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ABSTRACT 

Recently, the generalized method for calculation of the 16-element Green’s function 

for analysis of surface acoustic waves has proven crucial to develop more sophisticated 

transducers.  The generalized Green’s function provides a precise relationship between 

the acoustic stresses and electric displacement on the three mechanical displacements and 

electric potential.  This generalized method is able to account for mass loading effects 

which is absent in the effective permittivity approach.  However, the calculation is 

numerically intensive and may lead to numerical instabilities when solving for both the 

eigenvalues and eigenvectors simultaneously.  In this work, the general eigenvalue 

problem was modified to eliminate the numerical instabilities in the solving procedure.  

An algorithm is also presented to select the proper eigenvalues rapidly to facilitate 

analysis for all types of acoustic propagation.  The 4x4 Green’s functions and effective 

permittivities were calculated for materials supporting Rayleigh, leaky, and leaky 

longitudinal waves as demonstration of the method.  
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I. INTRODUCTION 

The design and optimization of complex interdigital transducers on a wide variety of 

substrates requires detailed knowledge of wave excitation and propagation.  The concept 

of the effective permittivity introduced the idea that a specific relationship exists between 

the charge and the electrical potential distribution [1].  To determine the amplitude of the 

electric potential, the full system of piezoelectric coupled acoustic and electrostatic 

equations must be solved.  Due to linearity of elastic media, the amplitudes of the charge 

and potential are fortunately proportional to each other and their ratio is independent.  In 

the absence of piezoelectricity, the effective permittivity reduces to the dielectric 

permittivity.  The effective permittivity calculation takes into account generation of all 

possible acoustic waves propagating in the sagittal plane, excited by a charge distribution 

on a mechanically free surface.  However, the limitation is that the effective permittivity 

does not address the relationship between surface stresses and charge on mechanical 

motion and acoustic potential.  Instead, the complete description requires introduction of 

the 16-element Green’s function, where the effective permittivity is represented by a 

single matrix element, G44.   

Calculation of the 16-element Green’s function requires the use of matrix methods to 

change the problem from several independent steps involving determinants [2] and 

boundary condition matrices into a single compact eigenvalue problem [3] [4].  Once 

calculated, the Green’s function provides a precise relationship between the acoustic 

stresses and electric displacement on the three mechanical displacement and electric 

potential.  In this way, the Green’s function acts as a source term for acoustic wave 

generation.  The behavior is often highly complicated with no functional form which also 

depends on the type of excitation (e.g. Rayleigh).  Once computed, interpolation methods 

can be used to capture the functional behavior by numerically sampling near the pole 

regions.  Extending this technique permits calculation of a spatial Green’s function, 

which can be very powerful toward analyzing acoustic wave excitation and propagation 

in interdigital structures [5]. 

This work focuses on the calculation of the 4x4 Green’s function by re-formulating the 

eigenvalue problem to improve the accuracy of the eigenvalue calculation.  Although the 
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general method provides both the eigenvalues and eigenvectors, the result is often 

numerically unstable.  Instead, this approach determines the eigenvalues separately using 

the traditional method then computes each eigenvector by redefining the general 

eigenvalue problem.  In addition, an algorithm was implemented to select the proper 

eigenvalues for any acoustic wave. 

II. THEORY 

Acoustic waves must satisfy both Newton’s and Maxwell’s equations.  In the absence 

of external forces, the equations are expressed as 

 
2

2
iu

T
t

ρ ∂
= ∇ ⋅

∂
 (1.1) 

 sS u= ∇  (1.2) 

 fD ρ∇ ⋅ =  (1.3) 

where � is the mass density, u is the particle displacement, and T and S are the surface 

stress and strain components, respectively. D and �f are the electric displacement and 

free charge density, respectively. The free charge density �f is zero everywhere except at 

the surface of the substrate. 

