics in general, and the data migration component in particular, are suspect. This is
because the distribution for Pi at time-step t are based on the distribution at time-step t - 1, also
computed by Pi. It follows that the cost TIt (.l'i,A , t) is also dependent on Pi applied to A at time-step

19

--RCBMax
- - - RCB Average
--RCB 1 Max
- - - RCB 1 Average
-- ParMetis ITR=1.0 Max
- - - ParMetis ITR=1.0 Average

HyperGraph Mult=1.0 Max
HyperGraph Mult=1.0 Average

--SFCMax
- - - SFC Average

1\'

I \1

I r
....

I \
t

I I
I

I \ I

I I J

I
oJ

I
I

I

I
I

'"

X 10
4

5

4.5

4

3.5

3.......
CJ)

0 2.5

U
2

1.5

0.5

Modelled Cost for Spheres
with p=8; CCR=O.50; ITR=1.0

70605030 40

Timestep
2010

0'-----'------'----'-----'------'----'-------'
o

Figure 5. The modeled cost for a set of partitioners for two different data sets (max, avg) for
Spheres with p = 8, CCR=O.5, and ITR=I.O for II applied to both max and average values. Max and
average values (across processors) refer to those of load-imbalance, edge-cuts and data-migration,
as they enter Eq. 1. Note that "Timestep" on the horizontal axis refers to the chronological index of
the mesh in the application trace and may not refer to the timestep of the time-integrator used in the
simulation.

t - 1. However, for a random algorithm-switch, the two consecutive time-steps are associated with
two different partitioning algorithms.

6.1 Uniform Starting Point

We suggest that the available partitioners be divided into the two groups incremental and scratch/remap.
The first step is to force the incremental partitioners to a uniform starting point. For example, if
we for A normally use either RCB (scratch/remap) or a diffusion technique (incremental) from
ParMetis, then we would force ParMetis to let RCB partition the first time-step. When ParMetis
is subsequently used, it will modify the original RCB partitioning, rather than modifying some
thing completely different (perhaps computed by some other ParMetis algorithm). The resulting
sequence of partitionings is more likely to be similar to that created by RCB.

20

The generalization to multiple incremental partitioners is trivial. However, it is an open question
how to handle multiple scratch/remap partitioners.

6.2 Switching-Penalty

In the following, we assume multiple incremental partitioners, denoted p{.pi, ... ,P~ and a single
scratch/remap partitioner denoted pS.

We propose a system of penalty factors to better estimate the data migration cost associated with
switching from one partitioner to another. Switching from pS to orne p/ i. con idered" afe" a
p{ will use pS as a starting point for its incremental partitioning. Thu , the tran ition pS - p/ doe
not result in a penalty. However, switching from orne pf to pS, i. con idered 'un afe' as pS will
consider neither the current p{ nor pS from the previou. time- tep. Hence any imilarity to pS at
the previous time-step is coincidental. Because the result is unpredictable, it results in a penalty f.
In short, we define the penalty function, F(f) as follows:

F = { f for p{ - pS
(f) I otherwise.

The data migration component in the cost function TI is then multiplied by F(f).

6.3 The Simple Implementation

Apart from the uniform starting point and switching penalties described above, our simple, theo
retical approach to adaptive partitioning is identical to the first approach outlined in Section 6. For
each time-step, the algorithm associated with the lowest cost, considering the switching penalty,
is selected. The resulting sequence of minimal cost algorithms is called the adaptive partitioning
sequence.

Figures 5 and 6 depict an example of adaptive partitioning for the application Spheres with p = 8,
CCR=O.5, and ITR=1.0 for TI applied to both max and average values. Figure 5 shows the costs (TI)
associated with a set of partitioning techniques. Connected lines correspond to IT applied to max
values, and dotted lines to IT applied to average values. Figure 6 shows the resulting dynamics of
the adaptive partitioning, i.e., the adaptive partitioning sequence. The blue line shows the adaptive
partitioning sequence resulting from applying IT to max values, and the red line shows the result
using average values.

As described above, the quality metrics in general, and the data migration component in particu
lar, of the computed adaptive partitioning sequence are suspect. Switching the current partitioning
technique for a theoretically superior technique might actually decrease parallel efficiency. The
data necessary to migrate to conform to the native data mapping of the new technique might be

21

substantial. Consequently, to obtain the accurate metrics for the adaptive partitioning, the appli
cation/computer configuration is executed again, this time with the adaptive partitioning sequence
applied.

The difference in cost between the adaptive partitioning sequence and the adaptive partitioning
with accurate metrics for Spheres with p = 8, CCR=0.5, and ITR=1.0 for IT (Eq. 1) applied to both
max and average values is illustrated in Figures 7 and 8, the third and fourth clusters of histograms.
Maximum and average values here refer to the maximum or average values, across processors, of
load-imbalance, edge-cuts and data-migration, as they enter Eq. 1. Each cluster of bars depicts the
results fora given combination of CCR and IT applied to max or average values. Each bar shows the
total cost over all timesteps for a given partitioning algorithm. In Figure 7, the cost of the adaptive
partitioning sequence (the rightmost bar in each cluster) is compared to the cost of the other (static)
algorithms. In Figure 8, the cost of the adaptive partitioning with accurate metrics (the rightmost
bar in each cluster) is added. It is clear that the HSFC algorithm is significantly worse than all
the other partitioners, while RCB (both native and with remapping) lags AdaptiveRepart from
ParMetis. The optimal sequence of partitioners is "theoretically" superior to ParMetis; however,
when data-migration due to switching of partitioners is factored it, ParMetis is generally superior,
except when CCR = 1.0. In this example, the adaptive partitioning with accurate metrics was more
expensive than the adaptive partitioning sequence. As discussed above, the result might as well
have been the opposite.

