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Abstract 
Application of Taylor weighting (taper) to an antenna aperture can achieve low peak 
sidelobes, but combining the Taylor weighting with quantized attenuators and phase 
shifters at each radiating element will impact the performance of a phased-array antenna.   
An examination of array performance is undertaken from the simple point of view of the 
characteristics of the array factor.  Design rules and guidelines for determining the Taylor-
weighting parameters, the number of bits required for the digital phase shifter, and the 
dynamic range and number of bits required for the digital attenuator are developed.  For a 
radar application, when each element is fed directly from a transmit/receive module, the 
total power radiated by the array will be reduced as a result of the taper.  Consequently, the 
issue of whether to apply the taper on both transmit and receive configurations, or only on 
the receive configuration is examined with respect to two-way sidelobe performance. 
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1. Introduction and Summary 

1.1 Discussion 
The design of a phased-array antenna is a complex task.  Not only must an impedance-matched element 
be designed, but several additional issues must be addressed, such as illumination taper, resolution of the 
attenuator used to achieve the taper, and the resolution of the beam-steering phase shifters.  This report 
develops design rules and guidelines for determining:  

• the number of bits required for the digital phase shifter, 
• the dynamic range and number of bits required for the digital attenuator, 

and 
• the parameters of an appropriate Taylor illumination. 

In addition, the issue of whether to taper the illumination for transmit applications is examined.   
 
In this report, the term odd array refers to an array with an odd number of elements in each of an odd 
number of rows, while the term even array refers to an even number of elements in each of an even 
number of rows.  In reality, there is very little difference between these arrays, but the formulations have 
subtle differences, and both are addressed for completeness.  Mixed even and odd arrays are not explicitly 
addressed.  Even arrays are usually preferred for the simplification in RF power division and distribution, 
while odd arrays favor more elegant formulation for the array factor.  
 
It will be shown that the number of bits required for the digital phase shifter in a large, low-sidelobe array 
is usually determined by the sidelobe-level specification, rather than by the required beam-pointing 
accuracy or steering increments.  In a large array, only a few bits are required to achieve pointing 
resolution that is much smaller than the beamwidth, while more bits are required to achieve low sidelobe 
levels.  It is also seen that random phase errors are usually much more desirable than the periodic 
steering-phase error that would be present if all the paths in the array were perfectly phase-matched.  
Periodic phase errors produce quantization lobes, while random phase errors increase the error-sidelobe 
level. In this case, the error-sidelobe level is determined by the resolution of the phase shifter.  However, 
to avoid quantization lobes, it is necessary that the insertion-phase contributions in the paths from the 
transmitter or receiver to each of the radiating antenna elements be uncorrelated between elements, and be 
no smaller than some minimum size.  This ensures that the phase errors will be random, not periodic.  
This minimum-error size is derived, and it is shown that the minimum error causes the final phase error at 
each array element to be uniformly distributed between ± half of the value of the least significant bit of 
the phase shifter.  Of course, the presence of random phase errors in the paths within the array implies a 
requirement to calibrate the array, in order to determine a correcting phase offset for each element.  Thus, 
it is necessary that a high-performance phased-array antenna be carefully calibrated after assembly.  This 
calibration should be a standard part of the characterization of the assembled array. 
 
While much of the analysis of the phase-shifter requirements can be accomplished without reference to 
the array’s illumination function, such is not the case for the digital attenuator.  Aside from correcting 
gain errors in the transmit/receive (T/R) modules, the purpose of the digital attenuator is to provide the 
illumination taper necessary to meet sidelobe requirements.  As with the phase shifter, it is desirable that 
amplitude errors be random, rather than deterministic.  In the presence of suitable random gain errors in 
the T/R modules, the error in the quantized amplitude taper will be random, uniform, and determined by 
the resolution of the attenuator.  The required dynamic range of the digital attenuator will be determined 
by the amplitude taper, which is determined by the required sidelobe level.  The characteristics of the 
amplitude taper set the level of the deterministic sidelobes, and the resolution of the attenuator determines 
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the random sidelobe level.  Thus, the specification of the required sidelobe level will determine both the 
required amplitude taper and the characteristics of the digital attenuator. 
 
In order to provide specific design rules, an amplitude taper must be specified.  The Taylor illumination 
[1] is chosen because it can be analyzed, while leaving the sidelobe level as a design parameter.  In 
addition, it provides a near-optimum beamwidth for a given peak-sidelobe level.  This statement should 
not be construed to mean that the Taylor illumination is the optimum taper for a phased-array antenna.  
Tapers that produce broader main beams will produce lower integrated sidelobes than the Taylor 
illumination, which may be important in some applications.  Some applications may require specially 
shaped beams.  Determining the optimum illumination requires detailed knowledge of the application, 
and therefore cannot be addressed in a general way.  Nevertheless, it should be understood that the choice 
of the digital attenuator specification is dependent in detail on the illumination function.  Thus, the design 
rules and guidelines described below apply only to the Taylor-illuminated array.  Similar rules could be 
developed for other illumination functions, and a separate study could be justified to examine which 
illumination function is optimum for each of various applications. 
 
The issue of whether to taper the illumination of the transmit array impacts both the peak-sidelobe level 
of the two-way antenna pattern and the transmitter efficiency.  Sometimes, the power amplifier in a T/R 
module will be operated in a nonlinear region in order to achieve high efficiency.  In such a situation, the 
attenuator would necessarily be placed between the T/R module and the antenna element, lowering the 
transmitter efficiency and increasing the power dissipated by the array.  On the other hand, if the power 
amplifier is operated in a linear gain region, then the attenuator should be placed between the source and 
the T/R module’s power amplifier to maximize transmit efficiency.  However, in the receive array, a 
linear, low-noise amplifier can, and should, always be placed between the element and the attenuator, to 
minimize the effect of the taper on the noise figure of the receiver.  For a rectangular array, specified two-
way sidelobe levels can be achieved with an appropriate taper for the receive array and uniform 
illumination for the transmit array, if only a portion of the array is used to transmit.  This approach can 
significantly reduce the power dissipated by the array, but as with transmit-array tapering, it reduces the 
peak power available from the transmitter.  Using the full rectangular array with uniform illumination for 
the transmitter will provide the maximum peak transmit power, at the price of a higher first sidelobe in the 
two-way antenna pattern.  Truncating the rectangular array to a circular array, or at least eliminating 
elements in the corner regions, can improve array transmit efficiency and reduce array cost, while 
allowing the transmit array to be uniformly illuminated.  These issues are examined in some detail. 
 
It is concluded from this study that random phase and amplitude errors in the T/R modules are actually 
desirable to ensure that the errors due to quantization are randomized and are not periodic across the 
array.  This is fortunate, since it would be difficult to manufacture the T/R modules otherwise.  However, 
this is not to say that the T/R module performance and the array construction can be haphazard.  
Minimum required random-error levels are determined to ensure that the errors at the array face follow a 
uniform distribution.  These required minimum error levels are not large.  The point is, though, that if 
tolerances are too tight, the errors across the array will be quantized according to the size of the least 
significant bit, but will not be uniform and random.  Non-random quantized errors will adversely affect 
the array performance.  This is a situation where reasonable module-to-module variation is not only 
tolerable; it is desirable. 
 
This study is not exhaustive, and additional similar studies, which do not address the specifics of the 
antenna element, would be useful.  These include studies of optimum illumination functions for different 
applications, density tapering of the elements to achieve low sidelobes, and the extension of these ideas to 
conformal, non-planar arrays.  In addition, further examination of circular and elliptical apertures would 
be useful. 
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In order to make it unnecessary for the reader to delve into the details, the design rules and guidelines are 
summarized and repeated in this section.  However, this is not a complete summary of the useful 
information buried in the detailed discussion.  In particular, Appendix II derives closed-form sums for the 
directivity of the array factor, and Appendix III defines a simple method for defining beamwidths when 
the beam is steered away from broadside. 

1.2 Graphical Guidelines for Choosing Phase Shifters 
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1.3 Summary of Design Rules for the Taylor Array 
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1

1

sinn

m
m n

u m
F u F

u m

−

=− −

+
=

+∑
π

π
 

 
( ) ( ) ( ) ( )

( )( )

1

2
1

cos sinn

m
m n

F u u m u m u m
F

u u m

−

=− −

+ + − +
=

+
∑

∂ π π π
∂ π

 

Compute half width of array: 3

32sin
dB

dB

u
a =

λ
θ

 

Odd array ( )2 1 elementsN + : 
aelement spacing
N

=  

 Element weights ( )
1

1

1 2 , cos
rown

n p
p

A F np
N

−

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

∑ πα σ  

Even array 2  elementsN : 
2

2 1
aelement spacing

N
=

−
 

 Element weights ( ) ( )
1

1
21

1 2

1 2 , cos
rown

n p
p

A F n p
N

−

=

⎛ ⎞
= + −⎜ ⎟⎜ ⎟−⎝ ⎠

∑ πα σ  
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1.4 Summary of Design Rules for Digital Attenuator 
 
 
 

 
 
 

 
 
Specification: Quantization errors produce no more than dB±δ  effect on the side lobe level 

  Side lobe level:  ,dB elevationSLL , ,dB azimuthSLL  in decibels ( )0dBSLL <  
  Unit-to-unit gain variation of T/R modules:  /T Rg±Δ  in decibels 
 
 
 
Compute: 

Required taper ranges (in decibels):  
( )
( )

2
, ,

2
, ,

8 0.63 0.0014

8 0.63 0.0014

row dB azimuth dB azimuth

col dB elevation dB elevation

a SLL SLL

a SLL SLL

= − + ⋅ − ⋅

= − + ⋅ − ⋅
 

 
Required attenuator range: / in decibelsrange T R row cola g a a= Δ + +  
Note:  0rangea >  
 
 

Tolerable error- sidelobe level:  
10

10
10 120 log
10 1

⎛ ⎞−
= ⋅ ⎜ ⎟

+⎝ ⎠

δ

δγ  in decibels 

 
 

Range of tolerable error: 
( )

( ), , ,min ,
,20

2
,

,

20 3 10
ln 10

dB elevation dB azimuth n mSLL SLL
n m

n m
n m

A

A

+

≤
∑

∑

γ

α  

 
 

Number of bits:  1ceiling ln 1
ln 2 2

rangea
b

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦α
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1.5  Summary of Guidelines for Transmit Array Illumination 
 
 
 

 
 
Reduced-size uniform transmit array: 

• Most efficient approach 
• Reduced peak transmit power 
• Pick transmit array size according to: 

  

( )

1
2

2 1
4

22 1
2

ceiling  for even arrayrx
tx

rx
rx

N
N

n
n

⎛ ⎞
⎜ ⎟
⎜ ⎟−
⎜ ⎟=
⎜ ⎟+
⎜ ⎟
⎜ ⎟+ −⎝ ⎠

α

α

 

 

  
, , ,

1 20 20 101 1cosh 10 ln 10 10 1
rx dB rx dB rx dBSLL SLL SLL− − −

−
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟≅ = + −

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
α

π π
 

 
Full-size uniform array: 

• Highest peak transmitter power 
• High efficiency 
• Rectangular array: 

 Large first sidelobe in two-way pattern 
• Truncate array to circular aperture: 

 Reduces first sidelobe in two-way pattern 
 Increases sidelobe level for receive (Taylor) array 

 
Taylor illumination for transmit array:  

• Lowest achievable two-way sidelobes for given mainlobe width 
• Reduced peak transmitter power for specified peak element power 
• Efficiency can be reduced for some T/R module architectures 

 
Phase adjustment with uniform illumination 

• Not recommended 
• Poor on-target power efficiency 
• Nonlinear phase response in main lobe of two-way pattern. 
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2. Switched delay line shifter 
In order to achieve wide-bandwidth performance, it has been shown that varying the time delay to the 
elements, rather than using true phase shift, is necessary [2].  When the array dimensions exceed a few 
wavelengths, and the array must scan to large angles, the total insertion phase for some of the elements 
will need to exceed 2π radians, in order to maintain wide-bandwidth performance.  If the largest array 
dimension is L, and the required maximum scan angle (measured from the normal to the array face) is 

maxθ , then the required total insertion phase difference between elements on one edge and elements on the 
opposite edge is  

 max2 sinL
Δ =ϕ π θ

λ
 (2.1) 

at wavelength c f=λ , with c  the speed of light and f the cyclical frequency.  For example, suppose 

max 4=θ π  and 2L = λ , then 2 2Δ =ϕ π .  As shown in [2], using modulo 2π  phase shifters (even if 
implemented as  delay-line phase shifters) will reduce the usable bandwidth of the array.  Nevertheless, 
fine control of the beam position will at least require phase shifters at each element with a range of 
{ }0,2π .  A typical wide-bandwidth phased array with large scan-angle requirements would be fed in a 
sub-array configuration, similar to the 16-element row illustrated in Figure 1.  If the element spacing of 
the three-tiered configuration in Figure 1 is 4λ , switched delay-line shifters with the band-center phase 
shown in the figure would provide wide-bandwidth scanning out to 48≈ ± °θ .  For the wide-bandwidth 
array, λ  refers to the wavelength of the highest frequency contained in the signal. 
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Figure 1 A sixteen-element row with a wide-bandwidth phase-shift feed configuration. 
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2.1 Modulo 2π switched-delay-line phase shifter 
The switched delay line with b bits will have 2b  states so the phase for a { }0,2π  phase shifter will be 
modeled as  

 ( ) { }2 , 0,1, 2 1
2

b
n b

f nf n
f

≡ ∈ −
λ

ϕ π , (2.2) 

where fλ  is the frequency at which the switched delay line can provide 11 2
2b

⎛ ⎞−⎜ ⎟
⎝ ⎠

π  of phase with all bits 

set.  For ϕ  the exact desired phase at f f= λ , the required state of the phase shifter can be modeled as 

 ( ) 2 2rnd , 0 2
22

b

b b
f
f

⎛ ⎞
≡ ≤ <⎜ ⎟

⎝ ⎠λ

πϕ ϕ ϕ ϕ π
π

, (2.3) 

where, b is the number of bits in the phase shifter, and the rounding function, ( )rnd x , is 

 ( ) 1rnd ,  the integer nearest  so that 
2

x n x n x= − ≤ . (2.4) 

The phase function in (2.3) allows both a zero state and a 2π state, for a total of 2 1b +  states.  This extra 
state would be supplied by the 1-bit (0 or 2π ) switched-line shifter in the second tier, as illustrated in 
Figure 1.  Consistent with the true-time-delay philosophy, the analysis that follows assumes this 
configuration.   
 
The digitized phase as a function of the desired phase (at f f= λ ) is plotted in Figure 2 for three phase 
shifters (3-bit, 4-bit, and 5-bit).  The phase-shifter error is the difference between the set phase and the 
actual desired phase, 

 ( ) ( ) 2 2rnd
22

b

b b b
f
f

⎛ ⎞
≡ − = −⎜ ⎟

⎝ ⎠λ

πδϕ ϕ ϕ ϕ ϕ ϕ ϕ
π

, (2.5) 

which is plotted in Figure 3 for f f= λ  and several different numbers of bits in the phase shifter.   
 
The phase error is a periodic function, with period 2 2bπ , and can be described as follows: 

 
( )

( )

 for 
2 2

2
2

b b b

b bb

= − − ≤ <

⎛ ⎞± =⎜ ⎟
⎝ ⎠

π πδϕ ϕ ϕ ϕ

πδϕ ϕ δϕ ϕ
. (2.6) 

There are 2b  periods within the interval 0 2≤ ≤ϕ π .  The mean phase error is obviously zero,   

 
22 2

10 2

1 1 0
2 2

bb

b
b b

r

d xdx
= −

= = =∑∫ ∫
ππ

π

δϕ δϕ ϕ
π π

. (2.7) 

The rms phase error is  

 
22 2

2 2
,

10 2

1 1
2 2 2 3

bb

b
b rms b b

r

d x dx
= −

= = =∑∫ ∫
ππ

π

πδϕ δϕ ϕ
π π

. (2.8) 
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Figure 2 Digitized phase as a function of required phase for 3-bit, 4-bit, and 5-bit time-delay phase shifters 
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Figure 3 Phase-shifter phase error as a function of exact steering phase, for 3-bit, 4-bit, and 5-bit phase 

shifters. 

