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Abstract 
An analytic model for electron flow in a system driving a fixed inductive load is 
described and evaluated with particle in cell simulations.  The simple model allows 
determining the impedance profile for a magnetically insulated transmission line 
given the minimum gap desired, and the lumped inductance inside the transition to 
the minimum gap.  The model allows specifying the relative electron flow along 
the power flow direction, including cases where the fractional electron flow 
decreases in the power flow direction.  The electrons are able to return to the 
cathode because they gain energy from the temporally rising magnetic field.  The 
simulations were done with small cell size to reduce numerical heating.  An 
experiment to compare electron flow to the simulations was done.  The measured 
electron flow is ~33% of the value from the simulations.  The discrepency is 
assumed to be due to a reversed electric field at the cathode because of the 
inductive load and falling electron drift velocity in the power flow direction.  The 
simulations constrain the cathode electric field to zero, which gives the highest 
possible electron flow. 
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Executive summary 
The understanding of magnetic insulation in pulsed power devices is a major element 

in the success of many pulsed power systems.  Magnetic insulation has been studied for 
many years and the experimental, theoretical, and computational results are impressive.  
As the application of magnetic insulation becomes more commonplace, there are still 
cases where optimization would be useful.  For example, in very large pulsed power 
machines, small reductions in inductance can save substantial amounts of money.  As 
pulsed power driven high-current z-pinches become more successful, it is useful to 
evaluate recent observations of simulations and experiments. 

The work described here consists of a method for defining the impedance profile of a 
MITL driving an inductive load.  The simple model described here requires the minimum 
gap desired in the MITL, the radius of that minimum gap, the inductance inside the 
minimum gap, and a parameter that describes the desired electron flow behavior with 
radius.  The magnitude of the flow itself changes with the applied voltage of course, but 
the relative behavior with radius can be set arbitrarily.  The result of a calculation is a 
calculated impedance (gap) profile versus radius, out to any desired radius.  This simple 
model ignores gap closure and assumes applied voltage well above the rest mass of an 
electron (511 kV).  Quicksilver simulations show that at voltages over 5 megavolts, the 
electron flow behavior can be prescribed with an easily calculated impedance profile.  
The model is in some ways a more general way to consider electron flow in an ideal 
MITL.  If, for example, one assumes that electrons cannot return to the cathode and are 
prevented from reaching the anode by the magnetic field, the lowest inductance 
configuration would be one in which the insulation condition is the same throughout the 
line- higher impedance regions are inductive and lower impedance regions will increase 
the electron flow.  Such a condition is readily calculated using the model.  A constant-
impedance MITL impedance profile is not one that gives constant electron flow unless 
the MITL is terminated in a resistor.  An inductive load does not behave as a resistor. 

The measured electron flow is lower than the flow predicted by the particle in cell 
model.  Note that the ignored (in the simulations) effect of gap closure would tend to 
increase the measured electron flow as compared to the simulations.  The particle in cell 
model uses a zero cathode electric field condition after a field threshold is exceeded. This 
gives the highest electron flow (a cathode field either parallel or anti-parallel to the 
vacuum field would reduce the electron flow).  Non-uniform electron emission would 
cause an average cathode field to be non-zero and parallel to the anode electric field.  
Excess electron charge (electrons unable to return to the cathode) would create a cathode 
electric field anti-parallel to the anode field.  Either one of these cases would result in less 
electron flow than zero cathode electric field.  With the graphite suspension applied to the 
cathode surface (which lowers the threshold for cathode plasma formation) and the 
measured electron current lower than zero-cathode-field simulations, it is suspected that 
the electric field near the cathode is non-zero and actually reversed compared to the 
anode field.   
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This project also included building an experiment that would test experimentally the 
MITL design procedure.  The relatively low voltage in the experiment (~500 kV) made 
the space charge correction voltage comparable to the line voltage, which was not 
considered in the analytic model.  The electron flow did qualitatively behave as designed 
even at low voltage.  The experimentally measured electron currents were below those 
calculated by the particle in cell model.  This could be due to an electric field on the 
cathode, which the simulation model employed here constrains to zero.  Zero cathode 
field will produce the highest possible electron flow.  If the cathode field is reversed 
(compared to the vacuum field) there is more electron space charge in the line than is 
required to shield the cathode.  The reversed field drives the E ! B  drift in the direction 
against the bulk power flow, reducing the net flow current.   If the cathode field is the 
same direction as the applied electric field, the total number of electrons is less, and the 
electron current is subsequently lowered. 

In the experiment, a concept for an electron collector system that would allow direct 
electron current measurement, instead of the more usual subtraction of cathode current 
from anode current, was tested.  Mechanical alignment problems and pulser problems 
limited the amount of data available, but the existing data show that such a collector can 
work and provide more accurate measurements of flow in some situations. 

The simulations included the current-measuring probe grooves.  The simulation and 
experimental results show that a groove on the cathode of a MITL quickly fills with 
electrons and is non-perturbing to the system.  This is important for large systems that 
have joints between pieces, grooves for monitors, or other features on the cathode. 
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Acronyms 
MITL- magnetically insulated transmission line 

PIC- particle-in-cell model of plasma systems 

RC-integrator- passive device for integrating derivative signals with respect to time 

Bdot- derivative responding flux meter for measuring current 
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Electron flow in z-pinch drivers 
Magnetic insulation is vital for large pulsed power drivers, and has been studied in 

terms of behavior [1-8], stability[9-13], and application[2, 3, 14-37].  In a magnetically 
insulated system, the self-magnetic field of transmission line current inhibits electron 
current loss to the anode, even though the cathode conductor freely emits electrons above 
about 20 kV/mm.  The suppression of electron loss allows building drivers that operate at 
200 kV/mm or more. There is a considerable theoretical and computational basis for 
understanding the electron flow in such systems.  Of particular interest are high current 
pulsers for z-pinch driven high energy density physics experiments.  Such drivers are 
directly affected by electron flow behavior, because electron flow and the subsequent 
localized energy deposition largely sets the vacuum inductance of pulsed power drivers; 
vacuum inductance in turn largely determines the load energy efficiency.  While there is 
good understanding of the flowing electrons, the particle-in-cell calculations that are used 
to model actual systems have fundamental difficulties with the electron flow in most z-
pinch drivers.  This is because of the thin (compared to the vacuum gap) electron sheaths 
at times near peak current.  The thin sheaths require small cell sizes, which makes the 
calculations more computer-intensive.  Inadequate resolution tends to cause energy 
increase to the electrons (numerical heating); small energy errors can significantly change 
the calculated electron behavior because the electrons are very close to the cathode for 
much of the times of interest.  This project intends to make detailed measurements of 
electron flow in a low-impedance, high current disk transmission line.  This system will 
be relevant to pulsed power systems driving low impedance loads, such as z-pinches.  
Such measurements have not been done in this geometry before, and accurate data are 
vital for benchmarking the widely used simulation techniques.  Verification of algorithms 
is important as driver designs rely more on simulations to optimize large machines. 

If electrons could never return to the cathode, the model used here would not be 
practical, except for the special case of constant electron flow.  However, there is 
evidence based on simulations [22, 38] and experiments [17, 21, 30] that electrons might 
return to the cathode, at least under some conditions. 

