

SANDIA REPORT
SAND2008-2338
Unlimited Release
Printed May 2008

Common Tester Platform Concept

Michael J. Hurst

Prepared by Sandia National Laboratories
Albuquerque, New Mexico, and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

 ii

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 iii

SAND2008-2338

Unlimited Release

Printed May 2008

Common Tester Platform Concept

Michael J. Hurst, Radar Fuzes Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, New Mexico 87185-0348

ABSTRACT

This report summarizes the results of a case study on the doctrine of a common
tester platform, a concept of a standardized platform that can be applicable across
the broad spectrum of testing requirements throughout the various stages of a
weapons program, as well as across the various weapons programs.

The common tester concept strives to define an affordable, next-generation
design that will meet testing requirements with the flexibility to grow and
expand; supporting the initial development stages of a weapons program through
to the final production and surveillance stages. This report discusses a concept
investing key leveraging technologies and operational concepts combined with
prototype tester-development experiences and practical lessons learned gleaned
from past weapons programs.

 iv

Acknowledgments
The development of the ideas and concepts used in the design of common tester architecture
involved a large number of people who contributed in many ways.

Since many design concepts discussed in this report are borrowed from WR projects, we are
grateful to Gerald Boyd, of the Weapon Controllers Department, 5351, who was instrumental in
the original development of a previous tester system.

The contribution of several Sandia experts in the design of developmental testers was also very
valuable. These experts include Jesse Lai, Brian DuVerneay, Christopher Rodenbeck, and
Jeffrey Pankonin, of the Radar Fuzing Department, 5353.

The technical contributions of Edward Bernal of the Radar Fuzing Department, 5353, were
immensely valuable to the performance scoping, development, and definition of the common
tester platform.

The management support of Tedd Rohwer, Manager of the Radar Fuzing Department, 5353, and
Perry Molley, Manager of the Weapons Controllers Department, 5351, made this research
possible by helping to formulate this case study and working to ensure sponsorship for this
research.

The programmatic support of John Dye, of the Weapons Controllers Department, 5351, and
George Laguna, of the Radar Fuzing Department, 5353, was instrumental in opening the doors in
the weapons community necessary to gain access to programmatic support to develop this
concept. This project would not have been a success without their efforts.

Finally, Doug Mangum, Manager of the B61 System Engineering Department, 2111, contributed
immensely to making this report possible. Specifically, Doug was responsible for the overall
strategy of standardization of testing; this helped ensure the definition of surveillance test
capabilities discussed in this report for the surveillance testers. Doug also made available the
funding support that made this study possible.

This research has been advanced and improved thanks to the efforts of many individuals at
National Instruments and specifically, Jamie Olive, Ed McConnell, and David Bonal, who have
been invaluable in the effort to leverage and develop a new approach to tester development in the
weapons community based on industrial practices.

In addition, gratitude is expressed to Phillip Brittenham, of the Creative Arts Department, 3654,
for his careful review of this report, John Leon, of the Radar Fuzing Department, 5353, for his
assistance in the preparation of this manuscript, and Chris Brigman, of the Creative Arts
Department, 3654, for his talented graphics designs.

 v

Contents

EXECTIVE SUMMARY..IX

1. BACKGROUND AND OVERVIEW... 1

1.1. Programmatic Testing Categories ... 1

1.1.1. Developmental Evaluation Testing .. 1

1.1.2. Quality/Reliability Testing... 2

1.1.3. Qualification Testing .. 2

1.1.4. Production Testing... 2

1.1.5. Surveillance Testing .. 3

1.2. Serial vs. Parallel Tester Development a New Paradigm........................... 4

1.3. Rationale for Paradigm Shift .. 6

1.4. Tester Platforms – Analysis of Past Tester Architectures 8

1.4.1. Rack and Stack Instrumentation Manually Operated................................. 9

1.4.2. Packaged Rack-and-Stack Instrumentation + Custom
Operating Program .. 10

1.4.3. Custom-Hybrid Design with Fabricated Custom-Made, Custom-Built,
Hardware ... 12

2. CTP – DESIGN INTENT AND CHARACTERISTICS.. 15

2.1. Introduction .. 15

2.2. CTP – Functional Overview ... 18

2.3. CTP – Architecture .. 21

2.3.1. System Management Software.. 22

2.3.2. Data Management System .. 24

2.3.3. Application Development Software (ADE) ... 25

2.3.4. Measurement and Control Services... 25

2.3.5. Computing and Measurement Bus .. 26

2.4. CTP – Implementation ... 28

2.4.1. Implementation Infrastructure .. 28

2.4.2. CTP Qualification... 28

2.4.3. Implementation Budget .. 30

2.4.4. Implementation Plan .. 30

3. CONCLUSION .. 37

3.1. Caveats.. 37

 vi

List of Figures
Figure ES-1. Application of a Common Platform Overview ..ix

Figure ES-2. Shared Core Across Project Applications..xi
Figure 1. Development Testing Process .. 1

Figure 2. Programmatic Testing Matrix: Six Levels of Design and Five Testing
Categories ... 3

Figure 3. Timeline of Design Maturation and Programmatic Tester Requirements 4

Figure 4. Historical Tester Development Trends .. 5

Figure 5. Historical vs. Proposed Future Tester Development Efforts............................ 6

Figure 6. Application of a Common Platform Overview.. 19

Figure 7. CTP Structure Using a Core Foundation... 20

Figure 8. National Instruments TestStand Architecture .. 24

Figure 9. Bandwidth Chart.. 27

Figure 10. AFS Development Phased Approach to Tester Design 31

Figure 11. Die Level Tester Schematic .. 32

Figure 12. Radar and Tester Development Timeline.. 35

List of Tables
Table 1. Typical DUT Testing Operations .. 17

Table 2. Tx Measurement Matrix.. 33

Table 3. Rx Measurement Matrix ... 34

 vii

Acronyms and Abbreviations
ADE application development environment
AF&F arming, fuzing, and firing
AFS arming, fuzing subsystem
API application programming interface
ASIC application specific integrated circuit
COTS commercial off-the-shelf
CTP common tester platform
DA Design Agency
DC direct current
DMM digital multimeter
DOE Department of Energy
DUT device under test
HALT highly accelerated life testing
HASS highly accelerated stress screen
IO input/output
IVI Interchangeable Virtual Instruments
KCP Kansas City Plant
MB megabyte
MCM multi-chip-module
NI National Instruments
NNSA National Nuclear Security Administration
NWC nuclear weapons complex
PA Production Agency
PC personal computer
PRT Product Realization Team
PXI PCI extensions for instrumentation
QAP quality assurance plan
R&D research and development
RADAR radio detection and ranging
RB re-entry body
RF radio frequency
Rx receive or receiver
sec. second(s)
SFP soft front panel
SNL Sandia National Laboratories
SRS Software Requirements Specification
Tx transmit or transmitter
vs. verses
WETL Weapons Evaluation Test Laboratory
WQAP written quality assurance plan
WR war reserve

 viii

 ix

EXECTIVE SUMMARY
This report explores the concept of a Common Tester Platform (CTP) as applicable across the
broad spectrum of testing requirements integral to the various phases of weapons programs
(Figure ES-1). The concept of the CTP is arriving at a unique point in history, when the very
nature of how business is conducted in the weapons complex is undergoing transformation on an
unprecedented scale. The common tester concept strives to define an affordable, next-generation
design that will meet testing requirements from the initial development phases of a weapons
program through the production and surveillance phases. This concept leverages advances in
technologies and operational concepts that can now bring modernization and efficiencies not
previously attainable in the weapons community. The major challenge to this approach is to find
a design that can be utilized across all applications and be accepted by all segments of the tester
community. Intrinsic to the design of the common platform is the concept that one common
basic core can be implemented as a foundation for all tester platforms.

Figure ES-1. Application of a Common Platform Overview

The CTP is not a completely new concept within the weapons community. This approach has
been considered in the past. However, successful implementation has not been achieved to the
extent of a standardized platform — across a program — across a Design Agency (DA) —
across a Production Agency (PA) — across the Surveillance Community — or across the
Weapons Complex. Past attempts at standardization have been made with an assortment of
platform architectures with mixed results. Pockets of standardization have developed within
segments of the weapons community without achieving a global conformation to one standard.
As a result, sub communities have developed their own diverse platform standards to satisfy their
specific tester needs, often based on architectures familiar to that group of tester designers. As

 x

an example, a tester’s software might be based on the C++ programming language because the
originator of the system is a C++ programmer. Another engineer working on a similar type of
tester system may choose to develop his system using Visual Basic because of his familiarity
with that programming language. For a common foundational core to be successful and provide
value, it must be adaptable to support the wide variety of expertise in the tester development
community.

The architecture identified in this study is designed to exploit advances in software and
hardware. It utilizes a test management software system that allows for simplified user
interfaces to be built, providing an environment for building, sequencing, and modifying tests
across an infinite assortment of instrumentation. This new common tester platform architecture
possesses endless expansion capabilities. The incorporation of calibration sequencing, real-time
data display, and embedded data analysis-manipulation will be possible. Other features include
automating the generation of high-quality reports, functional evaluation or pass-fail
determination, an infinite variety of data collection possibilities, and immediate results.

The challenge of the CTP is to satisfy the performance needs across the spectrum of
requirements. Issues relevant to the developmental stage of a project differ from the priorities in
the production stage of the same project. This architecture takes into account the broad spectrum
of needs and offers a design that meets all phase requirements while maintaining a goal of
commonality of the core. The goal is to maintain a 70 percent to 90 percent commonality of the
core across a weapons program.

