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Abstract

Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic
model has the same computational structure as a molecular dynamic model. This document
details the implementation of a discrete peridynamic model within the LAMMPS molecular
dynamic code.

This document provides a brief overview of the peridynamic model of a continuum, then dis-
cusses how the peridynamic model is discretized, and overviews the LAMMPS implementation.
A nontrivial example problem is also included.
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1 Introduction

This document is organized as follows. In section 2 we discuss how to build the peridynamic module
within LAMMPS, and discuss basic requirements for input scripts to use the peridynamic module.
In section 3 we overview the relevant portions of the peridynamic model of a continuum material. In
section 4 we discuss the discretization of the PD model and its LAMMPS implementation. Finally,
in section 5, we discuss a LAMMPS simulation of a specific numerical experiment described in [6].

1.1 Typographical Conventions

Our typographical conventions are found in Table 1.

Table 1. Notational conventions.

Notation Example Description
Verbatim text make Text to be typed at your command prompt

<text in angle brackets> <your platform> User specified statement

Finally, note all norms ‖·‖ are taken to be the 2-norm, ‖·‖2.
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2 Getting Started

In this section, we assume that you already have a working LAMMPS installlation. For more
on downloading and building LAMMPS, see http://lammps.sandia.gov. This document only
provides information related to the peridynamic module within LAMMPS. For questions regarding
the usage of LAMMPS, please see the LAMMPS documentation.

2.1 Building the Peridynamic Module Within LAMMPS

In the LAMMPS distribution, the peridynamic model is distributed as an add-on module, which
means that it is not by default compiled with the rest of LAMMPS. To instruct LAMMPS to build
the peridynamic module, go to the LAMMPS source subdirectory (/src) and type

make yes-peri

followed by

make <your platform>

to compile LAMMPS on your particular platform.

2.2 Input Script Basics

Here we provide a listing of commands that must be included in a LAMMPS input script to utilize
the peridynamic module. These commands assume knowledge of the peridynamic PMB model
(section 3) and its discretization (section 4). This is not an inclusive list of LAMMPS commands.
For a complete example script, see section 5.

LAMMPS has been modified to support SI units. Your LAMMPS input script should contain
the command

units si

All quantities specified in the input script and data file, as well as quantities output to the screen,
log file, and dump files will be in SI units.

Only a simple cubic lattice is currently supported. Your LAMMPS input script should contain
the command

lattice sc <lattice constant>

10



A peridynamic simulation requires the “peri” atom style be used. Your input script should
contain the command

atom style peri

An associated required command tells LAMMPS to create a data structure used to index particles.
Your input script should contain the command

atom_modify map array

A peridynamic simulation also requires the “peri” pair style be used. Your input script should
contain the command

pair_style peri

to invoke the “peri” pair style, and the command

pair_coeff <type 1> <type 2> <c> <delta> <s00> <α>

to define the arguments for the pairwise force of the PMB model. See section 3 for more on the
PMB model.

The mass density and volume fraction for each particle must be defined. Your input script
should contain the commands

set group all rmass <ρ>
set group all vfrac <Vi>

In LAMMPS, the density of a discrete perdynamic particle is stored in the variable normally
reserved to store the mass of an atom. However, in the first line, you are setting the density ρ
of all peridynamic particles, not the mass. In the second line, you are setting the volume of each
peridynamic particle. For a simple cubic lattice, the volume should be equal to the cube of the
lattice constant, i.e., Vi = ∆x3.

If you wish to start a simulation with the velocity of the peridynamic particles set to zero, your
input script should contain the command

velocity all set 0.0 0.0 0.0 sum no units box

For a peridynamic simulation, we use a constant NVE integrator sampling from the micro-
canonical ensemble, since temperature is an ill-defined quantity for macroscopic PD particles and
thus thermostatting (as in a constant NVT integration) is not needed. To use a constant NVE
integrator, your input script should contain the command

fix <fix id> all nve

11



2.3 Restrictions

LAMMPS operates in parallel in a spatial-decomposition mode [4], where each processor owns a
spatial subdomain of the overall simulation domain and communicates with its neighboring proces-
sors via distributed-memory message passing (MPI) [7] to acquire ghost atom information to allow
forces on the atoms it owns to be computed. LAMMPS also uses Verlet neighbor lists which are
recomputed every few timesteps as particles move. On these timesteps, particles also migrate to
new processors as needed.