An experiment was fielded to study electron flow in a low impedance system driving 
an inductive load.  For z-pinch systems, the load acts as a fixed inductor for the initial 
part of the drive pulse.  This is desirable for efficiency; the load power must be higher to 
drive the pinch after it starts to move.  The electron flow is important early in the pulse 
because the voltage is highest and the current is lowest at early times.  Also, gas desorbed 
by the electrons striking the anode is more important early in the pulse since it has more 
time to expand if it’s desorbed early in the pulse.  For these reasons, we considered it a 
reasonable approximation to model a z-pinch system as a fixed inductor for electron flow 
considerations.  There can be considerable electron flow as the z-pinch changes its 
inductance late in the implosion process, but at that time current is relatively high and the 
time for secondary plasma to affect the power is reduced. 
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Calculations 
The desired outcome of the present work is to develop a systematic method for design 

of magnetically insulated transmission lines (MITL) for strongly insulated systems.  The 
design of a MITL system is generally dictated by numerous concerns, many of them 
conflicting.  For example, low inductance is generally desired to allow the most efficient 
delivery of energy from the driver to the load.  This however generally increases the 
current flowing in electrons because lower impedance transmission lines have higher 
electric field.  The electron current can cause anode plasma desorption if deposited in 
small areas, heating the anode metal [39].  MITL electrode gaps may be limited at small 
diameters by mechanical alignment limits or electrode plasma concerns. 

The calculations below (in a radial disk geometry) describe a manner for calculating 
the MITL gaps given common parameters.  The required parameters are the minimum 
gap, the radius of the minimum gap, the inductance inside the minimum gap radius, and 
the desired variation of electron current with radius.  The variation of electron current 
with radius assumes that electrons are able to return to the cathode.  For electrons to be 
able to return to the cathode, betatron acceleration (electron energy increase due to 
increasing magnetic field) must be at least as high as the rate of electron energy loss.  
Electrons can lose energy, for example, by synchrotron radiation, and collisions [40].  
Classical collisions between electrons and gas ions are small in rate, and especially small 
in number for the tens of nanosecond pulses typical in present z-pinch drivers.  Stygar has 
developed a model for magnetically insulated flow in cases where electrons lose energy 
due to electromagnetic field fluctuations [40]. 

The synchrotron energy loss rate can be calculated from the classical Larmor equation 
since the drifting electrons travel much slower than the speed of light [6].  The 
synchrotron power is 

 S =
e
2
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where S  is the radiated power, e  is the electron charge, m
0

 is the electron rest mass, !
0
 

is the permittivity of space, c  is the speed of light, and P  is the electron momentum.  
For a particle gyrating in crossed electric and magnetic fields, 
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where E  is the electric field. 

The energy loss to synchrotron radiation is 
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which is 1.7 !10"15  Watts for each electron at 1 MV/cm.  This is 10.5 keV/s, or 420 !10"6  
eV over a 40 ns power pulse for each electron.  This is negligible compared to the 
electron kinetic energy in typical systems. 

Betatron acceleration is due to the changing magnetic field [41].  While current is 
rising, the electrons gain kinetic energy from the magnetic field.  While current is falling, 
the electrons give energy to the magnetic field.  For electrons drifting along the cathode 
at an average height h , the changing flux per unit length (induction) is 

 
 

V! = h
!Iµ

0

2"r
 (4) 

where  !I  is the time derivative of current, and r  is the radius.  For typical values in the 
experiment and simulations done here,  !I  is about 1013  A/s until times close to peak 
current.  At 0.2 m radius, an electron 1 mm average height above the cathode gains 100 
electron volts per cm of drift.  Electrons continually gaining total energy will return to the 
cathode [12].  Particle in cell simulation models don’t typically have models for radiation 
or collisions, but magnetic induction is of course modeled self-consistently. 

Because there is a mechanism for electrons to return to the cathode under some 
conditions, and because observations from particle modeling of magnetically insulated 
transmission lines [38] shows that the local electron flow tends to operate at the locally 
calculated value [26, 28] prompted a study to attempt exploiting that condition to design 
impedance profiles for MITLs.  Impedance profiles for MITLs in large z-pinch drivers 
determine the inductance (which in turn affects total efficiency) of those drivers [42], and 
so can have appreciable cost implications.  To the extent that electron flow is a primary 
consideration in large driver design, it would be useful to have tools to help constrain the 
mechanical design based on electron flow issues. 

The model 
The simple time-independent model of a magnetically insulated transmission line 

driving a low impedance load is shown in Figure 1. 

 
Figure 1.  A simple model of a pulser and magnetically insulated 
transmission line driving a low impedance load.  The load inductance is 
assumed to be unchanging.  The magnetically insulated transmission line 
has a short transit time compared to the pulse length. 
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In the typical radial disk geometry, Figure 2 conceptually shows the magnetically 
insulated transmission line (MITL) system.  Note that Figure 2 shows a radial disk feed 
transmission line, but the calculations to follow apply equally well to any inductive load 
with geometric corrections.  At times before peak current, magnetic energy is flowing 
towards the load inductor.  The radial location r

0
is the radius at which the gap becomes 

the minimum allowed ( g
0

); the vacuum impedance is minimum at the radius r
0
.  The 

impedance rises at smaller radius in a constant-gap configuration.  The electron flow 
generally will become unstable near the point that the vacuum impedance starts to rise 
abruptly in the power flow direction.  A key issue is the maximum stable change rate in 
equilibrium flow.  It is known that the abrupt transition in the load region shown in 
Figure 2 will cause electron instability.  We will consider all the inductance downstream 
of r

0
to be lumped together into the load inductance value L

0
.   

 
Figure 2.  Schematic of the magnetically insulated transmission line and 
load profile. 

The local electron flow current magnitude is readily calculated from analytic theory 
using [28].  In those calculations, for voltages above about 500 kV, the electron current is 

 V = Z I
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where V is the potential difference between the anode and cathode, Z is the vacuum 
wave impedance, I

a
is the anode current, I

c
is the cathode current, m

e
is the electron 

mass, and e is the electron charge.  In situations where the electron current is much less 
than the anode current, a reasonable approximation to (5) is 
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e
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where I
e
is the current in vacuum-flowing electrons.  The voltage at a radial position is 

determined from the total inductance at that radius and the rate of change of current. 

 
 
V = L r( ) !I

a
 (7) 

where L r( ) is the total inductance inside the radius r  and 
 
!I
a

is the time-derivative of the 
anode current.  The inductance at a radial location is the sum of the lumped load 
inductance and the transmission line equivalent lumped inductance 

 L r( ) = L
0
+
1

c
Zd !r

r
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r

"  (8) 

 

where c is the speed of electromagnetic waves in vacuum. 

It is convenient to use inductance rather than impedance throughout.  Define 
inductance (!)  and its derivatives with respect to radius ( !" , !!" ) as below 

 

! = L
0
+
1

c
Zd "r

r
0

r

#

"! =
Z

c

""! =
"Z

c

 (9) 

 

The voltage as a function of radius is 

 
 
V (r) = !I

a
! . (10) 

 

The electron flow as a function of radius is then 
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The voltage (if non-zero) changes with radial position.  The change in electron flow 
current with radius is 
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The fractional change in electron current with radius is defined as 
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so that the fractional change in electron flow with radius then becomes simply 

 ! = 2
"# 2 $ ""# #

# "#
. (15) 

If electron flow into the load is a constraint, and electrons do not reach the anode or 
return to the cathode, then the lowest inductance case must be constant electron flow over 
the radial extent.  This is ! = 0 , or 

 !"
2
= !!" " . (16) 

This is solved by 

 ! = !0 exp
r " r0
#

$

%
&

'

(
)  (17) 

where ! is a constant.  To find ! , use the impedance at r = r
0

: 
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For constant electron flow versus radius, the impedance profile is 
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With the constants in (19), the impedance profile solution for constant electron flow 
is 

 Z r( ) =
60g0
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For non-constant electron flow, we solve (15) numerically, although analytic 
solutions for a given value of !  are possible.  We have three sets of hardware designed- 
one calculated for constant electron flow versus radius, the other two designed to have 
appreciable change (! =1 and 3.7) in electron flow versus radius. 

