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Abstract

In this paper, we show how to construct secure obfuscation for Deterministic Finite Au-
tomata, assuming non-uniformly strong one-way functions exist. We revisit the software
protection approaches originally proposed by [5, 10, 12, 17] and revise them to the current
obfuscation setting of Barak et al. [2]. Under this model, we introduce an efficient oracle
that retains some “small” secret about the original program. Using this secret, we can con-
struct an obfuscator and two-party protocol that securely obfuscates Deterministic Finite
Automata against malicious adversaries. The security of this model retains the strong “vir-
tual black box” property originally proposed in [2] while incorporating the stronger condition
of dependent auxiliary inputs in [15]. Additionally, we show that our techniques remain se-
cure under concurrent self-composition with adaptive inputs and that Turing machines are
obfuscatable under this model.
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Chapter 1

Introduction

Program obfuscation, if possible and practical, would have a considerable impact on the
way we protect software systems today. It would be instrumental in protecting intellectual
property, preventing software piracy, and managing use-control applications. The work of
Barak et al. [2] initiated the first formal study of obfuscation. They define an obfuscator
O to be an efficient, probabilistic compiler that takes a program P and transforms it into
a functionally equivalent yet unintelligible program O(P ). Unintelligible is defined in the
strictest sense, to imply that the program O(P ) behaves ideally like a “virtual black box”.
That is, whatever can be efficiently extracted from the obfuscated program can also be
extracted efficiently when given only oracle access to P .

Unfortunately, in [2] it was proven that obfuscation in general is impossible. Namely,
there exist a family of functions that are unobfuscatable under the “virtual black box”
notion of security. This would seem to suggest that having physical access to the program
is a much stronger capability than having only access to its input and output behavior. In
addition to this main impossibility result, the authors also prove that if secure symmetric key
encryption schemes exist, pseudorandom functions exist, or message authentication schemes
exist, then so do unobfuscatable versions of each. The authors conclude that the “virtual
black box” property is inherently flawed, and if we hope for any positive obfuscation results,
then either this model needs to be abandoned or we need to accept that many programs are
not obfuscatable [2].

Numerous other impossibility results have also shed light on the problem of obfuscation.
For example, Goldwasser et al. [15] showed that many natural circuit classes are unobfus-
catable when auxiliary inputs are added to the obfuscation model. Auxiliary inputs provide
for a more robust model of obfuscation, since the adversary is assumed to have some a priori
information about the underlying program. This additional layer of security is useful in
practice, since it is likely that the obfuscated code will be utilized in a large system, and the
system may reveal partial information about the functionality of the code.

In spite of the numerous impossibility results, other works such as Lynn et al. [18] have
examined alternative models of obfuscation in the hope of achieving meaningful possibility
results. Under the random oracle model of obfuscation, they assume that both the obfuscator
and obfuscated code have access to a public random oracle. Under this assumption, they are
able to show that both point functions and complex access control schemes are obfuscatable.
Similar results were obtained by [6, 8, 21] under a slightly weaker notion of “virtual black
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Figure 1.1. Obfuscation with respect to oracle machines

box” obfuscation (without random oracles). For example, Wee showed in [21] that point
functions are (weakly) obfuscatable, provided that strong one-way permutations exist.

In this paper, we introduce a new model of obfuscation that has wide and meaningful
possibility results beyond those described above. To demonstrate the utility of this model, we
show that both deterministic finite automata and Turing machines are securely obfuscatable,
provided non-uniformly strong one-way functions exist. We call this model of obfuscation
obfuscation w.r.t. oracle machines.

Unlike the “virtual black box” model of obfuscation, where we assume an adversary has
full access to the obfuscated code, we instead consider the case where a small portion of
the computation remains hidden and is only accessible via black box. See Figure 1.1 for
an illustration. A compiler in this case takes a program P and returns two outputs, the
obfuscated code O(P ) which is given to the adversary, and a small secret which is given to
the oracle. An execution of the obfuscated code takes an input x and computes O(P )(x),
via a two-party protocol. To avoid certain trivialities, we impose restrictions on the oracle’s
computational resources. Namely, we will consider only the case when the oracle’s space
resources are asymptotically smaller than the program itself. In practice, the oracle may be
implemented as a computationally limited device, such as a smart card or crypto processor.

Notation

We will use the notation PPT to stand for probabilistic polynomial-time Turing machine. If
A is a PPT, B an oracle, and x an input to A, then by AB(x) we mean the algorithm that
runs on input x using oracle access to B. We will often refer to A as a PPT oracle machine.
When writing x⇐ A we mean the value x is returned by A. Additionally, A(1k) implies A
is given the value k. In our algorithm descriptions, we make use of the statements return
y and Return z. When using the syntax return, we imply that the value y is returned
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internally to the algorithm (such as the output of a function call), while by using Return,
we imply that the value z is written to the output tape. As usual, we use the notation {0, 1}k

to denote the set of all k-bit binary strings, and by x
$
← {0, 1}k we mean x is uniformly

chosen from {0, 1}k. We also use the conventional notation of ‖ and ⊕ to denote the string
operators concatenate and exclusive or. Unless explicitly stated otherwise, we will assume
all references to log are based 2. A function µ : N → R

+ is said to be negligible, if for any
positive polynomial p there exists an integer N such that for any k > N , µ(k) < 1/p(k).
We will sometimes use the notation neg(·) to denote an arbitrary negligible function. A
polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is called non-uniformly strong
one-way if for every non-uniform PPT A there is a negligible function neg(·) such that for
sufficiently large k, Pr

x
$
←{0,1}k

[ f−1(f(x)) ∋ y ← A(f(x), 1k) ] ≤ neg(k).

Obfuscation with respect to Oracle Machines

In this section we introduce the framework for obfuscating w.r.t. oracle machines. Under
this framework we model obfuscation as a two-party protocol, where one party represents the
obfuscated code and the other an oracle containing some “small” secret. The communica-
tion between the two parties is characterized using interactive Turing machines introduced
by [13]. Under this model, we assume the adversary has complete control over both the
obfuscated code and message scheduling. We further assume the adversary is malicious, and
may deviate from the protocol in any way. This allows the adversary to adaptively query the
oracle with messages of its own choice. We define an interactive Turing machine as follows.

Interactive Turing Machines. An interactive Turing machine (ITM) is a Turing machine
that has an additional communication tape, together with its read-only input tape, read-only
random tape, write-only output tape, and read-and-write work tape. The communication
tape consists of two tapes, a write-only outgoing communication tape and a read-only in-
coming communication tape. When the incoming and outgoing communication tape of one
ITM are shared with the outgoing and incoming communication tapes of the other ITM we
call this pair an interactive pair of Turing machines.

We denote a pair of interactive Turing machines M and N as the tuple (M, N). The pair
(M, N) is assumed to be ordered in the sense that at any one time only one Turing machine
is active. The active Turing machine can compute on its internal work tapes, read from its
input tapes, write to its output tape, and send a message to the other Turing machine on its
outgoing communication tape. When one Turing machine has completed its computation, it
transfers control over to the other. This process continues until one machine reaches a halt
state.

Oracle Model. The obfuscation oracle R is modeled as an interactive Turing machine with
one additional read-and-write tape called internal state. The tape internal state has a unique
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feature called persistence that distinguishes it from the other tapes in the oracle. We say a
tape is persistent if the tape’s contents are preserved between each successive execution of
R. The other internal working tapes do not share this property and are assumed to be blank
after each execution. Given a particular input and internal state, the oracle R computes
an output (which may be ⊥) on its outgoing communication tape along with a new internal
state, internal state′.

(output , internal state′)←R(input , internal state)

If R does not have access to a random tape then we say R is deterministic.

Before finalizing the oracle’s computational model, we need to capture the idea of a
resource-limited device. This will help clarify our meaning of an oracle maintaining a “small”
secret. To explore this idea more throughly, we consider the following two illustrations. In
our first example, we examine the case when the internal state tape is assumed to be very
large, so large in fact that it can store the entire program that is being obfuscated. In this
instance, we can create a trivial obfuscator that loads the entire program into the oracle’s
internal state at setup. This simulates a true black box and maintains the security properties
we are after. However, in practice very large programs may not physically fit on a device,
or it may be prohibitively expensive to do so, especially if the device requires tamper and
read-proof protection.

As another example, we consider the parallel case when the input tape is very large.
In this case we can devise a protocol that loads an authenticated encrypted version of the
program onto the oracle’s work tape (for each input query), which the oracle later decrypts,
authenticates, and runs internally. Having a large input tape does not make sense in practice,
as the input is usually comparatively smaller than the program size. To avoid these trivialities
we consider placing bounds on both the size of the internal state and input tape of the oracle.
Under this supposition, we assume there exists a polynomial s(·) such that for each k ∈ N,
both tapes are polynomial bounded by s(k). In this framework, we will consider only the non-
trivial case when s(k) = o(f(k)),1 where the device’s resources are asymptotically smaller
than the program itself. In the special case when s(k) = O(k), we will say that the oracle
maintains a “small” internal state.

Definition 1 (Obfuscation w.r.t. Oracle Machines) A probabilistic polynomial time
algorithm O and oracle R are said to comprise an obfuscator of the family F = {Fk}k∈N

w.r.t. polynomial-time bounded oracle machines, if the following three conditions hold:

• (Approximate Functionality) There exists a negligible function µ such that for all k
and M ∈ Fk, O

R(M, 1k) describes an ITM that computes the same function as M
with probability at least 1− µ(k).

• (Polynomial Slowdown) The description length and running time of OR(M, 1k) is at
most polynomial larger than that of M . That is, there exists a polynomial p such that

1The size of each M ∈ Fk is polynomial bounded by f(k).
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for all k and M ∈ Fk, |O(M, 1k)| ≤ p(k) and if M takes t time steps on an input x,
then OR(M, 1k) takes at most p(k + t) time steps on x.

• (Virtual Black Box) For every PPT A, there is a PPT simulator S and a negligible
function ν such that, for all k and M ∈ Fk, and every polynomial q with bounded
auxiliary input z of size q(k), we have

∣

∣Pr[AR(OR(M, 1k), 1k, z) = 1]− Pr[SM(1|M |, 1k, z) = 1]
∣

∣ ≤ ν(k).

For convenience, when our family F is a family of Turing machines, we will adopt the
convention that each program is represented by its binary string encoding for some fixed2

polynomial time universal Turing machine. Therefore, the size of each Turing machine is
measured as the size of its binary string representation. To simulate the adversaries view
correctly, we will also leak to S the number of steps taken on each oracle query to M . So not
only will S be able to observe the input and output behavior of M , but it will also observe
its timing as well.

Non-Resettable Deterministic Finite Automata

We define a Deterministic Finite Automaton (DFA) as a machine Ψ = (Q, Σ, δ, s0, G) with
a finite set of states Q, finite alphabet Σ, transition function δ, initial state s0 ∈ Q, and
accepting states G. The structure of the DFA is determined by its transition function δ,
which maps each state and a given input symbol to a new state. The output function (which
imitates black box behavior) of the DFA Ψ is defined as

Ψ(s, α) :=

{

1 if δ(s, α) ∈ G
0 if δ(s, α) /∈ G

where the “user”-selectable input is α, and s is the current “internal” state. We note that
the user does not have control of the state input. Rather Ψ must internally maintain the
state over each execution. We will often write just Ψ(α).