Study Objective

The objective of this study is twofold: (1) to understand the extent of tester application
requirements within the phases of a weapons program and across analogous weapons programs
and (2) to determine the extent to which the tenets of the common tester platform hypothesis can
meet these requirements while fulfilling the transformation strategic goals identified in the
Complex 2030 initiative.

This report evaluates a change in the paradigm used to develop testers. First, we consider the
categories of testing that currently exist within the weapons community. Then, we compare
historical methods and architectures to a modular, adaptable approach, highlighting the many
advantages and disadvantages of each architecture. Next, a discussion of the paradigm shift from
serial to parallel tester development is presented as applied to the Complex 2030 Strategic Goals.
Finally, a description of the CTP outlines the functionality and architecture, presenting a
comprehensive plan for implementation.

This document discusses the viability of the common tester platform concept. The intent of this
report is not to define the project details of implementation but rather discuss the concept for
management’s review. Project implementation details are discussed in subsequent reports
outlining the path forward, project plan, schedule, and funding requirements based on the initial
lessons learned during developmental builds and evaluation of this design approach.

 xi

Study Scope and Context

As a case study of typical tester performance criteria, the tester requirements for a sophisticated
subsystem — the MC4701 arming and fuzing subsystem (AFS) will be critiqued and reviewed in
this report. This subsystem was chosen because of the familiarity of the system to the author and
the amount of prototype tester development that has already been performed for this subsystem.

This list summarizes the Complex 2030 Strategic Goals that will be the standard on which this
CTP will be assessed.

• Future programs would be operated in a more cost effective manner.
• Capabilities would be consolidated and unnecessary duplication eliminated, yielding a

smaller infrastructure that is fully capable and sufficiently flexible.
• Work would be optimized to maintain a responsive infrastructure.
• Ease of production, maintenance, serviceability would be realized.
• Reduce investment in legacy systems, outdated equipment, obsolete technology, and

spare parts retention.

Findings

The essence of the common tester hypothesis postulates that a common tester platform would
increase affordability and flexibility. To achieve this, a standardized hardware/software platform
can be adopted as an integrated core across complex partners and facilities. At the heart of the
common tester concept is the notion of reuse. Standardized core software would afford savings
by reusing the development investment made in the original core deployment with repeated
reapplications in further deployments (Figure ES-2).

Figure ES-2. Shared Core across Project Applications

 xii

In addition to the cost savings that accompany core software reuse, other advantages present
themselves, such as leveraging technological advances in the commercial marketplace,
increasing overall productivity, and reducing maintenance and operational costs.

Recent technological advancements in the area of automated testing and reporting in
commercial-off-the-shelf (COTS) products are providing test engineers with a solid set of tools
maintained and improved by the commercial marketplace. Requirements tracking, in-line data
processing, automated instrument control, and enhancements in data connectivity, processing,
and reporting are among some of the features currently available. These new technologies
ultimately contribute to reduced labor requirements with the application of automation to
traditionally manual activities. By relying on the commercial marketplace to drive these
technologies, weapons programs can lower overall operational costs dramatically by
standardizing on commercially available hardware and software instead of customization to meet
testing needs.

Standardization of testing platforms among the various weapons elements would also lend itself
to standardization of testing technique, including data formats and test sequences. With
standardization among the agencies, scripted tests developed at one organization could be shared
and reapplied at collaborating agencies, further maximizing the work performed at the different
agencies.

A cornerstone to the common tester concept is the realization of increased productivity with the
early investment in tester activation and early incorporation of the CTP into the initial develop-
mental testing activities. Design engineers who are developing the underlying components of
weapons assemblies may reap the greatest reward by bringing automation into their task.
Traditionally, component testing has been done manually and is very costly in resources, time,
and materials.

An additional advantage of a standardized platform will be the reduction in maintainability and
operational costs and a reduction of spare parts inventory having to support only one version of
tester as compared to dozens of different versions.

This study found that a COTS platform utilizing National Instruments TestStand software as the
test management environment could meet the transformational goals of tester standardization
analyzed in this report.

 xiii

Caveats

Some important caveats should be kept in mind that applies to successful implementation of a
CTP. First, this study considers one particular subsystem application — AFS testing
requirements. Because of time and resource constraints, an exhaustive search for all tester
requirements throughout the entire weapons complex was not done but instead the AFS was used
as a representative case study. Second, there are programmatic factors outside of the realm of
the CTP that will affect its implementation success such as:

• Successful collaboration and information sharing between the various stakeholders within
the segments of the agencies in the tester community.

• A willingness among the stakeholders to embrace change, which may include retraining
engineering staff to be able to use the new platform.

• A pooling of resources — to include funding — to support the implementation of the
platform during the initial development stage.

These provisos, if not managed properly, will place in jeopardy the success of a common
platform — dooming the concept to a limited success, with the project not realizing the full
benefit of this concept.

 xiv

 1

1. BACKGROUND AND OVERVIEW
To understand the issue of testers related to a weapons program, we must first develop an
understanding of programmatic testing requirements relevant to the phases of a weapons
program. Examination and evaluation testing — where testers are applied as tools — support the
development, certification, production, and surveillance phases of a program. Several different
factors need consideration in the tester discussion.

1.1. Programmatic Testing Categories
The general topic of “testing” can be divided into five subcategories related to the maturation
timeline of a weapons program. The testing subcategories, tester requirements for each
subcategory, and the historical methods utilized to meet these requirements are discussed in the
following sections.

1.1.1. Developmental Evaluation Testing

There is an initial stage of exploratory testing that supports evaluation and investigation of
prototype design performance during the beginning stages of a project. This type of testing is
intended to reveal design comprehensiveness, thoroughness, and technical merit. These tests are
conducted from the discrete component level, to the subsystem level, through to the system level.
Results are fed back into the design to implement changes for maturation of the product under
development. Traditionally, the development of a product has been a cycle of design, prototype,
test, evaluate results, adjust design, and then repeat the process until the design is finalized
(Figure 1). Testing and evaluation of the results are significant activities during this
developmental process.

Figure 1. Development Testing Process

This type of testing supports the first step in product development and is conducted at the DA.
Historically, this type of “open bench-top” testing has been conducted with a mixture of rack and
stack instrumentation, custom designed cards, and/or specialty equipment, semi-manually

 2

executed because of the myriad and complexity of the measurements. In many cases, significant
effort is required by designers to create firmware and software control of the instrumentation.

1.1.2. Quality/Reliability Testing

This category of testing is conducted primarily at the subsystem level, on mature designs, to
gather quality-related performance information about the subsystem with respect to the realistic
environmental conditions in which it is intended to operate. This category includes lifetime and
stress testing (e.g., highly accelerated life testing [HALT]) with the purpose of uncovering design
defects and weaknesses. Historically, this type of testing has been conducted with a mixture of
rack and stack equipment along with prototype custom-built tester-emulators tailored to replicate
the functionality of the next-level system. An example is to mimic the interface functionalities
of the arming fuzing and firing (AF&F) system to the AFS. These emulators imitate the
functional stimuli for the subsystem and can be costly to build and maintain. Traditionally, the
data and measurements taken during these tests have been collected with limited automation.
Additionally, some custom-designed cards and/or specialty equipment may be used during this
phase. These types of tests are usually conducted at environmental test facilities that introduce
variables such as temperature, vibration, hostile shock, or radiation while functioning the
subsystem. During this stage of testing, margin testing would be conducted as a validation that
design margin requirements have been met. Conducted mainly at the DA, test results are fed
back into the design to implement needed improvements with a goal of developing a highly
reliable product.

1.1.3. Qualification Testing

Another category of testing used for design evaluation is qualification testing. This type of
testing is done to confirm that the final design meets the performance specifications using
simulated environments that mimic the survivability extremes derived from the performance
requirements documents. Test results are typically limited to a pass or fail determination
collected on final production samples as an evaluation of the design and production processes.
These pass/fail determinations have used a variety of software products for data analysis. During
this type of testing, DA engineers use various programming languages (such as MATLAB or
LabVIEW) or commercial software (such as DIAdem) to create specialty scripts for post-testing
data evaluation. Developed software scripts do not undergo formal qualification reviews and are
used primarily in limited applications for engineering evaluation of post-test data.

Qualification testing conditions can also include production testing (highly accelerated stress
screen [HASS] and E-Tests), thermal cycling, logistics/flight, shock and vibration, hostile shock,
and radiation. This category of testing is conducted at both the DA and the PA. Historically,
testing has been conducted with a mixture of rack and stack equipment along with custom-built
tester-emulators tailored to the evaluation needs of qualification, autonomous to the predecessor
tester activities.

1.1.4. Production Testing

Prior to the final production phase of a project, development of production testers begins after
performance criteria for the testers have been documented by the DA to the PA. Specialized
equipment is designed by the PA and built to perform a collection of measurements that evaluate

 3

the pass or fail performance of the manufactured part or subsystem. Evaluation is based on
meeting the acceptance criteria established for the product. These testers are custom built and
tailored to the evaluation needs of the production line for a particular part or subsystem to insure
the acceptability of the produced product. In addition, production testing may utilize techniques
that are nondestructive to the component or assembly under test such as HASS testing conducted
on statistical samples from the production line. This type of testing takes place only at the PA.
For this category of testing, the hardware and the software used undergo a formal qualification
process.

