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Abstract 
 

Emerging high-bandwidth, low-latency network technology has made network-based 

architectures both feasible and potentially desirable for use in satellite payload 

architectures.  The selection of network topology is a critical component when 

developing these multi-node or multi-point architectures.  This study examines network 

topologies and their effect on overall network performance.  Numerous topologies were 

reviewed against a number of performance, reliability, and cost metrics.  This 

document identifies a handful of good network topologies for satellite applications and 

the metrics used to justify them as such.  Since often multiple topologies will meet the 

requirements of the satellite payload architecture under development, the choice of 

network topology is not easy, and in the end the choice of topology is influenced by 

both the design characteristics and requirements of the overall system and the 

experience of the developer. 
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EXECUTIVE SUMMARY 
 

Emerging high-bandwidth, low-latency network technology has made network-based architectures 

both feasible and potentially desirable for use in satellite payload architectures.  Network 

architectures are capable of routing large amounts of traffic with reasonable latency, allowing 

considerable amounts of data between processing units (“nodes”) to be shared.  However, care 

must be exercised when developing these types of architectures.  Improper network layout, routing 

algorithms, or other factors can cause undesirable results ranging from minor inefficiencies (i.e., 

increased power consumption) to catastrophic failure (i.e., loss of data). 

 

This study examines network topologies and their effect on overall network performance in 

satellite payload architectures.  The topology of a network is defined as the arrangement of nodes 

and the arrangement of links or interconnections between those nodes.  The topology of the 

system affects many characteristics of the network, including those relating to reliability, 

performance, complexity, and efficiency.  Also, as there is typically not a single ideal topology for 

all systems being developed, choosing a network topology becomes a matter of balancing benefits 

and drawbacks to meet the overall requirements of the system. 

 

A number of performance, reliability, and cost metrics were used to evaluate the topologies.  The 

performance metrics include the mean path length (average number of nodes a packet travels 

through to reach its destination) and network diameter (longest path a packet may traverse).  

Reliability metrics include node degree (number of links connected to a node), node and link 

connectivity (number of nodes or links that must fail to segregate part of the network), and 

discovery of bottlenecks (nodes overloaded beyond their capacity).  Algebraic connectivity, a 

metric derived from linear algebra techniques, is used to evaluate both reliability (indirectly 

related to the number of cycles in a network) and performance (by mean path length).  Cost 

metrics include the number of links in the system (affecting other characteristics like total power 

requirements). 

 

A variety of network topologies were investigated for the purpose of this study.  Sections 4 and 5 

in this paper describe all of the considered topologies.  Popular topologies, such as the fully 

connected topology, 2-D and 3-D meshes, 2-D and 3-D toroids, hypercubes, rings, trees, and stars, 

were obvious choices for review.  Some lesser-known topologies, such as cube-connected cycles, 

generalized stars, hybrid fat-trees, and entangled networks, were also considered. 

 

The first step in this study was to remove topologies from the list that had obvious deficiencies.  

As one example, star-based topologies introduce bottlenecks and a potential critical point of 

failure in their central node.  Once this initial down-selection was performed, the remaining 

topologies to be studied were fully connected, 2-D and 3-D meshes, 2-D and 3-D toroids, 

generalized stars, complete and incomplete hypercubes, hybrid fat-trees, and entangled networks. 

 

The findings of this study show that node degree has the most impact on creating reliable, high-

performance networks.  This is perhaps intuitive, as more links in the network provide more paths 

between nodes.  Having additional paths increases reliability, as more redundancy is built into the 

network, and performance benefits as well due to fewer hops between pairs of nodes.  The 

downside to increasing links in a network is the requirement of additional hardware and the 

potential for increased power consumption. 
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When evaluating several networks of similar node degree, entangled networks emerged as the best 

performer.  Entangled networks consistently had the lowest mean path length between nodes and 

the highest theoretical reliability.  Entangled networks had no restrictions on node or link counts 

and could be built with any size or complexity, making them very versatile.  The downside to 

these topologies is their complex, “entangled” layout, making them difficult to use intuitively. 

 

The toroid topologies were overall good performers with well-defined structures.  The 3-D toroids 

were among the top performers, mostly due to its large node degree of 6.  The 2-D toroids fared 

well, but were outperformed by other topologies such as hypercubes.  Despite slightly lower 

performance and reliability scores, toroid topologies remain a strong choice due to their simple 

structure and the ability to accommodate networks of many varying node counts. 

 

Hypercube-based networks are good solutions for networks with node counts less than 64, and 

will consistently outperform 2-D toroids.  As node count increases, the node degree of hypercube 

networks increases as well.  This has advantages, such as increased performance and reliability, 

and disadvantages, such as higher node complexity.  Due to this higher node degree, hypercubes 

outperform 3-D toroids at large (>128) node counts.  A significant disadvantage of complete 

hypercubes is the restrictive node count, as the node count must be a power of two.  Incomplete 

hypercubes alleviate this problem, but can introduce poorly connected nodes, somewhat reducing 

reliability.  However, incomplete hypercubes do gain the versatility of arbitrary node counts. 

 

Ultimately, the choice of network topology is not easy, as often multiple topologies will meet the 

requirements of the satellite payload architecture under development.  The most important detail is 

matching the requirements of the system with a topology that can perform as required, but also 

important is the ability of the designer to work with the selected topology.  As an example, 

systems that do not demand maximum performance may choose a simple 2-D toroid to reduce 

design complexity by its intuitive, easy layout.  Alternatively, systems that require maximal 

performance may choose an entangled network.  In the end, the choice of topology is influenced 

by both the design characteristics and requirements of the overall system and the experience of the 

developer. 
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1 INTRODUCTION 
 

The selection of network topology is a critical component when developing multi-node or multi-

point system architectures.  A good choice of topology will require less power, have less 

complexity, higher reliability, and will orchestrate network traffic smoothly and quickly between 

nodes.  Conversely, a poor choice of topology will introduce complex and power-hungry logic, 

reduced performance due to bottlenecks and large distances between nodes, and increase the 

probability of system failure due to dropped messages and lack of fault tolerance.  The purpose of 

this document is both to provide a handful of network topologies that yield themselves to being 

good choices to general system applications and to identify the metrics that are used to justify 

them as such. 