When modeling DFAs, it is often convenient (unless stated otherwise) to assign a reset
capability, which allows the DFA to transition back to its initial state. In practice, having
a reset capability is not always a desired characteristic, especially when developing software
use-control applications, such as subscription policies and digital rights management. To
differentiate between DFAs that have a reset capability and those that don’t, we define a
non-resettable DFA to be a deterministic finite automaton that is not resettable. We note
that we can always build in resettability if we add an additional reset symbol to every state.

A topic of related interest that has been actively studied over the years has been on
the problem of developing efficient learning algorithms. A learning algorithm takes a given

2The description size of a program between any two universal Turing machines differs by at most a
constant.
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input-output sample (i.e., transcript) and tries to construct a DFA that is consistent with
this sample. Finding a minimum-state DFA that is consistent for a given sample was shown
by Gold [9] to be NP-Hard. This holds for any passively observable learning algorithm of
an unknown DFA (with a particular representation). Angulin extends this result and shows
that active learning that allows user selectable inputs, is equally hard [1]. Specifically, one
can construct a family of DFAs that cannot be learned in less than exponential time. A
common interest to this line of work has been the relationship of resettability and learning.
Non-resettability under certain frameworks can sometimes lead to efficient learning algo-
rithms [19]. In general, though, learning a non-resettable DFA is a very difficult problem.

Necessary Conditions for Obfuscating a DFA

In this section we develop several necessary conditions for securely obfuscating a non-
resettable DFA. In particular, we show that obfuscation is feasible only provided that the
oracle’s internal state is both read-proof and non-static. To facilitate the proof in Propo-
sition 1, we begin by constructing a family of non-resettable DFAs that are hard to char-
acterize given only black box access, yet easy given some additional power, such as reset.
We define the family of non-resettable DFAs Ψi,j, i, j ∈ {0, 1} to be the set of machines
with the following characteristics: Q = {0, 1, 2}, |Σ| ≥ 2, initial state 0, accept states
Gi,j = {1 iff i = 1, 2 iff j = 1}, and transition function

δ(q, λ) :=







0 if q = 0 and λ ∈ Σ− {α, β}
1 if (q = 0 and λ = α) or q = 1
2 if (q = 0 and λ = β) or q = 2.

The family described above branches into two distinct states, depending on whether the first
input symbol is α or β. Clearly, one can learn the DFA’s full description if resets are allowed.
We exploit this simple observation in the following result.

Proposition 1 If non-resettable DFAs are obfuscatable w.r.t. oracle machines then the
following conditions must hold:

(1) The oracle’s internal state tape cannot be static.

(2) The oracle must be read-proof.

Proof: For the first condition we let O be any secure non-resettable DFA obfuscator. We
show that having a static internal state gives the adversary a non-negligible advantage.
Suppose |Σ| ≥ 2 and consider the non-resettable DFAs Ψi,j described above with alphabet
symbols α, β ∈ Σ. Since O is a secure obfuscator we must have for every PPT A and
auxiliary input z, the existence of a PPT simulator S satisfying

∣

∣

∣
Pr[AR(OR(MΨi,j

, 1k), 1k, z) = 1]− Pr[SMΨi,j (1|MΨi,j
|, 1k, z) = 1]

∣

∣

∣
≤ ν(k)
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Let A be the adversary that takes the original obfuscated code O(Ψi,j), stores a copy C ←
O(Ψi,j) and runs i ← CR(α) and j ← CR(β). The distinguishing bit returned by A is
b← i⊕ j. Now since

1− Pr[SΨi,j(1|MΨi,j
|, 1k, z) = 1] ≤ ν(k) for i 6= j

and
Pr[SΨi,j (1|MΨi,j

|, 1k, z) = 1] ≤ ν(k) for i = j

we must have

1− ν(k) ≤
1

2

∑

i6=j

Pr[SΨi,j (1|MΨi,j
|, 1k, z) = 1]

and
1

2

∑

i=j

Pr[SΨi,j (1|MΨi,j
|, 1k, z) = 1] ≤ ν(k).

But the following equality

∑

i6=j

Pr[SΨi,j (1|MΨi,j
|, 1k, z) = 1] =

∑

i=j

Pr[SΨi,j (1|MΨi,j
|, 1k, z) = 1]

implies 1/2 ≤ ν(k) for k sufficiently large, contradicting our assumption that ν is negligible.

For the second condition we assume the oracle is not read-proof, which implies the entire
internal state can be extracted. Therefore, the adversary can simulate an exact copy of the
oracle on its own. Using the same arguments as above we reach a contradiction.
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Chapter 2

DFA Obfuscation

Following the framework described in Section 1, we show how to construct a DFA obfuscator
that is secure with respect to dependent auxiliary inputs. Our goal is to develop a compact,
yet very efficient DFA obfuscator that is not only of theoretical interest, but useful in practice
as well. To obtain our results, we use a simple authenticated encryption scheme to hide the
structure of the DFA and authenticate the execution of the protocol. As noted earlier, we
view a Turing machine as a program running on a universal TM. Therefore, when describing
our DFA representations, we will informally write their descriptions as pseudocode.

Representation. We model each DFA Ψ as a polynomial-time Turing machine MΨ with an
additional persistent read-and-write tape, called internal state. The internal state maintains
a record of the values needed to compute the DFA, such as the DFA’s current state. Each
MΨ is represented by a table where, ∀ α ∈ Σ, ∀ s ∈ Q, there is a table entry containing α,
s, δ(s, α), and acpt (which equals 1 iff δ(s, α) ∈ G). Without any loss of functionality, we
compress the table by employing an injective map that encodes each α ∈ Σ to a string in
{0, 1}⌈log |Σ|⌉. Using the table described, we can create a program MΨ that simulates Ψ’s out-
put behavior. The program consists of the DFA table, high-level code, and two persistent
variables current state and current acpt . The high-level code describes the programming
language used, table lookup algorithm, alphabet Σ, and function calls that manipulate the
persistent variables. The program MΨ works as follows: On user input α, the table lookup
algorithm searches each table entry for the pair α, current state . If a match is found, the
acpt bit is updated and δ(current state , α) is recorded temporarily. The program continues
to search the rest of the table for a match. At the end of the table search, the user is given
the recorded acpt bit, and the variable current state ← δ(current state, α) is updated. After
the acpt bit has been returned, the DFA is ready to accept its next input.

Following this description, our next goal is to define an encoding scheme of MΨ. Our
choice of encoding is important for several reasons. First, it allows us to calculate the size
of |MΨ|, which is needed for evaluating the polynomial slowdown property. And second,
depending on our choice of encoding, the size of |MΨ| may drastically affect the simulator’s
ability to simulate the obfuscated code. We formalize our encoding scheme as follows.

Encoding. We begin our encoding by splitting up the description of MΨ into its individual
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components: high-level code and DFA table (which is further broken down by individual
table entries). We create a parsing scheme that takes the bit description of each compo-
nent and adds a trailing bit of a 1 or 0 to the end of each individual bit. The trailing bit
allows the parser to recognize the end of a component’s description. For example if the
high-level code has a bit description h0 . . . hm then its new bit description is h00h10 . . . hm1.
Adopting this encoding scheme, we can find a t ≥ 0 such that the size of each table en-
try satisfies 2t ≤ |table entry| < 2t+1. Given t, we pad each table entry with the string
00 . . . 01 (which is a multiple of two in length) until its length is exactly 2t+1. If the number
of tables entries is even, we pad the last table entry with an additional 2t+1 bits of the
form 00 . . . 01 and add a single 1 bit value on the end. If, on the other hand, the number
of table entries is already odd, then we do nothing. For convenience we denote the num-
ber of edges in Ψ as |E(Ψ)|. By prefixing the parser to the encoded MΨ, it follows that
|MΨ| = |Parser| + |High-level code| + |Table|, where |Table| = 2t+1|E(Ψ)| if the number of
table entries is odd and 2t+1(|E(Ψ)|+ 1) + 1 if the number of table entries is even.

Since both the size of the parser and the high-level code are public, it follows that knowing
the size of |MΨ| implies that one also knows the size of |Table|. But one can efficiently extract
the number of edges |E(Ψ)| based on our encoding above. We use this deduction later in
the proof of Proposition 2 to swap the simulator’s input 1|MΨ| with 1|E(Ψ)|.

Based on the encoding above, we define the family FDFA := {Fk}k∈N to be the set of all
polynomial bounded MΨ satisfying

Fk := {MΨ | |MΨ| ≤ f(k) and 2 log |States(Ψ)|+ log |Σ|+ 1 < k} 1

for some fixed polynomial f(k). The parameter k is called the security parameter.

Obfuscation. To simplify our description of the DFA obfuscator, we split the obfuscation
into three separate algorithms, Setup, O, and R. The Setup algorithm, shown in Figure 2.1,
takes a DFA encoding MΨ and generates inputs for both the obfuscated code and oracle.
Without loss of generality, we view our encoding of MΨ to be the DFA state transition table
of Ψ. The parsing operation and high-level code was left out for simplicity.

The obfuscated codeO, also shown in Figure 2.1, can be described as a protocol template.
The template takes as input the encrypted table TC , authentication tag Auth, and table
size |Table| returned by the Setup algorithm. During the Transition Query phase the
obfuscated code scans in the user’s input α, queries the oracle R, and enters a new phase
called State Update. During State Update, the obfuscated code submits the table TC

along with the authentication tag Auth. The oracle processes TC one table entry at a time
and verifies the table’s integrity. If the authentication passes, the oracle returns an accept
value corresponding to whether the new state is an accept state.

1The condition 2 log |States(Ψ)| + log |Σ| + 1 < k may be removed by modifying the encryption scheme
in Figure 2.2 to have more than one call to FK per table entry. This is a relatively easy fix since we need
at most m = ⌈(2t log(ck) + 1)/k⌉ constant calls to FK given |MΨ| ≤ f(k) ≤ ckt some fixed c, t > 0. This
condition was added to simplify the obfuscation algorithm.
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Setup(MΨ, k):

Input: MΨ, 1k

Key Generation:

K ← K(k)

Generate State Table:

StateTable(Ψ) :
s← 0
|m|∗ ← ⌈log2 |Σ|⌉+ 2⌈log2 |Q|⌉+ 1
for state ← 0 to |Q| − 1 do

for symbol ← 0 to |Σ| − 1 do

sα ← αsymbol

sstate ← state

sδ(state ,α) ← δ(state , αsymbol )
sacpt ← 1 iff sδ(state,α) ∈ G, 0 else
T
∗
state [s]←
sα‖sstate‖sδ(state ,α)‖sacpt‖0

k−|m|∗

s← s + 1
|Table|∗ ← s
return (|m|∗, |Table |∗, T∗state)

Encrypt State Table Entries:

EFK
(T∗state) :

X1 ← 1k

Auth← FK(X1)
for s← 0 to |Table |∗ − 1 do

X0 ← s‖0
Y ← FK(X0)
T
∗
C [s]← Y ⊕ Tstate [s]

X1 ← Auth⊕ T
∗
C [s]

Auth← FK(X1)
Auth∗ ← Auth
return T

∗
C‖Auth∗

Return (K, |m|∗, |Table |∗, T∗C , Auth∗)

Algorithm O(|Table |∗, T∗C , Auth∗):

Input: |Table|∗, T∗C , Auth∗

Initialization:

|Table | ← |Table |∗

TC ← T
∗
C

Auth← Auth∗

State ← Transition Query

State Transitions:

Case(State)

Transition Query:

α← scan input

Query oracle R with α
State ← State Update

State Update:

for s← 0 to |Table| − 1 do

if s 6= |Table | − 1 then

Query oracle R with TC [s]
if s = |Table | − 1 then

Query oracle R with TC [s]‖Auth

if acpt ⇐R

Return acpt

State ← Transition Query

if auth fail ⇐R

State ← Transition Query

Figure 2.1. Algorithm Setup and O.

