
SANDIA REPORT
SAND2008-1310
Unlimited Release
Printed February 2008

Parallel Job Scheduling Policies to
Improve Fairness: A Case Study

Vitus J. Leung, Gerald Sabin, and P. Sadayappan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2008-1310
Unlimited Release

Printed February 2008

Parallel Job Scheduling Policies to Improve
Fairness: A Case Study

Vitus J. Leung
Computer Science & Informatics Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1318

Gerald Sabin and P. Sadayappan
The Ohio State University
Columbus, OH 43210

Abstract

Balancing fairness, user performance, and system performance is a critical concern
when developing and installing parallel schedulers. Sandia uses a customized sched-
uler to manage many of their parallel machines. A primary function of the scheduler
is to ensure that the machines have good utilization and that users are treated in a
“fair” manner. A separate compute process allocator (CPA) ensures that the jobs on
the machines are not too fragmented in order to maximize throughput.

Until recently, there has been no established technique to measure the fairness of
parallel job schedulers. This paper introduces a “hybrid” fairness metric that is similar
to recently proposed metrics. The metric uses the Sandia version of a “fairshare”
queuing priority as the basis for fairness. The hybrid fairness metric is used to evaluate
a Sandia workload. Using these results, multiple scheduling strategies are introduced
to improve performance while satisfying user and system performance constraints.

3

Acknowledgments
Thanks to Jeanette Johnston for the discussions regarding the previous policy and possible
improvements. Thanks to Jon Stearley for going out of his way to discuss “fairness” and
for getting the raw Cplant logs.

4

Contents

1 Introduction 7

2 Sandia Environment 9
2.1 Scheduler . 9
2.2 Workload . 10

3 Simulation Environment 14
3.1 Simulator . 14
3.2 Standard Metrics . 14

3.2.1 User Metrics . 14
3.2.2 System Metrics . 15

4 Fairness Metrics for Parallel Job Scheduling 15
4.1 A Hybrid “Fairshare” Metric . 16

5 Fairness Directed Policies 17
5.1 Maximum Runtime Limits . 18
5.2 Limit Entrance to the Starvation Queue 18
5.3 Conservative Backfilling . 18
5.4 Conservative Backfilling with Dynamic Reservations 19
5.5 Scheduling Policies Presented . 19

6 Results 20
6.1 Minor Changes . 20
6.2 Conservative Backfilling Results . 25

7 Conclusions 27

List of Figures
1 Simple FCFS Backfill Example . 7
2 FCFS Backfill Example . 8
3 Load of Ross Workload . 10
4 Load of Ross Workload . 11
5 Load of Ross Workload . 13
6 Load of Ross Workload . 13
7 Load of Ross Workload . 14
8 Percent of Missed Jobs (Minor Changes) 20
9 Average Miss Time (Minor Changes) . 21

5

10 Average Miss Time (Width Categories, Minor Changes) 21
11 Average Turnaround Time (Minor Changes) 22
12 Average Turnaround Time (Width Categories, Minor Changes) 23
13 Loss Of Capacity (Minor Changes) . 23
14 Percent of Missed Jobs . 24
15 Average Miss Time . 24
16 Average Miss Time (Width Categories, Conservative) 25
17 Average Turnaround Time . 26
18 Average Turnaround Time (Width Categories, Conservative) 26
19 Loss of Capacity . 27

List of Tables
1 Categorywise Job Count . 12
2 Categorywise Proc-Hr . 12

6

Pr
oc
es
so
rs

Current Schedule
jobA

Time

jobB

Figure 1: An example of a simple FCFS schedule without backfilling

1 Introduction
Clusters and other supercomputers often use parallel job schedulers [2, 3, 4] to dynamically
determine the jobs execution order and, in some cases, which nodes to allocate to each job.
Users submit jobs to a scheduler (e.g., qsub), giving information such as expected runtime
and the required node allocation size. The scheduler is responsible for determining when
to start each job. There has been much research evaluating various non-preemptive, space
shared job scheduling strategies [10].

The problem can be viewed in terms of a 2D chart with time along one axis and the
number of processors along the other axis. Each job can be thought of as a rectangle whose
length is the user estimated run time and width is the number of compute nodes required.
The scheduler’s role is to “pack” sets of jobs into the 2D schedule. Users can submit new
jobs to the system, that need to be incorporated into the current schedule. Therefore, the
schedule must be able to handle dynamically arriving jobs of various sizes. Schedulers
inherently use a queue to store jobs that have arrived but have not been launched or started.
The generated schedules must be sensitive to both user and system needs such as: how long
does it take for each user’s job to run and how well the system resources are being utilized.

The simplest way to schedule jobs at a single site is to use a strict First-Come-First-
Serve (FCFS) policy. However, this approach suffers from low system utilization [16]. A
strict FCFS policy ensures that jobs are started in the order of arrival. Therefore, only jobs
from the head of the queue can be started. A job that is not at the head of the queue must
wait, even if there are currently enough resources available. For instance, in Figure 1 jobB
can not start, even though there are enough resources available. Therefore, a strict FCFS

7

Pr
oc
es
so
rs

Current Schedule
jobA

Time

jobB

Figure 2: An example of a backfill in an FCFS backfilling schedule

policy is “fair” but leads to poor utilization and a poor average turnaround time.
Backfilling [22, 23] was proposed to help improve system utilization and has been

implemented in most production schedulers [14, 28]. Backfilling is the process of starting
a job that is lower in the queuing priority order before the job that is at the head of the
queue. Backfilling identifies ”holes” in the 2D chart and moves forward smaller jobs that
fit into these holes, without delaying any jobs with future “internal” reservations. This
helps improve utilization, by not allowing processors to remain idle if there is a job that
fits in a hole, and helps to reduce average turnaround time due to the increased utilization.
Figure 2 shows a similar situation to Figure 1, except jobB is now allowed to start due to
backfilling.