We replaced the magnetically insulated transmission line hardware on Tesla with the 
disk feed.  The new hardware has four sets of anode and cathode current monitors, in 
addition to a load region electron collector.  The collector is designed to exploit the 
electron turbulence in the increasing vacuum impedance of the load region.  The collector 
has a separate floating electrode that encloses about 97% of the load inductance flux 
volume.  Because this encloses essentially all of the load inductance flux, this additional 
electrode looks to a flowing electron like the anode surface.  Simulations and experiments 
show that electrons reach the anode due to instabilities in an abrupt impedance transition.  
Briefly put, the mean electron drift velocity slows at an impedance increase because of 
the reduced electric field.  Electrons must go to the collector can walls and do so by 
building up space charge to create enough electric field to allow crossing the magnetic 
flux to reach the anode. 

Mechanical design 
Functioning of the electron collector (verified by agreement with calculations and 

with the conventional current monitors) would allow an experiment on Saturn or Z to 
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directly measure the electron flow into the post-hole convolute region.  For this reason, 
we consider the electron collector an important part of the proposal, and design work to 
make it reliable has been appreciable.  Figure 3 shows the design of the MITL and 
electron collector hardware. 

 
Figure 3.  The disk MITL and electron collector design.  The cathode outer 
radius is 0.56 meters.  The pulser feed is double sided; convolute posts 
allow feeding energy from both sides of the oil-vacuum insulator if desired. 

The calculated gaps for a constant electron current versus radius and for decreasing 
(! = 1 ) cases are shown in Figure 4.  The calculated electron flow in Figure 4 comes 
from an evaluation of (5), and not the approximation of electron flow in (6).  Both cases 
used an experimentally measured forward wave from the driver, and a calculated current 
and voltage from the forward wave, the source impedance, and the computed inductance.  
Such a calculation has excellent agreement with measured voltages and currents on Z and 
a variety of other experiments. 
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Figure 4.  Calculated gap profiles for constant electron flow (beta=0), 
reducing flow (beta=1) and reducing flow (beta=3.7).  These calculations 
constrained the gap at the outer part of the MITLs to be the same for the 
three beta values considered. 

The feed inductances from the calculations in Figure 4 are 9.08 nH for the constant 
flow current geometry and 4.95 nH for the beta=1 reducing flow geometry, and 6.41 for 
the beta=3.7 reducing flow geometry.  Figure 5 shows the calculated voltages and 
currents for the two geometries.  Note that the total inductance is not changed 
significantly and so the feed voltages and current are essentially the same.  The electron 
flow at the outer radius is the same as well since the gap, the voltage, and the currents are 
about the same.  The difference is the electron flow at small radius. 
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Figure 5.  Voltage and total current for the disk MITL geometry.  The 
calculation takes the measured forward-going waveform from the pulsed 
power driver, and calculates the voltage and current from an analytic model 
of the circuit. 

The system is modeled with a known experimental forward-going waveform and the 
known source impedance of the pulsed power driver.  The current in the (fixed) inductor 
is 
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(21)  

where i is the inductor current, R is the driver impedance, Vforward is the forward wave, 
and L is the inductance.  This neglects displacement current (transit time effects) in the 
inductor.  This allows simple analytic evaluation of current in the load inductor.  The 
inductor voltage can be calculated in the same manner as the current; 
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where v  is the voltage.  Using the current and voltage calculated in the preceding 
manner, it is straightforward to calculate electron flow in a created geometry.  Code was 
written to generate MITL profiles given the minimum gap, the radius of the transition to 
minimum gap, the inductance inside the minimum gap, the outer radius, and the electron 
retrapping parameter as shown in Figure 4.  Figure 5 shows typical voltage calculated 
from the measured forward wave and given inductance and gap profile parameters.  
Figure 7 shows electron flow calculated at different radii in a gap profile designed for 
constant flow versus radius.  The calculated electron flows in Figure 6 and Figure 7 
neglect transit time effects, and assume zero threshold for the cathode to become a space-
charge limited source of electrons. 

 
Figure 6. Calculated electron flow for 43 nH lumped central inductance and 
a gap profile designed to have a reducing electron flow with smaller radius. 
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Figure 7.  Electron flow calculated from the analytic form at different radii 
for a constant-flow profile, at a voltage over 1 MV.  The electron flow 
current calculations overlay, as they should. 

 

The time up to peak current is the most interesting in terms of delivering magnetic 
energy to the z-pinch.  While current is rising, electrons gain energy from the rising 
magnetic field.  Since the electrons gain energy, it is possible for them to return to the 
cathode if the charge density is high enough to maintain the space-charge limited (zero 
cathode electric field) condition.  The model does not account for plasma on the cathode 
surface or gap closure.  For short enough pulses, or large enough conductor spacing, the 
neglect of gap closure may be appropriate. 

There is a substantial inductance reduction if electrons gain enough energy to return 
to the cathode and higher flow at large radius is acceptable.  Note that the design here use 
a relatively large load inductance to enhance the flow current to levels that can be more 
easily measured with the anode and cathode current monitors.  As the inductance of the 
load becomes higher, the variations with radius will be less.  This is because the voltage 
variations along the radial feed line become less important. 
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The experimental configuration 
The experiments were conducted on a relatively small pulsed power at Sandia 

National Laboratories.  This driver can deliver 500- to 800- kV peak forward waves with 
~30 ns full width at half-maximum.  Figure 12 shows the driver.  The driver consists of a 
24-stage Marx generator charged to ~60 kV, which upon erection charges two 7.5 nF 
water capacitors in ~500 ns.  The water capacitors are discharged by an electrically 
triggered gas switch into four water-insulated pulse-forming lines.  The water-insulated 
pulse-forming lines are discharged by self-closing water switches.  The energy flows past 
the self-closing water switches to charge four water-insulated pulse-forming lines.  These 
lines have a second set of water switches for pre-pulse suppression.  The system has a 
~2Ω source impedance.  The current risetime into an inductor is ~40 ns.  The power from 
the water insulated lines flows through oil-water polyurethane barriers, and into the 
vacuum insulator stack region.  This region is filled with transformer oil.  The vacuum 
insulator stack itself is a balanced (ground-high voltage-ground) design.  This experiment 
uses only one side of the insulator stack.  The inductance between the water-insulated 
lines and the vacuum region is 10 nH.  Using both sides of the insulator stack would 
reduce the inductance to 5 nH, but would require a vacuum convolute to add the currents 
into a common feed.  Such a convolute is possible with this hardware but was not used 
because of the complication associated with power flow past a region with magnetic 
nulls.  Future work should include tests with a convolute, if only to assess whether a 
region with magnetic nulls affects electron flow downstream.  It is possible that the 
weakly-insulated regions around the nulls (which effectively have a very low impedance 

since impedance is a function of 
Emagnetic

Ecapacitive

, where Emagnetic  is the local energy stored in 

magnetic field, and Ecapacitive  is the local energy stored in electric field.  Near a magnetic 
null, of course, the magnetic energy is very small and so the effective impedance is small.  
A region of low impedance could enhance the electron flow [24]. 

The electron current is diagnosed with conventional derivative-responding fluxmeter 
‘Bdots’.  To avoid issues with magnetic flux penetration into metal surrounding Bdots in 
holes, the Bdots here are in grooves.  The Bdot active loop is etched onto standard printed 
circuit board.  The Bdot loops are photo-etched, and have calibration constants within 
two percent.  Twelve monitors are on the anode, and twelve on the cathode.  The 
monitors are at the same radial distances from the center, but the anode loops are 
staggered in azimuth by ten degrees. 

The monitors were calibrated in place with a 40 ns risetime, 3 kV pulser connected 
via coaxial cables to the water lines.   Figure 8 shows a view of the Bdot monitor. 

The calibration factor for the Bdots is within 5% of the value expected from the 
nominal loop dimensions.  The monitors were calibrated against a .005Ω current viewing 
resistor in the center of the disk MITL hardware.  This monitor was only used for the 
calibrations.  The average relative standard deviations (rms deviation over all waveform 
points divided by the peak) of the waveform comparisons between the Bdot and the 
reference resistor was 0.4%.  The comparison was actually done between the integrated 
current viewing resistor signal and the Bdot signals integrated twice.  This was necessary 
to improve the accuracy of the comparisons because of the small but noticeable 
displacement current flowing in the transmission line.  The transit time of the disk MITL 
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hardware is 1.7 ns.  Compared to the 40 ns calibration pulser risetime the transit time is 
small but enough to cause a noticeable difference between the outer Bdots and the 
reference monitor on the center of the MITL disks. 