The oracle R, shown in Figure 2.2, describes the oracle’s behavior. Just like the obfus-
cated code O, the oracle is nothing more than a protocol with a symmetric key and a few
additional variables. Other than the padding length |m|, table size |Table|, and current state ,
the oracle maintains no information about the DFA.
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Algorithm R(K, |m|∗, |Table |∗):

Input: K, |m|∗, |Table |∗

Initialization:

|Table| ← |Table|∗

|m| ← |m|∗

acpt ← ⊥
current state ← 0
Auth′ ← ⊥
tempα ← ⊥
tempcs ← ⊥
s ← ⊥
State ← Transition Query

State Transitions:

Case(State)

Transition Query:

On query α do

tempα ← α
s← 0
X1 ← 1k

Auth′ ← FK(X1)
State ← State Update

State Update:

On query TC [s] or TC [s]‖Auth do

State Authentication:

X1 ← Auth′ ⊕ TC [s]
Auth′ ← FK(X1)
if s = |Table | − 1 and Auth′ 6= Auth

then

Return auth fail

State ← Transition Query

Compare Table Entries:

X0 ← s‖0
Y ← FK(X0)
Ms ← Y ⊕ TC [s]
sα‖sstate‖sδ(state ,α)‖sacpt ←

Ms[k−1:k−|m|]

if sstate = current state and

sα = tempα then

tempcs ← sδ(state ,α)

acpt ← sacpt

Update Oracle State & Counter:

if s = |Table | − 1 then

current state ← tempcs

Return acpt

State ← Transition Query

s ← s + 1

Figure 2.2. Oracle R.

Proposition 2 If non-uniformly strong one-way functions exist, then non-resettable DFAs
are obfuscatable with respect to oracle machines.

Proof: Let f(k) be some positive polynomial and consider the family FDFA defined over
f(k). We will assume without loss of generality for the remainder of the proof that k is
sufficiently large so that the inequality 2 log |States(Ψ)| + log |Σ| + 1 < k is satisfied for
every MΨ ∈ Fk. This assumption follows from the fact that every MΨ ∈ Fk is polynomial
bounded, and therefore there exists a fixed t > 0 with |MΨ| ≤ kt for every k sufficiently
large. Thus |States(Ψ)||Σ| < |MΨ| ≤ kt implies log |States(Ψ)| + log |Σ| < t log k whence
2 log |States(Ψ)|+ log |Σ|+ 1 ≤ 2t log k + 1 < k for k sufficiently large. This last restriction
was added to guarantee that the size of each table entry is no larger than the size of the
pseudorandom function’s output length.

To prove that the obfuscator in Figure 2.1 and 2.2 obfuscates non-resettable DFAs, we
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need to show that the aforementioned three conditions hold: Approximate Functionality,
Polynomial Slowdown, and Virtual Black Box.

Approximate Functionality: The oracle may be in only one of two states at any one time.
In the first state, Transition Query, the user submits a transition symbol to the oracle,
which the oracle internally stores on its internal state tape. After this value has been written,
the oracle’s state is updated to its second state, called State Update. In State Update
the user transmits the encrypted table to the oracle (from top to bottom). The oracle
checks the ciphertext integrity in each table entry and compares the underlying plaintext
with the current state and stored transition symbol. If a match occurs, the oracle stores
the new transition state and accept bit in its internal state. Provided that the protocol has
been executed faithfully, the oracle will return the acpt bit on the last query. After this
stage has been completed, the oracle reverts back to its Transition Query state, and this
cycle repeats indefinitely. Given this short description, it is not difficult to verify that the
obfuscated DFA computes the original DFA with a probability of 1.

Polynomial Slowdown: In order to show that the obfuscator satisfies polynomial slowdown
we must prove there exists a polynomial p satisfying: for all k and MΨ ∈ Fk the descrip-
tion length satisfies |O(MΨ, 1k)| ≤ p(k) and if MΨ takes t time steps on an input x then
OR(MΨ, 1k) takes at most p(k+t) time steps on x. We do this by constructing two polynomi-
als, one that bounds the description size of the obfuscated code and the other bounding the
number of steps. We then construct a suitable polynomial from both of these that satisfies
the above requirement.

Observe that the size of the obfuscated code is asymptotically bounded above by
|O(MΨ, 1k)| = O(|High-level Code| + k|E(Ψ)|). Since MΨ ∈ Fk, we must have |E(Ψ)| ≤
|MΨ| ≤ f(k). But this implies |O(MΨ, 1k)| = O(kf(k)); hence the description length is
polynomial bounded. For the time complexity, observe that the string comparisons for each
table entry under MΨs takes at least ⌈log |Σ|⌉+ ⌈log |States(Ψ)|⌉ ≥ log |E(Ψ)| steps. Since
this operation is repeated |E(Ψ)| times it follows that the total number of steps needed to
compute MΨ on any input is at least t ≥ |E(Ψ)| log |E(Ψ)|. On the other hand the number of
steps needed for OR(MΨ, 1k) to send the table to the oracle is at most O(k|E(Ψ)| log |E(Ψ)|),
while the oracle, which is polynomial time computable, takes at most q(k) polynomial number
of steps per query. Therefore, the total number of steps taken on any input (including
the number of steps for the oracle) is at most O(k q(k)|E(Ψ)| log |E(Ψ)|). Without loss of
generality, we may assume that both polynomials f(k) and q(k) absorb the constants for
the asymptotic bounds of the description length and time complexity. Therefore, we can
find a suitable n, c > 0 such that for all k, max{f(k), q(k)} ≤ ckn. We claim that p(k) :=
ckn+2 satisfies the polynomial slowdown requirement. This is clear since the description
length |O(MΨ, 1k)| ≤ kf(k) ≤ ckn+2 and the time complexity of OR(MΨ, 1k) is at most
k q(k)|E(Ψ)| log |E(Ψ)| ≤ c(k + t)n+2. Our claim follows.

Virtual Black Box: To simplify the notation in the proof we omit the input 1k. We also
replace the simulator input 1|MΨ| with 1|E(Ψ)| which can be extracted (based on our encoding
of MΨ). This reduces the virtual black box inequality to Equation (2.1).
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We begin our analysis by breaking up Equation (2.1) into four separate equations, each
equation representing the indistinguishability of obfuscating with different oracles. Other
than the first oracle RFK

we do not place any computational assumptions on the others.
This allows them to maintain a much larger internal state.

∣

∣Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[SΨ(1|E(Ψ)|, z) = 1]
∣

∣ (2.1)

≤
∣

∣Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[ARFun(ORFun(Ψ), z) = 1]
∣

∣ (2.2)

+
∣

∣Pr[ARFun(ORFun(Ψ), z) = 1]− Pr[AR
∗

Fun(OR
∗

Fun(Ψ), z) = 1]
∣

∣ (2.3)

+
∣

∣Pr[AR
∗

Fun(OR
∗

Fun(Ψ), z) = 1]− Pr[AR
∗

Rand(OR
∗

Rand(Ψ), z) = 1]
∣

∣ (2.4)

+
∣

∣Pr[AR
∗

Rand(OR
∗

Rand(Ψ), z) = 1]− Pr[SΨ(1|E(Ψ)|, z) = 1]
∣

∣ . (2.5)

In Equation (2.2) we introduce the oracleRFun in order to measure the pseudorandomness
of RFK

. Both RFun and RFK
have the same description, except every call to FK in RFK

is
replaced with a similar call to a random function (independent of z) with the same input and
output length. For convenience we refer to this random function as Fun. Using algorithms
E and V shown in Figure A.1 (with the IV ′s removed), we can reduce the distinguishability
of Equation (2.2) to the distinguishability of the pair of oracles (EFk

,VFk
) and (EFun,VFun).

We base this reduction on adversary BA,Ψ given in Figure 2.3.

In our description of BA,Ψ, we use the parameter Ψ to indicate the hardwiring of B’s oracle
query to E (which is dependent on StateTable(Ψ)). BA,Ψ uses E ’s response to construct the
obfuscated code, which is given to A. Using A, BA,Ψ simulates A’s query-response interaction
with the oracle. The distinguishing bit b returned by BA,Ψ is the same bit returned by A.
Therefore Equation (2.6) reduces to Equation (2.7). If we replace every oracle call to E
and V with multiple calls to either FK or Fun then we can reduce Equation (2.7) even
further. We denote this simulation by BA,Ψ

′ to distinguish itself from BA,Ψ. Therefore
Equation (2.7) reduces to Equation (2.8). But this last equation is just the pseudorandom
distinguishability of FK given auxiliary input z. Using our assumption that non-uniformly
strong one-way functions exist, we can use the Goldreich et al. construction in [11] to generate
a pseudorandom function that is secure against non-uniform PPT adversaries (denoted as
prf-nu). If the adversary A makes no more than qv distinct2 State Update queries, then
the total number of queries made to FK or Fun by BA,Ψ

′ is no more than (qv + 2)|E(Ψ)|+
1. Therefore Equation (2.6) reduces to Equation (2.10), which is negligible following our
assumption.

∣

∣Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[ARFun(ORFun(Ψ), z) = 1]
∣

∣ (2.6)

=
∣

∣

∣
Pr[B

EFK
,VFK

A,Ψ (z) = 1]− Pr[BEFun,VFun

A,Ψ (z) = 1]
∣

∣

∣
(2.7)

2Each qv represents a complete chain of State Update queries (i.e., the user has submitted the entire
encrypted table with Auth tag).
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Setup of BA,Ψ:

Input: 1k, z

Generate State Table:

(|m|, |Table |, Tstate)← StateTable(Ψ)

Encrypt State Table Entries:

Query oracle E with Tstate

(TC , Auth)⇐ E(Tstate)

A⇐ O(|Table |, TC , Auth), z

Simulation of Oracle R:

Input: 1k, |m|, |Table |, Tstate , TC , Auth

Initialization:

current state ← 0
acpt ← ⊥
tempα ← ⊥
tempcs ← ⊥
flagauth ← ⊥
C ← ⊥
s← ⊥
State ← Transition Query

Case(State)

Transition Query:

When A makes a query α do

tempα ← α

flagauth ← false

C ← ⊥

s ← 0

State ← State Update

State Update:

When A makes a query T
′
C [s] or

T
′
C [s]‖Auth′ do

State Authentication:

C ← C‖T′C [s]
if T

′
C [s] 6= TC [s] or (s = |Table | − 1 and

Auth′ 6= Auth) then

flagauth ← true

if s = |Table | − 1 and flagauth = true

then

Query oracle V with (C,Auth′)
if 0⇐ V(C,Auth′) then

A⇐ auth fail

State ← Transition Query

Compare Table Entries:

M ′
s ← T

′
C [s]⊕ (TC [s]⊕ Tstate [s])

sα‖sstate‖sδ(state ,α)‖sacpt ←M ′
s[k−1:k−|m|]

if sstate = current state and sα = tempα

then

tempcs ← sδ(state ,α)

acpt ← sacpt

Update Oracle State:

if s = |Table | − 1 then

current state ← tempcs

A⇐ acpt

State ← Transition Query

s← s + 1

Figure 2.3. Adversary BA,Ψ.