 

Topology selection should begin by identifying the required and desired qualities of the network.  

These qualities may include a certain level of speed and performance, power usage, wiring or 

routing complexity, cost, redundancy and reliability, or a combination of these or other factors.  

Furthermore, individual system requirements may introduce data flow requirements that map to 

some topologies more readily than others.  Only after the requirements of the network have been 

established can the various topologies be analyzed to determine which will work best for a 

particular system. 

 

During topology selection, it is important to remember that often there will not be a single ideal 

topology for most systems.  Rather, selecting a topology becomes a matter of balancing and 

trading off various properties until a reasonable solution is achieved.  Another issue to consider is 

the fact that several topologies may be acceptable given a set of requirements.  In this case, 

selecting among the potential candidates becomes a judgment call on the part of the designer. 

 

As mentioned in the opening paragraph, this document provides a description of fundamental 

metrics that should be considered when selecting a network topology.  This list is not intended to 

be a complete list of all possible usable metrics; rather, the list provided gives the most common 

(and debatably the most important) considerations when selecting a topology.  Additionally, a 

detailed analysis of a handful of popular network topologies is provided.  A few of these 

topologies are selected as “preferred” topologies for general use and the justification for those 

topologies is provided. 
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2 BACKGROUND INFORMATION 
 

This section of the document will provide some of the assumptions used in this document and will 

attempt to describe the fundamental elements behind some of the topology metrics and their 

derivation. 

 

One of the most important assumptions made in this study is that all network links are assumed to 

be bidirectional.  While networks with unidirectional links do exist, the majority of general 

applications utilizing node-based architecture incorporate bidirectional network links, and as such, 

this study will follow the majority. 

 

Another important assumption is that the “cost” of each link is equal to that of every other link.  

Cost is an attribute sometimes applied to network links as a measure of its desirability (i.e., low-

cost links are the preferred links, and high-cost links are avoided or used only when necessary).  

Cost factors in numerous variables beyond the scope of this study (including link types, cable 

lengths, monetary cost, and link quality, among others), many which may be system-specific, and 

therefore the cost of each link will be assumed to be equal for this study. 

 

In this document, networks are assumed to consist of two core components:  nodes and links.  

Nodes are responsible for generating information, processing information, or routing information 

to other nodes.  A link connects two nodes together.  In some instances, nodes may be referred to 

as “vertices” and links may be referred to as “edges.”  This alternate terminology stems from 

expressions in mathematical graph theory, which is used to analyze some of the properties of these 

networks. 

 

To analyze networks using graph theory, networks must usually be represented as an adjacency 

matrix (see Figure 1).  The adjacency matrix of a network is an NxN matrix (N = number of 

nodes) that is populated with a 1 in locations where two nodes are connected and 0 otherwise.  The 

first row and first column represent node 1, and the second row and second column represent node 

2, etc.  Thus, if node 1 is connected to node 2, and node 2 is connected to node 4, the adjacency 

matrix will have a 1 in locations (1,2), (2,1), (2,4), and (4,2).  This assumes (1,1) is in the first, 

upper-left element and X and Y increase right and down, respectively. 

 
 Node 1 Node 2 Node 3 Node 4 

Node 1 0 1 0 0 

Node 2 1 0 0 1 

Node 3 0 0 0 0 

Node 4 0 1 0 0 

Figure 1.  Sample Adjacency Matrix 

 

Since every link in our analysis is bidirectional, the adjacency matrix will be symmetric about its 

diagonal.  This is because if node X is connected to node Y, our choice of bidirectional links 

dictates that node Y is also be connected to node X.  This representation of networks as adjacency 

matrices allows us to utilize linear algebra and graph theory in the analysis of these networks. 
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3 METRICS FOR TOPOLOGY ANALYSIS 
 

Listed below are the various metrics that were considered when evaluating topology candidates. 

 

• Average Path Length:  The average distance between two nodes in the network over all pairs 

of distinct nodes.  The distance between any two distinct nodes is the shortest path between those 

two nodes.  This can be mathematically represented as: 
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 where d(x, y) is the distance (number of hops) between nodes x and y. 

 

Average path length is one of the most important factors when optimizing networks for speed and 

efficiency.  Short average path lengths ensure that messages do not have to travel far to their 

destination and thus do not remain in the network for long periods of time.  Short average path 

lengths decrease overall network utilization and reduce message latency. 

 

When dealing with many “organized” or structured topologies (especially those following some 

geometric pattern), some improvement in average path length is often obtained by randomly 

rewiring a small number of links in the topology.  This causes the topology to more resemble a 

small-world network (a class of random graphs where most nodes are not directly adjacent but can 

be reached with a small number of hops), which typically have better average path lengths than 

structured topologies. 

 

• Diameter:  The longest path in the network between two nodes.  The diameter of a network is 

found by recording the shortest paths between all pairs of distinct nodes, and taking the maximum 

of this set.  Utilizing the above representation of distance between nodes, one representation of 

diameter is: 

 

DIAMETER = { }yxnynxyxd ≠== },,...,3,2,1{},,...,3,2,1{|)],(max[ . 

 

Diameter should be minimized when possible; however, the average path length is usually a more 

important consideration, since diameter only considers distance between the two farthest nodes.  

The two factors will typically be related, though a topology with a large diameter will generally 

have a larger average path length, and a small diameter will generally imply a small average path 

length. 

