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ABSTRACT 
 
Alternative solutions are desired for mid-wavelength and long-wavelength infrared 
radiation detection and imaging arrays.  We have investigated quantum dot infrared 
photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 µm) 
radiation sensing.  This document provides a summary for work done under the LDRD 
“Infrared Detection and Power Generation Using Self-Assembled Quantum Dots”.  Under 
this LDRD, we have developed QDIP sensors and made efforts to improve these devices.  
While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by 
high noise current.  Following efforts concentrated on how to reduce or eliminate this 
problem, but with no clear path was identified to the desired performance improvements. 
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Figure 1.  Conduction band diagram of a 
QDIP structure. 

 

1.  BACKGROUND AND SCOPE 

1.1 Overview of Problem and Idea 

Epitaxial growth has advanced to a level that enables atomic layer control of 

semiconductor materials deposition and the creation of self-assembled structures with nanometer 

length scales.  The nanostructures known as self-assembled quantum dots, have optoelectronic 

properties that are not achieved in bulk or quantum well structures.  Optoelectronic devices 

utilizing self-assembled quantum structures have shown enhanced performance over bulk and 

quantum well devices.  A quantum dot infrared 

photodetectors (QDIP) is one device that exploits the 

characteristics of quantum dots that are not available 

with other semiconductor heterostructures.  QDIP 

utilizes the electrons in the conduction band to couple 

to infrared radiation.  Unlike quantum well infrared 

photodetectors (QWIP), quantum dots are sensitive to 

normal incidence radiation.  They are also predicted to 

have enhanced responsivity because the longer lifetime of photoexcited carriers and lower dark 

current than their QWIP counterparts. This project has exploited our efforts in the material 

science of quantum dots to evaluate QDIP designs for the 8 to 11 µm atmospheric window, 

known as the long-wavelength infrared (LWIR) and demonstrate the feasibility of these devices.   

A QDIP utilizes the ground to excited state transitions in the conduction band of quantum 

dots to couple to the incident radiation as shown in Figure 1.  The ground state is populated by 



10 

extrinsic doping introduced into the structure.  Electrons that are promoted to the excited state 

upon irradiation either achieve enough energy to escape the potential or get close enough to the 

top of the potential to quantum mechanically tunnel out of the barrier.  The photoexcited 

electrons produce a current proportional to the intensity of the incident infrared radiation.   

1.2 Present and Alternative Technology 

LWIR detectors are dominated by two commercially available materials.  HgCdTe 

(MCT) and GaAs/AlGaAs QWIP.  MCT is the material of choice for the mid-wavelength 

infrared (MWIR, 3-5 µm), providing a broad wavelength response for wavelengths smaller than 

the cutoff wavelength and the ability to manufacture a photodiodes and detector arrays with very 

low dark current.  In the LWIR the same technology applies, however the performance of MCT 

in the LWIR is not as good, having lower detectivities and higher dark current, and it requires 

lower operating temperatures (around 80 K).  In addition, MCT is a notoriously difficult material 

to fabricate on a large scale, although significant progress has been made through painstaking 

development.  Even with these fabrication difficulties large 1024 x 1024 pixel FPA using MCT 

are available.  GaAs/AlGaAs QWIP devices have excellent response in the LWIR.  Their 

fabrication leverages mature GaAs-based material growth and processing to achieve low defect 

density structures resulting in high pixel operability.  QWIPs are not without problems that make 

them unattractive from a systems standpoint.  Quantum mechanical selection rules do not allow 

the QW ground state to couple to normal incidence radiation.  This requires elaborate three-

dimensional structures to be etched into the QWIP device to diffract the incident radiation into 

the plane of the device. They are photoconductive devices, with a larger required power for 

operation.  The cooling load required for QWIPs is larger than for MCT devices at the same 

wavelength.  This makes them less attractive for remotely operated systems.  An alternative 
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technology that has been proposed is type II superlattice of In(AsSb) and (InGa)Sb utilizing the 

confined hole states in InGaSb and the electron states in InAsSb.  The cutoff wavelength of this 

device can be tuned from the MWIR through the VLWIR by changing the composition and layer 

thicknesses in the structure.  This technology involves homoepitaxy on immature GaSb 

substrates or mismatched heteroepitaxy on GaAs, which is technologically underdeveloped.  The 

demonstrated dark current in superlattice photodiodes is not much better than photoconducting 

QWIP devices at similar cutoff wavelengths and operating temperatures.   

QDIPs have the potential to provide the advantages of both MCT and QWIP devices in 

the LWIR.  QDIP devices, as with QWIPs, leverage the mature fabrication of GaAs-based 

devices.  This means that the production is scalable to large area wafers (4 inch diameter or 

larger) and the defects on the wafers are have a low density allowing the potential for a high 

percentage of operability.  These factors translate into potentially cheaper fabrication for the 

sensor array.  They have shown detectivities comparable to MCT in the MIR at higher operating 

temperatures.  This gain in operating temperature is due to the limited overlap of the quantum 

dot states with thermal carriers in the bulk of the device resulting in lower dark current.  This 

makes them attractive from a systems standpoint that the functionality of the FPA could be 

increased for the same cooling load or the cooling load required by the system could be reduced.  

The enhanced responsivity arises from the longer lifetime of photoexcited carriers, which allows 

more of the photoexcited carriers to be removed from the device before relaxing to the ground 

state.  In addition, QDIPs provide a route to multispectral sensing using the applied voltage to 

tune the response wavelength from the LWIR into the MWIR.  It might be possible to get 10 µm 

response at one voltage and a 5 µm response at another.   
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1.3 Scope of Report 

 Chapter 1 has motivated why QDIPs are of interest to Sandia National Laboratories and 

the position they may fill in our technology portfolio.  Chapter 2 will provide an assessment of 

QDIP technology.  Section 2.1 is a quantitative literature review about what has been done and 

reported by others working on this technology.  Section 2.2 concentrates on modeling of QDIP 

performance to understand how this technology can be improved.  This section compares the 

results of the model to the available literature results and identifies areas were QDIP may have 

an impact. 