 

 
 
Figure 8.  The Bdot monitor used on the disk MITL hardware. 

The calibration factors varied by about 0.4% (one-sigma) over tens of calibration 
tests.  The average factor from all the tests was used for the Bdots.  Figure 11 shows 
calibration factors for three Bdots over a calibration set.  All the gauge factors on one 
monitor are averaged and applied to that monitors.  The Bdots were calibrated on the 
digitizer channel on which the shot data were acquired.  The digitizers used were 
Tektronix TDS654C and TDS684C digitizers acquiring at 200 ps/point.  The accuracy of 
the digitizers is expected to be 7 seven bits.  The timing accuracy of the channels 

(triggered from a common fast-rise trigger pulser) is expected to be 
! sample

2
, where ! sample  

is the sample time.  A test showed 145 ps (one-sigma) deviation between units sampling 
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at 200 ps.  The bandwidth of the TDS654C is 500 MHz; the TDS684 bandwidth is 1 
GHz.  The cable runs from the monitors to the digitizers are identical; 5.5 m of RG-142, 
7.6 m of half0inch Heliax, and 3.6 m of quarter-inch Heliax.  The 10-90 risetime of the 
cable system is 900 ps. 

The signals are acquired in a quadruple-shielded screen box with copper sheet and 
steel sheet walls for fast and slow magnetic field penetration resistance.  The noise level 
inside the screen box during a shot is well below one millivolt.  Figure 11 shows the 
screen box. 

Low inductance passive (RC) integrators were used to integrate the signals.  The 
integrators allow accurate response at the one-nanosecond timescale.  The integrators also 
attenuate the signals (the integrator time constants was ~2.3 µs) so attenuators were not 
needed.  The integrators were calibrated as described in the Appendix to about 0.5% 
accuracy in time constant.  This time constant was applied to the calibration gauge factors 
(calibration was done without integrators by numerically integrating the derivative 
signals).  The average integrator time constant value was used in a droop-correction 
routine, also described in the Appendix.  The droop was of order 2% at the end of the 
voltage pulse.   Figure 11 shows a picture of the integrators inside the screen box. 

 
Figure 9.  Screen box holding seven digitizers for acquiring 28 signals. 
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Figure 10.  Passive integrators inside the screen box. 

 
Figure 11.  Calibration factors for three individual Bdots over a number of 
calibration tests.  The relative standard deviation of the individual fits and 
the relative standard deviation of the gauge factors over the shots is about 
0.4% (one-sigma). 
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Figure 12 shows a view of the pulsed power driver on which the experiment was 
conducted.  Figure 13 shows a cross-sectional view of the disk MITL hardware tested.  
Figure 14 shows a picture of the MITL cathode.  Figure 15 shows the center region of the 
MITL hardware and the electron collector.  The electron collector was designed to be a 
complete can inside the outer central inductor.  Mechanical tolerances made it difficult to 
maintain alignment with the entire collector can.  A partial can still measures electron 
current, though the collected current is related to the image charge drawn to the collector 
parts (which is measured) relative to the total image charge. 

 
Figure 12.  The pulsed power driver on which the experiments were 
conducted. 



27 

 
Figure 13.  Cross-section of the disk MITL and electron collector hardware.  
The outer MITL anode radius is 46 cm. 

Figure 14 shows the disk MITL cathode.  The three current viewing resistor terminals 
can be seen in the picture.  The cathode conductor is flat (except for the Bdot grooves) to 
simplify the simulation setup and interpretation.  Figure 15 shows the inner electron 
collector can center spool and the collector can lid.  The collector can parts are 1.5 mm 
thick stainless steel.  Figure 16 shows the cathode Bdots with the polyamide tape 
covering the Bdots themselves.  The tape cannot of course change the field on the Bdot 
loop until it emits enough electrons to reduce the field appreciably.  If the cathode were 
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covered in flowing electrons at all times, large fields at the Bdot loop would not be 
expected.  For that reason, we conclude that in this system, even with the cathode covered 
in a carbon coating, the electron emission is not uniform.  Figure 17 shows the MITL 
anode pulled away from the cathode. 

  
Figure 14.  Cathode of the disk MITL hardware.  The Bdot grooves are 1 cm 
deep and 1 cm in radial width. 
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Figure 15.  View showing inner electron collector center spool and lid.  This 
is the configuration most often used because of the reduced mechanical 
alignment problems. 

There were problems with the Bdots on the cathode.  The monitors emitted electrons 
from the Bdot loop conductor itself. In an attempt to solve this problem, the Bdots were 
installed into a new cathode plate in which the Bdots were recessed into holes instead of 
grooves.  The problem of electron current emission was reduced slightly, however the 
actual signal was reduced about an order of magnitude.  The net ‘signal-to-noise’ ratio 
was substantially worse with the Bdots in holes.  However, placing Kapton tape over the 
Bdots on the cathode eliminated electron emission from the Bdots.  This is because the 
Kapton quickly builds up a surface charge that reduces the electric field on the Bdot 
itself.  The cathode with Kapton tape over the Bdot holes is shown in Figure 16.  Figure 
16 also shows the graphite coating applied to the cathode surface to insure electrons were 
emitted.  Because the electron flow measured was lower than expected from the particle 
simulations, an attempt was made to reduce the voltage threshold for cathode plasma 
formation and electron emission.  For pulses of 40 ns duration, cathode plasma formation 
is usually observed at fields lower than the 400 kV/cm seen in this experiment [43].  A 
layer of graphite applied to the cathode surface will reduce the threshold for plasma 
formation and electron emission.  Presumably, the rough microscopic surface of carbon 
with the entrained water vapor has a lower threshold for gas emission and ionization.  
Low electrical conductivity materials such as carbon (velvet cloth is also commonly 
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used) have much lower thresholds for electron emission when used as electron gun 
cathodes. 

 
Figure 16.  Cathode Bdots showing polyamide tape over Bdots to reduce 
the electric field at the Bdot itself. 
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Figure 17.  The anode of the disk MITL. 

Experimental data 
The experimental data for this system is limited because of a failure of the vacuum 

insulator stack.  This limited the number of experiments on the MITL system.  The anode 
and cathode currents for an experiment are shown in Figure 18 and Figure 19 for shot 
558.  The monitors are labeled by inductance from the axis.  The monitor I60p is an 
anode monitor in the outermost groove (60 nH from the center of the machine).  The 
cathode monitor I59n is located in the outermost cathode hole radius.  The signals shown 
are the average of three monitors equally spaced at the same radius. 
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Figure 18.  Anode current measured in disk MITL on shot 559.  Each signal 
shown is an average of three monitors equally spaced in azimuth, 
individually recorded and numerically averaged.  Alternating monitors are 
oriented differently (with positive and negative scale factors) so that 
common-mode noise would be evident. 



33 

 
Figure 19.  Typical cathode current measured at three radial locations in 
the disk MITL on shot 559.  Each curve shows the average of three equally 
spaced (in azimuth) monitors recorded individually and averaged 
numerically. 
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Figure 20.  Anode and cathode currents on shot 559.  The agreement 
between the measured currents early in time and late in time when electron 
flow is known to be small shows the accuracy of the measurements. 

The electron current can be calculated from subtraction of the cathode current from 
the anode current at a given radius.  Figure 20 shows anode and cathode current measured 
at the same radial location.  Each is an average of three equally spaced monitors.  The 
agreement between anode and cathode current at times when the electron flow is known 
to be small (for example, late in time when voltage is low) demonstrates the accuarcy of 
the measurements.  The late-time difference in anode and cathode current is ~5 kA peak.  
At that time, the total current is ~300 kA.  This gives an expected accuracy of 1.7%.  The 
effects of common mode shield current increases relative to the inductive time constant 
of the cable ground system, so that earlier in the pulse, the accuracy is better.  Such a 
number is reasonable for the digitizers used, noise effects, and calibration and time shift 
errors. 