2.2 Distribution of random phase errors 
When the input to the phase shifter is a zero-mean Gaussian random variable with a standard deviation at 
least half the least significant bit, the error associated with the output of the phase shifter will be 
essentially uniformly distributed.  The validity of this claim can be demonstrated by using the relative-
frequency approach for determining an approximate probability density.   
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In this case, histograms are computed and normalized so that they have unit area.  Thus, they represent 
the approximate probability densities for the respective random variables.  Figure 4 shows the normalized 
histogram for a set of one million random draws from a zero-mean Gaussian distribution having a 
standard deviation of 22.5˚, half the least significant bit of a 3-bit phase shifter.  The distribution of the 
errors, when this same set of angles is approximated with a 3-bit phase shifter, is plotted in Figure 5.  The 
approximate probability density has slight curvature, but is nearly flat, indicating that the errors are 
essentially uniformly distributed.   
 
Figure 6 shows the normalized histogram for a set of one million random draws from a zero-mean 
Gaussian distribution having a larger standard deviation of 45˚.  The normalized histogram for the error 
associated with a 3-bit phase shifter is illustrated in Figure 7, given the same set of random draws.  This 
distribution is even flatter, and the errors are even more uniformly distributed than in Figure 5.   
 
If the standard deviation of the phase-shifter input becomes large enough, a significant number of the 
draws can lie outside the range 180 180− ° ≤ < °δϕ .  When the input is mapped to the range 

180 180− ° ≤ < °δϕ  through the modulo function, the distribution appears different from the original 
Gaussian.  This effect is illustrated in Figure 8 for the case when the standard deviation is 360˚.  
However, the error distribution for the output of the phase shifter still is essentially uniform, as indicated 
for this example in Figure 9.  Note that the modulo function is defined  

 ( )mod intp
aa a p
p

⎛ ⎞
≡ − ⎜ ⎟

⎝ ⎠
, (2.9) 

where 
 ( ) ( )int sgn , where , such that 1x x n n Integers n x n≡ ∈ ≤ < + . (2.10) 

These definitions, by the way, match the definitions of the equivalent functions in Fortran 95.   
  
While the error distribution from the phase shifter is essentially uniform, it is not precisely uniform.  The 
degree to which it deviates from uniformity is small, and can be determined by computing the probability 
density of the phase shifter error from the statistics of the phase shifter input.  The error of a digital phase 
shifter is periodic, as described by (2.6), 

 ( )2
2b bb

⎛ ⎞± =⎜ ⎟
⎝ ⎠

πδϕ ϕ δϕ ϕ . 

The input to the phase shifter is assumed zero-mean Gaussian with standard deviation δϕσ .  The choice of 
zero mean is for convenience, and does not limit the generality; by choosing a new phase reference, any 
phase distribution can be converted to a zero-mean distribution.   
 
The probability that the error at the output of the phase shifter is between 2− Δδϕ  and 2+ Δδϕ  is  

 

2
222 2

2

2

1,
2 2 2

bx n

n

P e dx

Δ
+ ⎛ ⎞∞ − +⎜ ⎟

⎝ ⎠

=−∞ Δ
−

Δ Δ⎛ ⎞− + =⎜ ⎟
⎝ ⎠

∑ ∫
δϕ

δϕ π σ

δϕ δϕ

δϕ δϕ
πσ

. (2.11) 

Note that the summation is extended from n = −∞  to n = ∞ .  This accounts for the periodicity of the error 
function and the tails of the input distribution, allowing the input to the phase shifter, ϕ , to extend 
beyond the range − ≤ <π ϕ π .   
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Figure 4 Normalized histogram for one million draws from a zero-mean Gaussian distribution with standard 

deviation of 22.5˚. 
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Figure 5 Normalized histogram for the 3-bit phase-shifter error when the input is the set of one million 

random draws associated with the histogram in Figure 4. 



 
 
   

22  

 

-150 -120 -90 -60 -30 0 30 60 90 120 150

Random Angle (deg)

0

0.002

0.004

0.006

0.008

0.01

Pr
ob

ab
ili

ty
 D

en
si

ty
 (1

/d
eg

)

 
Figure 6 Normalized histogram for one million draws from a zero-mean Gaussian distribution with standard 

deviation of 45˚. 
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Figure 7 Normalized histogram for the 3-bit phase-shifter error when the input is the set of one million 

random draws associated with the histogram in Figure 6. 
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Figure 8 Normalized histogram for one million draws, modulo 180, from a zero-mean Gaussian distribution 

with standard deviation of 360˚. 
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Figure 9 Normalized histogram for the 3-bit phase-shifter error when the input is the set of one million 

random draws associated with the histogram in Figure 8. 

 
The probability density is  



 
 
   

24  

 ( )
2

22 2
21

2
bn

n

p e
⎛ ⎞∞ − +⎜ ⎟
⎝ ⎠

=−∞

= ∑
δϕ

πδϕ σ

δϕ

δϕ
πσ

. (2.12) 

The summation in (2.12) cannot be performed in closed form for all values of δϕ .  However, at the center 
and edges of the error distribution, 0=δϕ  and 2b=δϕ π , it can be summed in terms of theta functions 
[3, 4, 5, Appendix I], 

 ( )
2

3 2 1 2
10 0,exp

22 bp −

⎛ ⎞⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠δϕδϕ

πϑ
σπσ

, (2.13) 

and 

 
2

2 2 1 2
1 0,exp

2 22b bp −

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠δϕδϕ

π πϑ
σπσ

. (2.14) 

 
The exact probability density (2.12) for the output of a 3-bit phase shifter is plotted in Figure 10 for three 
values of the standard deviation, δϕσ , of the input.  When the standard deviation is one-half of the least 
significant bit (22.5˚ in this case), the distribution is nearly flat.  Thus, when the standard deviation is 
large, the error at the output is essentially uniformly distributed.  A measure of the uniformity of the 
output distribution is the ratio of the probability density at 0=δϕ  (the center) to the probability density at 

2b=δϕ π (the edge).  As this ratio approaches unity, the distribution more closely approaches the 
uniform distribution.  Figure 11 plots the ratio of the edge value to the center value for four different size 
phase shifters (number of bits).  There is an obvious threshold in the standard deviation below which the 
assumption of a uniform distribution is no longer good, and as the number of bits increases, the 
delineation of the threshold becomes sharper.   
 
The ratio of the probability density at 0=δϕ  (the center) to the probability density at 2b=δϕ π (the 
edge) can be approximated with  

 
( ) 2 3

2 3

0 1.0002 0.43165 0.11894 0.0090399
1 0.42774 0.10886 0.0029426

2b

p x x x
x x xp

+ + +
=

⎛ ⎞ + + +
⎜ ⎟
⎝ ⎠

π
, (2.15) 

where 

 
2

2 1 2ln
2 bx q −= = −

δϕ

π
σ

. (2.16) 

The approximation (2.15) is accurate to better than 0.1%±  for 0.01 1q≤ ≤ .  For the range 
1510 0.01q− ≤ ≤ , use 

 
( ) 2 3

2 3

0 2.2770 0.16917 0.0043476x 0.000038445x
1 0.30670 0.0044575 0.0023463

2b

p x
x x xp

+ + +
=

⎛ ⎞ − − −
⎜ ⎟
⎝ ⎠

π
, (2.17) 

which has an accuracy better than 0.5%± . 
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Figure 10 Probability density for the output of a 3-bit phase shifter when the input is a zero-mean Gaussian 

with two different values for standard deviation, δϕσ . 
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Figure 11 Ratio of center value of probability density to the edge value ( 2b=δϕ π ) for four different values 
for the number of bits, b. 
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3. Effect of quantized steering phase on array factor 
In order to examine the effect of the quantized steering phase, a linear array will be examined.  Suppose 
we have a uniformly illuminated odd array, with 2 1N +  elements, element spacing sΔ , steering 
phases nξ , and random insertion phases nΔψ  at each element.  The random insertion phases, nΔψ , may 
be incorporated intentionally into the array's feed network, or may arise from the tolerances and errors 
introduced during manufacture.  For convenience, it is assumed that the frequency is f f= λ .  The array 
factor is 

 ( ) ( )
1

1 2 cos sin
N

n n
n

S nk s
=

= + Δ − + Δ∑θ θ ξ ψ . (3.1) 

The quantization phase error is the difference between the quantized phase and the exact phase, 

( ) ( ) ( )0 0 0
2 2sin rnd sin sin

22

b

n b n n nbnk s nk s nk s
⎛ ⎞

= Δ + Δ = Δ + Δ − Δ + Δ⎜ ⎟
⎝ ⎠

πδξ δϕ θ ψ θ ψ θ ψ
π

 (3.2) 

It will be convenient to write the steering phase as the exact phase plus the error, 
 0sinn n nnk s= Δ + Δ +ξ θ ψ δξ . (3.3) 

The quantization phase error will range between minus and plus one half of the least significant bit of the 
phase shifter, 

 
2 2nb b− ≤ ≤
π πδξ . (3.4) 

3.1 Periodic phase error 
When there is no insertion phase difference between the element phases, 0nΔ =ψ , and the phase error is 
due solely to quantization by the phase shifter.  The phase error is  

 
0 0

0 0

2 2 2rnd sin sin
2 22

2 rnd 2 sin 2 sin
2

b b

n b

b b
b

n k s n k s

s sn n

⎡ ⎤⎛ ⎞
= Δ − Δ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤Δ Δ⎛ ⎞= −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦

πδξ θ θ
π π

π θ θ
λ λ

, (3.5) 

which is periodic across the array.  The number of cycles of error across the array depends on the 
angle 0θ , to which the array is steered.  For p error cycle across the array,  

 1
0 sin 2

2
bp

N s
− −⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

λθ , (3.6) 

and the worst error occurs at elements qn±   

 ( ) 12 1 , 0,1,
2q

N pn q q
p

−
= ± + = . (3.7) 

For 0 0n n n− ≤ ≤ , the phase error is 

 0 0
2 ,

2 2n b
pn n n n
N

= − − ≤ ≤
πδξ , (3.8) 

and for 1q qn n n+− ≤ ≤ −  or 1q qn n n +≤ ≤  
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( )

( )

1 1

1

2 , min ,
2 2

2 , min ,
2 2

q q qb

n

q q qb

N pn n N n n n
p N

N pn n n n N n
p N

+ +

+

⎧⎛ ⎞
− − − ≤ ≤ −⎪⎜ ⎟

⎪⎝ ⎠= ⎨
⎛ ⎞⎪ + − ≤ ≤⎜ ⎟⎪ ⎝ ⎠⎩

π

δξ
π

. (3.9) 

 
When the insertion phase term is zero (no random phase), the phase error is periodic with the form (3.8) 
and (3.9).  Using the periodicity, the error term can be written as     

 

( ) ( )( )

( )( )

( )( )

( )( )

0

1

0

0

1

0

2

0
1

2

0
1

0
1

0
1

2 cos sin sin
2 2

2 cos sin sin
2 2

22 sin sin sin
2 2

22 sin sin sin
2 2

n

err b
n

n

q b
n n

n

b
n

n

q b
n n

pS n nk s
N

N pn n nk s
p N

pn nk s
N

N pn n nk s
p N

=

= +

=

= +

⎛ ⎞= − − Δ −⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
− + − Δ − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+ − Δ −

⎛ ⎞
+ + − Δ − +⎜ ⎟

⎝ ⎠

∑

∑

∑

∑

πθ θ θ

π θ θ

π θ θ

π θ θ

 (3.10) 

 
Suppose an array contains 2 1 201N + =  elements in a row with 2λ  spacing.  The array is uniformly 
illuminated, with no random insertion phase, and has 3-bit phase shifters for steering.  This will produce a 
periodic phase error across the array, when it is steered from broadside.  For example, steering the array 
1°  from broadside introduces the periodic phase error illustrated in Figure 12.  The periodic phase error 
produces spurious sidelobes (quantization lobes), as illustrated in Figure 13.  The quantization lobes vary 
with scan angle, and they can be reduced by increasing the number of bits in the phase shifter.  The peak 
phase error is 1

2  of the phase of the least-significant bit in the phase shifter.   

3.2 Random phase error 
If the array is built with random insertion phases for each element, the phase error will no longer be 
periodic over the array, but will be randomized.  For the example of 201 elements with 2λ  spacing, if 
the insertion phases, nΔψ , are taken from a zero-mean Gaussian distribution with standard deviation 0.5 
radian, the phase error across the array face will appear similar to that plotted in Figure 14.  As illustrated 
in Figure 15, the randomization of the error essentially eliminates the quantization lobes.  This example 
demonstrates that it will be advantageous to ensure that the phase errors are randomized. 
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Figure 12 Periodic phase error across array containing 201 elements with half-wavelength spacing, steered 

1°  from broadside with 3-bit phase shifters. 
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Figure 13 Normalized array factor for the 201-element array, steered to 1= °θ  with 3-bit phase shifters. 



 
 
   

30  

-100 -80 -60 -40 -20 0 20 40 60 80 100

Element Number, n

-25

-20

-15

-10

-5

0

5

10

15

20

25

Ph
as

e 
Er

ro
r, 

δξ
n 

(d
eg

)

 
Figure 14 Example of phase error across array containing 201 elements with half-wavelength spacing, steered 

1°  from broadside with 3-bit phase shifters, as Figure 12, but with zero-mean Gaussian random 
insertion phase having a standard deviation of 0.5 radian (28.6˚). 
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Figure 15 Array factor for the 201-element array, steered to 1= °θ  with 3-bit phase shifters (same as Figure 

13), but with a random insertion phase for each element, resulting in the phase error plotted in 
Figure 14. 
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Writing the array factor in terms of the element phase errors, nδξ , 
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The array factor can be written 
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where an array factor error is defined 
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When the phase error is small, the following second-order approximation can be used, 
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When the random insertion phases are measured and accounted for in a calibration procedure, the phase 
error should be limited to plus or minus half of the least significant phase bit.  For three or more bits in 
the phase shifter, the error in the approximation of the first sum is less than 1.3%, while the error in the 
approximation of the second sum is less than 2.6%.  Assuming the phase errors are uniformly distributed, 
the expectation of the error term is   
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so  
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where  ,b rmsδϕ  is given by (2.8).  Recall from section 2.2 that the assumption of uniformly distributed 
phase errors does not mean that the random insertion phases are uniformly distributed.   

3.3 Reduction in directivity due to phase quantization 
At 0=θ θ , with 2sΔ = λ , the array factor is  
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The directivity is  
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where the beam solid angle is 
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The normalized directivity for 2sΔ = λ  is  
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The reduction in directivity (in decibels) is approximately 

 2
, 2

14.34.34  dB
2b rms bDΔ ≈ − = −δϕ . (3.21) 

For a 3-bit phase shifter, 0.22 dBDΔ ≈ − , while a 4-bit phase shifter reduces the directivity by only 
0.06 dBDΔ − .  Thus, the reduction in directivity is minimal when at least 3 bits are used for the phase 

shifter. 

3.4 Contribution to sidelobes due to phase quantization 
The energy lost from the main beam is redistributed into the sidelobes.  Assuming this energy is 
distributed uniformly among the elements with random phase, then a particular point in space will have 
an additional sidelobe directivity contribution, 

 ( ) ( ) 2
,

N

SL n b rms
n N

D d
=−

Δ = ∑θ θ δϕ  (3.22) 

where ( )nd θ  is the element directivity in the direction θ .  If the element directivity is approximated as 
the same from element to element and constant over the region of interest, the average sidelobe directivity 
due to phase quantization, relative to the main beam directivity, is 
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Although the average sidelobe directivity due to phase quantization has been derived for a linear array, 
the same argument holds for an areal array, in which case the integer 2 1N +  becomes the total number of 
elements in the array. 
 
The average sidelobe level due to phase quantization is illustrated in Figure 16 as a function of the total 
number of elements in an array, for several numbers of bits in the phase shifter. 
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Figure 16 Average quantization-sidelobe level as a function of the number of elements in an array, for several 

numbers of bits in phase shifter. 
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3.5 Effect on steering angle from phase quantization 
The expectation function for the array factor can be written 
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To second order in ( )0sin sin−θ θ , the peak of the main lobe of the expected array factor occurs at 

0=θ θ , independent of the rms phase error, ,b rmsδξ , and the number of elements in the array.  Thus, on 
average, the pointing error is essentially independent of the number of bits in the phase shifter. 
 