1.1.5. Surveillance Testing

Once a weapon system is introduced into the stockpile, laboratory tests are conducted
periodically on stockpile samples to evaluate the weapon’s nonnuclear systems to detect possible
defects that may arise over the lifetime of the product because of handling, aging, manufacturing,
or design. System and component testing, including functional testing, is used to identify defects
or failures. The testers used to support this category of testing are custom built and tailored to
the evaluation needs of the Weapons Evaluation Test Laboratory (WETL) located at Pantex,
autonomous to the predecessor tester activities.

As illustrated in the Testing Matrix (Figure 2), the inter-relationships of the six levels of design
and the five programmatic-testing categories for a typical war reserve (WR) project are
summarized, identifying the organizations where that category of testing takes place.

Figure 2. Programmatic Testing Matrix: Six Levels of Design and Five Testing Categories

 4

The five categories of testing follow a sequential timeline for a weapons project. Figure 3
illustrates these five categories relevant to a design maturation timeline, beginning at the
component level, progressing through the programmatic mid-levels of subsystem and system, to
the final stages of an operational system. The timeline illustrates the testing spin-off sub-
activities identified in Figure 3 that are part of the project’s developmental phases. Although this
timeline is based on an AFS project, the testing activities are typical for other subsystems in a
weapon.

Figure 3. Timeline of Design Maturation and Programmatic Tester Requirements

1.2. Serial vs. Parallel Tester Development a New Paradigm
Traditionally, for WR projects, initial developmental testing at the DA was supported using
manually operated, rack and stack instrumentation. Then, at the midpoint of the project, testing
requirements were defined as the design reached maturity. These requirements were captured in
Product Specification (PS) documents. PA fabrication of testers was based on customized
hardware-software platforms. Subsequently, resources were allocated for tester development at
the later stages of the project, primarily to support the production and qualification testing needs.
This serial approach to tester development (Figure 4), did not address testing requirements from
the early stages of the project. This approach is rooted in the somewhat limiting train of thought

 5

that automated, integrated testers cannot be developed or built until measurement requirements
have been documented. Because of the non-standardized nature of past testers, legacy work
could not be reused or leveraged for new project testing needs. This unnecessarily added
significant development time and therefore cost for new testers. As programmatic requirements
drive projects to shorten developmental cycles, this same paradigm cannot succeed.

Figure 4. Historical Tester Development Trends

A key to process improvement for tester development is to change this paradigm so that early
programmatic testing requirements are met at time of need — concurrent with, or parallel to,
need. In traditional tester engineering, a delay in tester development is a consequence of waiting
until requirements are fully defined. A relatively long time can be spent defining the tester
product, and a surprisingly long time is often spent developing the tester product. During past
tester development projects, design engineers would work with the tester development engineer
for several iterations to achieve the final desired result in tester operability.

Changing this business model would require that resources be applied at the beginning stages of
the program, working alongside the design engineers to provide automated, integrated testers.
This paradigm shift is illustrated in Figure 5. Initial testers would have to be adequately
designed so that the platform could migrate or adapt as the product designs move from
component level to surveillance, thus leveraging the foundational work performed in tester
development.

 6

Figure 5. Historical vs. Proposed Future Tester Development Efforts

The goal of this new paradigm is to introduce automated testing at the beginning stages of a
project, identifying common measurement and testing needs that can be reapplied to future test
categories. With a standardized platform established early in a project, the reutilization of the
design would shorten the time required to achieve production and surveillance tester deployment.
Redundant engineering costs would be eliminated, the primary cost driver being the effort to
customize the test platform to the specific data and user interface needs of the agency performing
the testing. Over time, development for these specific needs would be reduced once the benefits
of reuse have been realized and implemented within the agency. Components to build testers
would be based on the plug-and-play approach. A second shift in the business model is to utilize
a flexible, adaptable, common platform based on COTS products, minimizing tester
development, customization, and cost.

Developing a new tester platform capable of supporting all measurement and testing for future
projects would require combining several separate operations into one system, allowing
flexibility to changing operational requirements. The tester would support the developmental
and characterization phases from the discrete component level through to the final system level
(Figure 3).

1.3. Rationale for Paradigm Shift
The drivers for change are summed up in several recently released reports. The Report on the
Plan for Transformation of the National Nuclear Security Administration Nuclear Weapons
Complex the Executive Summary begins with this statement, “Section 3111 of the John Warner
National Defense Authorization Act for Fiscal Year 2007 (Public Law 109-364) directs the
Secretary of Energy to develop a plan, in consultation with the Secretary of Defense and the

 7

Nuclear Weapons Council, for transformation of the nuclear weapons complex to achieve a
responsive infrastructure by 2030.”

In the Complex 2030 Report, the Executive Summary states the following:

National Nuclear Security Administration (NNSA) has developed a planning scenario that
sets out our vision for the nuclear weapons complex of 2030. This scenario consists of four
over-arching, long-term strategies:

(1) In partnership with the Department of Defense, transform the nuclear stockpile through
development of Reliable Replacement Warheads, refurbishment of limited numbers of legacy
designs, and accelerated dismantlement of the Cold War stockpile;

(2) Transform to a modernized, cost-effective nuclear weapons complex;

(3) Create a fully integrated and interdependent nuclear weapons complex; and,

(4) Drive the science and technology base essential for long-term national security.”

Key statements in these documents identify transformation goals to enhance responsiveness of
design, certification, and production to include:

• Less costly and effective risk management.

• Timely support of design implementation.

• Design, develop, certify, and complete first production units with a frequency that both
sustains the stockpile and exercises the supporting infrastructure and critical needs.

• Improved compatibility to design, develop, certify, and complete production of new or
adapted warheads.

• An overall goal of an economically sustainable nuclear weapons enterprise.

Historically, testers for the nuclear weapons complex (NWC) have been developed to a set of
specifications that typically are not available until after the design/development cycle for a given
component is complete. Once the specifications are available, it can take years before the tester
is completed. Further, as product complexity increases, it becomes exponentially more
expensive both in dollars and in time to detect flaws later in the design cycle. With the mandate
for change, today’s needs require that future testers be flexible enough to meet the engineer’s
needs during design and then extend those capabilities into production testing and supply chain
management. Some of the pressures faced by engineers today are as follows:

• Device complexity — one of the most visible trends is increased device complexity.
Today’s devices combine multiple disparate technologies into a single functional unit.
As a result, test system design must be flexible enough to support the wide variety of
tests between components but also scalable to accommodate a larger number of test
points as new measurement functionality is required.

 8

• Shortened Development cycles — an example of this is the current Radio Frequency
Integrated Circuit (RFIC) project, which has a timeline of 4 years, approximately half of
the traditional 8 to 9 years. To be successful, engineering teams need to develop new test
strategies to decrease test time and improve efficiencies from design through production
and into supply chain management.

• Decreasing budgets — testing is becoming more expensive and time consuming.
Engineers and designers must develop test strategies that reduce cost by increasing the
throughput of their test systems, reducing the maintenance and upgrade costs, lowering
the required capital investment, and reducing the overall no-recurring expense (NRE).
The percentage of the programmatic budgets allocated to testing is also decreasing,
requiring a need to achieve higher efficiency in testing expenditures.

• Quality Policy (QC-1) directives as set forth by Department of Energy (DOE)/NNSA —
This directive includes continuous improvement processes (3.1.1), prevention vs.
detection (3.1.2), design process (3.3.2), design verification (3.3.3), inspection, test, and
acceptance (3.9), nonconformance (3.12), and software quality assurance (3.16). All of
these directives apply to tester development.

• Tactical Business Practice Product Realization Process as set forth by DOE/NNSA —
these regulatory documents include cost, schedule, and performance metrologies for a
project. Changes to a product have greater cost and schedule impact as product
realization proceeds towards the delivery and support steps. Effective use of concurrent
engineering both in design and testers reduces changes in the later steps.

• Concurrent Qualification — Application of concurrent engineering to product will
require that concurrent qualification principles be applied to tester development during
future testing activities to improve tester availability during accelerated project schedules.
This means that the tester qualification must have parallelism to be ready to support
actual testing milestones. For past projects, qualification has been the last part of a serial
process of fielding a tester. With concurrent qualification, testers would be available in
time to meet the testing needs of the project.

1.4. Tester Platforms – Analysis of Past Tester Architectures
One of the starting points for this investigation is an understanding of how NWC testing needs
were addressed during past programs. Examining past tester architectures reveals a non-unified
approach because testers were developed on a case-by-case basis, unique to each application or
agency. Initial developmental testing was supported using primarily rack and stack
instrumentation, manually operated with little or no operational automation. At the midpoint of
the project, testing began to shift to customized-hybrid platforms. This transition occurred after
the system design was mature and testing requirements were documented. The tester hybrid
platforms utilized a percentage of custom-fabricated, custom-made, custom-built hardware and
software. Once developed, production testers underwent a qualification process before the tester
could be placed into production support.

 9

Past programs satisfied testing needs primarily using the following three tester architectures:

• Rack-and-Stack Instrumentation “Manually Operated”

• Packaged Rack-and-Stack Instrumentation + Custom Operating Program

• Custom-Hybrid Design with Fabricated Custom-Made, Custom-Built, Hardware

The following section describes these three architectures and summarizes how these legacy
platforms were applied during past programs to meet testing needs. In addition, the discussion
summarizes architectural performance advantages and disadvantages.

1.4.1. Rack and Stack Instrumentation Manually Operated

Description

This platform consists of individual standalone instrumentation, lacks integration with
framework or sequencing software, and possesses little or no data handling software. This
system utilizes the manual method of an operator interfacing with the instrumentation and
manually executing the steps necessary to complete the measurement activities.