22

Adaptive Activity for Spheres
with p=8; CCR=O.50; ITR=1.0

E
..c
+-I
'C
o
0>

«

HSFC

HyperGraph

ParMetis

RCB+MAP

RCB

I=:=~:;I

~ If~ ~
) ~

(qe!J U. ~I((jJ8jIj) ill GIl

Mt

~ (~ ((1<31 .\..4 ,(~) 1<3 () !J!ffi.....

o 10 20 30 40

Timestep
50 60 70

Figure 6. The resulting sequence of partitioners for Spheres with p = 8, CCR=O.5, and ITR=l.O
for II applied to both max and average values. The blue line shows the adaptive partitioning se
quence resulting from applying II to max values, and the red line shows the result using average
values. Max and average values (across processors) refer to those of load-imbalance, edge-cuts
and data-migration, as they enter Eq. 1. Note that "Timestep" on the horizontal axis refers to the
chronological index of the mesh in the application trace and may not refer to the timestep of the
time-integrator used in the simulation.

23

·~HI
I.j

-,

II ~

.?:' !i;

co ~

c:: il:Q)
a. ~

en C:i' - I;!
~ II -
Q)

..c: 0:::
0.1- ~

(J) -.... ~ ~
,£2 ~ ~

U)
~

..0 il:
0 c> ~U
"0 ..0 ~
Q) N

c>Q) - ~"0
~0 ~::::2: U ~
U
cic:i

if

II ~
a. ~
:5
"3:

~

9:
~

il:

""'~
~

~
~

if

""'-.. ~

" ~ 1

Figure 7. The (theoretical) cost ofthe adaptive partitioning sequence (rightmost bar in each cluster)
compared to a set of static techniques for CCR = {0.25, 0.5, 1.0} (the left, middle and right clusters
of histograms).Results from IT, as applied to average (across processors) values of load-imbalance,
edge-cuts and data-migration, is plotted first, followed by IT as applied to the max values of the same
variables. Results are plotted for the application "Spheres" with ITR=I.O. The costs associated with
load-imbalance, communication and data-migration are plotted in blue, green and red, respectively.
RCB = the recursive coordinate bisection algorithm, R+M = RCB with remapping, PM = ParMetis,
HG = Hypergraph partitioner in Zoltan, SFC = Hilbert space-filling curve partitioner (Zoltan) and
Opt=Optimal sequence of partitioners.

24

1--~",-----

~

II
~m
c:
~

C:i
C!

~~--=============================~lliII

~~
(j) ~I
-a.~en ::z::
..... II
.Eo:::
(j)t-

85
"'C ..--:
Q)
(fjLr.!

"8~
~C'!

e-.....::::===::::::=:=======~~l
c..>
c..>
co
II
C.

..c:

'i

Figure 8. The accurate cost of the adaptive partitioning sequence (rightmost bar in each cluster)
compared to a set of static techniques for CCR = {0.25, 0.5, l.0} (the left, middle and right clusters
of histograms). Results from II, as applied to average (across processors) values of load-imbalance,
edge-cuts and data-migration, is plotted first, followed by II as applied to the max values of the
same variables. Results are plotted for the application "Spheres" with ITR=l.O. The costs asso
ciated with load-imbalance, communication and data-migration are plotted in blue, green and red,
respectively. Note the differrence in data migration (red part of bars) as compared to the theoretical
adaptive partitioning in Figure 7. R = the recursive coordinate bisection algorithm, + =RCB with
remapping, P = ParMetis, H = Hypergraph partitioner in Zoltan, S = Hilbert space-filling curve
partitioner (Zoltan), O=Optimal sequence of partitioners and A = optimal partitioner sequence with
data migration costs (i.e. with accurate metrics).

25

7 Experimentation

7.1 Hypothesis and Setup

First, we state our Hypothesis: In theory, adaptive partitioning gives superior results. In practice,
however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary re
search challenges. In our experiments, we assume a dynamic and fictitious application-computer
network execution environment where the three main contributors to parallel inefficiency - load
imbalance, communication and data migration - are all significant. Then, compared to a set of
static partitioning configurations that generate comparable cost in this environment, a simple im
plementation of adaptive partitioning, based on a unifonn starting point and switching penalties,
can perfonn in parity with the best static algorithm and thus eliminate the significant problem of
wasting vast human resources to detennine the best (or suitable) partitioner for each new simula
tion.