 Chapter 3 focuses on the results obtain under this LDRD.  Section 3.1 discusses QDIP 

design and fabrication.  Section 3.2 presents initial device results and discusses the challenges 

that they brought about.  Chapter 4 summarizes the efforts made to improve QDIP performance.  

Section 4.1 discusses the results associated with extending the active region thickness to increase 

the quantum efficiency of the QDIP.  Section 4.32 describes our efforts to improve quantum dot 

uniformity and size distribution.  Finally Chapter 5 will summarize our efforts with conclusions 

drawn from the work performed.
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2. TECHNOLOGY ASSESSMENT 

2.1 Literature Review 

 Extensive work on QDIP technology has been performed prior to Sandia’s entry into this 

technology.  A quantitative review of previous reported performance was performed in order to 

be aware of the current state-of-the-art.  The Table 1 below summarizes this effort.  As with any 

technology, QDIPs have matured over the three years during this LDRD in terms of increasing 

the detectivity and increasing the range of operating temperatures.  This is encouraging, 

suggesting that QDIPs may find a path to a commercial product.  The structures have advanced 

from repeated layers of self-assembled quantum dots in a GaAs or AlGaAs matrix.  High 

performance structures typically use the quantum dot to fix the ground state energy while excited 

states are determined by the materials around the quantum dot.  The dimensions of these 

encapsulation layers provide a critical degree of freedom for QDIP design.  A significant number 

of III-V materials have been used to design QDIP structures.  The control required for QDIP 

fabrication means that only two techniques are feasible.  QDIP fabrication is dominated by 

molecular beam epitaxy (MBE), but several high performance structrues have been obtained 

with metal-organic chemical vapor deposition (MOCVD). 
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Table 1.  Literature review of QDIP performance 

Reference 
(Location) 

Material System 
(technique) 

λC 
[µm] 

 

D* 

[cm Hz1/2/W] 
 

Rλ 

[A/W] 
 

Jdark 
[A/cm2] 

 

Δλ/λ 
[%] 

Max 
T [K] 

Appl. Phys. Lett., 91, 
051115, (2007) 

(U of Mass. – Lowell) 

InAs QD with 
In0.2Ga0.8As cap 

(MBE) 

9.9 1.1E8 @ 190 
K, 0.25 V 

2.5 @ 190 
K, 0.25 V 

 0.2 190 

Appl. Phys. Lett., 90, 
131112, (2007) 
(Northwestern) 

 

InAs QD with 
InGaAs cap in 
InAlAs on InP 

(MOCVD) 

4 2.8E11 @ 
120 K, -5V 

0.6 @ 120 
K, -5V 

5E-6 @ 
120 K, 

-5V 

13 220 

Appl. Phys. Lett., 86, 
191103, (2005) 
(Northwestern) 

 

InAs QD with 
InGaAs cap in 
InAlAs on InP 

(MOCVD) 

6.5 2E9 @ 100 
K, 1 V 

0.004 @ 
100 K, 1 V 

6.2e-5 
@ 100 
K, 1 V 

12 100 

Appl. Phys. Lett., 91, 
173508, (2007) 

(Australian National 
University) 

In0.5Ga0.5As QD 
in AlGaAs 

7 3E9 @ 77 K, 
0.5 V 

0.04 @ 77 
K, 0.5 V 

 20 77 

Appl. Phys. Lett., 91, 
013503, (2007) 

(U. of Sheffield, UK) 

InAs QD with 
In0.15Ga0.85As 

DWELL (MBE) 

7.5 5E10 @ 77K 
and -2 V 

 

1 @ 77K 
and -2 V 

 

 20 110 

Appl. Phys. Lett., 91, 
143502, (2007) 

(U. of Sheffield, UK) 

InAs QD with 
In0.15Ga0.85As 

DWELL (MBE) 

8 to 
11.6 

1E10 @ 77 K 
and -2 V 

0.1@ -2 V, 
77K 

2E-4 @  
77K, 
-2 V 

12 77 K 

J. Vac. Sci. Technology, 
B24, 1553, (2006) 

(U. of New Mexico) 

InAs QD with 
In0.15Ga0.85As 

DWELL (MBE) 

9.7 4e10 @ 77 K 
and ±1.5 V 

 1E-9 @ 
77 K, 
±1.0V 

23 77 K 

6 2.4E10 @ 
77K, 2 V 

0.7 @ 80 
K, 4 V 

0.5 @ 
300 K, 

1 V 

12.5 80 Appl. Phys. Lett., 86, 
191106, (2005) 

(U. of Michigan) 

In0.6Ga0.4As QD 
with 

GaAs/AlGaAs 
barrier (MBE) 17 1.5E7 @ 300 

K, 1 V 
0.15 @ 

300 K, 2 V 
 41 300 

J. Appl. Physics, 99, 114517, 
(2006) 

(Australian National 
University) 

In0.5Ga0.5As QD 
in GaAs 

6.2 1.6E9 @ 
77K, 1.3 V 

0.007 @ 
77 K,  

-1.3 V, 
 

1E-3 @ 
77 K, -

2 V 

22 77 

Appl. Phys. Lett., 82, 1986, 
(2003) 

(U. of Florida) 

In0.6Ga0.4As QD 
(MBE) 

7.6 1.1E10 @ 
77K, -2 V 

0.22 @ 
77K, -2 V 

2.5E-04 
@ 77K, 

-2 V 

17.1 260 
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Source 
(Location) 

Material System 
(technique) 

λC 
[µm] 

D* 

[cm Hz1/2/W] 
Rλ 

[A/W] 
Idark 

[A/cm2] 
Δλ/λ 
[%] 

Max 
T [K] 

Electrons Letters, 38, 1374, 
(2002) 

(U. of Florida) 

InAs QD with 
InGaP cap 

(MBE) 