The derivative of the array factor with respect to angle θ  is 
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The main peak of the array pattern will occur when ( ) 0S∂
=

∂
θ

θ
, and should occur near 0=θ θ .  Thus, at 

the peak,  
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which has the approximate solution 
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When the phase errors are random and uncorrelated from element to element, the rms pointing error is 
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For a uniformly illuminated odd array, the 3–dB beamwidth is approximately (see section 6) 
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so the rms pointing error in beamwidths is  
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When a 3-bit phase shifter is used with 2 1 201N + =  elements, the rms pointing error is about 1.4% of the 
beamwidth.  The rms pointing error, measured in beamwidths, is plotted in Figure 17, as a function of 
total number of elements in a linear array, for several numbers of bits in the phase shifter. 
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Figure 17 The rms pointing error (in percent of beamwidth) as a function of number of elements in a linear 

array, for several sizes of phase shifter. 
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4. Digital attenuator 
It is assumed that the gain of the T/R modules will be controlled by a digital (quantized) attenuator, and 
that the maximum gain for each module will vary from unit to unit.  A model of a b-bit attenuator is 
shown in the diagram of Figure 18.  This model utilizes switched attenuator sections, with the delay 
matched between the attenuation and through paths for each section.  The attenuation is (in decibels) 

 ( ) { }, 0,1,2, 2 1
2 1

b
b range b

na n a n= ∈ −
−

, (4.1) 

where rangea  is the maximum attenuation and b is the number of bits.  Given a desired attenuation, a, the 
attenuator is set to the nearest value 

 ( ) ( )rnd 2 1
2 1

range b
b b

range

a aa a
a

⎛ ⎞
= −⎜ ⎟⎜ ⎟− ⎝ ⎠

, (4.2) 

where the rounding function, ( )rnd x , is 

 ( ) 1rnd , the integer nearest  so that 
2

x n x n x= − ≤ . (4.3) 

The attenuator error, errora , is the difference between the desired attenuation and the actual value set (in 
decibels), 

 ( )rnd 2 1
2 1

range b
error b b

range

a aa a a a
a

⎛ ⎞
= − = − −⎜ ⎟⎜ ⎟− ⎝ ⎠

. (4.4) 

This error will be periodic in the desired attenuation, with a period ( )2 1b
rangea − , and 

 
( ) ( )2 2 1 2 2 1

range range
errorb b

a a
a− ≤ ≤

− −
. (4.5) 

The error as a function of attenuation is plotted in Figure 19 for both a 3-bit 20 dB attenuator and a 4-bit 6 
dB attenuator. 
 
The quantized attenuator will have an effect on the array’s peak sidelobe level.  In order to examine this 
effect, the array factor will be examined.  In the next section, the general array factor for a two-
dimensional planar array is formulated.  The effect of quantization of the element weights is then 
examined for the Taylor array.  
 

.  .  .

2 N1  
Figure 18 Diagram of an N-bit digital attenuator, using switched attenuator sections with matched phase 

delays. 
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Figure 19 Attenuation errors for (a) 3-bit 20 dB attenuator and (b) 4-bit 6 dB attenuator. 
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5. Two-dimensional planar array factor 
The following discussion addresses the properties of a two-dimensional planar array that are independent 
of the element type and element-to-element coupling.  Consider a two-dimensional planar array of 
radiating elements, as illustrated in Figure 20.  The array is organized into equally spaced rows of equally 
spaced elements.  However, in the general array, alternating rows can be different.  For this discussion, 
the elements have the same spacing in each row, but the elements in the even-numbered rows have an 
offset, ax , from the x̂  axis, while the elements in the odd-numbered rows have an offset bx .  The 
element spacing within all of the rows is xΔ , and the row spacing is yΔ .  For a rectangular lattice, set 

a bx x= .  A convenient definition for a triangular lattice sets 0ax =  and 2bx x= Δ . 
 
For completeness, two types of arrays will be considered:  

• the "odd array", which has an odd number of elements in each of an odd number of rows,  
and 

• the "even array", which has an even number of elements in each of an even number of rows. 
The even array is most commonly used in practice, because power dividers are more easily designed with 
an even number of output ports.  
 
In the odd array, as illustrated in Figure 20, the thn  element in the thm  row is located by the vector  
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The indices locating the elements are 
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For the even array, illustrated in Figure 21, an element is located by 
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where 
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x
x x
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. (5.4) 

The indices locating each element are  
 { } { }1, 2,  and  1, 2,n N m M∈ ± ± ± ∈ ± ± ± . (5.5) 
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Figure 20 Two-dimensional planar-array geometry when the number of elements in each row is odd, and the 

number of rows is odd. 
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Figure 21 Two-dimensional planar-array geometry when the number of elements in each row is even, and the 

number of rows is even. 

 
We will consider a field with j te ω  time dependence.  The field point will be located by  
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A far-field vector radiation function is given by superposition of the contributions from each element 

 ( ) ( ) ( ), ,
, , ,

,

ˆn m n mj
array n m n m n m

n m

A e −= ∑d r d rψ ξ , (5.7) 
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where ,n mA  is the excitation amplitude, ( ), ,n mψ θ φ  is the relative phase of an incident plane wave from 

the direction ( ),θ φ , ,n mξ  is the excitation phase, and ( ), ,ˆn m n md r  is the electric-field vector-directivity 

function for element ,n m , and the direction to the field point is 

 ,
,

,

ˆ n m
n m

n m

−
≡

−

r p
r

r p
. (5.8) 

A radiation pattern for a particular polarization is obtained from ( )ˆ array⋅e d r , where ê  is the unit vector in 
the direction of the particular polarization.  For elliptical or circular polarization, ê  is complex.  The 
directivity of the array for that polarization is obtained from the normalized radiation function as 
described in Appendix II.  The normalized radiation function, or array factor, has a peak amplitude of 
one, and is the form in which array-pattern information is presented here.  
 
With reference to the center of the array, the propagation phase at the thn  element in the thm  row at 
frequency f will is 

 ( ), , 02n m n m
f
c

= − − − −r p r pψ π , (5.9) 

where 0p  is the center of the array.  In an odd array, the ( )0,0  element is located at the array center, 
which is  
 0 0,0 ˆax= =p p x . (5.10) 

For an even array, there is no ( )0,0  element, and the array center is  

 0 0=p . (5.11) 

 
For the odd array, the propagation phase is  

 
[ ]

( )
,

2 sin cos sin sin ,   even

2 sin cos sin sin ,   odd
n m

b a

f n x m y m
c
f x x n x m y m
c

⎧ Δ + Δ⎪⎪= ⎨
⎪ ⎡ ⎤− + Δ + Δ⎣ ⎦⎪⎩

π θ φ θ φ
ψ

π θ φ θ φ
. (5.12) 

From (5.10) and (5.12), 

 ,

,   even

,   odd

x y

n m
b a

x y

n m m

x x n m m
x

+⎧
⎪⎪= ⎨ −⎛ ⎞⎪ + +⎜ ⎟Δ⎪⎝ ⎠⎩

κ κ

ψ
κ κ

. (5.13) 

In the above equations 
 0 sin cosx k x≡ Δκ θ φ , (5.14) 

 0 sin siny k y≡ Δκ θ φ , (5.15) 
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 0 2 fk
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= π . (5.18) 

 
For the even array, the propagation phase is  
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where 
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Defining incremental excitation phases, xξ  and yξ , the excitation phase for the n, m element in the odd 
array is 
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In the even array, the excitation phase for the n, m element is 
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ξ ξ
ξ

ξ ξ
. (5.23) 

The incremental steering phases are 

 0

0

sin cos

sin sin
x

y

k x

k y

= Δ

= Δ
ξ ξ

ξ ξ

ξ θ φ

ξ θ φ
. (5.24) 

Now the main lobe of the array factor will be steered to the spherical angles give by 

 
2 2

1

0 0

sin yx

k x k y
− ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
ξ

ξξ
θ , (5.25) 

and 

 1tan y

x

x
y

− ⎛ ⎞Δ
= ⎜ ⎟Δ⎝ ⎠

ξ

ξ
φ

ξ
, (5.26) 

or 
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 1 1
2 2

2 2 2 2
2 2

cos sin yx

x y x y
x y
y x

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟Δ Δ⎜ ⎟ ⎜ ⎟+ +⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠⎝ ⎠

ξ

ξξ
φ

ξ ξ ξ ξ

. (5.27) 

5.1 Far-field radiation pattern and the array factor 
In order to simplify the computation of the far-field radiation pattern of the array, it is assumed that the 
radiation pattern of each element is identical so that it can be factored from the summation.  This is an 
approximation, which is very good for the interior elements of a large array, but becomes less precise for 
the elements near the edge.  Nevertheless, it is useful, even for small arrays, in that it allows an expression 
for an array factor, arrayS , to be obtained.  Thus, when ( ) ( ) ( ), , , ,ˆ ˆ ˆn m n m n m n m′ ′ ′ ′≅ =d r d r d r  for all elements in 

the array (this condition requires r  much greater than array dimensions so that , ,ˆ ˆ ˆn m n m′ ′≅ =r r r , in 
addition to an array composed of a large number of elements), then 

 ( ) ( ) ( ) ( ) ( ), ,
,

,

ˆ ˆ ˆ,[ ]n m n mj
array n m array

n m

A e S−≅ =∑d r d r d r rψ ξ ξ , (5.28) 

where the array factor is defined 

 ( ) ( ), ,
,

,

ˆ,[ ] n m n mj
array n m

n m

S A e −≡ ∑r ψ ξξ , (5.29) 

and [ ]ξ  is the matrix of excitation phases.  The excitation phases are functions of the signal instantaneous 
frequency and the direction, r̂ , to which the beam is steered.  With no loss of generality in the array 
factor (5.29), the assumption is made that the excitation amplitudes are real,  that , 0n mA ≥ , that all 

excitation phase components are described by [ ]ξ ,  and that the excitation amplitudes are normalized so 
that 

 ,
,

1n m
n m

A =∑ . (5.30) 

Thus, the array factor is also normalized so  

 ( )ˆmax ,[ ] 1arrayS⎡ ⎤ =⎣ ⎦r ξ . (5.31) 

5.1.1 Directivity of the array factor 
The peak directivity of an array of isotropic radiators is 
 4array arrayD = Ωπ , (5.32) 

where arrayΩ is the beam solid angle, which is obtained by integrating the square of the normalized array 
factor over all solid angles [6], 

 ( )
2 2

0 0
, sinarray arrayS d dΩ = ∫ ∫

π π
θ φ θ θ φ . (5.33) 

However, it is probably more realistic to assume a semi-isotropic radiator, i.e. a radiator that radiates 
uniformly only in one half space.  Thus, for the planar arrays considered here, the beam solid angle is 
redefined 

 ( )
2 2 2

0 0
, sinarray arrayS d dΩ = ∫ ∫

π π
θ φ θ θ φ , (5.34) 
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where the integration over θ  stops at 2π  rather than π .  Using this definition, the array directivity 
pattern is 

 ( ) ( ) 24ˆ ˆ,[ ] ,[ ]array
array

D S≡
Ω

r rπξ ξ . (5.35) 

For the odd array (see Appendix II) 

( ) ( ) ( )22*
, , , , , , , ,2 cos sinc 2

N N M M

odd array n m n m n m n m x n x n y m y m
n N n N m M m M

fA A
c′ ′ ′ ′ ′ ′

′ ′=− =− =− =−

⎛ ⎞
Ω = − − + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑π ξ ξ π β β β β  (5.36) 

and for the even array  

( ) ( ) ( )22*
, , , , , , , ,

0 0 0 0

2 cos sinc 2
N N M M

even array n m n m n m n m x n x n y m y m
n N n N m M m M
n n m m

fA A
c′ ′ ′ ′ ′ ′

′ ′=− =− =− =−
′ ′≠ ≠ ≠ ≠

⎛ ⎞
Ω = − − + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑π ξ ξ π β β β β (5.37) 

where  

 ( )
( )sin

 for 0sinc
1 for 0

x
xx x

x

⎧
≠⎪≡ ⎨

⎪ =⎩

, (5.38) 

and x is in radians. For the odd array, 
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,
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,   odd
x n

b a

n x m

x x n x m

Δ⎧
⎪= ⎨
⎪ − + Δ⎩

β , (5.39) 

and 
 ,y m m y= Δβ . (5.40) 

For the even array 
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1
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,
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a

x n

b

x n n x m

x n n x m

⎧ + − Δ
⎪
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β , (5.41) 

and 

 ( )( )1
, 2 sgny m m m y= − Δβ . (5.42)  

For (5.36) and (5.37) to be valid, the coefficients, ,n mA , must be normalized according to (5.30).  Also, 

,n mξ  are the appropriate excitation (or steering) phases given by (5.22) for the odd array and (5.23) for the 
even array.  The array directivity will be a function of the position to which it is scanned. 
 
For the special case of a symmetric array with a rectangular lattice ( a bx x= , , ,n m n mA A± ±= ), then  

( ) ( )( ) ( ) ( )2 2* 2 2
, ,2 cos sinc 2

N N M M

Array n m n m x y
n N n N m M m M

fA A n n m m n n x m m y
c′ ′

′ ′=− =− =− =−

⎛ ⎞′ ′ ′ ′Ω = − + − − Δ + − Δ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑π ξ ξ π , (5.43) 

for the odd array, and 
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π

 (5.44) 

for the even array.  In (5.44) xξ  and yξ  are the incremental steering phases given by (5.24). 

5.2 Effect of element weight errors on array factor 
When errors exist in the element weights, whether from quantization or other sources, the array factor, of 
course, will deviate from the ideal array factor.  The realized array factor will be  

 ( ) ( ) ( ), ,
, ,

,

ˆ,[ ] n m n mj
realized n m n m

n m

S A A e −≡ − Δ∑r ψ ξξ , (5.45) 

where ,n mA  is the ideal element weight and ,n mAΔ  is the error.  In general, the error term, ,n mAΔ , can be 
complex.  However, only amplitude errors are considered here, since phase errors are considered 
separately in the analysis of the quantization of the steering phase.  The realized array factor can be 
considered as the difference of two array factors, the ideal array factor (5.29), and the error-array factor 

 ( ) ( ), ,
,

,

ˆ,[ ] n m n mj
error n m

n m

S A e −≡ Δ∑r ψ ξξ . (5.46) 

However, it is convenient and follows tradition to describe amplitudes and amplitude errors as ratios in 
decibels.  For example, the quantization error in a digital attenuator is described in (4.4) in decibels with 
respect to the desired attenuation value.  Thus, by writing the array factor as 

 ( ) ( ), ,
, ,

,

ˆ,[ ] n m n mj
realized n m n m

n m

S A e −≡ ∑r ψ ξξ η , (5.47) 

the error factor 
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,

,

1 n m
n m

n m

A
A

⎛ ⎞Δ
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⎝ ⎠
η  (5.48) 

can be written as a ratio, described in decibels 

 ,
,

,

(dB) 20log 1 n m
n m

n m

A
A

⎛ ⎞Δ
= −⎜ ⎟⎜ ⎟

⎝ ⎠
η . (5.49) 

 
If the T/R modules have a random variation in gain (decibels) that is larger than the least significant bit, 
the resulting attenuator errors (dB) will be approximately uniformly distributed over 

 
( ) ( )2 2 1 2 2 1

range range
dBb b

a a
− ≤ ≤

− −
η  (5.50) 

with zero mean (section 2.2 Distribution of random phase errors).  In this case, the mean of the error 
factor is 

 201 10
2

dB
dBd

−

= ∫
α

η

α

η η
α

, (5.51) 
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where 

 
( )2 2 1

range
b

a
=

−
α . (5.52) 

Note that rangea  is given in decibels, and soα  is given in decibels.  Thus, the mean error factor (a ratio, 
not in decibels) is given by 

 
( )

( )

20 1010 10 1
10

ln 10

− −
=

α α

η
α

, (5.53) 

which will be near unity for small errors.  For small error limits 

 
( ) ( ) ( )

2 2 4 4ln 10 ln 10
1

2,400 19,200,000
= + + +

α α
η αO . (5.54) 

The variance of the weight error is 

 ( )220 102 21 110 10
2 2
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dB dBd d

− −

= − = −∫ ∫
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η η
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, (5.55) 

so 
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. (5.56) 

For small errors 
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ησ α α αO . (5.57) 

 
It is appropriate to define an expected directivity for the array, assuming that the elements are isotropic, 
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, (5.58) 

where [ ]E  is the expectation operator 

 ( ) ( ) ( )E f f p d
∞

−∞

⎡ ⎤ =⎣ ⎦ ∫ζ ζ ζ ζ , (5.59) 

with ( )p ζ  the probability density function for ζ .  The probability density function has the property that 

 ( ) 1p d
∞

−∞

=∫ ζ ζ . (5.60) 

In (5.58), the expectation operator is comprised of integrations over all of the random variables, ,n mη , 
which are assumed to be identically distributed and independent random variables.  In respect to the array 
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properties, the expectation represents an average of the property over an ensemble of arrays, each having 
its own set of fixed errors.   
 