 

• Node Degree:  The degree of a node, dG(x), is equal to the number of links to which that node 

is connected.  To reduce node, network, and routing complexity, a small degree is preferred, as is a 

fixed, matching degree for all nodes.  There is a trade-off between node degree and reliability; 

more redundant networks will require more links for use as redundant paths in the network, which 

consequently leads to higher node degree.  Be aware that the converse is not true – a high node 

degree is not necessarily an indicator of reliability or redundancy. 
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Degree can be determined by observation by visually counting the number of links connected to a 

particular node when the network is represented pictorially (see Figure 2).  Mathematically, degree 

may be obtained by representing the network via an adjacency matrix, then summing values 

within a row or column of the adjacency matrix to obtain the degree for a particular node.  

Alternately, the node degree may be obtained by multiplying the adjacency matrix by itself, using 

standard linear algebra matrix multiplication [1].  The degree of each node would then be 

represented along the diagonal of the matrix. 

 

0 1 0 0 ← 0+1+0+0 = 1, Node 1 has degree 1 

1 0 0 1 ← 1+0+0+1 = 2, Node 2 has degree 2 

0 0 0 0 ← 0+0+0+0 = 0, Node 3 has degree 0  

0 1 0 0 ← 0+1+0+0 = 1, Node 4 has degree 1 
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Figure 2.  Two Methods for Obtaining Degree From the Adjacency Matrix 

 

Other important factors derived from node degree include average degree, minimum degree, and 

maximum degree.  Average degree is the sum of the degrees of all nodes divided by the total 

number of nodes in the network.  The maximum degree, Δ(x), is the largest degree over all nodes; 

the minimum degree, δ(x), is the smallest degree over all nodes. 

 

• Number of Links:  Increasing the number of links can potentially reduce latency, average path 

length, network congestion, and increase overall performance, but more links can increase cost 

and complexity of network wiring and routing due to increased node degree.  Optimizing the 

number of links requires balancing the trade-off between high performance and redundancy vs. 

lower cost, power, and less inter-node links. 

 

• Worst-case Connectivity:  This is the minimum number of nodes that must fail (node 

connectivity κ(x)) or the minimum number of links that must fail (edge connectivity λ(x)) [2] to 

cause any additional type of failure in the system.  An example of a failure in this case would be 

the inability for any live node to communicate with any other presently live node due to, say, node 

failures of all a live node’s neighbors. 

 

The connectivity of the network is bounded by the inequality κ(x) ≤ λ(x) ≤ δ(x).  Simply put, the 

worst-case connectivity of the network will be less than or equal to the smallest node degree 

present in the network (this is because the node with the smallest degree can be isolated by failure 

of the links that surround it or by failure of the nodes that it is connected to).  Also, the number of 

link failures needed to disconnect the network will be less than or equal to the number of node 

failures required. 
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Worst-case connectivity has a lower bound equal to the algebraic connectivity (see below) of the 

network.  Increasing the algebraic connectivity is a good first step to obtaining better connectivity 

in the network. 

 

• Algebraic Connectivity:  Algebraic connectivity is a metric derived from mathematical graph 

theory.  “Well-connected” graphs will have a large algebraic connectivity [3].  Being “well-

connected” implies good average path lengths as well as an abundance of loops to ensure good 

reliability and overall connectivity.  Thus, graphs with high algebraic connectivity generally 

indicate efficient placement of links with many redundant paths between nodes, as well as good 

distribution of traffic (depending on the routing algorithm used). 
 

Conversely, graphs with small algebraic connectivity have relatively clean bisections (meaning it 

is easier to divide these graphs into two halves) [3].  The algebraic connectivity of the graph also 

indicates a lower bound to node and edge connectivity and expansion.  Thus, it is desirable to 

maximize this value whenever possible. 
 

The algebraic connectivity of a network is determined by finding the eigenvalues of the Laplacian 

matrix L [4].  The Laplacian matrix L is determined by L = D – A, where D is the degree matrix of 

the network (a diagonal matrix where the term di,i is the degree of node I) and A is the adjacency 

matrix representation of the network.  Once the matrix L is found, the algebraic connectivity will 

be equal to the second smallest eigenvalue (λ2) of this matrix. 
 

Algebraic connectivity λ2(x) relates to node connectivity κ(x) and edge connectivity λ(x) as shown 

by Fiedler’s inequality:  λ2(x) ≤ κ(x) ≤ λ(x). 

 

• Scalability:  The ease in which the number of nodes within a network may be changed.  A 

high scalability is desired.  Some topologies require a fixed number of nodes in a specific structure 

to operate; others may allow an arbitrary number of nodes.  This is purely dependent on the 

topology chosen for use in the network. 

 

• Routing Complexity:  The complexity of routing algorithms must be considered, especially 

when in environments where the routing table must be dynamically generated due to node or link 

failure.  Some topologies yield themselves to easy mathematically based routing algorithms (e.g., 

hypercube or toroidal layouts) while others may rely on more general routing algorithms and 

techniques [such as the industry-standard open shortest path first (OSPF) algorithm]. 

 

• Bottlenecks or Points-of-Failure:  The presence of bottlenecks can introduce a slew of other 

problems, including potential for network overload (causing packet delays or drops), increased 

latency, and the introduction of certain nodes or links becoming critical points-of-failure.  

Networks with short average path lengths may lose the advantage of their short transmission 

distances if bottlenecks exist, restricting traffic flow between nodes.  Note that bottlenecks may 

exist as either nodes or links. 
 

Failures of bottlenecks will severely, and sometimes catastrophically, impact the system.  From a 

reliability standpoint, bottlenecks should be avoided as the failure of a single link or node can 

cause moderate to severe impact.  From a performance standpoint, bottlenecks considerably impair 

network performance.  Bottleneck nodes and links should be avoided whenever possible. 
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4 BRIEF SUMMARY OF CONSIDERED TOPOLOGIES 
 

Most of the considered topologies or general topology classes are briefly listed below, along with 

key factors.  The topologies considered for further numerical analysis were fully connected, 

hypercubes, hybrid fat-trees, generalized star, cube-connected cycles, 2-D meshes and toroids, 3-D 

meshes and toroids, and entangled networks.  In the list below, these topologies are highlighted in 

blue.  Further detail of these topologies follows in the next section. 