12.2 3.4E9 @ 
77K, -1.7 V 

0.05 @ 77 
K, 1.7 V 

1E-6 @ 
77 K, 
1.7 V 

22 77 

Appl. Phys. Lett., 84, 3277, 
(2004) 

(USC and UT-Austin) 

InAs with 
InGaAs SRL cap 

(MBE) 

8.7 3E11 @ 78K, 
1.4 V 

0.71 @ 
78K, 1.4 V 

4.9E-04 
@ 78K, 
1.4 V 

10 100 

Appl. Phys. Lett., 81, 1369, 
(2002) 

(U. of New Mexico) 

InAs 
DWELL/GaAs 

(MBE) 

7.2 2E9 @ 1 V, 
78 K 

3.6 @ 1 V, 
78 K 

0.2 @ 1 
V, 78 K 

35 85 

J. Appl. Physics, 92, 7462, 
(2002) 

(USC and UT-Austin) 

InAs with 
InGaAs SRL in 
GaAs (MBE) 

8.8 3.2E9 @ -0.1 
V, 77 K 

0.66 @  
-0.1 V, 77 

K 

1 @  
-0.1 V, 
77 K 

12 120 

4.2 1.5e9 @ -1V, 
60 K 

0.1 @ -1V, 
60 K 

1.00E-
05 @ -
1V, 60 

K 

100 91 J. Appl. Physics, 82, 2574, 
(2003) 

(U. of New Mexico) 

InAs 
DWELL/GaAs 

(MBE) 

7.6    46  
5.5 3.7E9 @ 

77K, 0.3 V 
0.1 @ 

77K, 0.3 V 
0.1@ 
77K, 
0.3 V 

12 100 J. Appl. Physics, 92, 4141, 
(2002) 

(USC and UT-Austin) 
 

InAs with 
InGaAs SRL in 
GaAs (MBE) 

8.9 7.3E8 @ 77 
K 0.8V 

0.5 @1V 
 

12 
 

Appl. Phys. Lett., 84, 2166, 
(2004) 

(Northwestern) 
 

InGaAs/InGaP 
(MOCVD) 

 

4.7 3.6E10 @ -
1.6 V, 95 K 

3.1 @ -1.6 
V, 95 K 

6.25E-
09 @ -
1.6 V, 
95 K 

 

14 
 

140 
 

J. Appl. Physics, 96, 1036, 
(2004) 

(U. of New Mexico) 

InAs 
DWELL/GaAs 

(MBE) 

7.5 5.1E9 @ -0.8 
V, 60 K 

0.105 @ -
0.8 V, 60 

K 

3.90E-
06 @ -
0.8 V, 
60 K 

  

IEEE Photonics Technology 
Letters, 16, 1361, (2004) 

(U. of Michigan) 

InAs/GaAs 
(MBE) 

4.9 2E10 @ 2 V, 
175 K 

0.12 @ 2 
V, 175 K 

1.00E-
04 @ 2 
V, 175 

K 

~0.2 200 
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Source 
(Location) 

Material System 
(technique) 

λC 
[µm] 

D* 

[cm Hz1/2/W] 
Rλ 

[A/W] 
Idark 

[A/cm2] 
Δλ/λ 
[%] 

Max 
T [K] 

Appl. Phys. Lett., 75, 2719, 
(1999) 

(U. of Virgina) 

In0.3Ga0.7As/ 
GaAs (MBE) 

10.2 7E9 @ 40K, 
0.4 V 

0.023 @ 
30 K, 0.4 

V 

 10 40 

Appl. Phys. Lett., 85, 4154, 
(2004) 

(Stanford) 

InGaAs/InGaP 
(MOCVD) 

5.5 4.7E9 @ 
77K, -2 V 

 

2.2 @ 
77K, -4 V 

  77 

9.2 7.2E8 @ -0.8 
V 

0.14 @ -
0.8 V, 

2E-3, 
100 K, 

5 V 
50 220 

Appl. Phys. Lett., 88, 
153109, (2006) 

(Carnegie Mellon) 

InAs QD in 
GaAs (MBE) 

5 2E9, @ 2 V, 
100 K 

4 @ 100 
K, 5 V 

   

J. Vac. Sci. Technology, 
B23, (2005), 1132 
(Carnegie Mellon) 

InAs QD in 
GaAs (MBE) 

5 1E7 @ 78 K, 
0.6 V 

0.014 @ 
77 K, 0.6 

V 

0.01 @ 
78 K, 
0.2 V 

44 78 

 

2.2 Modeling QDIP Performance 
 

MCT is an established technology for optical sensors in MWIR (3-7 µm) and LWIR (7 – 

13 µm) spectral regions.  However this technology is not without detractions related to growth 

and processing issues: low yields and variable processing resulting in high cost.  An alternative 

technology is QDIP sensors based on self-assembled quantum dots based on III-V 

semiconductors.  The quantum dots are formed through the strain energy driven 2D to 3D 

morphology transition when compressively strained films (InAs or InGaAs) are grown on larger 

bandgap matrices (GaAs, AlGaAs, or InGaP).  The conduction band potentials are populated 

with electrons from intentional doping.  Photons of the appropriate wavelength can promote an 

electron from the ground state to an excited or continuum state.  QDIP devices have been the 

subject of intense interest as a possible replacement for MCT and as a possible route to VLWIR 
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sensors [1].  The development of QDIP sensors could then leverage the developed focal plane 

array (FPA) technology for quantum well infrared photodetector (QWIP) FPAs.  This paper 

compares a subset of the existing data for MCT and QDIP devices.  The data for MCT has been 

provided from FPA devices obtained from Jeffrey Rienstra and the data for QDIP has been 

gathered from single pixel devices reported in the literature.  Two models are considered for 

QDIP devices.  The first considers only quantum dots with a uniform size, with no variation in 

size or resulting energy levels [2,3].  The second considers the inhomogeneous broadening of 

quantum dot energy levels [4].  The second model has been utilized to consider the impact of 

structure modifications for the QDIP that could improve performance to meet or exceed that of 

MCT sensors. 