Advantages

• Traditional rack-and-stack is a versatile architecture to modify. To make modifications; a
design engineer need only purchase and install a new instrument with appropriate
fixturing and cabling.

• This architecture is well-established and low risk technically. Instruments are typically
designed to perform specific measurements reliably.

• This architecture can meet testing measurement requirements if the measurement
techniques have been correctly scoped.

• Little or no integration complexity is inherent with this architecture, as it offers basic
functionality to take common measurements.

• The development timeline for implementation of this platform is minimal initially.

• There are minimal costs associated with the integration of the instrumentation, as the
measurements are independent and instrument specific with little or no interfacing of the
various instruments as a centralized system.

Disadvantages

• This approach lacks the automation features for volume testing with repeated
measurements. It cannot meet automation production testing requirements where
measurement throughput is important.

 10

• This approach results in testing that is inherently slow. Utilizing this platform would
conflict with an accelerated project where quick turnaround is essential. For production
applications, this platform would not meet the production rate throughput necessary to
maintain production rates.

• One of the major cost factors in the deployment of this system is the human-labor
element of manually executing all of the tests. In a production environment, the labor
costs would be unreasonable considering the volume of tests and data.

• Manual execution of measurements, particularly with high volume measurements, would
slow a design engineer’s ability to turn design evaluations during a compressed
development schedule.

• Human error can become a factor when repetition or complexity of measurements is
increased.

• The implementation costs for base instrumentation is high as this platform design utilizes
expensive universal instrumentation.

• Initial investments are not recoverable because of high operational labor requirements.

• This type of setup is not compatible with the mobility and rugged requirements of field-
testing. Past deployments of this platform consisted of large, numerous, and bulky
instruments primarily intended for lab bench setups.

1.4.2. Packaged Rack-and-Stack Instrumentation + Custom Operating Program

Description

This platform consists of several custom-built racks normally used in the production
environment. Evaluation samples are delivered to the tester as opposed to the tester being
delivered to the evaluation samples. This system is based primarily on the rack-and-stack
instrumentation method, with integration of the individual instruments connected via a General
Purpose Interface Bus (GPIB) or Ethernet to a controller PC utilizing FORTRAN, Visual Basic,
or C++ sequencing code.

Advantages

• This architecture is well established, is of moderate risk technically, and has been used in
past programs to establish automated testing for both development and production.

• This platform is capable of meeting specific measurement projects where large data sets
or automated complex measurements are required (i.e., production environments).

• Measurements can be made with a customized automation system that communicates
with the testing equipment, sequences the tests, and stores the data, thus reducing the
labor component.

 11

• This design approach is ideal for fixed, rigid applications where changes are few and the
application is specific, as occurs with volume measurements, repeated processes, and
specific data manipulation.

Disadvantages

• The instrumentation is typically integrated into a rack framework, which is not conducive
to field testing. It lacks the mobility of a compact design. Production tester versions are
large and not easily convertible to portable systems without reengineering.

• This platform consists of integrated rack-and-stack instrumentation utilizing FORTRAN,
Visual Basic, LabVIEW, or C++ programming languages to develop applications that
control sequencing. Building and maintaining a custom sequencing engine requires a
significant amount of software engineering and is unnecessary because of recent
advances in COTS testing software and standardized instrumentation interfaces.

• This design approach lacks the agility to easily adapt to change. Tester functionality
changes require reprogramming of the source code and possible hardware modifications.
This is monolithic in nature. Monolithic designs are inherently risky when changes occur
during the uncertain developmental phases of a project.

• Monolithic testers do not promote code reuse. For every tester, integration of the
hardware requires developing interface software for each instrument.

• Because of the complexity of programming in text-based languages like FORTRAN,
Visual BASIC, and C++, an advanced programmer, fluent in the higher level
programming language, is required for modification of the tester, driving reengineering
costs up.

• The implementation costs for customized software and hardware requires a large
engineering effort because customized code must be written and custom hardware must
be developed for each tester. Equipment costs are also higher with the custom designed
and fabricated one-off prototype systems.

• The development timeline for implementation of this platform is similar to the build
times for the W76-1 project, about two years for each tester. For the W76-1 program,
tester development began midcourse of the project and required several years of
development to be ready for production testing.

• The production cost for this architecture would be similar to the production cost for the
W76-1 testers, addressing only the needs of production. For the W76-1 program, testers
were not implemented during the beginning research and development (R&D) phases of
the program. Since each tester is custom, costs are recurring.

• With an assortment of software languages including FORTRAN, Visual BASIC, or C++
code used for the sequencer, cross-platform compatibility and standardization are
inhibited.

 12

1.4.3. Custom-Hybrid Design with Fabricated Custom-Made, Custom-Built, Hardware

Description

This system architecture is analogous to bread boarding and uses a custom-engineered platform.
This approach to tester development is similar to the method used when prototyping basic
electronics systems. The hardware consists of custom designed and fabricated circuitry down to
the circuit board level. The control and sequencing software is custom written using FORTRAN,
Visual Basic, or the C++ programming languages.

This tester platform incorporates some data analysis compatibilities with the control and
sequencing software as custom scripts. The architecture incorporates custom software and
custom hardware. A framework would have to be written in FORTRAN, Visual Basic, or C++
code. Integration of the hardware would be accomplished by writing interface software for each
instrument. The design is complicated by adding the engineering load of developing the base
electronic elements in the design.

Advantages

• This design approach offers extreme flexibility as little is predetermined about the
architecture. The functionality is bounded by the skill sets of tester designers and the
budgetary limits of the project.

• The developed platform is technically achievable and could meet performance
requirements of weapons program testing environments.

• This platform facilitates specific measurement capabilities where large data sets or
automated complex measurements are required.

• Measurements can be made with a customized automation system that communicates
with the testing equipment, sequences the tests, and stores the data, thus reducing the
labor component.

• This design approach is ideal for a fixed, rigid application where changes are few and the
application is specific for volume measurements, repeated processes, and data
manipulation.

Disadvantages

• With the bread-boarded architecture, the platform is not robust. Vulnerabilities to
mechanical shock and vibration are limiting factors in field testing. In general, the
architecture is not conducive to hostile environments during field testing.

• The control software would be specially written in FORTRAN, Visual Basic, or C++
programming language and as such is not easily modified.

• This strategy does not leverage available commercially developed software solutions.
The approach would require a large investment of engineering time to develop prototypes
and to fabricate the basic elements of the software design.

 13

• This architecture lacks efficiency in implementation because the approach customizes
every base element of the design, making development more difficult. The architecture
can in some cases be too flexible.

• The engineering risk is higher because of the custom circuitry needed.

• The capacity of this architecture to perform as designed depends on the engineering skill
set of the tester designers as they assume all engineering responsibility. This type of
platform places the burden of reliability engineering on the tester developers instead of
utilizing modular, commercially available products that have undergone reliability
engineering by commercial suppliers.

• The development timeline for implementation of this platform increases with the added
engineering requirements of a bread-boarded customized platform.

• Each variation of this platform would require a significant investment in engineer labor
because of the prototype nature of each design.

• Legacy production systems have used this design approach, and because of the difficulty
of modifying these testers, older systems have not been updated to take advantage of
newer technologies.

 14

This Page Intentionally Left Blank

 15

2. CTP – DESIGN INTENT AND CHARACTERISTICS

2.1. Introduction
To meet the Complex 2030 transformation goals, traditional tester design strategies based on
standalone instruments, custom software applications, and custom-hybrid designs must be
reevaluated. These designs lack the flexibility to support dynamic development cycles across the
broad spectrum of testing requirements from the initial development phases of weapons
programs through the production and surveillance phases. This lack of flexibility has been
driven, in part, by the lack of tools available to a test designer. To achieve the flexibility
necessary, a modular approach must be realized, building on the advantages that each design
strategy provides. The overarching goal of this study is to leverage recent technological
advances in test software and learn from past experiences in designing testers. In the subsequent
sections, a testing platform capable of achieving standardization across all project phases will be
discussed.

In the past, tester designs have been measurement-based, targeted such that code is written for a
specific measurement function or to test a specific piece of equipment. The focus has been more
on the hardware to build a tester rather than on the software. This is not surprising considering
evolution of technology over the past century. Instruments to make measurements have been in
use far longer than the software needed to automate those measurements. Prior to the 1980s, test
automation consisted of connecting an instrument to a device under test (DUT) and recording
measurements by hand or on paper in many cases. There is a large body in the weapons complex
that still feels this is the most efficient means to test products. However, this hardware-centric
approach to testing leads to monolithic tester design.

The very use of the word automation implies that designs need to be focused more on the
software that communicates with instruments and control testers. Any approach to building an
automated tester necessarily requires more attention to the operational functionality and how the
user interacts with control software. In the last 20 years, software has evolved at a rapid pace,
tracking developments in personal computer (PC) technologies. Initial software designs required
a software programmer programming in assembly code, Basic, FORTRAN, or other syntax
based programming languages. Today tools have been developed and applications are available
so that less experienced individuals can develop their own applications. In the tester world, this
is also true.

Past tester architectures utilized custom software programs developed in languages such as
FORTRAN, LabVIEW, Visual Basic, and C++ and could only be modified by an expert in the
applied programming language through reprogramming of the control software code. This
approach develops line or visual code that sequences commands to instrumentation to complete a
specific measurement, thus limiting adaptation of the automated measurement to change or
modification. The architecture makes it extremely difficult to perform measurements not
initially defined or to modify the system when requirements change. In fact, in this study, our
first design approach was to build a tester leveraging the strengths of LabVIEW as a
programming language. The lesson learned was that even though LabVIEW is designed to make
communicating with instruments simpler so that anyone can automate a measurement, building

 16

full-scale test architecture in LabVIEW is no less expensive and is no more flexible than
programming the same tester in C++ or Visual Basic.