35 

The electron current may also be measured by the electron collector system.  The 
collector can is a floating electrode supported by three current viewing resistor terminals.  
The electron collector has some similarities to a ‘Faraday’ charge collector, but in the 
electron collector the total machine current flows in the outer collector can walls.  The 
collector works because the electron flow becomes unstable when entering the large 
diameter can.  The reason the electron becomes unstable is because the electrons must 
slow because of the increased wave impedance (reduced electric field and increased 

magnetic field).  The electron drift velocity scales as 
E

B
 and the reduced drift velocity at 

small radius causes bunching of electrons flowing from larger radius.  The original 
intention was to build a collector that was enclosed except at the entrance to the can.  
This is shown in Figure 21.  The electrons draw an image charge to the inner collector 
can when an electron enters the inner can.  Electrons will strike the inner can when their 
space charge overcomes the magnetic field.  The gap between the outer and inner can is 
1.5 mm.  This small gap was chosen to maximize the number of electrons that go inside 
the inner collector.  However, alignment issues with the driver and flexing of the 
collector itself made shorting between the inner and outer can (even during the machine 
pre-pulse) common.  For this reason, later experiments were done with only a partial can.  
This is shown in Figure 22.  The collector indicates the fraction of image charge drawn 
on the inner collector parts.  To estimate the fraction of image charge measured, an 
electrostatic model was studied.  The electron collector monitor will register image 
charge when an electron enters the collector can region.  If the electron reaches the anode 
by striking the collector itself, the monitor won’t change since the image charge has 
already been ‘counted.’  However, if the electron leaves the region and reaches the anode 
at a place other than the can, the image current will invert and be ‘subtracted’ from the 
collector can signal.  Thus, electrons will be counted if they enter the can and flow to the 
collector, or if they enter the can and stay in space.  If the electrons leave the collector 
region they will cause no net current signal on the collector monitor. 

The collector can is connected to the MITL cathode near its current-viewing resistors.  
If the can electrically contacts the MITL at another point (due to mechanical mis-
alignment or gap closure due to plasma) the collector signal will be opposite polarity 
from electron collection.  This is important for distinguishing between electron collection 
and alignment problems. 
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Figure 21.  The electron collector.  The full collector (green) is shown.  
Electrons strike the inner can.  The current viewing resistors indicate 
image current once an electron enters the can.  Electrons do not need to 
strike the can to be measured, but large space charge fields exist if the 
electrons do not reach the anode.  The gap between the outer and inner 
can is 1.5 mm.  Full machine current flows in the center rod while electrons 
are collected by the can and their current flows through the current viewing 
resistors. 
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Figure 22.  The partial electron collector used.  The collector (green) carries 
image current for electron space charge in the region.  This configuration 
simplifies can alignment.  The gap between the outer and inner collector is 
1.5 mm on radius. 

An electrostatic simulation will accurately indicate the effect of electron space charge 
in the can region since the dimensions of the can are small compared to the pulse length 
divided by the speed of power flow.  The location of the space charge was taken from 
data obtained in the particle in cell simulations at peak voltage (Figure 23). 
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Figure 23.  The charge density in the collector can region at 70 ns for a low 
voltage simulation.  The cyan line is the charge centroid. 
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Figure 24.  The electrostatic simulation geometry.  The regions with the 
partial inner collector will measure 75% of the image charge for space 
charge located as shown.  Note the Figure is rotated compared to the 
simulation geometry. 

The data from an experiment with the partial inner collector are shown in Figure 25 
and Figure 26.  The collector can current as well as the difference of anode and cathode 
currents is shown.  The anode-cathode current differences indicate excess electron flow 
late in the pulse (when voltage is essentially zero) presumably due to plasma carrying 
current on the surface of the polyamide tape covering the cathode Bdots.  The collector 
can current in the Figure is not corrected for the incomplete image current collection.  
The scaling of the current by 1.3 raises the indicated peak current to 37 kA.  This agrees 
reasonably well with the indicated anode-cathode difference at the time of peak voltage. 

The peak of the electron collector current is delayed with respect to the voltage pulse.  
The timing accuracy is of order 1 ns due to cable measurement errors.  The drift velocity 
of the vacuum flowing electrons in the load region is about one tenth the speed of light.  
This would account for several nanoseconds (the distance from the anode and cathode 
Bdots to the collector can shown is 20 cm, or 700 ps at light speed).  With the reduced 
drift velocity, 5 to 7 ns could be expected for electron transit time [6]. 

While the amount of experimental data is less than desired, it appears that the current 
monitors and the electron collector indicate reasonable electron currents. 
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Figure 25.  The collected electron current (red, circles) and the difference of 
anode and cathode current (blue, squares).  The voltage (green, diamonds) 
is also shown. The data are from shot 558.  The MITL configuration is the 
constant-flow (beta=0) geometry. 
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Figure 26.  The four radial current monitor positions anode-cathode current 
differences (ie60 is the outermost set; ie53 is the innermost set).  The 
collector can current (iecvr) is also shown.  The ringing on the current 
monitors is a result of voltage variations (vx is the voltage signal) from 
timing differences in the four drive lines feeding the transmission line. 

Simulations 
Particle in cell simulations were done to complement the experimental data.  The 

simulations have the advantage of much more access to behavior of the system.  The 
simulations of course only include the physics set up in the modeling software.  The 
models used here did not include electrode plasma (and therefore not gap closure).  The 
simulations were done with Quicksilver [44].  The geometry was imported from CAD 
drawings of the hardware. 
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The simulations were done in both time-accurate mode (with a forward wave from 
the experiment) and static mode.  Static mode has the advantage of being equilibrated so 
time averaging can be done to improve the resolution of some effects. 

The simulations were run on a computer cluster at Sandia National Laboratories in 
Albuquerque.  The simulations were usually run on 16 processors.  The simulations used 
cell sizes of 200 µm near the cathode.  The time step was 625 fs.  The peak number of 
particles in a simulation was about 250 thousand for the low voltage runs, and about 100 
thousand for the higher voltage simulations. 

 

Static simulations 
 

The electron flow current in the initial simulations of the MITL experiment showed 
significant discrepancy with local application of the 1-D pressure balance model. With 
the full inductive load, it is difficult to determine whether this is a due to a numerical 
problem. To address this issue, we have performed simulations with a resistive load, 
driven with a voltage pulse that smoothly ramps up to a final value and is then held 
constant. We run the simulations out far enough in time to have a long period (at least 20 
ns) at the final operating point. We then analyze the final state with time-averaging over a 
range of time windows. The static geometry is shown in Figure 27. The inner end of the 
MITL at r = 4.4 cm is connected to a 1-D transmission line, terminated with a resistor. 

 
Figure 27.    Comparison of the full inductive load (red) and static (green) 
simulation geometry. 

 

The baseline run for this setup uses an operating point of V ~ 400 kV, and I ~ 170 kA. 
At this low voltage, there are issues with the QUICKSILVER field emission model. In 
this model, emission cells are initially non-emitting, and turn on only when the normal 
electric field exceeds a threshold value. We have typically used Ethr = 200 kV/cm. For a 
high voltage MITL, (V/d)/Ethr >> 1, the results are insensitive to this parameter. Here, the 
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electric field at the outer radius of the MITL is marginally high enough to turn on the 
emission cells. We have done simulations with threshold values of 200 and 50 kV/cm. 
The late-time voltage for these simulations is 386 and 358 kV respectively.  