 

The best topologies selected for potential implementation and prototyping are (listed from most 

desired to least desired):  Entangled networks, 3-D toroids, hypercubes, and 2-D toroids. 

 

• Fully Connected:  Best performer, but most costly.  This topology is restricted by the large 

number of links required, equal to 2~
2

)1(
n

nn −

, as well as the large number of ports required per 

node, equal to n-1.  Thus, this topology is ideal for small networks, but not practical for high node 

counts due to tremendous increases in required hardware as node count increases. 

 

• Hypercubes:  A good, reliable performer.  Limited choice of network sizes as this topology 

requires 2d nodes, but the extension to incomplete hypercubes somewhat alleviates this problem 

[5].  This topology begins to become somewhat complex and costly as node count increases, and 

as such may be preferred for low-to-medium node counts.  However, on the plus side, overall 

reliability correspondingly increases as well. 

 

• Incomplete Hypercubes:  An extension to hypercubes that allows arbitrary node count with 

hypercube-like performance.  Performance is only slightly lower than the complete hypercube, but 

reliability of the incomplete hypercube can vary substantially. 

 

• Tree Topologies (including binary trees and pyramid-style topologies):  Tree topologies are 

poor as a general network topology.  A severe bottleneck and point-of-failure is present at the root 

of the tree, and these networks have very large diameter and average path lengths.  Fat-trees 

attempt to lessen the bottlenecking at the root of the tree by increasing bandwidth at higher levels; 

however, reliability is still a concern. 

 

• Hybrid Fat-Tree:  An extension to a fat-tree topology that interconnects the sides of a tree 

topology at different points [6], mainly to increase reliability and decrease average path length.  

However, this topology has varying node degree (implying increased node complexity) and 

bottleneck issues are introduced at key nodes. 

 

• Banyan Networks (including, among others, butterfly and omega networks):  These 

topologies are multistage switched networks, where switching hardware is independent of the 

nodes.  This style of network is not desired in our environment. 

 

• Star Topologies:  Poor reliability due to point-of-failure at the node located in the center of the 

star.  A huge bottleneck is present as well.  In fact, a star topology can be generalized down to a 

type of tree topology, and thus has similar issues. 
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• Generalized Star:  Good in areas of performance and node complexity.  The generalized star 

design scales well with increasing performance and reliability as node count increases.  The fixed 

structure, though, only allows for specific node counts in the network:  6, 24, 120, 720, etc.  There 

are no provisions for networks of 25-119 nodes, 121-719 nodes, etc. 

 

• Cube-Connected Cycles:  Based on the hypercube where each hypercube node is replaced 

with a small ring.  All nodes have a fixed degree of 3, despite network size.  The low node degree 

can be an advantage if port counts at each node are limited, but performance suffers.  Network 

node counts are also fixed at specific node counts of 8, 24, 64, 160, etc.  (similar to generalized 

star’s node count constraints). 

 

• Ring Networks:  Ring networks distribute traffic fairly, but not efficiently.  A lack of links 

between nodes limits their ability in areas of performance and reliability.  However, cross-

connecting multiple rings can yield good results.  The 2-D toroid is based on this principle. 

 

• 2-D Mesh:  Simple layout, but poor traffic distribution and differing node degrees between 

core nodes and edge nodes. 

 

• 3-D Mesh:  Similar to the 2-D mesh, but with larger metrics in general (node degree, link 

counts, etc.).  Does perform somewhat better and is more reliable than the 2-D mesh. 

 

• 2-D Toroid:  Similar to the 2-D mesh, but with edge nodes connected back around to each 

other.  This nicely fixes the node degree at 4 and reduces overall complexity.  Easy routing 

algorithms may be utilized.  Moderate performance and reliability. 

 

• 3-D Toroid:  Similar to the 3-D mesh, but with edge nodes along all three dimensions 

connected back to each other.  Node degree is nicely fixed at 6.  Excellent performer and highly 

reliable. 

 

• Entangled Networks:  A non-standard topology constructed by optimizing a network with 

graph theory fundamentals [4].  The goal is to maximize the algebraic connectivity of the final 

network.  Node count and degree are fixed at any desired value.  A very good performer and very 

reliable.  However, due to the random nature of the optimization process (a simulated annealing 

algorithm), it may be difficult to obtain consistently identical networks at moderate-to-high node 

counts.  Despite the variance in optimized topologies, all entangled networks generally perform 

similarly. 

 

• Ramanujan/Expander Graph Topologies:  Topology formed with fundamentals of graph 

theory principles [4].  Similar to entangled networks; however, node counts are at various fixed 

intervals.  Not many opportunities to form networks of smaller size due to the node count 

constraint. 

 

• Bus-based topologies:  The use of a common data line is impractical at higher node counts or 

higher speeds.  Also, these networks are focused more on broadcast-type traffic, versus point-to-

point traffic. 
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5 DETAILED NARRATIVE OF SELECTED TOPOLOGIES 
 

Following are descriptions of topologies that were selected for further detailed study.  Each 

topology is depicted pictorially and outlined, and the advantages and disadvantages of each 

structure are given. 
 

5.1 Fully Connected 
 

Fully connected networks are constructed by 

wiring every node to every other node present 

in the network (see Figure 3).  For obvious 

reasons, these networks are the ideal topology 

when considering overall speed, diameter, 

routing complexities, reliability, and ease of 

construction.  However, they require a massive 

number of links; hence, cost and power 

consumption are very high.  Also, the port 

count at each node is large, equal to n-1.  Thus, 

this topology is generally only good for low 

node counts. 
 

Advantages:  Lowest latency, diameter, and 

average path length.  Best possible reliability, 

easy to construct, and easy routing algorithm. 
F

igure 3.  Fully Connected Network for n=6 

Disadvantages:  Enormous link and port count.   