When migrating particles to a new processor, LAMMPS was constructed under the assumption
that particles always move slowly enough that they never cross the spatial subdomain owned by
a processor in a single timestep. Should this occur, LAMMPS will hang. You should ensure your
particles are moving slowly enough (or that your timestep small enough) so that this does not
occur.

12



3 Peridynamic Model of a Continuum

The following is not a complete overview of peridynamics, but a discussion of only those details
specific to the model we have implemented within LAMMPS. To begin, it is useful to define the
notation we will use.

3.1 Basic Notation and Newton’s Second Law

Within the peridynamic literature, the following notational conventions are generally used. The
position of a given particle in the reference configuration is x. The displacement of the particle
at x in the reference configuration at some time t is denoted u(x, t). The position of the particle
at x in the reference configuration at some time t is denoted y(x, t) = x + u(x, t). Given a two
particles with positions x and x′ in the reference configuration, we denote the interparticle distance
in the reference configuration as ξ = x′−x. We denote the relative displacement at some time t as
η = u(x′, t)− u(x, t). We note here that η is time-dependent, and that ξ is not. The acceleration
of any particle at position x in the reference configuration at time t is written as

ρü(x, t) =
∫
Hx

f(η, ξ) dVx′ + b(x, t) (3.1)

where Hx is a neighborhood of x, ρ is a mass density in the reference configuration, and b is a
prescribed body force density field. f is a pairwise force function whose value is the force vector that
particle x′ exerts on x, and has units force/volume2. We assume that each material has associated
with it a positive scalar δ, called the horizon, such that if ‖ξ‖ > δ, then f(η, ξ) = 0, ∀η.

The pairwise force function f can be written as

f(η, ξ) = f(η, ξ)
η + ξ

‖η + ξ‖
,

where f is a scalar-valued function. We observe here that the distance between two particles is
always ‖y′ − y‖ = ‖η + ξ‖. We also see that f always acts along a line connecting the two particles,
as we expect.

3.2 Proportional Microelastic Materials

In a proportional microelastic material [6] the bond force varies linearly with the bond stretch. We
assume that the scalar bond force f depends on η only through the bond stretch, defined as

s(t, η, ξ) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
.

Bond stretch is a unitless quantity, and identical to a one-dimensional definition of strain. As such,
we see that a bond at its equilibrium length has stretch s = 0, and a bond at twice its equilibrium
length has stretch s = 1.
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3.3 Damage

Bonds are made to break when they are stretched beyond a given limit. Once a bond fails, it is
failed forever [6]. Further, new bonds are never created during the course of a simulation. We will
consider only f corresponding to a prototype microelastic brittle (PMB) material [6], so that f can
be written as

f(η, ξ) = g (s(t, η, ξ)) · µ(t, η, ξ) (3.2)

where g is a linear scalar-valued function given by

g (s(t,η, ξ)) =
{

c · s(t, η, ξ) if ‖ξ‖ ≤ δ
0 otherwise

}
,

where c is a constant of the form1

c =
18k

πδ4
, (3.3)

where δ is the horizon, and k is the bulk modulus of the material, and µ is the history-dependent
scalar boolean function

µ(t,η, ξ) =
{

1 if s(t′,η, ξ) < min
(
s0(t′,η, ξ), s0(t′,η′, ξ′)

)
for all 0 ≤ t′ ≤ t

0 otherwise

}
. (3.4)

where η′ = u(x′′, t)− u(x′, t) and ξ′ = x′′ − x′. Here, s0(t, η, ξ) is a critical stretch defined as

s0(t, η, ξ) = s00 − αsmin(t, η, ξ), smin(t) = min
ξ

s(t, η, ξ), (3.5)

where s00 and α are material-dependant constants. The history function µ breaks bonds when the
stretch s exceeds the critical stretch s0.

Although s0(t, η, ξ) is expressed as a property of a particle, bond breaking must be a symmetric
operation for all particle pairs sharing a bond. That is, particles x and x′ must utilize the same
test when deciding to break their common bond. This can be done by any method that treats the
particles symmetrically. In the definition of µ above, we have chosen to take the minimum of the
two s0 values for particles x and x′ when determining if the x-x′ bond should be broken.

1This is for a three-dimensional model. c is different for two- and one-dimensional models. (c.f. [2]).
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4 Discrete Peridynamic Model and LAMMPS Implementation

In LAMMPS, instead of (3.1), we model this equation of motion:

ρÿ(x, t) =
∫
Hx

f(η, ξ) dVx′ + b(x, t),

where we explicitly track and store at each timestep the positions and not the displacements of the
particles. We observe that ÿ(x, t) = ẍ + ü(x, t) = ü(x, t), so that this is equivalent to (3.1).