In a piezoelectric substrate, the coupled constitutive equations for piezoelectric media 

are given by: 

 E t
ij ijkl kl kij kT c S e E= −  (1.4) 

 S
i ikl kl ik kD e S Eε= +  (1.5) 

where e and cE are the piezoelectric stress constants and stiffness constants.  Since the 

coupling between the electric and elastic fields is weak, the magnetic fields can be 

neglected and the electric fields derived from the scalar potential.  This is known as the 

static field approximation in which the particle displacements ui are along the coordinate 

axis xi. In (1.4) and (1.5), we recognize Hooke’s law and D Eε= , where E φ= −∇ and φ  

is the electrical potential on the surface. By substituting (1.4) and (1.5) into (1.1) and 

(1.3) yields, 



 9

 ( )
2

2
:E

s

u
c u e E

t
ρ ∂

= ∇ ⋅ ∇ − ∇ ⋅ ⋅
∂

 (1.6) 

 ( ) ( ): 0s
se u ε φ∇ ⋅ ∇ − ∇ ⋅ ⋅∇ =  (1.7) 

A. Traditional Method 

To obtain solutions, plane wave forms are assumed for both the particle displacement 

and electric potential with the following forms for the piezoelectric substrate [2, 6-8], 

 

( )

( )

1

3

1

3

4

3
1

4

4 3
1

, 0

, 0

m

m

x
j t

kxm v
i m i

m

x
j t

kxm v
m

m

u C e e x

C e e x

ω
α

ω
α

β

φ β

⎛ ⎞−⎜ ⎟
⎝ ⎠

=

⎛ ⎞−⎜ ⎟
⎝ ⎠

=

⎧ ⎫= <⎨ ⎬
⎩ ⎭

⎧ ⎫
= <⎨ ⎬

⎩ ⎭

∑

∑
 (1.8) 

The trial solutions in (1.8) vary amongst authors [2, 6, 7] which changes the conditions 

for the allowed values of �, otherwise the solution process is identical.  Substituting (1.8) 

into (1.6) and (1.7), gives four linear equations for particle displacement u and potential 

φ  [9] 

 ( )
1 1

2 22
1 2 3

3 3

0

u u

u u
A A j A A

u u
α α

φ φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= − + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (1.9) 

where A is a second order function of �, and the bars indicate the Fourier transformation 

with respect to x1 in k-space.  The coefficients of the matrix are given as 

 

55 45 35 35

45 44 34 34
1

35 34 33 33

35 34 33 33

E E E

E E E

E E E

S

c c c e

c c c e
A

c c c e

e e e ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (1.10) 
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15 51 14 56 13 55 15 31

14 56 46 64 36 45 14 36
2

13 55 36 45 35 53 13 35

15 31 14 36 13 35 13 31

E E E E E E E

E E E E E E E

E E E E E E E

E E E S S

c c c c c c e e

c c c c c c e e
A

c c c c c c e e

e e e e e e ε ε

⎡ ⎤+ + + +
⎢ ⎥+ + + +⎢ ⎥=
⎢ ⎥+ + + +
⎢ ⎥

+ + + − −⎢ ⎥⎣ ⎦

 (1.11) 

 

2
11 16 15 11

2
16 66 56 16

3 2
15 56 55 15

11 16 15 11

E E E

E E E

E E E

c v c c e

c c v c e
A

c c c v e

e e e

ρ
ρ

ρ
ε

⎡ ⎤− + − − −
⎢ ⎥− − + − −⎢ ⎥=
⎢ ⎥− − − + −
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

 (1.12) 

where /v kω= is the phase velocity along the x1 direction.  For non-trivial solution of 

(1.9) the determinant of the coefficient matrix A must be zero for each value of �, which 

leads to an 8th order polynomial in �.  Bounded solutions in (1.8) further require the 

{ }( )Re 0mkα >  to eliminate solutions that increase with depth into the substrate.  For 

each valid root ( )mα , we obtain four eigenvectors ( ) 1 1 1 1
1 2 3 4, , ,m

iβ β β β β→  and thus a partial 

wave solution.  The solution of the system of linear equations is a linear combination of 

these partial solutions normalized by φ  given as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