=
∣

∣

∣
Pr[BFK

A,Ψ

′
(z) = 1]− Pr[BFun

A,Ψ

′
(z) = 1]

∣

∣

∣
(2.8)

= Advprf
FK ,BA,Ψ

′(k, z) (2.9)

≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)|+ 1). (2.10)

For Equation (2.3), we would like to perform a similar reduction as performed for Equa-
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tion (2.8) except, instead of measuring the pseudorandomness of FK , we would like to mea-
sure the unforgeability provided by the verifier V. To do this, we introduce the oracle R∗Fun.
Internally, the oracle R∗Fun looks identical to RFun except during the state authentication
process. Instead of computing a partial authentication tag for each State Update query,
as is done in Figure 2.2, it collectively gathers all of the ciphertext queries and final authen-
tication tag and submits them to a verifier V∗. To do this, R∗Fun stores the values (TC , Auth)
returned by the initial Setup(MΨ, k) algorithm. During the State Update phase, the ora-
cle checks to see if the table entries queried by the user are the same entries as those in TC .
If any of the table entries are incorrect, including the final authentication tag, or if they are
queried in a different order, the oracle R∗Fun returns auth fail . This is equivalent to querying
V∗,

1← V∗(C‖Auth) iff C‖Auth was a response of E , 0 else

where C is the concatenation of the queried table entries. Reusing BA,Ψ we can reduce Equa-
tion (2.3) to inequality (2.11) by simulating the distinguishability with oracles (EFun,VFun)
and (EFun,V

∗). We call this advantage IND-VERF, since it measures the indistinguishability
between the two verifiers. Therefore

∣

∣Pr[ARFun(ORFun(Ψ), z) = 1]− Pr[AR
∗

Fun(OR
∗

Fun(Ψ), z) = 1]
∣

∣

=
∣

∣

∣
Pr[BEFun,VFun

A,Ψ (z) = 1]− Pr[BEFun,V∗

A,Ψ (z) = 1]
∣

∣

∣

= Advind-verf
SEFun,BA,Ψ

(k, qe, qv, ηe, ηv, z). (2.11)

with qe = 1 denoting the number of encryption queries and ηe = ηv − 1 = |E(Ψ)| the
maximum number of k-bit blocks each encryption or verification query may have. We claim
this advantage is bounded above by the INT-CTXT-m security of SEFun. See Appendix A.1
for more details on the security definition of INT-CTXT-m.

Claim 1 Advind-verf
SEFun,BA,Ψ

(k, qe, qv, ηe, ηv, z) ≤ Advint-ctxt-m
SEFun,(BA,Ψ)ctxt

(k, qe, qv, ηe, ηv, z)

Proof: We will assume throughout the rest of this claim that qe = 1 and ηe = ηv−1 = |E(Ψ)|.
To simplify the notation, we omit writing the variables qe, ηe, and ηv. Given a bit b chosen
at random, we let b = 0 represent oracle access to (EFun,VFun) and b = 1 to (EFun,V

∗) in
IND-VERF. Let E be the event (over the randomness of Fun and A) that BA,Ψ submits at
least one ciphertext authentication pair that passes verification (after at most qv distinct
State Update queries) and was never a response from EFun. In Figure 2.4 we define a new
adversary (BA,Ψ)p that simulates BA,Ψ’s interaction with the verifier V∗.

Given the event E it follows that both (BA,Ψ)p and BA,Ψ return the same distinguishing

22



Setup of (BA,Ψ)p:

Encrypt State Table Entries:

When BA,Ψ makes a query M to oracle EFun do

(C,Auth) ← EFun(M)
BA,Ψ ⇐ (C,Auth)

Simulation of Oracle R:

State Authentication:

for i← 1 to qv do

When BA,Ψ makes a query (C ′, Auth′) to oracle (VFun or V∗) do

if (C ′, Auth′) 6= (C,Auth) then

BA,Ψ ⇐ 0

else BA,Ψ ⇐ 1

b′ ⇐ BA,Ψ

Return b′

Figure 2.4. Adversary (BA,Ψ)p

bit b′. Therefore

Pr[ b = b′ ← BA,Ψ ∧ E ] = Pr[ b = b′ ← BA,Ψ | E ] · Pr[ E ]

= Pr[ b = b′ ← (BA,Ψ)p | E ] · Pr[ E ]

≤ Pr[ b = b′ ← (BA,Ψ)p ]

=
1

2
Advind-verf

SEFun,(BA,Ψ)p
(k, qv, z) +

1

2
.

But Advind-verf
SEFun,(BA,Ψ)p

(k, qv, z) must be equal to
∣

∣

∣
Pr[BEFun,V∗

A,Ψ (z) = 1]− Pr[BEFun,V∗

A,Ψ (z) = 1]
∣

∣

∣

which is 0. Hence

1

2
Advind-verf

SEFun,BA,Ψ
(k, qv, z) +

1

2
= Pr[ b = b′ ← BA,Ψ]

= Pr[ b = b′ ← BA,Ψ ∧ E ] + Pr[ b = b′ ← BA,Ψ ∧E ]

≤ Pr[ E ] + Pr[ b = b′ ← (BA,Ψ)p ]

=
1

2
Pr[ E | b = 0] +

1

2
Advind-verf

SEFun,(BA,Ψ)p
(k, qv, z) +

1

2

=
1

2
Advint-ctxt-m

SEFun,(BA,Ψ)ctxt
(k, qv, z) +

1

2
.

and our claim follows.

Now that we have bounded Equation (2.3) by the INT-CTXT-m security of SEFun we
are now ready to move onto Equation (2.4).
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In Equation (2.4) we measure the chosen plaintext distinguishability between encrypting
with either EFun or ERand, where ERand(M) is a random string of length |M |. The oracles
R∗Rand and R∗Fun are identical except for their calls to EFun or ERand. As before we will use
the ∗ in R∗Rand to denote that verifier V∗ is used. We define B∗A,Ψ to be the algorithm BA,Ψ

that uses V∗ as its verifier (which can be easily simulated given the output of E). Therefore
Equation (2.4) reduces to inequality (2.12)

∣

∣Pr[AR
∗

Fun(OR
∗

Fun(Ψ), z) = 1]− Pr[AR
∗

Rand(OR
∗

Rand(Ψ), z) = 1]
∣

∣

=
∣

∣

∣
Pr[B∗ EFun

A,Ψ (z) = 1]− Pr[B∗ ERand
A,Ψ (z) = 1]

∣

∣

∣

= Advind$-cpa
SEFun,B∗

A,Ψ
(k, qe, ηe, z). (2.12)

with qe = 1 and ηe = |E(Ψ)|.

In the final Equation (2.5), we introduce the simulator S, which as you recall has only
black box access to Ψ. In order for S to properly simulate A’s view, it needs to know the
number of edges |E(Ψ)|. This can be easily extracted knowing just the size of MΨ based
on our encoding. Given the number of edges |E(Ψ)|, S can easily simulate A’s view of the
obfuscated code by giving A a copy of O(|E(Ψ)|, TC , Auth), where TC is a random table of
the appropriate size (dependent on |E(Ψ)| and k) and Auth a k-bit random string. Using its
oracle access to Ψ, S can simulate A’s interaction with R∗Rand using the values |E(Ψ)|, TC,
and Auth. Therefore, the entire simulation, which we denote by SA, consists of passing A
the obfuscated code O(|E(Ψ)|, TC , Auth) and simulating the interaction between R∗Rand and
A using oracle Ψ. The full description of simulator SA is given in Figure 2.5.

To help with the analysis, we model adversary AR
∗

Rand(OR
∗

Rand(Ψ), z) as we did in Equation
(2.4) by replacing it with B∗ ERand

A,Ψ (z). From this we have Pr[AR
∗

Rand(OR
∗

Rand(Ψ), z) = 1] =

Pr[B∗ ERand
A,Ψ (z) = 1]. Notice that during the State Update phase of B∗A,Ψ, in order for the

final query to reach Update Oracle State and return an output other than auth fail ,
R∗Rand must pass the verifier V∗. This implies that the adversary submits the table TC free of
modifications. Hence the operations under Compare Table Entries may be completely
replaced with a simulated oracle call to the DFA in much the same way simulator SA does.
Replacing this code, we obtain a new B∗A,Ψ

′ which is functionally equivalent to B∗A,Ψ. Since
the variables current state and tempcs are no longer needed as they are used in the simulation
of oracle Ψ, we can remove them. Finally, observe that an oracle call to ERand in Encrypt

State Table Entries returns random strings regardless of the particular input. Therefore
encrypting with the real state table Tstate or one containing all zeroes provides a random
output that is of the same size. Hence it follows B∗A,Ψ

′ and SA have a distinguishability of 0.

∣

∣Pr[AR
∗

Rand(OR
∗

Rand(Ψ), z) = 1]− Pr[SΨ
A(1|E(Ψ)|, z) = 1]

∣

∣

=
∣

∣

∣
Pr[B∗ ERand

A,Ψ

′
(z) = 1]− Pr[SΨ

A (1|E(Ψ)|, z) = 1]
∣

∣

∣

= 0.
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Setup of SA:

Input: 1k, 1|E(Ψ)|, z

Generate State Table:

for s← 0 to |E(Ψ)| − 1 do

Tstate [s]← 0k

Encrypt State Table Entries:

Query ERand with Tstate

(TC , Auth)⇐ ERand(Tstate)

A⇐ O(|E(Ψ)|, TC , Auth), z

Simulation of Oracle R∗
Rand

:

Input: |E(Ψ)|, TC , Auth

Initialization:

acpt ← ⊥
tempα ← ⊥
flagauth ← ⊥
C ← ⊥
s← ⊥
State ← Transition Query

Case(State)

Transition Query:

When A makes a query α do

tempα ← α

flagauth ← false

C ← ⊥

s ← 0

State ← State Update

State Update:

When A makes a query T
′
C [s] or

T
′
C [s]‖Auth′ do

State Authentication:

C ← C‖T′C [s]
if T

′
C [s] 6= TC [s] or (s = |E(Ψ)| − 1 and

Auth′ 6= Auth) then

flagauth ← true

if s = |E(Ψ)| − 1 and flagauth = true

then

Query V∗ with (C,Auth′)
if 0⇐ V∗(C,Auth′) then

A⇐ auth fail

State ← Transition Query

Query DFA Oracle:

if s = |E(Ψ)| − 1 then

Query oracle Ψ with tempα

acpt ← Ψ(tempα)

Update Oracle State:

if s = |E(Ψ)| − 1 then

A⇐ acpt

State ← Transition Query

s← s + 1

Figure 2.5. Simulator SA.