To investigate whether our hypothesis held true, we used a penalty factor f E {1, 2, 4, 8} applied to
the cost function II for the five fundamentally different partitioning techniques (see Section 5) for
six multiple-timestep AMR applications from different scientific domains (see Section 4, Eq. 1).
By using the simulator (see Section 2), we derived the following data points for each timestep:
load imbalance, max and average edge cut, and max and average data migration.

Rather than examining metric by metric, we wished to investigate the impact a given partitioning
technique had on the overall parallel efficiency. To accomplish this, we used II (see Section 3)
applied to two complementing sets of data. First, II was applied to average data, i.e., the edge
cut and data migration were the average values over all processors. Second, II was applied to
max data, i.e., the edge cut and data migration were the maximum values for all processors. The
load imbalance was identical for both function applications. By applying the cost function to
these two different sets of data, we captured a wider gamut of conditions. For example, assume a
sophisticated, highly parallel network where all inter-processor communication can be perfonned
in parallel. At this extreme, the detennining factor for cost will be the max values. In contrast,
consider a primitive (bus-based) network that forces all communication to be perfonned in serial.
At this extreme, the detennining factor will be the average values.

Apart from the penalty function F(f), the cost function II has two parameters: CCR and ITR.
Because geometrical partitioning techniques generate superior load balance but inferior communi
cation patterns compared to graph-based techniques, setting the parameters so that a given metric
detennines the overall cost would give predictable and trivial results. Instead, our goal was to vary
these parameters within a range that makes all three contributors (load imbalance, edge cut, and
migration) significant to overall cost. Thus, we strived to create a fictitious application and com
puting environment that was unbiased and did not favor a certain metric or partitioner. To achieve
such an environment, we used the settings CCR E {0.25, 0.5, 1.0} and ITR E {0.1, 0.25, 0.5, 1.0} 2

20ur settings for ITR are far from the settings recommended by the ParMetis authors (between 100 and 1000).
However, we are not aiming for an optimal setting per se. Rather, we aim to set ITR and CCR to fulfill the requirements
for our fictitious environment so that our hypothesis can be scrutinized.

26

For all applications except Quake, the number of partitions p tested was 8 and 16. For Quake, due
to its much greater size, we used 32 and 64. For each time-step of each application, we applied both
the average and max data sets to IT with all permutations of ITR, CCR, f, and p. All partitioners
were forced to use RCB as their starting point. HypeIGraph and ParMetis AdaptiveRepart were
configured explicitly to minimize the relevant cost function, i.e., the ITR for AdaptiveRepart and
MULT for Hypergraph were equal to the ITR in the cost function.

7.2 Results

7.2.1 Best Penalties and Algorithms

Figure 9 (left) shows the number of experiments for which each penalty performed the best. Al
though f = 1 was the best penalty on average and the quality of the result decreased when f
increased, more than 60 percent of all configurations benefit from an f > 1.

Figure 9 (right) shows the number of experiments for which each partitioning algorithms performed
the best. The best algorithm on average was AdaptiveRepart, followed by Hypergraph. However,
Hypergraph is a relatively complex and therefore costly algorithm. Its run-times are roughly ten
times as large as those for AdaptiveRepart. The other included algorithms exhibited success only
in few configurations. Consequently, the obvious choice for a static algorithm that will most often
provide good results was AdaptiveRepart.

7.2.2 Adaptive Partitioning vs. The Best Static Algorithm

We compared the results of adaptive partitioning with the best static algorithm chosen explicitly
for the particular application configuration.

The cost of the adaptive partitioning for the configuration was divided with the cost of the best
static partitioner for the same configuration. The cost was here taken as the sum of the cost over
all time-steps.

The results are displayed in Table 3 through 6. Each table shows the results for all combinations of
CCR, p and IT applied to max and average values, for a given ITR. For (X, Y) = Z, X refers to the
best penalty for the adaptive partitioning, Y refers to the index of the best static algorithm, where
I=RCB, 2=RCB+MAP, 3=AdaptiveRepart, 4= HypeIGraph, and 5=HSFC, and Z refers to the cost
ratio described.

The average cost ratio was 100%, which means that our simple implementation of adaptive parti
tioning performed statistically as well as the best static algorithm for each particular configuration.
The standard deviation was 8.5, which means that the results were reasonable stable.

27

ITR=HG MULT=O 1·
App. Max, 0.25 Avg,0.25 Max, 0.5 Avg,0.5 Max, 1.0 Avg,I.0

Quake32 (1,4)=49 (1,4)=100 (1,4)=48 (2,4)=100 (1,4)=46 (1,1)=104
Quake64 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=96

Mach8 (4,4)=87 (8,3)=98 (4,5)=98 (2,5)=109 (2,5)=120 (2,5)=119
Mach16 (2,4)=96 (4,4)=100 (4,4)=99 (8,4)=99 (8,5)=105 (4,5)=106

L-R8 (1,1)=103 (1,1)=102 (1,1)=102 (1,1)=102 (1,1)=103 (1,1)=101
L-RI6 (8,2)=95 (8,2)=108 (8,2)=99 (1,2)=108 (2,2)=104 (1,2)=102
Conv8 (2,4)=101 (1,4)=98 (2,4)=98 (2,5)=97 (2,5)=101 (8,5)=103

