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Abstract

Many problems in applied science and engineering involve physical phenomena that be-
have randomly in time and/or space. Examples are diverse and include turbulent flow over an
aircraft wing, Earth climatology, material microstructure, and the financial markets. Math-
ematical models for these random phenomena are referred to as stochastic processes and/or
random fields, and Monte Carlo simulation is the only general-purpose tool for solving prob-
lems of this type. The use of Monte Carlo simulation requires methods and algorithms to
generate samples of the appropriate stochastic model; these samples then become inputs
and/or boundary conditions to established deterministic simulation codes. While numerous
algorithms and tools currently exist to generate samples of simple random variables and
vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes
and/or random fields. There are two objectives of this report. First, we provide some the-
oretical background on stochastic processes and random fields that can be used to model
phenomena that are random in space and/or time. Second, we provide simple algorithms
that can be used to generate independent samples of general stochastic models. The theory
and simulation of random variables and vectors is also reviewed for completeness.
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Chapter 1

Introduction

Stochastic models are utilized in many fields of applied science and engineering. Parzen [30]
provides a nice summary of early applications of stochastic modeling in statistical physics,
population growth, and communication and control. A diverse set of examples from agri-
culture, astronomy, dynamics, economy, environment, geotechnics, hydrology, mechanics,
medicine, and transportation are provided in [20], Chapter 2. Random variables are the most
common type of stochastic model; their use is limited, however, to phenomena described by
a single parameter. Examples include time-invariant material properties or boundary condi-
tions at a fixed location e.g., stiffness, hardness, temperature, etc.

Often, phenomena can be viewed as random in space and/or time. To illustrate, we
provide three examples of such phenomena of interest at Sandia National Laboratories.
First consider Fig. 1.1, which provides a schematic of an aircraft encountering a storm
system during flight. As the aircraft travels through a cloud, it collides with a sequence of
moisture particles suspended within the atmosphere. The size and number density of these
particles are described by probabilistic climate models so that the resulting force on the
aircraft fuselage is random in time. A random function of time is referred to as a stochastic
process; Fig. 1.2 illustrates samples from a stochastic process model used to represent the
force applied to the nose of the aircraft during an in-flight storm encounter. The two plots
correspond to two distinct storms of different severity [7]. We note that, in both cases, the
samples are not symmetric with respect to their temporal mean.

Foam materials are used in numerous weapon systems to protect internal components
from shock, thermal, and electromagnetic loads. One particular application of interest,
depicted by Fig. 1.3, is the use of a particular epoxy foam for shock mitigation within a
complex aerospace component. Experimental work with the foam has demonstrated that the
material density can vary significantly from specimen to specimen, as well as vary spatially
within a single specimen; we therefore need models for foam density to capture this behavior.
A random field can be used to represent phenomena that vary randomly in space; two samples
of a particular random field used for this application are illustrated by Fig. 1.4.
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Figure 1.1. A schematic of an in-flight storm encounter.
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Figure 1.2. Stochastic model for nose force F due to im-
pact with a sequence of moisture particles during encounter
with a Class I and IV storm.
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Figure 1.3. A schematic of one of five foam specimens split
into 24 cells of equal volume for measurement of foam density
(from [28]).
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Figure 1.4. Two samples of a random field model for foam
density along cross section of a 10 in. × 10 in. × 10 in. cube
(taken from [13]). Regions of high density are shown in red;
regions of low density are shown in blue.
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Figure 1.5. Turbulent flow over space vehicle during re-
entry.

Lastly, as depicted by Fig. 1.5, we consider the case of fully turbulent airflow over a space
vehicle. Pressure fluctuations in the turbulent boundary layer provide dynamic excitation
to the vehicle and its internal components; this dynamic excitation is random in both time
and space. Figure 1.6 shows one sample of a space-time stochastic process model used to
represent the applied pressure field; two plots are shown, corresponding to the pressure
applied at two distinct spatial locations on the surface of the space vehicle. We note that
the scale of the fluctuations is time-dependent.

There are two objectives of this report. First, we provide some theoretical background
on stochastic processes and random fields that can be used to model phenomena that are
random in space and/or time. As motivated by the above examples, special emphasis is
placed on models that are non-Gaussian and/or non-stationary to capture phenomena that is
not symmetric (Fig. 1.2) or where the scale of the uncertainty may be space/time dependent
(Figs. 1.4 and 1.6). Second, we provide simple algorithms that can be used to generate
independent samples of general stochastic models. It is hoped that, in the future, these
simple algorithms will be incorporated into an efficient, cohesive toolkit for use with the
current modeling and simulation environment at Sandia National Laboratories.
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Chapter 2

Essentials of random variables and
vectors

Consider a random experiment, that is, an experiment with a random or unpredictable
outcome. It is assumed that all possible distinct outcomes of a random experiment are
known, and they are elements of a fundamental set Ω known as the sample space. If we
assign a real number X(ω) to each outcome ω ∈ Ω following a certain set of rules, the result
is called a random variable, and the value of X(ω) for fixed ω is referred to as a sample
of random variable X. It should be obvious that X is therefore a function that maps each
outcome of the experiment to the real line. We note that it is common practice to omit the
functional dependence of random variable X(ω) on ω and simply write X.

The above discussion is a very brief overview of some of the underlying fundamentals
of probability theory; more complete discussions are presented in [29] and [42]. In this
Chapter, we will present essentials on the theory of random variables and random vectors
in Sections 2.1 and 2.2, respectively; the simulation of random variables and vectors will be
discussed in Chapter 3. Our convention throughout this report will be to use capital letters
to denote random quantities, and lower-case letters for deterministic quantities.

2.1 Random variables

Random variables are defined by a cumulative distribution function, briefly reviewed in
Section 2.1.1. Special properties of random variables, referred to as statistical moments, are
discussed in Section 2.1.2. The Gaussian random variable, presented in Section 2.1.3 is a
particular type of random variable often used in practice.

17



2.1.1 Distribution and density

As mentioned above, a random variable is a function that maps elements of the sample space
to values on the real line. The most direct way to define a random variable is therefore to
define this mapping. However, this approach is not very useful in practice. An alternative
approach is to instead define the probability law, denoted by Pr(X ≤ x), for all fixed values
x on the real line. This expression is interpreted as the “probability that random variable
X takes values less than or equal to x.”

Let X be a random variable; X is defined by its cumulative distribution function
(CDF), i.e.,

F (x) = Pr(X ≤ x), −∞ < x <∞. (2.1)

We can show that: (i) F is a right continuous, non-decreasing function of x with range [0, 1],
i.e., a probability is between zero and one, (ii) limx→∞ F (x) = 1, (iii) limx→−∞ F (x) = 0,
and (iv) Pr(a < X ≤ b) = F (b) − F (a) ≥ 0 for a ≤ b. A random variable X is called
discrete if it takes discrete values on the real line; in this case, it is possible to enumerate
all the values X may assume. In contrast, a continuous random variable takes values over
continuous intervals of the real line. In the discussion that follows, we will assume continuous
random variables. For discussion on discrete random variables, see [1], [29], or [35].

Assuming F (x) is differentiable,

f(x) =
dF (x)

dx
(2.2)

is the probability density function (PDF) of X, where: (i) f(x) ≥ 0 because F (x) is

non-decreasing, (ii)
∫ b

a
f(x) dx = F (b) − F (a) = Pr(a < X ≤ b), and (iii)

∫∞
−∞ f(x) dx = 1.

Further, we note that while F is a probability, f is not. In practice, it is more common to
define random variables using the PDF, f(x), rather than the CDF, F (x). Some examples
of common random variables follow.

Example 2.1: C is a Cauchy random variable if f(c) = a/[π(c2 +a2)], a > 0, −∞ < c <∞.
The corresponding CDF is F (c) = 1/π arctan (c/a)+1/2. The PDF and CDF of the Cauchy
random variable with a = 1/2 are illustrated by Fig. 2.1(a) and (d), respectively. ♦

Example 2.2: X is an Exponential random variable if f(x) = λ exp (−λx), λ > 0, x ≥ 0.
The corresponding CDF is F (x) = 1 − exp (−λx), x ≥ 0. The PDF and CDF of the
Exponential random variable with λ = 1 are illustrated by Fig. 2.1(b) and (e), respectively.
♦
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Figure 2.1. PDFs (panels (a), (b), and (c)) and CDFs
(panels (d), (e), and (f)) of the Cauchy, Exponential, and
Uniform random variables.

Example 2.3: U is a Uniform random variable if f(u) = 1/(β − α), α ≤ u ≤ β. The
corresponding CDF is

F (u) =


0 u < α
u− α

β − α
α ≤ u ≤ β

1 u > β

The PDF and CDF of the Uniform random variable with α = −1 and β = 1 are illustrated
by Fig. 2.1(c) and (f), respectively. ♦

2.1.2 Moments

The study of weighted averages of random variables is very useful in applications. To do so,
we make use of the operator of mathematical expectation, denoted by E[ · ]. The expected
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value of a function of random variable, h(X), is given by

E[h(X)] =

∫ ∞

−∞
h(x) dF (x) =

∫ ∞

−∞
h(x) f(x) dx, (2.3)

where the latter follows assuming F is differentiable. We can compute the moments of
random variable X (assuming they exist) via

E[Xp] =

∫ ∞

−∞
xp f(x) dx. (2.4)

For p = 1 we get the mean of X, commonly denoted by symbol µ = E[X]. The mean-
square value of X is obtained by Eq. (2.4) with p = 2; the root-mean-square (RMS)
value of X, commonly used in engineering applications, is the square root of the mean-square
value of X, i.e.,

√
E[X2].

An alternative definition, referred to as the central moments of X, is

E[(X − µ)p] =

∫ ∞

−∞
(x− µ)p f(x) dx, (2.5)

where µ is the mean of X described above. For p = 2, we get the variance of X, commonly
denoted by σ2 = E[(X − µ)2]; the standard deviation of X is σ =

√
E[(X − µ)2]. Note

that, by Eqs. (2.4) and (2.5), the RMS value and standard deviation of X are not the same
in general; they are identical if, and only if, µ = 0.

We remark that if X is a random variable with zero mean, unit variance, and PDF f ,
then the PDF of random variable Y = µ + σX is a shifted and scaled version of f with
the same shape. Further, Y has mean µ and variance σ2; these properties hold for both
Gaussian and non-Gaussian random variables. Because of this, it is common to work with
zero-mean, unit-variance random variables.

Example 2.4: Let X be an exponential random variable. The mean and variance of X are
given by

µ = E[X] =

∫ ∞

0

xλ eλ x dx =
1

λ

σ2 = E[(X − µ)2] =

∫ ∞

0

(
x− 1

λ

)2

λ eλ x dx =
1

λ2

Random variable Y = (X − µ)/σ = λX − 1 is also an exponential random variable, but
with zero mean and unit variance. ♦
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Figure 2.2. Three PDFs for X such that µ = 0 and σ2 = 1.

The coefficients of skewness and kurtosis, given by

γ3 =
E[(X − µ)3]

σ3
and γ4 =

E[(X − µ)4]

σ4
(2.6)

are other commonly used moments. They provide a measure of the symmetry and rate of
decay in the tails of the PDF of X, respectively. If γ3 = 0, the distribution of a random
variable is symmetric about its mean value.

Example 2.5: The moments, E[Cp], of the Cauchy random variable C are undefined for
p ≥ 1, demonstrating that the mean, variance, skewness, kurtosis, or other moments of a
random variable may not always exist. ♦

Example 2.6: It is typical in applications to have a finite collection of samples of X from
which we can estimate the first few moments of X. It is important to realize that having
these estimates is much less information about X than is the PDF or CDF. In other words,
one cannot uniquely define the CDF F (x) given a collection {E[Xp], p = 1, 2, . . . , n}. To
illustrate, consider the case where µ = 0 and σ2 = 1, but no additional information on
moments or the distribution of X is available. Three possible PDFs for X are illustrated
by Fig. 2.2; many more distributions are possible. While a random variable is completely
defined by its PDF or CDF, it is only partially defined by its moments. ♦
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Figure 2.3. The PDF and CDF of a standard Gaussian
random variable.

2.1.3 The Gaussian random variable

The Gaussian random variable is probably the most commonly used model for random
phenomena. X is a Gaussian random variable (also called a normal random variable)
with mean µ and variance σ2 if, and only if, the PDF of X is

f(x) =
1√

2π σ
exp

[
−1

2

(
x− µ

σ

)2
]
, −∞ < x <∞, (2.7)

or, equivalently, if and only if the CDF of X is

F (x) =
1√

2π σ

∫ x

−∞
exp

[
−1

2

(
u− µ

σ

)2
]

du, −∞ < x <∞. (2.8)

It is common to use X ∼ N(µ, σ2) to denote a Gaussian random variable with mean µ and
variance σ2. We can show that the coefficients of skewness and kurtosis defined by Eq. (2.6)
are γ3 = 0 and γ4 = 3, respectively, for a Gaussian random variable. For the special case
when µ = 0 and σ = 1, we say that X ∼ N(0, 1) is a standard Gaussian random
variable and use the notation f(x) = φ(x) and F (x) = Φ(x) to denote the PDF and CDF,
respectively; φ(x) and Φ(x) are illustrated by Fig. 2.3.

If the PDF and CDF of X are different from Eqs. (2.7) and (2.8), respectively, we say
that X is a non-Gaussian random variable. Non-Gaussian models are useful when, for
example, we know that the range of X is bounded or its probability law is not symmetric
with respect to its mean (non-zero skewness). The Exponential, Cauchy, and Uniform cases
discussed above are all examples of non-Gaussian random variables. LetX be a non-Gaussian
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random variable with CDF F ; then random variable

Y = F−1(U), (2.9)

has the same distribution as X, where U denotes a random variable uniformly distributed on
[0, 1] (see [33], Section 8.3). Note that because F is monotonic, F−1 always exists. Hence, any
random variable can be written as a deterministic mapping of a Uniform random variable.
This result is very useful for generating samples of non-Gaussian random variables.

2.2 Random vectors

Let X = (X1, . . . , Xd)
T be a vector with d ≥ 1 coordinates; X is a random vector if, and

only if, each coordinate Xi is a random variable. The concepts of distributions, densities,
and moments discussed in Section 2.1 extend to random vectors; these extensions are pre-
sented in Sections 2.2.1 and 2.2.2, respectively. The Gaussian random vector is presented
in Section 2.2.3. A brief overview of the polynomial chaos approximation for non-Gaussian
random vectors, a popular technique at Sandia National Laboratories and the probabilistic
methods community at large, is given in Section 2.2.4.