The figure of merit (FOM) that was selected for comparison is peak absorbance/dark 

current density.  For ease calculation this comparison utilizes the peak responsivity (units of 

A/W) in place the peak absorbance since both quantities are proportional to the joint density of 

states.  The other issue in comparison is the fact that QDIP devices are photoconductive, while 

MCT devices are photovoltaic.  Photoconductors can exhibit gain that can enhance the 

responsivity.  No attempt has been made to remove this from the data presented.  For the 

calculated FOM values the gain has been set to unity to provide a direct comparison to MCT 

devices. 
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Figure 2.  Modeled FOM for QDIP and the reduced FOM from the literature review performed. 
 

The figure above shows the complied FOM data for MCT and QDIP.  The MCT data 

were generated under several assumptions.  The responsivity values are generated from the 

external quantum efficiency, η, (EQE) and the cutoff wavelength (λ ) through the relationship: R 

= qη (λ/hc), where other symbols have their usually meanings.  The dark current, Jdark, was 

evaluated from measured R0A to calculate the diode saturation current, which is a lower limit on 

the dark current in reverse bias, through the relationship Js = (qR0A/kT)-1.  The responsivity and 

dark current density data for QDIP were taken directly from publications and converted to the 

FOM.  In general MCT values are higher than QDIP results by several orders of magnitude; 

however, several demonstrations suggest that QDIP structures can come close to the 

performance of MCT.   

The green curve assumes a constant EQE of 70% to evaluate the responsivity for MCT.  

The model for the dark current density is the thermal generation rate in the region defined by the 



19 

absorption length (1/α), as developed by Kinch [5]. The dark current model clearly over 

estimates the current by several orders of magnitude, resulting in the lower theoretical FOM.  

150 K was used for this calculation. 

The blue curve utilizes the model developed by Ryzhii, et al.[2,3] for QDIP.  This model 

considers the band structure of ideal quantum dots with no energy level distribution, but it does 

allow a number of structural parameters to be investigated: the QD density, number of periods, 

and others.  There are a large number of assumed or estimated parameters in this model that 

make accurate evaluation questionable at this early stage, making the prediction of performance 

matching or exceeding MCT sensors tentative at best.   

The red curve utilizes the model developed by Phillips, which extends the work of Kinch 

[5].  This model develops a theoretical expression for the absorbance of a layer of QD, which 

considers similar parameters as Ryzhii and includes the inhomogeneous broadening of the QD 

ensemble.  The curve shown assumes an ensemble that is 50 times broader than the emission 

from a single QD, which is on the high side of presently available technology.  This model seems 

somewhat pessimistic, given that almost all of the experimental results presented exceed this 

theoretical estimate.  It should be noted that both QDIP model curves assume only 10 periods of 

QD with an aerial density of 5 x 1010 cm-2 operating at a temperature of 150 K.   

Since QDIP sensors are performing below that of MCT the obvious question is what 

parameters can be changed to improve the QDIP FOM.  The obvious parameter is the number of 

QD layers.  Table 2 shows the FOM for 10, 20, and 50 QD layers with a fixed inhomogeneous 

broadening ratio of 50 at wavelengths of 5 and 10 µm, a temperature of 150 K, and a QD density 

of 5 x 1010 cm-2.   
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Table 2. Figure of Merit (FOM) for different numbers of periods in active region. 
 

Number of QD 
layers 

FOM (R/Jdark) 
for 5 µm  
[cm2/W] 

FOM (R/Jdark) 
for 10 µm 
[cm2/W] 

10 59 1 
20 119 2 
50 296 5 

 
All of these predicted FOM for QDIP devices are several orders of magnitude below the 

experimental data for MCT.  The density of QD is near saturation (fill factor of 0.45).  Increasing 

the QD density to 1 x 1011 cm-2 (fill factor of 0.63) will increase the FOM to 1540 cm2/W at 5 

µm and 20 cm2/W at 10 µm.  The question that would arise through utilizing this design 

parameter is if the QDs with 0.63 fill factor have the same band structure as ones grown at the 

lower 0.45 fill factor.   

The inhomogeneous broadening of QD can be reduced from the value of 50 to as low as 

20, causing the FOM to increase to 148 cm2/W at 5 µm and 2 cm2/W at 10 µm for 10 QD layers 

with a QD density of 5 x 1010 cm-2.  If all the above improvements were made to the QDIP 

structure a FOM of 1.8 x 106 cm2/W at 5 µm and 250 cm2/W at 10 µm.  Both of these idealized 

FOM fall short of the experimental values for MCT.   

A spectral region that might be difficult to fill for MCT is the VLWIR band (15 µm and 

beyond) that is presently filled by extrinsic detectors (doped Si or Ge) operating a liquid He 

temperatures (2-10 K) and bolometers.  QDIP sensors operating on a bound to bound 

intersubband transition might be able to raise the operating temperature to that of liquid N2 and 

possibly to 150 K. The Table 3 considers the predicted FOM for MCT and QDIP at 20 µm for a 

temperature of 150 K.  Two QDIP structures are provided: the structure available at present (5 x 
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1010 cm-2, 10 layers, inhomogeneous broadening of 50) and the idealized structure (1 x 1011 cm-2, 

50 layers, inhomogeneous broadening of 20). 

Table 3.  FOM for MCT in comparison to current QDIP technology and ideal QDIP technology for VLWIR 
operation 

 
Material FOM  (R/Jdark) 

for 20 µm  
[cm2/W] 

MCT 0.2 
Present QDIP 0.2 

Idealized QDIP 4.5 
 

The present QDIP might be able to meet the performance of MCT with the presently available 

technology and should be able to perform significantly better if modest improvements can be 

achieved. 