We will now define what it means for a job to fit into a hole in the schedule. A back-
filling scheduler creates internal reservations for some of the jobs. These reservations, as
well as time blocked off for running jobs, provide a schedule in which jobs are allowed to
backfill. A hole is an open space in this 2D chart. Backfilling allows a job that fits into this
schedule to improve its internal reservation (by obtaining an earlier time slot), as long as it
fits into a hole and does not violate any other reservations.

There are two common variations to backfilling - conservative and aggressive (EASY)[11,
28]. In conservative backfilling, every job is given an internal reservation when it enters
the system. A smaller job is moved forward in the queue as long as it does not delay any
previously queued job. In aggressive backfilling, only the job at the head of the queue has
a reservation. A small job is allowed to leap forward as long as it does not delay the job
at the head of the queue. No guarantee backfilling is a less often used variation. In no
guarantee backfilling, no jobs are given reservations. This has the possibility of leading

8

to starvation (see below) and is therefore not often used. Many production schedulers use
variations between conservative and aggressive backfilling, giving the first n jobs in the
queue a reservation.

Other parallel job scheduling techniques have been designed to reduce the turnaround
time for users [8, 17, 12] and increase utilization [16, 18] in a “fair” environment. Until
recently, fairness was not a primary concern in much of the research literature. However,
fairness has always been a primary concern when setting up a parallel job scheduler.

This fairness concern is evident in the scheduler developed and put into production at
Sandia National Laboratories on various machines (e.g., CPlant [1]). The Sandia scheduler
prioritizes jobs using a decaying processor-time value. This value tracks the usage of each
user and decays on a regular basis. This attempts to provide users who have not recently
used the machine priority over other users. The intent of this queuing priority is to provide
a sense of fairness amongst the users.

The remainder of this paper is organized as follows: Section 2 examines the original
Sandia scheduling policies and workload studied in this paper. Section 3 discusses the
simulation methodologies used in this study. Section 4 reviews existing fairness metrics
for parallel job schedulers and introduces a “hybrid” metric. Section 5 introduces a few
scheduling policies designed to reduce unfairness. Section 6 examines the effects of the
scheduling policies introduced in Section 5.

2 Sandia Environment
This study examines the CPlant/Ross machine at Sandia National Laboratories. The schedul-
ing policy and workload logs were required to perform this case study. The scheduler policy
was obtained via the CPlant website and personal communications with Jeanette Johnston.
The raw workload logs (PBS and yod logs) were obtained with assistance from Jon Stear-
ley.

2.1 Scheduler
The baseline scheduler in use (at the time the study was completed) on the CPlant machine
was a no guarantee backfill variant. The queuing policy was based on a “fairshare” queuing
priority aimed at providing a level of user fairness. The “fairshare” queuing order was
determined by a historical sum of processor-seconds used that decayed every 24 hours.
This provided priority to users who had not recently used the machine. There were no
internal reservations. At each scheduling event (job completion and job arrival), the queue
was processed in fairshare priority order; if there were sufficient nodes, a job was started
(i.e., no guarantee backfilling). This has been shown to negatively affect wide jobs, as it is
unlikely that enough nodes will be free for a wide job to start, as lower priority, narrower
jobs will be allowed to start ahead of it.

To prevent wide jobs from starving, a secondary “starvation” queue was used. The
starvation queue used an FCFS priority order, rather than “fairshare”. The head of the star-

9

CPlant/Ross December 01, 2002 to July 14, 2003

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

Week 0
Week 4

Week 8

Week 12

Week 16

Week 20

Week 24

Week 28

Week 32

U
til

iz
at

io
n

Actual Utilization
Offered Load

Figure 3: The offered load and actual utilization of the CPlant/Ross workload between
December 1st 2002 and July 14th 2003

vation queue received an internal reservation (i.e., aggressive backfilling), and thus progress
was guaranteed.

2.2 Workload
Workload logs from the CPlant system from December 01, 2002 to July 14, 2003 were
collected and processed for use in this study. The trace was converted to the Standard
Workload Format (SWF V2) from multiple system logs (PBS and the job launcher, yod).
Effort was taken to track the user id, group id, start time, completion time, submit/queue
time, wall clock limit (i.e., user estimated runtime) and nodes requested. The timing and
node information are required to characterize the shape of a job. The user id’s are required
to compute the “fairshare” value for the Sandia scheduling policy. User and group id’s
were replaced sequentially (e.g., the first user is given an id of 1) to remove the actual user
and group id’s for public release. A superset of the traces will be released via the workload
archive [9] soon.

The trace contains 13614 jobs over the 7.5 months (231 days). The trace contains
periods of very high utilization (over 90%), see Figure 3. The offered load shows the
amount of queued workload over time, while the utilization shows the actual achieved
utilization. The CPlant workload contains many weeks where the offered load is much
greater than 100%, implying that not enough resources are available to complete the work
given to the system in that time period. High load weeks are often followed by weeks where
the load is much lower. These cyclic low load periods are likely due to the users submitting

10

CPlant/Ross
December 01, 2002 to July 14, 2003

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08
Runtime (sec)

N
od

es

Figure 4: The runtime and node usage for the CPlant/Ross workload between December
1st 2002 and July 14th 2003

fewer jobs due to the extremely high queue lengths and wait times.
Figure 4 plots the submitted jobs. Many users choose “standard” node allocations that

are powers of two or squares, as seen in other workloads [9, 13]. Table 1 shows that most of
the jobs are short; few jobs use 2-4 nodes, and few jobs use more than 128 nodes. However,
there are quite a few very long jobs in the workload. Table 2 shows the same data as Table 1,
but in total processor-hours instead of just number of jobs in each category. This shows that
even though there are fewer longer jobs than short jobs, the wide and long jobs represent a
significant portion of the workload.