2.2.1 Joint distribution and density

Random vector X is defined by its joint cumulative distribution function, i.e.,

F (x) = Pr(X1 ≤ x1 ∩ · · · ∩Xd ≤ xd), x = (x1, . . . , xd)
T ∈ Rd, (2.10)

where Pr(A1 ∩ · · · ∩ An) is the probability that events A1, . . . , An are all true. If F is such
that

f(x) =
∂dF (x)

∂x1 · · · ∂xd

(2.11)

exists, then f is called the joint probability density function of X. As for the scalar
case, F is monotonic non-decreasing and takes values on [0, 1], and f is non-negative and
satisfies ∫

Rd

f(x) dx = 1. (2.12)

We note that the word “joint” in the above definitions is important since it implies that
all possible dependencies among the coordinates of X are completely described by f(x) or,
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equivalently, by F (x). For applications, we usually do not know all the interdependencies
between the coordinates of X so that the joint CDF and/or joint PDF are only partially
known.

The distribution of one or more coordinates of X can be obtained from the joint distri-
bution or the joint density of X. For example, the marginal distribution and marginal
density of X1 are

F1(x1) = F (x1,∞, . . . ,∞) and (2.13)

f1(x1) =

∫
Rd−1

f(x) dx2 · · · dxd =
dF1(x1)

dx1

(2.14)

respectively. Knowledge of marginal distributions F1, . . . , Fd is not, in general, equivalent to
knowledge of the complete joint CDF of X defined by Eq. (2.10).

2.2.2 Second-moment properties

We next apply the expectation operator used in Section 2.1.2 to the case of random vectors.
Define

µi = E[Xi],

ri,j = E[XiXj], and

ci,j = E[(Xi − µi) (Xj − µj)], (2.15)

for i, j = 1, . . . , d. The d × d correlation and covariance matrices of random vector
X are r = {ri,j} = E

[
XXT

]
and c = {ci,j} = E

[
(X− µ) (X− µ)T

]
, respectively, where

µ = (µ1, . . . , µd)
T is the mean vector. It can be shown that both r and c are symmetric

and positive-definite, and c = r−µ µT . For the special case where each coordinate of X has
zero mean, µ = 0 and r = c. The variance of X is given by the diagonal elements of c, i.e.,
Var[Xi] = ci,i, i = 1, . . . , d.

We remark that there is some ambiguity on the definition of correlation. The standard
deviation in probability theory is r = E

[
XXT

]
defined by Eq. (2.15). An alternative

definition used often in statistics is ρ = {ρi,j}, where

ρi,j =
ci,j√
ci,i cj,j

, (2.16)

is commonly referred to as the (Pearson) correlation coefficient between coordinates Xi

and Xj; we note that by Eq. (2.16), −1 ≤ ρi,j ≤ 1.

Quantities µ, r, c, and ρ are collectively referred to as the second-moment prop-
erties of X. Knowing the second-moment properties is much less information about X
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than is knowing the joint PDF, f(x) defined by Eq. (2.11), or even the marginal PDFs,
f1(x1), . . . , fd(xd) defined by Eq. (2.14).

Two special cases related to the interdependencies of the coordinates of X are of interest
and they are often confused. Random variables X1, . . . , Xd are independent if, and only if,

F (x1, . . . , xd) =
d∏

i=1

Fi(xi), or, equivalently f(x1, . . . , xd) =
d∏

i=1

fi(xi), (2.17)

where Fi and fi denote the marginal CDF and marginal PDF of random variable Xi, re-
spectively. The coordinates of X are said to be uncorrelated if, and only if, the covariance
matrix, c, is diagonal, meaning that ci,j = E[(Xi−µi)(Xj −µj)] = 0, i 6= j. In summary, in-
dependence implies requirements on the joint CDF and joint PDF, while requirements on the
second-moment properties are sufficient for random variables to be uncorrelated. The latter
is a much weaker condition than the former. It follows that if X1, . . . , Xd are independent,
then they are uncorrelated; the converse is not true in general.

2.2.3 The Gaussian random vector

We say X = (X1, . . . , Xd)
T is a Gaussian random vector with mean vector µ and covari-

ance matrix c, in short X ∼ N(µ, c) if, and only if, it has joint PDF

f(x) =
[
(2π)d det(c)

]−1/2
exp

[
−1

2

(
(x− µ)Tc−1(x− µ)

)]
, x ∈ Rd, (2.18)

or, equivalently, if it has joint CDF

F (x) =
[
(2π)d det(c)

]−1/2
∫ x1

−∞
· · ·

∫ xd

−∞
exp

[
−1

2

(
(u− µ)Tc−1(u− µ)

)]
du1 · · · dud (2.19)

where det(c) > 0 denotes the determinant of c.

Example 2.7: Consider the case of d = 2, µ = 0, c1,1 = c2,2 = 1, and c1,2 = c2,1 = ρ, where
|ρ| ≤ 1; this is referred to as the standard bivariate Gaussian vector. The joint PDF of
X = (X1, X2)

T is illustrated by Fig. 2.4. Contours of f(x) are also plotted for ρ = 0, −1/3,
and 3/4; when ρ = 0, the coordinates of X are uncorrelated. ♦

The Gaussian random vector has two important properties that prove very useful for
applications. First, uncorrelated Gaussian vectors are independent. To illustrate the second
property, let X ∼ N(µ, c) be a Gaussian random vector and let a and b be q × d and q × 1
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constant matrices. It can be shown that Y = aX + b is a Gaussian random vector with
mean aµ + b and covariance matrix aTc a. Hence, linear transformations of a Gaussian
vector are Gaussian vectors; a proof of this result is provided by [21], p. 67. Non-Gaussian
random vectors do not satisfy either property. For example, if X1 and X2 are independent
random variables distributed uniformly on intervals [a, b] and [c, d], respectively, such that
b− a = d− c, then the density of Y = X1 +X2 has a triangular shape (see [29], p. 136) so
that Y is not a uniform random variable.

2.2.4 Approximation by polynomial chaos

Polynomial chaos (PC) representations for non-Gaussian random variables are infinite series
of Hermite polynomials of standard Gaussian random variables with deterministic coeffi-
cients. They can be viewed as an extension to the classical use of infinite series of orthogonal
functions to represent certain classes of deterministic functions on the real line, e.g., the
Fourier series. For calculations, the infinite PC representations are truncated at a finite
number of terms, creating what are herein referred to as PC approximations.

As we will demonstrate, the use of PC approximations requires us to calculate the collec-
tion of deterministic coefficients that defines the approximation, and this can prove difficult
for some problems. However, once the coefficients are obtained, the use of PC approxima-
tions for representing non-Gaussian random variables is straightforward because they are
expressed simply as sums and products of independent standard Gaussian random variables.
PC approximations have been applied to a diverse set of problems in fluid, structural, and
thermal mechanics.

Consider the class of non-Gaussian, Rd−valued random variables, Y, that can be written
as a function of a standard Gaussian random vector, i.e.,

Y = g(X), (2.20)

where g : Rk → Rd is a deterministic mapping, X ∼ N(0, i) is an Rk− valued vector
of independent, identically distributed (iid), zero mean, unit variance Gaussian random
variables, and i denotes the k×k identity matrix. It is assumed that mapping g is such that
all coordinates of Y have finite variance.

The series [17, 23]

Yj = gj(X) =
∑

i1,i2,...,ik≥0

a
(j)
i1,i2,...,ik

hi1,i2,...,ik(X), j = 1, 2, . . . , d, (2.21)

is convergent in L2 and constitutes the polynomial chaos (PC) representation for co-

ordinate Yj of Y. Here, a
(j)
i1,i2,...,ik

, j = 1, 2, . . . , d, are deterministic coefficients that must be
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determined, and hi1,i2,...,ik are k−dimensional orthogonal Hermite polynomials given by [20]

hα,...,ω(X) = e
1
2
XT X

(
− ∂

∂Xα

)
· · ·

(
− ∂

∂Xω

)
e−

1
2
XT X, (2.22)

where X = (X1, . . . , Xk)
T and α, . . . , ω are indices in {0, . . . , k} that need not be different.

The Hermite polynomials have the properties

E
[
hαi,...,ωi

(X)hαj ,...,ωj
(X)

]
= E

[
hαi,...,ωi

(X)2
]
δij,

E [hαi,...,ωi
(X)] =

{
1, i = 0,

0, ∀i ≥ 1,
(2.23)

and define an orthogonal basis in L2 [16]. The coefficients of the series in Eq. (2.21) can be
calculated by exploiting the properties of Eq. (2.23). For example, the PC representation in
Eq. (2.21) simplifies to

Y = g(X1, X2) =
∞∑

i1,i2=0

ai1,i2 hi1,i2(X1, X2) (2.24)

for d = 1, k = 2, where a
(1)
i1,i2

= ai1,i2 and the first few Hermite polynomials of Eq. (2.22) are

h0,0(X1, X2) = 1,

h1,0(X1, X2) = X1,

h0,1(X1, X2) = X2,

h2,0(X1, X2) = X2
1 − 1,

h1,1(X1, X2) = X1X2,

h0,2(X1, X2) = X2
2 − 1. (2.25)

The coefficients of the series in Eq. (2.24) result from

E [Yj hj1,j2(X1, X2)] = E

[
∞∑

i1,i2=0

ai1,i2 hi1,i2(X1, X2)hj1,j2(X1, X2)

]

=
∞∑

i1,i2=0

ai1,i2E [hi1,i2(X1, X2)hj1,j2(X1, X2)]

= aj1,j2 E
[
hj1,j2(X1, X2)

2
]
, (2.26)

provided that the expectation can be calculated term by term. Under this condition, the
coefficients in Eq. (2.21) are given by

a
(j)
i1,i2,...,ik

=
E [Yj hj1,j2,...,jk

(X)]

E [hj1,j2,...,jk
(X)2]

, j = 1, 2, . . . , d. (2.27)
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Example 2.8: Let

Y = g(X) = eX , X ∼ N(0, 1),

so that Y is a lognormal random variable with CDF F (y) = Φ(ln y), y > 0, where Φ( · )
denotes the CDF of a N(0, 1) random variable. It follows that Y =

∑
k≥0 ak hk(X) is the

PC representation for Y , where (see [11])

ak =
1

k!
E

[
eX hk(X)

]
=

1√
2π k!

∫ ∞

−∞
exp

(
u− u2

2

)
hk(u) du =

1

k!
e1/2, k = 0, 1, . . . .

♦

Example 2.9: Let Y have a uniform distribution over [α, β], meaning that it can be ex-
pressed as

Y = g(X) = α+ (β − α) Φ(X), X ∼ N(0, 1).

The coefficients of the PC representation for Y are given by (see [12], Appendix B)

a0 =
α+ β

2
, a2k = 0, k = 1, . . .

a2k+1 = (−1)k (β − α) (2k)!

22k+1
√
π (2k + 1)! k!

, k = 0, 1, . . .

♦

For calculations, the infinite series discussed above must be truncated at a finite number
of terms. Let

Y
(p)
j = g

(p)
j (X) =

∑
i1,i2,...,ik≥0

i1+i2+···+ik≤q

a
(j)
i1,i2,...,ik

hi1,i2,...,ik(X), j = 1, 2, . . . , d, (2.28)

be the PC approximation for Yj in Eq. (2.21), which consists of Hermite polynomials up
to and including order q. The PC approximation for Yj has p+ 1 terms, where [17]

p =

q∑
s=1

1

s!

{
s−1∏
r=0

(k + r)

}
. (2.29)

For example, the PC approximation for the series in Eq. (2.24) is

Y (p) =
∑

i1,i2≥0
i1+i2≤q

ai1,i2 hi1,i2(X1, X2). (2.30)
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It can be shown that the PC approximation of Eq. (2.28) approaches the PC representation
of Eq. (2.21) in mean square as the number of terms retained, p, increases. However, this
property can be of limited use for some applications since, generally, p is small so that
asymptotic properties of Y

(p)
j do not apply. More discussion on the accuracy and convergence

properties of PC approximations is presented in [11, 12].
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Chapter 3

Simulation of random variables and
vectors

Essentials of random variables and vectors were presented in Chapter 2; we next present
methods for generating samples of these random quantities. Simple MATLAB algorithms are
presented to generate samples of Gaussian and non-Gaussian random variables and vectors.
As mentioned, these methods are well-established so our discussion will be brief. Methods
to verify that the generated samples achieve the desired properties are also presented.

3.1 Gaussian random variables and vectors

Let X be a standard Gaussian random variable, i.e., a Gaussian random variable with zero
mean and unit variance. In MATLAB, we can generate n independent samples of X using:

x=randn(1,n);

Further, we note that:

y = m + sqrt(v)*x;

will give n independent samples of Y , a Gaussian random variable with mean m and variance
v.

Next let X = (X1, . . . , Xd)
T denote a vector of d uncorrelated Gaussian random variables

with zero mean and unit variance. In MATLAB, we can generate n independent samples of
X using:

x=randn(d,n);

where each column of x is one sample of vector X. These samples can be mapped to samples
of Y, a Gaussian random vector with mean vector m and covariance matrix c, by the use of
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the Cholesky or eigenvalue decomposition of c:

b=transpose(chol(c));

[v,w]=eig(c);

for i=1:n,

y1(:,i) = m + b*x(:,i); % Cholesky decomposition

y2(:,i) = m + v*w.^(1/2)*x(:,i); % eigenvalue decomposition

end

where b is a lower triangular matrix of Cholesky factors for c, while w and v denote n × n
matrices of eigenvalues and eigenvectors, respectively, such that c = v*w*vT . Arrays y1

and y2 are both collections of samples of Y; it may be advantageous to use the eigenvalue
decomposition (y2) if n is large or c is not well-conditioned.

3.2 Non-Gaussian random variables and vectors

Let Y be a non-Gaussian random variable with CDF F ; we can make use of Eq. (2.9) to gener-
ate independent samples of Y . This approach, referred to as the Inverse Transform Method,
always applies but can be inefficient if F−1 must be calculated numerically. Alternative
techniques include the methods of Rejection, Decomposition, and Acceptance-Complement
(see [6], Chapter 2). The polynomial chaos approximation discussed in Section 2.2.4 can
also be used. However, this approach may prove infeasible since calculating the coefficients
of the approximation can be quite difficult (see Eq. (2.27)).