( )

1
3

2
3

3
3

4
3

1 2 3 4
11 1 1 1 1

1 2 3 4
22 2 2 2 2

1 2 3 4
3 3 3 3 3 3

4
1 1 1 1

kx

kx

kx

kx

C eu

C eu

u C e

C e

α

α

α

α

β β β β

β β β β

β β β β
φ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 (1.13) 

The stresses and electrical displacement are obtained by substituting (1.13) into (1.4) and 

(1.5)  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

( )

1
3

2
3

3
3

4
3

1 2 3 4
13 13 13 13 113

1 2 3 4
23 23 23 23 23 2

1 2 3 4
33 333 33 33 33

1 2 3 4
3 43 3 3 3

kx

kx

kx

kx

T T T T C eT

T T T T T C e

T C eT T T T

D C eD D D D

α

α

α

α

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦

 (1.14) 

where  
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( )

( )

( )

( )

( )( )

( )

( )

( )

13 1

23 2
1 4

33 3

3

, 1...4

1

i i

i i
i

i i

i

T u

T uk A jA i
T u

D

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ = − →⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (1.15) 

 

15 56 55 15

14 46 45 14
4

13 36 35 13

31 36 35 13

E E E

E E E

E E E

s

c c c e

c c c e
A

c c c e

e e e ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (1.16) 

 

Boundary Conditions 

The coefficients Cm are determined from application of the boundary conditions, 

requiring stress free conditions at the free surface x3 = 0, 

 ( ) ( ) ( )13 1 23 1 33 1,0 ,0 ,0 0T x T x T x= = =  (1.17) 

Additional layers require continuity of stresses and displacement with 12 boundary 

conditions per for piezoelectric layers. For the electric displacement D the normal 

component must be continuous across the boundary at x3=0.  Inside the piezoelectric 

substrate the electric displacement is given by  

 ( )3 1 3 3,0 k
kl k

l k

u
D x e

x x

φε− ∂ ∂
= −

∂ ∂
 (1.18) 

In the vacuum above the substrate (x3> 0), the electrical potential must satisfy Laplace’s 

equation 

 
2 2

2
2 2
1 3

0
x x

φ φφ ∂ ∂
∇ = + =

∂ ∂
 (1.19) 

Becauseφ  is proportional to 1jkxe− and must vanish at 3x → ∞ , the x3 dependence is 

3k xe− for x3 > 0.  For each solution of ( )mα , there is one corresponding partial wave 

solution of the potential for x3 > 0, and the potential must be continuous across the free 

surface giving, 
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 ( ) 1 3

4

1 3
1

, 0 jkx k x
m

m

x x C eφ − −

=

> = ∑  (1.20) 

Therefore, 

 ( ) 1

4

3 1 0 0
13

,0 jkx
m

m

D x k C e
x

φε ε −+

=

∂
= − =

∂ ∑  (1.21) 

The electrical boundary condition at x3=0 surface is 

 ( ) ( ) ( )3 1 3 1 1,0 ,0D x D x xσ+ −− =  (1.22) 

where � is the surface charge density. The surface potential ( )1,0xφ  must be the same on 

both sides of the boundary however the normal components of the electrical displacement 

can differ.  The discontinuity is related to the potential by the effective permittivity 

( )s kε  as 

 ( )
( ) ( )

( )
( )

( )
3 3

3 30 0x x
s

D k D k k
k

k k k k

σ
ε

φ φ
+ −= =

−
= =

⋅ ⋅
 (1.23) 

The Green’s function is defined as the potential excited by a line source with free charge 

density, such that 

 ( ) ( ) ( )1 44 1 1,0 ,0 ,0x G x xφ σ= ∗  (1.24) 

In the absence of surface stresses, this expression fully describes the behavior of acoustic 

waves when the electrical boundary conditions are applied.  The two electrical conditions 

considered are zero charge on un-metallized surface regions (open-condition) and 

constant potential on metallized surface regions (short-condition).  Applying the Fourier 

transformation with respect to 1x  on both sides of (1.24) gives an expression in the k 

domain, 

 ( ) ( )
( )44

k
G k

k

φ
σ

=  (1.25) 