2.3 Summary 
 
 The relevant literature associated with QDIPs has been review, documenting the 

performance to the date of this publication.  Continuous improvement by the researchers working 

on these structures has been made suggesting that QDIPs might find be incorporated into a 

commercial system in the future.  Two models of QDIP performance have been implemented.  

Both of these models suggest that QDIPs will have difficulties achieving the performance 

already available with MCT in the MIR or LWIR.  QDIPs may be competitive to MCT in the 

VLWIR.
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3. QDIP DESIGN AND PERFORMANCE 

 
3.1 QDIP Design 

 To obtain the performance enhancements that are predicted from our modeling requires 

design that can be extended to arbitrarily thick QDIP-active regions.  We developed the idea to 

look at strain balanced QDIPs as depicted in Table 4.  The goal is to reduced the strain energy of  

Table 4.  Strain compensated QDIP design. 
 

Repeated Layer Thickness 

[nm] 

Doping 

[x 1E18 cm-3] 

No GaAs 200 2 

No GaAs 50 NID 

Yes GaAs 26 NID 

Yes GaAs0.95P0.05 24 NID 

Yes In0.10Ga0.90As 6 NID 

Yes InAs QD 0.6 2 

No GaAs 50 NID 

No GaAs 500 2 

No AlAs 50 NID 

 GaAs 

substrate 

 Semi-

insulating 

each period of quantum dots to zero.  In practice there are is some strain introduced due to the 

fact that exact compensation is not possible.  MOCVD has the capability to easily incorporate 

phosphorous into GaAs to form GaAsP alloys that are in tension with respect to the GaAs 

substrate they are grown on.  GaAsP can compensate for the compressive  

stress introduced by the array of InAs quantum dots and InGaAs layer used to cap the quantum 

dots.  The desirable characteristic of this design is that the InGaAs cap acts as a quantum well 
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superimposed on the ground state of the quantum dot and allows the excited state to be 

determined by varying the thickness of the capping layer.  If the GaAsP strain compensation 

layer were not present the strain energy of the QDIP stack would increase for each layer put 

down, eventually causing dislocations to be introduced.  The effect of GaAsP on the InAs 

quantum dots is not know.  Since the quantum dots are also compressively strained GaAsP can 

act in opposition to their strain field.  However, this strain field is highly localized and cannot be 

compensated for efficiently.   

3.2 QDIP Fabrication 

 All the QDIPs investigated during this project were grown by low pressure MOCVD at 

70 Torr.  Triethyl gallium (TEGa), trimethyl indium (TMIn), and trimethyl aluminum (TMAl) 

were the group III metal-organic sources used.  Arsine (AsH3) and phosphine (PH3) hydride 

sources supplied group V elements.  A mixture of 30 ppm disilane (Si2H6) in hydrogen was used 

for n-type doping of the quantum dots and the contact layers of the structure in Table 4.  

Nominal singular GaAs(100) was used for all growths.  This provides the smooth starting surface 

needed for quantum dot growth.  After a thin GaAs buffer, 50 nm of AlAs was grown as an etch 

stop to help fabrication of the mesa pixels.  The bottom GaAs contact layer was then grown 

followed by a 50 nm undoped GaAs layer, both grown at 600°C.  The InAs layer that forms the 

quantum dots was then grown at 480°C.  After a 10 second pause in the growth to allow the InAs 

layer to transition to quantum dots, the quantum dots were capped with 6 nm of In0.1Ga0.9As.  

The temperature was then ramped back to 600°C for growth of the 24 nm GaAs0.05P0.95 layer and 

the remaining 26 nm GaAs layer.  This allows the cycle to repeat to form the active layer of the 

QDIP. 
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The conversion of the planar epitaxial structure into QDIP pixels is a simple process.  

Mesas are defined using Shipley 4330 photoresist and lithography.  The photoresist acts as a 

mask and the mesas are etched into the film down to the bottom contact layer using a 500 W 

inductively couple plasma (ICP) reactive ion etch (RIE) formed with BCl3 and Ar at 3 mTorr.  

The photoresist mask is removed and a second lithograph step defines open areas for contact 

metal to be deposited.  The metallization for both contacts is formed in a single step.  A metal 

stack of Ni/Ge/Au/Ni/Au (8/27/54/14/150 nm) is deposited by electron beam deposition.  After 

the deposition the photoresist mask is lifted-off in acetone.  The final processing step is to anneal 

the metal stack to insure low contact resistance to the underlying semiconductor.  This is 

performed in a rapid thermal process furnace at 400°C for 30 sec at atmospheric pressure in an 

argon ambient.  A microscope image a completed pixel is shown inset in Figure 3. 

Before the pixels can be measured they need to be mounted into a gold-plated copper 

package.  This allows wire bonding of the metal pads to the package.  For measurement the 

package is then mounted in a closed-cycle He cryostat for measurement at variable temperatures 

between room and 20 K.  The field of view of the cryostat is 33° relative to the sample normal.  

Spectral measurements were performed using a Nicolet 670 Fourier-transform infrared (FTIR) 

spectrometer.  The uncalibrated signal from the QDIP under test is detected by a Keithley 428 

preamplifier.  Calibrated measurements were made using a black-body source for excitation.  

Noise current measurements necessary for determining the detectivity of the device were 

performed with a SR770 fast Fourier transform analyzer.   
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Figure 3.  Photocurrent spectrum of initial device 
measured at 80 K.  Inset shows plan view of single pixel 
device. 

Figure 4.  Responsivity and detectivity  as a function of
electric field for an initial QDIP detector.  All measurements
made at 80 K. 

3.3 Experimental QDIP Performance 

 Initial QDIP single pixels showed performance up to 50 K.  The design presented in 

Section 3.1 was able to extend the operating temperature to 80 K as shown in Figure 3.  In 

addition to the improved operating 

temperature, the QDIP showed a primary 

transition at 8 µm, which is shorter than 

the targeted wavelength of 10 µm.  This 

suggest that the 6 nm In0.1Ga0.9As layer of 

the QDIP is not thick enough to lower the 

excited state energy.  However, this shows 

the ease in which the QDIP design can be 

modified to be sensitive to any transitions.  