 

Results of the flow current profile, time-averaged over a 20 ns time window, are 
shown in Figure 28. In the 200 kV/cm case, the only emission for r > ~0.2 m is off the 
corners of the cathode grooves. Thus the flow is much lower than the theoretical value. 
These results are qualitatively similar to the inductive load runs. In the 50 kV/cm case, 
the flow exceeds the theoretical value because electrons emitted at outer radius are able to 
flow downstream without being retrapped back to the cathode. This is illustrated in 
Figure 29. Note the very low electron density at the cathode for 0.18 < r < 0.32 m. The 
upstream electrons flowing into this region suppress emission, and so the electron density 
profile as a function of z is very different from the assumptions used for the 1-D pressure 
balance equation. 

 

 
Figure 28. Comparison of the time-averaged electron flow current profile 
with the theoretical prediction for two emission threshold electric field 
values. 



44 

  
Figure 29.    Electron charge density for the 50 kV/cm case, averaged over 
the same 20 ns time window used for the flow profile in Fig. 2. 

It is reasonable to question whether the cathode grooves are contributing to the 
launching of the upstream flow far out into the gap. We also did simulations without the 
cathode grooves, i.e. a perfectly flat cathode. The flow current profiles are shown in 
Figure 30, compared with the grooved case. The agreement in the 50 kV/cm case is 
excellent. For the 200 kV/cm case, agreement is also good at small radius. At large 
radius, the field emission threshold is never exceeded with the flat cathode. We thus 
conclude that the cathode grooves have very little effect on the electron flow in the 
MITL. 

 

 
Figure 30. Time-averaged electron flow current profile for the grooved and 
flat cathode simulations.  Red curves are for the grooved setup, green 
curves for the flat setup; solid curves are the simulation flow current, and 
dotted curves are the theoretical flow. 

The electron flow current in the Z MITL simulations agrees very well with 1-D 
pressure balance model (provided the spatial resolution at the cathode is adequate). To 
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reconcile those results with the discrepancy observed with this setup, we are finally lead 
to suspect that operating at low voltage is the problem. We thus ran new flat cathode 
simulations at higher voltage.  

 

 
Figure 31. Time-averaged electron flow current profile for flat cathode 
simulations at higher voltage. 

The results of two runs are shown in Figure 31. At the higher voltage, the agreement 
is excellent. The discrepancy at small radius is almost certainly due to the fact that we 
need finer spatial resolution to more accurately resolve the thin electron sheath here. For 
the second case, the simulation flow exceeds the theoretical value. The reason for this is 
exactly the same as for low voltage run with Ethr = 50 kV/cm, namely that electrons 
emitted upstream are not being retrapped to the cathode. Plots of the electron charge 
density analogous to Figure 30 show the same qualitative features. 

 

 

In summary, the major points are: 

• There are no apparent problems with the simulations, and the spatial resolution is 
adequate for the low voltage case. 

• The cathode grooves do not greatly affect the electron flow, except that when 
using large values of Ethr, emission is possible at the cathode groove corners. 

• At high enough voltage, we do in fact get excellent agreement between the 
simulated flow current and the 1-D pressure balance model.   

 
 
Time-accurate simulations 
The time-accurate simulations used a similar setup to the static simulations, except 

the input boundary condition was generated from an experimental forward-going 
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waveform, and the load was not resistive but inductive.  Static simulations cannot be 
done with an inductive load. 

The simulation geometry is shown in Figure 32, Figure 33, and Figure 34.  The cell 
size near the cathode is 200 µm.  The simulation time step is 625 fs.  Several hundred 
thousand particles are tracked in the simulation.  The simulations run in about an hour on 
16 processors of a large computer cluster. 

 
Figure 32.  Simulation setup for the constant-flow (beta=0) geometry. 
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Figure 33. Simulation setup for the reducing flow (beta=1) geometry. 

 
Figure 34. Simulation setup for the reducing-flow (beta=3.7) geometry. 
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The voltage for one of the simulations is shown in Figure 35 for the experimental 
voltage of ~500 kV and the higher voltage case in Figure 36. The simulations were also 
done with the forward wave artificially increased to about 10 MV to reduce the effect of 
space charge on the simulations.  This was done because the model for generating the 
geometry was developed assuming the space charge correction of the electrons [6] was 
much less than the line voltage.  This is not strictly true for the conditions of the 
experiment.  The higher voltage simulations also are much less affected by the exact 
value of the electron emission threshold. 

 
Figure 35.  Simulation voltage and current at the outer edge of the MITL for 
the low voltage (experimental waveform) case. 
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Figure 36. Simulation voltage and current at the outer edge of the MITL for 
the high voltage case.  The oscillations on the waveform are physical 
electron instabilities and are observed in both experiments and 
simulations. 

The space charge correction is much more significant for the lower voltage 
simulations.  This is shown in Figure 37 and Figure 38.  The space charge correction is 
[28] 
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where V
scc

 is the space charge correction, m
e
 is the electron rest mass, c  is the speed of 

light, e  is the electron charge, I
a

 is the anode current, and I
c
 is the cathode current.  The 

space charge correction voltage is about the same for the two simulations at peak voltage 
(~200 kV) but that voltage is much less significant compared to the ~4 MV total voltage 
in the high voltage setup. 

  

  
Figure 37.  Total voltage and space charge correction for the lower voltage 
simulations. 
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Figure 38. Total voltage and space charge correction for the high voltage 
simulation.  The lower voltage simulation has a more significant space 
charge correction. 

The space charge correction is a far smaller fraction of the total voltage on the high 
voltage simulations.  This more closely fits the assumptions in the simple model, so it is 
useful to look at both cases.  The charge density at a time near peak voltage is shown in 
Figure 40 for the high voltage simulation.  Figure 39 shows the electron charge density at 
the time of peak voltage for the lower voltage simulation.  Figure 40 shows the electron 
charge density at the time of peak voltage for the high voltage simulation.  Note the 
charge density centroid shown in the Figures is much closer to the cathode in the higher 
voltage simulation. 
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Figure 39.  Electron charge density and the electron charge centroid of the 
lower voltage simulation, at the time of peak voltage.  The geometry shown 
is the beta=3.7 setup. 
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Figure 40.  Charge density and electron charge centroid for the high 
voltage simulation, at the time of peak voltage.  Note that the charge 
centroid is much closer to the cathode than in the 500 kV simulation.  The 
geometry shown is the beta=3.7 setup. 

The flow impedance is a measure of the position of the electron sheath.  Electric flow 
impedance is a measure of the centroid of the electron charge density, and the magnetic 
flow impedance is a measure of the centroid of the electron current density [26, 27, 45, 
46]. 

Electric and magnetic flow impedance  
Figure 41 to Figure 44 show the effect of the electron emission threshold applied in 

the simulation.  Shown in each Figure is the theoretical flow [28] calculated from the 
local voltage, gap, and electrode current.  The theoretical model essentially assumes a 
zero threshold; the theoretical line is the same in all the Figures below. 



54 

 
Figure 41.  Electron flow versus radius for the low voltage simulation with a 
zero threshold for cathode electron emission. 

 
Figure 42.  Electron flow versus radius for the low voltage simulation with a 
50 kV/cm threshold for the cathode surface to begin freely emitting 
electrons. 
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Figure 43. Electron flow versus radius for the low voltage simulation with a 
100 kV/cm threshold for the cathode surface to begin freely emitting 
electrons. 

 
Figure 44. Electron flow versus radius for the low voltage simulation with a 
200 kV/cm threshold for the cathode surface to begin freely emitting 
electrons.  The large diameter region of the simulation is not emitting 
electrons because of the larger gaps and resulting lower field. 
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Figure 45 shows electric and magnetic flow impedance (charge and current centroid 
position [26]) for a low voltage simulation at time of peak voltage, for the constant flow 
geometry.  Figure 46 shows electric and magnetic flow impedance (charge and current 
centroid position [26]) for a low voltage simulation at time of peak voltage, for the 
reducing (beta=1) flow geometry. 