Cost and power requirements are very high.  May require excessive wiring, which can introduce 

physical layer challenges.  Requires 2~
2

)1(
n

nn −

links, and n-1 ports per node. 

 

5.2 Complete and Incomplete 
Hypercubes 

 

An overall good performer, hypercubes are 

very reliable and offer good performance.  

Complete hypercubes have fixed size of 2
d
 (i.e., 

4, 8, 16, 32, 64, etc, nodes) but an extension to 

this structure (incomplete hypercubes) allows 

for arbitrary size. 
 

Hypercubes are constructed by beginning with 

two interconnected nodes (a 1-D hypercube) 

(see Figure 4).  If more nodes are required, the 

structure is duplicated and interconnected by 

adding links between the original and the 

duplicated nodes. 
Figure 4.  Complete Hypercubes 

 (d=1, 2, 3, and 4) 

1-D Hypercube 
2-D Hypercube 

4-D Hypercube 

3-D Hypercube 
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Node degree grows quickly, 

making node complexity an issue 

for larger networks.  Link count 

also exceeds other topologies for 

similar node counts. 

 

Hypercubes offer excellent 

connectivity, especially at large 

node counts.  This topology also 

has a high probability of 

withstanding random link/node 

failures. 

 

Incomplete hypercubes relax the 

requirements of complete 

hypercubes to allow for structures 

that resemble hypercubes without 

the strict node count constraint.  

They generally perform about as 

well as complete hypercubes.  

Also, easy routing algorithms have been developed that work under both complete and incomplete 

hypercube topologies [5]. 

 

Reliability in incomplete hypercubes, however, is somewhat unpredictable.  Incomplete 

hypercubes slightly larger than 2
d
 will introduce points of failure and decrease reliability, while 

hypercubes slightly smaller than 2
d
 will perform almost as reliably as a complete hypercube of 

size 2
d
. 

 

As an example, look at Figure 5 for an incomplete hypercube of N=9 – if the link between nodes 1 

and 9 were to fail, or if node 1 were to itself fail, then node 9 would be isolated from the rest of the 

network.  Thus, the failure of one node causes two nodes to “fail” (or, the failure of a single link 

would additionally cause one node to “fail”).  However, for networks closer in size to 2
d
 (such as 

the above case where N=7), the reliability of the hypercube is closer to that of a hypercube with 

d=3 (N=8). 

 

The problem of variable reliability could be solved somewhat by adding links to the “incomplete” 

portion of the topology.  However, this is an “impure” solution and adding these additional links 

makes the resulting topology deviate from the hypercube model. 

 

Advantages:  Complete hypercubes offer good to very good performance, very good fault 

tolerance, and easy algorithms exist for routing traffic through hypercubes.  Incomplete 

hypercubes have performance at near-complete-hypercube level and can have an arbitrary 

number of nodes.  Easy routing algorithms also exist for incomplete hypercubes. 

 

Disadvantages:  Node degree grows quickly as the number of nodes increase.  Incomplete 

hypercubes have unpredictable reliability.  Link counts grow faster than other topologies, perhaps 

indicating that a more optimal topology could be used at higher node/link counts. 

Incomplete Hypercube, 

N=14 

Incomplete Hypercube, 

N=7 

Incomplete Hypercube,  

N=9 

Figure 5.  Incomplete Hypercubes (n=7, 9, and 14) 
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5.3 Cube-Connected Cycles 
 

Cube-connected cycles (CCC) are structures 

based on hypercubes (see Figure 6).  Given a 

hypercube of dimension d, each hypercube node 

is replaced with a ring of size d.  This causes 

the node degree of all nodes to be fixed at 3 

regardless of network size!  This structure 

excels when the port count at each node is 

limited.  However, the low node degree yields 

longer average path lengths and diameters than 

other more highly connected topologies. 
 

The abundance of loops and alternate paths 

require a robust routing algorithm, but supports 

good load-balancing, a lack of bottlenecks, and 

an abundance of different paths between nodes.  

A major disadvantage is the fixed number of 

nodes required for this topology, which is equal 

to d*2
d
 nodes (i.e., 8, 24, 64, 160, etc., nodes) 

 

Advantages:  Fixed node degree of 3 for all nodes.  Good load-balancing and redundancy.  Low 

overall link count due to low node degree. 
 

Disadvantages:  Does not perform as well as more highly connected topologies.  Larger average 

path length and diameter.  Certain link failures (between each “loop”) can have a more 

significant impact on performance than others. 
 

5.4 Hybrid Fat-Trees 
 

The hybrid fat-tree was not a strong contender in this 

analysis.  This topology was mainly included to 

demonstrate the performance of a tree-style topology (see 

Figure 7). 
 

A hybrid fat-tree is an extension to the fat-tree topology 

[6].  Hybrid fat-trees perform well when minimizing 

average path length and network diameter.  One 

advantage to this design is typically about half of the 

nodes in this design will have a fixed degree of 2.  

However, other nodes have large degree, and these nodes 

introduce bottlenecks into the network as well as 

significant points-of-failure.  Thus, this topology is not a 

candidate for further testing due to these issues. 
 

Advantages:  Low fixed degree of 2 for many nodes. 
 

Disadvantages:  Network is easily bisected.  Variable node degree and potential bottleneck nodes 

exist. 

Figure 6.  Cube-Connected Cycle (d=3) 
(Note the similarity to the hypercube, except each 
 hypercube node is replaced with a ring of size d) 

Figure 7.  Hybrid Fat-Tree for d=6 
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5.5 2-D Meshes and 2-D Toroids 
 

2-D meshes are one of the easiest topologies to visualize – nodes are connected in a “grid” fashion 

(see Figure 8).  The simple layout also allows many problems to map easily to the structure of this 

network [7]. 