4.1 Newton’s Second Law and the Spatial Discretization

The region defining a peridynamic material is discretized into particles forming a simple cubic
lattice with lattice constant ∆x, where each particle i is associated with some volume fraction Vi.
For any particle i, let Fi denote the family of particles for which particle i shares a bond in the
reference configuration. That is,

Fi = {p | ‖xp − xi‖ ≤ δ}.

The discretized equation of motion replaces (3.1) with

ρÿn
i =

∑
p∈Fi

f(un
p − un

i ,xp − xi)Vp + bn
i (4.1)

with where f is given in (3.2), n is the timestep number and subscripts denote the particle number,
so that un

i = u(xi, t0 + n∆t).

4.2 Short-Range Forces

In the model discussed so far, particles interact only through their bond forces. A particle with no
bonds becomes a free non-interacting particle. To account for contact forces, short-range forces are
introduced [5]. We add to the force f in (4.1) the following force

fS(yp,yi) = min{0,
cS

δ
(
∥∥yp − yi

∥∥− dpi)}
yp − yi∥∥yp − yi

∥∥ , (4.2)

where dpi is the short-range interaction distance between particles p and i, and cS is a multiple of
the constant c from (3.3). Note that the short-range force is always repulsive, never attractive. In
practice, we choose

cS = 15c. (4.3)

For the short-range interaction distance, we choose [5]

dpi = min {0.9 ‖xp − xi‖ , 1.35(rp + ri)} , (4.4)
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where ri is called the node radius of particle i. Given a discrete lattice, we choose ri to be half the
lattice constant.2 Given this definition of dpi, contact forces appear only when particles are under
compression.

When accounting for short-range forces, it is convenient to define the short-range family of
particles

FS
i = {p |

∥∥yp − yi

∥∥ ≤ dpi}.

4.3 Modification to the Particle Volume

In a situation where two particles share a bond with ‖xp − xi‖ = δ, for example, we suppose that
only approximately half the volume of each particle is “seen” by the other [5]. When computing
the force of each particle on the other we use Vp/2 rather than Vp in (4.1). As such, we introduce
a nodal volume scaling function for all bonded particles where δ − rS ≤ ‖xp − xi‖ ≤ δ.

We choose to use a linear unitless nodal volume scaling function

ν(xp − xi) =


− 1

2rS
‖xp − xi‖+

(
δ

2rS
+ 1

2

)
if δ − rS ≤ ‖xp − xi‖ ≤ δ

1 if ‖xp − xi‖ ≤ δ − rS

0 otherwise


If ‖xp − xi‖ = δ, ν = 0.5, and if ‖xp − xi‖ = δ − rS , ν = 1.0, for example.

4.4 Discrete Equation of Motion

The semi-discrete equation of motion can be written as

ρÿn
i = c

∑
p∈Fi

(∥∥yp − yi

∥∥− ‖xp − xi‖
‖xp − xi‖

)
µ(t,η, ξ)ν(xp − xi)Vp

(
yp − yi∥∥yp − yi

∥∥
)

+
∑

p∈FS
i

min{0,
cS

δ
(
∥∥yp − yi

∥∥− dip)}Vp

(
yp − yi∥∥yp − yi

∥∥
)

+ bn
i ,

accounting for short-range forces and nodal volume scaling.

When discretizing time in LAMMPS, we instead use a velocity-Verlet scheme, where both the
position and velocity of the particle are stored explicitly. The velocity-Verlet scheme is generally
expressed in three steps, as where m denotes the mass of a particle, and f̃

n

i is the net force on
particle i at timestep n.

2For a simple cubic lattice, ∆x = ∆y = ∆z.
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(a) Two-dimensional diagram show-
ing particle on mesh (solid lines) with
horizon δ as grey circular region. Dual
mesh (dotted lines) shows boundaries
of each particle.

y 

1 

2 

3 

x 

4   5 

(b) Plot of ν(xp − xi) vs. ‖xp − xi‖.

Figure 1. Diagram showing horizon of a particular particle,
demonstrating that the volume associated with particles near the
boundary of the horizon are not completely contained within the
horizon.