Conv16 (2,4)=100 (2,4)=100 (2,4)=100 (2,4)=93 (4,5)=102 (4,5)=110
Sphe8 (4,3)=109 (4,3)=103 (4,3)=108 (4,3)=104 (4,3)=106 (1,2)=122

Sphe16 (2,4)=105 (4,4)=105 (2,4)=104 (4,4)=101 (2,4)=108 (1,2)=116
Shock8 (2,3)=84 (2,3)=99 (2,3)=86 (4,3)=100 (2,3)=89 (2,2)=97

Shock16 (2,4)=112 (4,3)=100 (4,4)=111 (8,3)=100 (2,4)=103 (2,2)=107

Table 3. Adaptive partitioning vs. the best static algorithm using ITR=HG_MULT=O.l and all
CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best penalty, Y is the index
of the best static algorithm, where l=RCB, 2=RCB+MAP, 3=ParMetis, 4=HyperGraph, 5=HSFC,
and Z is the cost ratio of the best adaptive and the best static algorithm.

7.2.3 Adaptive Partitioning vs. AdaptiveRepart

We compared the results of adaptive partitioning with the industry standard, AdaptiveRepart, ex
plicitly configured for the particular application configuration.

The cost of the adaptive partitioning for the configuration was divided with the cost of Adap
tiveRepart for the same configuration. The cost was here taken as the sum of the cost over all
time-steps.

The results are displayed in Table 7 through 10. Each table shows the results for all combinations
of CCR, p and IT applied to max and average values, for a given ITR. For (X, Y) = Z, X refers to
the best penalty for the adaptive partitioning, Y refers to the index of AdaptiveRepart (3), and Z
refers to the cost ratio described.

The average cost ratio was 89.1 %, which means that our simple implementation of adaptive par
titioning performed statistically about 10 percent better than using the industry standard, Adap
tiveRepart, routinely for all configurations. The standard deviation was 17, which means that the
results varied more than for the comparison with the best static algorithm.

7.3 Conclusions and Future Work

Our hypothesis was that a simple implementation of adaptive partitioning can eliminate the prob
lem of determining the best partitioning algorithm for new application configurations. Studying

28

ITR=HG MULT=O 25·
App. Max, 0.25 Avg,0.25 Max, 0.5 Avg,0.5 Max, 1.0 Avg,I.0

Quake32 (1,4)=96 (1,4)=100 (1,4)=93 (1,4)=100 (1,4)=64 (2,1)=105
Quake64 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=97

Mach8 (8,3)=95 (8,3)=102 (1,5)=98 (2,5)=107 (4,5)=107 (2,5)=122
Mach16 (2,3)=97 (2,3)=99 (2,3)=97 (4,3)=103 (4,5)=105 (8,5)=101

L-R8 (4,4)=100 (1,4)=106 (1,1)=102 (1,4)=104 (1,1)=105 (1,1)=105
L-RI6 (2,4)=99 (2,3)=93 (2,4)=99 (4,3)=95 (4,4)=99 (8,3)=98
Conv8 (2,4)=96 (2,4)=96 (4,4)=93 (2,4)=87 (2,4)=84 (4,5)=83

Conv16 (2,4)=95 (2,4)=94 (2,4)=91 (2,4)=91 (4,5)=98 (4,5)=92
Sphe8 (2,3)=99 (4,3)=102 (2,3)=99 (8,2)=103 (4,3)=97 (1,2)=117

Sphe16 (2,4)=107 (4,3)=96 (2,4)=106 (4,2)=100 (2,4)=105 (1,2)=119
Shock8 (4,3)=100 (4,3)=99 (4,3)=100 (8,3)=99 (4,3)=102 (2,2)=98

Shock16 (2,3)=94 (8,3)=112 (2,3)=95 (8,3)=111 (4,3)=95 (1,2)=105

Table 4. Adaptive partitioning vs. the best static algorithm using ITR=HG_MULT=O.25 and all
CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best penalty, Y is the index
of the best static algorithm, where I=RCB, 2=RCB+MAP, 3=ParMetis, 4=HyperGraph, 5=HSFC,
and Z is the cost ratio of the best adaptive and the best static algorithm.

Tables 3 through 10, the conclusion is that the hypothesis is true. The cost ratios for the compar
isons were 100% or less.

The results show that even a simple implementation of adaptive partitioning can effectively elimi
nate the significant problem of determining the best static algorithm for achieving well scalability
of adaptive scientific applications. In fact, the simple implementation of adaptive partitioning
performed statistically as good as the best static algorithm chosen explicitly for each particular
application configuration. Moreover, choosing the simple implementation of adaptive partition
ing over the industry standard, AdaptiveRepart, can on average increase performance for many
applications with unknown characteristics.

These results lead to the overall conclusion that adaptive partitioning has great potential. However,
it should be obvious that the main benefit of adaptive partitioning is not to improve on the parallel
efficiency or to generally make larger and more complex simulations possible. Rather, the greatest
benefit of adaptive partitioning for unstructured AMR lies in its potential to eliminate expensive
and time consuming searches for suitable partitioning algorithms that provide the expected parallel
efficiency for existing and new simulations with unknown characteristics. Consequently, future
efforts should focus on tools for autmation.