Figure 5 plots user estimates vs. actual runtimes for each job. The custom PBS sched-
uler kills jobs after the user supplied wall clock limit (WCL) is reached. However, if no
other job requires the processors, the job is allowed to continue running until the proces-
sors are needed. This results in a few jobs having longer runtimes then estimated. The
process of killing jobs and the effect job placement has on runtimes [21] lead to many
users providing user estimates that are much longer than the expected runtime. The inten-
tional over estimations, combined with unknown system and networking contention and
jobs that abort unexpectedly explain much of the overestimation seen. Attempts to reduce
networking contention are documented in [5], [6], [7], [20], and [21]. Figures 6 and 7 show
any correlation between runtime and nodes, respectively, and the overestimation factor.

11

Table 1: Number of jobs in each length/width category
0-15 15-60 1-4 4-8 8-16 16-24 1-2 2+
mins mins hrs hrs hrs hrs days days

1 node 681 141 44 7 7 3 6 16
2 nodes 458 80 8 0 2 0 1 0
3-4 nodes 672 440 273 55 26 3 5 5
5-8 nodes 832 238 700 155 142 90 76 91
9-16 nodes 1032 131 347 206 260 141 205 160
17-32 nodes 917 608 113 72 67 53 116 160
33-64 nodes 879 130 134 70 79 48 130 178
65-128 nodes 494 72 78 31 49 24 53 76
129-256 nodes 447 127 9 5 12 1 3 10
257-512 nodes 147 24 6 3 1 0 0 1
513+ nodes 51 18 1 0 0 0 0 0

Table 2: Processor-hours in each length/width category
0-15 15-60 1-4 4-8 8-16 16-24 1-2 2+
mins mins hrs hrs hrs hrs days days

1 node 14 61 76 42 70 62 259 2883
2 nodes 32 70 21 0 53 0 68 0
3-4 nodes 103 1197 2210 1272 1030 213 614 1310
5-8 nodes 281 1101 10263 6582 12107 14118 18287 92549
9-16 nodes 522 1102 12522 18175 45859 42072 105884 207496
17-32 nodes 968 6870 6630 11008 22031 28232 109166 363944
33-64 nodes 1775 2895 15252 20429 48457 48493 251748 986649
65-128 nodes 1876 4149 19125 17333 53098 48296 179321 796517
129-256 nodes 3273 12395 4219 4322 27041 5451 19030 183949
257-512 nodes 3719 4723 5027 6850 3888 0 0 30761
513+ nodes 2692 9503 0 3183 0 0 0 0

12

CPlant/Ross
December 01, 2002 to July 14, 2003

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08
Runtime

W
C

L

Figure 5: User estimates for the CPlant/Ross workload between December 1st 2002 and
July 14th 2003

CPlant/Ross
December 01, 2002 to July 14, 2003

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E-02 1.0E+00 1.0E+02 1.0E+04 1.0E+06
Over Estimation Factor

R
un

tim
e

Figure 6: The overestimation factor reduces for longer jobs in the CPlant/Ross workload
between December 1st 2002 and July 14th 2003

13

CPlant/Ross
December 01, 2002 to July 14, 2003

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E-02 1.0E+00 1.0E+02 1.0E+04 1.0E+06
Over Estimation Factor

N
od

es

Figure 7: The overestimation factor appears unrelated to the node selection in the
CPlant/Ross workload between December 1st 2002 and July 14th 2003

3 Simulation Environment

3.1 Simulator
A locally developed event based simulator was used to simulate various scheduling poli-
cies using the CPlant workload log. The simulator can simulate multiple queuing orders
and reservation depths. The necessarily modification were made to simulate any of the
scheduling algorithms presented. The scheduler takes as input a trace file in the Standard
Workload Format V2 [9].

3.2 Standard Metrics
Parallel job scheduling metrics can be divided into two major categories: user and system
metrics. User metrics are designed to measure the performance of a particular schedule
from a users point of view. System metrics measure the performance from a “system” or
administrative point of view.

3.2.1 User Metrics

Common user metrics include wait time, turnaround time, and slowdown. Waitime mea-
sures the time between jobi’s arrival and jobi’s start time. Turnaround time measures the
time between jobi’s arrival time and its completion time.

14

AverageTurnaroundT ime =

∑
j∈jobs j.completetion time − j.arrival time

∑
j∈jobs 1

(1)

3.2.2 System Metrics

Utilization is the most common system metric. However, in simulation based studies, uti-
lization is a poor measure of performance. In simulation studies, utilization simply is an
indirect measure of makespan, as the workload of all schedulers is a constant.

Utilization =

∑n
i=1 jobi.used processors ∗ jobi.runtime

Makespan ∗ SystemSize
, (2)

where

Makespan = MaxCompletetionT ime − MinStartT ime. (3)
Loss of Capacity (LOC) (see Equation 4) is often used in lieu of utilization. LOC

measures the fraction of the processor cycles that were left idle when jobs were in the
queue. LOC exists due to the non-work conserving nature of the job schedulers; a work-
conserving schedule will, by definition, have a LOC of 0. LOC is a good metric to measure
the system performance of parallel backfill scheduling simulations. The metric measures
the extent to which the schedule is “packed”. A low LOC implies that the unused cycles
are not due to the scheduling policy, but rather the offered workload. A high LOC implies
that the scheduler is not able to pack the jobs, and it is not expected that increasing offered
load will affect utilization.