Monolithic automated test equipment (ATE) systems, such as highly integrated production
testers, are typically very expensive and time consuming to build and can leave engineering
teams vulnerable to obsolescence and untimely system redesigns. Historically, after incurring
the expense of developing and fielding a custom-build system, there is a reluctance to attempt
change to the system. This reluctance is because of the highly customized nature of the design
and reluctance to re-incur large costs to modernize the platform.

In response to these trends, the common tester platform (CTP) needs to be based on a core that is
implemented as modular, software-defined test architecture based on widely adopted industry
standards to provide:

• Increased test system flexibility deployable to a variety of applications, PRTs, and
product generations.

• Higher-performance architectures that significantly increase test system throughput and
enable tight correlation and integration of instruments from multiple suppliers.

• Lower test system investments by reducing initial capital investment and maintenance
cost while increasing equipment use across multiple test requirements, testers, Design
Agencies, Production Agencies, the Surveillance Community, and finally the Weapons
Complex.

• Increased test system longevity based on widely adopted industry standards that enable
technology upgrades to improve performance and adapt to future test requirements.

The goal is for 80 percent of the functionality of any given tester to reside in the core, while the
other 20 percent is DUT specific. To meet the points emphasized above, the common core will
consist of five tiered-layers where each layer resides on top of and utilizes the next layer. The
five layers are system management, data management, application development software,
measurement and control services, and computing -measurement bus.

1. System management – Test System Management Software – As an automated test
system, the common core requires the implementation of many tasks and measurement
functions. Some are specific to the DUT and others are repeated for every device tested.
To minimize maintenance costs and ensure test system longevity, it is important that the
common core implement a test strategy that separates the DUT-level tasks from the
system-level tasks so that engineers can quickly reuse, maintain, and change test
programs (or modules) created throughout the development cycle to meet test
requirements (Table 1). System management also entails the ability to track requirements
and relate them to test steps. In addition, the system-management tool must be versatile
to allow for integration with various enterprise networking infrastructures.

 17

Table 1. Typical DUT Testing Operations

Operations Different for Each DUT Operations Common for Each DUT

Instrument configuration Operator interfaces

Measurements User management

Data acquisition DUT tracking

Results analysis and presentation Test flow control

Calibration Storing and mining results

2. Data management system – The common core will require a versatile flexible repository
for data collected during testing and a means of managing and mining that repository.
This data management repository must be standardized and common for all testers used
across the three stages of a program. The method of data presentation to the user will
necessarily vary depending on the tester, the DUT, or the specific data consumer’s needs.
Some common file presentation methods utilized by various engineers are CSV (comma
separated value), GEISHA, TDMS, HDF4, HDF5, or MATLAB format. All of these
formats would have to be simple conversions extracted from the data in the standard
repository.

3. Application development software – The application development environment (ADE),
such as Microsoft Visual Basic or LabVIEW, will play a critical role in the common core
architectures. With these tools, test engineers can communicate to a variety of
instrumentation, integrate measurements, display information, connect with other
applications, and much more. Ideally, the ADEs used to develop the common core will
provide ease of use, compiled performance, integration of a diverse set of inputs and
outputs, and programming flexibility to meet the requirements for the broad range of
diverse testers to be supported by the CTP. Factors to consider when selecting an ADE
include ease of use, measurement analysis and capabilities, integration with measurement
and control drivers, training and support, presentation and reporting features, and
protection from obsolescence.

4. Measurement and control services – Measurement and control services play an important
role by providing connectivity to various hardware assets in the system, system
configuration, and diagnostic tools. Measurement and control services should also
provide integration with the application development software layer through application
programming interfaces (APIs) so test engineers can easily program all necessary
instruments. In fact, the components of this services software; hardware drivers, APIs,
and a configuration manager; must seamlessly integrate within the ADE(s) to maximize
performance, increase development productivity, and reduce overall maintenance.
Important factors to consider include a configuration manager, instrument connectivity,
and programming tools.

 18

5. Computing and measurement bus – At the center of the common core is a computer in
the form of a desktop PC, server workstation, laptop, or embedded computer as used with
PCI extensions for instrumentation (PXI). An important aspect of the computing
platform is the ability to connect (and communicate) to the wide variety of instruments in
a test system. There are several different instrumentation buses available for standalone
and modular instruments including GPIB, USB, LAN/LXI, PCI/PXI, and PCI/PXI
Express. These buses have differing strengths, making some more suitable for certain
applications than others. For example, GPIB has the widest adoption for instrument
control and wide availability of instrumentation; USB provides wide availability, easy
connectivity, and high throughput; LAN is well-suited for distributed systems; and PCI
Express provides the highest data throughput performance.

2.2. CTP – Functional Overview
To better understand the CTP concept, an analogy can be made to a master-planned community
where a “strategic” approach is applied to the entire community’s needs so that the common
infrastructure of the community is designed and developed before the specific structures of the
community are established. In likeness to this model for design, the core of the common tester is
in comparison the infrastructure of the master-planned community (telecommunications,
transportation networks, utilities, recreational, business, etc.) while the specific structures built
on this infrastructure would be the specific tester applications within the tester community. Just
as the common infrastructure would be established for a master-planned community, the
infrastructure of the common tester (user interface, instrument drivers, requirements tracking,
report generation, soft front panel templates, data management, flow control, etc.) would be the
common foundation on which all tester applications would be constructed.

The CTP architecture must be capable of supporting all functionality common to all weapons
systems across multiple existing and future weapons programs. These functionalities include but
are not limited to the following:

1. Operational support of an accelerated schedule (laying tracks in front of an oncoming train).
This refers to the reduced timeline requirement. To meet this requirement, each stage of the
tester must be a subset of the next. The CTP ensures the sharing of common tasks,
instruments, functionalities, etc., across multiple testers.

2. Grow with the program. As a weapons program moves along the development path, the
tester must be capable of testing at the current development level when that level is ready to
be tested. For example, the development levels for a radio detection and ranging (RADAR)
program are defined as die, multi-chip-module (MCM), subsystem transmit or receive (Tx or
Rx), and full radar. Each level has feature specific tests and tests common to other levels.
The CTP will ensure that duplication of tests and functionalities is minimized and that
functional test and device reuse is maximized.

 19

3. Handle data. The tester must be capable of collecting data, processing at the test station, and
storing for later in-depth analysis and data mining. Ideally, data could be collected
throughout development through production for comparison over the lifetime of the product.

4. Combine and automate test sequencing. It will be possible to build a test by manually
controlling the various instruments necessary to perform that test and then capture the test
steps into a sequence for automatic operation. Further, because of the CTP it will be possible
to load a sequence from one location into the tester at another location.

5. Be adaptable to add new measurement compatibilities. To keep future development costs
low, the common core will easily accommodate new technologies and configurations with
seamless integration of testing capabilities, growing the CTP and all spawned testers.

6. Meet advanced technology developmental testing requirements. As new technologies
become available, they will be incorporated into various weapon systems. These new
technologies will require cutting-edge functionalities that have not yet been applied to tester
systems in the nuclear weapons complex. By adding these functionalities to the common
core, the CTP and all spawned testers will transparently upgrade to embrace these
functionalities.

To meet the constraints listed above the common core needs to be instrument agnostic. In other
words, the core should not be built specifically to the requirements of one or more instruments.
Instead, the software should provide a means of adaptation to any instrument on any bus. To
achieve this goal, the software needs to be modular in its design and approach so that it can be
adapted across multiple stages of development and weapons systems (Figure 6).

Figure 6. Application of a Common Platform Overview

 20

The CTP core infrastructure must be capable of supporting all tester functionality common to all
weapons systems across existing and future weapons programs. Figure 7 shows how a CTP
would be applied on a RADAR program. In this figure, an initial core tester platform is
developed as the foundation for the building shown in the illustration. After establishment of a
solid foundation capable of supporting the successive levels, construction can begin on the
successive floors of the building for the specific tester applications in each phase of the project.
The CTP is applied at the successive phases of the project (the floors in the illustration RF Die
and MCM level, etc.) and customized for the needs of that development phase. It is expected
that at each level, there will be specific software and hardware development tasks that may
become part of the growing code reuse library. This reuse library would include the drivers
developed for instrumentation that can be reapplied as it is reused at each level in the structure.

Figure 7. CTP Structure Using a Core Foundation

Each core component of the CTP foundation is discussed in detail below:

1. User Interface – The foundational User Interface will consist of a developmental
environment allowing for complete control and ultimate flexibility of the System
Management Software. This user interface will then require some customization to
support test engineers at each development level. This will lead to specific user
interfaces with defined functionality appropriate to the level of expertise of the end users
responsible for each level.

2. Instrument Drivers – A body of instrument drivers will be built to support
communication to the wide variety of instruments that will be used in various aspects of

 21

tester development. These foundational instrument drivers will be measurement agnostic,
allowing for maximum code reusability. At each development level, there will be
specific instruments that will require driver development. Unless the instrument driver
applies only to measurements at that development level, these drivers will become part of
the foundational level.

3. Requirements Tracking – A software mechanism will be provided that will allow for the
tracking of requirements as defined in requirements documents provided to the tester
development team. Reporting tools will be provided to allow for designers to track every
requirement to individual test sequence steps to verify requirements coverage.