An additional transition around 12 µm is 

observed at positive bias showing the 

asymmetry of the QDIP transitions and 

the possibility to have two-color, 

voltage-tunable detection.  Calibrated 

measurements were made for these 

devices.  Figure 4 shows the peak 

responsivity and peak detectivity as a 

function of bias voltage is shown in 

Figure 1.  Our design achieved 0.5 A/W 

at 80 K and 4.6 V, which is quite good 
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static performance as shown by a comparision to Table 1.  We speculated as part of the original 

proposal that increased responsivity might be achieved by making the active layer thicker by 

growing more periods of quantum dots with the associated cap and strain balancing layer.  The 

peak dynamic detectivity is limited by high dark current to 3 x 108 cm Hz1/2/W at 80 K and 4.6 

V.  The possibility of having high dark currents in our devices was discussed as part of the 

original proposal.   

Several issues could impact the dark and noise current of the QDIP.  The quantum dots in 

the design developed are doped with silicon donors directly.  Unoptimized doping may produce 

too many free carriers in the quantum dot, effectively overfilling it.  Under small bias these 

electrons spill out and contribute to the thermal dark current and the noise current under 

operation.  Another possibility is that the interaction of the dopant atoms directly with the InAs 

quantum dot.  This has been reported by others, but we have not observed any structural 

degradation of the quantum dots by direct doping.  On possibility to avoid direct doping of the 

quantum dots is to dope the GaAs or GaAsP barrier materials.  This introduces difficulties with 

the design as now the carrier density in the quantum dot is not a function of the amount of dopant 

introduced, but rather the separation of the dopant sheet from the quantum dot layer.  This 

approach was not investigated in our effort.  Finally, we proposed that large, relaxed quantum 

dots could act as electrical shunts.  These over-grown quantum dots could contribute to the 

abnormally high dark current, but would not limit the responsivity of the detector.  Further 

efforts concentrated on understanding how to limit large quantum dot formation during growth. 
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4. EFFORTS TO IMPROVE QDIP PERFORMANCE 

4.1 Active region thickness 

 QDIPs are limited by their quantum efficiency.  A single layer of quantum dots converts 

less than 1 percent of the incident photons into electrons.  One way to improve the quantum 

efficiency is to increase the number of layers of quantum dots in the active layer of the QDIP.  It 

was believed that an increased number of quantum dot layers would result in an increase in the 

responsivity of the device.  The problem with strained structures, such as the QDIP, is that each 

layer of quantum dots introduced increases strain energy of the active layer and the increases the 

opportunity for structural defects to be introduced.  This fact motivated us to investigate a strain 

balanced design so that the improvements predicted by larger active layer thicknesses could be 

achieved.   

 To investigate our hypothesis 

that thicker active layers should provide 

more quantum efficiency, two 

structures were grown.  One had 10 

periods of InAs quantum dots while 

another had 20 periods.  Both structures 

were determined to be strain balanced 

based on x-ray diffraction rocking 

curves.  Both structures showed strong 

photoluminescence, however the 

thicker structure did not show a factor 

 

Figure 5.  Transmission through 10- and 20-period 
QDIP structures performed at 77 K.   
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of two increase in the photoluminescence intensity.  Instead of fabricating these structures into 

QDIPs, IR transmission measurements were performed at 77 K to determine if any features 

attributable to intrasubband transitions of quantum dot could be observed.  Figure 5 shows the 

data obtained.  A clear transition is observed between 10 and 13 µm for the 10-period structure.  

No transitions are observed for the 20-period structure, suggesting that by increasing the active 

layer thickness we have degraded the desirable properties of the quantum dot.    

4.2 Quantum Dot Uniformity 

One source of dark current in QDIPs is large, relaxed quantum dots.  These structures act as 

vertical shunt paths for current through the device.  In an effort to improve QDIP performance 

we looked at the size distribution of the quantum dots that were formed under different 

conditions.  Experimental island count histograms as a function of quantum dot volume have 

been evaluated using an established model.  The experimental data was obtained for 2 inch and 

analyzed over the center 26 x 26 mm square of the wafer with atomic force microscopy.  More 

than one distribution is required for all conditions investigated to obtain adequate representations 

of the experimental data.  Consistent parameters are obtained for samples grown with a variable 

InAs thickness.  Higher growth temperatures results in material being converted into relaxed 

islands.  Extended annealing without AsH3 eliminates small islands, suggesting that they are not 

a stable distribution. 

InGaAs self-assembled quantum dots have been studied extensively over the past 15 years 

addressing fundamental questions related to their three-dimensional quantum confinement and a 

variety of applications.  Initial research of InGaAs-based quantum dots was motivated by the 

possibility of achieving active regions that emit at 1.3 or 1.55 µm to replace and improve upon 

InP-based quantum well devices.[6, 7, 8]  Quantum dots discrete characteristics naturally lead 
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into applications utilizing them for single photon detectors.[9]  Quantum dots have been utilized 

to demonstrate middle infrared detectors [10,11], which is our primary interest. 

 The optimization of InGaAs quantum dots on GaAs (100) has been largely an empirical 

effort.  Basic phenomenological models have provided insight into quantum dot formation and 

development as of function of growth parameters.[12, 13, 14]  This can be contrasted to the even 

more widely studied Ge(Si) on Si (100) system, where extensive fundamental modeling has been 

undertaken.[15]  There is a need for quantitative modeling addressing experimentally determined 

quantum dot size distributions in the InAs/GaAs (100) material system. 