Algorithm 1 Velocity Verlet

1: vn+1/2
i = vn

i + ∆t
2m f̃

n

i

2: yn+1
i = yn

i + ∆tvn+1/2
i

3: vn+1
i = vn+1/2

i + ∆t
2m f̃

n+1

i

4.5 Breaking Bonds

During the course of simulation, it may be necessary to break bonds, as described in section 3.3. A
näıve implementation would have us first loop over all bonds and compute smin in (3.5), then loop
over all bonds again and break bonds with a stretch s > s0 as in (3.4), and finally loop over all
particles compute forces for the next step of Algorithm 1. For reasons of computational efficiency,
we will utilize the values of s0 from the previous timestep when deciding to break a bond. For the
first timestep, s0 is initialized to ∞ for all nodes. This means that no bonds may be broken until
the second timestep. As such, it is recommended that the first few timesteps of the peridynamic
simulation not involve any actions that might result in the breaking of bonds. As a practical
example, the hard sphere in the next section is placed such that it does not impact the brittle plate
until 1000 timesteps into the simulation.
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4.6 PseudoCode

A sketch of the peridynamic implementation in LAMMPS appears in Algorithm 2.

Algorithm 2 PMB Peridynamic Model in LAMMPS
1: Fix s00, α, horizon δ, spring constant c, timestep ∆t, and generate initial lattice of particles with lattice constant

∆x. Let there be N particles.
2: Initialize bonds between all particles where ‖x− x′‖ ≤ δ.
3: Initialize s0 = ∞ {Initialize each entry to MAX DOUBLE.}
4: while not done do
5: Perform step 1 of Algorithm 1, updating velocities of all particles.
6: Perform step 2 of Algorithm 1, updating positions of all particles.
7: s̃0 = ∞ {Initialize each entry to MAX DOUBLE.}
8: for i = 1 to N do
9: {Compute short-range forces}

10: for all particles k ∈ FS
i (the short-range family of nodes for particle i) do

11: r = ‖yi − yk‖.
12: dr = min{0, r − d}. {Short-range forces are only repulsive, never attractive}
13: k = cS

δ
· Vk · dr. {cS defined in (4.3)}

14: f = f − k
yi−yk

‖yi−yk‖
.

15: end for
16: end for
17: for i = 1 to N do
18: {Compute bond forces.}
19: for all particles k sharing a bond with particle i do
20: r = ‖yi − yk‖.
21: dr = r − ‖xi − xk‖.
22: k = c

‖xi−xk‖
· Vk · ν(xi − xk)dr. {c defined in (3.3)}

23: f = f − k
yi−yk

‖yi−yk‖
.

24: if dr
‖xi−xk‖

> min(s0(i), s0(k)) then

25: Break i’s bond with k. {k’s bond with i will be broken when this loop iterates on k}
26: end if
27: s̃0(i) = min(s̃0(i), s00 − α dr

‖xi−xk‖
).

28: end for
29: end for
30: s0 = s̃0. {Store for use in next timestep.}
31: Perform step 3 of Algorithm 1, updating velocities of all particles.
32: end while

18



5 A Numerical Example

To introduce the peridynamic implementation within LAMMPS, we replicate a numerical experi-
ment taken from section 6 of [6].

5.1 Problem Description and Setup

We consider the impact of a rigid sphere on a homogeneous block of brittle material. The sphere
has diameter 0.01 m and velocity 100 m/s directed normal to the surface of the target. The target
material has density ρ = 2200 kg/m3. A PMB material model is used with k = 14.9 GPa and
critical bond stretch parameters given by s00 = 0.0005 and α = 0.25. A three-dimensional simple
cubic lattice is constructed with lattice constant 0.0005 m and horizon 0.0015 m. (The horizon
is three times the lattice constant.) The target is a cylinder of diameter 0.074 m and thickness
0.0025 m, and the associated lattice contains 103,110 particles. Each particle i has volume fraction
Vi = 1.25× 10−10 m3.

The spring constant in the PMB material model is

c =
18k

πδ4
=

18(14.9× 109)
π(1.5× 10−3)4

≈ 1.6863× 1022. (5.1)

The CFL analysis from [6] shows that a timestep of 1.0×10−9 is safe. Note that this calculation
ignores the short-range interactions; the true timestep limitation should be smaller than this due
to the larger spring constant present in short-range interactions.