The expected directivity is  

 ( ) ( )2 2ˆ ˆ,[ ] ,[ ] 4D D= +r r ηξ η ξ πσ . (5.61) 

Thus, the average (or expected) directivity pattern has a directivity that differs from the ideal directivity 
by a factor of 2η , and an error-sidelobe term that is independent of position.  The error-sidelobe ratio is  

 
( )

2
,2 2

,
2 2 2

,
,

4
ˆ,[ ]

n m
n m

error

n m
n m

A
SLL

G
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= =
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∑
r

η ηπσ σ
η ξ η

. (5.62) 

When the array is uniformly illuminated with . 1n mA =  for all ,n m , then the error-sidelobe ratio is 

 
2

2
1  for uniform illuminationerror

total total

SLL
N M

= ησ
η

, (5.63) 

where 

 { }
{ }
{ }
2 1, 2 1  for odd array

,
2 , 2   for even arraytotal total

N M
N M

N M

⎧ + +⎪= ⎨
⎪⎩

. (5.64) 

Obviously, from an examination of (5.62) and (5.63), it is clear that larger arrays are more tolerant of 
amplitude errors.  

6. Uniformly illuminated array 
If the array is uniformly illuminated so that , 1n mA =  for all ,n m , then the array factor will be very similar 
for both the odd and even arrays.  This situation results because all elements contribute equally, so having 
an even or odd number is not very significant.   

6.1 Odd array 
For the odd array, the array factor can be written 

 ( )
( ) ( )
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( ) ( )

( )

sin 2 1sin 2 1 22
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. (6.1) 

 
Zeros in the array factor occur when  

 ( ) ( )
2 1 ,  1, 2, 3,

2
x xN p p

−
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π , (6.2) 

and 
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 ( ) ( )
2 1 ,  1, 2, 3,

2
y yM q q

−
+ = = ± ± ±

κ ξ
π . (6.3) 

From (6.2) and (6.3), we obtain the location of the zeros,  
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and 
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φ
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When the beam of the uniformly illuminated odd array is pointed to broadside, the 3−dB beamwidth, 
3dBΔθ , in the plane defined by ẑ  and ˆ ˆcos sin+x yφ φ  can be estimated with accuracy better than 2% 

when , 2N M >  by 
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 (6.6) 

  
When the beam is steered to a position { }0 0,θ φ , the 3−dB beamwidth in the plane defined by ẑ  and 

0 0ˆ ˆcos sin+x yφ φ  is approximated by 
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This approximation is obtained by expanding the array factor (6.1) in a power series in 
( ) ( )0sin sins = −θ θ .   

 
Another approach to approximating the 3−dB beamwidth gives 

 ( ) ( )
( ) ( ) ( ) ( )

3 0 3 0 2 2 2 2
0 0 0

0.4432
cos 1 x cos 1 sin

dB dB
N N M M y

Δ = ≅
+ Δ + + Δ

λθ φ θ φ
θ φ φ

. (6.8) 

This expression gives essentially the same result as (6.7), but explicit in this approximation is the 
( )01 cos θ  factor, which makes clear that the projected area of the array has a major roll in determining 

the beamwidth.  This approximation is obtained by expanding the array factor in δθ  after the substitution 
( ) ( )0sin sin= +θ θ δθ  into (6.1).  The approximations(6.7) and (6.8) also assume  
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( ) ( )
( ) ( )

0 0 0

0 0 0

0

sin cos

sin sin
x

y

k x

k y

= Δ

= Δ

=

ξ θ φ

ξ θ φ

φ φ

. 

Thus, the expression for the 3−dB beamwidth applies only in the plane defined by ẑ  and 
0 0ˆ ˆcos sin+x yφ φ .  See Appendix III for a method of defining the beamwidth when the beam is steered 

away from the normal to the array. 
 
The 3−dB beamwidth broadens slightly as 0θ  increases from broadside, at 0 0= °θ , and has broadened 
significantly by the time the beam is scanned to 0 45  to 60→ ° °θ .  In fact, when the element spacing is 

2λ , the beamwidth has been broadened by about a factor of two at 0 60= °θ , and is about 5 or 6 times 
broader near 0 80= °θ  than at broadside.  The broadening is more pronounced for closely spaced 
elements, but when the spacing exceeds the wavelength, λ , the grating-lobe problem occurs.  As the 
beam is scanned to end-fire position, 0 90= °θ , a portion of the beam is in invisible space, so serious 
mismatch can occur.  It makes sense to limit the scan angle, if consistency of beamwidth is important. 

6.2 Even array 
For the even array, the array factor can be written 
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This array factor has zeros when  
 ( ) ,  1, 2, 3,x xN p p− = = ± ± ±κ ξ π , (6.10) 

and 

 ( ) ,  1, 2, 3,y yM q q− = = ± ± ±κ ξ π . (6.11) 

From (6.10) and (6.11), we obtain the location of the zeros  
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When the beam of the uniformly illuminated even array is pointed to broadside, the 3−dB beamwidth in 
the plane defined by ẑ  and ˆ ˆcos sin+x yφ φ  can be estimated with accuracy better than 2% when 

, 2N M >  by  
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When the beam is steered to a position { }0 0,θ φ , the 3−dB beamwidth in the plane defined by ẑ  and 

0 0ˆ ˆcos sin+x yφ φ  is approximated by 
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This approximation is obtained by expanding the array factor (6.9) in a power series in 
( ) ( )0sin sins = −θ θ .   

 
Another approximation for the 3−dB beamwidth is 
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which is essentially the same result as (6.15), but explicitly contains the ( )01 cos θ  factor.  This shows 
that the projected area of the array has a major roll in determining the beamwidth.  This approximation is 
obtained by expanding the array factor in δθ  after the substitution ( ) ( )0sin sin= +θ θ δθ  into (6.9).  The 
expression for the 3−dB beamwidth applies only in the plane defined by ẑ  and 0 0ˆ ˆcos sin+x yφ φ . 

 
Like the beamwidth of the odd array, the 3−dB beamwidth broadens slightly as 0θ  increases from 
broadside, at 0 0= °θ , and has broadened significantly by the time the beam is scanned to 

0 45  to 60→ ° °θ .   
 

6.3 Comparison of the even and odd uniform arrays 
Normalized array factors in the plane 0=φ  for both odd and even arrays are plotted in Figure 22 for 

10N =  and 2λ  element spacing.  The main difference is in the width of the sidelobes, causing the 
locations of the nulls and peaks to be shifted at large angles from the main lobe.  In this example, at 

90= °θ , the even array shows a null, while the odd array shows a peak.  However, this effect is 
dependent on the element spacing, and will be different if the spacing is changed from 2λ .   
 
The least difference between the odd and even array patterns occurs when the arrays have the same 
length.  Figure 23 illustrates the similarity between the odd and even array patterns when the array length 
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is the same, while the element spacing is slightly different.  For each array, 10N = , and the element 

spacing is 2λ  for the odd array.  For the even array, the element spacing is slightly larger, 
2 1 N−

λ .  The 

array factors are nearly identical, with the major differences in the far sidelobe region 60 90° ≤ ≤ °θ .  
Clearly, as N is increased, the element spacing becomes closer to the same, and the array patterns will 
differ even less. 
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Figure 22 Normalized array factor in the 0=φ  plane for odd array (solid curve) and even array (dashed 

curve) for 10N =  (21 elements and 20 elements respectively), with constant element spacing. 
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Figure 23 Normalized array factor in the 0=φ  plane for odd array (solid curve) and even array (dashed 

curve) for 10N =  (21 elements and 20 elements respectively), with constant array size. 
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7. The Taylor array 
In order to reduce the sidelobes in an array, it is necessary to taper the illumination from the center to the 
edges of the array.  The Taylor illumination will be treated here.  Before considering the quantization 
error with the discrete Taylor array, some background about the continuous line Taylor distribution will 
be given.  In 1955, Taylor described the illumination for a continuous line source, which is now referred 
to as the Taylor illumination [1, 7].  Because the Taylor illumination provides a near-optimum beamwidth 
for a given sidelobe level, it is an appropriate choice for the illumination taper of an array.  For simplicity, 
only the rectangular-grid array, 0a bx x= = , and the array factor without mutual impedance interactions, 
are considered in this section. 

7.1 Continuous line source 
The line source is defined with a length 2L a= , and its illumination is an even function about its center.  
The continuous Taylor illumination model is [1] 

 ( ) ( )
1

1

1 2 cos
n

m
m

W F m
−

=

= + ∑ξ π ξ , (7.1) 

where x a=ξ  is the normalized coordinate along the line source with 0x =  at the center, and  
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, (7.2) 

where the parameter 2
pσ  is given by 

 
( )

2
2

22 1
2

p
n

A n
=

+ −
σ . (7.3) 

The peak sidelobe level in decibels is approximately 

 ( )( )20log coshdBSLL A≅ − π , (7.4) 

or 

 1 20 20 101 1cosh 10 ln 10 10 1
dB dB dBSLL SLL SLL

A
− − −

−
⎛ ⎞⎛ ⎞
⎜ ⎟≅ = + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

π π
. (7.5) 

The approximation in (7.4) and (7.5) improves as n → ∞ .   
 
The array factor for the line source is designated ( )F u , where   

 2 sinau = θ
λ

, (7.6) 

and θ  is measured from the normal to the line source.  It is convenient to describe array factors with the 
variable u  because the array factor is independent of array size and beam position in this variable.  The 
normalized ( )( )0 1F =  far-field array factor, ( )F u , is obtained by applying the Fourier transform to (7.1)
, and is given by  
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 (7.7) 

where m mF F− =  is given by (7.2), and 0 1F = .  The Taylor array factor is illustrated in Figure 24 for the 
case 10n = , and 60 dBSLL = − .   
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Figure 24 Array factor for a Taylor-weighted continuous linear distribution with 10n = , and 

60 dBSLL = − . 

 
The normalized array factor can also be written [1] 
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, (7.8) 

which is not quite as convenient computationally as (7.7) because of the zeros in the denominator at 
u n= , where 1 1n n≤ ≤ − .  However, sin uπ  also has a zero at each of these values of u, which cancels 
the equivalent zero in the denominator.  What Taylor has actually done, in fact, is to cancel the first 1n −  

zeros of sin u
u
π

π
, and replace them with zeros located at ( )( )22 1

2n pu A n= + −σ .  Thus, the first 1n −  

pairs of zeros of the Taylor array factor (7.7), (7.8) occur at  
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, (7.9) 

or 
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This process of relocating the first few zeros of the function has the effect of lowering the near sidelobes.  

Figure 25 illustrates the difference between the array factor due to uniform illumination, sin u
u
π

π
, and that 

from the Taylor illumination with 5n =  and sidelobe level 40 dBSLL = − .  Clearly, the first four zeros of 
sin u

u
π

π
 have been moved to new locations, further away from the center of the main lobe.  The fifth and 

higher zeros remain unmoved.  Because the zeros have been moved away from the center of the main 
lobe, of necessity, the mainlobe has become broader.  Energy has been transferred from the sidelobe 
region into the main lobe.  Thus, all of the sidelobes have been reduced in amplitude. 
 
The sidelobes far from the main lobe are also of interest.  When 1u n>> − , (7.8) shows that  
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. (7.11) 

Thus the sidelobes far from the main lobe behave as those from a uniformly illuminated array, but 
attenuated by a factor 
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Far from the main lobe, the peaks of the sidelobes follow an envelope given by 
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Figure 25 Comparison of array factor for a uniform linear source (dashed) with the array factor for a Taylor-

weighted continuous linear distribution with 5n = , and 40 dBSLL = −  (solid). 
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Figure 26 Taylor array factor for 10n =  and 30dBSLL = − , showing the far-sidelobe peak envelope given by 

(7.12). 

7.1.1 Connection between Taylor and Tchebyscheff illumination 
The Taylor illumination produces an array factor that is related to the Tchebyscheff polynomials.  A 
Tchebyscheff-shaped array factor is considered optimum in the sense of minimizing the mainlobe width 
for a given sidelobe level, and the normalized version is given by  

 ( )

( )
( )

( )
( )

2 2

2 2

cosh
,

cosh
,

cos
,

cosh

Tchebyscheff

A u
u A

A
F u A

u A
u A

A

⎧ −⎪ ≤⎪
⎪= ⎨
⎪ −
⎪ >
⎪⎩

π

π
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π

. (7.13) 

 
Taylor designed his weighting so that the resulting normalized array factor approaches the normalized 
ideal Tchebyscheff array factor in the region near the main lobe.  That is 
 ( ) ( ), ,TchebyscheffF u F u A u n≈ < . (7.14) 

The similarity is illustrated in Figure 27 for 40 dB−  sidelobes with 5n = .  While the similarity is 
obvious for u n< , the agreement is not perfect.  The Taylor array approaches the Tchebyscheff array 
more closely as n  get larger.  While the first few zeros are fairly close to the same for the two array 
factors, the locations of the zeros disagree more as u gets larger.  The main difference between the 
patterns, however, is that the sidelobe level for the Tchebyscheff array remains constant as u increases, 
but the sidelobes begin to fall away after the first few for the Taylor array.  The differences between the 
two arrays are much less significant when 35n = , as illustrated in Figure 28.  However, even with this 
large value for n , the Taylor and Tchebyscheff array factors do not agree some distance away from the 
main lobe, although the agreement of the main lobe and first sidelobes is quite good. 
 
Suppose the width of the main lobe between the first zeros is specified to be 02θ .  Then, from (7.9), we 
have  
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and the peak sidelobe level in decibels is approximately 
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Figure 27 Comparison of Tchebyscheff array factor (blue) and Taylor ( 5n = ) array factor (red) for 40 dB−  

sidelobes. 
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Figure 28 Comparison of Tchebyscheff array factor (blue) and Taylor ( 35n = ) array factor (red) for 

40 dB−  sidelobes. 
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When the values for the antenna beamwidth, 3dBθ , is specified, the half width of the array, a, is 
determined.  To solve for a, given A, n  and 3dBθ , we will use a Taylor-series expansion  

 ( ) ( ) FF u u F u u
u

+ Δ = + Δ +
∂
∂

, (7.17) 

and iterate 
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where 
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After the iteration has converged, the array half width is 

 3

32sin
dB

dB

u
a =

λ
θ

. (7.20) 

This method of iteration can be unstable if a suitable starting value is not chosen.  A useful starting value 
is 3 ,0 0.55dBu = , which was used to start the iterations for the values plotted in Figure 29. 
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Figure 29 Values of 3dBu  as a function of sidelobe level. 

Sometimes it is useful to compute the 3-dB beamwidth from the array parameters, , ,a n SLL .  By 
expanding (7.7) in a series in θ , and keeping all terms to 4th order, the angle, 3dBθ , at which the main 
lobe is down 3 dB from the peak can be found 
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The behavior of the width of the main lobe at –3 dB from the peak can be understood by examining the 
plots in Figure 30, Figure 31, and Figure 32.  The angle from the normal, 3dBθ , is plotted as functions of 
linear-array half-length, a, design sidelobe level, SLL, or Taylor order, n , respectively.  The example 
array has 10a = λ , 10n = , and 40 dBSLL = − . 
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Figure 30 3dBθ  as a function of half-length, a, for 10n =  and 40dBSLL = − . 
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Figure 31 3dBθ  as a function of sidelobe level with half-length 10a = λ , and 10n = . 
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Figure 32 3dBθ  as a function of order, n , for 40dBSLL = −  and 10 wavelengthsa = . 

When the order n  is large, the weighting function does not decrease monotonically as the distance 
increases away from the array center.  Instead, the weighting increases at the edges of the array, as 
illustrated in Figure 33.  However, it is not generally desirable to increase the illumination at the edge of 
an array, so to avoid this situation, the order, n , should be constrained.   
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Figure 33 Taylor illumination function, ( )W ξ , for 30dBSLL = − , and three different values of n . 

 
 
At the edge, the illumination function is 

 ( ) ( )
1

1

1 1 2 1
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= + −∑ . (7.24) 

The derivative of the illumination function is, from (7.1)  

 ( ) ( )
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2 sin
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m
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∂ ∑ξ π π ξ
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, (7.25) 

leading to n interesting feature of the Taylor illumination that 

 ( ) 0
1

W∂
=

∂ =
ξ

ξ ξ
, (7.26) 

for any n .  Considered as a function of n , ( )1W  is a discontinuous function because of the summation.  
Because the upper limit of the summation index depends on n , method of handling the upper limit for 
non-integer n  is not uniquely determined.  For example, the upper index of the sum in (7.1) and the 
products in (7.2) could be determined by either by taking the integer part of n , or by rounding n  to the 
nearest integer.  Rounding to the nearest integer has the desirable effect of moving the discontinuities 
away from the integer values, which, of course, are the locations where the illumination function is valid.  
The illumination function is plotted in Figure 34 as a function of real n  for three different sidelobe levels.  
The discontinuities are most pronounced for the smaller values of n . 
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Figure 34 Illumination function, ( )W ξ , viewed as a function of continuous n  at 1=ξ . 