Using the bounds derived in Appendix A with qe = 1 and ηe = ηv− 1 = |E(Ψ)|, we have the
following result

∣

∣Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[SΨ(1|E(Ψ)|, z) = 1]
∣

∣ (2.13)

≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)|+ 1)

+Advint-ctxt-m
SEFun,(BA,Ψ)ctxt

(k, qe, qv, ηe, ηv, z) + Advind$-cpa
SEFun,B∗

A,Ψ
(k, qe, ηe, z)
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≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)|+ 1)

+qv(4|E(Ψ)|2 + |E(Ψ)|)2−k +
1

2
(3|E(Ψ)|2 + |E(Ψ)|)2−k.

The amount of persistent state needed to obfuscate the DFA in the above Proposition is
in fact quite small. In the next Proposition we show that we need at most O(k)-bits. This
is especially ideal if the oracle is implemented on a computationally limited device with a
minimal amount of tamper protection.

Corollary 1 If non-uniformly strong one-way functions exist, then non-resettable DFAs are
obfuscatable with respect to oracle machines with small internal state.

Proof: In Proposition 2 we used the Goldreich et al. construction in [11] to generate
a pseudorandom function that is secure against non-uniform PPT adversaries. The key
generated for this construction is the same size as the security parameter k. But this implies
that the size of the oracle’s internal state is no more than O(log |State(Ψ)|+ log |Σ|+ k) =
O(k), following our definition of Fk.
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Chapter 3

Composition of Obfuscations

So far, we have looked at the case of DFA obfuscation in a stand-alone setting, where the
obfuscated code is operating in isolation. Suppose now we allow multiple obfuscations to
execute alongside one another, all sharing the same oracle as shown in Figure 3.1. If we
compose obfuscations in such a manner, is the resulting scheme any less secure? That is,
does running multiple obfuscations provide any more information that couldn’t otherwise be
efficiently extracted by running their respective black boxes? Using a simple modification to
the obfuscation algorithm presented earlier, we show that it is possible to securely compose
obfuscations in this manner.

We model the composed DFA obfuscations as a system of ITMs whose communication
tapes are connected via a polynomial-time computable control function. The control function
interfaces with the oracle’s input and output communication tapes and delegates the order
in which messages are sent to the oracle. In practice, the control function may implement a
quality of service scheduling algorithm that gives certain DFAs a higher priority over others.

The notion of composition we use here is similar in flavor to the one used in secure
multi-party protocols. While we don’t completely generalize our security claims to the
protocol framework, which includes an environment distinguisher that distinguishes between
a real protocol execution from an simulated ideal process (i.e. black box access), the proofs
can be modified to this case (since all of the reductions use the adversary as an oracle).
Unfortunately, even with these modifications, general composition cannot be maintained
because a symmetric key is used. Our composition assumptions are stated below. For a
more thorough introduction to the taxonomy of composition see [7].

Concurrent Composition. Any interleaving of messages to the oracle is allowed. Multi-
ple DFA executions operate independently of one another and submit messages to the
oracle at their own discretion.

Adaptively Chosen Inputs. The inputs into each DFA execution are determined adap-
tively by the environment. No assumptions are placed on the inputs.

Self-composition. The number of DFA executions is fixed in advance, but may be chosen
arbitrarily from the same family Fk for a given security parameter k.

Using the definitions above, we now present the main composition result.
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Figure 3.1. Composition of obfuscations w.r.t. single ora-
cle

Proposition 3 If non-uniformly strong one-way functions exist, then there exists a DFA
obfuscator that remains secure under concurrent self-composition with adaptively chosen in-
puts.

Proof: The DFA obfuscator used in Proposition 2 can easily be modified to account for
composition. Let {MΨi

}i=1,...,t be a finite family of DFAs in Fk with the same encoding
scheme as described in Section 2. Our goal is to show that the following inequality is
negligible:

∣

∣Pr[ARFK (ORFK (Ψ1), . . . ,O
RFK (Ψt), z) = 1]

−Pr[SΨ1,...,Ψt(1|E(Ψ1)|, . . . , 1|E(Ψt)|, z) = 1]
∣

∣ . (3.1)

To make sure the messages sent between the oracle and the obfuscated DFAs are properly
routed, we assign a unique ID to each of them. This allows the oracle to distinguish the mes-
sages sent from each party. The following changes were made to the obfuscation algorithms
Setup,O, and R in Figure 2.1:

• Setup(MΨ1 , . . . , MΨt
, k)

– The scheme EFK
under Encrypt State Table Entries is replaced with the

encryption scheme in Figure A.1.

– A unique ID i is assigned to each MΨi
, corresponding to the IV used for encryp-

tion.

• O(ID i, |Table|∗i , T
∗
C,i, Auth∗i ), i = 1, . . . , t
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– All communications are prefixed with the DFA’s unique ID .

– If a message is received with an ID different than it’s own, it is ignored.

• R(K, ID1, |m|
∗
1, |Table|∗1, . . . , ID t, |m|

∗
t , |Table|∗t )

– Each O(ID i, |Table|∗i , T
∗
C,i, Auth∗i ) is assigned it’s own set of persistent variables

|Table|IDi
, |m|IDi

, acpt ID i
, current stateIDi

, Auth′ID i
, tempα,IDi

, tempcs,IDi
, sIDi

,
and StateIDi

.

– All outgoing messages are prefixed with the input message ID .

– If an incoming message uses an unrecognized ID , an ID‖invalid id message is
returned.

– The assignment of X1 under Transition Query is changed to X1 ← ID‖1k−|ID|,
|ID | < k.

– The assignment of X0 under Compare Table Entries is changed to X0 ←
ID‖s‖0.

We begin our analysis by breaking up inequality (3.1) into four separate problems in much
the same way as we did in Proposition 2. The oracles RFun, R

∗
Fun, and R∗Rand are reused with

the above ID modifications. Since obfuscations may operate concurrently, we must show
that this additional capability does not give an adversary a non-negligible advantage. In our
particular case, concurrency implies only that messages are interleaved, since a single oracle
can process messages only sequentially. In Proposition 2, the adversary BA,Ψ in Figure 2.3
was able to assemble a chain of State Update queries to construct a single verification
query. This was easily achieved since only a single DFA obfuscation was communicating
with the oracle at a time. We would like to use this same basic idea to help us here;
unfortunately things are more complicated since messages are now interleaved. To mitigate
this issue, we create an adversary A′ (using A as a subprotocol) that untangles the messages
and resubmits them to the oracle in an orderly fashion. A description of adversary A′ is
given in Figure 3.2.

Since A receives an output message from the oracle only when an obfuscated DFA has
submitted its final State Update query, we can simulate the oracle’s output by holding
back all of A’s queries until a complete chain of State Update queries have been sub-
mitted. Therefore, we can untangle A’s queries and resubmit them in the following order
(Transition QueryIDi1

, State UpdateID i1
) , . . . , (Transition QueryID im

, State UpdateIDim
)1.

Hence it follows that

Pr[ARFK (ORFK (Ψ1), . . . ,O
RFK (Ψt), z) = 1]

= Pr[A′
RFK (ORFK (Ψ1), . . . ,O

RFK (Ψt), z) = 1].

1(Transition Query
IDi

, State Update
IDi

) denotes the single Transition Query and complete chain of
State Update queries made by ID i.
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Adversary A′:

Input: ORFK (Ψ1), . . . ,O
RFK (Ψt)

Extract Table Size:

for i← 1 to t do

|Table |IDi
← ExtractTableSize(ORFK (Ψi))

Reorder and Resubmit:

When A makes a Transition Query query ID i‖α do

tempα,IDi
← α

sIDi
← 0

When A makes a State Update query ID i‖T
′
C [s] or ID i‖T

′
C [s]‖Auth′ID i

do

TIDi
[sIDi

]← T
′
C [s]

if sIDi
= |Table |IDi

− 1 then

Query oracle RFK
with ID i‖tempα,IDi

for s← 0 to |Table|ID i
− 1 do

if s 6= |Table |IDi
− 1 then

Query oracle RFK
with ID i‖TIDi

[s]
if s = |Table |IDi

− 1 then

Query oracle RFK
with ID i‖TIDi

[s]‖Auth′ID i

A⇐ Oracle’s output
sIDi

← sIDi
+ 1

b′ ⇐ A

Return b′

Figure 3.2. Adversary A′

Throughout the rest of the proof we will denote adversary A′ as A and assume A submits
oracle queries only as described above.

Now that the oracle messages have been untangled, we can use adversary BA,Ψ to help
complete our analysis. To account for the multiple DFA obfuscations, we relabel BA,Ψ as
BA,(Ψ1,...,Ψt) and make the following modifications in Figure 2.3:

• Under Generate State Table replace the existing code with:
for i← 1 to t do

(|m|i, |Table|i, Tstate,i)← StateTable(Ψi)

• Under Encrypt State Table Entries replace the existing code with:
for i← 1 to t do

Query oracle E with Tstate,i

(ID i, TC,i, Authi)⇐ E(Tstate,i)

30



A⇐ O(ID i, |Table|i, TC,i, Authi), . . . ,O(ID t, |Table|t, TC,t, Autht), z

• Under Simulation of Oracle R: Input include the inputs ID i, |m|i, |Table|i, Tstate,i,
TC,i, Authi for i = 1, . . . t.

• Under Simulation of Oracle R: Initialization assign each ID i a unique copy of
the variables listed.

• Modify all incoming and outgoing messages to account for IDs.

Following Proposition 2, we replace every oracle call made to E and V in BA,(Ψ1,...,Ψt)with
multiple calls to either FK or Fun and call this simulation BA,(Ψ1,...,Ψt)

′. Therefore, given that
adversary A makes no more than qv distinct State Update queries, it follows that the total
number of queries made to FK or Fun by BA,(Ψ1,...,Ψt)

′ is no more than (qv+2t) maxi |E(Ψi)|+t.
Hence

∣

∣Pr[ARFK (ORFK (Ψ1), . . . ,O
RFK (Ψt), z) = 1]

−Pr[ARFun(ORFun(Ψ1), . . . ,O
RFun(Ψt), z) = 1]

∣

∣

=
∣

∣

∣
Pr[B

EFK
,VFK

A,(Ψ1,...,Ψt)
(z) = 1]− Pr[BEFun,VFun

A,(Ψ1,...,Ψt)
(z) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[BFK

A,(Ψ1,...,Ψt)

′
(z) = 1]− Pr[BFun

A,(Ψ1,...,Ψt)

′
(z) = 1]

∣

∣

∣

= Advprf
FK ,BA,(Ψ1,...,Ψt)

′(k, z)

≤ Advprf-nu
FK

(k, (qv + 2t) max
i
|E(Ψi)|+ t).