A general thermodynamic model for quantum dot size distributions was first posed by 

Shchukin, et al.[16]  With this model they evaluated the stability of quantum dots with respect to 

ripening.  They determined the importance of the surface energy and the dipole interaction 

energy to distribution stabilization and determined regions where distributions would be stable 

and unstable.  Daruka and Barbási extended this model providing a phase plot of the different 

regimes of island formation as a function of strain and deposit thickness.[17]  More recently 

Rudd, et al. has combined the previous developments into a tractable model that allows fitting 

experimental histograms of island count versus island size.[18]  They applied their model to 

fitting Ge on Si (100) where the pyramid to dome transition produces bimodal distributions that 

vary with the growth temperature and Ge thickness deposited.  We utilizes the thermodynamic 

model as developed by Rudd, et al. and apply it to the InAs on GaAs (100) system.  An overview 

of the derivation leading to development is provided.  The conditions relating to sample 

formation are given and the details of how the histograms are generated from extensive atomic 

force microscopy (AFM) images.  The histograms and their fits are compared for a variety of 

conditions. 
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4.2.1 Model Development 
 

Since the system under consideration is open and isothermal we use the grand canonical 

ensemble to describe island evolution.  The partition function of interest is given as: 

∑ −−=Ξ
ionsconfigurat

NEtotale βμ )(  (1) 

Ξ is the grand partition function for an open system exchanging material and energy with its 

surroundings.  β represents 1/kT, where T is the absolute temperature of the system, and k is 

Boltzmann’s constant, and μ is the chemical potential of the InAs film.  Etotal  is the total internal 

energy of the ensemble and can be expressed as: 

∑=
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Where n is the number of islands containing v atoms and Ev is the energy of an island with size v.    

N is the total number of atoms in all islands and can be expressed as: 
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Substituting (2) and (3) into (1) and converting the sum over configurations to a sum over the 
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The factorial denominator results from the conversion of the sum over configurations to the sum 

over states.  Ensemble averages for the island size <n> are expressed as: 
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The energy of an individual island containing v molecules can be expressed as: 
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)2()( 3/223/13/2 θλξ vDCvBvAvEv ++++=  (6) 

The coefficients associated with (6) require explanation.  In the first term, A represents the elastic 

energy of the island.  It is interpreted in this work as the additional energy the island has due to 

strain relative to the bulk film.  B incorporates surface physics such as the reconstruction and the 

surface energy.  C introduces edge effects of the island and the surface stress.  A more rigorous 

expression for the edge energy might include an additional logarithmic term to multiply the term 

included here, but this is neglected in this development to simplify fitting.  The volume 

independent term D can be considered as the strain energy of the wetting layer relative to the 

island distribution.  The second term incorporates the energy dipole between islands.  The elastic 

coefficient is represented by λ, ξ is the elastic strain dipole energy of the island, and θ is the 

thickness deposited.  The mathematical expression used for the dipole energy is open to debate, 

but must be considered for dense ensembles.   

The procedure adopted to fit equation (5) and (6) to a distribution of islands involves 

performing a minimization of the sum of squared differences between the experimentally 

determined island count for a specific island volume and the calculated number of islands.  

Island volume was used as the dependent parameter, because it can be calculated from measured 

data and doesn’t require the atomic density of the material to be known.  The minimization of the 

sum of squared differences was performed using the Solver routine in Excel allowing as many as 

five variable coefficients for each distribution.  Since both A and μ vary with v, only the 

difference between these coefficients was evaluated.  Due to the uncertainty introduced by 

alloying of the InAs with the GaAs substrate, no effort was made to separate λ and ξ.  The 

temperature and material coverage are both treated as known, fixed parameters.  A check was 

performed after a fit is obtained to see how close the calculated coverage based on θ =Σv(v<n>) 
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was to the experimental coverage.  This was used along with the sum of squared differences was 

used to judge the quality of the fit.  Since the distributions obtained experimentally showed more 

than a single island type, two or more distributions are summed together with different 

coefficients for each distribution.  This gives rises to as many as 15 variable coefficients to 

describe the experimental data.   

4.2.2 Experimental details 
 

The InAs quantum dots evaluated were deposited by MOCVD.  The surface quantum dot 

samples considered were grown on top of an GaAs/AlGaAs heterostructure containing buried 

quantum dots.  The thickness separating the buried quantum dots from those of the surface was 

such that the buried layer should not impact the surface quantum dots.  The growth sequence 

follows closely a previously published procedure.[19]  A post-growth purge without AsH3 was 

introduced after InAs deposition to all quantum dot layers.  Two temperatures were considered 

for InAs quantum dot formation: 480°C and 500°C.  At 480°C the thickness of InAs deposited 

was varied: 5.4 Å, 6.0 Å, and 6.6 Å, with a constant post-growth purge without AsH3 of 10 

seconds after deposition.  At 500°C the InAs thickness was fixed at 6.0 Å and the post-growth 

purge time without AsH3 varied:10 seconds and 60 seconds.  These two sample sets allows 

assessment of coefficients generated by the model to determine if they are consistent when 

experimental conditions are held constant. 

The quantum dot density and height were measured using AFM.  Imaging was performed 

under ambient conditions with commercial pyramidal Si tips in tapping mode.  Each specimen 

was analyzed by taking measurements at an array of 81 points, which covered the central 26 x 26 

mm2 region of the wafer. The corners of the array are 7 mm from the wafer edge, and the centers 
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of the array sides are 12.4 mm from the wafer edge. A scan size of 9 µm2 was used to eliminate 

the effect of small-scale local variations. 

The model developed uses the volume of the quantum dot as the independent variable.  

Experimentally, the volume cannot be determined accurately from AFM because the volume 

determination is subject to evaluation of island diameter.  Instead we have evaluated the 

minimum and maximum aspect ratios, α defined as the ratio of the height to the base diameter (α 

≡ h/d), of a subset of islands as a function of their height and applied geometric formulas for a 

conical cap to determine island volume.  The island volume was then calculated as 

23 /12 απ hv = .  The aspect ratio transformation has been considered as a discontinuous first-

order phase transformation, but discontinuous functions introduce mathematical difficulties into 

the fitting procedure.  In our analysis, the dependence of the aspect ratio on island height was 

defined as )/arctan(1 chhααα Δ+= .  This assumes a single aspect ratio transformation of the 

islands consistent with our results.  Larger islands relax and grow monotonically [20] which 

would introduce a third aspect ratio, but this observation is not implemented. 