LOC =

∫ max time
t=0 min(

∑
q∈queuedJobs q.nodes, SystemSize − ∑

r∈runningJobs r.nodes)

Makespan ∗ SystemSize
(4)

4 Fairness Metrics for Parallel Job Scheduling
Recent work has introduced fairness metrics designed for the parallel job scheduling do-
main. Vasupongayya and Chiang [30] examine the use of common techniques to measure
fairness. The standard deviation of the turnaround time and fairness index [15] are consid-
ered as a basis to measure fairness. These metrics assume that it is undesirable to have a
high standard deviation; however, this is not the case for bursty workloads seen in parallel
job scheduling. It is desirable that a job arriving in a low load condition (e.g., late evening)
receive a much better turnaround time than a job arriving in heavy load (e.g., mid morning).

Srinivasan et. al [29] recognize that both an FCFS no-backfilling schedule and an
FCFS conservative backfill schedule (e.g., unlimited reservations) provides a “fair” sched-
ule when perfect user estimates are assumed. The schedule is “fair” in a social justice [19]

15

sense, as no job can be affected by a later arriving job. A no-backfill schedule is undesir-
able as the average turnaround time is very large and the utilization is very low. Therefore,
the conservative backfill schedule assuming perfect estimates (CONS P) is assumed to be a
“fair” schedule. The simulated start of each job in a scheduler under test, using inaccurate
user estimates, is compared against the CONS P start time. The sum of these differences
represents the “unfairness” of the schedule.

Sabin et. al. [25, 26, 27] have introduced multiple fairness metrics for parallel job
schedulers. The first metric is based on defining a fair start time (FST), similar to the
CONS P metric defined above. The CONS P metric has the apparent advantage of creating
a single set of FSTs. However, while the feature allows simple comparisons of schedules, it
detracts from its ability to accurately measure fairness. If a schedule has a higher utilization
than the CONS P schedule, jobs run deliberately out of order can seem fair. Assume that
two identically shaped jobs (jobA and jobB) arrive at time ta and tb, with ta < tb. It is
feasible for joba to start after jobb, yet have both jobs start well before the CONS P FST,
resulting in a schedule that appears fair via the CONS P metric. In an attempt to more
accurately capture fairness, Sabin and Sadayappan attempt to directly measure the effect
of later arriving jobs. The revised metrics calculates an FST for each job, by creating a
schedule assuming no later jobs arrive. The start time in the new schedule represents the
jobs FST. This has the advantage of directly measuring if a latter arriving job affected each
job. This scheme allows “benign” backfilling, e.g., latter arriving jobs to start earlier if they
do not affect any earlier job. A disadvantage of this technique is that the FST relies on
the scheduling policy in place. While this eliminates the performance effects seen in the
CONS P FST, it makes comparisons across different schedules difficult, as each job has a
different FST in each schedule. The aggregate unfairness metric is calculated by summing
the total unfairness (time each job misses its FST) or measuring the percentage of the load
that misses its FST.

The second metric introduced by Sabin and Sadayappan [26] measures resource equal-
ity. The metric is inspired by networking and operational fairness metrics [24]. The metric
measures to what extent each job was able to receive its “share” of the resources while in
the system. The basis for this metric is that each job “deserves” 1/N of the resources while
in the system, where N is the number of “live” (running or queued) jobs. This metric does
not rely on the scheduler in place (such as the FST based metric above), and thus can be
used to compare schedules.

4.1 A Hybrid “Fairshare” Metric
This paper introduces an FST metric that falls somewhere between the CONS P metric and
the FST metric introduced by Sabin and Sadayappan. The metric is intended to reduce the
reliance on the actual scheduler under test (increasing the ability to use the metric globally,
to compare traces) while not using a “gold standard” schedule that is “blessed” as an ideally
fair schedule.

This FST metric is a hybrid of the two FST metrics above. The FST for each job is

16

determined using a list scheduler. A list scheduler keeps track of a completion time for
each node. When scheduling a job, the earliest time that N nodes can be found is located
(where N is the number of nodes required by the job). The completion time of each of
the nodes is then updated to be the earliest start time plus the runtime of the job (i.e., the
completion). There are fewer restraints then a no backfill scheduler, as jobs are not required
to run in a strict no backfill order. However, it is more restrictive than a conservative backfill
schedule, as “holes” can not be used.

In addition, the state of the scheduler upon job arrival is used as the starting state for
each simulation. This is in contrast to the CONS P FST metric which compares start times
to a complete conservative schedule. The metric differs from the previous Sabin and Sa-
dayappan FST metric by using a CONS P policy in lieu of the actual scheduling policy
under test.

In addition, the previous FST based metrics assume an FCFS scheduling order. Thus,
the previous Sabin and Sadayappan FST metric attempts to measure the effect of latter
arriving jobs, and the CONS P metric uses an FCFS conservative schedule. In many en-
vironments, FCFS is not considered a socially just schedule. Sandia uses the fairshare
queuing priority because that queuing order is considered fair. Therefore, the hybrid metric
used in this paper assumes that if all jobs were run in “fairshare” order, the scheduler is
fair. Thus, the metric attempts to determine the effect of lower priority jobs on each job.
Thus the hybrid FST is generated using a no backfill schedule using the fairshare queuing
priority. The FST schedule is generated starting with the schedule in the state (i.e., running
schedule, queued jobs) upon job arrival, eliminating many of the performance effects seen
in the CONS P metric. Fairness priorities other than “fairshare” could be used to perform
similar evaluations using different socially just priorities.