4. Report Generation – In the foundation, a basic test report will be provided including all
test parameters and instrument configuration settings. At each development level, more
customized reports will be necessary, depending on the needs of the developers.

5. Soft Front Panel Templates – A soft front panel (SFP) is the software user interface to
instruments. In the foundational level, a template will be defined to allow for quick
insertion of instrument-specific code. It provides the user with a graphical method of
interacting with an instrument. The SFP communicates to the instrument drivers so that
code is reused because the test developer does not have to constantly type code to change
or execute instrument functions during test development.

6. Data Management – At the foundational level, a data-management schema will be
implemented to efficiently store both metadata and test result data. This data-
management technology will be designed so as to provide an easy migration to support
development-level data needs. Each development level will require specific conversion,
analysis, and reporting capabilities. As with the instrument drivers, new capabilities will
be made available to the core library.

7. Flow Control – Flow control refers to the engine that sequences test steps. The flow
control scheme will be built to include sequencing, looping, conditional branching, and
parallel testing options at the minimum.

2.3. CTP – Architecture
The CTP platform consists of the five tiers explained in Section 2.1. The next five subsections
are descriptions of each tier as follows:

• System Management Software

• Data Management System

• Application Development Software

• Measurement and Control Services

 22

• Computing and Measurement Bus

2.3.1. System Management Software

As mentioned in Section 3.1, in every testing environment, a wide variety of operations must be
performed. These operations can be separated into two distinct groups: operations repeated for
each product tested and operations different for each product tested. Test management software
provides a means to develop an architecture that covers both categories. Architectural design
begins with identifying the elements that will be common and building them into the core
architecture, then providing a unified means of incorporating tester operations that are different.
The system management software then becomes the foundational core of the CTP.

Since system management software is the heart of the infrastructure for the CTP, the choice of
tool requires thorough examination. Most companies and enterprises attempting to accomplish
similar goals first consider the “build-your-own” concept. In this case, a test executive is built
from scratch using a programming language such as C++, Visual Basic, MatLab, or LabVIEW.
The goal is to build a sequencing engine and data handler that can be used by multiple teams or
individuals. The belief is that by doing so, the software executive will be built such that the
organization will be able to incorporate specific features applicable only to that organization.
Many companies have found that the ongoing maintenance of the executive and the constant
need for modification of the executive are prohibitively and unnecessarily expensive. In
addition, most test executive tasks are not unique to an organization. Because of the size of the
weapons community and the wide range of technologies that require support, a centralized,
maintained, home-grown test executive is unrealistic. There are several benefits to using a
COTS solution including the following:

• Reduction in training and in cost associated with documentation

• Opportunity for globalization and cross-site resource sharing

• A standardized test operator interface reduces training and operator errors

• Reduced cost: no need to develop and reengineer the executive

• High potential for reuse

• Decreased maintenance cost

• Greater reliability

An extensive survey of COTS solutions was performed. Tools that were considered included
National Instruments TestStand, Agilent TestExec SL, Teradyne Test Studio, MicroLex Systems
Sequetest, and Mustangdyne TestCell. The most important requirements for the CTP were as
follows:

• Ability to support multiple programming interfaces

 23

• Complete suite of flow control capabilities

• Flexibility in terms of data formatting and storage capabilities

• Global support and training options

• Industry adoption

• Company stability

• Nonproprietary user interfaces

• Requirements tracking

Upon review, one product stood out above all the rest, National Instruments (NI) TestStand.
TestStand is a ready-to-run test management environment. It is the only choice that meets all the
requirements for supporting an organization as diverse as the weapons complex. Test sequences
can integrate test modules written in any programming language (e.g., LabVIEW, FORTRAN,
Visual Basic, C++, etc.). Operator interfaces can also be written in any language and
incorporated seamlessly into the environment. Sequences specify execution flow, reporting,
database logging, and connectivity to other enterprise systems. Requirements Tracking is also an
integral part of TestStand. NI provides a tool called Requirements Gateway. This tool
seamlessly integrates with TestStand sequence steps and the underlying code developed for these
steps. It also connects easily with many requirements gathering tools including DOORS,
Microsoft Word, Requisite Pro, and Microsoft Excel.

Because of its flexibility and applicability to diverse organizations, TestStand has become the
standard test management software choice for 14 of the 15 leading consumer electronics
companies (e.g., Sony, Microsoft, Intel, Motorola, etc.) in the world along with 9 of the 10 top
contract manufacturers (Flextronics, Solectron, Celestica, etc.) as well as Honeywell Aerospace
worldwide. NI is the leader in computer-based measurement and automation software and has a
long track record of providing hardware and software tools that scale with technological
advancements. NI also provides worldwide support and training options.

The central component of the NI TestStand architecture is an execution engine, which exports an
open Application Programming Interface (API) to facilitate communication with other
applications. A Sequence Editor and an Operator Interface use the API to access the TestStand
Engine (Figure 8). In addition, the TestStand engine provides adapters that allow design to
incorporate programming modules written in any language. These modules comprise the
specific code that performs actual measurements, communicating with instruments, or analysis
routines that could be common or different.

The intent is that a CTP TestStand core model will be developed, remaining open and flexible,
but also specific to support weapons programs needs. The CTP TestStand core will manage all
aspects of functionality, including data storage and formatting, test module connectivity,
sequencing, requirements tracking, operator interface customization, variable handling,
conditional branching, looping, user management, and DUT tracking.

 24

The result will be a CTP architecture to handle most of the common tester operations while at the
same time developing a comprehensive code library of routines that are common.

Figure 8. National Instruments TestStand Architecture

2.3.2. Data Management System

The importance of developing a solid data management scheme cannot be underestimated.
Without providing a mechanism for test designers to access the results of tests, the test itself
becomes meaningless. In an environment as widespread as the weapons complex, the challenge
is to provide a meaningful way for everyone, from design engineer to production test operator, a
way to access the data resulting from a test in a way that is meaningful. Each individual has
his/her own data needs. In addition, data must be searchable and organized. One tester may
provide many files every day, resulting in large-scale archival issues. For these reasons, a
common data management system that is open, flexible, mine-able, and efficient is required.

A file format has been defined that provides for the ultimate in efficiency and flexibility. It is a
hierarchical system called TDMS. This system consists of two files for every test run. One file
is based on XML and the other is a binary file. The XML file contains all the metadata from a
test run. XML is an ASCII based hierarchical format. In TDMS, there are three basic levels:
file, group and channel level. At each level, properties and parameters can be defined. For
example, at the file level, a test can be designed to save information such as the operator’s name,
the date and time, or the DUT serial number. At the group level, parameters about a particular
measurement or instruments can be stored. At the channel level, vital characteristics about a
particular I/O channel can be defined, including statistical information or user-defined dynamic

 25

properties. By employing XML, the data scheme is then easily searchable or mine-able. A
Google-like search interface has been identified that allows for complex searches over folders of
data. The binary data file is used to store actual measurements or instrument data. Binary files
are the most efficient method to handle large data sets. Therefore, by combining the flexibility
of an ASCII based metadata container and the efficiency of binary files, a test operator is able to
leverage the best of each for maximum efficiency and flexibility.

Of equal importance is the ability to convert these data into the format necessary to support the
program being served. Currently, several file formats have been identified within the weapons
complex: CSV, MATLAB, HDF4, HDF5, GEISHA, and XLS. A conversion from TDMS to one
of these formats is seamless, requires very little programming, and can be fully automated.
Ideally, a test engineer would only need to click a checkbox to specify which data file format he
or she would prefer the data to be exported in. Therefore, with very little effort, results would be
immediately available for consumption in the analysis tool or database of his/her choice.

2.3.3. Application Development Software (ADE)

Every tester will have some need for some custom software development using an ADE.
However, the TestStand core and the comprehensive reusable code library of the CTP will
eliminate the need for every tester to be written from scratch and save, on average, 80 percent of
the development time. User interfaces to TestStand and code modules called by TestStand can
be written in any language. In addition, multiple ADE environments can be used in the same
TestStand sequence. The ultimate goal of choosing which ADE is most appropriate for any
given task is that it provides ease of use, compiled performance, integration of a diverse set of
inputs and outputs, and programming flexibility to meet the requirements for the broad range of
diverse testers to be supported by the CTP.

Since a large part of the initial tester development involves communicating and manipulating
instruments, NI LabVIEW has been chosen for this task. LabVIEW is a graphical programming
environment designed for exactly this purpose. It is also a complete programming language,
simplifying application development for programmers and nonprogrammers. Because of its
widespread use in research and development, it is highly likely that many code modules will be
developed on this ADE. However, the use of LabVIEW does not preclude the use of other
ADEs like C++ or Visual Basic. This approach provides ultimate flexibility in an organization
of this size because of the wide variety of expertise available across the complex. In summary,
the ADE choice will depend on the specific measurement or instrument control task that is
necessary as specified in the tester requirements.

2.3.4. Measurement and Control Services

Measurement and control services play an important role by providing connectivity to various
hardware assets in the system, system configuration, and diagnostic tools. These services
comprise a software layer that connects actual hardware with application code. Many hardware
vendors provide configuration management software to make setup of their hardware simple. In
addition, software tools are often provided that combine measurements into a single simple
interface. Whenever these tools are available, the CTP will employ these designs.