With the understanding that the derivative does not exist at the half-integer values for n  
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From (7.2)  
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where    
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The illumination at the edge begins to increase at the value of n  where  

 ( )1 0W
n
∂

=
∂

. (7.30) 

Thus, the condition for monotonically decreasing weights is satisfied when 

 21floor 2
2

n A⎛ ⎞= +⎜ ⎟
⎝ ⎠

, (7.31) 

where ( )floor  is the greatest integer  x x≤ .  This represents an upper limit on the value of the Taylor 
order, n . 
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Figure 35 Recommended range for n  as a function of sidelobe level. 

The minimum value of n  is determined by requiring that the peak of the n th sidelobe be at least as low as 
the specified sidelobe level.  This condition is satisfied when 
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, (7.32) 

where ( )rnd x  is the integer nearest x.  Using this set of criteria, the desired range for n  is plotted in 
Figure 35. 

7.2 Rectangular arrays with Taylor illumination 

7.2.1 Odd array 
The element weights for the odd two-dimensional (rectangular) Taylor array of order n  are adapted from 
the continuous line illumination [1], giving weights 
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where the coefficients are 
 0 1F = , (7.34) 

 k kF F− = , (7.35) 

and 
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where the parameter α  is related to the peak sidelobe level, dBSLL , in decibels, ( 0dBSLL < ) 
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and the parameter σ  is 
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The element spacing is xΔ  along the x̂  direction and yΔ  along the ŷ  direction.  Thus, the dimensions of 
the array are 
 2 2x xL a N x= = Δ , (7.39) 

and 
 2 2y yL a M y= = Δ . (7.40) 

 
The array factor is 

 ( ) ( ), ,
,ˆ,[ ] n m n m

N M
j

array n m
n N m M

S A e −

=− =−

≡ ∑ ∑r ψ ξξ , (7.41) 

which can be summed in a more convenient form for the ideal weights, 
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S S n N S n M= − −r ξ ξ κ ξ α σ κ ξ α σ  (7.42) 

where 
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where the total number of elements in the row (column) is 2 1+η .  The peak value of Taylor
odd

S  occurs at 

0=κ  and is 
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When there are no random amplitude errors present, the error array associated with the quantization is 
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 ( ) ( ) ( ), ,
, , ,ˆ,[ ] n m n m

N M
j

error odd n m b n m
n N m M

S A a A e −

=− =−

⎡ ⎤≡ −⎣ ⎦∑ ∑r ψ ξξ . (7.45) 

When the gain of each T/R module varies randomly about a nominal value, the array factor can be 
described by  

 ( ) ( ), ,
, , ,ˆ,[ ] n m n m

N M
j

error odd n m n m
n N m M

S A e −

=− =−

≡ ∑ ∑r ψ ξξ η , (7.46) 

where the random variable ,n mη  is  

 20
, 10 dB

n m = ηη , (7.47) 

and dBη  is distributed over the range given by (5.50) ( ± least significant bit).  When the random gain of 
the T/R module is Gaussian about the nominal value, and the standard deviation is half of the least 
significant bit or more, the error dBη  is essentially uniformly distributed (see analysis of error for phase 
shifter). 

7.2.2 Even array 
The element weights for the even two-dimensional (rectangular) Taylor array of order n  are adapted 
from the continuous line illumination [1], giving weights 
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, (7.48) 

where the coefficients ( ),kF α σ  are given by (7.36) with (7.34) and (7.35), as with the odd array.  The 
array factor is 
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which is summed for the ideal weights, 

 ( ) ( ) ( )ˆ, , , , , , , , , ,array x y Taylor x x x x x Taylor y y y y y
even even

S S n N S n M= − −r ξ ξ κ ξ α σ κ ξ α σ  (7.50) 

where 
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where the total number of elements in the row (column) is 2η .   The peak value of Taylor
even

S  occurs at 0=κ  

and is 
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The error array is 
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where 

 ( ), , ,n m n m b n mA A a AΔ = − . (7.54) 

When random errors are present in the T/R module gain, the element weight error, ,n mAΔ , will be a 
random variable 

 ( ), , ,1n m n m n mA AΔ = −η  (7.55) 

so the error array factor is 
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. (7.56) 

As with the odd array, ,n mη  is a random variable given by (7.47). 

7.2.3 Consequences of discrete illumination function 
The illumination function for an array of discrete elements can be considered a sampled version of a 
continuous illumination function.  The Fourier transform of a sampled function is similar to the Fourier 
transform of the continuous function, but it is periodic, with the period related to the sampling density 
(see, for example, Bracewell [8]).  Since the array factor is related to the illumination function through a 
Fourier transform, it too will be periodic.  Doerry [9] has pointed out that the periodicity property can 
affect the sidelobes through the phenomenon of aliasing.  The effect is this:  if the aliased main lobe is too 
close the primary lobe, its sidelobes will interfere with the sidelobes near the true main lobe.  The 
interference can be both constructive and destructive.  This aliasing phenomenon is mathematically 
similar to the grating lobe phenomenon, which is also due directly to the periodicity of the array factor.  
In an antenna array, this problem can be controlled by choosing the proper element spacing and number 
of elements. 
 
Two Taylor array factors are compared in Figure 36.  Both arrays are 23 2λ  long, but the blue curve is 
for a continuous line distribution, while the red curve is for an array with 24 individual elements, with 

2λ  spacing.  The main lobes of the two arrays match very well, but the sidelobes differ.  The difference 
is due to the aliasing effect in the discrete Taylor distribution.  The array factor of the continuous 
distribution is not aliased.  In this case, the third sidelobe exceeds the design level by about 0.3 dB, which 
is quite acceptable.  However, the sidelobes do not fall away as fast as those from the continuous 
distribution do.   
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Figure 36 Two equal size Taylor array factors with 3n =  and 30dBSLL = − .  The blue curve is a continuous 

line source (no aliasing), and the red curve is a discrete-element array, with mild aliasing. 

 
Decreasing the number of elements, while keeping the array size unchanged, makes the aliasing problem 
worse.  This fact is illustrated in Figure 37, where the blue curve is for an array with just 12 elements.  
The third sidelobe is about 2 dB higher than the design value.  The element spacing for this example is 
1.045 wavelengths, and in this example, a grating lobe appears at about 73= °θ . 
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Figure 37 Two equal size, discrete, Taylor array factors with 3n =  and 30dBSLL = − , illustrating the 

increased sidelobe level due to aliasing. 
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Since the average sidelobe level is larger when aliasing is present, the location of the first null is moved 
slightly toward the center of the main lobe, and the width of the main lobe is reduced slightly.  The 
energy added to the sidelobes by the aliasing phenomenon is taken from the main lobe. 
 
When the number of elements in an array is large, the distinction between the even and odd arrays is not 
significant.  In this case, the relation between the argument u, used in the description of the continuous 
line distribution, and κ , used in the description of the discrete arrays, is given by 

 u
N

≅
πκ , (7.57) 

where 2N  or 2 1N +  is the number of elements in the even or odd array, respectively.  The main lobe of 
the next period of the array factor occurs at 2=κ π , or 2u N≅ .  The period sidelobe at SLu n=  will 
coincide with the thn  sidelobe of the first period, where 
 2SLu N n= − . (7.58) 

 
To ensure that aliasing raises the peak sidelobe level by no more than aliasε  dB, the SLn u=  sidelobe 
should be   

 ( )20
, 20log 10 1dB

alias dB = −εξ  (7.59) 

decibels below the design sidelobe level.  Substituting (7.58) into (7.12), the requirement is   

 ( ) ( ), 2010 dB alias dBSLL
SL SLf u −≤ ξ , (7.60) 

or 
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( )( )

1 2

20 22 2 11 2
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(10 1)dB
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A n
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=

⎡ ⎤
⎢ ⎥≥ + ⎢ ⎥− + −⎢ ⎥⎣ ⎦

∏ε π
π σ

, (7.61) 

with 2
pσ  and A given by (7.3) and (7.5), respectively.  Based on informal (but similar) considerations, 

Doerry [9] suggests 

 
9 5

dB totalSLL Nn≤ ≤ , (7.62) 

which is simpler but less stringent than (7.61), and implies an absolute lower limit for N  

 2 5ceil
9

dBSLL
N

⎛ ⎞
> ⎜ ⎟⎜ ⎟

⎝ ⎠
, (7.63) 

where ( )ceil x means the smallest integer larger than or equal x.  It should be noted that (7.62) is actually 
a suggestion for picking n , and the considerations in [9] really do not address choosing N in terms of the 
sidelobe performance.  However, (7.63) is justified as an absolute lowest limit for choosing N, although 
(7.61) is the recommended lower bound.  The lower limit for N is plotted in Figure 38 as a function of 
sidelobe level, dBSLL , for several values of the Taylor order, n , when 0.5 dBalias =ε  and 3 dBalias =ε .  
In order that the effect of aliasing on the near-in sidelobes be no worse than a factor of 0.5 dBalias =ε , the 
aliased component must be at least 24.5 dB below the design sidelobes in this region, while for 

3 dBalias =ε , aliased component must be only 7.7 dB below the design sidelobe level.   
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Figure 38 Minimum value of N for given design sidelobe level and Taylor order, for (a) 0.5 dBalias =ε , and 
(b) 3 dBalias =ε . 
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7.2.4 Summary of Design Rules for Taylor Array 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Specification: 3dBθ  half beam width 

  dBSLL  sidelobe level ( )0dBSLL <  

  dBε  sidelobe degradation due to aliasing ( 0dB >ε ) 
Compute: 

Taylor parameter: 1 20 20 101 1cosh 10 ln 10 10 1
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Minimum N to avoid aliasing in sidelobe region: 
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7.3 Effect of amplitude quantization on the Taylor array 
When the array taper is controlled by digital attenuators, error will occur due to the attenuator 
quantization, and possibly due to the limited range of the attenuator.  The required range of the attenuator 
will be determined by the ratio of the weight at the edge of the array to the weight at the center of the 
array.  For a one-dimensional taper, this ratio is 
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. (7.64) 

For a two-dimensional taper, the ratio is 

 
( )
( )

( ) ( )
1 1

, ,
1 1

1 1

, ,
1 1

1 2 1 1 2 1
1
0

1 2 1 2

row col

row col

n n
m n

m row n col
m n

n n

m row n col
m n

F F
W
W

F F

− −

= =

− −

= =

⎛ ⎞ ⎛ ⎞
+ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=
⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
. (7.65) 

 
The minimum recommended Taylor order is obtained from (7.32), while the maximum Taylor order is 
obtained from (7.31).  For minn n= (red curve) and maxn n=  (blue curve), the required attenuator range is 
plotted in Figure 39 as a function of sidelobe level.  The required attenuator range for the one-
dimensional taper, rangea , is almost independent of the order of the Taylor illumination, and can be 

estimated to within 1 2  dB±  by 

 ( )28 0.63 0.0014  dBrange dB dBa SLL SLL= − + ⋅ − ⋅  (7.66) 

Note that the attenuator range rangea  is positive, while the sidelobe level is negative.  For a two-
dimensional taper, the required attenuator range must be larger than for a one-dimensional taper.  For a 
symmetrical taper, the required attenuator range will double, increasing the number of required bits by 
one.    
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Figure 39 Attenuator range for one-dimensional taper as a function of design sidelobe level. 

 
 
The quantization of the digital attenuator causes errors in the illumination of the array.  The primary 
effect of this is an increase in the sidelobes of the array factor.  The error sidelobe level is given by (5.62), 
and it depends on the mean and the standard deviation of the error factor, the illumination taper, and the 
number of elements in the array. 
 
When the T/R modules have a random variation in gain (decibels) that is approximately uniformly 
distributed with zero mean, the error sidelobe level (5.62), is  
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,  (7.67) 

where 

 
( )

/ , ,

2 2 1
T R range row range col

b

g a aΔ + +
= −

−
α , (7.68) 

where /T RgΔ  is the addition to the attenuator range required to accommodate the random gain variation 
between T/R modules, and it is assumed that the required ranges for the row and column tapers are 
different.  Note that the addition to the attenuator range, /T RgΔ , is given in decibels and is negative, as is 
the design sidelobe level, dBSLL .  The error sidelobe level should be dBγ  below the design sidelobe 
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level to ensure that the quantization errors produce no more than a dB±δ  effect on the side lobe level, 
where 
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δ

δγ . (7.69) 

For no more than 0.5 dB±  effect on the side lobe level, 25 dB= −γ .  Thus, for this criterion, the 
resolution of the attenuator is obtained from  
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Expanding (7.70) to third order in α ,  
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and from (7.68) 
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7.3.1 Summary of Design Rules for Digital Attenuator 
 
 
 
 
 
 

 
 

 
Specification: Quantization errors produce no more than a dB±δ  effect on the side lobe level 

  Side lobe level:  ,dB elevationSLL , ,dB azimuthSLL  in decibels ( )0dBSLL <  

  Unit-to-unit gain variation of T/R modules:  /T Rg±Δ  in decibels 
Compute: 
 

Required taper ranges (in decibels):  
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7.4 Design example 
As an example, consider a linear even array with a required beamwidth of 3 3dB = °θ , and a design 
sidelobe level 40 dBdBSLL = − , with 0.5 dBdB =ε  degradation in sidelobe level due to aliasing.  Using 
the design rules for the Taylor array, the following values are computed: 
Taylor parameter 1.6865A =  
Taylor order  5n =  
Taylor parameter  2 1.082519p =σ  

Taylor coefficients: 0 1F =  

 

1

2

3

4

0.387482
0.00956429

0.0046963
0.00133399

F
F
F
F

=
= −
=

= −

 

Minimum N to avoid aliasing: 115N =  
Half-width of array: 3 0.623002dBu =  
 5.952a = λ  
Even array, 2N elements: 0.052optimum element spacing = λ  
Since the optimum element spacing is not practical, fewer elements will be used, and the sidelobes will be 
increased due to the aliasing affect.   
Choose: 13N =  (26 elements)  
 0.476element spacing = λ . 
Required attenuator range:  19.4 dBrangea =  
Choose: 20 dBrangea =  to allow for gain variation in T/R modules 
For specification that error sidelobe is to produce no more than 0.5 dB±  effect on design sidelobe level: 
Range of tolerable error:  0.0264≤α  dB 
Number of bits: 9b =  
For specification that error sidelobe level is equal to design sidelobe level: 
Range of tolerable error: 0.47≤α  dB 
Number of bits: 5b =  
 
The design seems straightforward until the element spacing is computed.  The minimum number of 
elements to prevent aliasing in the sidelobe region is too large to allow usable element spacing.  In fact, 
the number of elements must be reduced by almost an order of magnitude in order to allow reasonable 
element spacing on the order of a half wavelength.  This will result in some aliasing in the sidelobe 
region, and the sidelobe level will exceed the design sidelobe level.  The normalized directivity patterns 
for the array without aliasing ( 115N = ), and with aliasing ( 13N = ) are plotted in Figure 40.  In this case, 
the peak sidelobe level is increased by slightly more than 1 dB.  While the reduction in the number of 
elements seems extreme, the effect of the aliasing is not severe. 
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Figure 40 Normalized directivity for design example with optimum number of elements to avoid aliasing and 

practical number of elements. 

 
In order for the error sidelobe level to have negligible affect on the sidelobe level, the number of bits 
required in the attenuator is nine.  However, relaxing the error sidelobe level to equal the design sidelobe 
level only requires five bits in the attenuator, but the use of the 5-bit attenuator could result in peak 
sidelobes 6 dB higher than with the 9-bit attenuator.  The normalized directivity pattern is plotted in 
Figure 40 for both 9-bit and 5-bit attenuators, and the peak sidelobe level with the 5-bit attenuator is 
about –36 dB.   
 
The computed directivity patterns assume that the gain of each T/R module varies randomly by an amount 
that is larger than the least-significant bit of the attenuator.  This ensures that the error in the amplitude of 
each element is approximately uniformly distributed between ± half of the least-significant bit. 
 