Similarly it follows that

∣

∣Pr[ARFun(ORFun(Ψ1), . . .O
RFun(Ψt), , z) = 1]

−Pr[AR
∗

Fun(OR
∗

Fun(Ψ1), . . . ,O
R∗

Fun(Ψt), z) = 1]
∣

∣

=
∣

∣

∣
Pr[BEFun,VFun

A,(Ψ1,...,Ψt)
(z) = 1]− Pr[BEFun,V∗

A,(Ψ1,...,Ψt)
(z) = 1]

∣

∣

∣

= Advind-verf
SEFun,BA,(Ψ1,...,Ψt)

(k, qe, qv, ηe, ηv, z)

≤ Advint-ctxt-m
SEFun,(BA,(Ψ1,...,Ψt)

)ctxt
(k, qe, qv, ηe, ηv, z).

and

∣

∣Pr[AR
∗

Fun(OR
∗

Fun(Ψ1), . . . ,O
R∗

Fun(Ψt), z) = 1]

−Pr[AR
∗

Rand(OR
∗

Rand(Ψ1), . . . ,O
R∗

Rand(Ψt), z) = 1]
∣

∣

=
∣

∣

∣
Pr[B∗ EFun

A,(Ψ1,...,Ψt)
(z) = 1]− Pr[B∗ ERand

A,(Ψ1,...,Ψt)
(z) = 1]

∣

∣

∣

= Advind$-cpa
SEFun,B∗

A,(Ψ1,...,Ψt)
(k, qe, ηe, z).
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where qe = t denotes the number of encryption queries made and ηe = ηv−1 = maxi |E(Ψi)|
the maximum number of k-bit blocks each encryption and verification query may have.

Making similar changes to the simulator given in Figure 2.5 as those made to BA,Ψ above,

we may construct our final simulator SΨ1,...,Ψt

A . As before, we let each of the tables Tstate,i

consist of all zeroes. Therefore, following the arguments made in Proposition 2 we have

∣

∣Pr[AR
∗

Rand(OR
∗

Rand(Ψ1), . . . ,O
R∗

Rand(Ψt), z) = 1]

−Pr[SΨ1,...,Ψt

A (1|E(Ψ1)|, . . . , 1|E(Ψt)|, z) = 1]
∣

∣

∣

=
∣

∣

∣
Pr[B∗ ERand

A,(Ψ1,...,Ψt)

′
(z) = 1]− Pr[SΨ1,...,Ψt

A (1|E(Ψ1)|, . . . , 1|E(Ψt)|, z) = 1]
∣

∣

∣

= 0.

Using the bounds derived in Appendix A with qe = t and ηe = ηv − 1 = maxi |E(Ψi)| we
have the following result

∣

∣Pr[ARFK (ORFK (Ψ1), . . . ,O
RFK (Ψt), z) = 1] (3.2)

−Pr[SΨ1,...,Ψt(1|E(Ψ1)|, . . . , 1|E(Ψt)|, z) = 1]
∣

∣

≤ Advprf-nu
FK

(k, (qv + 2t) max
i
|E(Ψi)|+ t)

+Advint-ctxt-m
SEFun,(BA,(Ψ1,...,Ψt)

)ctxt
(k, qe, qv, ηe, ηv, z)

+Advind$-cpa
SEFun,B∗

A,(Ψ1,...,Ψt)
(k, qe, ηe, z)

≤ Advprf-nu
FK

(k, (qv + 2t) max
i
|E(Ψi)|+ t)

+
5

2
qv(t + 1)2(max

i
|E(Ψi)|

2)2−k

+
t2

2
(3 max

i
|E(Ψi)|

2 + max
i
|E(Ψi)|)2

−k.

which is negligible.
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Chapter 4

Beyond DFA Obfuscation

Now that we have shown how to obfuscate DFAs w.r.t. oracle machines, we would like to
investigate if these same results can be extended to more complex computational models.
Namely, we are interested in determining whether Turing machines are obfuscatable as well.
Since a Turing machine is a DFA with access to an infinite tape, we need to figure out how
to integrate tapes into our DFA obfuscation techniques. This, as we will show, is quite easy.

We define a Turing machine as a machine Φ = (Q, Σ, Γ, δ, s0, G) with finite input alphabet
Σ (not including the blank symbol ⊔), finite tape alphabet Γ (with ⊔ ∈ Γ and Σ ⊆ Γ),
transition function δ : Q × Γ → Q × Γ × {L, R}, initial state s0 ∈ Q, and accepting states
G. The read and write tape is assumed to be infinite in both the left and right directions.
For this discussion we will associate an integer to each cell with the initial cell being 0 and
the left and right cells being -1 and 1, respectively.

To obfuscate the Turing machine Φ, we follow a similar approach to that taken in
Section 2 and break up the obfuscation protocol into three different states, User Input,
State Update, and Tape Update. The User Input stage takes an input α0 . . . αt−1 pro-
vided by the user and submits it to the oracle one symbol at a time. On receipt of each input
symbol αi, the oracle concatenates a pointer and cell hit counter giving, αi‖ptr‖cell hits .
The pointer references the numbered cell the tape symbol resides in while the cell hit counter
counts the number of times this cell has been accessed. The oracle generates an encryption
and intermediate authentication tag (stored persistently) of the concatenation above for
i = 0, . . . , t − 1 and sends the resulting encryption back to the user. The authenticated-
encryption scheme used here is similar to the one used in the DFA obfuscation protocol with
the exception that the final authentication tag is not returned to the user but rather is stored
by the oracle in its persistent state. After the last input symbol has been submitted to the
oracle, the oracle changes to State Update.

For the State Update stage we follow the same procedure as before for obfuscating
a DFA except that we add two additional variables to each DFA table element scell write

and sLR, giving sα‖sstate‖sδ(state ,α)‖scell write‖sLR‖sacpt . The variable scell write stores the tape
symbol to be written in the current cell while sLR stores the heads transition (either 1=left
or 0=right). In addition, if the authentication fails during this stage rather than going back
to User Input, the oracle loops to the beginning of State Update, and the user resubmits
the authenticated-encrypted table. If the authentication does pass, then the oracles changes
to Tape Update.
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0 || 0 || 0 1 || 1 || 0

0 || 0 || 0 1 || 1 || 0 2 || 0 || 1

0 || 0 || 0 1 || 1 || 0 2 || 0 || 1 3 || 1 || 1

0 || 0 || 0 1 || 1 || 0 2 || 0 || 1 3 || 1 || 1 4 || 0 || 2

0 || 0 || 0 1 || 1 || 0 2 || 0 || 1 3 || 1 || 1 4 || 0 || 2 5 || -1 || 0

Authenticated-Encrypted Tape
Head 

Movement
Head 

Position

R

L

L

L

Step

0

1

0

-1

1

2

3

4

R5 -2

Figure 4.1. Tape Update with input α0α1.

During the final stage Tape Update, the user submits the encrypted tape to the oracle
one encrypted cell at a time. The oracle decrypts and scans through each cell, looking for
the cell that has the correct pointer and largest number of cell hits (which corresponds to
the most recent symbol written to that cell). If the oracle does not find the pointer in the
authenticated-encrypted tape, then the pointer must be pointing to a previously unaccessed
cell and therefore the tape symbol must be blank. In Figure 4.1 we give an example run of the
Tape Update stage over multiple steps. To avoid unnecessary complications, a description
of the DFA is not given. In the first step the authenticated-encrypted tape contains just the
encrypted cells returned by the User Input stage. The symbol α0 has a pointer 0 since it is
in the initial cell position, while α1 has pointer 1 since it is to the right of α0. Both symbols
have cell hits of 0 since neither of them have been accessed before. We will assume in this
example that the previous state State Update determined that the current cell’s symbol
is to be replaced by α2 and the tape head would move one position to the right. During
the first Tape Update, the oracle decrypts each cell and scans for the current pointer 1
(cell position 0 moved one position to the right) with the largest number of cell hits. It
finds α1‖1‖0 and stores the tape symbol α1 in its persistent state, which will be used by
the next DFA State Update. At the end of the scan and authentication check, the oracle
encrypts the cell α2‖0‖1 and updates the authentication tag for the new encrypted tape. The
encrypted cell is then returned to the user and the oracle’s state changes to State Update.
This procedure repeats indefinitely until a DFA accept state has been reached, thus allowing
the user to submit a new input. The authenticated-encrypted tape given in step 2 is the end
result of Tape Update in step 1. The other steps follow based on the above arguments.

A more complete description of this protocol is given below as well as a list of the primary
persistent variables used by the oracle.
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Persistent variables:

K: Encryption key.

ctr : Changes after each TM execution. Allows TM to execute multiple times.

State: User Input, State Update, Tape Update.

acpt : Current state accept status.

tape symbol : Stores current cell’s tape symbol.

ptr : Current tape position.

cell hits : Number of cell hits for current head position.

cell hits temp: Number of scanned cell hits for new head position.

|Tape |: Current size of tape.

|Table|: Size of DFA table.

LR: Tape head movement.

cell write: Tape symbol to be written in current cell.

tempcs : Temporary storage of current state.

current state: Current state of DFA.

tempα: Temporary storage of tape symbol when scanning DFA.

Authtape : Intermediate authentication tag for encrypted tape.

Auth∗tape : Final authentication tag for encrypted tape.

AuthDFA: Intermediate authentication tag for encrypted DFA table.

Figure 4.2. Persistent Variables.

TM obfuscation protocol:

• Input Query:

1. User transmits input symbols α0, . . . , αt−1 to oracle with the initial input symbol
α0 sent first.

2. For each received input symbol αi oracle performs the following:

– Stores first input symbol tape symbol ← α0 in persistent state.

– Generates encrypted tape cell Ti ← αi‖i‖0 ⊕ FK(ctr‖i‖01) and returns to
user.

– Stores intermediate authentication tag Authtape ← FK(Authtape ⊕ Ti) and
final tag Auth∗tape ← FK(Authtape ⊕ Tt−1) in persistent state (with initial tag
Authtape ← FK(ctr‖10) and ctr ← 0 on first TM execution).

In addition on the final input symbol oracle does the following:

– Set persistent variables ptr ← 0, cell hits temp ← 0, cell hits ← 1,
current state ← 0, |Tape| ← t, and State ← State Update.

• State Update:
Following the DFA obfuscator in Section 2
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1. User transmits encrypted DFA table and authentication tag.

2. Oracle decrypts each table entry and scans for current state and tape symbol .

– If current state and tape symbol are found then oracle updates persistent
variables ptr ← ptr + (−1)sLR , LR ← sLR, cell write ← scell write , acpt ←
sacpt , and tempcs ← sδ(current state,tape symbol).

– If DFA table authentication passes then oracle updates persistent variables
current state ← tempcs and cell hits temp ← 0.

− If acpt = 1 then return acpt to user and set ctr ← ctr + 1 and
State ← Input Query, else State ← Tape Update.

– If DFA table authentication does not pass then return auth fail to user and
set State ← State Update. User must retransmit encrypted DFA table and
authentication tag.

• Tape Update:

1. User transmits encrypted tape cells T0, . . . , T|Tape|−1 to oracle.

2. Oracle decrypts each encrypted cell Ti one at a time and scans for ptr and cell hits .

– If ptr matches decrypted ptr ′ and the number of cell hits temp is less than or
equal to the decrypted cell hits ′ then update persistent variables
tape symbol ← tape symbol ′ and cell hits temp ← cell hits ′.

– Oracle updates intermediate authentication tag Authtape ← FK(Authtape⊕Ti)
in persistent state (with initial tag Authtape ← FK(ctr‖10)).

– If tape authentication passes then oracle generates encrypted tape cell
T|Tape| ← cell write‖ptr − (−1)LR‖cell hits ⊕ FK(ctr‖|Tape|‖01) and returns
to user.

− Oracle updates persistent variables in the following order
Auth∗tape ← FK(Auth∗tape ⊕ T|Tape|) and |Tape| ← |Tape|+ 1.