 26

More importantly, instrument drivers are necessary. The term “instrument driver” should not be
mistaken for the low-level command and control driver (e.g., DLL) that is needed to functionally
operate an instrument. In the test industry, this term refers to higher level code that incorporates
all the available commands for an instrument into an easy-to-use interface in a specific
programming language or ADE. Because of the wide variety of instruments employed in
weapons testing, much of the programming effort will be to convert whatever technology has
been provided into a fully functional instrument driver for use in the CTP. This development
will be accomplished so as to maximize the possibility for code reuse. To attain this goal, a
template has been defined for connecting an instrument driver into the CTP. Once an instrument
driver has been converted into the CTP template, it will become part of a large reusable code
library and will be available for future projects.

The concept of Interchangeable Virtual Instruments (IVI) is also being explored. IVI instrument
drivers are built according to an international standard that has been defined based on instrument
classes. The idea is that an instrument (e.g., digital multimeter [DMM]) from one vendor can be
swapped out or replaced with an instrument from another vendor without making any changes to
the instrument driver. This concept certainly mirrors the CTP concept of reusability and
flexibility. For this reason, IVI technologies will be used where applicable.

2.3.5. Computing and Measurement Bus

There are two different buses in a computer-based automated tester, the computing bus and the
measurement bus. The computing bus refers to the physical layer connecting the Central
Processing Unit (CPU) of a computer to the measurement devices being employed. The
measurement bus is the physical mechanism employed to communicate from the computer to an
instrument.

Because of its widespread adoption, it is difficult to make a case to not utilize the PCI bus as the
computing bus. There are several varieties and extensions to this bus that are popular in the test-
and-measurement market. The PXI architecture is a rugged PC-based platform commonly used
in test applications. PXI combines PCI electrical-bus features with the rugged, modular,
Eurocard packaging of CompactPCI and then adds specialized timing and triggering options for
synchronization. It is both a high-performance and low-cost deployment platform for
measurement and automation systems. Because it is PC-based, it is widely available and
maximally flexible.

Developed in 1997 and launched in 1998, PXI was introduced as an open industry standard to
meet the increasing demands of complex instrumentation systems. Today PXI is governed by
the PXI Systems Alliance (PXISA), a group of more than 65 companies chartered to promote the
PXI standard, ensure interoperability, and maintain the PXI specification. In addition, PXI
Express, built on the PCI Express bus, is already in use and shows the most promise for the next
30 years. This technology increases system bandwidth from 120 megabytes (MB)/seconds (sec)
to close to 6 gigabytes/sec over dedicated parallel channels. PXI Express has been designed to
be 100 percent backward compatible with PXI, primarily because of the large investment in
long-term programs similar to those in the weapons complex.

 27

The measurement or instrument bus comes in a variety of physical forms. These buses are
typically compared by considering the bandwidth and latency. Bandwidth measures the rate at
which data are sent across the bus, typically in MB/sec. A high-bandwidth bus can transmit
more data in a given amount of time than a bus with low bandwidth. Bandwidth is important
because it affects whether data can be sent across the bus to or from the PXI bus as fast as it is
acquired or generated. This, in turn, affects how much onboard memory the instruments will
need. Bandwidth is important in applications such as complex waveform generation and
acquisition as well as RF and communications applications.

Latency, another critical characteristic, measures the delay in data transmission across the bus.
By analogy, if we were to compare an instrumentation bus to a highway, bandwidth would
correspond to the number of lanes and the speed of travel, while latency would correspond to the
delay introduced at the on and off-ramps. A bus with low (meaning good) latency would
introduce less delay between the time data were transmitted on one end and processed on the
other end. Latency, while less observable than bandwidth, has a direct impact on applications
where a quick succession of short commands are sent across the bus, such as in handshaking
between a digital multimeter and switch, and in instrument configuration. Figure 9 charts the
bandwidth (and latency) of many standard instrumentation buses.

In addition to the bandwidth vs. latency comparison, each bus has its own unique advantages.
For this reason, a hybrid approach is necessary in the CTP. The CTP will employ whatever bus
technology is necessary, and each of these instrument buses connects directly with the PXI-based
computing bus seamlessly.

The CTP is bus agnostic and is not limited to PXI alone but is expandable, supporting any bus.
This flexibility allows the inclusion of currently used buses to the tester architecture (e.g., GPIB,
LXI, Serial, etc.) as well as expandability to include future bus technologies.

.

Figure 9. Bandwidth Chart

 28

2.4. CTP – Implementation
This section describes the process for building and implementing a common tester platform.

2.4.1. Implementation Infrastructure

A test platform of this magnitude requires the involvement of several entities and experts in
many areas. For the initial core test platform and template development, development requires
software programmers with not only test industry experience, but also architectural expertise in
the development environments at the highest level. For TestStand and LabVIEW, a two-tiered
certification program exists in which a programmer can attain certifications as a developer and as
an architect. To receive certification as an architect, the programmer must have significant
experience with large-scale systems that span multiple application needs. Since the core system
is based on TestStand, a TestStand Certified Architect is required. For portions that require
LabVIEW, the programmer should be at least at the Developer level.

Since both LabVIEW and TestStand are NI products, direct involvement from NI R&D and field
engineers is necessary. An earlier attempt was made to involve only systems integrators with
proficiencies in these areas. Because these integrators tend to have narrow scope, the project
was not as successful as it could have been. Through that experience, it became obvious that
only the company that developed the tools has the scope and experience to ensure that the tools
are applied appropriately.

Sandia National Laboratories (SNL) is where weapons designs originate. The CTP concept
begins with testers developed for Design Engineers at the component level. For these original
CTP designs to be successful, it is critical that the CTP core design team be embedded at SNL
and work hand-in-hand with these designers. Only in that way can full comprehension be
achieved to build successful testers that meet the needs properly.

Once the core has matured and it is applied at the assembly level, it is critical that the Kansas
City Plant (KCP) be involved in tester development for the future. KCP should become the
owners and caretakers of the CTP. KCP offers production tester experience in weapons
programs that far eclipses what any other entity could provide. KCP also provides significant
experience in the customization of hardware that is non-COTS and programming in Visual
Basic, a common ADE used for application development. As development of the CTP expands,
involvement from KCP will increase. KCP test engineers should be trained in the use of the CTP
at some point. In addition, the appropriate test engineers may want to consider formal training
and certification in at least TestStand.

It is absolutely essential that all these entities participate in the CTP at various points in time. As
the program expands, it is likely that more programmers and entities might be employed based
on the need for specific expertise at that time.

2.4.2. CTP Qualification

A common train of thought in the establishment is that the actual development tools or ADEs
need qualification as opposed to the applications developed with these tools. Programming
languages such as Microsoft Visual C++, Microsoft Visual Basic, and NI LabVIEW, and tools

 29

such as The Mathworks MATLAB, NI TestStand, and DIAdem fall into the category of
abstractions from assembly-level code. These languages and tools should not be considered as
needing qualification except through verification testing that they do what they claim to do and
perform as intended. Instead, the actual applications developed with these tools need to be fully
qualified at all levels.

The qualification plan for the application called the CTP must comply with the regulator
guidelines established in the Weapon Quality Policy (QC-1) document. The requirements
specified in the QC-1 document are not applicable to all aspects of research but must be applied
to weapon development, engineering, production, surveillance, and dismantlement of which the
common tester platform would become a part. Thus, to qualify a tester design, the qualification
requirements, whenever practical, should be applied early in the design processes for later
transition to the production and surveillance activities.

Contractors involved in the CTP will need to integrate quality principles with risk-based analysis
into management and work practices at all levels so that missions are accomplished, and
customer requirements are met. Organizations shall integrate quality management into all facets
of work planning and execution. A written quality assurance plan (QAP) or (WQAP) should be
developed, implemented, and maintained that meets the requirements of this document.

There will be a process to establish and document the CTP organizational structure, functional
responsibilities, levels of authority, and lines of communication. Where more than one
organization is involved in the execution of activities, the responsibilities, interfaces, and
authorities of each organization should be clearly defined and documented. The external
interfaces between organizations and the internal interfaces between organizational units, and
changes thereto, should be documented. Personnel verifying quality achievement should not be
directly responsible for performing the work being evaluated and should have the authority,
direct access to management, organizational freedom, and access to work to perform their
function.

The organization responsible for the CTP design should ensure that operating, production, and
quality requirements are incorporated in the design process as early as feasible. The design
process should provide for the timely identification and evaluation of key elements that are
critical to program success and provide an objective means to measure design, product, process,
and production readiness. Producibility should be formally addressed in the design and design
change processes. The design authority and production organization should establish and
document a process for evaluating producibility. This process should require the design and
production organizations to evaluate and document their estimates of the yield, cycle time, and
associated costs of options in product designs, manufacturing processes, production and support
systems, and tooling. Beginning with development and continuing throughout the life-cycle of
the activity, processes should be in place to identify, document, validate, control, and maintain
customer requirements. Each organization should document its process, including roles,
responsibilities, and interfaces.

 30

A risk-management process should be used to determine the extent of formal planning (including
quality plans) required for development, programs, projects, processes, activities, materials,
products, services, functions, product and stockpile certification, or organizational entities.

2.4.3. Implementation Budget

The primary purpose of developing the CTP is to introduce efficiencies and lower the overall
cost of testing by as much as 70–90 percent. The initial CTP design will not necessarily cost less
at the outset. True cost savings may not be realized until a significant reusable code base exists.
Initial designs may appear to be as costly as building a monolithic tester both in time and actual
dollars. However, by building on test designs and reusing code as the weapon matures,
development time and cost will dramatically decrease as shown in Figure 10. At the die level,
testing is more complex than at the production or stewardship levels. However, more flexibility
will be gained in development testing, allowing for more complete characterization of
components, leading to an overall reduced programmatic risk because of decreased uncertainty
in design.