Example 3.1: Let X be an exponential random variable with mean 1/λ, λ > 0, so that
FX(x) = 1−exp (−λx) and F−1

X (u) = − ln(1−u)/λ. Let C be a Cauchy random variable with
parameter a > 0 so that FC(c) = 1/π arctan (c/a) + 1/2 and F−1

C (u) = a tan (π(u− 1/2)).
In MATLAB, we can generate n independent samples of X and C by:

u=rand(1,n);

x=-log(1-u)/lambda;

c=a*tan(pi*(u-1/2));

A histogram of 1000 independent samples of U is illustrated by Fig. 3.1(a). The histogram
of the corresponding samples of X and C are illustrated by Fig. 3.1(b) and (c) assuming
λ = a = 1. ♦

The simulation of non-Gaussian random vectors with arbitrary distribution requires
knowledge of the joint CDF which, as mentioned, is usually unknown for problems of prac-
tical interest. One class of non-Gaussian random vectors useful in practice are the so-called
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Figure 3.1. Histograms of 1000 independent samples of:
(a) uniform random variable U , (b) exponential random vari-
able X, and (c) Cauchy random variable C.
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translation vectors, defined by Y = h(X), where X = (X1, . . . , Xd)
T is a Gaussian vector

with zero mean and covariance matrix c = {ci,j = E[XiXj]} such that ci,i = 1, i = 1, . . . , d,
and

Yi = hi(Xi) = F−1
i [Φ(Xi)] . (3.1)

In this case, samples of translation random vector Y = (Y1, . . . , Yd)
T can be generated from

samples of Gaussian random vector X (Section 3.1) and the mapping defined by Eq. (3.1).
The method is attractive since all that is required are the marginal distributions for each
coordinate of Y, and the second-moment properties of X. One shortcoming of this approach
is that the user must specify the covariance of the Gaussian vector X instead of the non-
Gaussian vector Y. Further, E[Yi Yj] = E[hi(Xi)hj(Xj)] 6= ci,j so that the correlation of
Y and X are, in general, different. Approximate methods to address this issue have been
developed (see, for example, [5]).

3.3 Verification

Various checks are available to verify that samples of a random variable or vector created
by the above methods achieve the desired properties. In general, it is useful to check the
mean, variance, covariance, and marginal distribution of the samples. In MATLAB, we can
make use of functions mean, var, cov, and hist, respectively, to do this. More sophisticated
verification checks for the marginal distribution are available; examples include the Chi-
Square Goodness of Fit and Kolmogorov-Smirnov Tests (see [24], Chapter 10).

Example 3.2: Let X = (X1, . . . , Xd)
T be a zero-mean Gaussian random vector with d = 20

coordinates such that E[XiXj] = e−|i−j|/5, i, j = 1, . . . , 20. Suppose we have used the
methods from Section 3.1 to generate n = 1000 samples of X, denoted by d× n array x. In
MATLAB:

% estimate and plot mean vector

m=mean(x’);

stairs([1:d],m)

% estimate and plot covariance matrix

c=cov(x’);

mesh([1:d],[1:d],c)
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Figure 3.2. Second-moment properties of Gaussian ran-
dom vector: (a) sample mean (dashed line) and exact mean
(solid line), (b) exact covariance matrix, and (c) estimated
covariance matrix.

% estimate and plot marginal PDF of coordinate 1

nb=20;x1=x(1,:);

[nx,xx]=hist(x1,nb);
dx=(max(x1)-min(x1))/nb;

f1=nx/(n*dx);

bar(xx,f1,’w’)

can be used to check the mean, covariance, and marginal histograms of the samples. These
results are illustrated by Figs. 3.2 and 3.3. Estimates are based on 1,000 Monte Carlo
samples. ♦
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Chapter 4

Essentials of stochastic processes

Recall random vector X = (X1, . . . , Xd)
T discussed in Section 2.2. We next consider the case

where each coordinate of X is indexed by t so that we write X = X(t). Typically, t is a time
coordinate defined on t ∈ [0,∞), an uncountable index set. If d = 1, we call X(t) = X(t) a
stochastic process, and if d > 1, we call X(t) a vector stochastic process. Four samples
of a stochastic process are illustrated by Fig. 4.1 showing that the value for X changes in
time t as well as from sample to sample. If X is indexed by a space coordinate u ∈ D ⊂ Rq

rather than time t, then X(u) is called a random field. There are also situations where X
can be indexed by coordinates in both time and space; in this case, we refer to X(t,u) as
a space-time stochastic process. The remainder of this report is limited to scalar and
vector stochastic processes; many of the definitions, concepts, and numerical algorithms can
be extended to consider random fields and/or space-time stochastic processes.

Example 4.1: Let X(t) = A cos (10t), t ≥ 0, where A is a random variable uniformly
distributed on [0, 1]. X(t) is a stochastic process because at any fixed time t0, X(t0) is a
uniform random variable. Three samples of X(t) are illustrated by Fig. 4.2 for 0 ≤ t ≤ 1. ♦

Example 4.2: Let B(t), t ≥ 0, be a real-valued stochastic process such that it: (i) starts at
zero, i.e., B(0) = 0, and (ii) has increments ∆B(t) = B(t+∆t)−B(t) over non-overlapping
time intervals ∆t > 0 that form a sequence of independent, Gaussian random variables with
zero mean and variance ∆t. By (ii), the increments of this process satisfy ∆B(t) ∼ N(0,∆t).
Process B(t) is called a Brownian motion (or Wiener process); three independent samples
of B(t) are illustrated by Fig. 4.3. This model for Brownian motion was first developed by
Einstein in 1905 to represent the random movement of particles suspended in a fluid. ♦
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Figure 4.3. Three samples of the Brownian motion, B(t).

4.1 Finite dimensional distributions and densities

Let X(t), t ≥ 0, be a stochastic process, and let ti ≥ 0, i = 1, . . . , n denote arbitrary distinct
times in [0,∞). Stochastic process X(t) is defined by the following collection of CDFs

Fn (x1, . . . , xn; t1, . . . , tn) = Pr ({X(t1) ≤ x1} ∩ · · · ∩ {X(tn) ≤ xn})
= Pr (∩n

i=1 {X(ti) ≤ xi}) , (4.1)

where each xi, i = 1, . . . , n, is a point on the real line, and Pr(A1 ∩ · · · ∩ An) is the prob-
ability that events A1, . . . , An are all true. The collection defined by Eq. (4.1) are called
the finite dimensional distributions of order n of X(t). The complete probability law of
process X(t) requires this collection be defined for all times t1, . . . , tn ∈ [0,∞), all intervals
{(−∞, xi], i = 1, . . . , n} on the real line, and all integers n ≥ 1. Hence, there is an infinite
number of CDFs we must know in order to specify a stochastic process. This is in contrast
to the case of random variables and vectors which are completely defined by a single CDF
(see Eqs. (2.1) and (2.10), respectively).

The definition for the collection of finite dimensional distributions for scalar process X(t)
given by Eq. (4.1) can be extended to the case when X(t) = (X1(t), . . . , Xd(t))

T is a vector
stochastic process with d > 1 coordinates, i.e.,

Fn(x(1), . . . ,x(n); t1, . . . , tn) = Pr
(
∩n

i=1

{
X(ti) ∈ ×d

k=1(−∞, xi,k]
})
, (4.2)

where n ≥ 1 is an integer, each ti ≥ 0, i = 1, . . . , n, are arbitrary, distinct times, and
each x(i) ∈ Rd, i = 1, . . . , n. A corresponding collection of finite dimensional densities,
provided they exist, can be computed by differentiating Eq. (4.2) with respect to x. For
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example, for scalar stochastic process X(t) = X(t) we have

fn(x1, . . . , xn; t1, . . . , tn) =
∂n

∂x1 · · · ∂xn

Fn(x1, . . . , xn; t1, . . . , tn) (4.3)

for all n ≥ 1 and all partitions t1, . . . , tn.

The marginal CDF / PDF of stochastic process X(t) are the distribution / density
of random variable X(t′), where t′ is a fixed point in time, and are denoted by F1(x1, t

′)
and f1(x1, t

′), respectively. Generally, the information available on a stochastic process is
sufficient to estimate at most its first and second order finite dimensional distributions.

4.2 Classes of stochastic processes

Stochastic processes can be organized into classes, where each member of the class satisfies
certain properties. In the following sections, we provide brief summaries of certain classes
of stochastic processes, including the class of stationary, ergodic, Gaussian, translation,
diffusion, and random point processes. These particular classes are frequently used for
applications.

4.2.1 Stationary processes

Consider the special case where the collection of CDFs defined by Eq. (4.2) are shift-invariant,
i.e.,

Fn(x(1), . . . ,x(n); t1, . . . , tn) = Fn(x(1), . . . ,x(n); t1 + τ, . . . , tn + τ), (4.4)

for any n ≥ 1, any distinct times ti, i = 1, . . . , n, and any shift τ . In this case, we say that
X(t) is a stationary or strictly stationary stochastic process. It can be shown that the
marginal distribution of a stationary process is time-invariant.

Example 4.3: Let X(t) = α cos (ω t+ Θ), t ≥ 0, be a stochastic process, where Θ is a
random variable taking a uniform distribution over [0, 2π], and α and ω are deterministic
parameters. It can be shown (see [29], Section 11-4) that X is a strictly stationary process.
♦

Example 4.4: The Brownian motion, B(t), is not a stationary process because its marginal
distribution, F (x; t) = Pr(B(t) ≤ x) = Φ(x/

√
t), changes in time. ♦
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4.2.2 Ergodic processes

Ergodicity deals with relating statistical, or ensemble, averages of a stationary stochastic
process to time averages of its individual sample functions. The interchangeability of en-
semble and time averages has considerable appeal in practice because estimates of certain
properties of a process can be obtained from a single “long” sample instead of from multiple
independent samples. The concept of ergodicity is very important in the practical applica-
tion of random vibrations and random signal analysis because analysts frequently have very
little data with which to characterize the underlying stochastic process [42].

The following is referred to as the Ergodic Theorem (see [18], Section 3.5): X(t) is an
ergodic stochastic process if ensemble averages of X(t) equal time averages of X(t), i.e.,

E [h(X(t))] = lim
τ→∞

1

τ

∫ τ/2

−τ/2

h(X(u)) du (4.5)

almost surely for any real-valued measurable function h such that E [h(X(t))] <∞ (see [21],
p. 120). Weaker ergodicity conditions can be defined by restricting the form of the function h
in Eq. (4.5). For example, we say X(t) is ergodic in the mean if Eq. (4.5) holds for h(x) = x.

In general, it is very difficult to verify ergodicity properties. In practice, therefore, er-
godic properties are generally regarded as hypotheses. Because of their great utility, ergodic
conditions are often assumed to be valid in physical situations where we expect them to be
true.

4.2.3 Gaussian processes

X(t) is a Gaussian stochastic process if, and only if, all of its finite dimensional distri-
butions are Gaussian. Likewise, scalar process X(t) is Gaussian if, and only if, the random
vector (X(t1), . . . , X(td))

T has the PDF given by Eq. (2.18) for every partition t1, . . . , td of
[0,∞), and every integer d ≥ 1.

Example 4.5: The Brownian motion, B(t), is a Gaussian process since random vector
(B(t1), . . . , B(td))

T can be expressed as a linear transformation of d mutually independent
Gaussian random variables, i.e., (from [32], Chapter 6)

B(t1)
B(t2)

...
B(td)

 =


1 0 0 · · · 0
1 1 0 · · · 0
...

...
1 1 1 · · · 1




B(t1)
B(t2)−B(t1)

...
B(td)−B(td−1)
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and linear transformations of Gaussian random variables are Gaussian. This expression holds
for any partition t1, . . . , td of [0,∞), and every integer d ≥ 1. ♦

Example 4.6: Let Z = (Z1, . . . , Zn)T be a Gaussian random vector. Then

X(t) =
n∑

k=1

Zk wk(t), t ≥ 0,

is a Gaussian stochastic process for any collection {w1(t), . . . , wn(t)} of real-valued and con-
tinuous functions of time t. This follows because X(t) is a linear transformation of Gaussian
random vector Z (see Section 2.2.3). ♦

4.2.4 Translation processes

Let X(t) be a vector Gaussian stochastic process with d ≥ 1 coordinates, and define

Yi(t) = hi [Xi(t)] , i = 1, . . . , d, (4.6)

where each hi is a memoryless, i.e., time-invariant, mapping. Vector Y(t) = (Y1(t), . . . , Yd(t))
T

defined by Eq. (4.6) is referred to as a translation process. It can be shown that if Xi(t)
is a stationary process, so is Yi(t). Further, Y(t) is Gaussian if, and only if, each hi is
linear. Translation processes are very useful for applications because the marginal CDF of a
translation process can be arbitrarily specified (see Example 4.7), and their implementation
is straightforward.

Example 4.7: Let

Y (t) = h[X(t)] = F−1 ◦ Φ[X(t)], t ≥ 0,

where X(t) is a Gaussian process with zero mean and unit variance, F is an arbitrary CDF,
and Φ is the CDF of a standard Gaussian random variable. Y (t) is a translation process
with marginal distribution

Pr (Y (t) ≤ y) = Pr
(
F−1 ◦ Φ [X(t)] ≤ y

)
= Pr

(
X(t) ≤ Φ−1 [F (y)]

)
= F (y).

This important result demonstrates that the marginal CDF of a translation process can be
arbitrarily specified. ♦
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Example 4.8: Let F1 denote the CDF of an exponential random variable with parame-
ter λ > 0 (see Example 2.2), and let F2 denote the CDF of a random variable uniformly
distributed on interval [α, β] (see Example 2.3). By the results from Example 4.7

Y1(t) = F−1
1 ◦ Φ[X(t)] = −1

λ
ln (1− Φ[X(t)]) , and

Y2(t) = F−1
2 ◦ Φ[X(t)] = α+ (β − α) Φ[X(t)]

are non-Gaussian translation processes with marginal CDFs F1 and F2, respectively. ♦

4.2.5 Diffusion processes

A stochastic differential equation (SDE) is a differential equation in which one or more terms
is a stochastic process, thus resulting in a solution which is itself a stochastic process. We
next consider stochastic processes that can be written as the solution to an SDE of the
following type

dX(t) = a(X(t), t) dt+ b(X(t), t) dB(t), t ≥ 0, (4.7)

where a and b are d×1 and d×d′ matrices, respectively, and B(t) is a vector of d′ independent
Brownian motions. The solution to Eq. (4.7), namely X(t), is a diffusion process (also
called an Itô process) with drift vector a and diffusion matrix bbT . It can be shown that
X(t) is a Gaussian process when a is linear in X and b does not depend on X. Diffusion
processes are quite practical since the numerical solution to Eq. (4.7) is straightforward using
finite difference schemes.