Future work includes implementing a fully automatic adaptive partitioner as a part of the Zoltan
library. This, in tum, implies research within many areas, such as control systems, software com
ponents, algorithm characterizations, and databases. Moreover, methods for determining optimal
settings for adaptive partitioning, e.g. the value oft, are needed. For a thorough description of the
fundamental parts and some initial implementations, see work by Johansson [17].

29

ITR=HG MULT=O.5
App. Max, 0.25 Avg,0.25 Max, 0.5 Avg,0.5 Max, 1.0 Avg,1.0

Quake32 (1,4)=103 (1,4)=95 (1,4)=103 (1,4)=95 (1,4)=91 (1,4)=96
Quake64 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100

Mach8 (8,3)=108 (2,3)=108 (2,3)=96 (2,3)=105 (2,3)=96 (2,5)=111
Mach16 (4,3)=97 (2,3)=106 (4,3)=97 (2,3)=103 (2,3)=97 (8,3)=105

L-R8 (2,4)=97 (1,3)=104 (2,4)=97 (1,3)=99 (8,4)=103 (1,3)=108
L-R16 (2,3)=96 (2,3)=100 (2,3)=96 (1,3)=100 (2,3)=101 (1,3)=101
Conv8 (1,4)=96 (1,3)=89 (1,4)=96 (4,4)=90 (1,4)=88 (2,2)=86

Conv16 (1,3)=98 (1,3)=98 (1,3)=94 (2,3)=98 (2,3)=95 (2,3)=93
Sphe8 (2,3)=108 (4,3)=104 (2,3)=107 (4,2)=105 (1,3)=101 (1,2)=116

Sphe16 (1,3)=100 (4,3)=107 (1,3)=101 (2,2)=111 (1,3)=102 (1,2)=118
Shock8 (2,3)=107 (2,3)=104 (2,3)=106 (4,3)=104 (2,3)=106 (2,2)=100

Shock16 (4,3)=100 (8,3)=107 (4,3)=100 (8,3)=107 (4,3)=100 (2,2)=104

Table 5. Adaptive partitioning vs. the best static algorithm using ITR=HG_MULT=O.5 and all
CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best penalty, Y is the index
of the best static algorithm, where l=RCB, 2=RCB+MAP, 3=ParMetis, 4=HyperGraph, 5=HSFC,
and Z is the cost ratio of the best adaptive and the best static algorithm.

ITR=HG MULT=l.O
App. Max, 0.25 Avg,0.25 Max, 0.5 Avg,0.5 Max, 1.0 Avg,1.0

Quake32 (1,4)=87 (1,4)=98 (1,4)=88 (1,4)=98 (1,4)=88 (1,4)=98
Quake64 (1,4)=100 (1,4)=103 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100

Mach8 (1,3)=98 (4,3)=108 (1,3)=98 (8,3)=104 (1,3)=97 (8,3)=103
Mach16 (2,3)=101 (8,3)=102 (2,3)=96 (8,3)=102 (8,3)=101 (8,3)=102

L-R8 (1,3)=97 (8,3)=96 (1,3)=97 (8,3)=98 (4,3)=103 (8,3)=102
L-R16 (4,3)=94 (1,3)=100 (4,3)=94 (1,3)=100 (4,3)=94 (1,3)=99
Conv8 (1,4)=99 (1,4)=99 (1,4)=98 (1,4)=103 (1,4)=98 (1,4)=99

Conv16 (1,3)=96 (1,3)=104 (1,3)=100 (1,3)=99 (1,3)=100 (1,3)=102
Sphe8 (4,3)=101 (4,3)=105 (4,3)=101 (8,3)=104 (4,3)=101 (1,2)=109

Sphe16 (2,4)=98 (2,2)=92 (2,4)=98 (4,2)=105 (4,4)=101 (2,2)=114
Shock8 (2,3)=108 (1,3)=98 (2,3)=107 (4,3)=100 (4,3)=106 (2,3)=97

Shock16 (1,3)=106 (4,3)=108 (1,3)=110 (4,3)=108 (2,3)=103 (2,3)=105

Table 6. Adaptive partitioning vs. the best static algorithm using ITR=HG_MULT=l.O and all
CCRs and both max and avg data sets. Notation: For (X, Y) = Z, X is the best penalty, Y is the index
of the best static algorithm, where l=RCB, 2=RCB+MAP, 3=ParMetis, 4=HyperGraph, 5=HSFC,
and Z is the cost ratio of the best adaptive and the best static algorithm.

30

Most Successful Penalties
120

100
'tn
Q)

.J:l
Q)
.r:. 80-en
Cll
3=-en 60Q)

E
:+=0
>.
c:
Cll 40
E
3=
0
J:

20

0
2 4

Penalty

_ITR=0.1
_ITR=0.25
c=JITR=0.5
_ITR=1.0

8

140

120

'tn
Q)

.J:l
Q) 100
.r:.-en

~ 80
:!:
en
Q)

E
60:+=0

>.
c:
Cll
E

40
3=
0
J:

20

RCB

Most Successful Algorithms

RCB+MAP ParMetis HyperGraph

Algorithms
HSFC

Figure 9. Best penalties (above) and algorithms (below) for the applications tested in this study.