Therefore the effective permittivity can be determined using, 
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 ( ) ( )
( ) ( )44

1
s

k
k

k k k G k

σ
ε

φ
= =

⋅
 (1.26) 

B. Generalized Method 

In the general Green’s function approach the vector 13 23 33 3T T T D⎡ ⎤′⎣ ⎦  is defined as 

the exciting source.  The Green’s function can be expressed as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3

1
1 2 3 4

1 2 3 4
13 13 13 13

1 1 1 1 1
1 2 3 41 2 3 4

23 23 23 2322 2 2 2

1 2 3 41 2 3 4
3

33 33 33 333 3 3 3

4 1 2 3 4
3 3 3 3

0

1 1 1 1
x

T T T TC

T T T TC
G

C T T T T
C

D D D D

β β β β

β β β β

β β β β

−

=

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ′ ′ ′ ′⎣ ⎦

 (1.27) 

Setting ( )
4

3
1

0 , 1...4m
i m i

m

u x C iβ
=

= = →∑  gives 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 2 3 41 2 3 4

13 13 13 131 1 1 1

1 2 3 41 2 3 4
23 23 23 232 2 2 2

1 2 3 41 2 3 4
33 33 33 333 3 3 3

1 2 3 4
3 3 3 3

1 1 1 1

T T T Tu u u u

T T T Tu u u uG
T T T Tu u u u

D D D D

−
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥′ ′ ′ ′⎢ ⎥⎣ ⎦ ⎣ ⎦

 (1.28) 

and ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 30 0 0i i i i
oD D D k Dε+ − −′ = − = − .  The shorted condition at the boundary 

requires ( )3 1,0 0D x + =  or ( ) ( ) ( )3 3 0i iD D −′ = .  To facilitate calculation of the Green’s 

function, the eigenvalue problem in (1.9) and (1.15) is written as 

 ( )2
1 2 3 0

u
A j A Aα α

φ

⎧ ⎫⎪ ⎪− + =⎨ ⎬
⎪ ⎪⎩ ⎭

 (1.29) 

and 

 ( )1 4 1 4

1 1T u u T u
A jA A jA

k kD D
α α

φ φ φ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= − → = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (1.30) 
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Substitution of (1.30) into (1.29) gives 

 ( )4 2 3 4 2 3

1 1
0

T u u u T u u
jA j A A j A A A

k kD D
α α α α

φ φ φ φ φ

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ − + = → + − = −⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (1.31) 

Combining (1.31) with (1.30) yields the new eigenvalue problem, 

 

( )

13 13

23 23

33 334 2 3

3 3

1 1

1 42 2

3 3

/ /

/ /

/ /1 0

/ /

0 1

T k T k

T k T k

T k T kj A A A

D k D k

u u

A jAu u

u u

α

φ φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (1.32) 

As stated by Qiao et. al [9] equation (1.32) is a standard eigenvalue problem of the form 

Bx Axα = that yields the eigenvalues and their corresponding eigenvectors together.  In 

contrast, the traditional method determines the eigenvalues ( )mα  first; then uses them to 

obtain the four corresponding eigenvectors in a piecewise fashion.   

C. Hybrid Method 

In this method calculating the Green’s function uses a mixture of both methods to 

eliminate numerical instabilities in the generalized method while obtaining a high degree 

of precision in the solution.  Since the numerical magnitude ranges from1012 to 10-12 for 

the values in (1.32), even the most robust eigenvalue solver has great difficulties.  First 

equation (1.9) is solved for the eight values of ( )mα  then four are selected for the 

appropriate propagating mode.  Each eigenvalue is substituted into (1.32) yielding, 

 ( ) ( )( ) 0, 0, 1...4m mBx Ax B A x Qx mα α= → − = → = =  (1.33) 

where 
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( )4 2

1

1

0

j A A

B

A

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1.34) 

 

3

4

0

1

A

A

jA

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1.35) 

Each eigenvalue ( )mα allows row-reduction of Q to determine the null basis for (1.33), in 

which are eight element column vectors comprising T D u φ⎡ ⎤⎣ ⎦ .  This approach 

obtains the precision of the traditional method, while using the general method to solve 

the entire problem without computing Cm explicitly from the boundary matrix. 