Example 4.9: Let

Ẍ(t) + 2 ζ ω0 Ẋ(t) + ω2
0 X(t) = W (t), t ≥ 0

be the equation governing the motion of a linear, single degree-of-freedom oscillator with
resonant frequency ω0, damping ratio ζ, initial conditions X(0) and Ẋ(0), subject to white
noise W (t) with intensity a. White noise is introduced later in Example 4.17. Let X1(t) =
X(t) and X2(t) = Ẋ(t); vector X(t) = (X1(t), X2(t))

T is a diffusion process since

d

(
X1(t)
X2(t)

)
=

(
X2(t)

−ω2
0X1(t)− 2ζω0X2(t)

)
dt+

(
0√
a π

)
dB(t)

where W (t) can be interpreted as the time-derivative of B(t), the Brownian motion. This is
not a rigorous definition, as B is not mean-square differentiable, but it is a useful interpre-
tation for our discussion and is often used. Further, it can be shown that X(t) and Ẋ(t) are
Gaussian processes. ♦
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Figure 4.4. Three samples of the Ornstein-Uhlenbeck pro-
cess with α = β = x0 = 1.

Example 4.10: Let

dX(t) = −αX(t) dt+ β dB(t), X(0) = x0, t ≥ 0,

where α > 0 and β are constants; X(t) is called the Ornstein-Uhlenbeck process [40].
A closed-form expression for X(t) in terms of B(t) does not exist, but the moments of any
order of X(t) can be calculated. Three samples of X(t) are illustrated by Fig. 4.4 assuming
α = β = x0 = 1. ♦

Example 4.11: The following stochastic differential equation

dX(t) = αX(t) dt+ β X(t) dB(t), X(0) = x0, t ≥ 0

has an analytic solution, given by X(t) = x0 exp [(α− β2/2)t+ βB(t)]. X(t) is referred to
as a geometric Brownian motion and has been used quite extensively in mathematical
modeling of the financial markets. ♦

4.2.6 Random point processes

A random point process is a mathematical model for a physical phenomenon characterized
by highly localized events distributed randomly in time and/or space. The basic building
block of random point processes is the Poisson process; it is associated with counting a
random numbers of points or events.
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Figure 4.5. Three samples of the Poisson counting process,
N(t).

Example 4.12: Let N(t) denote the random number of events that occur during time in-
terval [0, t] such that

Pr(N(t) = n) =
(λ t)n

n!
e−λ t

is the probability of exactly n events occurring in [0, t], and λ > 0 is a parameter. N(t) is
called a homogeneous Poisson counting process, takes discrete values in {0, 1, . . .}, and
“jumps” from one value to the next at random times. These jump times of N(t) are also of
interest and are denoted by random variables T1, . . . , TN(t). We can show that:

1. E[N(t)] = λ t so that parameter λ represents the average number of events occurring
per unit time;

2. The increments N(t)−N(s), t > s, over non-overlapping time intervals are stationary
and independent; and

3. The inter-arrival times, defined by X1 = T1, X2 = T2 − T1, X3 = T3 − T2, . . . , are iid
exponential random variables with parameter λ.

Three independent samples of N(t), 0 ≤ t ≤ 1, are illustrated by Fig. 4.5 for λ = 10,
demonstrating that N(1) = 8, 14, and 8 for samples 1, 2, and 3, respectively. Further, the
jump times of sample 1 are T1 ≈ 0.24, T2 ≈ 0.29, . . . , T8 ≈ 0.99. ♦

45



Many random point processes are modified versions of the Poisson counting process.
These include the translated, compound, thinned, and filtered Poisson processes [38]. Fil-
tered Poisson processes are characterized by pulses of random shape and/or random magni-
tude arriving at random times. This type of model has been use to represent, for example,
damage growth in systems, wind, earthquake, and traffic loads, and non-Gaussian white
noise [26]. We have applied this model at Sandia to represent the force imparted to the
nose of an aircraft due to impact with a sequence of moisture particles suspended in the
atmosphere during a storm encounter [7, 34].

Let {N(t), t ≥ 0} be the homogeneous Poisson counting process depending on parameter
λ > 0 introduced by Example 4.12, let T1, . . . , TN(t) denote the corresponding (random)
jump times of N during [0, t], and let Y1, . . . , YN(t) denote a sequence of random variables
that define the magnitude of each pulse. The process

X(t) =


0 if N(t) = 0
N(t)∑
k=1

w(t, Tk, Yk) if N(t) > 0
(4.8)

is a filtered Poisson process, where w(t, T, Y ) defines the shape of each pulse, occurring
at time T with magnitude Y . Further, we can show X(t) is a stationary process because λ
is time-invariant. Non-stationary filtered Poisson processes depending on non-homogeneous
Poisson counting processes with intensity λ(t) are briefly considered in Example 4.23.

Example 4.13: To illustrate the filtered Poisson process, let {Yk} be a sequence of inde-
pendent zero-mean Gaussian random variables with a variance of 9, and let w(t, T, Y ) =
Y (t− T ) e−5(t−T ), t ≥ T , denote the shape of each pulse. Samples of X(t) are illustrated by
Fig. 4.6 assuming λ = 1/2 and λ = 5. It can be shown that this particular X(t) approaches
a Gaussian process as λ→∞. ♦

4.3 Second-moment properties

In Section 2.2.2, we defined the second-moment properties of a random vector. The second-
moment properties of a stochastic process are very similar except that they are, in general,
functions of time. Let t and s denote two times; the second-moment properties of vector
stochastic process X(t) are

µ(t) = E[X(t)]

r(t, s) = E[X(t)X(s)T ]

c(t, s) = E[(X(t)− µ(t)) (X(s)− µ(s))T ], (4.9)
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Figure 4.6. Three samples of a filtered Poisson process
assuming: (a) λ = 1/2 and (b) λ = 5.

which correspond to the mean, correlation, and covariance functions of X, respectively. The
second-moment properties of X consist of the pairs (µ, r) or (µ, c); the triple (µ, r, c) is
redundant since c(t, s) = r(t, s)− µ(t) µ(s)T .

The variance and mean-square value of the process are special cases of the covariance
and correlation functions, and they are often confused. In particular, c(t, t) and r(t, t) are
the variance and mean-square value of X(t), respectively. By Eq. (4.9), it follows that the
variance and mean-square value of X(t) are identical if, and only if, the mean function is
zero. Further, the standard deviation and root-mean-square (RMS) values of X(t)
are related to the square root of the variance and the square root of the mean-square values
of X(t), respectively.

Certain properties of the correlation and covariance functions are of interest. Let ri,j(t, s)
and ci,j(t, s) denote the elements of correlation and covariance matrices r(t, s) and c(t, s).
We note that:

1. Elements ri,i and ri,j, i 6= j are referred to as the auto- and cross-correlation
functions of X(t), respectively;

2. Elements ci,i and ci,j, i 6= j are referred to as the auto- and cross-covariance
functions of X(t), respectively;

3. The cross-correlations and cross-covariances satisfy ri,j(t, s) = rj,i(s, t) and ci,j(t, s) =
cj,i(s, t);

4. If the cross-correlations are all zero, i.e., if ri,j(t, s) = 0, i 6= j, ∀t, s ≥ 0, then
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coordinates Xi(t) and Xj(t) of X(t) are said to be orthogonal; and

5. If the cross-covariances are all zero, i.e., if ci,j(t, s) = 0, i 6= j, ∀t, s ≥ 0, then coordi-
nates Xi(t) and Xj(t) of X(t) are said to be uncorrelated.

The second-moment properties of a stochastic process are very useful for applications
because they can be directly estimated from data. However, as is the case for random
variables and vectors, knowing only the second-moment properties of a process is significantly
less information than knowing the collection of CDFs or PDFs defined by Eqs. (4.2) and (4.3).

Example 4.14: Recall the Ornstein-Uhlenbeck process introduced by Example 4.10. The
mean, correlation, and covariance functions for X(t) are given by

µ(t) = x0 e
−αt, t ≥ 0

r(t, s) =

[
x2

0 e
−2α min(t,s) +

β2

2α

(
1− e−2α min(t,s)

)]
e−α|t−s|, t, s ≥ 0

c(t, s) =
β2

2α

(
1− e−2α min(t,s)

)
e−α|t−s|, t, s ≥ 0,

and are illustrated by Fig. 4.7 assuming x0 = β = 1 and α = 1/4. ♦

Example 4.15: Recall the single degree-of-freedom oscillator driven by white noise with
intensity a > 0 introduced by Example 4.9. For the special case of a = 1 and zero initial
conditions, i.e., X(0) = Ẋ(0) = 0, then ([39], p. 176)

µ(t) = 0, t ≥ 0,

r(t, s) = c(t, s) =

[(
cos βτ +

ζω0

β
sin βτ

)
γ(s)− ω2

0

β
φ(s) sin βτ

]
e−ζω0τ , t ≥ s,

where β = ω0

√
1− ζ2 denotes the damped natural frequency of the oscillator, τ = t−s ≥ 0,

and

γ(s) =
1

4β2

[
β2 − (ζ2ω2

0 + β2 − ζ2ω2
0 cos 2βs+ βζω0 sin 2βs) e−2ζω0s

ζω0 (ζ2ω2
0 + β2)

]
φ(s) =

1

4β2
(1− cos 2βs) e−2ζω0s, s ≥ 0.

♦
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Figure 4.7. Second-moment properties of the Ornstein-
Uhlenbeck process with x0 = β = 1, α = 1/4: (a) mean,
µ(t), (b) variance, c(t, t), (c) correlation, r(t, s), and (d) co-
variance, c(t, s).
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4.3.1 Weakly stationary processes

Stationary stochastic processes were defined in Section 4.2.1. Weaker definitions of stationary
processes can be defined that are based only on the second-moment properties. Consider
process X(t) that satisfies the following:

1. The mean function µ(t) = µ is time-invariant, and

2. The correlation and covariance functions, r(t, s) = r(τ) and c(t, s) = c(τ), depend only
on the shift, τ = t− s.

In this case we say that X(t) is weakly stationary. It follows from property 2 above that
the variance of a weakly stationary process is given by c(0) and is time-invariant. Further,
property 1 listed in Section 4.3 implies ri,j(τ) = rj,i(−τ).

The concepts of strict stationarity and weak stationarity are very different. The former
requires conditions on the finite dimensional distribution functions (see Eq. (4.4)), while
the latter only requires conditions on the second-moment properties. Hence, as its name
implies, strict stationarity is not implied by weak stationarity. Assuming finite variance, a
process that satisfies the conditions defined by Eq. (4.4) is also stationary in the weak sense;
the converse is not true in general. A notable exception is the Gaussian process, which is
stationary if, and only if, it is weakly stationary.

Example 4.16: The Ornstein-Uhlenbeck process and the response of a linear oscillator
driven by white noise are non-stationary processes because, as demonstrated by Exam-
ples 4.14 and 4.15, the covariance functions of both processes depend on two time argu-
ments. However, both processes become weakly stationary as t→∞. This follows since, by
Example 4.14

lim
t→∞

µ(t) = 0 and lim
t→∞
s→∞

r(t, s) = lim
t→∞
s→∞

c(t, s) =
β2

2α
e−α|t−s|

demonstrating that as t→∞, the Ornstein-Uhlenbeck process becomes a weakly stationary
process because the mean is time-invariant, and the correlation / covariance functions depend
only on time shift t − s. The asymptotic behavior of the second-moment properties of this
process can be observed in Fig. 4.7. For example, the mean and variance approach 0 and
β2/2α = 2, respectively. Further, the correlation / covariance function of the response of
the linear oscillator defined in Example 4.15 has the following asymptotic properties,

lim
t→∞
s→∞

r(t, s) = lim
t→∞
s→∞

c(t, s) =

(
cos βτ +

1

4 β (ζ2ω2
0 + β2)

sin βτ

)
e−ζω0|τ |,

which is a function of a single time argument, τ = t− s. ♦
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4.3.2 Spectral density

The spectral density provides an alternative representation for the second-moment properties
of a weakly stationary process, and it is perhaps the most common way to define the second-
moment properties of a stochastic process for engineering applications. It is also commonly
called a power spectral density and abbreviated as PSD.

Consider a weakly stationary real-valued stochastic process X(t), t ≥ 0 with correlation
function r(τ) = E[X(t)X(t+ τ)]. The two-sided spectral density function is the Fourier
transform of the correlation function, i.e.,

s(ω) =
1

2π

∫ ∞

−∞
e−iωτ r(τ) dτ, −∞ < ω <∞, (4.10)

where i =
√
−1. It is common to instead use the one-sided spectral density function

defined for non-negative frequencies,

g(ω) =
1

π

∫ ∞

0

r(τ) cos (ωτ) dτ, ω ≥ 0, (4.11)

where g(ω) = 2 s(ω), ω ≥ 0. We note that: (i) s(ω), g(ω) ≥ 0, (ii) the area under each is
equal to r(0), and (iii) the spectral density contains the same information as the correlation
function, so the second moment properties of X(t) may be completely specified by the mean
and spectral density. Some common spectral density / correlation function pairs are listed
in Table 4.1.

Example 4.17: Let W (t), t ≥ 0, be a stochastic process with one-sided PSD g(ω) = a,
0 ≤ ω <∞, and correlation function r(τ) = π a δ(τ), where δ(τ) is the Dirac delta function,
and parameter a > 0 is referred to as the intensity of W (t). By this construction, for any
two times t1 6= t2, W (t1) and W (t2) are uncorrelated. Further, the variance of W (t) is
unbounded for any t. Process W is commonly referred to as white noise because of its
similarity to “white light”, which has the property that its spectral density is flat over the
visible portion of the electromagnetic spectrum. White noise is used extensively in applied
science and engineering to approximate a great number of physical phenomena. However,
it should be obvious that such a process is an abstraction or a limiting process; it is not
physically realizable. ♦

Example 4.18: Recall again the linear, single degree-of-freedom oscillator introduced in
Example 4.9. In this example, we replace white noise W (t) with a zero-mean, stationary
process with one-sided PSD g(ω) that is not necessarily white. Due to the presence of
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Table 4.1. Some common correlation and spectral density
functions (taken from [39], Table 2.1).