 

2-D meshes have unequal node degree.  The node degree in the corners is 2, around the edges is 3, 

and in the center is 4.  Also, traffic distribution is unequal among nodes.  Nodes in the center of 

the mesh will carry the majority of 

traffic (leading to possible 

bottlenecks), and nodes around the 

edges will carry mostly their own 

traffic and little of others. 

 

For reliability, 2-D meshes, in the 

general case, offer many redundant 

paths between nodes and can 

probably withstand a fair number 

of random failures.  However, in 

the worst case, two link failures 

can isolate a corner node, as could 

two node failures. 

 

2-D toroids improve on the design 

of the 2-D mesh by connecting 

left-edge nodes to right-edge nodes and top-edge nodes to bottom-edge nodes (geometrically, 

imagine a cylinder where the top is bent around and connected back to the bottom – this is a 

torus).  The benefit to this modification is that each node now has a fixed degree of 4, and 

reliability and performance improves substantially. 

 

2-D toroids can withstand a high number of general (random) link and/or node failures.  In the 

worst case, four link failures or four node failures could cause the isolation of a valid working 

node.  There are an abundant number of loops and alternate paths in the network to keep this 

topology connected. 

 

Regarding performance, the addition of links between opposing edges significantly reduces the 

overall network diameter and average path length.  The additional links also distribute the traffic 

evenly among all nodes, removing the bottlenecks that were present in the center of the 2-D mesh 

topology.  However, the topology could use a few additional links (or rewired links) that jump a 

few nodes to help improve average path length. 
 

Advantages (2-D Mesh):  Simple layout and easy to construct.  Problems map well to this 

topology.  Many redundant paths exist between most nodes. 

 

Disadvantages (2-D Mesh):  Bottlenecks may exist in the center of the network.  Corner, edge, and 

center nodes all have different degree.  Bad worst-case failure rate.  One of the easier topologies 

to bisect. 

 

2-D Mesh 

2-D Toroid 

Figure 8.  2-D Mesh and 2-D Toroid 
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Advantages (2-D Toroid):  Reliable topology with reasonable performance.  Fixed node degree of 

4 for all nodes. 

 

Disadvantages (2-D Toroid):  Link placement is not quite as efficient as some other topologies 

with the same number of links, and thus average path length and diameter are higher than other 

topologies with the same link count. 

 

5.6 3-D Meshes and 3-D Toroids 
 

3-D meshes and 3-D toroids are similar to 2-D meshes and toroids, except the 3-D mesh/toroid is 

expanded along the Z-axis to provide another dimensional layer of nodes.  In the case of the 3-D 

toroid, the topmost nodes (along the new Z-axis) are connected to the bottommost nodes (see 

Figure 9). 

 

The advantages and disadvantages of 3-D meshes and toroids are similar to those of the 2-D 

meshes and toroids, but are amplified proportionally with the height of the added dimension.  

However, due to the added dimension, there is added redundancy and even more paths and loops 

within the network. 

 

3-D toroids have a fixed degree of 6 for all nodes. 

 

Advantages (3-D Mesh):  

Simple layout and easy to 

construct.  Many redundant 

paths exist between most 

nodes. 

 

Disadvantages (3-D Mesh):  

Bottlenecks may exist in the 

center of the network.  Corner, 

edge, and center nodes all 

have different degree.  Fair 

worst-case failure rate.  One 

of the easier topologies to 

bisect. 
 

Advantages (3-D Toroid):  

Extremely reliable topology 

with reasonable performance.  

Fixed node degree of 6 for all 

nodes. 

 

Disadvantages (3-D Toroid):  

Link placement is not quite as 

efficient as some other topologies with the same number of links. Thus average path length and 

diameter are higher than other topologies with the same link count. 

 

3-D Mesh 

3-D Toroid 

(Some links are colored light grey to make the figure more visually 

comprehensible.  These links are equivalent to the black links)

Figure 9.  3-D Mesh and 3-D Toroid 
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5.7 Entangled Networks 
 

Entangled networks are a class of networks that attempt to maximize the algebraic connectivity of 

the topology.  These networks can be constructed with explicit complex mathematical methods or 

approximated by a repetitive random optimization algorithm (which is the method chosen for this 

analysis) (see Figure 10). 

 

The repetitive random optimization algorithm takes a topology and randomly rewires two links.  

The algebraic connectivity of the new rewired graph is calculated.  If the new graph has a larger 

algebraic connectivity the rewiring is made permanent.  However, if the rewiring does not result in 

a higher algebraic connectivity value, the original graph is restored.  This rewiring is repeated 

many times until the topology shows no further improvement to rewiring. 

 

These graphs are considered to be optimal with respect to algebraic connectivity [6].  Since 

algebraic connectivity is related to 

average path length and diameter 

as well as failure rate and 

reliability, maximizing this value 

for a given node degree should 

yield the most (or one of the most) 

reliable, best performing topology 

given the available resources. 

 

Advantages:  Theoretically these 

topologies are optimal in 

balancing average path length 

and connectivity for given node 

count and node degree.  The 

number of nodes as well as the 

degree of nodes is completely 

variable and may be set to any 

value prior to the optimization 

process. 

 

Disadvantages:  Robust routing algorithm is required.  Due to the random nature of the 

optimization process, as well as the possibility of encountering local minima/maxima in this 

process, a truly optimal network cannot be guaranteed unless one is explicitly constructed (note, 

too, explicit construction introduces a fair number of other constraints).  For larger networks, 

optimization may take some time. 

Network for n=10, k=3 Network for n=12, k=3 

Figure 10.  Sample Entangled Networks 
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5.8 Generalized Star 
 

The generalized star topology is a topology that 

attempts to wire the network together in such a 

way that each node is the center of a small star 

(see Figure 11).  Given a dimension d, these 

networks will have d! nodes and each node will 

have a fixed degree of d-1. 

 

This topology is good in areas of performance 

and complexity.  Generalized stars maintain a low 

diameter while utilizing a low number of links.  