As in the previous FST based metrics, the average miss time of the unfair jobs is calcu-
lated as:

AverageMissT ime =

∑
j∈jobs max(0, j.start time − j.FST)

∑
j∈jobs 1

. (5)

5 Fairness Directed Policies
The actual scheduling policy described in Section 4 is intended to provide good system uti-
lization, good user metrics, and provide a fair environment for users. This section analyzes
the current scheduling policy to provide algorithms designed to improve fairness, while
minimally affecting utilization and turnaround time.

The original scheduling policy attempts to run jobs in a fair order by using the “fair-
share” queuing priority. However, in order to improve performance, this priority order is
not strictly adhered to. Jobs can run out of order via backfilling, which is essential in par-
allel job scheduling. However, the policy uses no internal reservations (until the job has
been in the system for at least 24 hours) which tends to increase utilization but provides a

17

mechanism for unfairness. Without reservations, wide jobs will have a tendency to “starve”
allowing narrower jobs an “unfair” advantage.

Further, the lack of internal reservations requires a secondary queue to prevent starva-
tion. The starvation queue allows jobs to make progress regardless of fairness and is not
sorted by the fairness policy. Therefore, the use of a starvation queue is another avenue to
introduce unfairness.

5.1 Maximum Runtime Limits
The first potential policy to help reduce unfairness is to reduce the maximum contiguous
runtime of individual jobs. This mechanism would require jobs longer than a predefined
threshold to be broken up into multiple smaller jobs. Reducing the maximum runtime is
a mechanism to allow very coarse scale “preemption”, as long jobs must be submitted as
several individual jobs. Breaking up very long jobs allows other jobs a chance to start after
each “chunk” of the large job completes. This technique also has the potential to improve
user and system metrics due to the coarse preemption being introduced.

Introducing runtime limits is a feasible policy on CPlant. Users currently checkpoint
their jobs frequently. The checkpoints are currently used to help eliminate wasted cycles
due to hardware failures. Therefore, creating the necessary checkpoints for maximum run-
time limits would add minimal overhead. In addition, the Sandia staff have created scripts
to allow users to start jobs from checkpointed runs. These scripts would ease the burden of
restarting jobs from the checkpointed state.

The initial “live” Sandia CPlant scheduler does not impose any runtime limitations.
Simulations are run using the original policy and with a runtime limitation of 72 hours,
breaking longer jobs up into several 72 hour segments.

5.2 Limit Entrance to the Starvation Queue
The starvation queue allows jobs the opportunity to obtain an internal system reservation
after 24 hours, and the job can start regardless of whether it is “fair” to start the job. To
help improve fairness, jobs from “heavy” users can be temporarily restricted from entering
the starvation queue.

This technique has the advantage of being a “simple” change that will have minimal
impact on users work flow and standard user and system metrics.

5.3 Conservative Backfilling
Conservative backfilling gives every job an internal temporary reservation when it enters
the system. In conservative backfilling, each job attempts to find a better reservation during
each scheduling event. The jobs do not relinquish their current reservations unless better
reservations are found. Therefore, when each job arrives, an upper bound on the wait time
is established; this eliminates the need for a “starvation queue”.

18

The queue is still processed in “fairshare” order during each scheduling event, giving
higher priority jobs the opportunity to find a better reservation before lower priority jobs.
However, each job receives its initial reservation as it arrives in the system. This tends to
introduce an FCFS feel to the schedule and reduce the effectiveness of queuing policies.
However, the queue order is still very important due to inaccurate user estimates. Inaccurate
user estimates (seen in Section 2) allow jobs to attempt to backfill. The “fairshare” queue
priority allows “deserving” jobs to attempt to improve their reservations first.

5.4 Conservative Backfilling with Dynamic Reservations
Dynamic reservations helps to remove the “FCFS feel” from conservative backfilling. Ini-
tial reservations are no longer upper bounds on the waittime. At each scheduling event, all
reservations are removed and a schedule is created in fairshare priority order. A potential
issues with any conservative scheme is reduced utilization. It is important to ensure that
utilization is not adversely affected.

Both this scheme and the current “no reservation” scheme provide no hard internal
guarantees upon job arrival. However, the dynamic backfilling scheme prevents “fair” jobs
from starving. This removes the need for a “starvation queue”.

5.5 Scheduling Policies Presented
The original scheduler is a no-reservation backfill scheduler with a custom “fairshare”
queue order. A job is moved to the “starvation queue” 24 hours after submission (cplant24.nomax.all).
The following modified scheduling policies were examined:

1. the original CPlant scheduler except jobs are not considered for the starvation queue
for 72 hours, instead of 24 hours (cplant72.nomax.all);

2. the original CPlant scheduling policy except “heavy”/”unfair” users are not allowed
to enter the starving queue (cplant24.nomax.fair);

3. introduce a 72 hour maximum runtime and use the original CPlant scheduling policy
(cplant24.72max.all);

4. use all three of the above modifications: 72 hour maximum runtime, “unfair” users
cannot enter the starvation queue, and 72 hours until jobs are considered for the
starvation queue (cplant72.72max.fair);

5. a conservative backfilling scheduler with the fairshare queuing priority (cons.nomax);

6. a conservative backfilling scheduler with the fairshare queuing priority and introduce
72 hour runtime limits (cons.72max);

7. a conservative backfilling scheduler with dynamic reservations (consdyn.nomax);

19

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

P
er

ce
nt

 U
nf

ai
r J

ob
s

cplant24.nomax.all
cplant24.nomax.fair
cplant72.nomax.all
cplant24.72max.all
cplant72.72max.fair

Figure 8: Percentage of jobs that missed the fair start time for the CPlant/Ross simulations

8. a conservative backfilling scheduler with dynamic reservations and 72 hour runtime
limits (consdyn.72max).