Name Correlation, r(τ) One-sided PSD, g(ω)

White noise π a δ(τ) a

Band-limited white noise
a

τ
sin(ω̄ τ)

{
a 0 ≤ ω ≤ ω̄

0 ω > ω̄

Rectangular pulse
2 a

τ
sin

(
(ω2 − ω1) τ

2

)
cos

(
(ω2 − ω1) τ

2

) {
a ω1 ≤ ω ≤ ω2

0 else

First-order Markov σ2 exp (−λ |τ |) 2σ2 λ

π (ω2 + λ2)

Second-order Markov σ2 exp (−λ |τ |)(1 + λ |τ |) 4σ2 λ3

π (ω2 + λ2)2
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damping (ζ > 0), response X(t) will approach a stationary process as t→∞ with one-sided
spectral density (see [39], p. 196)

gX(ω) =
g(ω)

(ω2 − ω2
0)

2 + (2 ζ ω ω0)2
, ω ≥ 0.

♦

Example 4.19: LetX(t) be a zero-mean, unit-variance, band-limited Gaussian process with
parameters a = 1/ω̄ and ω̄ = 5,000 rad/sec (see Table 4.1). Let Y (t) be a non-Gaussian
stochastic process with identical second-moment properties, but marginal distribution of a
student-t random variable (see [43], Section A.2). One sample of band-limited white noise
processes X(t) and Y (t) are illustrated by Fig. 4.8(a) and (b), respectively. The time history
plots of each sample differ considerably, but X(t) and Y (t) have identical one-sided PSD. In
fact, there are an infinite number of non-Gaussian stochastic processes, each with the same
PSD as the Gaussian process X(t), but with very different sample functions; the process
Y (t) shown in Fig. 4.8(b) is simply one example. This example illustrates yet again that
second-moment properties do not provide enough information to uniquely define a stochastic
process. ♦

The concept of spectral density can be extended to the case of vector stochastic processes.
If X(t) = (X1(t), . . . , Xd(t))

T is a weakly stationary vector stochastic process with correlation
functions rk,l(τ) = E[Xk(t)Xl(t + τ)], k, l = 1, . . . , d, then the two-sided spectral density of
X(t) is a matrix with coordinates

sk,l(ω) =
1

2π

∫ ∞

−∞
rk,l(τ) e

−iωτ dτ, k, l = 1, . . . , d. (4.12)

The diagonal and off-diagonal elements of this matrix are referred to as auto- and cross-
spectral densities, respectively. Alternate definitions for the spectral density of X(t) are
given by

g(ω) = s(ω) + s(−ω), and

h(ω) = −i (s(ω)− s(−ω)) . (4.13)

As discussed in Section 4.5, it is possible to extend the concept of spectral density to spe-
cial types of non-stationary processes. One such extension, referred to as an evolutionary
spectral density, is a function of time and frequency and captures the frequency content
of a non-stationary process in a small vicinity of each time [31].
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Figure 4.8. One sample of two stochastic processes with
identical PSD: (a) X(t), and (b) Y (t).
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4.4 Spectral representation of stochastic processes

For applications, it is often useful to use a spectral representation for a stochastic process.
We consider two types. First, we use the spectral representation theorem to express any
weakly stationary process by a superposition of harmonics with random amplitude and/or
phase. Second, we apply the Karhunen-Loéve representation to express any process with
finite variance as a linear combination of a countable number of deterministic functions with
random coefficients. Methods to create samples of stochastic processes from either of these
representations will be discussed in Chapter 5.

4.4.1 Spectral representation theorem

If X(t) = (X1(t), . . . , Xd(t))
T is a weakly stationary vector stochastic process with spectral

densities given by Eq. (4.12) then, by the spectral representation theorem, X(t) can be
expressed via the following mean-square integral

X(t) =

∫ ∞

0

[cos(ωt) dU(ω) + sin(ωt) dV(ω)] , (4.14)

where U and V are zero-mean stationary vector processes with orthogonal increments, i.e.,

E [dUk(ω) dUl(ν)] = E [dVk(ω) dVl(ν)] = δ(ω − ν) gk,l(ω) d(ω),

E [dUk(ω) dVl(ν)] = −E [dVk(ω) dUl(ν)] = δ(ω − ν)hk,l(ω) d(ω), (4.15)

for k, l = 1, . . . , d, where δ(ω) = 1 for ω = 0 and zero otherwise. The discussion of mean-
square integration and second-moment calculus in general is beyond the scope of this report;
see [21], Section 3.9, for more information on these topics. By Eq. (4.14), any weakly
stationary stochastic process can be represented by a superposition of harmonics with random
amplitude and phase.

4.4.2 Karhunen-Loéve representation

An alternative to the spectral representation theorem is as follows. Let X(t), a ≤ t ≤ b,
be a stochastic process with zero mean and covariance function c(t, s) = E[X(t)X(s)]; the
derivation that follows can be generalized for the case of vector processes. The Karhunen-
Loéve representation (K-L) of X(t) is given by

X(t) =
∞∑

k=1

√
λk φk(t)Uk, (4.16)
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and can be used to obtain a parametric representation for X(t) [17]. In this representation,
{λk, φk(t), k ≥ 1} are the eigenvalues and eigenfunctions, respectively, of c(t, s), and satisfy
the integral equation ∫ b

a

c(t, s)φk(s) ds = λk φk(t), (4.17)

and each Uk is a random variable such that

Uk =
1√
λk

∫ b

a

X(t)φk(t) dt. (4.18)

It can be shown that the Uk are iid N(0, 1) random variables if X(t) is a Gaussian process.
The K-L representation can be useful in applications since it provides alternative definitions
for stochastic processes as functions of a countable number of random variables. However,
the K-L representation can be difficult to obtain.

Example 4.20: Consider the Brownian motion B(t) introduced in Example 4.2. The K-L
representation of B(t) defined on interval 0 ≤ t ≤ a is given by Eq. (4.16) with (see [29],
p. 415)

λk =

(
2 a

π(2k + 1)

)2

φk(t) =

√
2

a
sin

(
π(2k + 1)t

2a

)
and {Uk} a sequence of independent N(0, 1) random variables. ♦

Example 4.21: Let X(t), −a ≤ t ≤ a, be a stationary Gaussian process with zero mean
and correlation r(τ) = E[X(t)X(t+ τ)] = e−|τ |. The K-L representation of X(t) is given by
Eq. (4.16) with (taken from [41]),

λk =
2

θ2
k + 1

,

φ2k(t) =
cos (θ2kt)√
a+ sin (2aθ2k)

2θ2k

, and φ2k−1(t) =
sin (θ2k−1t)√
a− sin (2aθ2k−1)

2θ2k−1

,

where the θk come from the solution to the following characteristic equation,

1− θ2k tan (a θ2k) = 0, and

θ2k−1 + tan (a θ2k−1) = 0.

and {Uk} form a sequence of iid N(0, 1) random variables.
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This example illustrates one unfavorable feature of the K-L representation when used for
applications. Suppose we truncate the K-L representation for X(t) at 2n terms, i.e.,

X(2n)(t) =
2n∑

k=1

√
λk φk(t)Uk,

Process X(t) is known to be stationary, but

E[X(2n)(t)X(2n)(s)] =
2n∑

k=1

λk φk(t)φk(s)

=
n∑

k=1

2

θ2
2k + 1

φ2k(t)φ2k(s) +
n∑

k=1

2

θ2
2k−1 + 1

φ2k−1(t)φ2k−1(s)

cannot be written as a function of time lag τ = t−s, meaning that the K-L representation for
X(t) based on 2n random variables is not stationary (refer to Section 4.3.1), and this is true
no matter how may terms n are retained in the sum. Hence, truncated K-L representations
for stationary processes are, in general, non-stationary. The repercussions of this result
must be assessed on a case by case basis; refer to [11] for a detailed discussion on a specific
example. ♦

4.5 Special types of non-stationary processes

Let Xs(t) be a stationary stochastic process with zero mean, unit variance, correlation func-
tion r(τ) = E[Xs(t)Xs(t + τ)], and one-sided PSD g(ω). We consider two special types
of non-stationary processes that can be viewed as manipulations of Xs(t), referred to as:
(1) transformations of stationary processes, and (2) oscillatory processes. As illustrated by
Fig. 4.9, there is some overlap between types (1) and (2), and the types considered do not
completely cover the space of non-stationary processes, i.e., there exists a collection of non-
stationary processes that cannot be represented by either type. A more detailed description
of these special types of non-stationary process is given in [22].

4.5.1 Transformations of stationary processes

We first consider the collection of non-stationary processes that can be expressed as direct
transformations of stationary process Xs(t) defined above. There are two special cases,
referred to as uniformly modulated stationary processes, and stationary processes under time
shift. The former has been used to represent, for example, turbulent flow on a re-entry vehicle
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Figure 4.9. The class of non-stationary processes with
finite variance.

[9], where the modulation function represents the effects of increasing dynamic pressure. The
latter case has been used to represent moisture particle impacts on a decelerating re-entry
vehicle [7], where the concept of a time shift is used to model the effects of vehicle deceleration
on particle arrival times.

Let

X(t) = α(t)Xs(t), t ≥ 0, (4.19)

where α(t) ≥ 0 is a deterministic function. Process X(t) is a type of non-stationary pro-
cess called a uniformly modulated stationary process with zero mean and correlation
function

E[X(t)X(s)] = α(t)α(s) r(t− s), (4.20)

where r(τ) = E[Xs(t)Xs(t+ τ)]. Because E[X(t)X(s)] cannot be written in terms of t− s,
X(t) is indeed a non-stationary process. Further, we can show that X(t) has one-sided
evolutionary spectral density

ψ(t, ω) = α2(t) g(ω), (4.21)

where g(ω) denotes the one-sided (time-invariant) spectral density of stationary process Xs.

Next let

X(t) = Xs [h(t)] , t ≥ 0, (4.22)

where h(t) ≥ 0 is a deterministic function such that h(0) = 0 and h′(t) = dh(t)/dt > 0.
Process X(t) is a stationary process under time shift h with zero mean, correlation
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function

E[X(t)X(s)] = E [Xs[h(t)]Xs[h(s)]] = r [h(t)− h(s)] , (4.23)

and one-sided evolutionary spectral density

ψ(t, ω) = g

(
ω t

h(t)

)
. (4.24)

We provide detailed examples of the uniformly modulated stationary process and stationary
process under time shift in Section 5.2.1.

4.5.2 Oscillatory processes

Recall from Section 4.4.1 that real-valued stationary process Xs(t) with one-sided PSD g(ω)
admits the following spectral representation

Xs(t) =

∫ ∞

0

[cos(ωt) dU(ω) + sin(ωt) dV (ω)] , (4.25)

where U and V are zero-mean stationary processes with increments that satisfy Eq. (4.15).
Process

X(t) =

∫ ∞

0

a(t, ω) [cos(ωt) dU(ω) + sin(ωt) dV (ω)] (4.26)

created from the spectral representation of Xs(t), where a(t, ω) is a slowly-varying function
of time t for all frequencies ω, is a type of non-stationary stochastic process called an oscil-
latory process (or Priestley process [31]). It can be shown that X(t) has zero mean and
one-sided evolutionary spectral density

ψ(t, ω) = a(t, ω)2 g(ω) (4.27)

Note that if we choose Xs(t) defined by Eq. (4.25) to be white noise with g(ω) = 1, X(t)
has one-sided evolutionary spectral density a(t, ω)2.

Example 4.22: The uniformly modulated process defined by Eq. (4.19) is an oscillatory
process with a(t, ω) = α(t). The process defined by Eq. (4.22) may or may not be an
oscillatory process depending on the rate of change of function h(t). ♦
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Example 4.23: Recall the filtered Poisson process considered in Example 4.13

X(t) =


0 if N(t) = 0
N(t;λ(t))∑

k=1

Yk (t− Tk) e
−5(t−Tk) if N(t) > 0

where {Yk} was a sequence of independent zero-mean Gaussian random variables with vari-
ance σ2, and λ(t) = λ > 0 was assumed time-invariant. We consider here instead the
case where λ(t) is time-varying so that X(t) is a non-stationary process. It can be shown
that, under this assumption, X(t) can be expressed as an oscillatory process with (see [26],
Section 3.2)

a(t, ω) =

∫ ∞

−∞

√
E [λ(t− u)]u e−5u e−iωu du and g(ω) =

σ2

2π

♦

Example 4.24: Suppose that a collection of m ≥ 1 one-sided time-invariant PSDs are pro-
vided, denoted by g1(ω), . . . , gm(ω), that define the spectral content of X(t) at known fixed
distinct times 0 ≤ t1 < · · · < tm. We can construct an oscillatory process as defined by
Eq. (4.26) to be consistent with this information. This approach was used to represent tur-
bulent pressure fluctuations in an attached boundary layer [8]. Let Xs(t) be a stationary
white noise with g(ω) = 1 and let

ψ(t, ω) = a(t, ω)2 =
m∑

j=1

gj(ω)φ(t− tj),

where

φ(t− tj) =


1 +

1

∆t
(t− tj), if tj −∆t ≤ t < tj

1− 1

∆t
(t− tj), if tj ≤ t < tj + ∆t

0, else

is an interpolating function with boundary conditions φ = 1 for t < t1 and t > tm, and
∆t = tj+1 − tj, j = 1, . . . ,m − 1, denotes the time elapsed between successive tj, assumed
constant and sufficiently large so that a(t, ω) is slowly-varying in time for all ω. By this
construction, the evolutionary spectral density of X(t) in the vicinity of time ti is gi(ω),
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i = 1, . . . ,m; for other times t ∈ (ti, ti+1) it is a linear combination of gi(ω) and gi+1(ω),
i = 1, . . . ,m− 1. Further, we note that

Var[X(t)] = σ2(t) =
m∑

j=1

σ2
j φ(t− tj) where σ2

j =

∫ ∞

0

gj(ω) dω.