Reliability scales with the dimension of the 

overall network. 

 

This topology is highly specific in structure and 

thus can only accommodate systems with d! 

(factorial) nodes (i.e., 6, 24, 120, 720, etc., 

nodes).  The large distance between potential 

node counts does not make this topology feasible 

for our purposes. 

 

Advantages:  Low link count, efficient use of links 

yielding good diameter.  Reliability is good and scales with the number of nodes present. 

 

Disadvantages:  Very specific in structure, and specific requirements on the number of nodes 

makes this topology a poor candidate for most systems. 

 

Figure 11.  Generalized Star for d=4 
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6 TOPOLOGY ANALYSIS DATA 
 

Graphs (Figures 12 through 17) are included on the following pages using the above detailed 

topologies. 
 

A small narrative follows each graph.  In these narratives, the fully connected topology is often 

ignored since it is in a somewhat different category than the rest of the topologies. 
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Figure 12.  Average Path Length 

 

 

Shorter average path lengths are preferred, leading to decreased latency and decreased network 

traffic (due to the reduction in traffic needing to be routed long distances).  The optimized 

entangled networks have the shortest average distance between nodes.  The 3-D toroid and 

hypercube topologies are next, followed by generalized star and hybrid fat-trees.  The remainder 

of the topologies (2-D and 3-D meshes, CCC, and 2-D toroid) are somewhat inefficient and thus 

have higher average distances between nodes. 
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Network Diameter

0.0

2.0

4.0

6.0

8.0

10.0

12.0

8 18 28 38 48 58 68 78 88 98 108

Number of Nodes

L
e
n
g
th
 (
lo
w
e
r 
is
 b
e
tt
e
r)

Hypercube 2-D Mesh 2-D Toroid 3-D Mesh

3-D Toroid Cube Connected Cycles Generalized Star Hybrid Fat Tree

Fully Connected Entangled (4-way) Entangled (6-way)

 

Figure 13.  Network Diameter 

 

 

Network diameter should be minimized whenever possible to reduce distance between nodes.  The 

best network diameter is led again by the optimized entangled networks and 3-D toroids.  Now, 

though, generalized star topologies are similar in performance to the 3-D toroids, as are hybrid fat-

trees.  Meshes have the worst diameter. 
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Average Node Degree
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Figure 14.  Average Node Degree 

 

 

The CCC lead the way in average node degree with their fixed degree of 3, making them a strong 

contender when port counts are limited at each node.  Other desirable topologies are the entangled 

networks and the toroids, all of which have fixed degree. 
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Total Link Count
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Figure 15.  Total Link Count in Network 

 

 

The number of links can be linked to overall cost and power usage, and can contribute somewhat 

to the complexity of the topology.  Most important to realize is the slope of the line, which 

indicates the rate at which links need to be added as the network grows.  The less steep the slope, 

the better.  Again, the entangled networks perform best, especially when compared to other 

topologies having the same or similar node degree.  Hypercubes are among the worst – their link 

count grows at the fastest rate as node count increases. 
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Worst-Case Connectivity (Node or Link Failures)
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Figure 16.  Worst-case Connectivity 

 

 

The worst-case connectivity is a small part of the overall reliability of the topology.  This value is 

upper-limited by the lowest degree of all nodes present in each topology.  Thus, incomplete 

hypercubes perform poorly here, as topologies with slightly greater than 2
n
 nodes will have low 

node degree at their lone incomplete segments and thus be limited in their worst-case connectivity 

by these segments.  Otherwise, complete hypercubes perform relatively well, as do entangled 

networks and toroids. 
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Algebraic Connectivity
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Figure 17.  Algebraic Connectivity 

 

 

The algebraic connectivity is greatest for the entangled networks, when compared to other 

topologies of similar degree.  This should be the case, since these networks strive to specifically 

optimize this value. 

 

3-D toroids and hypercubes (especially complete hypercubes) are the better performers, with 

generalized star topologies at the middle of the road.  Meshes and hybrid fat-trees are easy to 

bisect, and thus have low algebraic connectivity. 
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7 RELIABILITY ANALYSIS 
 

To further expand upon the reliability of the leading topology contenders, a simulation was run to 

more closely mimic the real-world behavior of these topologies under different rates of node 

failure.  Specifically, the simulation tested the ability of live nodes to communicate with each 

other despite failures elsewhere in the system.  This simulation is similar to the experiments of 

Abachi and Walker [8] for testing topology reliability. 

 

The simulation generated the top four of the studied topologies under specific node counts.  At 

each node count, nodes were failed throughout the system with specific probabilities of failure 

under uniform distribution.  Using this partially failed network, 500 packets were transmitted by 

live nodes to other live nodes in the topology.  The number of successful transmissions determined 

the reliability of the system at that particular node count and failure rate.  To ensure a good 

statistical sampling, each combination of topology, node count, and node failure rate and 

distribution was tested 500 separate times (each with 500 packets) and the results combined to 

form the final figures. 

 

The results generated are shown in two different ways:  (1) the effect of node count on overall 

system reliability given a particular topology, and (2) the comparison of different topologies on 

system reliability given identical (or relatively close) node counts. 

 

The reliability of the hypercube generally increases with increasing node count (due to the 

increase in node degree as node count increases) (see Figure 18).  The exception is in the cases 

when incomplete hypercubes are considered.  As an example, compare 64- and 96-node 

hypercubes.  The incomplete 96-node hypercube has 50% more nodes, yet its overall system 

failure rate is approximately equal to the 64-node complete hypercube.  Hypercubes of smaller 

sizes do not tolerate failures well, mostly due to their low node degree. 

 

Entangled networks are very capable of handling a fair number of failures (see Figures 19 and 20).  

The network is able to route almost all packets between live nodes despite node failure rates up to 

almost 40%!  Node count has very little bearing on reliability until node reliability falls under 

40%.  After this point, the reliability of entangled networks actually decreases a bit with increasing 

node count.  As in the hypercube case, increasing node degree in these networks significantly 

increases reliability. 