We observe here that in IEEE double-precision floating point arithmetic when computing the
bond stretch s(t, η, ξ) at each iteration where ‖η + ξ‖ is computed during the iteration and ‖ξ‖
was computed and stored for the initial lattice, it may be that fl(s) = ε with |ε| ≤ εmachine for an
unstretched bond. Taking ε = 2.220446049250313×10−16, we see that the value c·s·Vi ≈ 4.68×10−4,
computed when determining f , is perhaps larger than we would like, especially when the true force
should be zero. One simple way to avoid this issue is to insert the following instructions in Algorithm
2 after instruction 21:
1: if |dr| < εmachine then
2: dr = 0.
3: end if

Qualitatively, this says that displacements on the order of 10−6Å are taken to be exactly zero, a
seemingly reasonable assumption.

5.2 The Projectile

The projectile used in the following experiments is not the one used in [6]. The projectile used here
exerts a force

F (r) = −ks(r −R)2
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on each atom where ks is a specified force constant, r is the distance from the atom to the center of
the indenter, and R is the radius of the projectile. The force is repulsive and F (r) = 0 for r > R.
For our problem, the projectile radius R = 0.05 m, and we have chosen ks = 1.0 × 1017 (compare
with (5.1) above).

5.3 Writing the LAMMPS Input File

We discuss the example input script from Algorithm 3. In line 3 we specify that SI units are
to be used. We specify the dimension (3) and boundary conditions (“shrink-wrapped”) for the
computational domain in lines 4 and 5. In line 6 we specify that peridynamic particles are to be used
for this simulation. In line 8, we set the “skin” distance used in building the LAMMPS neighborlist,
used when computing short-range forces. In line 9 we set the lattice constant (in meters) and in line
11 we define the spatial region where the target will be placed. In line 13 we specify a rectangular
box enclosing the target region that defines the simulation domain. Line 15 fills the target region
with atoms. Lines 16 and 17 define the peridynamic pairwise force function, and lines 19 and 21
set the particle density and particle volume, respectively. The particle volume should be set to the
cube of the lattice constant for a simple cubic lattice. Line 25 instructs LAMMPS to integrate time
with velocity-Verlet, and line 27 creates the spherical projectile, sending it with a velocity of 100
m/s towards the target. Line 28 sets the timestep, line 29 instructs LAMMPS to provide a screen
dump of thermodynamic quantities every 200 timesteps, and line 30 instructs LAMMPS to create
a data file (dump.output) with a complete snapshot of the system every 1000 timesteps. This file
can be used to create still images or movies. Finally, line 31 instructs LAMMPS to run for 200,000
timesteps.

5.4 Numerical Results and Discussion

We ran the input script from Algorithm 3. Images of the disk (projectile not shown) appear in
Figure 2. Visualization was done with the EnSight visualization package [1]. The LAMMPS dump
file was converted to an EnSight format with the pizza.py toolkit [3].

The symmetry in the computed solution arises because a perfect lattice was used, and a because
a perfectly spherical projectile impacted the lattice at its geometric center. To break the symmetry
in the solution, the nodes in the peridynamic body must be perturbed slightly from the lattice
sites.
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Algorithm 3 Example LAMMPS Input Script
1: # 3D Peridynamic simulation with indenter

2: # Use SI units

3: units si

4: dimension 3

5: boundary s s s

6: atom_style peri

7: atom_modify map array

8: neighbor 0.0006 bin

9: lattice sc 0.0005

10: # Create desired target

11: region target cylinder y 0.0 0.0 0.037 -0.0025 0.0 units box

12: # Make 1 atom types

13: create_box 1 region target

14: # Create the atoms in the simulation region

15: create_atoms 1 target

16: pair_style peri

17: pair_coeff * * 1.6863e22 0.0015 0.0005 0.25

18: # Set mass density

19: set group all rmass 2200

20: # vfrac = lattice constant^3

21: set group all vfrac 1.25e-10

22: # Zero out velocities of particles

23: velocity all set 0.0 0.0 0.0 sum no units box

24: # Use velocity-Verlet time integrator

25: fix F1 all nve

26: # Construct spherical nanointenter to shatter target

27: fix F2 all indent 1e17 sphere 0.0 0.0051 0.0 0.005 vel 0.0 -100.0 0.0 units box

28: timestep 1.0e-9

29: thermo 200

30: dump D1 all atom 1000 dump.output

31: run 200000
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(a) Cut view of target during impact.

(b) Top monolayer showing fragmentation (center debris removed).

Figure 2. Target during and after impact.
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