6 Results
We group our results into two categories, minor changes and conservative backfilling.

6.1 Minor Changes
Increasing the time before a job is allowed in the starvation queue and/or barring “unfair”
jobs from the starvation queue impose only “small” changes on the scheduler and will be
mostly transparent to the users. The introduction of maximum runtimes will change the
environment for the few users with very long jobs, but existing scripts will help ease the
burden of the required checkpointing and restarting. These policy changes will be “easily”
implemented and have a small impact on most users. In fact, it is expected that these
changes will be minimally noticeable to most users who are investigating the queue status.

Figure 8 shows that all enhanced policies reduce the number of jobs that are able to
start before their “fair start time”. The most improvement is seen when all three scheduling
enhancements are used simultaneously. Figure 9 shows that only introducing maximum
runtimes is able to reduce the average miss time. This suggests that while banning “heavy”
users from the starvation queue or increasing the time until a job is allowed to starve helps
to reduce the percentage of jobs that miss the fair start time, the jobs that do miss are hurt
badly. Without any internal reservations, wide jobs are unlikely to get enough nodes to

20

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 M
is

s
Ti

m
e

cplant24.nomax.all
cplant24.nomax.fair
cplant72.nomax.all
cplant24.72max.all
cplant72.72max.fair

Figure 9: Average fair start miss time for initial CPlant simulations

0

50000

100000

150000

200000

250000

1 2 3-4 5-8 9-1
6
17

-32
33

-64

65
-12

8

12
9-2

56

25
7-5

12
51

3+

Job Width

A
ve

ra
ge

 M
is

s
Ti

m
e

cplant24.nomax.all
cplant24.nomax.fair
cplant72.nomax.all
cplant24.72max.all
cplant72.72max.fair

Figure 10: Average fair start miss time for initial CPlant simulations categorized by width

21

0.0E+00
1.0E+04
2.0E+04
3.0E+04
4.0E+04
5.0E+04
6.0E+04
7.0E+04
8.0E+04
9.0E+04
1.0E+05

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e

cplant24.nomax.all
cplant24.nomax.fair
cplant72.nomax.all
cplant24.72max.all
cplant72.72max.fair

Figure 11: Average turnaround time for CPlant/Ross Simulations.

start, due to the existence of narrower jobs. These wide jobs rely on the starvation queue to
start. By increasing the wait time before entering the starvation queue, the number of jobs
that miss the fair start time is reduced, but the jobs that require the starvation queue to start
now must wait much longer (see Figure 10).

While fairness is an important metric, it is important that the user and systemmetrics are
not adversely affected. Figure 11 shows that the average turnaround time for the enhanced
scheduling policies. The average turnaround time is improved for most of the enhanced
policies. Imposing maximum runtimes on very long jobs allows for very coarse grained
preemption. This allows better progress for wide jobs (see Figure 12), improving both the
fairness and average turnaround time. Figure 13 shows the loss of capacity. Again, for the
schedules that show an improved average miss time and an improved average turnaround
time, the loss of capacity is also improved.

Introducing 72 hour maximum runtime improves the percentage of fair jobs, the average
miss time, the average turnaround time, and the loss of capacity. Increasing the wait time to
enter the starvation queue and disallowing “heavy” users from the starvation queue reduces
the number of jobs treated unfairly, but has a negative effect on average miss time and can
hurt user and system metrics. Using all three enhancements simultaneously further reduces
the percent of jobs treated unfairly and the average turnaround time, but the average miss
time and the loss of capacity are slightly worse than only introducing a 72 hour maximum
runtime.

22

0
100000
200000
300000
400000
500000
600000
700000
800000

1 2 3-4 5-8 9-1
6
17

-32
33

-64

65
-12

8

12
9-2

56

25
7-5

12
51

3+

Job Width

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e cplant24.nomax.all
cplant24.nomax.fair
cplant72.nomax.all
cplant24.72max.all
cplant72.72max.fair

Figure 12: Average turnaround time for CPlant Simulations categorized by width

0%

2%

4%

6%

8%

10%

12%

14%

Lo
ss

 O
f C

ap
ac

ity

cplant24.nomax.all
cplant24.nomax.fair
cplant72.nomax.all
cplant24.72max.all
cplant72.72max.fair

Figure 13: Loss of capacity for the CPlant/Ross simulations with “minor” changes.