Figure 42 compares the sidelobe regions when the linear array is implemented with a 9-bit attenuator and 
with an ideal, continuous attenuator.  As can be seen, the differences between the sidelobe levels are 
essentially negligible. 
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Figure 41 Comparison of normalized directivity for design example with 9-bit attenuator and 5-bit attenuator. 
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Figure 42 Comparison of sidelobe region for directivity pattern of design example with 9-bit attenuator and 

continuous (ideal) attenuator. 
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8. Issue of tapered illumination on transmit 
For monostatic radar applications, including synthetic-aperture radar, the product of both the transmit- 
and receive-antenna patterns is the important antenna consideration.  This product is referred to as the 
two-way antenna pattern.  Placing the antenna specification requirements on the two-way antenna pattern, 
rather than specifying transmit and receive patterns individually, allows for some flexibility, since the 
transmit and receive patterns are not required to be identical.  However, transmitter efficiency is an 
important consideration, and may dictate some of the design choices. 
 
Tapering the array illumination for the transmitter can reduce the efficiency of the transmitter, and it 
reduces the peak power available with a given set of T/R modules.  Generally, the output transmit stage of 
a T/R module will be a nonlinear circuit, such as a class C amplifier.  Using class C rather than class A 
amplifiers is a way to reduce dissipated power in the T/R module, while maintaining the highest output 
power.  However, when the array illumination is tapered, it is necessary to reduce (and control) the output 
power from the T/R modules located away from the center of the array.  When the output stage is 
nonlinear, reducing the drive to the stage with a programmable attenuator is not appropriate.  Changing 
the output power by changing bias conditions is a possible solution, but can lead to mismatch problems, 
and can be complicated to implement.  The simple, but inefficient, approach is simply to place the 
programmable attenuator between the output stage and the array element.   

8.1 Taylor illumination for transmit array 

8.1.1 Rectangular array 
Consider a linear array with Taylor illumination for both transmit and receive functions.  In general, the 
parameters of the illumination can be different for transmit and receive, so the two-way antenna pattern 
for a linear array is  
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for the odd array, and 

 

( )

( )
( )

( )
( )

2

1 11 1
2 2

1 1
1 1
2 2

, , , , , , ,

sin sin

, ,
1 1sin sin
2 2

tx rx

tx rx

way Taylor tx tx tx rx rx rx
even

n n

p tx tx q rx rx
p n q n

S n n

p q

F F

p q

−

− −

=− − =− −

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

∑ ∑

κ α σ α σ η

π πη κ η κ
η η

α σ α σ
π πκ κ

η η

⎞
⎟⎟
⎠

 (8.2) 

for the even array. 
 
A transmit efficiency, compared to uniform illumination, is defined 

 
( )

2
, 2

0

1
2 1

N

tx odd n
n N

W
N W =−

=
+ ∑  (8.3) 



 
 
   

82  

for the odd linear array, and  
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for the even linear array.  The weights are given by  
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for the odd array, and  
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for the even array.  The efficiency for the linear array is a weak function of the number of elements in the 
array, but a strong function of the design sidelobe level.  Figure 43 plots the efficiency as a function of 
design sidelobe level, for the minimum value of n  given by (7.32) 
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Figure 43 Transmitter efficiency for the linear Taylor-weighted array. 

 
For the two-dimensional array, the transmit efficiency, compared to uniform illumination, is defined 
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for the even array.  As expected, the transmit efficiency for the two-dimensional array, plotted in Figure 
44, is somewhat lower than for the linear (one-dimensional) array. 
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Figure 44 Transmitter efficiency for the two-dimensional Taylor-weighted array. 

 
 
Consider an even array with 13N = , similar to the design example above, with 2λ  element spacing.  
For a two-way sidelobe requirement of 40 dB− , a Taylor illumination with 20 dB−  sidelobes and 2n =  
can be used for both transmit and receive arrays.  The transmit efficiency for a linear array, from (8.4) is 

2.3 dB− , while for the two-dimensional array, the efficiency (8.8) is 4.5 dB− .  The normalized two-way 
antenna pattern is plotted in Figure 45 and Figure 46, where the peak two-way sidelobe level is –42 dB.  
The pattern exhibits the characteristic of a rectangular aperture, with the peak sidelobes along the 
principal axes of the array.  Except for the lowered efficiency, due to the transmit taper, the two-way 
pattern is quite respectable.  In the two-dimensional plot of Figure 46,  

 2 sin cosau = θ φ
λ

 

and 

 2 sin sinav = θ φ
λ

. 
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Figure 45 Two-way antenna pattern with Taylor illumination with 20 dB−  one-way design sidelobes and 

2n = . 
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Figure 46 Normalized two-way array factor for a two-dimensional even array with a Taylor illumination, 

20 dBSLL = − , 2n = , for both transmit and receive. 
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The two-way sidelobe level can be adjusted by giving transmit and receive arrays the same or different 
weighting, as illustrated in Figure 47, where several choices are plotted.  Of course, if the transmit and 
receive sidelobe levels are too different, a significantly larger first sidelobe will appear.  As seen in Figure 
47, this occurs for the case of an 2n = , 20 dB−  Taylor transmit array with an 5n = , 40 dB−  receive 
array.  The transmit array has its first sidelobe inside the mainlobe of the receive array, making the first 
sidelobe of the two-way pattern larger.  However, the next few sidelobes are much lower, so this may be 
an appropriate combination for some applications. 
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Figure 47 Two-way antenna patterns with Taylor illumination with several sets of design parameters. 

8.1.2 Truncated array 
In a two-dimensional rectangular array, the weight at each element is the product of two weights, one 
each from a one-dimensional taper.  When an element is near the edge of the array, and a significant 
distance from the principal axes of the array, then its weight can very small.  In particular, the elements in 
the corners will have the smallest weights.  In fact, the weight can be so small that the element may have 
minimal effect on the array factor, and can be eliminated.  Thus, when a two-dimensional array has 
amplitude taper in both dimensions, it may be desirable to remove elements in the corner regions to 
reduce cost.  This will lso reduce the required range for the attenuator, and could reduce the number of 
required bits by one.  However, truncating the array by eliminating many elements with small weights, 
while having little or no effect on the main lobe, may cause significant changes in the sidelobe region.  
Two truncation approaches are considered:  
truncation to a specified amplitude, and 
truncation to a circular aperture. 
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Figure 48 shows the element weights for an 50row colN N= =  odd array, with 5n = , 45 dBSLL = −  
Taylor illumination (note that the value chosen for n  is just smaller than the minimum recommended 
value).  The element weights 0, 50W ± , 50,0W± , on the edge of the principal axes, have an amplitude equal 

11.6 dB− .  The center weight 0,0W  has an amplitude equal 10.7 dB .  When the weights are truncated at 
12 dB− , eliminating the unneeded elements yields a nearly circular array rather than the rectangular array 

obtained when using all of the elements.  Figure 49 shows the element weights after truncation of the 
array.  In this case, only 7677 elements are used, rather than the original 10201 elements.  Thus, the array 
is reduced to about 75% of its original size.  When the array cost is dominated by T/R module cost, then 
eliminating the unnecessary elements reduces the cost significantly.   
 
However, the reduced cost comes at the expense of the sidelobe level.  The array factor for the truncated, 
near-circular array with a rectangular grid is plotted in Figure 50.  These sidelobes have peaks at about 

37 dB− , about 8 dB worse than the design level of 45 dB− .  In this case, truncation of the aperture 
caused deterioration of the sidelobe level.    
 
The sidelobe level of the Taylor array can be reduced somewhat by keeping more elements.  If the 
truncation limit is changed to 15 dB−  (corresponding to a 27 dB dynamic range), the illuminated aperture 
appears as in Figure 51.  In this case, the array contains about 84% of the number of elements in the full 
rectangular array.  The array factor is plotted in Figure 52, where the sidelobe level has been reduced by 
about 2.5 dB.  Table 1 compares the percent element reduction and peak sidelobe levels for three 
truncation levels. 
 
 
 
 

Table 1 Performance of 2-D Taylor array with design sidelobes of 
45 dBSLL = −  and order 5n = . 

Truncation level (dB) % of full array Peak sidelobe level (dB) 
12 75% –36.8 
15 84% –39.3 
18 89% –40.6 
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Figure 48 Weights for a two-dimensional odd array with a Taylor illumination, 45 dBSLL = − , 5n =  

without truncation. 
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Figure 49 Weights for a two-dimensional odd array with a Taylor illumination, 45 dBSLL = − , 5n = , and 

truncated to 12 dB− . 
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Figure 50 Normalized array factor for a two-dimensional odd array with a Taylor illumination, 

45 dBSLL = − , 5n = , and truncated to 12 dB− , with a nearly circular aperture. 
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Figure 51 Weights for a two-dimensional odd array with a Taylor illumination, 45 dBSLL = − , 5n = , 

truncated to 15 dB− . 
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Figure 52 Normalized array factor for a two-dimensional odd array with a Taylor illumination, 

45 dBSLL = − , 5n = , and truncated to 15 dB− . 
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8.2 Uniform illumination of transmit array 
In order to avoid the difficulties and inefficiencies of tapering the transmit array, it is useful to consider 
the uniformly illuminated array.  This has the advantage that the attenuator is to be used only for tapering 
the receive array, and thus is not required to handle the higher power levels in the transmitter portion of 
the T/R module.  Eliminating the attenuator from the transmit side of the T/R module eliminates the 
possibility of trimming the output power of each module, so tolerances on the output power specification 
may need to be made tighter. 

8.2.1 Rectangular aperture array 
The array factor for the uniformly illuminated rectangular aperture array can be written 

 ( ) ( ) ( )ˆ ˆ ˆ, , , , , ,array x y uniform x uniform yS S N S M=r r rξ ξ ξ ξ  (8.9) 

where, for the odd array,  
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and for the even array 
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The two-way array factor for a uniformly illuminated transmit array and a Taylor receive array is 
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where TaylorS  is given by (7.43) for the odd array and (7.51) for the even array.  Since the uniformly 
illuminated transmit array will have a narrower main lobe than the Taylor receive array, it is possible that 
the first transmit sidelobe will fall within the mainlobe of the receive pattern.   
 
For example, consider the even linear array with 13N =  and 40 dBdBSLL = −  in the design example 
above.  The uniformly illuminated transmit and the Taylor receive directivity patterns (normalized to 
receive mainlobe peak) are illustrated in Figure 53, and the normalized two-way directivity is plotted in 
Figure 54.  The first null of the transmit pattern is well within the region of the mainlobe of the receive 
pattern.  The point of intersection of the mainlobe of the receive pattern with the first sidelobe of the 
transmit pattern occurs at about –13.9 dB.  The first sidelobe of the two-way pattern is 27.7 dB−  below 
the peak, while the remaining peak sidelobe is 61 dB−  down.  Thus, the first sidelobe of the two-way 
pattern is significantly higher than the remaining sidelobes. 
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Figure 53 Directivity of uniformly illuminated transmit array (blue) and Taylor receive array (red), 

normalized to peak of receiver array. 
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Figure 54 Normalized two-way directivity for uniform transmit array with Taylor receive array. 

 
In order to move the first transmit sidelobe outside the mainlobe of the receiver pattern, one approach is 
to place the first null of both patterns as close to each other as possible.  This can be accomplished by 
reducing the size of the transmit array.  The first null of the transmit pattern occurs at  
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and for the Taylor receive pattern at    
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where α  is given by (7.37), and sΔ  is the element spacing.  The requirement is  
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so 
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. (8.17) 

For the parameters of the design example, (8.17) gives 7txN = .  Figure 55 plots the two-way directivity 
pattern when the transmit array of the design example is reduced.  The peak sidelobe is about –57 dB 
below the mainlobe, while the first sidelobe has been reduced significantly.  However, the mainlobe of 
the two-way pattern has been broadened, and the two-way directivity is reduced. 
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Figure 55 Normalized two-way directivity for uniform transmit array with 7txN =  combined with Taylor 

receive array with 13rxN = . 

8.2.1.1 Split-uniform illumination of transmit array (linear phase adjustment) 
The entire array can be used for transmitting with uniform illumination and still maintain a low first 
sidelobe in the two-way pattern.  This can be achieved by utilizing phase shifters to steer the transmit 
array slightly differently from the receive array.  In this case, the transmit array is divided into two halves, 
with each half steered slightly away from the direction of the main lobe of the receive array.  The amount 
of steering is chosen to place the first sidelobe of the transmit array in the first null of the receive array.  
This approach allows the parameters of the Taylor receive array to be chosen independently. 
 

array 1 array 2
x a= − x a=

θ

 
Figure 56 Two linear, uniformly illuminated arrays. 
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Consider two linear arrays as illustrated in Figure 56.  Array 1 will be steered slightly to the left, while 
array 2 will be steered slightly to the right.  The normalized array factor for the combination is  

 

( ) ( )
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 (8.18) 

or 

 
( ) ( )

2 2 2

sin sin
2 2v u uj j j

tx

u v u v

S e e e
u v u v

− −

⎡ ⎤− +⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥= +

− +⎢ ⎥
⎢ ⎥⎣ ⎦

π π π
π π

π π
 (8.19) 

where  

 2 sinau = θ
λ

, (8.20) 

and 

 2 sinav = δ
λ

, (8.21) 

The normalization is chosen so that 1txS =  when 0u v= = .  The two-way pattern for a linear continuous 
array, using the split-uniform illumination for the transmitter and a Taylor illumination from (7.43) and 
(7.51) for receiver is 
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. (8.22) 

By adjusting δ , a two-way pattern with low sidelobes and minimal ripple in the mainlobe can be 
achieved.  For example, consider the case with 13a = λ , 5n = , 40 dBSLL = − .  Choosing 3.46= °δ  
produces less than 1 dB ripple in the main lobe, with a main lobe width of 32 4.75dB = °θ .  When a 
reduced-size uniform transmit array with 7a = λ  is used with the same receive array, the main lobe width 
is 32 2.2dB = °θ .  The two-way patterns for these two configurations are plotted in Figure 57.  The 
directivity of the two-way pattern is 6.5 dB−  lower using the split-uniform array for transmitting.  As 
indicated in Figure 58, the relative phase varies rather rapidly in the region of the main lobe.  In addition, 
the split-uniform array does not concentrate the transmitter power efficiently over the main lobe of the 
receive array, as illustrated in Figure 59.  For these reasons, the split-uniform transmit array is not 
recommended. 
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Figure 57 Comparison of two-way patterns using the split-uniform transmit array and the reduced-size 

transmit array. 
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Figure 58 Relative phase for two-way pattern using the split-uniform transmit array. 
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Figure 59 Comparison of one-way patterns of the split-uniform transmit array and the reduced-size transmit 

array. 

8.2.1.2 Sinusoidal phase adjustment 
The normalized array factor for a uniformly illuminated linear array extending from x a= −  to x a=  is 

 
2 sin
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a j x
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−
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π θ
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π θ
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π θ
λ

. (8.23) 

Consider modifying this illumination by applying sinusoidal adjustment of the phase, 

 ( )
2 sin sin

2 sin
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a j x s
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Anger a
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−

= =∫ J
π πθ ζ
λ

θ
λ

ζ , (8.24) 

where ( )Jν ζ  is the Anger function [3, 10], plotted in Figure 60 as a function of ν  for several values of 
ζ .  The Anger function is related to Bessel’s function of the first kind 

 ( ) ( )  for  an integern nJ n=J ζ ζ . (8.25) 

 
The parameter ζ  determines the amount of the sinusoidal phase adjustment, with the size of the 
adjustment proportional to the magnitude of ζ .  The Anger function can be approximated with a series in 
ζ  

 ( ) ( ) ( )2 3
4

2 2 2 4

sin
1

1 4 9 10
⎛ ⎞

= + − − +⎜ ⎟
− − − +⎝ ⎠

Jν
πννζ ζ νζζ ζ

πνν ν ν ν
O . (8.26) 

Using the first four terms of the series (8.26) gives 1% or better accuracy when 0.9<ζ .  For 0.5≤ζ , the 
accuracy is better than 0.1%.  The accuracy improves as ν  becomes larger (away from the main lobe).   
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Figure 60 The Anger function, both ( )Jν ζ  and ( )−Jν ζ  as functions of ν , for several values of ζ . 