31

ITR=HG MULT=O 1.
App. Max, 0.25 Avg,0.25 Max, 0.5 Avg,0.5 Max, 1.0 Avg,1.0

Quake32 (1,3)=10 (1,3)=44 (1,3)=11 (2,3)=49 (1,3)=12 (1,3)=53
Quake64 (1,3)=60 (1,3)=63 (1,3)=62 (1,3)=67 (1,3)=64 (1,3)=69

Mach8 (4,3)=86 (8,3)=98 (4,3)=87 (2,3)=97 (2,3)=88 (2,3)=74
Mach16 (2,3)=85 (4,3)=93 (4,3)=89 (8,3)=93 (8,3)=90 (4,3)=96

L-R8 (1,3)=75 (1,3)=79 (1,3)=70 (1,3)=71 (1,3)=64 (1,3)=58
L-RI6 (8,3)=71 (8,3)=98 (8,3)=72 (1,3)=91 (2,3)=71 (1,3)=75
Conv8 (2,3)=86 (1,3)=78 (2,3)=84 (2,3)=75 (2,3)=76 (8,3)=53

Conv16 (2,3)=65 (2,3)=63 (2,3)=66 (2,3)=63 (4,3)=69 (4,3)=63
Sphe8 (4,3)=109 (4,3)=103 (4,3)=108 (4,3)=104 (4,3)=106 (1,3)=85

Sphe16 (2,3)=86 (4,3)=102 (2,3)=86 (4,3)=98 (2,3)=91 (1,3)=85
Shock8 (2,3)=84 (2,3)=99 (2,3)=86 (4,3)=100 (2,3)=89 (2,3)=82

Shock16 (2,3)=100 (4,3)=100 (4,3)=100 (8,3)=100 (2,3)=94 (2,3)=93

Table 7. Adaptive partitioning vs. AdaptiveRepart, using ITR=HG_MULT=O.1 and all CCRs and
both max and avg data sets. Notation: For (X, Y) = Z, X is the best penalty, Y is the index of
AdaptiveRepart (3), and Z is the cost ratio of the best adaptive and AdaptiveRepart.

ITR=HG MULT=O 25.
App. Max, 0.25 Avg,0.25 Max, 0.5 Avg,0.5 Max, 1.0 Avg,1.0

Quake32 (1,3)=80 (1,3)=89 (1,3)=78 (1,3)=90 (1,3)=54 (2,3)=91
Quake64 (1,3)=44 (1,3)=85 (1,3)=45 (1,3)=86 (1,3)=47 (1,3)=85

Mach8 (8,3)=95 (8,3)=102 (1,3)=94 (2,3)=101 (4,3)=88 (2,3)=87
Mach16 (2,3)=97 (2,3)=99 (2,3)=97 (4,3)=103 (4,3)=98 (8,3)=99

L-R8 (4,3)=93 (1,3)=104 (1,3)=92 (1,3)=102 (1,3)=88 (1,3)=92
L-RI6 (2,3)=85 (2,3)=93 (2,3)=86 (4,3)=95 (4,3)=86 (8,3)=98
Conv8 (2,3)=90 (2,3)=90 (4,3)=86 (2,3)=80 (2,3)=77 (4,3)=63

Conv16 (2,3)=76 (2,3)=80 (2,3)=73 (2,3)=78 (4,3)=78 (4,3)=75
Sphe8 (2,3)=99 (4,3)=102 (2,3)=99 (8,3)=102 (4,3)=97 (1,3)=80

Sphe16 (2,3)=96 (4,3)=96 (2,3)=96 (4,3)=97 (2,3)=96 (1,3)=89
Shock8 (4,3)=100 (4,3)=99 (4,3)=100 (8,3)=99 (4,3)=102 (2,3)=84

Shock16 (2,3)=94 (8,3)=112 (2,3)=95 (8,3)=111 (4,3)=95 (1,3)=95

Table 8. Adaptive partitioning vs. AdaptiveRepart, using ITR=HG_MULT=O.25 and all CCRs
and both max and avg data sets. Notation: For (X, Y) = Z, X is the best penalty, Y is the index of
AdaptiveRepart (3), and Z is the cost ratio of the best adaptive and AdaptiveRepart.

32

T=1.0 and all CCRs
lty, Y is the index of
part.

1.0 Avg,1.0
51 (1,3)=82
67 (1,3)=92
96 (2,3)=103
97 (8,3)=105
99 (1,3)=108
101 (1,3)=101
83 (2,3)=81
95 (2,3)=93
101 (1,3)=84
102 (1,3)=91
106 (2,3)=95
100 (2,3)=99

1.0 Avg,1.0
51 (1,3)~72

59 (1,3)=85
97 (8,3)=103
101 (8,3)=102
103 (8,3)=102
94 (1,3)=99
91 (1,3)=94
100 (1,3)=102
101 (1,3)=90
91 (2,3)=88
106 (2,3)=97
103 (2,3)=105

=0.5 and all CCRs and
y, Y is the index of
part.