23

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

P
er

ce
nt

 U
nf

ai
r J

ob
s

cplant24.nomax.all cplant24.nomax.fair
cplant72.nomax.all cplant24.72max.all
cplant72.72max.fair cons.nomax
consdyn.nomax cons.72max
consdyn.72max

Figure 14: Percentage of jobs that missed the fair start time for all CPlant/Ross simulations

67881

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 M
is

s
Ti

m
e

cplant24.nomax.all
cplant24.nomax.fair
cplant72.nomax.all
cplant24.72max.all
cplant72.72max.fair
cons.nomax
consdyn.nomax
cons.72max
consdyn.72max

Figure 15: Average fair start miss time for all CPlant/Ross simulations

24

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

1 2 3-4 5-8 9-1
6
17

-32
33

-64

65
-12

8

12
9-2

56

25
7-5

12
51

3+

Job Width

A
ve

ra
ge

 M
is

s
Ti

m
e

cplant24.nomax.all
cons.nomax
consdyn.nomax
cons.72max
consdyn.72max

Figure 16: Average miss time for the CPlant/Ross conservative backfilling simulations
categorized by width

6.2 Conservative Backfilling Results
Figure 14 shows the percentage of jobs that miss their fair start time. All conservative
scheduling policies outperform the original policy. However, without a 72 hour runtime
limitation, the conservative scheduling policies have a higher average miss time than the
current policy (see Figure 15). A conservative dynamic scheduling policy has the fewest
unfair jobs, but the jobs that do miss are treated very unfairly. The only policy to show a
marked improvement in both percent of unfairly treated jobs and average miss time is the
conservative backfilling policy with 72 hour maximum runtime limitations. In all cases,
a 72 hour runtime limitations appears to be an important feature to improve system wide
fairness. The conservative scheme with 72 hour limits appears to be a very competitive
scheme. In addition, the conservative backfilling scheme is able to reduce the unfairness
of wide jobs (see Figure 16), which is important as the supercomputers are purchased to
efficiently run parallel code that would otherwise require a very large sequential runtime.

Figure 17 shows the average turnaround time for all policies; Figure 18 shows the
average turnaround time for conservative scheduling policies categorized by width; and
Figure 19 shows the lost of capacity for all policies. Conservative scheduling policies
often have poor average turnaround time and utilization. However, the introduction of 72
hour job limits appears to improve the performance of the conservative schedules. The
conservative schedule with 72 hour job limits has a superior average turnaround time and
a lower loss of capacity than most of the other schemes. The coarse grained preemption
allows for better schedule packing and a reduction in average turnaround time.

25

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

1.8E+05

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e

cplant24.nomax.all
cplant24.nomax.fair
cplant72.nomax.all
cplant24.72max.all
cplant72.72max.fair
cons.nomax
consdyn.nomax
cons.72max
consdyn.72max

Figure 17: Average turnaround time for all CPlant/Ross simulations

0
100000
200000
300000
400000
500000
600000
700000
800000

1 2 3-4 5-8 9-1
6
17

-32
33

-64

65
-12

8

12
9-2

56

25
7-5

12
51

3+

Job Width

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e cplant24.nomax.all
cons.nomax
consdyn.nomax
cons.72max
consdyn.72max

Figure 18: Average turnaround time for CPlant/Ross Simulations with conservative back-
filling categorized by width

26

0%

2%

4%

6%

8%

10%

12%

14%

Lo
ss

 O
f C

ap
ac

ity

cplant24.nomax.all cplant24.nomax.fair
cplant72.nomax.all cplant24.72max.all
cplant72.72max.fair cons.nomax
consdyn.nomax cons.72max
consdyn.72max

Figure 19: Loss of capacity for all CPlant/Ross simulations.

7 Conclusions
A CPlant workload trace was analyzed and presented. This trace was used to evaluate
the fairness of the CPlant scheduler. Past fairness work was modified to accommodate a
scheduling order considered “fair” in the Sandia environment. Scheduling modifications
were introduced to improve fairness, average turnaround time, and loss of capacity.

A hybrid fairness metric is used to measure the fairness of the scheduling policies. The
fairness metric is modified to utilize the “fairshare” queuing priority as the basis for social
justice based fairness, as opposed to FCFS. The hybrid metric reduces the impact of the
performance (as seen when using the CONS P metric) and the dependence on the current
schedule (as seen when using a previous FST based metric). The fairness metric can be
modified in a similar way to measure fairness via other alternative fairness priorities. This
metrics allows for the analysis of unfairness by measuring the percentage of jobs that are
treated unfairly and the average time that each submitted job misses the fair start time.

Several modifications to the CPlant scheduler were considered. Using a conservative
backfilling schedule can help improve the fairness of wide jobs, which is important to
super computing centers. Introducing 72 hour runtime limitations has the largest effect on
fairness, loss of capacity and, average turnaround time.

References
[1] CPlant. http://www.cs.sandia.gov/cplant/. Computational Plant.

27

[2] LSF. http://www.platform.com/products/LSF/. Platform Computing.

[3] OpenPBS. http://openpbs.org.

[4] SLURM. http://www.llnl.gov/linux/slurm/. A Highly Scalable Re-
source Manager.

[5] Optimizing resource allocation. In R & D Magazine, page 49, September 2006.

[6] Michael A. Bender, David P. Bunde, Erik D. Demaine, Sandor P. Fekete, Vitus J.
Leung, Henk Meijer, and Cynthia A. Phillips. Communication-aware processor allo-
cation on supercomputers. In Springer Verlag, Lecture Notes in Computer Science,
Vol. 3608, 2005.

[7] David P. Bunde, Vitus J. Leung, and Jens Mache. Communication patterns and allo-
cation strategies. In Proceedings of PMEO-PDS, 2004.

[8] S. H. Chiang and M. K. Vernon. Production job scheduling for parallel shared mem-
ory systems. In Proceedings of International Parallel and Distributed Processing
Symposium, 2002.

[9] D. G. Feitelson. Logs of real parallel workloads from production systems. http://
www.cs.huji.ac.il/labs/parallel/workload/.

[10] Dror Feitelson. Workshops on job scheduling strategies for parallel processing.
www.cs.huji.ac.il/ feit/parsched/.