 

The prime competitor to the 2-D toroid is the entangled network with degree 4 (see Figure 21).  

The entangled network does perform slightly better when comparing similar node counts. 

 

The prime competitor to the 3-D toroid is the entangled network with degree 6 (see Figure 22).  

Both networks are extremely reliable, even under higher failure rates.  Even with 50% of nodes 

failing, this network was still able to transport messages between live nodes approximately 95% of 

the time, for any of the tested node counts. 

 

For comparison sake, the reliability model of the hybrid fat-tree was simulated and plotted.  Figure 

23 shows the failure rate of less reliable, less well-connected topologies with low algebraic 

connectivity.  Any number of failures significantly affects the system. 
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Complete & Incomplete Hypercube Reliability
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Figure 18.  Hypercube Reliability 

 

 



31 

Entangled Network (Node Degree = 4)
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Figure 19.  Entangled Network Reliability, Node Degree of 4 
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Entangled Network (Node Degree = 6)
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Figure 20.  Entangled Network Reliability, Node Degree of 6 
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2-D Toroid Network
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Figure 21.  2-D Toroid Network Reliability, Node Degree of 4 
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3-D Toroid Network
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Figure 22.  3-D Toroid Network Reliability, Node Degree of 6 
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Hybrid Fat-Tree Network
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Figure 23.  Hybrid Fat-Tree Network Reliability 
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Figure 24 shows the effect of topology on system reliability.  All of these networks have 16 nodes 

(except for the 3-D toroid, whose minimum size is 27).  As you can see, results are loosely 

grouped according to a topology’s node degree.  Entangled networks are generally the best 

performers. 
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Figure 24.  Reliability of Various 16-Node Networks 
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Figure 25 shows results of the 32-node networks.  This graph better demonstrates the relation 

between node degree and potential reliability.  The higher degree topologies (6-way entangled and 

3-D toroid) lead the way, followed by the 5-way hypercube, followed by the 4-way entangled and 

2-D toroid networks.  Remember that topologies with higher node degree merely have more 

potential for higher reliability – ultimately it is the layout of the nodes in the topology that 

determines tolerance to failure. 
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Figure 25.  Reliability of Various 32-Node Networks 
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Figure 26 shows the results of the 36-node networks.  Note that the hypercube in this case is an 

incomplete hypercube.  This causes the reliability of the 36-node hypercube model to fall slightly 

below expected values.  The 32-node complete hypercube is also shown on this graph for 

reference purposes. 
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Figure 26.  Reliability of Various 36-Node Networks 
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In Figure 27 the results are observed on 64-node networks.  Notice that the hypercube, 3-D toroid, 

and 6-way entangled network all have equal node degree of 6, and for the most part their results 

are somewhat similar.  Again, though, the entangled networks have a slight edge over their 

counterparts with equal node degree. 
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Figure 27.  Reliability of Various 64-Node Networks 
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In Figure 28 the results are observed on 128-node networks.  The hypercube, now with a regular 

node degree of 7, becomes the most reliable topology due to its increased link count and node 

degree.  Not surprisingly, entangled networks still hold the lead over competing topologies with 

the same node degree. 
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Figure 28.  Reliability of Various 128-Node Networks 
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8 CONCLUSION 
 

The best topologies found during the course of this study were (ordered most desirable to least 

desirable):  Entangled networks, 3-D toroids, complete and incomplete hypercubes, 2-D toroids, 

cube-connected cycles (for low port counts), and finally fully connected (for low node counts). 

 

Entangled networks performed consistently better than all other topologies of similar node count 

and degree.  These networks are the most promising in terms of reliability, performance, and cost.  

Arbitrary node counts and arbitrary, fixed node degree make entangled networks very promising 

for networks of all sizes. 

 

3-D toroids performed well overall.  Their structure is both simple and well-defined, and they 

perform well and reliably.  Node degree of 6 is fixed, but may be high for some networks.  

Network sizes may be somewhat limited by the node count – 3-D toroids require some number of 

nodes equal to X*Y*Z where X, Y, Z ≥ 3.  This is especially problematic when the number of nodes 

in the system is equal to a prime number, and cannot be reduced into three non-fractional divisors. 

 

Complete hypercubes are a good solution for medium-node-count networks.  Again, there is some 

limitation on node count (must be a power of 2), but when a network can fit into this topology the 

performance and reliability are very acceptable.  Past ~64 nodes, node degree starts becoming 

excessively large (>6).   For networks that need node counts not equal to a power of two, 

incomplete hypercubes can offer similar performance and sometimes similar reliability as 

complete hypercubes.  The reliability of incomplete hypercubes, however, does vary with node 

count (see the graph in Section 4 regarding worst-case connectivity).  Therefore, it is best to 

examine a proposed incomplete hypercube topology before implementing it to ensure that it will 

meet reliability requirements.  Node count values that are slightly below powers of 2 are generally 

safe choices. 

 

2-D toroids are decent performers with a fixed node degree of 4.  There are perhaps better 

topologies for the same node count and degree, but the simplicity of this topology’s layout and 

routing keep it as a contender for potential implementation. 

 

Cube-connected cycles are perfect when node degrees need to be low (=3) and fixed.  When 

compared to networks of higher node degrees, these networks do not perform well – but for 

networks with smaller node degrees, these networks excel.  In fact, the optimization procedure for 

entangled networks will sometimes yield a topology equivalent to a cube-connected cycle 

topology (for some particular node counts when node degree = 3)!  The number of nodes required 

to form this topology is very specific, though, and is a prohibitive factor. 

 

Finally, fully connected networks give the best possible performance and reliability of any 

topology, but at the cost of very high link counts.  This topology is feasible for networks with low 

node counts, but overall the number of links and the resources required to support those links 

make this topology not feasible for networks beyond five or six nodes. 
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