♦
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Chapter 5

Simulation of stochastic processes

Let X(t) = (X1(t), . . . , Xd(t))
T be a vector stochastic process; definitions and properties of

X(t) were discussed in Chapter 4. Our objective in this Chapter is to generate independent
samples of X(t). In Section 5.1, we consider the simplest case where X(t) is stationary and
Gaussian. We then consider the simulation of special types of non-stationary Gaussian and
non-Gaussian processes in Sections 5.2 and 5.3, respectively. MATLAB implementations of
the algorithms developed are presented in Appendix A. In all cases, we assume X(t) to have
zero mean; we note that if the mean of X(t) is not zero, we generate samples of X(t)−E[X(t)]
and add the mean function E[X(t)] to each sample. The discussion is concluded by a brief
summary of possible verification checks in Section 5.4.

5.1 Stationary Gaussian processes

Let X(t) = (X1(t), . . . , Xd(t))
T be a stationary Gaussian vector process with zero mean, co-

variance function c(τ) = E[X(t)X(t+ τ)T ], and two-sided spectral density s(ω) = {sk,l(ω)},
k, l = 1, . . . , d. Our main tool to generate samples of X(t) is the spectral representation
theorem discussed in Section 4.4.1; alternative methods are discussed in [21], Section 5.3.1.
We do not include the Karhunen-Loève representation here because, as mentioned in Exam-
ple 4.21, the K-L representation of a stationary process is, in general, not stationary. The use
of the spectral representation requires two steps. First, we define stochastic process X(n)(t)
that is an approximation for X(t) depending on n random variables that converges in some
sense to X(t). Second, we develop efficient computer algorithms to generate independent
samples of X(n)(t).

5.1.1 Parametric model with fixed frequencies

Recall that, by the spectral representation theorem, X(t) can be expressed as a mean-
square integral as defined by Eq. (4.14). A finite-dimensional approximation for this integral
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provides a model to be used for Monte Carlo simulation. Define, for each k = 1, . . . , d, a
cut-off frequency ω?

k, such that∫ ω?
k

−ω?
k

skk(ω) dω ≈
∫ ∞

−∞
skk(ω) dω, (5.1)

and let ω? = max1≤k≤d ω
?
k. Let (uj−1, uj), j = 1, . . . , n, with u0 = 0 and un = ω?, be a

partition of frequency range (0, ω?) in n non-overlapping intervals of length ∆ωj = uj−uj−1.
Denote by ωj the midpoint of (uj−1, uj), j = 1, . . . , n. The following is an approximation for
X(t) of order n (see [20], p. 174):

X(n)(t) =
n∑

j=1

[Aj cos(ωjt) + Bj sin(ωjt)] , (5.2)

where Aj and Bj are Rd–valued zero-mean Gaussian random vectors with the following
second-moment properties for i, j = 1, . . . , n and k, l = 1, . . . , d:

E [Ai,k Aj,l] = E [Bi,k Bj,l] = δi,j

∫ ui

ui−1

gk,l(ω) dω ≈ δi,j gk,l(ωi) ∆ωi,

E [Ai,k Bj,l] = −E [Bi,k Aj,l] = δi,j

∫ ui

ui−1

hk,l(ω) dω ≈ δi,j hk,l(ωi) ∆ωi, (5.3)

where δi,j = 1 if i = j and zero otherwise, and gk,l(ω) and hk,l(ω) are defined by Eq. (4.13).

The model defined by Eq. (5.2) has some desirable properties. First, X(n)(t) is a zero-
mean, stationary Gaussian process for any n ≥ 1. This follows since X(n)(t) is a linear
combination of Gaussian random variables, E

[
X(n)(t)

]
= 0, and

E
[
X(n)(t)X(n)(s)T

]
=

n∑
k=1

E[Ak AT
k ] cos(ωk(t− s))

=
n∑

k=1

E[Ak AT
k ] cos(ωk τ), t ≥ s, (5.4)

where τ = t − s. Second, it can be shown that, as n → ∞: (i) X(n) approaches X in the
mean-square sense, (ii) the covariance functions of X(n) approach the covariance functions of
X, and (iii) X(n) becomes a version (i.e., has an identical finite dimensional distribution) of
X. Finally, the Fast Fourier Transform (FFT) provides a very efficient algorithm for sample
generation.

It should be noted that samples of X(n) are periodic with a period defined by the smallest
frequency line in the partition of (0, ω?); for example, the period is 2π/ω1 assuming ∆ωj =
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ω?/n and ωj = (j − 1/2) ∆ωj. Samples of X(n)(t) for times longer than 2π/ω1 therefore
provide the same information as samples of length 2π/ω1. A procedure to generate samples
of arbitrary length by applying smoothing windows to a collection of overlapped samples of
X(n) has been developed [37].

Example 5.1: Consider the case of a zero-mean scalar (i.e., d = 1) stationary Gaussian
process, denoted by X(t), with covariance function c(τ) = E[X(t)X(t + τ)] and one-sided
PSD g(ω). By Eqs. (5.2) and (5.3),

X(n)(t) =
n∑

j=1

[Aj cos(ωjt) +Bj sin(ωjt)] ,

is an approximation for X(t), and Aj, Bj are zero-mean Gaussian random variables such
that, for i, j = 1, . . . , n,

E[AiBj] = 0,

E[AiAj] = E[BiBj] = δij

∫ ui

ui−1

g(ω) dω ≈ δij g(ωi) ∆ωi,

where, by Eq. (4.13), g(ω) = s11(ω) + s11(−ω) is the one-sided PSD of X(t). We note that
X(n)(t) can also be written as

X(n)(t) =
n∑

j=1

σj

[
Āj cos (ωjt) + B̄j sin (ωjt)

]
where Āj and B̄j are independent, standard Gaussian random variables, and σ2

j = g(ωj) ∆ωj.
Figure 5.1 shows the approximation for g(ω) used for calculations. The use of the FFT
algorithm follows directly since [36]

X(n)(t) =
n∑

k=1

σk

[
Āk cos (ωkt) + B̄k sin (ωkt)

]
= Real

[
n∑

k=1

Dk e
i ωk t

]
= n · Real [ifft({Dk})] ,

where

Dk = σk

(
Ā2

k + B̄2
k

)1/2
ei Ψk

Ψk = − arctan

(
−B̄k

Āk

)
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Figure 5.1. Discrete approximation for one-sided PSD.

and i =
√
−1.

MATLAB code gsvpfft.m and gsvpfft AB.m listed in Appendix A.1 can be used to
generate samples of X(n)(t). For illustration, let

c(τ) =
sin(ω̄ τ)

ω̄ τ
and g(ω) =


1

ω̄
if 0 ≤ ω ≤ ω̄

0 else

denote the covariance and one-sided PSD functions, respectively, that define the second-
moment properties of X(t), where parameter ω̄ = 200 rad/sec. Shown in Fig. 5.2 is
one sample of X(n)(t) for the case of n = 200. Also shown are estimates of cn(τ) =
E[X(n)(t)X(n)(t + τ)], for the case of n = 50, n = 100, and n = 200 using 1,000 Monte
Carlo samples. By Fig. 5.2, we note that as n increases, cn(τ) approaches c(τ) for all τ . ♦

Example 5.2: We next consider the case of an Rd–valued stationary Gaussian process with
d = 11 coordinates, i.e., X(t) = (X1(t), . . . , X11(t))

T . This can be interpreted as a scalar
random function of time and space applied at d = 11 distinct spatial locations; for simplicity,
the spatial locations are assumed separated by uniform spacing ∆x > 0. Let

ck,l(τ) = E[Xk(t)Xl(t+ τ)] =
sin (ω̄ τ)

ω̄ τ
exp (−θ∆x |k − l|), k, l = 1, . . . , 11,

define the covariance function of X(t), where ω̄=2,000 rad/sec and ∆x = 1/10. Parameter
θ > 0 is related to the spatial correlation length of the process. For large θ, processes Xk(t)
andXl(t) are nearly uncorrelated; for small θ, Xk(t) andXl(t) are nearly perfectly correlated,
meaning they are nearly identical for all t. For calculations, we use θ = 1.
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Figure 5.2. Samples and estimates of second-moment
properties of a stationary Gaussian process. Shown are one
sample of X(n)(t) for n = 200 and estimates of cn(τ) for
n = 50, 100, and 200. The exact covariance function, c(τ) is
also plotted.

We generated 100 independent samples of X(n) using MATLAB code gsvpfft.m listed in
Appendix A.1 with n = 1000; results are illustrated by Fig. 5.3. One sample of coordinates
X1(t), X2(t), and X11(t) are shown in Fig. 5.3(a), where the effect of the spatial correlation
of the process is clearly evident. Values for X1(t) and X2(t), which correspond to two
spatial points separated by ∆x, are quite similar, while values for X1(t) and X11(t), which
correspond to two spatial points separated by 10∆x, differ significantly. Statistical estimates
of the temporal and spatial correlation functions are illustrated by Figs. 5.3(b)–(c), where
η = ∆x|k− l| denotes the spatial distance between coordinates of X(t); the exact correlation
functions as specified above are also shown. ♦

5.1.2 Parametric model with random frequencies

Let X(t) be a stationary Gaussian process with zero mean, variance σ2, and one-sided
spectral density g(ω). We provide an approximation for X(t) that is an alternative to X(n)(t)
defined by Eq. (5.2). We limit the discussion to scalar Gaussian processes for simplicity; the
derivations can be extended to represent vector processes if needed.

Let N(ω), ω > 0, denote a homogeneous Poisson counting process (see Example 4.12)
with intensity λ > 0 that depends on temporal frequency ω rather than time. Let random
variables N1 and N2 denote two samples of N ; the corresponding “jump frequencies” are de-
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noted by (U1, . . . , UN1)
T and (V1, . . . , VN2)

T , respectively. The following is an approximation
for X(t)

X(N,λ)(t) =

N1∑
j=1

Aj h(Uj) cos (Uj t) +

N2∑
k=1

Bk h(Vk) sin (Vk t) (5.5)

where

h2(ω) =
1

λσ2
g(ω), ω ≥ 0, (5.6)

and {Aj} and {Bk} are iid Gaussian random variables with zero mean and variance σ2.
By Eq. (5.5), X(N,λ)(t) is a superposition of harmonics with both random amplitudes and
frequencies, in contrast to the model defined by Eq. (5.2) that has random amplitudes but
fixed frequencies.

The model defined by Eq. (5.5) has some desirable properties. First, X(N,λ)(t) is a
weakly stationary process for any λ > 0. Second, the second-moment properties of X(N,λ)(t)
approach the second-moment properties of X(t) as ω? →∞ for any λ > 0. These statements
follow since

E[X(N,λ)(t)] = 0, and

E[X(N,λ)(t)X(N,λ)(s)] =

∫ ω?

0

g(ω) cos (ω(t− s)) dω. (5.7)

Third, X(N,λ)(t) converges to a Gaussian process as λ → ∞ for any ω? > 0 [20]. Fourth,
samples of X(N,λ)(t) are not periodic. However, X(N,λ)(t) is a non-Gaussian process for any
finite intensity λ and, unlike the approach described in Section 5.1.1, the FFT algorithm
cannot be used for efficient sample generation.

In summary, we conclude that approximation X(n) discussed in Section 5.1.1 using fixed
frequencies is preferred over approximation X(N,λ) using random frequencies defined in this
section except for the case where very long samples of X are needed. This is because long
samples of X require that a large number of frequency lines be considered so as to avoid
samples of X(n) that are 2π/ω1-periodic, where ω1 is the smallest frequency considered (see
Fig. 5.1).

5.2 Non-stationary Gaussian processes

We next consider non-stationary Gaussian processes; we will limit the discussion to scalar
processes for clarity. Let X(t) denote a non-stationary scalar Gaussian process with zero
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mean and covariance function c(t, s) = E[X(t)X(s)]. In this section, we present methods to
generate independent samples of X(t). Three approaches are considered, corresponding to
the three classes of non-stationary Gaussian processes illustrated by Fig. 4.9: (1) transfor-
mations of stationary Gaussian processes, (2) oscillatory Gaussian processes, and (3) general
Gaussian processes. In general, the approaches are presented in order of increasing generality
and complexity.

5.2.1 Transformations of stationary Gaussian processes

Let Xs(t) be a zero-mean stationary Gaussian stochastic process. We first consider the class
of non-stationary, Gaussian processes that can be expressed as

X(t) = α(t)Xs [h(t)] , t ≥ 0, (5.8)

where α(t) > 0 and h(t) are deterministic functions of time, t, and h satisfies h(0) = 0
and h′(t) = dh(t)/dt > 0. The class of processes defined by Eq. (5.8) includes uniformly
modulated stationary processes and stationary processes under time shift, as defined in
Section 4.5.1.

The procedure to generate ns independent samples ofX(t) is straightforward and involves
three steps:

1. Generate ns samples of stationary Gaussian process Xs(t) using any of the methods of
Section 5.1;

2. Apply time shift h(t) to each sample of Xs(t), creating ns samples of Xs [h(t)]; and

3. Multiply each sample of Xs [h(t)] by modulation function α(t) to achieve ns samples
of X(t).

Example 5.3: Let Xs(t) be a stationary Gaussian process with zero mean, unit variance,
and correlation E[Xs(t)Xs(t+ τ)] = e−200|τ |. The corresponding one-sided PSD of Xs(t) (see
Table 4.1) is g(ω) = 200/π(ω2 + 1002). One sample of Xs(t), 0 ≤ t ≤ 2, is illustrated by
Fig. 5.4(a). The FFT algorithm discussed in Example 5.1 was used to create these samples
of Xs(t). The corresponding MATLAB code, gsvpfft.m, is listed in Appendix A.1.

Define X1(t) = e−tXs(t) and X2(t) = Xs[h(t)] where h(t) = ρ et − ρ and ρ = 2/(e2 − 1).
By Eq. (4.19), X1(t) is a uniformly modulated stationary process with modulation function
α(t) = e−t and, by Eq. (4.22), X2(t) is a stationary process under time shift h(t). Samples of
X1(t) and X2(t) are illustrated by Figs. 5.4(b) and (c), respectively; both are non-stationary,
Gaussian processes.
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Figure 5.4. One sample of three zero-mean Gaussian pro-
cesses: (a) stationary process Xs(t), (b) uniformly modulated
process X1(t), and (c) time shifted process X2(t).