[11] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik, and
Parkson Wong. Theory and practice in parallel job scheduling. In Dror G. Feitelson
and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages
1–34. Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[12] Mor Harchol-Balter, Karl Sigman, and Adam Wierman. Asymptotic convergence of
scheduling policies with respect to slowdown. In IFIP WG 7.3 International Sympo-
sium on Computer Modeling, Measurement and Evaluation, 2002.

[13] Steven Hotovy. Workload evolution on the Cornell Theory Center IBM SP2. In
Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, volume 1162, pages 27–40. Springer-Verlag, Lect. Notes Comput. Sci.,
1996.

[14] David Jackson, Quinn Snell, and Mark Clement. Core algorithms of the Maui sched-
uler. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for
Parallel Processing, pages 87–102. Springer Verlag, 2001. Lect. Notes Comput. Sci.
vol. 2221.

28

[15] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A quantitative mea-
sure of fairness and discrimination for resource allocation in shared computer system.
Technical Report EC-TR-301, Digital Equipment Corporation, September 1984.

[16] J.P. Jones and B. Nitzberg. Scheduling for parallel supercomputing: A historical
perspective of achievable utilization. In 5th Workshop on Job Scheduling Strategies
for Parallel Processing, 1999.

[17] R. Kettimuthu, V. Subramani, S. Srinivasan, T. B. Gopalsamy, D K Panda, and P. Sa-
dayappan. Selective preemption strategies for parallel job scheduling. In Proc.of Intl.
Conf. on Parallel Processing, 2002.

[18] Susan D. Kladiva. Department of energy does not effectively manage its supercom-
puters. Technical Report GAO/RCED-98-208, United States General Accounting
Office, 1998.

[19] Richard C. Larson. Perspectives on queues: Social justice and the psychology of
queueing. Operations Research, 35(6):895–905, November 1987.

[20] Vitus J. Leung, Esther M. Arkin, Michael A. Bender, David Bunde, Jeanette Johnston,
Alok Lal, Joseph S. B. Mitchell, Cynthia A. Phillips, and Steven S. Seiden. Processor
allocation on CPlant: archieving general processor locality using one-dimensional
allocation strategies. In Proceedings of Cluster, pages 296–304, 2002.

[21] Vitus J. Leung, Cynthia A. Phillips, Michael A. Bender, and David P. Bunde. Algo-
rithmic support for commodity-based parallel computing systems. Technical Report
SAND2003-3702, Sandia National Laboratories, October 2003.

[22] David Lifka. The ANL/IBM SP scheduling system. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 295–303.
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[23] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. In IEEE Transactions
on Parallel and Distributed Systems, volume 12, pages 529–543, 2001.

[24] D. Raz, H. Levy, and B. Avi-Itzhak. A resource-allocation queueing fairness measure.
In Proceedings of Sigmetrics 2004/Performance 2004 Joint Conference on Measure-
ment and Modeling of Computer Systems, pages 130–141, New York, NY, June 2004.
Also appears as Performance Evaluation Review Special Issue 32(1):130-141.

[25] Gerald Sabin, Garima Kochhar, and P. Sadayappan. Job fairness in non-preemptive
job scheduling. In International Conference on Parallel Processesing, 2004.

[26] Gerald Sabin and P. Sadayappan. Analysis of unfairness metrics for space sharing
parallel job schedulers. In Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,
editors, Job Scheduling Strategies for Parallel Processing. Springer-Verlag, 2005.

29

[27] Gerald Sabin, Vishvesh Sahasrabudhe, and P. Sadayappan. On fairness in distributed
job scheduling across multiple sites. In Proceedings of Cluster, 2004.

[28] Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY -
LoadLeveler API project. In Dror G. Feitelson and Larry Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, pages 41–47. Springer-Verlag, 1996.
Lect. Notes Comput. Sci. vol. 1162.

[29] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selective reservation
strategies for backfill job scheduling. In 8th Workshop on Job Scheduling Strategies
for Parallel Processing, July 2002.

[30] Sangsuree Vasupongayya and Su hui Chiang. On job fairness in non-preemptive par-
allel job scheduling. In Parallel and Distributed Computing and Systems (PDCS),
number 17. IASTED, November 2005.

30

UNLIMITED RELEASE
INITIAL DISTRIBUTION:

1 State University of New York
Dept. of Computer Science
Attn: M. A. Bender
Stony Brook, NY 11794-4400

1 Knox College
Computer Science
Attn: D. P. Bunde
Galesburg, IL 61401

20 The Ohio State University
Dept. of Computer Science and Engineering
Attn: G. Sabin (10)

P. Sadayappan (10)
Columbus, OH 43210-1277

1 MS 0321 J. L. Mitchiner, 1430
1 0321 J. S. Peery, 1400
1 0370 J. H. Strickland, 1433
1 0376 S. J. Owen, 1421
1 0378 R. M. Summers, 1431
1 1138 J. R. Johnston, 6325
1 1316 M. D. Rintoul, 1412
1 1318 K. F. Alvin, 1318
10 1318 V. J. Leung, 1415
1 1318 C. A. Phillips, 1412
1 1318 S. L. K. Rountree, 1415
1 1318 J. R. Stewart, 1411
1 1318 D. E. Womble, 1410
1 1319 J. A. Ang, 1422
1 1319 N. Pundit, 1423
1 1319 J. R. Stearley, 1422
1 1320 S. S. Collis, 1416
1 1322 J. B. Aidun, 1435
1 1322 S. S. Dosanjh, 1420
1 1323 D. H. Rogers, 1424

1 0899 Technical Library, 9536 (electronic copy only)

31

Intentionally Left Blank

32