4.2.3 Results and Discussion 
 

Figure 1a shows the island volume histogram and the associated fit obtained with the model 

for the sample grown at 480°C with 6.0 Å of InAs.  Two distributions are required for adequate 

fitting of the histogram which is consistent with reports which identify a pyramid to dome 

transition in InAs/GaAs quantum dot.[1]  Figure 1b shows the residual defined as the difference 

between the calculated and experimental counts.  At low island volumes large absolute 

deviations between the fit and the data exist corresponding to about 8 percent of the experimental 

value.  At larger island sizes the absolute fit is much better, but the percentage deviation can be 

as large as 16 percent. 
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Figure 1a can be compared to the other 

conditions observed for smaller and larger 

depositions of InAs.  Figure 2a displays the 

histogram and its fit for 5.4 Å of InAs.  

Again two distributions are needed to fit the 

data adequately.  The number of islands 

involved in the second distribution is lower.  

For the 5.4 Å sample no clear peak is 

observed for the first distribution, instead a 

broad shoulder is observed.  When 6.6 Å of 

InAs is deposited (Figure 2b) for quantum 

dot formation the number of islands in the 

first distribution decreases and the number 

of islands associated with the second distribution increases. The validity of the model requires a 

quantitative comparison of the model parameters for constant conditions where one of the model 

variables is changed.  In our case the sample thickness was varied. Table 5 summarizes the 

coefficients obtained for fits displayed in Figures 6 and 7.  Analysis of the results concluded that 

λ2ξ2 needed to be fixed at a value of zero.  This is physically realistic because the large islands 

have a low enough density that they do not interact elastically as the smaller, denser islands do.  

In addition to the coefficients obtained, calculated planar thickness of InAs that makes up each 

distribution is given at the bottom of the table.  Most of the coefficients are reproduced well, 

with the exception being C2. 

 

a)

b)

 

Figure 6. a) Comparison of model to experimental
histogram . b) Residual, defined as the difference between
the fit and experimental data. 
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Increasing the growth temperature to 500°C for a deposition of 6 Å requires a third distribution 

to be included to fit the data adequately.  The fit obtained in shown in Figure 8a.  The physical 

origin of the third distribution is speculated to be the strain relaxation of a significant number of 

the islands.  Extending the purge time at 500°C to 60 seconds eliminates the first distribution as 

shown in Figure 8b, indicating that the small islands are unstable with respect to ripening for 

long anneals without AsH3. 

4.2.3 Summary 
 

a)

b)

Figure 7.  Experimental distributions with fits for
samples grown with an InAs thickness of a) 5.4 Å
and b) 6.6 Å. 

a)

b)

 
Figure 8. Experimental distributions with fits for 
samples grown at 500°C with a) 10 sec PGP without 
AsH3 and b) 60 sec PGP without AsH3. 
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We have evaluated island count histograms as a function of volume for two MOCVD 

conditions using an established model.  More than one distribution is required for all conditions 

investigated.  InAs thicknesses near the critical thickness for island formation and temperatures 

at or below 480°C are necessary to minimize the second distribution.  Consistent parameters are 

obtained for samples grown with variations in the InAs thickness.  Higher growth temperature 

results in material being converted into what we propose to be relaxed islands.  Extended 

annealing without AsH3 eliminates small islands and leaves the distributions with larger islands 

unchanged, suggesting that the distribution composed of small islands is not stable for all 

volumes. 
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Table 5. Summary of parameters for the samples grown at 480°C 
 

 T [K] 753 753 753 

 θ [Å] 6.6 6.0 5.4 

 

AsH3 pressure 

[torr] 0.27 0.27 0.27 

 PGP time 

[seconds] 10 10 10 

     

A1[eV/atom] x 106 -4.13 -1.24 -1.30 

B1[eV/atom2/3] x 104 -2.85 -2.91 -3.10 

C1[eV/atom1/3] x 102 -6.7 -4.7 1.6 

D1[eV]  -0.20 -0.4 -0.72 

λ1ξ2[eV/Å/atom2/3] x 103 1.20 0.99 0.68 

A2[eV/atom] x 107 1.11 1.22 1.11 

B2[eV/atom2/3] x 106 -5.72 -4.37 -7.29 

C2[eV/atom1/3] x 103 1.12 1.12 0.076 

D2[eV]  -0.55 -0.55 -0.31 

θ1 [Å]  0.3 0.45 0.67 

θ2 [Å]  6.01 4.64 0.75 
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5. CONCLUSIONS 

 QDIPs are a class of photo-conducting detectors for MWIR and LWIR radiation that may 

have potential applications to replace established materials, such as HgCdTe.  This report has 

summarized our work on these optoelectronic devices.  A summary of the relevant literature was 

performed. The progress of the community shows that continuous progress is being made on 

QDIP performance.  Some groups have advanced their designs to the point they are fabricating 

focal plan arrays for imaging in the MWIR and the LWIR.  The modeling performed by us 

suggests that QDIPs will have difficulty exceeding the continuous improvement obtained for 

existing technology.  This is supported by the fact that experimental QDIP performance is not at 

the level of other more developed technologies.  QDIPs still may have potential niche 

applications.   

 We were able to fabricate and test QDIP structures during this project.  The QDIPs tested 

show good static performance, as indicated by high responsivity.  However, the more relevant 

dynamic detectivity is limited by high thermal and noise currents.  The possible origins for these 

current are numerous.  We have investigated the possible shunting of the device by large, 

defected quantum dots.  While we have been able to lower the fraction of these defected 

quantum dots, their elimination was not possible.  Routes to improve QDIP performance through 

increasing the active thickness for IR photons to absorb could not be realized due to failure of the 

device as this thickness was increased. 
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