ITR=HG MULT=0.5
App. Max, 0.25 Avg,0.25 Max, 0.5 Avg,0.5 Max,

Quake32 (1,3)=54 (1,3)=78 (1,3)=55 (1,3)=79 (1,3)=
Quake64 (1,3)=64 (1,3)=91 (1,3)=65 (1,3)=91 (1,3)=

. Mach8 (8,3)=108 (2,3)=108 (2,3)=96 (2,3)=105 (2,3)=
Mach16 (4,3)=97 (2,3)=106 (4,3)=97 (2,3)=103 (2,3)=

L-R8 (2,3)=93 (1,3)=104 (2,3)=93 (1,3)=99 (8,3)=
L-RI6 (2,3)=96 (2,3)=100 (2,3)=96 (1,3)=100 (2,3)=
Conv8 (1,3)=93 (1,3)=89 (1,3)=92 (4,3)=89 (1,3)=

Conv16 (1,3)=98 (1,3)=98 (1,3)=94 (2,3)=98 (2,3)=
Sphe8 (2,3)=108 (4,3)=104 (2,3)=107 (4,3)=103 (1,3)=

Sphe16 (1,3)=100 (4,3)=107 (1,3)=101 (2,3)=105 (1,3)=
Shock8 (2,3)=107 (2,3)=104 (2,3)=106 (4,3)=104 (2,3)=

Shock16 (4,3)=100 (8,3)=107 (4,3)=100 (8,3)=107 (4,3)=

Table 9. Adaptive partitioning vs. AdaptiveRepart, using I1R=HG_MULT-
both max and avg data sets. Notation: For (X, Y) = Z, X is the best penalt
AdaptiveRepart (3), and Z is the cost ratio of the best adaptive and AdaptiveRe

ITR=HG MULT=l.O
App. Max, 0.25 Avg,0.25 Max, 0.5 Avg,0.5 Max,

Quake32 (1,3)=49 (1,3)=69 (1,3)=50 (1,3)=70 (1,3)=
Quake64 (1,3)=57 (1,3)=85 (1,3)=58 (1,3)=84 (1,3)=

Mach8 (1,3)=98 (4,3)=108 (1,3)=98 (8,3)=104 (1,3)=
Mach16 (2,3)=101 (8,3)=102 (2,3)=96 (8,3)=102 (8,3)=

L-R8 (1,3)=97 (8,3)=96 (1,3)=97 (8,3)=98 (4,3)=
L-RI6 (4,3)=94 (1,3)=100 (4,3)=94 (1,3)=100 (4,3)=
Conv8 (1,3)=92 (1,3)=95 (1,3)=91 (1,3)=99 (1,3)=

Convl6 (1,3)=96 (1,3)=104 (1,3)=100 (1,3)=99 (1,3)=
Sphe8 (4,3)=101 (4,3)=105 (4,3)=101 (8,3)=104 (4,3)=

Sphe16 (2,3)=88 (2,3)=89 (2,3)=88 (4,3)=94 (4,3)=
Shock8 (2,3)=108 (1,3)=98 (2,3)=107 (4,3)=100 (4,3)=

Shockl6 (1,3)=106 (4,3)=108 (1,3)=110 (4,3)=108 (2,3)=

Table 10. Adaptive partitioning vs. AdaptiveRepart, using I1R=HG_MUI.:
and both max and avg data sets. Notation: For (X, Y) = Z, X is the best pena
AdaptiveRepart (3), and Z is the cost ratio of the best adaptive and AdaptiveRe

33

-

References

[1] http://www.openchannelfoundation.org/projects/GeoFEST.

[2] http://www.openchannelfoundation.org/projects/pyramid.

[3] S.W. Bova, D.D. Copps, and e.K. Newman. Calore, a computational heat transfer program.
Technical Report SAND2005-0551, Sandia National Laboratory, Albuquerque, NM, USA,
2005.

[4] K. Budge and J. Peery. Experiences Developing ALEGRA: A C++ Coupled Physics Frame
work, 1996. In M.E Henderson, C. R Anderson, and S. L. Lyons, editors, Object Oriented
Methods for Interoperable Scientific and Engineering Computing.

[5] G. F. Carey, M. Anderson, B. Carnes, and B. Kirk. Some aspects of adaptive grid technology
related to boundary and interior layers. J. Comput. Appl. Math., 166(1):55-86,2004.

[6] Graham F. Carey, William Barth, Juliette A. Woods, Ben Kirk, Michael L. Anderson, Sum
Chow, and Wolfgang Bangerth. Modeling error and constitutive relations in simulation of
flow and transport. International Journalfor Numerical Methods in Fluids, 46:1211-1236,
2004.

[7] B. R Carnes and G. F. Carey. Estimating spatial and parameter error in parameterized non
linear reaction-diffusion equations. Communications in Numerical Methods in Engineering,
23:834-854,2007.

[8] Bruce Carter and et. al. Parallel FEM simulation of crack propagation - challenges, status,
and perspectives. In Lecture Notes in Computer Science 1800, pages 443~49. Springer
Verlag, 2000.