 
 
As can be seen from (8.26), ( )Jν ζ  is similar to ( ) ( )sinc sin=ν πν πν , but the zero at 1= ±ν , in 
addition to others, has been cancelled.  It is desirable to cancel the zero at 1= ±ν  in order to move the 
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first sidelobe further from the center of the main lobe.  The first sidelobe of the Anger function occurs 
approximately at 

   2 31.42799 0.316572 0.0788377 0.0569093 , for 0 1.5sidelobe ≈ + − + ≤ ≤ν ζ ζ ζ ζ  (8.27) 

Note that as 0>ζ  increases, the first sidelobe becomes more like a shoulder on the main lobe.  
Unfortunately, while the zero is cancelled at both 1= +ν  and 1= −ν , ( )Jν ζ  is not symmetric with 
respect to ν , as can be seen in Figure 60.  In fact, ( )−Jν ζ is the mirror image of ( ) ,Jν ζ  

 ( ) ( )−− =J Jν νζ ζ . (8.28) 

 
Using the Anger function for the transmit pattern, the two-way antenna pattern for the linear array is 
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. (8.29) 

The parameter ζ  that places the first sidelobe of the transmit pattern, for 0>θ , at the location of the first 
null of the receive pattern is obtained from the solution of  
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where (7.32)  

 
2

rnd 0.759
22.8 36.3

dB dBSLL SLLn
⎛ ⎞⎛ ⎞= ⎜ − + ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. 

A convenient fit to this solution is 

 ( )
2 3

5.94543 6.14214 1.55552 0.145312
20 20 20

dB dB dB
opt dB

SLL SLL SLLSLL ⎛ ⎞ ⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ζ  .(8.31) 

 
For example, when 30 dBdBSLL = − , the minimum Taylor order is 3n = , and (8.31) gives 0.258opt =ζ  
for the Anger transmit pattern.  The two-way pattern is plotted in Figure 61.  The pattern is not symmetric 
around 0u = , and the sidelobes for 0u <  are higher than when 0u > .  The peak of the main lobe is 
skewed slightly to 0.0477peaku = .   
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Figure 61 Normalized two-way antenna pattern when the transmit array has sinusoidal phase adjustment with 

0.258=ζ , and the receive array uses a Taylor distribtution with 2n =  and 30 dBSLL = − .  

Note that 
2 sinau = θ
λ

. 

 
It is tempting to modify the transmit phase function so that 
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, (8.32) 

which restores the symmetry.  Unfortunately, as can be seen from (8.26) and in Figure 62, the 
cancellation of the zeros at 1= ±ν  is undone, and the transmit pattern’s main lobe is not broadened.  
Thus, there is no benefit to this approach.   
 
The sinusoidal phase adjustment can utilize the full aperture with uniform illumination for the transmit 
pattern, while reducing the first sidelobe on one side.  However, the two-way pattern is not symmetric, 
and good sidelobe reduction is only available in a limited region.  This method is not recommended for 
general use. 
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Figure 62 A symmetric linear combination of two Anger functions, ( ) ( )1 1

2 2− +J Jν νζ ζ . 

8.2.1.3 Quadratic phase adjustment 
Consider modifying the uniform illumination by applying quadratic adjustment of the phase, using the 
parameter ζ  as follows,   
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which can be written in terms of Fresnel Integrals, 
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The Fresnel Integrals are [3] 
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and 
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Writing (8.34) in terms of 2 sinau = θ
λ

 and a=ξ ζ   
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The normalized uniformly illuminated array factor with quadratic phase adjustment is plotted in Figure 63 
for several values of the parameter ξ .  As ξ  increases, the first null is filled in, and the radiation is 
spread over a larger space.  However, the main lobe of the pattern begins to become indistinguishable for 
the larger values.  While the quadratic phase adjustment introduces no loss in the array factor, the peak 
directivity is reduced considerably as the nulls are filled, and the sidelobe level is increased.  Eventually, 
the sidelobes and the main lobes merge, becoming indistinguishable.  The two-way array factor, when the 
receive array has a –40 dB Taylor illumination, is plotted in Figure 64.  For the larger values of the 
parameter ξ , the two-way pattern has a low first sidelobe, with the sidelobe ratio essentially the same as 
the receive (Taylor) array factor alone.  Much of the transmit energy falls outside the main lobe of the 
receive pattern. 
 
The quadratic phase adjustment can be used to produce a flat two-way array factor in the main lobe 
region, as illustrated in Figure 65, for parameter 6 2.45=ξ .  This comes at high cost, as the 
normalized array factor is down about 10 dB from the equivalent array without phase adjustment.  A large 
portion of the transmit energy is radiated to the space outside the main lobe.  The first sidelobe is slightly 
higher than the first sidelobe of the receive array factor alone.  An additional problem with this antenna 
pattern is the phase response across the main lobe, which is plotted in Figure 66.  This nonlinear phase 
response is undesirable for some applications. 
 
As with the other phase adjustment approaches, the quadratic phase adjustment is not very attractive from 
the point of view of efficiency.  When the adjustment parameter ξ  is large enough to eliminate the large 
first sidelobe, much of the transmit energy falls outside the main lobe of the receiver.  In addition, the 
phase response of the two-way pattern is nonlinear.  For these reasons, the quadratic phase adjustment is 
not recommended. 
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Figure 63 One-way array factor with uniform illumination and quadratic phase adjustment for several values 

of parameter ξ . 
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Figure 64 Two-way antenna pattern with uniform illumination and quadratic phase adjustment for several 

values of ξ  for the transmit array, and a –40 dB sidelobe Taylor illumination for the receive array. 
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Figure 65 Two-way array factor with quadratic-phase-adjustment parameter 6 2.45=ξ . 
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Figure 66 Relative phase of the two-way array factor with quadratic-phase-adjustment parameter 

6 2.45=ξ . 
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8.2.2 Circular aperture  
If the uniformly illuminated transmit array is made circular, then the main lobe will be broadened slightly, 
and the first sidelobe will be reduced.  It is useful to examine the array factor for a uniformly illuminated 
circular aperture of radius a, given by 
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 (8.40) 

where  

 2 sin cosau = θ φ
λ

, 

and 

 2 sin sinav = θ φ
λ

. 

This is a circularly symmetric pattern, and has its first sidelobe at  

 2,12 2 =1.63471935u v+ =
λ
π

 (8.41) 

where ,1nλ  is the first nontrivial zero of  

 ( ) 0nJ =λ . (8.42) 

The peak of the first sidelobe is 17.6 dB− below the main lobe, nearly 4 dB better than the 13.5 dB−  
level from the uniform rectangular aperture.  In addition, the first null occurs at  

 1,12 2 =1.21966989u v+ = …
λ
π

, (8.43) 

compared to 1u =  for the rectangular aperture.  The normalized array factors for the uniformly 
illuminated rectangular and circular apertures are illustrated along a principal plane in Figure 67.  
 
Two examples are considered.  The first example is based on the truncated Taylor receive array with the 
nearly circular aperture illustrated in Figure 49, and one-way receive array factor illustrated in Figure 50.  
The one-way transmit array factor of the nearly circular array is plotted in Figure 68, when the transmit 
illumination is uniform.  The first sidelobe is nearly –18 dB from the main peak.  When this uniform 
circular array factor is used with the Taylor receive array, the two-way pattern plotted in Figure 69 is 
obtained.  The parameters of the receive array are 50row colN N= = , 45 dBSLL = − , 5n = , with the 
aperture truncated to a nearly circular array at , 12 dBn mw ≤ − .  The first sidelobe in the two-way pattern 
is about 36 dB− below the peak, and the next large sidelobe is about 60 dB−  down.  Notice that the first 
sidelobe of the transmit pattern is within the main lobe of the receiver pattern. 
 



 
 
   

108  

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

u

-35

-30

-25

-20

-15

-10

-5

0
R

el
at

iv
e 

A
m

pl
itu

de
 (d

B
)

Rectangular aperture

Circular aperture

 
Figure 67 Comparison of normalized array factor for uniform illumination in full rectangular aperture and 

circular apertures (along a primary axis of the array). 
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Figure 68 Normalized array factor for a two-dimensional odd array with a uniform illumination in a 

truncated, nearly circular aperture corresponding to the example in Figure 49. 
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Figure 69 Normalized two-way array factor for a two-dimensional, odd array with a uniform illumination for 

transmit, and Taylor illumination for receive, 45 dBSLL = − , 5n = , with the aperture truncated 
at 12 dB− (nearly circular). 

For the second example, consider a smaller array with the Taylor parameters 13row colN N= = , 
20 dBSLL = − , 2n =  for the receive array, while the transmit array is uniform.  The aperture is truncated 

with a “circular” truncation so that  

 2 2 213n m+ ≤ .  
This is a small array, and the truncation does not really result in a circular array, as indicated in Figure 70.  
The two-way array factor is plotted in Figure 71.  The first sidelobe in the two-way pattern is about 

41 dB− below the peak, and the next sidelobe is about 47 dB− .  This array uses only 529 out of the 729 
elements contained in the full array, for a reduction of 73%.     
 
Suppose the first lobe of the transmit array is placed at the first zero of the full Taylor receive array, 
before truncation.  Using (8.41), (7.4), and (7.9), the design sidelobe level and Taylor order for the 
receive array are related by  

 
( )

2
2 22,1 21 1

2 4

2
2,12

20log coshdB

n n
SLL

n

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠≅ − ⎜ ⎟⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟

−⎜ ⎜ ⎟ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

λ
π

π
λ
π

. (8.44) 

Note that (8.44) is based on a circular uniform transmit array, having a radius of row colN N=  elements, 
and a rectangular Taylor receive array.  When the receive array is truncated to a circular array, the first 
null will be moved slightly.  However, the array factor for a circular Taylor array cannot be written as a 
simple analytic expression, so there is not an expression analogous to (8.44) when both arrays are 
circular.  Nevertheless, the condition (8.44) will be used as a basis for the design when both arrays are 
truncated. 
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Figure 70 Weights and aperture shape for the truncated odd array with 13rwo colN N= = , 2n = , and 

20 dBSLL = − . 

-6
-5

-4
-3

-2
-1

0
1

2
3

4
5

u

-6
-5

-4
-3

-2
-1

0
1

2
345

v

-70

-60

-50

-40

-30

-20

-10

0

(dB)

-70

-60

-50

-40

-30

-20

-10

0

(dB)

 
Figure 71 Normalized two-way array factor for a two-dimensional, truncated, odd array with a uniform 

illumination for transmit, and Taylor illumination for receive, 20 dBSLL = − , 2n = . 
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Table 2 shows the design sidelobe level given by (8.44) for several values of n .  When these values are 
matched to the recommended range of n  and sidelobe level given in Figure 35, only one pair of 
parameters is seen to be appropriate.  Thus, to place the first sidelobe of the uniformly illuminated 
transmit array into the first null of the receive array, the Taylor parameters are 4n = , 34 dBSLL = − .  
The receive aperture illumination for this array is plotted in Figure 72, for 50row colN N= = .  The two-
way antenna pattern, assuming uniform illumination for the transmit array is plotted in Figure 73.  The 
first sidelobe is down about 39.7 dB− from the main lobe peak, and the next sidelobe is nearly 53 dB−  
down.  This array has 7845 elements out of the 10201 that would be in the full rectangular array (77% of 
the elements in the rectangular array). 
 

Table 2 Taylor parameters to place the 
first uniform transmit sidelobe in first 
null of Taylor array . 
n  Sidelobe level (dB) 
2 –47.0 
3 –35.2 
4 –34.0 
5 –33.9 

 
Even though the 2n = , 47 dBSLL = −  pair of Table 2 are not within the recommended range given in 
Figure 35, it is still a viable design option.  For example, the array is truncated to a circular aperture with 
a diameter of 101 elements along the two center rows, as illustrated in Figure 74.  The two-way antenna 
pattern achieves good performance with a uniform transmit array, with a first sidelobe down by 
about 40 dB− , and the second sidelobe at –52 dB.  The two-way pattern is plotted in Figure 75.  The 
circular array has 7845 elements, 77% of the number in the rectangular array.   
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Figure 72 Weights for a two-dimensional odd array with a Taylor illumination, 34 dBSLL = − , 4n = , 

truncated to a circular aperture. 
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Figure 73 Normalized two-way array factor for a two-dimensional, circular, odd array with a uniform 
illumination for transmit, and Taylor illumination for receive, 34 dBSLL = − , 4n = . 
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Figure 74 Weights for a two-dimensional odd array with a Taylor illumination, 47 dBSLL = − , 2n = , 

truncated to a circular aperture. 
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Figure 75 Normalized two-way array factor for a two-dimensional, circular, odd array with a 

uniform illumination for transmit, and Taylor illumination for receive, 47 dBSLL = − , 2n = . 
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Appendix I – Jacobi's Theta Functions 
The theta functions [3, 4, 5], 
 ( ) { }, ; 1,2,3,4n z q n∈ϑ , 

can be computed with very rapidly converging series [5].  Note that Abramowitz and Stegun [3] and 
Mathematica [4] agree on the notation for the theta function given above, but Korn and Korn [5] uses 
 ( )|nϑ ν τ , 

where z=ν π  and ( )expq j= πτ , so 

 ( ) ( ) { }, | ; 1,2,3,4n nz q n= ∈ϑ ϑ ν τ . 

 
The theta functions are computed by 

 ( ) ( ) ( ) ( )11 4
1

0

, 2 1 sin 2 1n n n

n

z q q q n z
∞

+

=

= − +∑ϑ , 

 ( ) ( ) ( )11 4
2

0

, 2 cos 2 1n n

n

z q q q n z
∞

+

=

= +∑ϑ , 

 ( ) 2

3
1

, 1 2 cos2n

n

z q q nz
∞

=

= + ∑ϑ , 

and 

 ( ) ( ) 2

4
1

, 1 2 1 cos2n n

n

z q q nz
∞

=

= + −∑ϑ . 

The theta functions are related to the Jacobi elliptic functions [3]. 
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Appendix II – Directivity of the array factor 
The peak directivity of an antenna is 
 4antenna antennaD = Ωπ , (II-1) 

where antennaΩ is the beam solid angle [6].  The beam solid angle for a general antenna is obtained by 
integrating the square of the normalized amplitude pattern, ( ),S θ φ , over all solid angles, 

 ( )
2 2

0 0
, sinantenna S d dΩ = ∫ ∫

π π
θ φ θ θ φ . (II-2) 

 
For a planar array, an array factor is defined, which effectively models an array of isotropic radiators.  
However, it is probably more realistic to assume a semi-isotropic radiator, i.e. a radiator that radiates 
uniformly only into one half space.  Thus, for the planar arrays considered here, the beam solid angle is 
redefined  

 ( )
2 2 2

0 0
, sinarray arrayS d dΩ = ∫ ∫

π π
θ φ θ θ φ , (II-3) 

where the integration over θ  stops at 2π  rather than π , and the normalized array factor is substituted 
for the normalized amplitude pattern.  Using this definition, the array directivity pattern is 

 ( ) ( ) 24ˆ ˆ,[ ] ,[ ]array
array

D S≡
Ω

r rπξ ξ . (II-4) 

 
In general, the array factor is  

 ( ) ( ), ,
,

,

ˆ,[ ] n m n mj
array n m

n m

S A e −= ∑r ψ ξξ , (II-5) 

where ,n mA  is the amplitude weight of each element, ,n mψ  is the propagation phase term, and ,n mξ  is the 
steering phase term.  The details of the explicit form of the double summation depends on whether the 
array is an odd array or an even array, as defined in Section 5, Two-dimensional planar array factor. 
 