III.  ALGORITHMS AND SOLVING PROCEDURE 

A. Crystal Rotation 

The crystal axis is chosen with x3 normal to the crystal surface and x1 is in the 

direction of propagation.  The rotation procedure considers arbitrary orientations of the 

crystal with respect to the axis.   

 

Fig. 1 Rotations for Euler angle definitions. 
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The rotation is performed by a coordinate rotation through application of the Euler 

angles ( , , )φ θ ψ as defined by the matrices, 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

2

3

cos sin 0

sin cos 0

0 0 1

1 0 0

0 cos sin

0 sin cos

cos sin 0

sin cos 0

0 0 1

V

V

V

φ φ
φ φ

θ θ
θ θ

ψ ψ
ψ ψ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (1.36) 

This is termed the “x-convention,” which is the most common definition [10].  In this 

convention, the rotation given by Euler angles ( , , )φ θ ψ  has the first rotation by angle φ  

about the z-axis, the second by angle θ  about the x-axis and the third by angle ψ  about 

the z-axis.  The stiffness, piezoelectric, and permittivity tensors are rotated using, 

 3 2 1a V V V= ⋅ ⋅  (1.37) 

 

 

2 2 2
11 12 13 12 13 11 13 11 12

2 2 2
21 22 23 22 23 21 23 21 22

2 2 2
31 32 33 32 33 33 31 31 32

21 31 22 32 23 33 22 33 23 32 21 33 23 31 22 31 21 32

11 31 32 12 13 33 12 33 13 32 13 3

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a
M

a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a

=
+ + +
+ 1 11 33 11 32 12 31

11 21 12 22 13 23 12 23 13 22 13 21 11 23 11 22 12 212 2 2

a a a a a a

a a a a a a a a a a a a a a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥

+ + +⎢ ⎥⎣ ⎦

(1.38) 

 

T

T

T

C M C M

e a e M

a aε ε

′ = ⋅ ⋅

′ = ⋅ ⋅

′ = ⋅ ⋅

 (1.39) 

B. Cut-off Velocities 

The cut-off velocities are the values where the eigenvalue modes change as the 

velocity, v is varied.  By solving (1.12) for v, up to three unique values can be 
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determined.  For a particular crystals and rotation, degeneracy’s reduce the number of 

unique cut-off points.  The significance of the cut-off points is that they determine where 

the propagating acoustic mode changes from Rayleigh to the leaky types.  For a Rayleigh 

wave, there exists four eigenvalues decaying beneath the surface [2], and waves with 

three eigenvalues decaying beneath with a bulk wave radiating into the solid are called 

leaky surface waves [11].  Leaky longitudinal waves consist of two bulk shear waves 

radiating into the solid, a longitudinal wave, and an electromagnetic wave propagating 

along the surface decaying into the depth [12].  

 
1

1 2

2

:

: ,

:

s

s s

s l

v v Rayleigh Wave

v v v Bulk Leaky Wave

v v v Leaky Longitudinal Wave

<   
< <     
< <    

 (1.40) 

Expression (1.12) is an incomplete eigenvalue problem, where the eigenvalue 2vρ  

does not appear completely along the diagonal.  Two methods are suitable for solving for 

the cut-off velocities. Symbolic expansion of the determinant yields a very large 

expression that can be solved for �, however the method is slower since the evaluation 

time is larger, and the complete problem requires solving (1.9) for any given v.  The 

second method redefines the eigenvalue problem by solving for the modified 

characteristic polynomial numerically and then building an equivalent matrix such that a 

standard solver can be called.   