[9] u.v. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, RT. Heaphy, and L.A. Riesen.
Hypergraph-based dynamic load balancing for adaptive scientific computations. In Proc. of
21st International Parallel and DistributedProcessing Symposium (IPDPS'07). IEEE, 2007.
Best Algorithms Paper Award.

[10] M.1. Chen and T. G. Trucano. ALEGRA validation studies for regular, mach, and double
mach shock reflection in gas dynamics. (SAND2002-2240), September 2002.

[11] G. F. Carey Chow, S. and M. L. Anderson. Finite element approximations of a glaciology
problem. Mathematical Modelling and Numerical Analysis, 38(5):741-756,2004.

[12] R Deiterding, R. Radovitzky, L. Noels S. Mauch, J.e. Cummings, and D.I. Meiron. A
virtual test facility for the efficient simulation of solid material response under strong shock
and detonation wave loading. Engineering with Computers, 22 (3~):325-347, 2006.

[13] Ralf Deiterding. AMROC. http://amroc.sourceforge.net/VTF, California Institute of Tech
nology, CA, USA, 2003.

34

[14] Ralf Deiterding. Detonation simulation with the AMROC framework. In Forschung und wis
senschaftliches Rechnen: Beitriige zum Heinz-Billing-Preis 2003, pages 63-77. Gesellschaft
fur Wiss. Datenverarbeitung, 2004.

[15] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan.
Zoltan data management services for parallel dynamic applications. Computing in Science
and Engineering, 4(2):90-97, 2002.

[16] Richard Drake et. al. Computational shock
http://www.cs .sandia.gov/capabilities/
ComputationaIShockMultiphysics/index.html, Sandia National Laboratory.

multiphysics.

[17] Henrik Johansson and Johan Steensland. A characterization of a hybrid and dynamic parti
tioner for SAMR applications. Technical Report 2004-009, Uppsala University, IT, Dept. of
scientific computing, Uppsala, Sweden, 2004.

[18] G. Karypis, K. Schloegel, and V. Kumar. PARMETIS - parallel graph partitioning and sparse
matrix ordering library, version 2.0. Univ. of Minnesota, Minneapolis, MN, 1998.

[19] 1. D. Murray, 1. Cook, R. Tyson, and S. R. Lubkin. Spatial pattern formation in biology: I.
dermal wound healing. II. bacterial patterns. Journal of the Franklin Institute, 335(2):303
332,1998.

[20] C. D. Norton, G. A. Lyzenga, J. W. Parker, and E. R. Tisdale.
ing Parallel GeoFEST(P) using the PYRAMID AMR Library. In
NASA Earth Science Technology Conference, Palo Alto, CA, 2004.
doc.gsfc.nasa.gov/conferences/estc2004/papers/a2p2.pdf.

Develop
Proceedings

http://esto-

[21] J. W. Peterson, G. F. Carey, and B. T. Murray. Adaptive grid strategies for FEM simulations of
double-diffusive convection in porous media. Journal ofComm. Numer. Meth. Eng., Special
Issue, In preparation.

[22] K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing adaptive
scientific simulations. In Proceedings ofSupercomputing 2000, 2000.

[23] Larry A. Schoof and Victor R. Yarberry. Exodus II: A finite element data model. Technical
Report SAND92-2137, Sandia National Laboratory, Albuquerque, NM, USA, 1994.

[24] Mausumi Shee. Evaluation and optimization of load balancing/distribution techniques for
adaptive grid hierarchies. M.S. Thesis, Graduate School, Rutgers University, NJ, 2000
http://www.caip.rutgers.edu/TASSLlThesis/-mshee-thesis.pdf. 2000.

[25] Johan Steensland. Efficient partitioning ofdynamic structured grid hierarchies. PhD thesis,
Uppsala University, 2002.

[26] Johan Steensland, Sumir Chandra, and Manish Parashar. An application-centric characteri
zation of domain-based SFC partitioners for parallel SAMR. IEEE Transactions on Parallel
and Distributed Systems, December: 1275-1289, 2002.

35

[27] Johan Steensland and John Peterson. A study of dynamically adaptive partitioning for AMR.
In Proceedings ofthe International Conference on Parallel and Distributed Processing Tech
niques and Applications (PDPTA '07), pages 503-509. CSREA Press, 2007.

[28] The Virtual Test Facility. http://www.cacr.caltech.edu/asc/wiki, Oct. 2006.

[29] M. Vetter and R. Sturtevant. Experiments on the Richtmyer-Meshkov instability on a airlSF6
interface. Shock Waves, 4(5):247-252, 1995.

[30] C Walshaw. Jostle homepage, http://www.gre.ac.ukrc.walshaw/jostle/. 2000.

[31] Chris Walshaw. Variable partitioning inertia: graph repartitioning and load-balancingfor
adaptive meshes. Wiley book series on parallel and distributed computing. Wiley, 2007. To
appear.

36

Distribution:

1 Johan Steensland
Vassvagen 1,
SE-645 44 Strangnas
Sweden

1 Jaideep Ray, 08964

1 Technical Library, 99536
2 Central Technical Files 08945-1

MS 9159

MS 0899
MS 9018

37


~~~·~rary 9616

MS 0899 (1)