 

 
Figure 45. Electric (Zf) and magnetic (Zm) flow impedance as a fraction of 
vacuum impedance, for the constant flow (beta=0) geometry. 
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Figure 46. Electric (Zf) and magnetic (Zm)  flow impedance as a fraction of 
vacuum impedance, for the reducing (beta=1) geometry. 

Simulation results 
The simulations show several important features.   

The behavior of the electron flow in the simulations follows the local theoretical 
values.  For this to happen when impedance is increasing in the power flow direction, the 
electrons must gain energy.  In low-resolution numerical simulations, numerical heating 
is a significant source of (artificial) electron energy gain.  However, in the high-
resolution simulations described here numerical heating is less than the betatron 
acceleration rate.  Retrapping of electron flow has been observed experimentally in 
varied systems [17, 21, 30].  If the electron flow becomes unstable, electron energy loss 
will rise dramatically [22, 40].  It was not known what ‘programmed’ rate of retrapping 
would be stable in this system.  Clearly, large impedance increases in the power flow 
direction will cause the formation of electron vortices [10, 11, 47] because constant-gap 
radial transmission lines on Z clearly show ~1 GHz microwave formation while voltage 
is highest and for most of the voltage collapse.  The purpose of the present work was to 
design, analytically, an impedance profile for a magnetically insulated transmission line 
that could be programmed with a specific expected rate of retrapping.  This is a 
somewhat different approach to MITL design than was used when Z was designed [42, 
48, 49].   For simplicity, the model used here does not include changing inductance, but 
in an efficient system, a large fraction of the energy is delivered before the inductance 
changes greatly [50].  The model used here does not consider gap closure.  Within those 
constraints, the simple analytic model does a reasonable job of describing the behavior 
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observed in the simulations.  The simple model might provide a reasonable starting point 
for more complicated considerations. 

Simulations were run at ~500 kV and ~10 MV to study the effects of space charge 
which is more significant at lower voltage.  Most large z-pinch drivers operate at voltages 
well over one megavolt.  For example, the refurbished Z driver will have an insulator 
stack voltage of about 4.5 MV.  The simulations designed to model the experiment 
suffered from large space charge effects and as seen above, effects of electron emission 
threshold [43, 51].  For that reason, we will look first to the higher voltage simulations of 
three different geometries with different ‘programmed’ retrapping rates.  Figure 47 shows 
simulation results for three retrapping rates (the retrapping constant has units of inverse 
length): 0, 1/m, and 3.7/m.  If the simple model applied exactly, the electron flow would 
follow: 

  

 I
e
= I

e:rmax exp !" rmax ! r( )( )  (24) 

where  I
e
 is the electron current at some radius, I

e:rmax
 is the electron flow at the 

outer edge of the MITL, !  is the retrapping rate, and r
0
 is the radius at which the system 

transitions to constant gap (Figure 2).  The simulations are time accurate, but the electron 
flow is averaged over a two-nanosecond window to reduce displayed fluctuations. 
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Figure 47.  Simulation electron flow (high voltage simulation) for three 
programmed retrapping rates (0- red; 1- blue; 3.7- green).  The simulation 
data are shown as unconnected symbols; the analytic model and simple 
exponential are shown as lines.  The beta=0 should be constant electron 
flow, and the beta=1/m should e-fold every meter.  The beta=3.7/meter 
should (and does) have the highest retrapping rate. 
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Figure 48.  Simulations of the three different geometries at lower voltage (0- 
red; 1- blue; 3.7- green).  This does not specifically meet the assumptions 
of the model because of the low voltage, and so variations are not 
surprising.  Still, the highest retrapping parameter predicts lower flow at 
small radius. 

The measured electron flow is lower than that predicted by the particle in cell 
simulations.  Figure 49 and Figure 50 show both the measured and simulated electron 
flow for the constant flow and reducing flow geometries.  The reducing flow geometry 
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Figure 49.  Measured and simulated anode and cathode currents at 45 ns 
for the constant-electron flow geometry. 

 
Figure 50.  Measured and simulated anode and cathode currents for the 
reducing flow geometry.  The simulated anode current matches the 
experimental value, but the simulated cathode current is lower than the 
experimentally measured value. 
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The benefit of lower electron flow at small radius is often cited to be less energy for 
anode plasma creation.  The Quicksilver system allows calculation of anode temperature 
from electron energy deposition.  Results of that calculation are shown in Figure 51 and 
Figure 52. 

 
Figure 51.  Calculated peak anode temperature for the low voltage 
Quicksilver simulations.  The electron emission threshold is set to zero and 
the temperature data are taken at the end of the pulse.  Also shown is the 
total inductance, including the 50 nH center can.  Stainless steel is 
assumed. 



63 

 
Figure 52. Calculated peak anode temperature for the high voltage 
Quicksilver simulations.  The electron emission threshold is set to 200 
kV/cm (which is low in this case) and the temperature data are taken at the 
end of the pulse.  Also shown is the total inductance, including the 50 nH 
center can.  Stainless steel is assumed. 

The region of electron anode heating is shown in Figure 53 and Figure 54.  The 
heating is confined to small radius.  The higher voltage simulations shows heating at 
smaller radius.  A temperature rise of 400 °C is assumed to be benign in most cases [39]. 
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Figure 53.  Anode heating results for beta=0 low voltage simulations.  The 
area where significant heating occurs is shown in red. 
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Figure 54. Anode heating results for beta=0 high voltage simulations.  The 
area where heating occurs is shown. 

A simulation region near a cathode groove is shown in Figure 55 and Figure 56.  The 
perturbation to the magnetic field is small.  It is likely that the groove fills with electrons 
on a fast time scale.  If we assume the electrons flow in the E ! B  direction, then the 
electron filling will happen on the time scale that the magnetic field fills the groove.  This 
is determined by the groove inductance and the impedance of the electron flow above the 
groove.  This can be estimated from 

 

 

V
g
= L

g
!I
c

R =
V
g

I
e

! =
L
g

R

=
I
e

!I
c

 (25) 

where Lg  is the inductance of the groove, 
 
!I
c
 is the time derivative of the MITL cathode 

current, Vg  is the voltage across the mouth of the groove, and !  is the time constant for 
magnetic field to fill the groove.  This time is about 2.7 ns for typical low voltage 
simulation and experimental conditions; the filling time is slightly longer (~4 ns) for the 
high voltage simulations.  The simulations of the groove show the rotating electrons 
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(‘eddy’) in the groove don’t change the local magnetic field appreciably, thus a cathode 
current measurement in a groove can be accurate. 

 

 
Figure 55.  Charge density at the time of peak voltage (50 ns) for a 500 kV 
simulation with zero electron emission threshold. The groove has an 
electron density comparable to that near the cathode surface away from 
the grooves. 
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Figure 56.  Magnetic field in a cathode groove at peak voltage (50 ns) in a 
500 kV simulation with zero electron emission threshold.  The rotating 
electrons in the groove do not alter the magnetic field significantly. 

Conclusions 
Simulations show that it is possible to tailor the impedance profile of a MITL to 

achieve a desired balance between inductance and electron flow at small radius.  
Comparison with high-resolution particle simulations shows at high voltage compared to 
the electron rest mass (much greater than 500 kV), a simple local pressure-balance model 
describes the MITL electron flow.  Essentially, electron flow tends to operate at a value 
set by the local voltage, anode current, and local vacuum impedance.  For smooth, but 

substantial, changes in local fractional electron flow up to 1
I
e

!I
e

!r
 of  3.7 per meter, the 

flow is relatively stable and well approximated by the local pressure-balance equilibrium 
value. This simple model neglects gap closure.  A tailored gap profile that reduces 
electron flow at small radius reduces the anode heating due to electron deposition.  The 
parameter of fractional change in electron current per unit length is probably more useful 
for evaluating the limit of stable electron flow reduction than the change in vacuum 
impedance per unit length because vacuum impedance is not the only factor controlling 
electron flow. 
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The simulations also show that grooves in the cathode (comparable to the gap size) do 
not disrupt significantly the electron flow.  The grooves quickly fill with electrons and 
become ignorable. 