The computed matrices (1.10), (1.11), and (1.12) provide a convenient method to 

assess the coupling for a particular crystal and orientation.  The algorithm first assumes 

that the problem is fully coupled then tests for coupling conditions.  This procedure leads 

to the following conditions: 1) piezoelectricity decoupled with u1 and u3, 2) 

piezoelectricity decoupled with u2, or 3) piezoelectricity fully decoupled with the acoustic 

fields. 

C. Root Selection  

The root selection criteria require that only four allowed values are selected from the 

eight values of � for a given value of velocity.  The selection is critical since the values 

of � determine the decay behavior of the acoustic fields.  As velocity is swept, the 
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behavior of � changes such that the selection procedure must account for more terms 

decaying into the depth of the substrate.  The proper roots are selected according to 

 ( ){ }Re 0mkα >  (1.41) 

Many authors often use a specific selection criteria for certain type of propagating 

acoustic waves.  If searching for Rayleigh waves then (1.41) is the only criteria to find 

the propagation velocity, provided the velocity search does not exceed �s1 [2, 6].  For the 

cases that deal with terms decaying into the depth such as longitudinal leaky waves [12], 

a more general method is required.  For leaky SAWs the condition cannot be directly 

applied since the wave number (k) is complex and Re( ) 0kα ≠  for all partial waves. To 

determine whether partial waves satisfy the radiation condition in (1.41), a small complex 

part is added to the velocity [8].  

D. Effective Permittivity 

Using (1.26) the effective permittivity can be calculated directly from kG44.  For the 

electrically open condition, the effective permittivity as a function of velocity is given as 

εo(v)=εoGo44, where Go44 is the (4,4) element of the dyadic Green’s function for the 

electrically open condition.  For the shorted condition, the effective permittivity is given 

as εs(v)=1/(εoGs44), where Gs44 is the (4,4) element of the dyadic Green’s function for the 

electrically shorted condition.  However, once the effective permittivity is computed for 

either the open or shorted condition the other can be easily computed by inversion (e.g. 

εs(v) = 1/εo(v)).  It is convenient to express the effective permittivity as a normalized 

quantity, given as εs(v)= εs(v)/ε(v=∞) and εo(v)= ε(v=∞)/εs(v). To normalize, the 

effective permittivity is computed at a numerically large velocity.  In general, the Green’s 

functions and effective permittivity are strictly a function of k or s (i.e. slowness) since 

they are related in the k domain.  The 4x4 dyadic Green’s functions were plotted as a 

function of the slowness s (s/m). 
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IV. RESULTS 

A. 128° YX Lithium Niobate (Rayleigh Waves) 

The hybrid method was used to compute the Green’s function 4x4 matrix for several 

substrates that support Rayleigh and leaky waves.  To illustrate the step by step solving 

procedure, results are presented for 128° YX lithium niobate (LNBO) x(0°,38°,0°).  The 

cut-off velocities were found to be 4079.17 m/s, 4793.09 m/s, and 6572.02 m/s.  The 

roots of the eigenvalue problem were computed by solving (1.9).  In Fig. 2, the real and 

imaginary terms of � show the behavior over the velocity range. By applying the root 

sorting procedure discussed above, the allowed values of � were selected (Fig. 3).  

Substitution of the selected values of � into (1.33) gives a homogeneous equation, which 

was solved by row-reduction using each eigenvalue.  The 4x4 dyadic Green’s functions 

are shown in Fig. 4 and 5. The effective permittivity can be found from G(4,4) are 

discussed in section D. above. 
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(b) 

Fig. 2 Real and imaginary terms of the values of � as a function of the phase velocity 128° YX LNBO. a) real 
part of � and b) imaginary part of �. 
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(b) 

Fig. 3 Real and imaginary parts of the allowed values of � as a function of the phase velocity for 128° YX 
LNBO. a) Real part of �. b) Imaginary part of �. 
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(b) 

Fig. 4.  Dyadic Green’s function for 128° YX LNBO showing kG11 through kG24. 
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(b) 

Fig. 5.  Dyadic Green’s function for 128° YX LNBO showing kG31 through kG44. 