For the odd array, the array factor is 

 ( ), ,
,

n m n m
N M

j
array n m

n N m M

S A e −

=− =−

= ∑ ∑ ψ ξ , (II-6) 

where the propagation phase is  

 
[ ]

( )
,

2 sin cos sin sin ,   even

2 sin cos sin sin ,   odd
n m

b a

f n x m y m
c
f x x n x m y m
c

⎧ Δ + Δ⎪⎪= ⎨
⎪ ⎡ ⎤− + Δ + Δ⎣ ⎦⎪⎩

π θ φ θ φ
ψ

π θ φ θ φ
, (II-7) 

and 

 
2

x
odd

Lx x
N

Δ = Δ = , (II-8) 

 
2

y
odd

L
y y

M
Δ = Δ = . (II-9) 
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For the even array, the array factor is 

 ( ) ( ) ( ) ( ), , , , , , , ,
, , , ,

1 1

n m n m n m n m n m n m n m n m
N M

j j j j
array n m n m n m n m

n m

S A e A e A e A e− − − − − − − −− − − −
− − − −

= =

⎡ ⎤= + + +⎢ ⎥⎣ ⎦∑∑ ψ ξ ψ ξ ψ ξ ψ ξ , (II-10) 

and the propagation phase is  

 
( )( )( ) ( )( )

( )( )( ) ( )( )

1 1
2 2

,
1 1
2 2

2 sin cos sgn sin sin sgn ,   even

2 sin cos sgn sin sin sgn ,   odd

a

n m

b

f x n n x m m y m
c
f x n n x m m y m
c

⎧ ⎡ ⎤+ − Δ + − Δ⎪ ⎣ ⎦⎪= ⎨
⎪ ⎡ ⎤+ − Δ + − Δ⎪ ⎣ ⎦⎩

π θ φ θ φ
ψ

π θ φ θ φ
, (II-11) 

where the ± signs are correlated with the sign of n and m respectively, and 

 
2 1

x
even

Lx x
N

Δ = Δ =
−

, (II-12) 

 
2 1

y
even

L
y y

M
Δ = Δ =

−
. (II-13) 

 
The excitation phase for the n, m element in the odd array is 

 ,

,   even

,   odd

x y

n m
b a

x y

n m m

x x n m m
x

+⎧
⎪⎪≡ ⎨ −⎛ ⎞⎪ + +⎜ ⎟Δ⎪⎝ ⎠⎩

ξ ξ

ξ
ξ ξ

. (II-14) 

In the even array, the excitation phase for the n, m element is 

 
( )( ) ( )( )

( )( ) ( )( )

1 1
2 2

,
1 1
2 2

sgn sgn ,   even

sgn sgn ,   odd

a
x y

n m
b

x y

x n n m m m
x

x n n m m m
x

⎧⎛ ⎞+ − + −⎪⎜ ⎟Δ⎪⎝ ⎠= ⎨
⎛ ⎞⎪ + − + −⎜ ⎟⎪ Δ⎝ ⎠⎩

ξ ξ
ξ

ξ ξ
. (II-15) 

In (II-14) and (II-15), the incremental steering phases are 

 0

0

sin cos

sin sin
x

y

k x

k y

= Δ

= Δ
ξ ξ

ξ ξ

ξ θ φ

ξ θ φ
, (II-16) 

where 

 0 2 fk
c

= π . (II-17) 

 
The beam solid angle for the planar array is 

 ( ) ( ), , , ,
2 2 *

, ,0 0
, ,

sinn m n m n m n mj j
array n m n m

n m n m

A e A e d d′ ′ ′ ′− − −
′ ′

′ ′

Ω = ∑ ∑∫ ∫
π π ψ ξ ψ ξ θ θ φ . (II-18) 

Recall that the integration over θ  stops at 2π  rather than π , because the elements are assumed to 
radiate into only one half space.  The order of the integration and summation can be interchanged, so the 
integrals are of the form 

 ( ) ( ), , , ,
2 2*

, , , , , 0 0
sinn m n m n m n mj j

n m n m n m n mA A e e d d′ ′ ′ ′− − −
′ ′ ′ ′= ∫ ∫

π πξ ξ ψ ψ θ θ φ  (II-19) 
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From (II-7) and (II-11), the form of ,n mψ  is 

 ( ), , ,2 sin cos sin sinn m x n y m
f
c

= +ψ π β θ φ β θ φ . (2.20) 

For the odd array, 

 
( )

,

,   even

,   odd
x n

b a

n x m

x x n x m

Δ⎧
⎪= ⎨
⎪ − + Δ⎩

β , (II-21) 

and 
 ,y m m y= Δβ . (II-22) 

For the even array 

 
( )( )

( )( )( )

1
2

,
1
2

sgn ,   even

sgn ,   odd

a

x n

b

x n n x m

x n n x m

⎧ + − Δ
⎪

= ⎨
⎪ + − Δ⎩

β , (II-23) 

and 

 ( )( )1
, 2 sgny m m m y= − Δβ . (II-24) 

Because of the offsets included to allow a triangular lattice, the values of ,x nβ  depend on the row index, 
m, even though the dependence is not explicitly contained in the subscript. 
 
The order of integration can be interchanged, so first consider the integration over φ .  We have 

 
( ) ( )( ) ( ) ( ) ( )22

, , , , , , , , , , ,2 22 cos sin sin 2 sin cos

0 0

x n x n y m y m x n x n y m y m n m n m
f fj j
c ce d e d′ ′ ′ ′ ′ ′− − − − + − −

=∫ ∫
π ππ β β φ β β φ θ π β β β β θ φ α

φ φ , (II-25) 

where  

 
( )
( )

, ,1
, , ,

, ,

tan y m y m
n m n m

x n x n

′−
′ ′

′

⎛ ⎞−
⎜ ⎟=
⎜ ⎟−⎝ ⎠

β β
α

β β
. (II-26) 

Let , , ,n m n m′ ′= −ς φ α , so that d d=φ ς  and the interval 0 2≤ ≤φ π  becomes , , , , , ,2n m n m n m n m′ ′ ′ ′− ≤ ≤ −α ς π α .  
However, the integration is still over a full period of the integrand, and the integral can be written in 
closed form as [3, 11] 

 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

22
, , , , , , , ,2 22 sin cos sin 2 sin cos

0 0

22
0 , , , ,2 2 sin

x n x n y m y m x n x n y m y m
f fj j
c c

x n x n y m y m

e d e d

fJ
c

′ ′ ′ ′− − − − + −

′ ′

=

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

∫ ∫
π ππ θ β β φ β β φ π β β β β θ ς

φ ς

π π β β β β θ
.(II-27) 

In (II-27), ( )0J x  is the zeroth-order cylindrical Bessel’s function of the first kind.   
 
The remaining integration over θ  gives (see 6.683-8 in [10]) 

 

( ) ( ) ( )
( ) ( ) ( )

, ,

, ,

2 22*
, , , , , 0 , , , ,0

22*
, , , , , ,

2 2 sin sin

2 sinc 2

n m n m

n m n m

j
n m n m n m n m x n x n y m y m

j
n m n m x n x n y m y m

fA A e J d
c

fA A e
c

′ ′

′ ′

− −
′ ′ ′ ′ ′ ′

− −
′ ′ ′ ′

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠

∫
πξ ξ

ξ ξ

π π β β β β θ θ θ

π π β β β β
(2.28) 
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where 

 ( ) 1             for 0
sinc

sin    for 0
x

x
x x x

=⎧
≡ ⎨ >⎩

. (2.29) 

 
Thus, the beam solid angle for the planar array is 

 ( ) ( ) ( ), ,
22*

, , , , , ,
, ,

2 sinc 2n m n mj
array n m n m x n x n y m y m

n m n m

fe A A
c

′ ′− −
′ ′ ′ ′

′ ′

⎛ ⎞Ω = − + −⎜ ⎟
⎝ ⎠

∑∑ ξ ξπ π β β β β . (II-30) 

 
For the odd array, 

 

( ) ( )

( )

( )

( ) ( )

, ,

,                      even and  even 

,     even and  odd

,     odd and  even

,                      odd

x y

a b
x y

n m n m
a b

x y

x y

n n m m m m

x xn n m m m m
x

x xn n m m m m
x

n n m m m

′ ′

′ ′ ′− + −

−⎛ ⎞′ ′ ′− + + −⎜ ⎟Δ⎝ ⎠− =
−⎛ ⎞′ ′ ′− − + −⎜ ⎟Δ⎝ ⎠

′ ′− + −

ξ ξ

ξ ξ
ξ ξ

ξ ξ

ξ ξ and  oddm

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪

′⎪⎩

. (II-31) 

and for the even array, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ), ,

sgn sgn sgn sgn
,                   even and  even

2 2

sgn sgn sgn sgn
,   even and  odd

2 2

sgn sgn
2

x y

a b
x y

n m n m
a

n n m m
n n m m m m

n n m mx xn n m m m m
x

n n x
n n

′ ′

′ ′⎛ ⎞ ⎛ ⎞− −
′ ′ ′− − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
′ ′⎛ ⎞ ⎛ ⎞− −−′ ′ ′− − + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠− =
′−

′− − −

ξ ξ

ξ ξ

ξ ξ
( ) ( )

( ) ( ) ( ) ( )

sgn sgn
,   odd and  even

2

sgn sgn sgn sgn
,                   odd and  odd

2 2

b
x y

x y

m mx
m m m m

x

n n m m
n n m m m m

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨

′⎛ ⎞ ⎛ ⎞−−⎪ ′ ′+ − −⎜ ⎟ ⎜ ⎟⎪⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠⎪
⎪ ′ ′⎛ ⎞ ⎛ ⎞− −
⎪ ′ ′ ′− − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠⎩

ξ ξ

ξ ξ

.(II-32) 

The symmetry of the summations causes the cancellation of the imaginary part of the sum, so replacing 
( ), ,n m n mje ′ ′− −ξ ξ  with ( ), ,cos n m n m′ ′−ξ ξ .  The beam solid angle becomes 

 ( ) ( ) ( )22*
, , , , , , , ,

, ,

2 cos sinc 2array n m n m n m n m x n x n y m y m
n m n m

fA A
c′ ′ ′ ′ ′ ′

′ ′

⎛ ⎞
Ω = − − + −⎜ ⎟

⎝ ⎠
∑∑π ξ ξ π β β β β , (II-33) 

and the directivity is 

 ( )
( )

( ) ( ) ( )

2

22*
, , , , , , , ,

, ,

ˆ2 ,[ ]
, ,[ ]

cos sinc 2

array

n m n m n m n m x n x n y m y m
n m n m

S
D

fA A
c′ ′ ′ ′ ′ ′

′ ′

=
⎛ ⎞− − + −⎜ ⎟
⎝ ⎠

∑∑

r ξ
θ φ ξ

ξ ξ π β β β β
.(II-34) 

 
Incorporating the explicit details of the summation,  

( ) ( ) ( )22*
, , , , , , , ,2 cos sinc 2

N N M M

odd array n m n m n m n m x n x n y m y m
n N n N m M m M

fA A
c′ ′ ′ ′ ′ ′

′ ′=− =− =− =−

⎛ ⎞Ω = − − + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑π ξ ξ π β β β β ,(II-35) 

for the odd array, and 
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( ) ( ) ( )22*
, , , , , , , ,

0 0 0 0

2 cos sinc 2
N N M M

even array n m n m n m n m x n x n y m y m
n N n N m M m M
n n m m

fA A
c′ ′ ′ ′ ′ ′

′ ′=− =− =− =−
′ ′≠ ≠ ≠ ≠

⎛ ⎞
Ω = − − + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑π ξ ξ π β β β β ,

 (II-36) 
for the even array. 
 
For the special case a bx x= , 

 

( )
( )
( ) ( )

, ,

, ,

, ,

x n x n

y m y m

n m n m x y

n n x

m m y

n n m m

′

′

′ ′

′− = − Δ

′− = − Δ

′ ′− = − + −

β β

β β

ξ ξ ξ ξ

. (II-37) 

for the odd array, and 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

, ,

, ,

, ,

sgn sgn
2

sgn sgn
2

sgn sgn sgn sgn
2 2

x n x n

y m y m

n m n m x y

n n
n n x

m m
m m y

n n m m
n n m m

′

′

′ ′

′⎛ ⎞−
′− = − − Δ⎜ ⎟⎜ ⎟

⎝ ⎠
′⎛ ⎞−

′− = − − Δ⎜ ⎟⎜ ⎟
⎝ ⎠

′ ′⎛ ⎞ ⎛ ⎞− −
′ ′− = − − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

β β

β β

ξ ξ ξ ξ

. (II-38) 

for the even array.  When the array is also symmetric, so that , ,n m n mA A± ±= , then  

( ) ( )( ) ( ) ( )2 2* 2 2
, ,2 cos sinc 2

N N M M

odd array n m n m x y
n N n N m M m M

fA A n n m m n n x m m y
c′ ′

′ ′=− =− =− =−

⎛ ⎞′ ′ ′ ′Ω = − + − − Δ + − Δ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑π ξ ξ π ,(II-39) 

for the odd array, and 

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

( )( )

2 22 2

2 22 2

, ,
2 22 2

cos cos sinc 2

cos cos 1 sinc 2 1
8

cos 1 cos sinc 2 1

cos 1 cos

x y

x y

even array n m n m

x y

x

fn n m m n n x m m y
c

fn n m m n n x m m y
c

A A
fn n m m n n x m m y
c
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1 1 1 1

2 22 21 sinc 2 1 1
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c

′ ′= = = =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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ξ π

(II-40) 

for the even array. 
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Appendix III – Definition of beamwidth for off-normal scan 
It is commonplace to measure the beamwidth of an antenna in two orthogonal planes.  For example, when 
the antenna boresight is aligned with the ẑ  axis, a common choice is to measure the beamwidth in the 
ˆ ˆ,x z  plane and the ˆ ˆ,y z  plane.  These two planes correspond to the ˆˆ,r θ  and ˆˆ,r φ  planes, respectively, 
when 0= =θ φ .  When the antenna is a phased array, the main lobe of the radiation pattern is steered 
away from the normal to the array ( ẑ  axis), and the question of how to define the planes for defining the 
beamwidth arises.  The definition and procedure described here is a logical generalization of the 
beamwidth definition for a fixed-beam antenna.   
 
Consider a phased-array antenna with the beam steered in direction r̂ξ , defined by the spherical angles 

ξθ  and ξφ , as illustrated in Figure 76.  The following vectors, illustrated in Figure 76, can be defined 

 ˆˆ+ += +r r θθ ξ θδ , (2.41) 

 ˆˆ− −= −r r θθ ξ θδ , (2.42) 

 ˆˆ+ += +r r φφ ξ φδ , (2.43) 

and 

 ˆˆ− −= −r r φφ ξ φδ . (2.44) 

The unit vectors in (2.41) through (2.44) are 
 ˆ ˆ ˆ ˆsin cos sin sin cos= + +r x y zξ ξ ξ ξ ξ ξθ φ θ φ θ , (2.45) 

 ˆ ˆ ˆ ˆcos cos cos sin sin= + −x y zθ ξ ξ ξ ξ ξθ φ θ φ θ , (2.46) 

and 

 ˆ ˆ ˆsin cos= − +x yφ ξ ξφ φ . (2.47) 

 
Clearly, ±r θ , ( )+ −−r rθ θ , and r̂ξ  lie in one plane, and ±r φ , ( )+ −−r rφ φ , and r̂ξ  lie in a second plane.  

Since 

 ( ) ( ) ( )( ) ˆ ˆ 0+ − + − + − + −− ⋅ − = + + ⋅ =r r r r θ φθ θ φ φ θ θ φ φδ δ δ δ , 

it is clear that the two planes are orthogonal.  These two planes are ideal for measuring the beamwidth.  
Conveniently, they coincide with the ˆ ˆ,x z  plane and the ˆ ˆ,y z  plane respectively, when 0= =θ φ . 
 
Once the definition of the beamwidth (3-dB points, first nulls, etc.) has been chosen, it is simply a matter 
of determining ±θδ  and ±φδ  such that the following unit vectors point in the direction of the appropriate 
value on the beam, 

 
2

ˆˆˆ
1

±
±

±

±
=

+

r
r

θξ θ
θ

θ

δ

δ
, (2.48) 

and 
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2

ˆˆ
ˆ

1
±

±

±

±
=

+

r
r

θξ φ
φ

φ

δ

δ
. (2.49) 

Since the antenna pattern is usually given as a function of the spherical angles ,θ φ , the variables ±θδ  and 

±φδ  provide a simple parameterization for the spherical angles locating the beam edges in each plane 

 ( ) ( )1 ˆˆcos−
± ±= ⋅z rθ θθ δ  and ( ) 1 ˆˆ

tan
ˆˆ

− ±
±

±

⎛ ⎞⋅
= ⎜ ⎟⋅⎝ ⎠

y r
x r

θ
θ

θ

φ δ , (2.50) 

and 

 ( ) ( )1 ˆˆcos−
± ±= ⋅z rφ φθ δ  and ( ) 1 ˆˆ

tan
ˆˆ
±−

±
±

⎛ ⎞⋅
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

y r
x r

φ
φ

φ

φ δ , (2.51) 

which satisfy the beamwidth definition.   
 
An iterative method can be applied to search over the simple parameters ±θδ  and ±φδ  to locate the 

appropriate edges of the beam in the two planes, and thus determine ˆ
±r θ  and ˆ

±r φ .  The beamwidth in the 
ˆˆ ,r θξ  plane is  

 ( ) ( )1 1ˆ ˆ ˆ ˆcos cosBW − −
+ −= ⋅ − ⋅r r r rθ ξ θ ξ θ , (2.52) 

and in the ˆˆ ,r φξ  plane is 

 ( ) ( )1 1ˆ ˆ ˆ ˆcos cosBW − −
+ −= ⋅ − ⋅r r r rφ ξ φ ξ φ . (2.53) 

 
 
 

 
Figure 76 Diagram showing the planes in which the beamwidth can be measured when the beam is scanned 

away from the normal vector. 
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