It is possible to measure electron flow directly by collecting electrons in a device that 
exploits the electron flow disruption of an abrupt impedance increasing transition. 

The electron flow measured in the experiment is lower than that observed in 
simulations.  This is due to a non-zero electric field at the cathode.  The simulations 
maintain a particle density near the cathode at the value to cancel the applied electric 
field.  This charge density results in the highest possible electron flow current.  If electron 
emission is non-uniform, then the average cathode electric field is the same direction as 
the field at the anode.  If the transmission line has excess electron charge (due to the 
rising current and slowing drift velocity with time and spatially in the direction towards 
the inductive load) that cannot return to the cathode then the electric field at the cathode 
will be reversed from the anode electric field.  The measured electron flow current is 
about one-third of the electron flow current simulated by Quicksilver.  This difference 
between simulation and experiment is significant and has not been observed in resistively 
terminated systems. [21, 30]  The factor of three discrepancy is much more than can be 
attributed to experimental measurement error.  The unique aspect of these experiments is 
that the load was purely inductive on these tests, and for that reason the electron energy 
gain is due to the rising magnetic field is significant.  The experiments focused on times 
from the start of the pulse until peak current; during that time current is rising and voltage 
is falling, both tending to increase electron energy. 
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Appendix: Integrator calibration 
Passive RC integrator calibration 
In most cases, particularly for fast pulses, passive hardware integration is the most 

accurate way to record signals from derivative-responding monitors.  This is because a 
hardware integrator will always get the correct final answer; with numerical integration 
missed features due to inadequate sample rate (aliasing) affect the rest of the waveform 
record. 

This section describes our procedures for calibrating (determining the time constant) 
and droop-correcting passive integrators.  The integrator time constant directly affects the 
monitor gauge factor, and the droop removal algorithms used. 

Introduction 
There are two types of passive integrators in broad use in pulsed-power data 

acquisition:  the so-called “1 megohm” integrator uses the integrator near the high-
impedance scope input (high input impedance compared to the cable impedance).  
The “50 ohm” integrator operates into 50 ohms, and so can be placed far from the 
digitizer.  The only real differences are that 1 megohm integrators achieve the same 
time constant with less capacitance, and 50 ohm integrators have a rising input 
impedance for times approaching the time constant.  In general then, 50-ohm units are 
best suited to fast signals, and 1-megohm units are better for slow signals.  We will 
discuss both below. 

The 1 Megohm integrator 
Figure 57 shows the schematic for a 1-megohm integrator.  

 
Figure 57.  An integrator for use directly into a high-impedance digitizer. 

The monitor (e.g., B-dot sensor) and cable is modeled by the voltage source (V
i
) and 

the impedance Z
0
 of the cable.  The circuit equations are:  
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where u  is the voltage at the intermediate node, V
o
 is the output voltage recorded at 

the digitizer, R
i
 is the integrator resistor, and C

i
 is the integrator capacitor. 

This circuit can be solved to give 
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For a system with the integrator time constant ! = C
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 applied to the gauge 

factor G, the droop correction is 
G

!
V
o
dt" . Thus, for a scaled signal S t( ) , the droop-

corrected data are  

S
corrected

= S t( ) +
1

!
S " t ( )d " t 

tstart

t

# .    (29) 

To be useful, an integrator must be calibrated.  Using a fast pulse for calibration 
allows quantifying the accuracy of the integrator as well as determining its time constant.  
Recording a signal that can be accurately recorded by the digitizer both before and after 
integration is a simple technique for determining the time constant. 

 
Figure 58.   Calibration setup for 1-megohm integrators. 

The circuit shown in Figure 58 can be analyzed with simple circuit equations. 
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w  is the voltage at the integrator input.  These equations can be solved exactly to 
yield the integrator time constant as a function of V

m
 and V

o
.  This is: 
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As is often the case with real data, the best means of evaluating this numerically is to 
compare the numerator to the denominator, or directly perform a least-squares fit.  We 
will show later how this is applied.  The observant reader will notice that the time 

constants differ slightly (C
i
R
i

+
Z
0

2
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$ 
 in the droop correction calculations and 

C
i
R
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+
Z
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 in the calibration calculations).  Since R

i
 must be much greater than Z

0
 to 

maintain a proper termination, in general this difference can be ignored. 

50 ohm integrators 
The other common type of integrator is the 50-ohm unit.  This integrator 

operates into 50 ohms, so the integrator does not need to be at the digitizer.  Fast 
digitizers typically do not have a high impedance option, so this type of integrator 
must be used that case.  The input impedance of this type integrator reaches 2Z

0
 

at times much greater than the integrator time constant.  For this reason, the 
monitor impedance should be matched to the cable, or equivalently, the cable 
double transit time should be greater than the recording window. 

Figure 59 shows the schematic for a 50-ohm integrator. 
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Figure 59.  An integrator for 50-ohm digitizers. 

The circuit of Figure 59 can also be analyzed easily.  The equation is: 
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Solving for the integral of the detector voltage gives 
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With the integrator calibration applied to the gauge factor, the droop correction is 
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 where 

! = Z
0
C
i
. 

 

The 50-ohm integrator must also be calibrated.  The manner of the calibration is the 
same as the 1-megohm integrator.  Figure 60 shows the setup for calibrating 50-ohm 
integrators. 
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Figure 60.  Calibration setup for 50-ohm integrators. 

The analysis of this circuit is also straightforward. 
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These equations can be solved exactly to yield the integrator time constant as a 
function of V

m
 and V

o
.  This is: 
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Comparing equations (34) and (41), one can see the similarity.  We can write the 
general calibration equation as 
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where k is 1 for the 1 megohm integrator, 7
4

 for the 50 ohm integrator, and !  is the 
integrator time constant used in the gauge factor and the droop correction function. 
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Application of the calibration formulas 

As mentioned before, the time constant can be evaluated by direct evaluation of (42), 
or an iterative waveform comparison, or a direct least squares fit.  Iterative waveform 
comparison deals best with possible time shifts between the signals.  What we have done 
is to use an iterative routine to find the time shift between the signals, and then use a least 
squares fit equation. 

After determining the time shift between the numerator and denominator, the 
numerator is shifted by this time value.  The data arrays are then truncated to the same 
number of points.  The following equations are evaluated: 
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where x  is the mean value of the array x .  Since the value of k  is known from the 
integrator type, we use the value of k  to estimate the accuracy of the calculation. 

Figure 61 shows an example calibration of a Titan 1 megohm (nominal 2 µs) 
integrator. 
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Notice:  Time-shifting data by: 2.595e-09 seconds 
Time constant is: 1.988e-06 seconds, B is: 0.981567 
B is expected to be 1.00000 from the circuit, so you have a      
-1.84327 percent error level 
Figure 61.  Calibration results from a Titan 1 megohm integrator.  This is an 
overlay of the numerically integrated signal and the scaled, droop-
corrected integrator output.  The input pulse is 5 volts from a Picosecond 
Pulse Labs pulser; data acquired on a Tektronix TDS684C. 

Figure 62 shows calibration results on a 50-ohm integrator.  This unit has a nominal 
48 nF capacitance built from a large number of surface-mount capacitors.  Notice in 
Figure 62 that the signals have a slope to the waveforms later in the pulse.  This is due to 
the rising input impedance of the low-impedance integrator late in the pulse.  In this 
calibration setup, the signal source ( Picosecond Labs pulser) was not time-isolated from 
the integrator. 
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Notice:  Time-shifting data by: -3.719e-10 seconds 
Time constant is: 2.244e-06 seconds, B is: 1.77217 
B is expected to be 1.75000 from the circuit, so you have a 
1.26690 percent error level 

Figure 62.  Calibration results from a North Star 50 Ω  integrator, nominal 
2.4 µs. 
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