 24

B. 36° YX Lithium Tantalate (SH Leaky Waves) 

For 36° YX lithium tantalate the cut-off velocities occur at 3338.1 m/s, 4171.8 m/s, 

and 5592.4 m/s. Using the eigenvalue selection method the proper values were chosen as 

shown in Fig. 6. There are three eigenvalues which lead to displacements decaying into 

solid with one bulk wave radiating into the solid (Fig. 6).  The 4x4 dyadic Green’s 

functions are shown in Fig. 7 and 8. 
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(b) 

Fig. 6 Real and imaginary parts of the allowed values of � as a function of the phase velocity for 36° 
YX LTO. a)  Real part of �. b) Imaginary part of �. 
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(b) 

Fig. 7.  Dyadic Green’s function for 36° YX LTO showing kG11 through kG24. 
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(b) 

Fig. 8.  Dyadic Green’s function for 36° YX LTO showing kG31 through kG44. 
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C. 47.3° Y 90° X off-axis Lithium Tetraborate (Longitudinal Leaky Waves) 

For 47.3° Y 90° X off-axis Lithium Tetraborate (LBO) the cut-off velocities occur at 

3347.1 m/s, 4556.3 m/s, and 6671 m/s. Using the eigenvalue selection method the proper 

values were chosen as shown in Fig. 9. In this case, longitudinal leaky waves exist in the 

range from vs2 < v < vl [12].  In this region, two bulk waves correspond to the first shear 

wave and second shear wave which radiate energy into the solid.  The two remaining 

terms, the longitudinal wave the electromagnetic wave propagate along the surface 

decaying into the substrate.   The 4x4 dyadic Green’s function are shown in Fig. 10 and 

11. 
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(b) 

Fig. 9 Real and imaginary parts of the allowed values of � as a function of the phase velocity for 47.3° 
Y 90° X off-axis Lithium Tetraborate (LBO). a) Real part of �. b) Imaginary part of �. 
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(b) 

Fig. 10.  Dyadic Green’s function for 47.3° Y 90° X off-axis Lithium Tetraborate (LBO) showing kG11 
through kG24. 
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(b) 

Fig. 11.  Dyadic Green’s function for 47.3° Y 90° X off-axis Lithium Tetraborate (LBO) showing kG31 
through kG44. 
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D. Effective Permittivity for 128º YX LNBO (SAW) 

In the shorted condition (Fig. 12a) there is a pole at 3887.6 m/s.  When v < 4079 the 

Im(εo) = 0) which corresponds to a true surface wave that decays into the substrate.  

When v > 4079 m/s, the Im(εo) < 0 causing bulk wave radiation into the substrate since 

one of the three the corresponding eigenvalues is complex with a negative imaginary part.  

For this substrate and cut, the wave propagation corresponds to a Rayleigh wave or 

RSAW at 3994.3 m/s.  Though another type of RSAW exists at 3887.6 m/s, this RSAW 

would be highly damped by the presence a sufficiently thick metal film to achieve the 

shorted condition.  In Fig. 12b a pole exists at 3994.3 m/s for the open condition on 128º 

YX LNBO (0º, 38º, 0º).  Since the Im(εo) = 0 when v < 4079 m/s, this pole corresponds 

to a true surface wave that evanescently decay’s into the substrate. When v > 4079 m/s 

the Im(εo) > 0 which causes waves to radiate into the substrate rather than be confined to 

the surface, therefore a bulk wave exists at this velocity.   The SAW coupling parameter 

was determined to be K2 = 2(Vo-Vs)/Vo = 2(3994-3888)/3994 = 5.3 %. 
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Fig. 12a The normalized effective permittivity for 128º YX LTO (0º, 38º, 0º) for the shorted condition. 
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Fig. 12b The normalized effective permittivity for 128º YX LTO (0º, 38º, 0º) for open condition. 