− If ptr matched a decrypted ptr ′ during tape scan then set
cell hits ← cell hits temp + 1, else set cell hits ← 0 and tape symbol ← ⊔.

Set State ← State Update

– If tape authentication does not pass then return auth fail to user and set
cell hits temp ← 0 and State ← Tape Update. User must retransmit en-
crypted tape.

It is important to observe that the above protocol makes use of several encryption tweaks
in the authenticated-encryption scheme for both the DFA table and tape. For the tape
encryption we used the two-bit tweak 01 while for the seed feeding the initial authentication
we used 10. Similarly for the DFA table we used the tweaks 00 (different than the original
tweak) and 11 for the encryption and authentication, respectively. These tweaks guarantee
that the inputs into the pseudorandom function are unique with high probability.

Also observe that many of the variables may grow exponentially large (if the TM never
halts) over time and may overload the number of bits originally assigned to them, thereby
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potentially breaking the approximate functionality requirement for obfuscation. To work
around this technicality, the oracle may release the encryption key once these variables are
overloaded. The obfuscated code could then decrypt itself and run in the open. This does
not break the virtual black box security requirement since the adversary has a running time
polynomial in k and thus will never overload these variables for k sufficiently large.

Proposition 4 If non-uniformly strong one-way functions exist, then Turing machines are
obfuscatable with respect to oracle machines with small internal state.
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Appendix A

Supplementary Proofs

In this appendix we review the security definitions of INT-CTXT and IND$-CPA and prove
the bounds used in inequality 2.13 and 3.2. All of the results proven below are based on the
authenticated encryption scheme shown in Figure A.1. This generalized scheme is used for
composing obfuscations, with the DFA’s ID corresponding to the encryption IV . We will
assume the IV s are fixed in size, with size strictly less than the security parameter k.

Algorithm Eρ(M) Algorithm Vρ(IV
′, C ′‖Auth′)

C ← ⊥ C0
′‖ . . .‖Ct−1

′ ← C ′

IV ← 0|IV |, |IV | < k X−1
1 ← IV ′‖1k−|IV |

M0‖ . . . ‖Mt−1 ←M , |Mi| = k Auth← ρ(X−1
1 )

X−1
1 ← IV ‖1k−|IV | for s← 0 to t− 1 do

Auth← ρ(X−1
1 ) Xs

1
′ ← Auth⊕ Cs

′

for s← 0 to t− 1 do Auth← ρ(Xs
1)

Xs
0 ← IV ‖s‖0 if Auth = Auth′ and

Y ← ρ(Xs
0) IV ′ ∈ prevIV and

Cs ← Y ⊕Ms sizeC(IV ′) = |C ′| then
C ← C‖Cs Return 1, else Return 0.
Xs

1 ← Auth⊕ Cs

Auth← ρ(Xs
1)

sizeC(IV )← |C|
prevIV ← prevIV ∪ {IV }
IV ← IV + 1
Return (IV , C‖Auth).

Figure A.1. Generalized Encryption and Verification
Schemes.
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A.1 Integrity Awareness

In Proposition 2 and 3 we showed that the distinguishing advantage between the verifiers
VFun and V∗ (with the adversary also having access to EFun) is bounded above by the strong
unforgeability of the ciphertexts. We state the security definition formally below.

Definition 2 (Integrity Awareness w.r.t. Auxiliary Input): Let SEFun be the sym-
metric encryption scheme in Figure A.1 using random functions and Actxt a PPT adversary
with access to two oracles, EFun and VFun. Consider the following experiment with k ∈ N and
z ∈ {0, 1}q(k) for some polynomial q

Experiment Expint-ctxt-m
SEFun,Actxt

(k, z)

Fun
$
← Fun(k)

If AEFun,VFun
ctxt (k, z) makes a query C to

the oracle VFun such that
- VFun(C) = 1
- C was never a response to EFun

then Return 1, else Return 0.

We denote the winning probability in adversary Actxt breaking INT-CTXT-m as

Advint-ctxt-m
SEFun,Actxt

(k, z) := Pr[Expint-ctxt-m
SEFun,Actxt

(k, z) = 1]

The INT-CTXT-m advantage over all PPT adversaries Actxt is defined as the maximum

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv, z) := max
Actxt

{Advint-ctxt-m
SEFun,Actxt

(k, z)}

where qe and qv denote the maximum number of oracle calls to EFun and VFun, while ηe

and ηv denote the maximum number of k-bit blocks per encryption and verification query.
The scheme SEFun is said to be INT-CTXT-m secure w.r.t. auxiliary input if the advan-
tage Advint-ctxt-m

SEFun,Actxt
is negligible over all PPT adversaries (with time-complexity polynomial

bounded in k) given arbitrary auxiliary input.

In the special case where we allow only a single verification query qv = 1, we define the
advantage as INT-CTXT-1. It was shown by Bellare et al. in [3] that if an encryption scheme
SE is INT-CTXT-1 secure (without an auxiliary input), then it is also INT-CTXT-m secure.
Adding auxiliary inputs is a trivial modification to the original proof. Since we will be using
this result to simplify our analysis, we state it in the following lemma.

Lemma 1 (INT-CTXT-1 ⇒ INT-CTXT-M [3]) Let SE be any symmetric encryption
scheme and z any polynomial bounded string in k with k ≥ 1. Then

Advint-ctxt-m
SE (k, qe, qv, ηe, ηv, z) ≤ qv ·Advint-ctxt-1

SE (k, qe, ηe, ηv, z)
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In the following Proposition we prove the scheme in Figure A.1 is INT-CTXT-m secure
when qe = 1. This result is used to help facilitate the proof in Proposition 2.

Proposition 5 Let SEFun be the scheme given in Figure A.1 with IV = ⊥. Let z be any
polynomial bounded string in k with qe = 1, ηv = ηe + 1, and qv, k ≥ 1. Then

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv, z) ≤ qv(4η
2
e + ηe)2

−k

Proof: To prove the above inequality holds, we will use the game-playing techniques in-
troduced by Bellare and Rogaway in [4]. Our goal is to incrementally construct a chain of
games using simple transformation techniques so that the terminal game is bounded above
by a negligible factor. To simplify our analysis we use the result of Lemma 1 and derive
an upperbound for INT-CTXT-1. Once we have found a bound for INT-CTXT-1, the more
general INT-CTXT-m bound will follow. For the sake of this proof, we will also assume
that our adversary A is computationally unbounded and therefore deterministic (since it
may deterministically choose its queries to maximize its advantage). The only restrictions
we place on A is the number of queries it can make.

We begin our analysis by giving a description of game G1 shown in Figure A.3. The
scheme in G1 is the same encryption scheme shown in Figure A.1 with IV = ⊥. Notice
that since we assumed IV = ⊥ the scheme SEFun is no longer stateful and therefore not
IND-CPA secure. Having IND-CPA security is not essential to proving the claim (since
qe = 1). Also observe that we removed the checking of sizeC in game G1. We will instead
assume without loss of generality that the ciphertext submitted for verification is the same
size of the ciphertext returned by the encryption query. Let ρ be a randomly (independent
of z) chosen function from the set Fun(k). Observe that game G1 has only two queries in
its description: an encryption query and a verification query. The single encryption query
(qe = 1) simulates obfuscating a single DFA while the verification query (qv = 1) is the result
of restricting our analysis to INT-CTXT-1. Based on the description of game G1 it follows
that

Advint-ctxt-1
SEFun

(k, qe, ηe, ηv, z) = Pr[Game G1 sets bad ]

with qe = 1 and ηe = ηv − 1 = t.

To transform game G1→ G2, we add additional settings of bad in lines 208, 214, and 224.
We also observe that during the second query, the Auth value after the first index i where
Ci
′ 6= Ci is just ρ(X i−1

1 ). Therefore, the modifications made in lines 219 through 225 are a
direct result of this observation. Since the functionality of game G1 and G2 are equivalent
with the exception of additional settings of bad it follows that Pr[Game G1] ≤ Pr[Game G2].

To go from game G2 → G3, we unroll the for loops in line 205 and 221 and postpone
the recordings of the variable Xs

1 in Dom(ρ). We also swap the assignment of the variable

Xs
1 ← Auth ⊕ Cs with a random sampling Xs

1
$
← {0, 1}k, since the Auth variable used in

the assignment of Xs
1 is randomly sampled during s− 1. Finally, the assignments occurring
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Game G1

100 On first query M0‖ . . . ‖Mt−1

101 C ← ⊥
102 X−1

1 ← 1k

103 Auth
$
← {0, 1}k

104 ρ(X−1
1 )← Auth

105 for s← 0 to t− 1 do

106 Xs
0 ← s‖0

107 Y
$
← {0, 1}k

108 if Xs
0 ∈ Dom(ρ) then Y ← ρ(X0)

109 ρ(Xs
0)← Y

110 Cs ← Y ⊕Ms

111 C ← C‖Cs

112 Xs
1 ← Auth⊕ Cs

113 Auth
$
← {0, 1}k

114 if Xs
1 ∈ Dom(ρ) then Auth← ρ(Xs

1)
115 ρ(Xs

1)← Auth
116 Return C‖Auth

117 On second query C ′‖Auth′

118 C0
′‖ . . . ‖Ct−1

′ ← C ′

119 Auth← ρ(X−1
1 )

120 for s← 0 to t− 1 do

121 Xs
1
′ ← Auth⊕ Cs

′

122 Auth
$
← {0, 1}k

123 if Xs
1
′ ∈ Dom(ρ) then

Auth← ρ(Xs
1
′)

124 ρ(Xs
1
′)← Auth

125 b← 0

126 if Auth = Auth′ then bad ← true,

b← 1

127 Return b

Game G2

200 On first query M0‖ . . . ‖Mt−1

201 C ← ⊥
202 X−1

1 ← 1k

203 Auth
$
← {0, 1}k

204 ρ(X−1
1 )← Auth

205 for s← 0 to t− 1 do

206 Xs
0 ← s‖0

207 Y
$
← {0, 1}k

208 if Xs
0 ∈ Dom(ρ) then bad ← true,

Y ← ρ(Xs
0)

209 ρ(Xs
0)← Y

210 Cs ← Y ⊕Ms

211 C ← C‖Cs

212 Xs
1 ← Auth⊕Cs

213 Auth
$
← {0, 1}k

214 if Xs
1 ∈ Dom(ρ) then bad ← true,

Auth← ρ(Xs
1)

215 ρ(Xs
1)← Auth

216 Return C‖Auth

217 On second query C ′‖Auth′

218 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C ′

219 i← min{s | Cs
′ 6= Cs}

220 Auth← ρ(Xi−1
1 )

221 for s← i to t− 1 do

222 Xs
1
′ ← Auth⊕ Cs

′

223 Auth
$
← {0, 1}k

224 if Xs
1
′ ∈ Dom(ρ) then bad ← true,

Auth← ρ(Xs
1
′)

225 ρ(Xs
1
′)← Auth

226 b← 0

227 if Auth = Auth′ then bad ← true,

b← 1

228 Return b

Figure A.2. INT-CTXT-1 Games G1-G2.

after the setting of bad ← true are removed. Therefore, the changes made from game G2 to
G3 are conservative (i.e. Pr[Game G2] = Pr[Game G3]).