2.4.4. Implementation Plan

The first application of the common tester architecture is in support of a next-generation AFS
development project. Tester development would follow the progression of the AFS project,
starting with the establishment of a core platform that will evolve as the testing requirements
change with maturation of the design. The initial test development team consists of the primary
SNL leadership team for project management, a TestStand Certified Architect, a TestStand
Certified Developer, two LabVIEW Certified Developers, local NI field personnel for
coordination, and various key personnel from within NI’s corporate structure. In addition to
developing the CTP software, this team is developing an appropriate qualification plan as well as
the first stages of the CTP core.

Figure 10 illustrates the evolution of the AFS program, and a phased approach to tester design is
presented. At each stage in the design, the tester development team plans to put systems into
operation so that the tester can be used immediately, allowing for immediate input. This same
approach will continue to be used throughout the weapons program. As each tester reaches
maturation, there will be a “hand-off” to test operators to include training in the current
architectural design.

 31

Figure 10. AFS Development Phased Approach to Tester Design

For the AFS program, the first phase of testing involves RF Die level testing. This type of
testing requires the deployment of the tester with a microprobe station to support evaluation of
RFIC prototype designs. As the RFIC designs mature, the test platform will mature and move
towards MCM testing. At that point in time, the CTP architecture can be applied in other areas
of the complex as well as in support of the MCM level.

Figure 11 is an initial schematic of the overall architecture of the Die level tester. Software
development takes considerably more time and is in process at this point. Six instrument drivers
have been completed along with integration of these instruments into the CTP TestStand
architecture. In addition, a viable Data Management scheme has been defined and implemented
for demonstration. From the hardware perspective for Phase I and Phase II, the design is
complete with a CTP that supports a variety of instruments over multiple buses. A Software
Requirements Specification (SRS) for the CTP is also under development.

 32

Figure 11. Die Level Tester Schematic

Phase II would support the subsystem level of development. The first versions of subsystems,
the Tx and Rx subsystems will shift the testing activities to the next tier of system level design.
At this point, Test Designers from KCP should become involved. A complete list of required
measurements for this stage is shown in Table 2 and Table 3.

 33

Table 2. Tx Measurement Matrix

Tx Components

Test

Tx
Assembly

Power
Amplifier

Switched
Amplifier

PLL/DDS
Oscillator

Fast
Switched

Attenuator
QPSK

Modulator

Low
Power
Limiter

RF
Bandpass

Filter

Mixer
Test (Up
Convert)

DC Bias & Control Line
Currents/Low Freq Voltage X X X X X X X
Low Freq Voltage – Temp Sensor X X X X X X X X X
IF Oscillator Frequency X
RF Out Frequency X X
Isolation (Tx/Rx, RF/IF/LO – up to
23 dBm) X X
Pout vs. Frequency X X X X

Pout vs. Pin (includes P1dB
compression) X X X X X X
Gain vs. Frequency at some Pin X
Gain Flatness X X
Pout Flatness X X
Efficiency vs. Frequency X

RF Envelope Timing Parameters
(tr, tf, ton, pulse width) X X X
General Timing Measurements X X
200 nSec turn off
(150 dB dynamic range) X
AM to PM Evaluation X
IP3 Two Tone 3rd Order Intercept X X X X
Stability Into All Phase Load
During TXP Modulation X X
Harmonic Content and Spurs X
S11/S22/S33 Return Loss X X X X X
High Power Return Loss X
S21 Gain/Rejection X X X X X
Group Delay
Time Domain Impulse Response
0 Time Fed Thru
3rd and 5th Order Time Products
Noise Figure X X
Phase Noise X
Frequency Tuning Speed X
Frequency Pulling Into All Phase
2:1 VSWR X
Spurious Spectral Content X X
Insertion Phase vs. Frequency X
Phase and Amplitude Imbalance
Between all Phase States X
Conversion Loss (Maybe S21) X

 34

Table 3. Rx Measurement Matrix

Rx Components

Measurements
Rx

Assembly
Switched
Amplifier

IF
Bandpass

Filter
IF

Oscillator
Dynamic

Modulator

Mixer Test
(Dn

Convert)

DC Bias & Control Line
Currents/Low Freq Voltage X X X
Low Freq Voltage – Temp Sensor X X X X X
IF Oscillator Frequency
RF Out Frequency X X
Isolation (Tx/Rx, RF/IF/LO – up to
23 dBm)
Pout vs. Frequency X
Pout v. Pin (includes P1dB
compression) X X
Gain vs. Frequency at some Pin
Gain Flatness X
Pout Flatness
Efficiency vs. Frequency
RF Envelope Timing Parameters
(tr, tf, ton, pulse width)
General Timing Measurements X
200 nSec turn off
(150 dB dynamic range)
AM to PM Evaluation
IP3 Two Tone 3rd Order Intercept X X
Stability Into All Phase Load
During TXP Modulation X
Harmonic Content and Spurs
S11/S22/S33 Return Loss X X
High Power Return Loss
S21 Gain/Rejection/Ripple X X
Group Delay X
Time Domain Impulse Response
0 Time Fed Thru X
3rd and 5th Order Time Products X
Noise Figure X X
Phase Noise
Frequency Tuning Speed
Frequency Pulling Into All Phase
2:1 VSWR
Spurious Spectral Content
Insertion Phase vs. Frequency
Phase and Amplitude Imbalance
Between all Phase States
Conversion Loss (Maybe S21) X

 35

The third phase of tester development would support the integration of the subsystems into the
full AFS system level of prototype deployment. At this level of development, many of the
component level, detailed measurements, would be replaced with system level measurements to
evaluation the performance of a higher system level of performance criteria.

A more specific description of the subsystems is shown in Figure 12. This figure schematically
presents a rough timeline for when the component assembly technologies converge to produce
the AFS. During Phase 1, subsequent to completion of the core CTP architecture’s
implementation at the die level, subsystem tester components will be developed.

The underlying code for the application-specific integrated circuit (ASIC) simulator is under
development. In addition, two components of the foundational bus subsystem are reaching
completion, namely, the BERT and the bus monitor. Following completion of the CTP
architecture development, “instrument drivers” that comply with the CTP template will be
developed. Designers of these subsystems are engaged with the CTP design team.

Figure 12. Radar and Tester Development Timeline

 36

This Page Intentionally Left Blank

 37

3. CONCLUSION
The objective of this study was twofold: (1) to understand the extent of tester application
requirements within the phases of a weapons program and across analogous weapons programs
and (2) to determine the extent to which the tenets of the common tester platform can meet these
requirements while also fulfilling the transformation strategic goals identified in the Complex
2030 initiative. Through careful review of current architectures that are in use, it was determined
that the current weapons tester equipment is bulky, inefficient, and incapable of responding to
rapid technological changes or advancements. If the community is to meet the strategic goals of
Complex 2030, a paradigm shift to tester development must occur.

This paradigm shift involves moving away from the idea that tester development can only begin
after a product has been built. Testing needs must be considered at all levels of weapons design.
By leveraging COTS technologies and test code written for design engineers building
components, overall resource costs will decrease as a weapon moves towards production.

An architecture called the CTP was introduced and described that we believe will meet the goals
of the NNSA. At the heart of the CTP is the notion of reuse, both reusing COTS technologies
already tried and proven in the marketplace and reusing technologies developed for reapplication
at other levels. It is believed that anywhere from 70–90 percent of the development that occurs
when building testers can be reused in other projects. However, these testers must conform to a
standard platform.

3.1. Caveats
The WR community realizes that a new approach to testing is needed, and much informal
discussion is now occurring about this topic. The current methodology of tester development for
WR activities has been under scrutiny from stakeholders that are questioning the methodologies,
costs, and time for the realization of a final product. Movements are under way from all
directions within the WR community in pursuit of a new tester platform. This “armchair
quarterbacking” has created a competitive and divided effort with fragmented attempts within the
community to be the first to develop a cost-effective standardized platform. This divided,
competitive environment lends itself to failure because of the use of under qualified skill sets of
software architects attempting to develop a complex and advanced software product beyond the
talent sets required for success. These initiatives are originating from elements that traditionally
do not become involved in tester development; however, frustrations with the current process
have led to independent efforts with narrow agendas to tester designs. The tester status quo is
also clamoring to develop a new approach to the testers of the future while sensing the
undercurrents for change, but not accepting that extension may occur in the drive to change.

The weapons complex will have a substantial effort to equip the complex with an integrated
standardized common tester platform capability. This study found that the possibility of
implementing a standardized platform is obtainable with the current state of technology and the
pressures for efficiency and cost reduction. The commitment must be made by management to
effect this change for all of the stakeholders in a unified manner; otherwise success could be in
jeopardy.

 38

Distribution
1 MS0899 Technical Library 9536 (electronic copy)

2 MS0348 Michael J. Hurst 5353

1 MS0529 Kent D. Meeks 5350

1 MS0348 Tedd A. Rohwer 5353

1 MS0348 Richard T. Knudson 5353

1 MS0348 Perry A. Molley 5351

1 MS0348 John A. Dye 5351

1 MS0348 George R. Laguna 5353

1 MS0348 Gerald M. Boyd 5251

1 MS0447 James D. Mangum 2231

1 MS1330 Judd Rohwer 5342

1 MS0340 John L. Williams 2137

1 MS0447 Sam G. Sevier 2111

1 MS0447 David P. Clements 2111

1 MS2257 Phil D. Hoover 2111

1 MS0435 Marlene E. Uribe 2122

5 MS0435 Department 2111 file 2111