Time shift h(t) and its first derivative, h′(t) = dh(t)/dt, are illustrated by Fig. 5.5 for
0 ≤ t ≤ 2. For early times, h(t) < t and h′(t) < 1, meaning that time is effectively “slowed
down” for process X2(t); the time axis in Fig. 5.4(c) therefore appears “stretched out” when
compared to the time axis in Fig. 5.4(a). For t > t1 = ln(1/ρ) ≈ 1.16, h′(t) > 1 meaning
that time “speeds up”. Accordingly, the time axis in Fig. 5.4(c) appears compressed near
t = 2 when compared to the time axis in Fig. 5.4(a). ♦

5.2.2 Methods based on evolutionary spectral density

We next consider the case where X(t) is a zero-mean, non-stationary Gaussian process
with prescribed one-sided evolutionary spectral density ψ(t, ω). Assuming ψ(t, ω) is slowly-
varying in time for all frequencies ω, X(t) can be expressed as an oscillatory process with
spectral representation given by Eq. (4.26) with a(t, ω)2 = ψ(t, ω). Let ω? denote a cut-off
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Figure 5.5. Time shift function h(t) and h′(t) = dh(t)/dt
used in Example 5.3.

frequency, i.e., ψ(t, ω) ≈ 0 for ω > ω?. The following is an approximation for X(t) depending
on 2n random variables

X(n)(t) =
n∑

j=1

σj(t)
[
Āj cos(ωjt) + B̄j sin(ωjt)

]
, (5.9)

where ω1 < · · · < ωn form a partition of [0, ω?], Āj, B̄j are standard uncorrelated Gaussian
random variables, and σ2

j (t) = ψ(t, ωj)∆ωj. The model defined by Eq. (5.9) is identical to
the model used for the stationary case (see Example 5.1), with the exception that σj(t) is
now time-varying.

Example 5.4: Recall Example 4.24, where we used the oscillatory process to represent non-
stationary process X(t), assumed stationary in the vicinity of a collection of fixed distinct
times 0 ≤ t1 < · · · < tm, with corresponding one-sided PSDs g1(ω), . . . , gm(ω). Here, we
consider the following m = 2 time-invariant PSDs

g1(ω) =
2 · 100σ2

1

π(ω2 + 1002)
and g2(ω) =

4 · 1003 σ2
2

π(ω2 + 1002)2
(5.10)

valid in the vicinity of times t1 = 1 and t2 = 2, where σ2
1 = 1 and σ2

2 = 2. One sample of
X(t) and the variance of X(t) are illustrated by Figs. 5.6(a) and (b), respectively, where it
is evident that the frequency content of X(t) decreases and the variance of X(t) increases
with increasing time; these features are consistent with g1(ω) and g2(ω). The one-sided
evolutionary PSD of non-stationary process X(t) is illustrated by Fig. 5.6(c); the two time-
invariant PSDs g1 and g2, indicated by dark lines, are also shown at times t1 = 1 and t2 = 2,
respectively. ♦
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Figure 5.6. Oscillatory Gaussian process: (a) one sam-
ple of non-stationary process X(t), (b) variance of X(t), and
(c) one-sided evolutionary PSD of X(t).
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5.2.3 Methods based on covariance function

The approaches considered in Sections 5.2.1 and 5.2.2 can only represent a subset of the class
of non-stationary Gaussian processes (refer to Fig. 4.9). The approach considered in this
section is the most general as it can be used to generate samples of arbitrary non-stationary
Gaussian processes. However, the method requires full knowledge of the covariance function,
which often may not be available for practical problems. It is shown that a special case of this
approach is equivalent to the Karhunen-Loève representation introduced in Section 4.4.2.

Let X(t) be a non-stationary Gaussian process with zero mean and covariance function
c(t, s) = E [X(t)X(s)], and let X(n)(t) denote an approximation for X(t) depending on n
random variables. To generate samples of X(n)(t) on 0 ≤ t ≤ T , we partition [0, t̄ ] into n−1
non-overlapping intervals of width ∆t > 0, and let

c =


c(0, 0) c(0,∆t) · · · c(0, (n− 1)∆t)
c(∆t, 0) c(∆t,∆t) · · · c(∆t, (n− 1)∆t)

...
...

. . .
...

c((n− 1)∆t, 0) c((n− 1)∆t,∆t) · · · c((n− 1)∆t, (n− 1)∆t)

 (5.11)

denote an n× n matrix approximating c(t, s) on [0, t̄ ]× [0, t̄ ]. One sample of X(n)(t) can be
obtained by the following matrix-vector multiplication [14]

X(n) = bW (5.12)

where X(n) = (X(n)(0), X(n)(∆t), . . . X(n)((n − 1)∆t))T , W = (W1, . . . ,Wn)T is an n × 1
vector of iid N(0, 1) random variables, and b is an n× n lower-triangular matrix such that
bbT = c, i.e., b is the Cholesky factorization of c (see [19], Section 4.2). MATLAB functions
gnsspchol.m and cholcov.m listed in Appendix A.2 can be used to implement this approach;
the latter is used to provide approximations for the Cholesky factorization for large matrices.

An alternative approach is to instead replace matrix b defined by Eq. (5.12) with

b =
[√
λ1 φ1

√
λ2 φ2 · · ·

√
λn φn

]
(5.13)

where {λj} and {φj} denote the collection of n eigenvalues and n× 1 eigenvectors, respec-
tively, of covariance matrix c defined by Eq. (5.11), i.e.,

cφj = λj φj, j = 1, . . . , n. (5.14)

By using the b matrix defined by Eq. (5.13), we can show that

X(n)((k − 1)∆t) =
n∑

j=1

√
λj φj((k − 1)∆t)Wj, k = 1, . . . , n, (5.15)
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Figure 5.7. Contours of the covariance function, c(t, s),
of the Ornstein-Uhlenbeck process: (a) exact, and estimates
from 500 Monte Carlo samples generated by (b) gnsspchol.m
and (c) gnsspKL.m (see Appendix A.2).

so that approximation X(n)(t) is a Karhunen-Loève representation for X(t), truncated at n
terms (see Eq. (4.16)). MATLAB code gnsspKL.m listed in Appendix A.2 can be used to
implement this approach.

Example 5.5: Let X(t) denote the Ornstein-Uhlenbeck process considered previously with
parameters α = 5, β = 1, and x0 = 1. We generate 500 independent samples of X(t) on
[0, t̄ ] = [0, 1] with a time step of ∆t = 0.004 using both gnsspchol.m and gnsspKL.m. As
a check, we can estimate the covariance function from samples of X(t) and compare with
the known result listed in Example 4.14. Contours of these estimates are compared with
contours of the exact covariance function in Fig. 5.7; good agreement with the exact solution
can be observed using both methods. ♦
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5.3 Non-Gaussian processes

We next consider the simulation of certain types of non-Gaussian processes. In particular,
we will study non-Gaussian processes defined by transformations with and without memory
of Gaussian processes, as well as random point processes; these three types of non-Gaussian
processes are discussed in Sections 5.3.1, 5.3.2, and 5.3.3, respectively. There are many
other types of non-Gaussian processes which are beyond the scope of this report, but we
believe the types presented are applicable to a wide variety of problems in applied science
and engineering. As in Section 5.2, we will limit the discussion to scalar processes for clarity.

5.3.1 Memoryless transformations of Gaussian processes

Let X(t), t ≥ 0, be a stationary Gaussian process with zero mean, unit variance, and
covariance function ρ(τ) = E [X(t)X(t+ τ)]. In this section, we consider non-Gaussian
processes that can be expressed via the following memoryless transformation of X(t)

Y (t) = F−1 ◦ Φ [X(t)] = h [X(t)] , (5.16)

where Φ is the CDF of a N(0, 1) random variable and F is an arbitrary CDF. It was shown
in Section 4.2.4 that Y (t) is a stationary process with marginal CDF F . The covariance
structure of X is, in general, not preserved by the transformation defined by Eq. (5.16)
meaning that the covariance of Y (t) is not, in general, equal to ρ(τ). There are many
cases where the change to the covariance function is not significant and can be ignored; one
example is when F is the CDF of a symmetric beta random variable (see [10]). Sometimes,
however, the covariance functions of X and Y are very different, and this difference cannot
be neglected. This is an area of active research; see, for example, [4].

The procedure to generate ns independent samples of Y (t) is straightforward and involves
two steps:

1. Generate ns samples of stationary Gaussian process X(t) using any of the methods of
Section 5.1; and

2. Apply translation h to each sample of X(t), creating ns samples of Y (t).

Example 5.6: Suppose Y (t) is a non-Gaussian stationary stochastic process with zero mean,
covariance function

E [Y (t)Y (t+ τ)] =

(
3 + 2e−2α|τ |

5

)
e−α|τ |
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Figure 5.8. One sample of: (a) Gaussian process X(t) with
covariance function E [X(t)X(t + τ)] = e−α|τ | and (b) non-
Gaussian translation process Y (t) = X(t)3.

where α > 0 is a constant, and marginal distribution

F (x) = Φ
(
|x|1/3sign(x)

)
,

where Φ denotes the CDF of a N(0, 1) random variable. This process can be expressed as
Y (t) = X(t)3, where X(t) is a stationary Gaussian process with zero mean and covariance
function E [X(t)X(t+ τ)] = e−α|τ | (see [20], Section 3.1.1). One sample of processes X(t)
and Y (t) are illustrated by Fig. 5.8 assuming α = 1. The corresponding covariance functions
of X and Y are illustrated by Fig. 5.9, demonstrating that c ≈ ρ in this case. ♦

5.3.2 Transformations with memory of Gaussian processes

If the current value of stochastic process Y (t) is obtained from the past history of another
process X(t), the mapping from X to Y is said to have memory. Transformations with
memory can be defined by differential equations with input X and output Y . Our objective
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Figure 5.9. Covariance functions ρ(τ) = E [X(t)X(t + τ)]
and c(τ) = E [Y (t)Y (t + τ)].

in this section is to generate samples of Y by numerical solution of a special class of stochastic
differential equations (SDEs). It is assumed that: (i) Y is a scalar stochastic process defined
by a differential equation of special form with random input X; (ii) the defining differential
equation for X is known and of a special form; and (iii) X is Gaussian noise. Processes Y
that can be defined in this way are referred to as diffusion processes. More general types of
transformations with memory can be considered (see, for example, [3] or [21], Section 5.3.3).

We first assume input X(t) is a Gaussian white noise process. Output Y (t) in this case
is the solution to the following SDE

dY (t) = a (Y (t), t) dt+ b (Y (t), t) dB(t), t ≥ 0, (5.17)

where a and b are, in general, time-varying functions of the state, and B(t) denotes the
Brownian motion; a is commonly referred to as the drift term, and b2 is the diffusion term.
The Ornstein-Uhlenbeck process (see Example 4.10) is a special case of Eq. (5.17) with linear,
time-invariant drift and constant diffusion.

The numerical solution of the SDE defined by Eq. (5.17) is possible by standard finite
difference schemes. Euler’s method (see [15], Section 5.2) is perhaps the simplest and is used
in the following example; more accurate and efficient finite difference schemes can also be
applied [25].

Example 5.7: Consider the following stochastic differential equation (SDE)

dY (t) = σ2 dt+ 2σ
√
Y (t) dB(t), t ≥ 0
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Figure 5.10. One sample of exact solution, Y (t), and nu-
merical solution, Yn(t), using Euler’s method with: (a) ∆t =
1/100, and (b) ∆t = 1/1000.

with exact solution (see [20], p. 199)

Y (t) =
(√

Y (0) + σ B(t)
)2

, t ≥ 0.

Figure 5.10 shows realizations of the solution of the SDE assuming σ = 1 and X(0) = 0,
calculated along the same path of the Brownian motion process B(t). The solutions are
plotted with time steps ∆t = 1/100 and ∆t = 1/1000 in Fig. 5.10(a) and (b), respectively.
The exact solution, Y (t), is shown in blue, while the Euler approximation of the solution,
Yn(t), is shown in red. We note that Yn(t) can differ significantly from Y (t) when the time
step is large; this can also occur when the magnitude of the driving noise, σ, is large. The
Euler approximation approaches the exact solution as ∆t→ 0. The sample of process Yn(t)
was generated by MATLAB code ngvpITO.m listed in Appendix A.3. ♦

If, instead, input process X(t) is not a white noise but can itself be expressed as the
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following SDE

dX(t) = α (X(t), t) dt+ β (X(t), t) dB(t), t ≥ 0, (5.18)

then

d

(
Y (t)
X(t)

)
=

(
a (Y (t), t) + b (Y (t), t) X(t)

α (X(t), t)

)
dt+

(
0

β (X(t), t)

)
dB(t), t ≥ 0, (5.19)

governs the evolution in time of vector process (Y (t), X(t))T . Finite difference schemes such
as Euler’s method can be applied to provide approximations for (Y (t), X(t))T .

5.3.3 Random point processes

We have introduced two types of random point processes, namely the Poisson counting
process and filtered Poisson process, in Section 4.2.6. This section provides algorithms for
generating samples of these processes. A detailed discussion on more general types of random
point processes is given by [38].

The generation of one sample of the homogeneous Poisson counting process, N(t), 0 ≤
t ≤ t̄, involves three steps:

1. Generate iid samples of exponential random variable X with parameter λ > 0 until
the cumulative sum of each sample exceeds time t̄, i.e., find n such that X1 + · · ·Xn <
t̄ ≤ X1 + · · ·Xn+1;

2. Discard sample Xn+1 and map the remaining samples of X to the arrival or jump times
of N(t) on [0, t̄ ], i.e.,

T1 = X1

T2 = X1 +X2

...

Tn = X1 +X2 + · · ·+Xn; and

3. Define N(t), 0 ≤ t ≤ t̄, as

N(t) =


0 0 ≤ t < T1

1 T1 ≤ t < T2

...
...

n Tn ≤ t ≤ t̄
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This three-step algorithm is implemented in MATLAB code pcp.m listed in Appendix A.3.
Three samples of N(t) are illustrated by Fig. 4.5 assuming λ = 10 and [0, t̄ ] = [0, 1].

To generate a single sample of the filtered Poisson process, X(t) as defined by Eq. (4.8),
on time interval [0, t̄ ], we do the following:

1. Generate one sample of homogeneous Poisson counting process N(t) on [0, t̄ ] with jump
times T1, . . . , Tn as outlined above;

2. If n > 0, generate n independent samples of random variable Y that defines the random
magnitude of each pulse;

3. Evaluate w(t, Tk, Yk), k = 1, . . . , n, the shape of each pulse; and

4. Perform the summation in Eq. (4.8).

This four step algorithm is implemented in MATLAB code fpp.m listed in Appendix A.3;
samples of a filtered Poisson process using this code are illustrated by Fig.4.6.