For the final game G3 → G4 we begin by first swapping the random-assignment in line

305 with line 308 by replacing Y
$
← {0, 1}k and Cs ← Y ⊕ Ms with Cs

$
← {0, 1}k and
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Game G3

300 On first query M0‖ . . . ‖Mt−1

301 C ← ⊥
302 X−1

1 ← 1k

303 for s← 0 to t− 1 do

304 Xs
0 ← s‖0

305 Y
$
← {0, 1}k

306 if Xs
0 ∈ Dom(ρ) then bad ← true

307 ρ(Xs
0)← Y

308 Cs ← Y ⊕Ms

309 C ← C‖Cs

310 Xs
1

$
← {0, 1}k

311 Auth← Xs
1 ⊕ Cs

312 ρ(Xs−1
1 )← Auth

313 if Xs
1 ∈ Dom(ρ) then bad ← true

314 Auth
$
← {0, 1}k

315 ρ(Xt−1
1 )← Auth

316 Return C‖Auth

317 On second query C ′‖Auth′

318 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C ′

319 i← min{s | Cs
′ 6= Cs}

320 Auth← ρ(Xi−1
1 ) = Xi

1 ⊕ Ci

321 Xi
1
′
← Auth⊕ C ′i

322 if Xi
1
′
∈ Dom(ρ) then bad ← true

323 if i < t− 1 then

324 for s← i + 1 to t− 1 do

325 Xs
1
′ $
← {0, 1}k

326 Auth← Xs
1
′ ⊕ Cs

′

327 ρ(Xs−1
1
′
)← Auth

328 if Xs
1
′ ∈ Dom(ρ) then bad ← true

329 Auth
$
← {0, 1}k

330 ρ(Xt−1
1
′
)← Auth

331 if Auth = Auth′ then bad ← true

332 Return 0

Game G4

400 Given M0‖ . . . ‖Mt−1

401 X−1
1 ← 1k

402 for s← 0 to t− 1 do

403 Xs
0 ← s‖0

404 if Xs
0 ∈ Dom(ρ) then bad ← true

405 ρ(Xs
0)← defined

406 Xs
1

$
← {0, 1}k

407 ρ(Xs−1
1 )← defined

408 if Xs
1 ∈ Dom(ρ) then bad ← true

409 ρ(Xt−1
1 )← defined

410 Given C
′‖Auth′

411 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C
′

412 i← min{s | Cs
′ 6= Cs}

413 Auth← Xi
1 ⊕ Ci

414 Xi
1
′
← Auth⊕ C

′
i = Xi

1 ⊕ δ, some δ 6= 0

415 if Xi
1
′
∈ Dom(ρ) then bad ← true

416 if i < t− 1 then

417 for s← i + 1 to t− 1 do

418 Xs
1
′ $
← {0, 1}k

419 ρ(Xs−1
1
′
)← defined

420 if Xs
1
′ ∈ Dom(ρ) then bad ← true

421 Auth
$
← {0, 1}k

422 ρ(Xt−1
1
′
)← defined

423 if Auth = Auth
′ then bad ← true

Figure A.3. INT-CTXT-1 Games G3-G4.

Y ← Cs ⊕Ms. Since the variable Y is no longer used, we may eliminate it from the game.
Similarly, since the values recorded for ρ(Xs

1) and ρ(Xs
0) are never reused, they may be

arbitrarily renamed as defined. The only prerecorded variable that is reused is X i
1 on line

413. Given the above swapping it is easy to see that both C and Auth are random. Using the
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derandomization technique1 we may replace them with constants C‖Auth. Since adversary
A is deterministic, there exist queries M0‖ . . .‖Mt−1 and C

′‖Auth′ corresponding to output
C‖Auth. By hardwiring these query-responses into game G4, we may bound the probability
of setting bad as the maximum over all the possible query-responses (thus removing the
adaptivity of the adversary). It is not difficult to see that this maximum occurs when t = ηe,
and the adversary submits a t + 1-block authentication query with the first ciphertext block
changed. Since there are t+1 non-random variables Xs=0,...,t−1

0 , X−1
1 that do not collide with

one another and 2t − 1 independent random variables Xs=0,...,t−1
1 , Xs=1,...,t−1

1

′
with a single

dependent random variable X0
1
′
= X0

1 ⊕ δ some fixed δ 6= 0 recorded in Dom(ρ), it follows
that the setting of bad based on these variables is

Pr[Variables in Dom(ρ) set bad ] ≤

{(

3t + 1

2

)

−

(

t + 1

2

)

− 1

}

2−k

which holds for any computationally unbounded adversary. Therefore, given qe = 1, ηv =
ηe + 1, and Pr[Auth sets bad in line 423] = 2−k we have

Advint-ctxt-1
SEFun

(k, qe, ηe, ηv, z) ≤ Pr[Game G4 sets bad ]

≤ Pr[Variables in Dom(ρ) set bad ]

+Pr[Auth sets bad in line 423]

≤

{(

3ηe + 1

2

)

−

(

ηe + 1

2

)}

2−k

= (4η2
e + ηe)2

−k.

In the case that IV 6= ⊥ we may derive a more general result. By letting the IV ’s
represent the identity (which we denote as IDs) of each obfuscated DFA instance we may
use the following generalization to prove the main composition result in Section 3.

Proposition 6 Let SEFun be the authenticated encryption scheme given in Figure A.1 using
random functions and z any polynomial bounded string in k with qe, qv ≥ 1, ηv = ηe +1, and
k ≥ 1. Then

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv, z) ≤
5

2
qvη

2
e(qe + 1)22−k

Proof: To simplify our analysis we will reuse the result of Lemma 1 and derive an upper-
bound for INT-CTXT-1. Following the description in Figure A.1 we modify the encryption
scheme in games G1 through G4 (Proposition 5) to include IV s. Observe that the verifier
shown in Figure A.1 only accepts ciphertext queries that contain IV s previously returned by

1Derandomization Technique: If a game G chooses a variable X
$
← X and never redefines it, we may

derandomize the variable by choosing a constant X to replace it. Given any adversary A, it follows that
Pr[Game GA sets bad ] ≤ maxX Pr[Game G

X

A
sets bad ].
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EFun, such that the length of the new ciphertext match’s the length of the original. Therefore
an adversary gains no advantage by submitting a ciphertext query that contains an IV never
seen before or if the length of the ciphertext submission is different than the length of the
original for that particular IV . To simplify the game descriptions we assume wlog that an
adversary does not make these type of queries.

As in the last Proposition it is easy to see that an adversary maximizes their advantage by
submitting encryption queries satisfying the bound ηe with a single ηe+1-block authentication
query with the first ciphertext block changed (may choose any of the past IV s). It follows for
any fixed chain of queries there are at most qe(ηe+1) non-random variables X−1

1,IV , Xs=0,...,ηe−1
0,IV ,

IV = 0, . . . , qe−1 that do not collide with one another and ηe(qe+1)−1 independent random

variables Xs=0,...,ηe−1
1,IV , Xs=1,...,ηe−1

1,IV

′
, IV = 0, . . . , qe−1 with a single dependent random variable

X0
1,IV

′
= X0

1,IV ⊕ δ some fixed δ 6= 0 recorded in Dom(ρ). It follows that the setting of bad
for these variables is bounded above by

Pr[Game G4 sets bad ] ≤

{(

qe(ηe + 1) + ηe(qe + 1)

2

)

−

(

qe(ηe + 1)

2

)

− 1

}

2−k

=

{(

ne(qe + 1)

2

)

+ qeηe(qe + 1)(ηe + 1)− 1

}

2−k

≤

{

5

2
η2

e(qe + 1)2 − 1

}

2−k

which holds for any computationally unbounded adversary. Therefore, we have

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv, z) ≤ Pr[Game G4 sets bad ]

≤ Pr[Variables in Dom(ρ) set bad ]

+Pr[Auth sets bad in line 423]

≤
5

2
η2

e(qe + 1)22−k.

A.2 Indistinguishable from Random

In Proposition 2 and 3, we measured the indistinguishability between the schemes EFun and
ERand under chosen plaintext attacks. The randomized scheme ERand as you recall took any
message M that was a multiple of k-bits (k the security parameter) say t and returned a
random string of (t + 1)k-bits along with an IV . In Proposition 2, EFun does not use an IV ;
therefore, in this case we take IV = ⊥. Formally we define ERand as
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Algorithm ERand(M)
M0‖ . . .‖Mt−1 ←M , |Mi| = k

Rand
$
← {0, 1}(t+1)k

IV ← IV + 1
Return (IV , Rand).

For the definition of indistinguishable from random to make sense in our setting, we give the
adversary an additional auxiliary input.

Definition 3 (Indistinguishable from Random): Let SEFun be the symmetric encryp-
tion scheme in Figure A.1 using random functions and Acpa a PPT adversary with access to
two oracles, EFun and ERand. Consider the following experiment with k ∈ N and z ∈ {0, 1}q(k)

for some polynomial q

Experiment Expind$-cpa
SEFun,Acpa

(k, z)

Fun
$
← Fun(k)

b← AEFun,ERand
cpa

Return b

We denote the winning probability in the adversary breaking IND$-CPA as

Advind$-cpa
SEFun,Acpa

(k, z) := Pr[Expind$-cpa
SEFun,Acpa

(k, z) = 1]

with the maximum over all possible PPT adversaries as

Advind$-cpa
SEFun

(k, qe, ηe, z) := max
Acpa

{Advind$-cpa
SEFun,Acpa

(k, z)}

where qe denotes the maximum number of oracle calls to EFun or ERand, and ηe the maximum
number of k-bit blocks per encryption query.

Proposition 7 Let SEFun be the authenticated encryption scheme given in Figure A.1 using
random functions and z any polynomial bounded string in k with qe ≥ 1, and k ≥ 1. Then

Advind$-cpa
SEFun

(k, qe, ηe, z) ≤
q2
e

2
(3η2

e + ηe)2
−k

Proof: We can bound the IND$-CPA advantage using game G2 in Figure A.2 if we remove
the single authentication query and allow for more than one encryption query. This simulates
both SEFun and SERand, which are identical until bad is set. Therefore, using the Funda-
mental Lemma of Game-Playing we have Advind$-cpa

SEFun
(k, qe, ηe, z) ≤ Pr[Game 2 sets bad ].

Following the same arguments as used in Proposition 5 (including the assumption that A is
deterministic and computationally unbounded), we may transform game G2 to G4. Since for
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any fixed chain of queries there are at most qe(ηe+1) non-random variables X−1
1,IV , Xs=0,...,ηe−1

0,IV ,
IV = 0, . . . , qe − 1 that do not collide with one another and qeηe independent random vari-
ables Xs=0,...,ηe−1

1,IV , IV = 0, . . . , qe − 1 in Dom(ρ), it follows that the setting of bad in game
G4 is bounded above by

Pr[Game G4 sets bad ] ≤

{(

qe(2ηe + 1)

2

)

−

(

qe(ηe + 1)

2

)}

2−k

which holds for any computationally unbounded adversary. Therefore, it follows that

Advind$-cpa
SEFun

(k, qe, ηe, z) ≤ Pr[Game G4 sets bad ]

≤

{(

qe(2ηe + 1)

2

)

−

(

qe(ηe + 1)

2

)}

2−k

=
q2
e

2
(3η2

e + ηe)2
−k.
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