E. Effective Permittivity for 36º YX LTO (LSAW) 

For the open condition a pole exists at 4171.73 m/s and for the shorted condition the 

pole is at 4077.06 m/s (Fig. 13a and b).  The SAW coupling coefficient was computed 

using K2 = 2(Vo-Vs)/Vo.  This gives 4.5% for 36º YX LTO (0º, -54º, 0º).  In the shorted 

condition, the Im(εs) < 0 when v < 4171 m/s, which corresponds to partial waves 

decaying into the substrate.  When v > 4171 m/s the Im(εs) < 0. This causes bulk wave 

radiation into the substrate since one of the three the corresponding eigenvalues is 

complex with a negative imaginary part. In the open condition, the Im(εo) > 0 when v > 

4171 m/s.  Again the eigenvalue � is complex, however with a positive imaginary part.  

The positive imaginary term leads to surface skimming bulk waves (SSBW) radiating 

into the substrate as seen by substitution of the different conditions for � into (1.13).  The 

interpretation is that for an open surface, SSBW waves dominate due to the open surface 

condition, and when the surface is electrically shorted, leaky SAWs (LSAW) dominate.   

 



 32

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-5

-4

-3

-2

-1

0

1

2

3

4

5

Velocity (m/s)

ε s(v
)

Shorted Condition

 

 

real

imag

 
 

Fig. 13a The normalized effective permittivity for 36º YX LTO (0º, -54º, 0º) for the shorted condition. 
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Fig. 13b The normalized effective permittivity for 36º YX LTO (0º, -54º, 0º) for the open condition. 
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F. Effective Permittivity for 47.3° Y 90° X off-axis Lithium Tetraborate (LLSAW) 

The piezoelectric crystal lithium tetraborate (LBO) at 47.3° Y 90° X off-axis (0°, 

47.3°, 90°) supports longitudinal leaky waves or LLSAWs.  The pole located at 3205 m/s 

represents a Rayleigh SAW when the surface is shorted (Fig. 14a).  The Im(εs) = 0 when 

v < 3316 m/s which causes all the partial waves to be evanescent into the substrate 

therefore the pole at 3205 represents a true surface wave.  When v > 3316 m/s, the Im(εs) 

< 0, causing the partial waves to radiate energy into the substrate.  A secondary pole 

exists at 6614 m/s with a symmetrical imaginary part causing energy to leak into the 

substrate which is the LSAW.  In Fig. 14b when v > 6660 m/s the Im(εs) > 0 with an 

asymmetrical imaginary term.  This suggests the presence of a SSBW radiating into the 

substrate. Of significance is that by shorting the surface through application of a metal 

film, the high velocity SSBWs can be converted to LLSAW waves. 
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Fig. 14a The normalized effective permittivity for 47.3° Y 90° X off-axis LBO (0°,47.3°,90°) for the 
shorted condition. 
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Fig. 14b The normalized effective permittivity for 47.3° Y 90° X off-axis LBO (0°,47.3°,90°) for the 
open condition. 

 

CONCLUSIONS 

To facilitate analysis of SAW devices and interdigital transducer design, an alternate 

method for computing the dyadic Green’s functions has been developed.  In this method, 

the eigenvalues are determined from an eighth order polynomial formed by assuming 

plane wave solutions in the substrate and overlying films. A selection criterion was 

developed to automatically determine the allowed eigenvalues for any type of wave 

propagation.  Using the four allowed eigenvalues, the general eigenvalue problem was 

rewritten to permit solving for each corresponding eigenvector separately.  These 

eigenvectors give the corresponding stresses, electric displacement, displacement, and the 

electric potential in the substrate.  Three substrates were used to demonstrate this method 

which supported RSAW, LSAW, and LLSAW behavior.  The G44 element was used to 

determine the effective permittivity which relates the surface charge to the surface 

potential.  The existence of poles in the effective permittivity analysis determines the 

location of surface waves, bulk waves, and their corresponding behavior. 
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