5.4 Verification

Various checks are available to verify that the samples generated using the methods of
Sections 5.1, 5.2, and 5.3 satisfy the desired properties. In general, it is useful to verify
the mean function, the covariance function, and the marginal distribution. For the case
of stationary processes, the spectral density should also be verified. Entire textbooks are
written on efficient methods for verification checking of stochastic processes; see, for example,
[2] and [27]. We present only the minimum necessary for completeness.

Estimates of the mean and marginal distribution functions can be obtained by standard
MATLAB functions mean and hist as discussed in Section 3.3. Methods to estimate the
second-moment properties of a process depend on whether or not the process is ergodic,
meaning that ensemble averages can be replaced by time averages (see Section 4.2.2).

Suppose first X(t) is a stationary and ergodic process. Estimates of the covariance and
power spectral density functions can be obtained from a single sample of X(t) by using
MATLAB codes xcov2.m and xsd1.m, respectively, listed in Appendix A.4. For example,
the covariance function estimates illustrated by Fig. 5.2 and Fig. 5.3(b) were computed
using xcov2.m. Next suppose X(t) is a non-ergodic process. Estimates of the second-
moment properties of X(t) can be obtained from multiple independent samples of X(t) using
MATLAB code smpMS.m listed in Appendix A.4. The estimates illustrated by Fig. 5.7(b)
and (c) were calculated using this function.
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Chapter 6

Conclusions

There has been considerable work done at Sandia National Laboratories using random vari-
ables and vectors to represent parametric uncertainty within our current modeling and sim-
ulation environment. However, many phenomena of interest can be viewed as random in
space and/or time, and the use of more general stochastic models to represent such phenom-
ena have been rather limited. Examples include turbulent flow over aerospace vehicles and
material properties within epoxy foams. The purpose of this report was to provide some
theoretical background on stochastic processes and random fields that can be used to model
phenomena that are random in space and/or time, and to provide a collection of simple
algorithms that can be used to generate sample functions of these processes or fields.
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Appendix A

MATLAB code

A.1 Stationary Gaussian processes

Two MATLAB functions are provided to generate samples of stationary Gaussian processes:

1. gsvpfft.m

Generate samples of a zero-mean stationary Gaussian vector process on [0, T ] using
the FFT algorithm.

2. gsvpfft AB.m

Generate samples of Gaussian vectors A and B that satisfy Eq. (5.3).

function [t,X]=gsvpfft(psdparams,psdfun,om star,T,nseed,d,ns)

%GSVPFFT

% Function to generate ns independent samples of a zero-mean,

% stationary, Rd-valued Gaussian process on [0,T] using the FFT

% algorithm. The two-sided PSD is defined by m-file psdfun with

% parameters psdparams, and cut-off frequency om star (rad/s).

% om star and T specify time step and number of time points

dt = (2*pi)/om star;

m = floor( (om star*T)/(2*pi) );

% time vector

t=0:dt:(m-1)*dt;t=t(:);

% discretize frequency vector (rad/s)

om=linspace(0,om star,m);del om=om(2)-om(1);
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% initialize

randn(’seed’,nseed);

X=zeros(m,d,ns);

IMAG=sqrt(-1);

for j=1:ns,

% get m samples of d x 1 vectors A and B

[A,B]=gsvpfft AB(psdfun,psdparams,om,del om,d);

% map to samples of C and Psi

C = sqrt( (A.^2 + B.^2) );

Psi = -atan2(B,A);

% map to samples of D

D = C .* exp(IMAG*Psi);

% use ifft to get sample of X

X(:,:,j)=m*real(ifft(transpose(D)));

end

function [A,B]=gsvpfft AB(psdfun,psdparams,om,del om,d)

%GSVPFFT AB

% Function to compute m independent samples of d x 1 Gaussian

% vectors A and B that satisfy Eq. (5.3).

% setup

IMAG=sqrt(-1);

m=length(om);

A=zeros(d,m);B=A;

% number of frequency / time points

for j=1:m,

% evaluate g(om j) and h(om j) (from Eq. (4.13))

om j=om(j);

g=feval(psdfun,om j,psdparams) + feval(psdfun,-om j,psdparams);
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h=-IMAG*(feval(psdfun,om j,psdparams) - ...

feval(psdfun,-om j,psdparams));

% covariance matrix of 2d x 1 vector C = A;B

covC=zeros(2*d,2*d);

covC(1:d,1:d) = del om*g;

covC(d+1:2*d,d+1:2*d) = del om*g;

covC(1:d,d+1:2*d) = del om*h;

covC(d+1:2*d,1:d) = -del om*h;

% one sample of C=A;B

b=chol(covC)’;

C=b*randn(2*d,1);

% recover samples of A and B

A(:,j)=C(1:d);B(:,j)=C(d+1:2*d);

end
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A.2 Non-Stationary Gaussian processes

Three MATLAB functions are provided to generate samples of non-stationary Gaussian
processes:

1. gnsspchol.m

Generate samples of a zero-mean non-stationary Gaussian process on [0, T ] using the
Cholesky decomposition of the covariance matrix.

2. cholcov.m

Compute the Cholesky decomposition of a covariance matrix.

3. gnsspKL.m

Generate samples of a zero-mean non-stationary Gaussian process on [0, T ] using the
Karhunen-Loéve representation of the covariance matrix.

function [t,X]=gnsspchol(p,covfun,dt,T,nseed,ns)

%GSSPCHOL

% Function to generate ns independent samples of a zero-mean,

% non-stationary, real-valued Gaussian process on [0,T] using

% the Cholesky decomposition. The covariance function of X is

% specified by m-file covfun with parameter vector p.

% initialize randn

randn(’seed’,nseed)

% time vector

t=0:dt:T;t=t(:);

n=length(t);

% covariance matrix

cflag=0;

c=feval(covfun,p,t,t);

% if Var[X(0)]=0, then X(0)=0 a.s.

if c(1,1)==0,

cflag=1;

warning(’gnsspchol(): variance is zero at t=0’)
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c=c(2:n,2:n);t=t(2:n);n=n-1;

end

% Cholesky decomposition of c

b=cholcov(c,1/100);

% main loop

X=zeros(n,ns);

for k=1:ns,

X(:,k) = b*randn(n,1); % Eq. (5.12)

end

if cflag,

t=[0;t];

X=[zeros(1,ns);X];

end

function b=cholcov(c,tol)

%CHOLCOV

% Function to compute Cholesky decomposition of covariance matrix

% c. The sparsity of c is exploited to do the decomposition more

% efficiently, and any entries of c less than tol are set to zero.

% construct sparse matrix that only includes values of magnitude at

% least tol

[rows, cols] = find(abs(c) >= tol);

ii = sub2ind(size(c), rows, cols);

c sparse = sparse(rows, cols, c(ii));

% find a good ordering of equations for the Cholesky factorization

P = symamd(c sparse);

R = chol(c sparse(P,P));

% output

b=transpose(R);

function [t,X]=gnsspKL(p,covfun,dt,T,nseed,ns)

%GSSPKL
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% Function to generate ns independent samples of a zero-mean,

% non-stationary, real-valued Gaussian process on [0,T] using

% the Karhunen-Loeve representation. The covariance function

% of X is specified by m-file covfun with parameter vector p.

% initialize randn

randn(’seed’,nseed)

% time vector

t=0:dt:T;t=t(:);

n=length(t);

% covariance matrix

c=feval(covfun,p,t,t);

% eigensolution of c

[PHI,LAM]=eig(c);

% construct b matrix, Eq. (5.13)

for j=1:n,

b(:,j) = sqrt(LAM(j,j)) * PHI(:,j);

end

% main loop

X=zeros(n,ns);

for k=1:ns,

X(:,k) = b*randn(n,1); % Eq. (5.12)

end
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A.3 Non-Gaussian processes

Three MATLAB functions are provided to generate samples of non-Gaussian processes:

1. ngvpITO.m

Generate samples of non-Gaussian, non-stationary vector diffusion process defined by
Eq. (4.7) using Euler’s method.

2. fpp.m

Generate samples of stationary filtered Poisson process defined by Eq. (4.8). The pulses
have Gaussian magnitudes, which can be modified in the code.

3. pcp.m

Generate samples of homogeneous Poisson counting process discussed in Example 4.12.

function [t,Xn]=ngvpITO(afun,bfun,aparams,bparams,x0,d,dp,n,T,ns,nseed)

%NGVPITO

% Function to compute ns independent samples of the Rd-valued diffusion

% process defined by the following Ito differential equation:

%

% dX(t) = a(X(t)) dt + b(X(t)) dB(t), 0 <= t <= T, X(0) = x0,

%

% where X is a Rd-valued non-Gaussian process, a is an d x 1 drift

% term, b is an d x dp diffusion term, and B is a dp x 1 Brownian

% motion. The solution is approximated using Euler’s method. The

% drift and diffusion are defined by external m-files.

% time vector

t=linspace(0,T,n);dt=t(2)-t(1);

% setup

randn(’seed’,nseed);

Xn=zeros(d,n,ns);

for i=1:ns,

Xn(:,1,i) = x0; % set initial conditions

end

% loop over number of samples
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for i=1:ns,

% Euler method - see [21], p. 277

for k=2:n,

% increment of Brownian motion

dB=sqrt(dt)*randn(dp,1);

% drift term

a=feval(afun,aparams,Xn(:,k-1,i));

% diffusion term

b=feval(bfun,bparams,Xn(:,k-1,i));

% update state vector

Xn(:,k,i) = a*dt + b*dB + Xn(:,k-1,i);

end

end

function [t,X]=fpp(lam,s2,wfun,wparams,T,n,ns,nseed)

%FPP

% Function to compute ns independent samples of a filtered Poisson

% process on [0,T]. The process depends on (1) a homogeneous

% Poisson counting process of intensity lam>0, (2) independent

% Gaussian pulses with mean zero and variance s2>0, and (3) a

% shape function w(t,tau,y), defined by external m-file. Each

% column of X is a sample. See Example (4.13)

% time vector

dt=T/n;t=0:dt:T;

% setup

randn(’seed’,nseed);rand(’seed’,nseed);

X=zeros(n+1,ns);

% ns realizations of Poisson counting process in [0,T]

[N,Tau]=pcp(lam,T,ns);

% loop over samples

for i=1:ns,

% number of points and their arrival times

Ni=N(i);Taui=Tau(1:Ni,i);

if Ni>0,

% Y is N(0,s2)
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y=sqrt(s2)*randn(Ni,1);

% loop over time points

for j=1:n+1,

% evaluate weight function

wj=feval(wfun,wparams,t(j),Taui,y);

% Eq. (4.8)

X(j,i)=sum(wj);

end

end

end

function [N,Tau]=pcp(lam,T,ns)

%PCP

% Function to generate ns samples of the homogeneous Poisson

% counting process of intensity lam > 0 in the time interval

% [0,T]. Also computed are the random times, Tau, at which

% the events occur. See Example 4.12.

% setup

Nguess = floor(1.5*lam*T); % Initial guess for N: 1.5*E[N]=1.5*lam*T

T=zeros(Nguess,ns);

% loop over samples

for i=1:ns,

Ei=exprnd(1/lam,Nguess,1); % interarrival times are Exp RVs

Ti=cumsum(Ei);T(:,i)=Ti; % jump times of N

ndx=find(Ti>T); % keep times that do not exceed T

if isempty(ndx),

error(’pcp(): Nguess not large enough’);

else

N(i)=ndx(1)-1;

end

end

Nmax=max(N);

% all jumps that exceed T will have infinite arrival time

Tau=Inf*ones(Nmax,ns);

for i=1:ns,

Tau(1:N(i),i)=T(1:N(i),i);
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end
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A.4 Verification

Three MATLAB functions are provided to perform statistical checks on a collection of sam-
ples generated by any of the methods listed in Sections A.1-A.3:

1. smpMS.m

Estimate (time-varying) second-moment properties of non-stationary process from mul-
tiple samples.

2. xcov2.m

Estimate the auto- or cross-covariance function of a stationary, ergodic process.

3. xsd1.m

Estimate the one-sided auto- or cross-spectral density of a stationary, ergodic process.

function [mn,c,r]=smpMS(xx)

%SMPMS

% Function to estimate second-moment properties of a non-ergodic

% stochastic process from input xx, an n x ns array of sample functions.

% See Chapter 12 from [42].

%

% Note: diag(c) is the variance estimate

% setup

[n,ns]=size(xx);

% mean estimate

mn = mean(transpose(xx));

for i=1:n,

xx i = xx(i,:);

for j=1:i,

xx j = xx(j,:);

% lower triangle of correlation matrix

r(i,j) = mean(xx i .* xx j);

end

end

% upper triangle of correlation matrix
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r = r + transpose(r) - diag(diag(r));

% covariance estimate

c = r - transpose(mn)*mn;

function [tau,c]=xcov2(x,y,dt,ndt)

%XCOV2

% Function to provide an estimate of the cross covariance function

% of stationary processes X and Y, given one sample of each.

%

% Note: [tau,c]=xcov2(x,x,dt,ndt) estimates the auto-covariance

% of x.

% use Matlab’s xcov.m

[c,lags]=xcov(x,y,ndt);

% scale output

n=length(x);

tau= dt * lags(ndt+1:end);tau=tau(:);

c = 1/n * c(ndt+1:end);c=c(:);

function [g,f]=xsd1(x,y,dt,nd)

%XSD1

% Function to estimate the one-sided cross-spectral density function

% of stationary processes X,Y given one sample of each. The method is

% based on Sections 11.5 and 11.6 from Ref. [2].

%

% Note: [g,f]=xsd1(x,x,dt,nd) estimates the one-sided auto-spectral

% density of x.

% setup

m=length(x);N=floor(m/nd);

% remove mean functions

x=x-mean(x);y=y-mean(y);

% partition data
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k=0;

for i=1:nd,

for j=1:N,

k=k+1;

xx(i,j)=x(k);

yy(i,j)=y(k);

f(j)=(j-1)/(N*dt);

end

end

% Fourier coefficients

for i=1:nd,

X(i,:)=dt*(fft(xx(i,:)));

Y(i,:)=dt*(fft(yy(i,:)));

end

% One-sided cross-spectral density estimate

for k=0:N/2,

temp=0;

for i=1:nd,

temp = temp + ( X(i,k+1) * conj( Y(i,k+1) ) );

end

g(k+1)=2/(nd*N*dt)*temp;

end

f=f(1:floor(N/2)+1);

f=f(:);g=g(:);
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